
Type-Based Verification of Assembly Language

Bor-Yuh Evan Chang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-186

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-186.html

December 29, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Type-Based Verification of Assembly Language

by Bor-Yuh Evan Chang

Research Project

Submitted to the Department of Electrical Engineering and Computer Sci-
ences, University of California at Berkeley, in partial satisfaction of the re-
quirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor George C. Necula
Research Advisor

(Date)

* * * * * * *

Professor Rastislav Bodik
Second Reader

(Date)

Type-Based Verification of Assembly Language

Bor-Yuh Evan Chang

Abstract

It is a common belief that certifying compilation, which typically verifies the well-
typedness of compiler output, can be an effective mechanism for compiler debug-
ging, in addition to ensuring basic safety properties. Bytecode verification is a
fairly simple example of this approach and derives its simplicity in part by com-
piling to carefully crafted high-level bytecodes. In this paper, we seek to push
this method to native assembly code, while maintaining much of the simplicity of
bytecode verification. Furthermore, we wish to provide experimental confirma-
tion that such a tool can be accessible and effective for compiler debugging. To
achieve these goals, we present a type-based data-flow analysis or abstract inter-
pretation for assembly code compiled from a Java-like language, and evaluate its
bug-finding efficacy on a large set of student compilers.

i

Contents

1 Introduction 1

2 Concept 3
2.1 Challenges . 3
2.2 Abstract State . 8

2.2.1 Values . 9
2.2.2 Types . 10
2.2.3 Join . 13

2.3 Example Verification . 15
2.4 Lazy Typing . 18

3 Details 21
3.1 Preliminaries . 21
3.2 Stack and Call-Return Abstractions . 23
3.3 Abstract Transition and Typing . 30

3.3.1 Static Dispatch . 31
3.3.2 Object Allocation and Initialization 32
3.3.3 Type-Case . 34
3.3.4 Exceptions . 35

3.4 Initialization . 39

4 Educational Experience 40
4.1 Student Performance Results . 41
4.2 Student Feedback . 44

5 Conclusion 46
5.1 Related Work . 46
5.2 Conclusion . 47

ii

A Abstract Transition and Typing Rules 53
A.1 Stack . 53

A.1.1 Translation . 53
A.1.2 Transition . 54

A.2 Call-Return . 54
A.2.1 Translation . 54
A.2.2 Transition . 55
A.2.3 Typing . 55

A.3 Coolaid . 55
A.3.1 Translation . 56
A.3.2 Transition . 57
A.3.3 Typing . 58

iii

List of Figures

2.1 Computing by abstract interpretation the abstract state at each pro-
gram point. 5

2.2 An example program shown at the source, bytecode, and assembly
levels. 7

2.3 An example type-unsafe compilation to illustrate some difficulties
in verifying assembly code. 8

2.4 An example program fragment demonstrating the need for lazy typ-
ing of intermediate values. 19

3.1 Abstract syntax of SAL. 22
3.2 Object layout of an instance α of a class C annotated with types at

appropriate offsets. 22
3.3 Three correct compilations of a static dispatch. 31
3.4 Naı̈ve (unsound) typing of a valid compilation for allocating and

initializing an object of self-type. 33

4.1 Performance of student compilers with and without Coolaid. 41
4.2 Behavior of test programs compiled by students and run through

both the standard execution-based testing procedure and Coolaid. . . 43
4.3 Student feedback from the 2004 class about the usefulness of Coolaid. 45

iv

Acknowledgments

Part of the work presented here has been published in a paper co-authored with
Adam Chlipala, George C. Necula, and Robert R. Schneck [CCNS05b]. Some of the
text from that manuscript has been adapted for use in this report.

In addition to above mentioned co-authors, we would like to thank Kun Gao for
his work on the GUI for Coolaid and other parts of the Open Verifier infrastructure.

I would like to thank Ras Bodik for the helpful comments on this manuscript,
and I would especially like to thank my advisor, George Necula, for all the guid-
ance he has generously provided.

v

Chapter 1

Introduction

Effective tools for automatically verifying properties of low-level code has several
applications, including enforcing the safety of mobile code and debugging compil-
ers (particularly, complicated optimizing ones). It is a widely held belief that such
checking of compiler output greatly aids the debugging process. This belief has
led to research, such as translation validation [PSS98, Nec00, RM99], which aims to
verify complete correctness of a compiler (i.e., that the output of a compiler is se-
mantically equivalent to the source program). We are concerned in this paper with
the simpler technique of certifying compilation, in which the output of a compiler
is checked for some internal consistency conditions, typically well-typedness in a
certain type system. In particular, bytecode verification [LY97, GS01, Ler03] can be
used to check that the output of bytecode compilers is well typed. For this to be
possible with a relatively simple algorithm, the bytecode language was carefully
designed to carry additional information necessary for checking purposes and to
include some high-level operations that encapsulate complex sub-operations, such
as method dispatch or downcasting in the class hierarchy.

It is reasonable to expect that some bugs in a bytecode compiler can be de-
tected by type-checking the compiler output. In this paper, we go a step for-
ward and extend the bytecode verification strategy to assembly language pro-
grams, while maintaining a close relationship with existing bytecode verification
algorithms and preserving the features that make bytecode verification simple. A
motivation for going to the level of the assembly language is to reap the benefits
of these techniques for debugging native-code compilers, not just bytecode com-
pilers. Native-code compilers are more complex and thus, there is more room
for mistakes. Additionally, in a mobile-code environment, type checking at the
assembly language level results in eliminating the JIT compiler from the safety-
critical code base. However, what distinguishes our approach from other certi-
fying compilation projects is that we hope to obtain a verification algorithm that

1

1 Introduction

can be explained, even to undergraduate students, as a simple extension of byte-
code verification, using concepts such as data-flow analysis and relatively simple
types. In fact, undergraduate students in the compiler class at UC Berkeley have
been the customers for this work, both in the classroom and also in the laboratory
where they have used such verification techniques to improve the quality of their
compilers.

The main contributions of this paper are as follows:

1. We describe the construction of a verifier, called Coolaid, using type-based ab-
stract interpretation or data-flow analysis for assembly code compiled from
a Java-like source language. Such a verifier does not require annotations for
program points inside a procedure, which reduces the constraints on the
compiler. We found that the main extension that is needed over bytecode
verifiers is a richer type system involving a limited use of dependent types
for the purpose of maintaining relationships between data values.

2. We provide experimental confirmation on a set of over 150 compilers pro-
duced by undergraduates that type checking at the assembly level is an ef-
fective way to identify compiler bugs. The compilers that were developed
using type-checking tools show visible improvement in quality. We argue
that tools that are easy to understand can help introduce a new generation
of students to the idea that language-based techniques are not only for opti-
mization, but also for improving software quality and safety.

In Chapter 2, we present the main ideas of the design of Coolaid, our assembly-
level verifier for the Java-like classroom language Cool. Section 2.1 gives an over-
view of the challenges in building such a verifier, while a formalization of the ver-
ification algorithm is introduced in Sections 2.2–2.3. In Chapter 3, we give further
details necessary for a complete description of the verifier. We then describe our
results and experience using Coolaid in the compiler class in Chapter 4. Finally, we
discuss related work and conclude in Chapter 5.

2

Chapter 2

Concept

Coolaid is an assembly-level abstract-interpretation-based verifier designed for a
type-safe object-oriented programming language called Cool (Classroom Object-
Oriented Language [Aik96])—more precisely, for the assembly code produced by
a broad class of Cool compilers. The most notable features of Cool are a single-
inheritance class hierarchy, a strong type system with subtyping, dynamic dis-
patch, a type-case construct, and self-type polymorphism [BCM+ 93]. We have also
extended Cool with exceptions. For our purposes, it can be viewed as a realistic
subset of Java or C# extended with self-type polymorphism. Cool is the source lan-
guage used in some undergraduate compilers courses at UC Berkeley and several
other universities; this instantly provides a rich source of (buggy) compilers for ex-
periments. We emphasize that Coolaid could not alter the design of the compilers,
as it was not created until long after Cool had been in use.

In Section 2.1, we give an overview of Coolaid, along with the challenges in
developing such an assembly-level verifier. Then, we formalize the abstraction
employed by Coolaid in Section 2.2. In Section 2.3, we present the verification al-
gorithm through example. Finally, we give an example that illustrates one of the
novel aspects of our design in Section 2.4.

2.1 Challenges

There are two main difficulties with type-checking assembly code versus source
code:

1. Flow sensitivity is required since registers are re-used with unrelated type at
different points in the program; also, memory locations on the stack may be
used instead of registers as a result of spill or to meet the calling convention.

3

2.1 Challenges 2 Concept

2. High-level operations are compiled into several instructions with critical de-
pendencies between them that must be checked. Furthermore, they may be-
come interleaved with other operations, particularly after optimization.

The first problem is also present in bytecode verification and is addressed by us-
ing data-flow analysis/abstract interpretation to get a flow-sensitive type-checking
algorithm that assigns types to registers (and the operand stack) at each program-
point [Ler03, LY97]. However, the second is avoided with high-level bytecodes
(e.g, invokevirtual for method dispatch in the JVML).

Coolaid, like bytecode verifiers, verifies by performing a data-flow analysis over
an abstract interpretation. Abstract interpretation [CC77] successively computes
over-approximations of sets of reachable program states. These over-approxima-
tions or abstract states are represented as elements of some lattice, called an abstract
domain.

Suppose we compile Cool to JVML, and consider first the bytecode verifier for
JVML. The abstract domain is the Cartesian product lattice (one for each register)
of the lattice of types; that is, the abstract state is a mapping from registers to types.
The ordering is given by the subtyping relation, which is extended pointwise to the
register state. The types are given almost completely by the class hierarchy, except
with an additional type null to represent the singleton type of the null reference,
> to represent unknown or uninitialized values, and (for convenience) ⊥ to rep-
resent the absence of any value. As usual, the subtyping relation <: follows the
class inheritance hierarchy with a few additional rules for null , > , and ⊥ (i.e., is
the reflexive-transitive closure of the “extends” relation and the additional rules).
More precisely, let the class table T map class names to their declarations; then the
subtyping relation (which is implicitly parameterized by T) is defined judgmen-
tally as follows:

τ0 <: τ1

T(C0) = class C0 extends C1 { . . . }
C0 <: C1 null <: C

τ <: > ⊥ <: τ τ <: τ
τ0 <: τ ′ τ ′ <: τ1

τ0 <: τ1

Note that since Cool is single-inheritance (and without interfaces), the above
structure is a join semi-lattice (i.e., every finite set of elements has a least upper
bound).

4

2.1 Challenges 2 Concept

We can now describe the bytecode verifier as a transition relation between ab-
stract states. Let 〈S, R〉p denote the abstract state at program point p where S and
R are the types of the operand stack and registers, respectively. That is, S is a stack
of types (given by S ::= · | τ :: S), and R is a finite map from registers to types. We
write bc : 〈S, R〉p →BV 〈S′, R′〉p ′ for the abstract transition relation for a bytecode bc ;
we elide the program points for the usual transition from p to p+1. For example,
we show below the rule for invokevirtual , which is the bytecode for a virtual
method dispatch:

τ <: C τ ′0 <: τ0 · · · τ ′n−1 <: τn−1

invokevirtual C.m(τ0, τ1, . . . , τn−1) : τn

: 〈τ ′n−1 :: · · · :: τ ′1 :: τ ′0 :: τ :: S, R〉 →BV 〈τn :: S, R〉

where C.m(τ0, τ1, . . . , τn−1) : τn indicates a method m of class C with argument
types τ0, τ1, . . . , τn−1 and return type τn . The first premise checks that the type of
the receiver object at this point is a subtype of its (source-level) static type, while
the other premises check conformance of the arguments. Note that the abstract
transition for invokevirtual does not branch to the method as in the concrete se-
mantics, but rather proceeds after the return with an assumption about return type
(just like in type-checking). This assume-guarantee style reasoning is possible be-
cause the input and output types of each method are given in advance and provide
sufficient pre- and post-conditions of the method for this particular abstraction.

The verification itself proceeds by symbolically executing the bytecode of each
method using the abstract interpretation transition →BV . An abstract state is kept
for each program point, initially the bottom abstract state everywhere except at the
start of the method, where the locations corresponding to the method arguments
are typed according to the method’s typing declaration. At each step, the state at
the following program point is weakened according to the result of the transition.
If no transition is possible (e.g., because a method call would be ill-typed), the
verification fails. At return points, no transition is made, but the current state is

RBV(p) =

{
Init if p is the start of the methodF{〈S, R〉p | Instr BV(p ′) : RBV(p ′) →BV 〈S, R〉p} otherwise

Figure 2.1: Computing by abstract interpretation the abstract state RBV(p) at pro-
gram point p . Instr BV(p) is the instruction at p ; t denotes the join over the lattice;
Init is the initial abstract state given by the declared types of the method argu-
ments.

5

2.1 Challenges 2 Concept

checked to be well-typed with respect to the declared return type; otherwise, the
verification fails.

To handle program points with multiple predecessors in the control-flow graph
(join points), we use the join operation of the abstract domain. Thus, the abstract
states are computed as the least fixed point of equations in Figure 2.1. The verifi-
cation succeeds if the least fixed point is computed without the verification failing
due to a lack of any transition or due to an ill-typed return.

For example, consider the Cool program (written in Java syntax) shown in Fig-
ure 2.2(a), along with the compilation of the method Main.scan to bytecode (JVML)
in (b). We show below a computation of the abstract state at line 3.

First Iteration Second Iteration

RBV(3) 〈SubSeq :: S, R〉 〈Seq :: S, R〉

The first time RBV(3) is computed, τ is SubSeq and then the invokevirtual is
okay because SubSeq <: Seq . However, this requires that RBV(3) is weakened again
because of the loop before we reach a fixed point.

We now extend these ideas to do verification on the assembly level. Coolaid
works with a generic untyped assembly language called SAL; we hope SAL is
intuitive and to streamline the presentation, we postpone formally presenting it
until Section 3.1. However, note that in examples, we often use register names
that are indicative of the source variables to which they correspond (e.g., rx) or
the function they serve (e.g., rra) though they correspond to one of the n machine
registers. In Section 2.2, we describe the appropriate lattice of abstract states, and
in Section 2.3, we describe the abstract transition relation → . We close this section
with an example illustrating the difficulty of assembly-level verification.

Consider again the example program given in Figure 2.2 where the compilation
of Main.scan to assembly code (SAL) is shown in (c). Note that the invokevirtual

bytecode in line 3 of (b) corresponds to lines 3–9 of (c); invokevirtual is expanded
into (1) a null-check on the receiver object, (2) finding the method through the dis-
patch table, (3) saving the return address, and (4) finally an indirect jump. Ac-
cording to the Cool run-time conventions, the dispatch table is located at offset 8
from an object reference, and in this case, the method is located at offset 12 in the
dispatch table.

The simple rule for invokevirtual is largely due to the convenience of rolling
all of these operations into one atomic bytecode. For example, references of type
C mean either null or a valid reference to an object of class C . Since dynamic
dispatch requires the receiver object to be non-null, it is convenient to make this
check part of the invokevirtual bytecode. In the assembly code, these operations
are necessarily compiled into separate instructions, which then may be re-ordered

6

2.1 Challenges 2 Concept

class Seq {
int data;
Seq next() { . . . }

}

class SubSeq extends Seq { }

class Main {
void scan(SubSeq s) {
Seq x = s;
do {
x = x.next();

} while (x != null);
}

}

(a) Cool

void scan(SubSeq);
Code:

1: aload 1 // load x from s

3: invokevirtual Seq .next() : Seq
// (call x.next())

10: ifnonnull 3 // x != null

12: return

(b) JVML

0 Main.scan:

...
1 rx := rs
2 Loop:
3 branch (= rx 0) Ldispatch abort

4 rt := mem[(add rx 8)]
5 rt := mem[(add rt 12)]
6 rarg0

:= rx
7 rra := &Lret
8 jump [rt]
9 Lret:

10 branch (= rrv 0) Ldone
11 rx := rrv
12 jump Loop

(c) SAL

Figure 2.2: An example program shown at the source, bytecode, and assembly
levels.

7

2.2 Abstract State 2 Concept

1 branch (= rchild 0) Ldispatch abort

2 rt := mem[(add rchild 8)]
3 rt := mem[(add rt 12)]
4 rarg0 := rparent

5 rra := &Lret
6 jump [rt]
7 L ret :

Figure 2.3: An example type-unsafe compilation to illustrate some difficulties in
verifying assembly code.

due to instruction scheduling or other optimizations. This separation requires the
typing of intermediate results (e.g., dispatch tables) and tracking critical depen-
dencies. To fully illustrate this issue, consider a bad compilation that violates type
safety shown in Figure 2.3. In this example, let both rchild and rparent have static
type Seq in our verification, but suppose rchild actually has dynamic type SubSeq

and rparent has dynamic type Seq during an execution. An initial implementation
of an assembly-level checker using a strategy analogous to bytecode verification
might assign the type rt : meth(Seq,12) saying rt is method at offset 12 of class
Seq (since it was found through rchild , which has type Seq). On line 6, we can
then recognize that rt is a method and check that rarg0 : Seq , which succeeds since
rparent : Seq . However, this is unsound because at run-time, we obtain the method
from SubSeq but pass as the receiver object an object with dynamic type Seq , which
may lack expected SubSeq features.1

One way to resolve this unsoundness is to make sure that the receiver object
passed to the method is the same object on which we looked up the dispatch table.
We now describe a type system to handle these difficulties.

2.2 Abstract State

At the assembly level, high-level bytecodes are replaced by series of instructions,
primarily involving address computation, that may be re-ordered and optimized.
To be less sensitive to the particular compilation strategy, we have found it useful
to assign types lazily to intermediate values. That is, we keep certain intermediate
expressions in symbolic form. Rather than assigning types to registers, we assign
types to symbolic values. Thus, our abstract state consists of a mapping Σ from reg-
isters to expressions (involving symbolic values) and a mapping Γ from symbolic

1This was first observed as an unsoundness in the Touchstone certifying compiler for
Java [CLN+ 00] by Christopher League [LST03].

8

2.2 Abstract State 2 Concept

values to types:

abstract state A ::= 〈Σ # Γ〉
value state Σ ::= r0 = e0, r1 = e1, . . . , rn−1 = en−1

type state Γ ::= · | Γ, α : τ
symbolic values α,β

We assume some total ordering on symbolic values, say from least recently to most
recently introduced.

2.2.1 Values

The language of expressions has the following form:

expressions e ::= n | α | &L | e0 + e1 | e0 − e1 | e0 · e1 | · · ·

These are the expressions ae of the assembly language (for which see Section 3.1),
except replacing registers with symbolic values. Note &L refers to the code or data
address corresponding to label L .

We define a normalization of expressions to values. For Coolaid, we are only
concerned about address computation and a few additional constraints to express
comparison results for non-null checks and type-case.2 The values are as follows:

values v ::= n0 ·&L + n1 · α + n2 | α R n
relations R ::= =|6=|<|≤|>|≥

Note that the form of the address computation allows indexing into a statically
allocated table with a constant multiple and offset of a symbolic value (e.g., a class
tag) or indexing into a table given by a symbolic value (e.g., a dispatch table) by a
constant offset. Typically, the factors n0 and n1 are either 0 or 1. No other address
forms are necessary in Coolaid.

The symbolic values represent existentially quantified values, for which the in-
ner structure is unknown or no longer relevant. Coolaid will often choose to freshen
registers, forgetting how their values were obtained by replacing them with fresh
symbolic values. In particular, during normalization we might choose to forget
values (replacing subexpressions with fresh symbolic values) while retaining types
(by assigning appropriate types to the new symbolic values). Thus, we use a type-
directed judgment Γ ` e ⇓ v . Γ′ for the normalization of expression e to value v ,
yielding a possibly extended Γ for new symbolic values. In most cases, the new

2As is typical for assembly language, we have expression operators corresponding to arithmetic
comparisons = , < , etc.

9

2.2 Abstract State 2 Concept

symbolic value can be typed implicitly as > (i.e., unknown contents); for exam-
ple, should a program multiply two pointer types, Coolaid determines that it is not
worth retaining any information either about the structure of the value or its type.
It is fairly straightforward to define this normalization. We also lift normalization
to value states, writing Γ ` Σ ⇓ Σ′ . Γ′ to mean normalizing each expression in Σ to
values in Σ′ for each register.

One of the more important uses of the value state is to convey that two reg-
isters are equal, which can be represented by mapping them to the same value.
This is necessary, for instance, to handle a common compilation strategy where a
value in a stack slot is loaded into a register to perform some comparison that more
accurately determines its type; Coolaid must realize that not only the scratch regis-
ter used for comparison but also the original stack slot has the updated type. We
consider values as providing a (fancy) labeling of equivalence classes of registers.
We write that 〈Σ # Γ〉 |= r0 = r1 to mean that the abstract state 〈Σ # Γ〉 implies that
registers r0 and r1 are equal, and define this as follows:

〈Σ # Γ〉 |= r0 = r1 if and only if Γ ` Σ ⇓ Σ′ . Γ′, Γ ` Σ ⇓ Σ′′ . Γ′′, and Σ′(r0) = Σ′′(r1)

where the equality Σ′(r0) = Σ′′(r1) is structural equality for symbolic values. Infor-
mally, this statement simply says that r0 = r1 precisely when their contents nor-
malize to the same value.

As noted above, the normalization proceeds in a type-directed manner in order
to determine when the structure of a subexpression is irrelevant. Without types,
this value analysis would have to be either weaker (in which case it may not be
sufficient for our purposes) or leave more complicated normalized values; neither
is particularly attractive. The typing judgment, in turn, depends on the normaliza-
tion judgment to handle, for example, the stack slot issue discussed in the previous
paragraph. This mutual dependency prompts the integration of this value analysis
with the type inference.

2.2.2 Types

We use a (simple) dependent type system extending the non-dependent types used
in bytecode verification. While we could imagine merging the reasoning about
values described in the previous section into the type system (for example, intro-
ducing singleton types for integer constants), we have found it more convenient to
separate out the arithmetic and keep the type system simpler.

Primitive Types. Though not strictly necessary for proving memory safety, we
distinguish two types of primitive values: one for completely unknown contents

10

2.2 Abstract State 2 Concept

(e.g., possibly uninitialized data) and one for an initialized machine word of an
arbitrary value. This distinction is particularly useful for catching bugs. One could
further distinguish word into words used as machine integers versus booleans and
perhaps catch even more bugs.

types τ ::= > unknown contents
| word machine word
| ⊥ absence of a value
| . . .

Reference Types. To safely index into an object via an object reference, we must
ensure the reference is non-null. Furthermore, sometimes we have and make use
of knowledge of the exact dynamic type. Thus, we refine reference types to in-
clude the type of possibly-null references bounded above (C), the type of non-null
references nonnull C bounded above, the type of possibly-null references bounded
above and below (exactly C), the type of non-null references bounded above and
below (nonnull exactly C), and the type of null (null).3 For self-type polymorphism,
we also consider object references where the class is known to be the same as that of
the object denoted by another symbolic value (classof(α)). Finally, we have point-
ers to other types, which arise, for example, from accessing object fields or indexing
into a compiler-generated table (e.g., dispatch tables). Though not expressed in the
abstract syntax shown below, Coolaid only uses single-level pointers (i.e., C ptr but
not C ptr ptr).

types τ ::= . . .
| [nonnull] b object reference of class given by bound b

[possibly null if not nonnull]
| null the null reference
| τ ptr pointer to a τ
| . . .

bounds b ::= C bounded above by C
| exactly C bounded above and below by C
| classof(α) same class as α

classes C

Dispatch Table and Method Types. For method dispatches, we have types for
the dispatch table of an object (disp(α)) and a method obtained from such a dis-
patch table (meth(α, n)). A similar pair is defined for the dispatch table and meth-

3Putting aside historical reasons, one might prefer to write C for non-null references and
maybenull C for possibly-null references, viewing non-null references as the core notion.

11

2.2 Abstract State 2 Concept

ods of a specific class (sdisp(C) and smeth(C, n)). We also define a type for initial-
ization methods (init(α) and sinit(C)).

types τ ::= . . .
| disp(α) dispatch table of α
| meth(α, n) method of α at offset n
| sdisp(C) dispatch table of class C
| smeth(C, n) method of class C at offset n
| init(α) initialization method of α
| sinit(C) initialization method of class C
| . . .

Tag Type. To handle a type-case (or a down cast), we need a type for the class
tag of an object. The class tag is the run-time representation of the dynamic type
of the object. In addition to the object value whose tag this is, we keep a set of the
possible integers that the tag could be. See Section 3.3.3 for additional details on
how this type is used to check type-cases.

types τ ::= . . .
| tag(α, N) tag of α with possible values in set N
| . . .

tag sets N

Exceptions. To verify exceptions, we require a type of exception frames excframe
and a type for exception handlers of particular exception frames. Additional de-
tails on how these types are used are given in Section 3.3.4.

types τ ::= . . .
| excframe exception frame
| handler exception handler

Subtyping. As with bytecode verification, the ordering on the abstract domain
elements is largely defined in terms of subtyping. Though we have extended the
language of types a fair amount, the lattice of types remains quite simple—flat ex-
cept for reference types. Since our types now depend on symbolic values, we ex-
tend the subtyping judgment slightly to include the context, which maps symbolic
values to types—Γ ` τ0 <: τ1 . The basic subtyping rules from before carry over
(extended with Γ). Then, we add the expected relations between exactly , nonnull
and possibly-null references.

Γ ` nonnull C <: C Γ ` exactly C <: C

12

2.2 Abstract State 2 Concept

Γ ` nonnull exactly C <: nonnull C

Γ ` nonnull exactly C <: exactly C

Non-null references are also ordered following the class hierarchy.

Γ ` C0 <: C1

Γ ` nonnull C0 <: nonnull C1

Finally, some slightly subtle handling is required for a precise use of classof . If
α has type C , we would like to be able to use values of type classof(α) as being of
type C .

Γ ` Γ(α) <: q′ C
Γ ` q classof(α) <: q C

Γ ` Γ(α) <: q′ exactly C
Γ ` q classof(α) <: q exactly C

In these rules q and q′ might either, both, or neither be nonnull . Observe that the
structure of abstract states allows instances of classof where nothing is provable
from these rules; for example, we might have α : classof(β) and β : classof(α); how-
ever, we can prevent this by restricting the type of a symbolic value to not depend
on “newer” symbolic values (following the ordering on symbolic values). Note
that the structure of abstract transitions does not allow such states to be created by
observing this restriction.

2.2.3 Join

It remains to define the join operation on abstract states. Intuitively, the core of the
join operation is still determined by subtyping; however, some extra work must be
done to join values and dependent types.

Because we consider values (i.e., v) as a (fancy) labeling of equivalence classes
of registers, the lattice of value states is the lattice of finite conjunctions of equal-
ity constraints among registers (ordered by logical implication). That is, a par-
ticular abstract state 〈Σ # Γ〉 induces an (empty or finite) conjunction of equality
constraints among the registers given by the 〈Σ # Γ〉 |= r0 = r1 judgment. The join
algorithm is then essentially a special case of the algorithm for the general theory
of uninterpreted functions given by Gulwani et al. [GTN04] and by Chang and
Leino [CL05].

First, we normalize each expression of the states to join so that we are only
working with values. Note that the value forms thus largely determine the infor-
mation that is preserved across join points. Let A0 = 〈Σ0 # Γ0〉 and A1 = 〈Σ1 # Γ1〉

13

2.2 Abstract State 2 Concept

denote these states, and let A = 〈Σ # Γ〉 be the result of the join. The resulting value
state Σ will map all registers to values. Let us momentarily denote a value in the
joined state as the corresponding pair of values in the states to be joined. Then we
can define the resulting value state as follows:

Σ(r) = 〈Σ0(r),Σ1(r)〉

Finally, we translate pairs of values 〈v0, v1〉 to single values and yield the new type
state Γ according to the equations given below. If the structures of v0 and v1 do
not match, then they are abstracted as a fresh symbolic value. More precisely, let
p·q be the translation of the pair of values to a single value:

p〈α0, α1〉q
def= β where β fresh and Γ(β) = 〈Γ0,Γ0(α0)〉 t<: 〈Γ1,Γ1(α1)〉

p〈n0 ·&L + n1 · α0 + n2, n0 ·&L + n1 · α1 + n2〉q
def= n0 ·&L + n1 · p〈α0, α1〉q + n2

p〈α0 R n, α1 R n〉q def= p〈α0, α1〉q R n

p〈v0, v1〉q
def= β where β fresh and Γ(β) = > (otherwise)

Note that each distinct pair of symbolic values maps to a fresh symbolic value.
We write t<: for the join in the types lattice. For dependent types, we use the
same join operation at values to update the dependencies. For example, disp(α)
and disp(β) would be joined to disp(p〈α,β〉q). More precisely, let σ0 and σ1 denote
substitutions from the symbolic values in A to A0 and A1 , respectively, given by
the above translation. Then,

〈Γ0, τ0〉 t<: 〈Γ1, τ1〉
def= the least τ such that Γ0 ` τ0 <: σ0(τ) and Γ1 ` τ1 <: σ1(τ)

Observe that Coolaid takes a rather simple approach to joining values. In par-
ticular, registers are often freshened to be pure symbolic values at join points. As
a trivial example, Coolaid is able to verify a program that takes a pointer, adds an
unknown word value α , and then subtracts that same word value α ; but if a join
point intervenes, the fact that the register contains a value that is α more than a
pointer type may be forgotten. This simplification did not seem to cause difficulties
in practice, with the many student compilers of our experiments.

Since there are a finite number of registers, there is a bounded number of equiv-
alence classes. The join only increases the number of equivalence classes. Since
there are no infinite ascending chains in the types lattice, the abstract interpreta-
tion will terminate (without requiring a widen operation at cut points).

14

2.3 Example Verification 2 Concept

2.3 Example Verification

As in Section 2.1, we describe the verification procedure for compiled-Cool by the
abstract transition relation

I : 〈Σ # Γ〉p → 〈Σ′ # Γ′〉p ′ .

As before, this determines a verification procedure by the fixed-point calculation
over the equations analogous to those of Figure 2.1. In this section, we sketch some
interesting cases of the abstract transition relation by following the verification of
an example. A more precise formalization, along with details not covered by this
example are given in Section 3.3. All the abstract transition and typing rules are
then collected together in Appendix A.

We first consider in detail the assembly code in Figure 2.2(c), which performs a
dynamic dispatch in a loop. Suppose the abstract state before line 1 is as follows:

〈ry = α1
y, rself = α1

self #
α1

y : SubSeq, α1
self : nonnull Main〉 (2.1)

and all other registers map to distinct symbolic values that have type > . (Where
appropriate, we use subscripts on symbolic values to indicate the register in which
they are stored and superscripts on symbolic values to differentiate them.) For the
rest of this example, we usually write just what changes. Since instruction 1 is a
register to register move (rx := rs), we simply make rx map to the same value as
ry . This changes the abstract state to

〈rx = α1
y, ry = α1

y, . . . # . . .〉

In general, for an arithmetic operation, we simply update the register with the
given expression (with no changes to the type state):

r := ae : 〈Σ # Γ〉 → 〈Σ[r 7→ Σ(ae)] # Γ〉
set

where we treat Σ as a substitution (i.e., Σ(ae) is the expression where registers are
replaced by their mapping in Σ).

Line 2 does not affect the state, as labels are treated as no-ops.

L : : 〈Σ # Γ〉 → 〈Σ # Γ〉
label

We recognize line 3 as a null-check so that the abstract state in the false branch
is

〈. . . # α1
y : nonnull SubSeq〉

15

2.3 Example Verification 2 Concept

Note that we automatically have that both the contents of rx and ry are non-null
since we know that they are must aliases (for they map to the same symbolic
value). In general, the post states of a null-check are given as follows:

Γ ` Σ(ae) ⇓ α R 0 . Γ′ Γ′(α) = b R∈ {=, 6=}

τ =

{
nonnull b if ¬(α R 0) ≡ α 6= 0
null if ¬(α R 0) ≡ α = 0

branch ae L : 〈Σ # Γ〉p → 〈Σ # Γ′[α 7→ τ]〉p+1
nullcheckF

The true case is similar.
We recognize that line 4 loads the dispatch table of object α1

y , and the abstract
state afterwards is

〈rt = α4
t , . . . # α4

t : disp(α1
y), . . .〉

The basic invariant for memory accesses we maintain throughout is that an address
is safe to access if and only if it is a ptr type, and thus the rule for reads is as
follows:

Γ ` Σ(ae) : τ ptr . Γ′ (α fresh)

r := mem[ae] : 〈Σ # Γ〉 → 〈Σ[r 7→ α] # Γ′[α 7→ τ]〉
read

The above rule introduces the following typing judgment:

Γ ` e : τ . Γ′

which says in context Γ , e has type τ , yielding a possibly extended Γ for new
symbolic values Γ′ . The typing rule that determines that line 4 looks up a dispatch
table is

Γ ` e ⇓ α + 8 . Γ′ Γ′ ` α : nonnull C . Γ′′

Γ ` e : disp(α) ptr . Γ′′ dispptr

We determine that offset 8 of an object is a pointer to the dispatch table because
knowledge of the Cool object layout is built into the typing rule and therefore into
the verifier. Note this rule would apply even if Γ(α) = nonnull exactly C through
the use of a subsumption rule (the subsump rule in Section A.3.3).

Line 5 then looks up the appropriate method in the dispatch table, so the post
state is

〈rt = α5
t , . . . # α5

t : meth(α1
y,12), . . .〉

This is again a memory read, so the transition rule read applies, but the method
type is determined with the following typing rule:

Γ ` e ⇓ β + n . Γ′ Γ′′ ` α : nonnull C . Γ′′′

Γ′ ` β : disp(α) . Γ′′ (C has a method at offset n)

Γ ` e : meth(α, n) ptr . Γ′′′ methptr

16

2.3 Example Verification 2 Concept

We get a method if we index into the dispatch table, provided a method at that
offset is defined (according to the implicitly parameterized class table).

The next two lines (6 and 7) set the first argument register (which is used to
pass the receiver object) and the return address. The abstract state after line 7 is as
follows (given by set):

〈rarg0 = α1
y, rra = &Lret, . . . # . . .〉

Finally, in line 8, the method call takes place. This indirect jump is determined
to be a method call since rt contains a value of method type. The post state after
the call must drop any information about the state prior to the call, for the callee
may modify the registers arbitrarily. This is expressed by giving fresh symbolic
values to all registers. The information we have about the post state is that the
return value has the type specified by the method signature. Thus, the abstract
state after the call is

〈rrv = α8
rv # α8

rv : Seq〉
and the method dispatch transition rule is as follows:

Γ ` Σ(ae) : meth(α, n) . Γ′

Σ(rarg0) = α Γ′ ` α : nonnull C . Γ′′ (∗)
T(C) = class C . . . { . . . τrv m(τ1, . . . , τk) . . . }
Γ′′ ` Σ(rarg1) : τ1 . Γ′′

1 · · · Γ′′
k−1 ` Σ(rargk) : τk . Γ′′

k
(Σ′, β fresh)
(m is the method at offset n of class C)

jump [ae] : 〈Σ # Γ〉 → 〈Σ′[rrv 7→ β] # Γ′′
k [β 7→ τrv]〉

meth

This rule is slightly simplified in that it ignores callee-save registers; however, we
can easily accommodate callee-save registers by preserving the register state for
those registers (i.e., Σ(rcs) = Σ′(rcs) for each callee-save register rcs); see Section 3.2
for details. Also, this rule is slightly more conservative than necessary within our
type system. The premise marked with (∗) requires that the receiver object be the
same as the object from which we looked up the dispatch table. We could instead
require only that it can be shown to have the same dynamic type as α (i.e., checking
that Σ(rarg0) has type nonnull classof(α)), but this restriction is probably helpful for
finding bugs. Note if the declared return type of the method is self-type, then we
take τrv to be classof(α1

self) (i.e., to have the same dynamic type as self).
Lines 9–11 are a label, null-check, and register to register move, as we have seen

before, so the abstract state before line 12 is

〈rx = α8
rv , . . . # α8

rv : nonnull Seq, . . .〉

17

2.4 Lazy Typing 2 Concept

The jump instruction at line 12 loops back with the abstract transition given by

(L is not a code label for a method)

jump L : 〈Σ # Γ〉 → 〈Σ # Γ〉L
jump

that does not modify the abstract state but makes it a predecessor of L . This weak-
ens Pre(2) so that the type of the value in rx is Seq , and thus this loop body will be
scanned again before reaching a fixed point. This transition applies only to jumps
within the method, rather than calls to other functions.

The astute reader may observe that neither the run-time stack of activation
records nor calling conventions are reflected in the above rules. In particular, in
the method dispatch rule, arguments are referenced as registers when they might
be passed on the stack (e.g., all arguments on x86, after the fourth argument on
MIPS, or after the sixth argument on Sparc), and the return address is not checked
to point to the next instruction. The run-time stack and call-return abstraction is
common to many compilation strategies, so we would like not to build-in such
reasoning nor be concerned with such details at this level. Fortunately, we have a
mechanism to modularize the handling of such issues into sub-verifiers and allow
the higher-level Coolaid verifier to work cooperatively with them. Details about
the handling of the run-time stack and the call-return abstraction are given in Sec-
tion 3.2.

2.4 Lazy Typing

The previous section illustrates the use of dependent types to track dependen-
cies between assembly instructions, resolving the potential soundness issue pre-
sented in Figure 2.3 of Section 2.1 where the object from which the dispatch table
is found and the object that is passed as the receiver object were not checked to be
the same. It does not, however, show the use of lazy typing to be less sensitive to
re-orderings, for example, due to optimizations.

To see this, consider the example program fragment shown in Figure 2.4, with
two corresponding compilations to assembly code. In the “unoptimized” version
(b), a sequence of instructions corresponds directly to a source-level statement
(lines 1–3 correspond to line i, lines 4–11 to line ii, and line 12 to line iii). The
“optimized” version has eliminated an extra null check (line 4), scheduled the in-
crement of d (line 12) earlier, and reused the arithmetic from line 2 for looking up
the dispatch table (line 6). The first two changes do not pose any particular difficul-
ties, as we have types for intermediate results and are interpreting each instruction
individually, while the last change necessitates the lazy typing of intermediate val-
ues.

18

2.4 Lazy Typing 2 Concept

Seq s;
i int d = s.data;

ii s.next();
iii int x = d + 1;

(a) Cool

1 branch (= rs 0) Labort
2 rt := (add rs 12)
3 rd := mem[rt]
4 branch (= rs 0) Labort
5 rt := (add rs 8)
6 rt := mem[rt]

7 rt := mem[(add rt 12)]
8 rarg0 := rs
9 rra := &Lret

10 jump [rt]
11 Lret:
12 rx := (add rd 1)

(b) “Unoptimized”

1 branch (= rs 0) Labort
2 rt := (add rs 12)
3 rd := mem[rt]

6 rt := mem[(sub rt 4)]
12 rx := (add rd 1)

7 rt := mem[(add rt 12)]
8 rarg0 := rs
9 rra := &Lret

10 jump [rt]
11 Lret:

(c) “Optimized”

Figure 2.4: An example program fragment demonstrating the need for lazy typing
of The class definition of Seq is given in Figure 2.2.

Now, suppose types were assigned “eagerly” in the verification of the “opti-
mized” version, so after line 2, we have that

rt : int ptr

by the following typing rule for pointers to fields:

Γ ` e ⇓ α + n . Γ′ Γ′ ` α : nonnull C . Γ′′

T(C) = class C . . . { . . . τ f . . . } (f is the field at offset n of class C)

Γ ` e : τ ptr . Γ′′ fieldptr

In this case, the int type comes from the declared type of data field of class Seq .
Now at line 6, we cannot assign a type to the expression (sub rt 4), as the only

information we have is that it is the word before a pointer to an int . Of course, in
general, any type of value may reside in the word before a pointer to an int . In
contrast, the abstract state after line 2 that we maintain is

〈Σ # Γ〉 = 〈rt = αs + 12, rs = αs, . . . # αs : nonnull Seq, . . .〉 .

19

2.4 Lazy Typing 2 Concept

Then, we can recognize line 6 as looking up the dispatch table using a trivial nor-
malization

Γ ` (αs + 12)− 4 ⇓ αs + 8 . Γ .

In full, we obtain the following derivation for the read transition:

...
Γ ` (αs + 12)− 4 ⇓ αs + 8 . Γ

Γ(αs) = nonnull Seq

Γ ` αs : nonnull Seq . Γ
var

Γ ` (αs + 12)− 4 : disp(αs) ptr . Γ
dispptr

(αt fresh)

rt := mem[(sub rt 4)] : 〈Σ # Γ〉 → 〈Σ[rt 7→ αt] # Γ[αt 7→ disp(αs)]〉
read

20

Chapter 3

Details

In this chapter, we present additional details required for a complete presentation.
We first fill-in the details of the assembly language and the Cool object layout that
have been alluded to in the previous chapter in Section 3.1. Then, in Section 3.2,
we describe the handling of the run-time stack that has been elided thus far. In
Section 3.3, we describe the abstract transition and typing rules for additional lan-
guage features not covered in Section 2.3. Finally, we discuss some details regard-
ing initializing the verification procedure in Section 3.4.

3.1 Preliminaries

SAL. Coolaid is implemented on top of the Open Verifier framework for foun-
dational verifiers [CCNS05a, Sch04], which provides an infrastructure for abstract
interpretation on assembly code (among other things). This framework works on
a generic untyped assembly language called SAL by first translating from MIPS or
Intel x86 assembly. The abstract syntax of SAL is given in Figure 3.1.

SAL has a very basic set of instructions, a set of registers, and a minimal set of
expressions. Macro instructions in MIPS or x86 are translated into a sequence of
SAL instructions; for example the jump-and-link instruction in MIPS is translated
as follows:

MIPS SAL

jal fun rra := &retaddr0

jump fun

retaddr0 :

21

3.1 Preliminaries 3 Details

instructions I ::= L : label
| r := ae assignment
| r := mem[ae] memory read
| mem[ae0] := ae1 memory write
| jump L jump to a label
| jump [ae] indirect jump
| branch ae L branch if non-zero

labels L
registers r ::= r0 | · · · | rn−1

asm exprs ae ::= n | r | &L | (op ae0 ae1)
integers n
operators op ::= add | sub | sll | = | <> | < | · · ·

Figure 3.1: Abstract syntax of SAL.

class C {
...

C1 field 1;
...

Cn fieldn;

}

α : nonnull C

0 class tag : tag(α, N) ptr
4 object size
8 dispatch pointer : disp(α) ptr

12 : C1 ptr
...

fields
...

12 + 4n : Cn ptr

Figure 3.2: Object layout of an instance α of a class C annotated with types at
appropriate offsets.

22

3.2 Stack and Call-Return Abstractions 3 Details

Cool Object Layout. To keep the type system used by Coolaid simple, the object
layout is essentially built-in (rather than using a general record type as in tradi-
tional object encodings [AC98]). Figure 3.2 shows the layout of an object α of class
C annotated with the types of the values at various offsets from the object refer-
ence. The typing rules for reading at an offset from an object reference (e.g., the
dispptr rule) follow directly from this diagram.

3.2 Stack and Call-Return Abstractions

One key element of verification at the assembly code level is the run-time stack.
The verifier must maintain an abstract state not only for registers but also for stack
slots, and memory operations must be recognized as either stack accesses or heap
accesses. Formally, the lattice of the abstract interpretation must be extended to
handle stack frames and calling conventions. Values may be typed as stack point-
ers or as the saved values of callee-save registers or the return address. The return
instruction, which is just an indirect jump in SAL, must verifiably jump to the cor-
rect return address. We must even keep track of the lowest accessed stack address
in order to ensure that no stack overflows can occur or that operating system-based
detection mechanisms cannot be subverted (e.g., skipping over the guard page—an
unmapped page of memory that separates the stack region from the heap).

The verifier for compiled Cool programs described in Chapter 2 is built on
top of lower-level components responsible for stack and call-return aspects. In-
tuitively, the stack verifier checks and identifies stack accesses and checks for stack
overflow, while the call-return verifier identifies function call and returns and
checks that the calling convention is obeyed (e.g., callee-save registers are pre-
served across calls). These verifiers are arranged in a chain where the stack verifier
is at the lowest-level, the call-return verifier is next, and the Coolaid verifier is at
the highest-level. To interface between each pair of layers, each verifier optionally
exports “higher-level assembly instructions”, simplifying the job for higher-level
verifiers. This process can be thought of as successively de-compiling to enable
reasoning at higher levels. The result will be that the Cool-specific verifier will
appear very much like the Java bytecode verifier.

Stack. From the compiler implementor’s perspective, the primary purpose of the
run-time stack is to preserve values across calls and provide space for spilled reg-
isters. For both of these uses, the only way the stack is modified is via indexing
a constant offset from a stack pointer, and the activation record can be viewed as
providing a set of additional “pseudo-registers”. For basic Cool compilers, the
stack handling is simplified, as all uses of the stack are one of these two forms. In

23

3.2 Stack and Call-Return Abstractions 3 Details

particular, we do not need to handle aliasing on the stack. The stack verifier then,
in essence, rewrites memory read and write operations on the stack to register op-
erations for higher-level verifiers, which is the de-compilation it provides.

First, we describe a simple mechanism for preventing stack overflow. We as-
sume that one segment of memory, say, of 1 MB is allocated for the stack. Each
function has a some maximum size for its activation record called its stack frame
size (either specified by a default or via compiler inserted annotations to eliminate
unnecessary overflow checks). On function entry, it is assumed that the function’s
stack frame is valid stack space. Thus, on function call, the caller must ensure that
this invariant holds for the callee. The stack frame can be extended by run-time
checks using the fact that an address is a valid stack address if it is on the same
segment as a known valid stack address. This check can be done with a few sim-
ple bitwise calculations if the segment size is a power of two.

We define the abstract state for the stack verifier for the above mechanism in
a similar manner as for the Coolaid verifier. A value state Σs maps registers (and
stack slots) to expressions and a type state Γs maps symbolic values to types. Two
additional integers, nlo and nhi , delimit the stack frame (i.e., the extent of known
valid stack addresses) with respect to the value of the initial stack pointer. In other
words, any address in the range [sp0 + nlo, sp0 + nhi] is a valid stack address where
sp0 is the value of the stack pointer on entry to the function.

stack abstract state S ::= 〈Σs # Γs # nlo # nhi〉
stack value state Σs ::= · | Σs, r = e
stack type state Γs ::= · | Γs, α : τs

The expressions are the same as those defined in Section 2.2.1, but the values and
types of interest are different. To implement the stack verifier, we need to recognize
stack addresses as constant offsets from the initial stack pointer and the run-time
stack overflow checks.

stack values vs ::= α + n possible stack address
| (vs0 ⊕ vs1) ≫ n0 = n1 possible overflow check

where ⊕ is bitwise exclusive-or and ≫ is logical shift right. The value (vs0 ⊕
vs1) ≫ n0 = 0 checks that the bits of vs0 and vs1 agree, expect possibly in the n0

least significant bits. Analogous to the Coolaid verifier, we give a straightforward
definition of a normalization judgment for expressions to stack values Γs ` e ⇓s

vs . Γ′
s .

For types, we need only have the singleton type of the value of the initial stack
pointer.

24

3.2 Stack and Call-Return Abstractions 3 Details

stack types τs ::= > unknown contents
| sp0 initial stack pointer
| ⊥ absence of a value

Correspondingly, the subtyping relation is exceedingly simple: the reflexive-tran-
sitive closure of ⊥ <:s sp0 and sp0 <:s > . The join of two stack abstract states then
follows analogously from the description for the join in the Coolaid verifier given
in Section 2.2.3.

As before, the verification procedure for the stack is given by an abstract tran-
sition judgment:

I : 〈Σs # Γs # nlo # nhi〉p →s 〈Σ′
s # Γ′

s # n′lo # n′hi〉p′

However, defining this judgment directly does not indicate how to compose the
stack verifier with higher-level verifiers. We obtain modular verifiers by separating
this task into two parts:

1. translating the given instruction into higher-level instructions based on the
current abstract state; and

2. interpreting the higher-level instruction to obtain the next abstract state.

This separation is captured by the following two auxiliary judgments:

〈Σs # Γs # nlo # nhi〉p Z I ⇒s Is . 〈Σ′
s # Γ′

s # n′lo # n′hi〉p

Is : 〈Σs # Γs # nlo # nhi〉p _s 〈Σ′
s # Γ′

s # n′lo # n′hi〉p′

Note that the auxiliary translation judgment (the top one) may give a new abstract
state at the current program point allowing it to change the information captured
by the instruction versus the abstract state. Contrast this to the transition judgment
(the bottom one) that yields an abstract state at a succeeding program point. The
abstract transition for the “top-level” verifier that only reasons about the stack is
then given by the following rule:

〈Σs # Γs # nlo # nhi〉p Z I ⇒s Is . 〈Σ′
s # Γ′

s # n′lo # n′hi〉p

Is : 〈Σ′
s # Γ′

s # n′lo # n′hi〉p _s 〈Σ′′
s # Γ′′

s # n′′lo # n′′hi〉p′

I : 〈Σs # Γs # nlo # nhi〉p →s 〈Σ′′
s # Γ′′

s # n′′lo # n′′hi〉p′
s-step

These higher-level instructions are exported to higher-level verifiers. Formally,
each intermediary verifier incrementally introduces a higher-level language of in-
structions (e.g., to extend with pseudo-registers for stack slots); we elide these
details, as the changes are small and are hopefully intuitive. In this paper, the

25

3.2 Stack and Call-Return Abstractions 3 Details

lower-level languages are sub-languages of the higher-level languages (that is, Is

includes all that instructions that I defines), though we imagine this might not be
the case in general.

We give here the interesting rules for the stack verifier; all the rules are collected
together in Appendix A. As mentioned above, the stack verifier’s primary task is
to rewrite memory accesses to register operations.

Γs ` Σs(ae) ⇓s α + n . Γ′
s Γ′

s(α) = sp0 nlo ≤ n ≤ nhi n ≡ 0 (mod 4)

〈Σs # Γs # nlo # nhi〉 Z r := mem[ae] ⇒s r := rsp0+n . 〈Σs # Γ′
s # nlo # nhi〉

s-read

Γs ` Σs(ae0) ⇓s α + n . Γ′
s Γ′

s(α) = sp0 nlo ≤ n ≤ nhi n ≡ 0 (mod 4)

〈Σs # Γ′
s # nlo # nhi〉 Z mem[ae0] := ae1 ⇒s rsp0+n := ae1 . 〈Σs # Γ′

s # nlo # nhi〉
s-write

The first two premises in the above rules identify the address as a stack address,
while the third premise checks that the address is within the current stack frame.
The last premise requires that stack accesses are word-aligned (for simplicity); this
is sufficient for Coolaid. With some more details, we should be able to extend this
work to handle non-word-aligned or non-word-sized accesses, but we do not con-
sider that idea any further here. Note that both rules re-write the memory op-
eration to use the pseudo-register for the specified stack slot rsp0+n . For all other
instruction kinds, the translation is the identity translation.

The bottom of the stack frame (nlo) may be extended through a run-time stack
overflow check. Recall that all valid stack addresses are on the same segment,
so given a valid stack address, another address can be determined to be a stack
address if it has the same higher-order bits. Recognizing this check, we extend
nlo on the following transition:

Γs ` Σs(ae) ⇓s ((α0 + n0) ⊕ (α0 + n1)) ≫ 20 = 0 . Γ′
s

Γ′
s(α0) = sp0

n1 < nlo ≤ n0 ≤ nhi

branch ae L : 〈Σs # Γs # nlo # nhi〉 _s 〈Σs # Γ′
s # n1 # nhi〉L

s-spT

The above rule is for where n0 is the currently known valid stack offset and n1 is
the offset to which we wish to extend nlo . The logical shift right by 20 is for the
case where the segment size is 1 MB.

Other transition rules include ones for updating a register and jumping to a
label, but not for reading and writing to memory. Note that stack accesses are
handled by the above translations and the register update transition. Viewing the
stack verifier in isolation, no rules apply to heap read or writes, so such memory
accesses would be deemed unsafe by the stack verifier alone. In other words, non-
stack read and writes are left as-is for higher-level verifiers to handle appropriately.

26

3.2 Stack and Call-Return Abstractions 3 Details

Call-Return. The call-return verifier identifies call and return instructions and
checks that the calling convention is respected. Return instructions are identified
by indirect jumps to the value of the return address, and calls are identified as
jumps when the return address register points to the next instruction.

Because values for implementing call-returns may be (and often are) stored in
stack slots, the call-return verifier is built on top of the stack verifier. The abstract
state of the call-return verifier is as follows:

call-return abstract state F ::= 〈Σf # Γf # npop # S〉
call-return value state Σf ::= · | Σf, r = e
call-return type state Γf ::= · | Γf, α : τf

where npop is the amount that the callee should pop off the stack on return accord-
ing to the calling convention (e.g., the callee pops the function arguments on some
architectures). Note that the call-return verifier contains the abstract state for the
stack verifier; technically, the abstract state for Coolaid should also contain the ab-
stract state for the call-return verifier, but is elided in Chapter 2 (see Section 3.3 for
further details).

The values and types for the call-return verifier are particularly simple. Similar
to the stack verifier, the types simply track singleton values.

call-return values vf ::= α + n
call-return types τf ::= > unknown contents

| ra return address on entry
| cs(r) value of callee-save register r on entry
| codeaddr(L) address of code label L
| ⊥ absence of a value

where this lattice of types is again flat (with ⊥ being the bottom element and >
being the top element).

Like for the stack verifier, we define translation and transition judgments that
define the call-return verifier:

〈Σf # Γf # npop # S〉p Z I ⇒f If . 〈Σ′
f # Γ′

f # n′pop # S′〉p

If : 〈Σf # Γf # npop # S〉p _f 〈Σ′
f # Γ′

f # n′pop # S′〉p′

If : 〈Σf # Γf # npop # S〉p ok

The last judgment indicates that the instruction in the given state is valid end point
(i.e., a return). Thus far, the checking of return points has only been alluded to
informally.

27

3.2 Stack and Call-Return Abstractions 3 Details

To emphasize that these verifiers build on each other, we define the translation
using an auxiliary judgment that translates from stack instructions.

〈Σf # Γf # npop # S〉p Z Is
·⇒f If . 〈Σ′

f # Γ′
f # n′pop # S′〉p

A general rule combines the translations of the sub-verifiers.

S Z I ⇒s Is . S′ 〈Σf # Γf # npop # S′〉 Z Is
·⇒f If . 〈Σ′

f # Γ′
f # n′pop # S′′〉

〈Σf # Γf # npop # S〉 Z I ⇒f If . 〈Σ′
f # Γ′

f # n′pop # S′′〉
f-decomp

We give here the interesting rules for the call-return verifier; all the rules are col-
lected together in Appendix A. Recall that the call-return verifier identifies func-
tion call and function return instructions. Indirect jumps to the return address
translate into return instructions.

Γf ` Σf(ae) ⇓f α . Γ′
f Γ′

f(α) = ra

〈Σf # Γf # npop # S〉 Z jump [ae] ·⇒f return rrv . 〈Σf # Γ′
f # npop # S〉

f-return

So that higher-level verifiers need not be concerned about the calling convention,
the return instruction gives the return value (in terms of an assembly expression).

Jumps are translated to calls if the return address register points to the next
instruction.

Γf ` Σf(rra) : codeaddr(L′) . Γ′
f (&L′ = p + 1)

ei =


rsp + npop(L) if ri is rsp

ri if ri is preserved by the callee
? otherwise

〈Σf # Γf # npop # S〉p Z jump L
·⇒f call L(rarg0 , . . . , rarg`

) : rrv ,
−−−−→r := e . 〈Σf # Γ′

f # npop # S〉p

f-call

Similar to the return instruction, the call instruction includes the arguments and
the return value. It also yields a list of register update instructions r0 := e0 , r1 :=
e1 , . . . , rk−1 := ek−1 (abbreviated −−−−→r := e) that conservatively models the “effect” of
the function call. The stack pointer register is incremented by the amount that the
callee must pop on return (npop(L)), the callee-save registers keep their same val-
ues, and all other registers are havocked (by assigning the expression ? indicating
an unknown value).

Indirect jumps that can be recognized as calls are also translated into indirect
call instructions (though since the target of the call is unknown, the arguments

28

3.2 Stack and Call-Return Abstractions 3 Details

cannot be given).

Γf ` Σf(rra) : codeaddr(L′) . Γ′
f (&L′ = p + 1)

ei =

{
ri if ri is preserved by the callee
? otherwise

〈Σf # Γf # npop # S〉p Z jump [ae] ·⇒f call [ae] : rrv ,
−−−−→r := e . 〈Σf # Γ′

f # npop # S〉p

f-icall

For all other instruction kinds, the translation is the identity translation.
A return instruction is deemed safe if the call-return verifier can determine that

the callee-save registers have been restored and the stack pointer is pointing to the
location dictated by the calling convention.

Γf ` Σf(rcs) ⇓f α . Γ′
f Γ′

f(α) = cs(rcs) (for all callee-save rcs)
S.Γs ` S.Σs(rsp) ⇓s α + npop . Γ′

s Γ′
s(α) = sp0

return ae : 〈Σf # Γf # npop # S〉 ok
f-returnok

where we write S.Γs for the type-state projection of S (and so forth).
A function call is okay if the there is enough stack space for the callee and yields

a transition to an abstract state where the effects of the call have been reflected.

S.Γs ` S.Σs(rsp) ⇓s α + n . Γ0
s Γ0

s(α) = sp0 n ≡ 0 (mod 4)
S0 = 〈S.Σs # Γ0

s # S.nlo # S.nhi〉
n + 4 · nargs(L) ≤ S0.nhi n + 4 · nargs(L)− framesize(L) ≥ S0.nlo

ri := ei : 〈Σi
f # Γi

f # ni
pop # Si〉 _f 〈Σi+1

f # Γi+1
f # ni+1

pop # Si+1〉 (for 0 ≤ i < k)

call L(rarg0 , . . . , rarg`
) : rrv ,

−−−−→r := e : 〈Σ0
f # Γ0

f # n0
pop # S〉 _f 〈Σk

f # Γk
f # nk

pop # Sk〉
f-callok

where nargs(L) and framesize(L) give the number of arguments and the initial
stack size of function L , respectively. Note that the factor of 4 in the above is the
word size for a 32-bit machine, as an example.

Similar to the stack verifier, other transition rules include ones for register up-
dates and jumps to a label, but for not indirect calls. The call-return verifier identi-
fies indirect calls, but the safety of such a call is left to higher-level verifiers.

One might wonder why the value state is even necessary for the call-return
verifier. For some compilations, the value state may indeed not be necessary if
the values it needs to reason about are simply moved around registers and stack
slots. However, some simple compiler optimizations break this assumption; for
example, a callee-save register must be updated by adding a constant offset within
the function body but is preserved by the compilation by subtracting the constant
before returning (e.g., the stack or frame pointer). Using lazy typing simplifies the
handling of such possibilities.

29

3.3 Abstract Transition and Typing 3 Details

3.3 Abstract Transition and Typing

The complete Coolaid verifier is then built by placing the Cool-specific verifier out-
lined in Chapter 2 on top of the call-return verifier. Formally, the abstract state
for the Cool-specific verifier includes the abstract state of the call-return verifier.
Following the framework described in the previous section, we also separate the
translation and transition parts.

〈Σ # Γ # F〉p Z I ⇒ Ic . 〈Σ′ # Γ′ # F′〉p

Ic : 〈Σ # Γ # F〉p _ 〈Σ′ # Γ′ # F′〉p′

As before, we define the translation using an auxiliary judgment that translates
from the previous level

〈Σ # Γ # F〉p Z If
·⇒ Ic . 〈Σ′ # Γ′ # F′〉p

We then get an abstract transition relation that is very similar to that of the byte-
code verifier. For example, consider dynamic dispatch.

Γ ` Σ(ae) : meth(α, n) . Γ′

Σ(rarg0) = α Γ′ ` α : nonnull C . Γ′′

T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . }
(m is the method at offset n of class C)

〈Σ # Γ # F〉 Z call [ae] : rrv ,
−−−−→r := e

·⇒ invokevirtual C.m(rarg1 , . . . , rarg`
) : rrv ,

−−−−→r := e . 〈Σ # Γ′′ # F〉

c-meth

T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . }
Γ0 ` Σ0(rarg1) : τ1 . Γ1 · · · Γ`−1 ` Σ0(rarg`

) : τ` . Γ`

ri := ei : 〈Σi # Γ`+i # Fi〉 _ 〈Σi+1 # Γ`+i+1 # Fi+1〉 (for 0 ≤ i < k)
call m(rarg1 , . . . , rarg`

) : rrv ,
−−−−→r := e : F0 _f F′

(β fresh)

invokevirtual C.m(rarg1 , . . . , rarg`
) : rrv ,

−−−−→r := e
: 〈Σ0 # Γ0 # F0〉 _ 〈Σk[rrv 7→ β] # Γ`+k[β 7→ τrv] # F′〉

c-methok

The translation rule captures recognizing the indirect call as a dynamic dispatch,
while the transition rule is now very similar to the dynamic dispatch rule for the
bytecode verifier given in Section 2.1. The dynamic dispatch rule given in Sec-
tion 2.3 is essentially these two rules put together.

In the remainder of this section, we describe the verification of language fea-
tures not covered by the example in Section 2.3.

30

3.3 Abstract Transition and Typing 3 Details

Seq.next : smeth(Seq,12)
. . .

Main.main:
. . . args and ra . . .
jump Seq.next

(a)

Seq disp : sdisp(Seq)
0 .word . . .
4 .word . . .
8 .word . . .

12 .word Seq.next

Main.main:
rt := mem[(add &Seq disp 12)]
〈rt = α # α : smeth(Seq,12)〉

. . . args and ra . . .
jump [rt]

(b)

Seq prot : nonnull exactly Seq
0 .word . . .
4 .word . . .
8 .word Seq disp

Main.main:
rt := mem[(add &Seq prot 8)]

〈rt = β # β : sdisp(Seq)〉
rt := mem[(add rt 12)]
〈rt = α # α : smeth(Seq,12)〉

. . . args and ra . . .
jump [rt]

(c)

Figure 3.3: Three correct compilations of a static dispatch. Typing annotations for
labels shown underlined, and abstract states shown boxed and right-justified.

3.3.1 Static Dispatch

All method/function calls are treated similarly in that they check that arguments
conform to the appropriate types, havoc the abstract state (except for callee-save
registers), assume the return value has the specified return type, and proceed to the
next instruction. They differ in how the function (or class of possible functions) to
be called is determined.

Static dispatch determines the method to call based on a type specified stati-
cally analogous to non-virtual method calls in C++, but in contrast to static method
calls in Java (an example is shown in Figure 3.3). The compiler can, therefore, sim-
ply emit a direct jump to the code label for the method (a). However, in many of
the Cool compilers with which we experimented, we observed that static dispatch
was implemented with indirect jumps based on indexing into the dispatch table
for the particular class (b) or even first obtaining the dispatch table by indexing
through a statically allocated, constant “prototype object” (c) (perhaps to re-use
code in the compiler). We treat all these cases uniformly by assigning types of
methods and dispatch tables smeth(C, n) and sdisp(C) to the appropriate labels at
initialization time and treating the abstract transition rules that apply to indirect
calls as also applying to direct calls, viewing call L as call [&L].

In Figure 3.3, the following labels have been annotated with the following
types:

Seq.next : smeth(Seq,12) Seq disp : sdisp(Seq) Seq prot : nonnull exactly Seq

31

3.3 Abstract Transition and Typing 3 Details

for the method, the dispatch table, and the “prototype object”, respectively, so that
in each case the call is to a value of type smeth(Seq,12) (i.e., the next method of
Seq). The following rules to look up methods and dispatch tables for static dis-
patch, which are similar to the ones for dynamic dispatch, permit these deduc-
tions.

Γ ` e ⇓ β + n . Γ′ Γ′ ` β : sdisp(C) . Γ′′ (C has a method at offset n)

Γ ` e : smeth(C, n) ptr . Γ′′ smethptr

Γ ` e ⇓ α + 8 . Γ′ Γ′ ` α : nonnull exactly C . Γ′′

Γ ` e : sdisp(C) ptr . Γ′′ sdispptr

Note that statically-allocated objects can be typed at initialization time with the
exactly qualifier by examining their class tags.

3.3.2 Object Allocation and Initialization

Cool programs allocate objects by calling a trusted run-time function that clones
a given object. This idiom avoids some of the ugliness of compiling (and verify-
ing) memory allocation, particularly partially initialized objects that are not well-
typed. The object to clone can be a statically allocated “prototype” object, which is
well-typed, but may not be initialized as in the source program. An initialization
method is then called to initialize fields as necessary. Note that this protocol for ob-
ject allocation is not imposed by Coolaid, but rather the existing run-time system.

Given this protocol for object allocation, most allocations can be handled fol-
lowing the previous discussion on method/function calls in a straightforward
manner—by allowing calls to the run-time allocation function Obj.copy and the
initialization methods with appropriate argument and return types. Self-type poly-
morphism in Cool, however, adds some bit of additional complexity (that is not
present in Java).

In Cool, code can allocate an object of self-type (i.e., having the same dynamic
type as the self object) with the statement new SELF TYPE . One compilation strat-
egy for this statement, supported by Coolaid, is to keep an “initialization” table of
prototype objects and initialization methods for each class indexed by the class tag
and then generate code that looks into this table for a prototype object to clone and
initialization method based on the class tag for the self object (as sketched in Fig-
ure 3.4). A first attempt might assign the following types for the code fragment in
Figure 3.4 (shown boxed and right-justified). Observe that γ and δ are assigned
type nonnull C after line 2 for the prototype object and prototype clone correspond-
ing to α , respectively. Then, line 6 appears okay, as it is determined to be a call to

32

3.3 Abstract Transition and Typing 3 Details

〈rself = α # α : nonnull C〉
1 rt := mem[rself]

〈rt = β, rself = α # β : tag(α,{. . .}), α : nonnull C〉
2 rarg0 := mem[&init table+ 4 · rt]

〈rarg0 = γ, rt = β # γ : nonnull C, β : tag(α,{. . .})〉
3 jump Obj.copy
4 rarg0 := rrv

〈rarg0 = δ, rt = β # δ : nonnull C, β : tag(α,{. . .})〉
5 rinit := mem[&init table+ 4 · rt + 4]

〈rinit = ε, rarg0 = δ # ε : sinit(C), δ : nonnull C〉
6 jump [rinit]

Figure 3.4: Naı̈ve (unsound) typing of a valid compilation for allocating and ini-
tializing an object of self-type.

the initialization method for class C with an argument of type nonnull C . This is,
however, unsound. To see why, consider the case where rself is dynamically an
object of class B and B is a subclass of C , and suppose line 4 is changed to

4 rarg0 := rx

where the value in rx is of type nonnull C but is also dynamically an object of class
C . Following the above reasoning, this modified program would also type check,
but this verification is unsound. The unsoundness is similar to that of the naı̈ve
typing of dynamic dispatch described in Section 2.1: the initialization method for
class B is called on an object of class C , which lacks fields declared in B .

To resolve this unsoundness, we clearly must track the dependency that ε is
the initialization method for object α (assigning the type init(α) instead). How-
ever, it does not seem reasonable to check that the argument to an initialization
method is the same as the object from which the method was obtained as we did
for dynamic dispatch—the valid compilation given in Figure 3.4 would not pass.
Rather, we require the weaker pre-condition that the argument of an initializa-
tion method of α (i.e., init(α)) must have the same dynamic type as α (i.e., be of
type nonnull classof(α)), introducing the need for the classof(α) reference type. This
check is reflected in the translation rule for initialization method calls:

Γ ` Σ(ae) : init(α) . Γ′ Γ′ ` α : nonnull C . Γ′′

Σ(rarg0) = β Γ′′ ` β : nonnull classof(α) . Γ′′′

〈Σ # Γ # F〉 Z call [ae] : rrv ,
−−−−→r := e

·⇒ invokeinit C : rarg0 ,
−−−−→r := e . 〈Σ # Γ′′′ # F〉

c-init

33

3.3 Abstract Transition and Typing 3 Details

Additionally, for the example in Figure 3.4 to type-check, we need to assume
the stronger post-condition ensured by Obj.copy that it returns an object of the
same dynamic type as its argument.

3.3.3 Type-Case

Coolaid’s handling of the type-case (or down casts) is probably the language feature
most tailored to a particular compilation strategy. In fact, this is the most promi-
nent example of a potential Coolaid incompleteness: a memory-safe compilation that
fails to verify with Coolaid (see Section 4.1). The way that Coolaid handles type-case
is based on the compilation strategy that emits comparisons between the class tag
and integer constants to determine the dynamic type of an object. Following this
strategy, Coolaid updates the tag(α, N) type by filtering the set of possible tags N
on branches and then updates α to the type that is the least upper bound of the re-
maining tags. If the set becomes empty, then we have determined an unreachable
branch, so Coolaid will not follow such a branch.

For example, consider a program with three classes A , B , and C such that A is
a subclass of B and B is a subclass of C . Further suppose they have been assigned
the following class tags:

A B C

3 2 1

Supposing the value in rx has type nonnull C , then the following fragment imple-
ments a checked down cast from nonnull C to nonnull A and is verified with the
abstract states shown below.

〈rx = α # α : nonnull C〉
1 rt := mem[rx]

〈rt = β, rx = α # β : tag(α,{3,2,1}), α : nonnull C〉
2 branch (< rt 2) LnotB

〈rt = β, rx = α # β : tag(α,{3,2}), α : nonnull B〉

First, recall from 3.1, the Cool object layout has the class tag stored in the first
word of the object, so the read on line 1 fetches the class tag for the object in rx .
That value (β) is assigned the type of the class tag of object α with the possible set
of class tags {3,2,1} according to the following typing rule:

Γ ` e ⇓ α . Γ′ Γ′(α) = nonnull C
Γ ` e : tag(α,{n | n = tagof (C′)∧ Γ′ ` C′ <: C}) ptr . Γ′ tagptr

34

3.3 Abstract Transition and Typing 3 Details

where the function tagof (C) gives the tag for class C . After the branch instruction
on line 2, the branch condition is reflected by filtering the possible tags and assign-
ing the type corresponding to least upper bound of the remaining tags, according
to following abstract transition rule:

Γ ` Σ(ae) ⇓ α R k . Γ′ Γ′(α) = tag(β, N) Γ′(β) = nonnull C
N′ = {n ∈ N | ¬(n R k)} 6= ∅
branch ae L : F _f F′

branch ae L
: 〈Σ # Γ # F〉p _ 〈Σ # Γ′[α 7→ tag(β, N′)][β 7→ nonnull taglub(N′)] # F′〉p+1

c-refinetagF

where the auxiliary function taglub(N) yields the class that is the least upper bound
in the class hierarchy given a set of class tags N .

3.3.4 Exceptions

As noted earlier, we have extended the Cool source language with exceptions (us-
ing Java-like throw , try-catch , and try-finally constructs). Unlike Java, any
object can be thrown as the value of the exception. Furthermore, all catch blocks
handle all exceptions (i.e., there is no filtering based on type); this effect can be
obtained by using a type-case in the handler and re-throwing the exception for
unhandled types.

Coolaid is able to verify a compilation of these constructs following the so-called
“long jump” scheme. At a high-level, this compilation strategy builds a closure of
the handler code (called an exception frame), links it to the previous exception frame,
and pushes it on top of the run-time stack at each try block. Then, the handler
code first restores the state from the exception frame. Exceptions frames form a
linked-list, and a register rxp , which must be callee-save, is used to point to the
head of the list (i.e., the most enclosing handler). For Coolaid, the only requirement
on the layout of the exception frame is that the first word is the address for the
code of the handler, as shown below:

high addresses
...

rxp −→ pointer to handler code low addresses

We might, for example, save the handler code pointer, the self pointer, the frame
pointer, the stack pointer, and the next exception frame pointer in an exception
frame in the following manner:

35

3.3 Abstract Transition and Typing 3 Details

rsp := (sub rsp −20)
mem[(add rsp 20)] := rxp

mem[(add rsp 16)] := rsp

mem[(add rsp 12)] := rfp

mem[(add rsp 8)] := rself

mem[(add rsp 4)] := &Lhandler
rxp := (add rsp 4)

Note that the compilation of exceptions makes several stack writes, so we will rely
on the stack verifier to simplify much of this handling.

There is no explicit introduction rule for the excframe type, but rather it as-
sumed as the type of the value in rxp (the register that points the current exception
frame) on method entry. In other words, excframe is more precisely the single-
ton type of the exception frame in a caller’s activation record pointed to by rxp on
method entry.

Exceptions are verified using an assume-guarantee style reasoning analogous
to function call-return. Handler code is verified when a method call is encountered
that could jump to that code if an exception were thrown from within the method.
To verify the handler code, we assume only that the exception pointer (in rxp) is
preserved and the exception value (in rrv) is an object; these conditions must be
then guaranteed on an “exceptional return”.

Call. Thus far, the abstract transition rules for method dispatch have ignored
exceptions. As usual, we have to extend the verification of a method dispatch
to check both the normal return and an exceptional return. Here, we give the
modified rules for dynamic dispatch with the modification boxed; the rules for
other calls are similar (see Appendix A).

We first modify the dynamic dispatch instruction (invokevirtual) to (option-
ally) yield both the register in which the exception value is passed and the effects
of an exceptional return. The form of invokevirtual is now as follows:

invokevirtual C.m(rarg1 , . . . , rarg`
) : rrv ,

−−−−→r := e 8 exchandler

where exchandler ::= rxv ,
−−−−→r := e @L | incaller (that is, an indication that the dynam-

ically nearest enclosing handler is at label L with the exception value passed in rxv

and effects of the call modeled by −−−−→r := e , or the handler is in a caller). In the case
that the most enclosing handler is in a caller (i.e., the current exception frame is
in a caller’s activation record), then an exceptional return does not return into this

36

3.3 Abstract Transition and Typing 3 Details

method, so only the normal return needs to be checked.

Γ ` Σ(ae) : meth(α, n) . Γ′

Σ(rarg0) = α Γ′ ` α : nonnull C . Γ′′

T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . }
(m is the method at offset n of class C)�� ��Γ′′ ` Σ(rxp) : excframe . Γ′′′

〈Σ # Γ # F〉 Z call [ae] : rrv ,
−−−−→r := e

·⇒ invokevirtual C.m(rarg1 , . . . , rarg`
) : rrv ,

−−−−→r := e 8 incaller . 〈Σ # Γ′′′ # F〉

c-meth

In the case that the most enclosing handler is in the current method, then a method
call is treated as branching instruction: one branch for the normal return and one
branch for the exceptional return.

Γ ` Σ(ae) : meth(α, n) . Γ′

Σ(rarg0) = α Γ′ ` α : nonnull C . Γ′′

T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . }
(m is the method at offset n of class C)�

�

�

�

F.S.Γs ` F.S.Σs(rxp) ⇓s α + nxp . Γ′
s Γ′

s(α) = sp0
F.Γf ` F.Σf(rsp0+nxp) :f codeaddr(L) . Γ′

f
F′ = 〈F.Σf # Γ′

f # F.npop # 〈F.S.Σs # Γ′
s # F.S.nlo # F.S.nhi〉〉

e′i =

{
r′i if r′i is preserved by the callee
? otherwise

〈Σ # Γ # F〉 Z call [ae] : rrv ,
−−−−→r := e

·⇒ invokevirtual C.m(rarg1 , . . . , rarg`
) :

rrv ,
−−−−→
r := e 8 rrv ,

−−−−→
r′ := e′ @L . 〈Σ # Γ′′ # F′〉

c-methx

where only rxp and stack slots not accessible by the callee are considered preserved
by the callee.

The abstract transition rule for the normal return is essentially unchanged from
before. We give it here for completeness.

T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . }
Γ0 ` Σ0(rarg1) : τ1 . Γ1 · · · Γ`−1 ` Σ0(rarg`

) : τ` . Γ`

ri := ei : 〈Σi # Γ`+i # Fi〉 _ 〈Σi+1 # Γ`+i+1 # Fi+1〉 (for 0 ≤ i < k)
call m(rarg1 , . . . , rarg`

) : rrv ,
−−−−→r := e : F0 _f F′

(β fresh)

invokevirtual C.m(rarg1 , . . . , rarg`
) : rrv ,

−−−−→r := e 8 exchandler
: 〈Σ0 # Γ0 # F0〉 _ 〈Σk[rrv 7→ β] # Γ`+k[β 7→ τrv] # F′〉

c-methok

37

3.3 Abstract Transition and Typing 3 Details

For the exceptional return, note that the rule only applies when the translation
determines that the handler is in the method being analyzed.

T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . }
Γ0 ` Σ0(rarg1) : τ1 . Γ1 · · · Γ`−1 ` Σ0(rarg`

) : τ` . Γ`

r′i := e′i : 〈Σi # Γ`+i # Fi〉 _ 〈Σi+1 # Γ`+i+1 # Fi+1〉 (for 0 ≤ i < k)
(β fresh)

invokevirtual C.m(rarg1 , . . . , rarg`
) : rrv ,

−−−−→
r := e 8 rxv ,

−−−−→
r′ := e′ @L

: 〈Σ0 # Γ # F0〉 _ 〈Σk[rxv 7→ β] # Γ`+k[β 7→ Object] # Fk〉L

c-methxok

Note that the resulting abstract state is at program point L (the exception handler)
with the “effects” of a call and exceptional return reflected. Following the typing of
exceptions in Cool, the only assumption that can made about the exception value
is that it is an object.

Throw. A exception throw is recognized as an indirect jump to the handler of an
exception (a value of type handler). A value of type handler is obtained by reading
from the first word in an exception frame.

Γ ` Σ(ae) : handler . Γ′

〈Σ # Γ # F〉 Z jump [ae] ·⇒ throw rrv . 〈Σ # Γ′ # F〉
c-throw

Γ ` e ⇓ α . Γ′ Γ′ ` α : excframe . Γ′′

Γ ` e : handler ptr . Γ′′ throwptr

Note that handler is then also a singleton type (for the value of the handler code
address of the exception frame pointed to by rxp on method entry).

A throw is an exceptional return, which is handled in a similar way as the
normal return. As noted above, we must guarantee that the exception pointer
(rxp) is preserved and the exception value is an object in this case.

Γ ` Σ(rxp) : excframe . Γ′ Γ′ ` Σ(ae) : Object . Γ′′

throw ae : 〈Σ # Γ # F〉 ok
c-throwok

One may observe that the mechanism for verifying exceptions handles the case
where the handler for the exception is in the caller’s code. The case that the handler
is in the same method as the exception throw appears as simply a jump within the
method, which can be verified by the existing mechanisms.

38

3.4 Initialization 3 Details

3.4 Initialization

Because the abstract domain is defined with respect to a particular class hierarchy,
Coolaid needs access to that information for the program being verified. In all, we
need the parent class of each user-defined class, the types of the fields of each class,
and the argument and return types of each method—all other needed facts must
already be encoded in the data block of the compiled code in order to meet the
conventions of Cool’s run-time system. We access the missing data through anno-
tations encoded as comments in the assembly code to be verified. To make Coolaid
as user-friendly as possible, great lengths were taken to minimize the amount of
annotations. In reference to our experiments discussed in Chapter 4, note that we
did not need to change any of the student compilers to obtain the required anno-
tations. These annotations can be trivially reconstructed from the source code and
inserted into the assembly code independent of the compiler; however, we do have
to impose the requirement that methods and fields are placed in the same order as
in the source file.

At start-up, Coolaid must create initial abstract states for each method and ini-
tialization function in the code. The initial abstract states for the stack and call-
return are initialized according to the calling convention specified by the Cool
run-time and the abstract state for the types verifier is initialized using the method
type annotations to type the arguments. In addition, we populate the initial type
state Γ with types for the code label of each method (i.e., with smeth(C, n)), the
code label for each initialization method (i.e., with sinit(C)), and the data label for
each statically allocated object (i.e., with nonnull exactly C). Various run-time struc-
tures (e.g., dispatch tables) must be checked to satisfy invariants required by the
Cool run-time system (and thus Coolaid), and statically allocated objects must be
type-checked.

39

Chapter 4

Educational Experience

Coolaid includes an interactive GUI that allows the user to step through the ver-
ification process, while seeing the inferred abstract value and type for each state
element. Stepping back in the verification is also possible and is useful to investi-
gate how an unexpected abstract value originated.

We used Coolaid in the undergraduate compiler course at UC Berkeley in the
Spring 2004 semester. Our experiments had two main purposes. First, we wanted
to test, in a controlled setting, the hypothesis that such a tool is a useful compiler-
debugging aid. Second, we wanted to give the students hands-on experience with
how data-flow algorithms can be used not just for compiler optimizations, but
also for checking software properties. Before starting to use Coolaid, the students
attended a lecture presenting how global data-flow analysis can be adapted to the
purpose of type-checking low-level languages, starting with a JVML-like language
and ending with assembly language.

Each semester about 150 students take the compiler class. Over the course of
a semester, the students work in pairs to build a complete Cool compiler emitting
MIPS assembly language. The students are supposed to construct test cases for
their compilers and to run the tests using the SPIM [Lar94] simulator. An auto-
mated version of this testing procedure, with 49 tests, is used to compute a large
fraction of their project grade.

In the Spring 2004 semester, the students were given access to Coolaid. They still
had to write their Cool test cases, but the validation of a test could also be done by
Coolaid, not simply by matching SPIM output with the expected output. We made
a convincing case to the students that Coolaid not only can expose compilation
bugs that simple execution with SPIM might not cover, but can also pinpoint the
offending instruction, as opposed to simply producing the wrong SPIM output.

In order to make interesting comparisons, we have applied Coolaid retro-active-
ly to the projects built in the 2002 and 2003 instances of the course when students

40

4.1 Student Performance Results 4 Educational Experience

Figure 4.1: Performance of student compilers with and without Coolaid. The com-
pilers are binned based on letter grades (for the automated testing component).

did not have Coolaid available. Each class was asked to complete the same project
in the same amount of time.

4.1 Student Performance Results

First, we ran each compiler on the 49 tests used for grading. The number of com-
pilers varied from year to year as follows:

2002: 87 compilers, 4263 compiled test cases
2003: 80 compilers, 3920 compiled test cases
2004: 72 compilers, 3528 compiled test cases

Figure 4.1 shows a histogram of how many compilers passed how many tests,
with the numbers adjusted proportionally to the difference in the number of com-
pilers each year. This data indicates that students who had access to Coolaid pro-
duced better compilers. In particular, the mean score of each team (out of 49) in-
creased from 33 (67%) in 2002 or 34 (69%) in 2003 to 39 (79%) in 2004. This would
be a measure of software quality when compilation results are run and checked
against expected output (the traditional compiler testing method). Grade-wise,
this is almost a letter grade improvement in their raw score.

Next, we compared the traditional way of testing compilers with using Cool-
aid to validate the compilation result. Each compiler result falls into one of the
following categories:

41

4.1 Student Performance Results 4 Educational Experience

The code produces correct output and also passes Coolaid (i.e., the compila-
tion is correct as far as we can determine).

The code produces incorrect output and also fails Coolaid (i.e., the error is
visible in the test run). This category also includes cases where the compiler
crashes during code generation.

The code produces correct output but fails Coolaid.

Typically, this indicates a compilation error resulting in ill-typed code that
is not exercised sufficiently by its particular hard-wired input (). How-
ever, this case can also indicate a Coolaid incompleteness: a valid compilation
strategy that Coolaid is unable to verify (). In order to correctly classify
compilation results in this case, we have inspected them manually.

Examples of incompletenesses included using odd calling conventions (such
as requiring the frame pointer be callee-save only for initialization methods)
and implementing case statements by a lookup table rather than a nested-if
structure. Coolaid could be changed to handle such strategies, but it is impos-
sible to predict all possible strategies in advance.

The code produces incorrect output but passes Coolaid.

This indicates a semantic error: type-safe code that does not correspond
to the semantics of the Cool source. An example of such an error would
be swapping the order of operands in a subtraction. In principle, it could
also indicate a Coolaid unsoundness: an unsafe compilation strategy that Cool-
aid incorrectly verifies. In fact, one surprising unsoundness was discovered
and fixed while checking the student compilers: Coolaid was allowing too
broad an interface to a particular run-time function. This could be prevented
by wrapping Coolaid into a foundational verifier producing proofs of safety,
which is work in progress as part of the Open Verifier project [CCNS05a,
Sch04].

The breakdown of behaviors for the code produced by the student compilers is
shown in Figure 4.2. Observe that the percentage of compilations in each category
are roughly the same in 2002 and 2003 when students did not have Coolaid despite
the variance in the student population.

Several conclusions can be drawn from this data, at least as it concerns compil-
ers in early development stages. To make our calculations clear, we will include
parenthetical references to the patterns used in Figure 4.2.

The majority of compiler bugs lead to type errors. When the students did
not have Coolaid (2002 and 2003 combined), 91% of all the failed test cases were
also ill-typed; when students did have Coolaid (2004), the percentage was still 70%

42

4.1 Student Performance Results 4 Educational Experience

Without Coolaid
2002 2003

���

��

����

���

�	�

���

���

	�

���

��
���

��

����

���

	��

�	�

�
��

���

���

��

With Coolaid
2004

���

��

���

���

����

	��

��

��

��

��

test passed, type safe (observably correct)
test passed, type safe but Coolaid failed (incompleteness)
test passed, type error (hidden type error)
test failed, type error (visible type error)
test failed, type safe (semantic error)

correct compilation incorrect compilation
scored as correct scored as incorrect

Figure 4.2: Behavior of test programs compiled by students and run through both
the standard execution-based testing procedure and Coolaid. Horizontal lines indi-
cate failing the standard testing procedure, while vertical lines (dotted or dashed)
indicate failing Coolaid (and thus the grid pattern indicates failing both).

43

4.2 Student Feedback 4 Educational Experience

(/). Moreover, there are a significant number of compilation errors that are
hard to catch with traditional testing. In 2002 and 2003, 16% of the tests had errors
and were ill-typed, but they passed traditional validation. In 2004, that number
decreased to 4%, presumably because students had access to Coolaid (/total).

Students using Coolaid create compilers that produce more type-safe programs.
The percentage of compiled test cases with type errors decreased from 44% to 19%
(/total). Even if we only count test cases that also produced incorrect output,
there is still a decrease from 29% to 15% (/total).

On the negative side, type-checking might impose unnecessary constraints on
the code generation. In 2002 and 2003, 6% of the test cases are valid, but do not
type-check (/total). We note that in most cases the problem involves calling con-
ventions in such a way that either the compiler or Coolaid could be trivially mod-
ified to avoid the problem; still, about 3% of the compiled test cases exhibit some
apparently non-trivial incompleteness. This number decreased to less than 1% in
2004, presumably because students preferred to adapt their compilation scheme
to Coolaid, in order to silence these false alarms. This may indicate that the tool
is limiting student ingenuity. We hope to ameliorate this problem by incorporat-
ing into Coolaid the ability to handle unusual strategies used in past years. We are
also exploring the possibility of having a general type of lookup tables, a feature in
many unhandled compilation strategies. However, until undergraduate compilers
students are ready to design certifying compilers, there is no completely general
solution.

Overall, there was a slight increase (from 3% to 6% of all test cases) in programs
that were type-safe but had semantic errors (/total). There is a potential concern
here; what if students using Coolaid to debug do not perform sufficient testing for
the semantic bugs that Coolaid does not catch? Although in all cases it seems likely
that students do not sufficiently test their compilers, we do not believe that Coolaid
particularly exacerbates this problem. Instead, we suspect that often purely se-
mantic bugs are masked by additional type errors for the students without Coolaid.
We do not, however, have any conclusive evidence to confirm this claim. In any
case, this increase seems rather small compared to the overall benefits of reducing
type errors.

4.2 Student Feedback

As a final data point, the students in 2004 were asked to submit feedback about
Coolaid, including a numeric rating of its usefulness. 52 of the 72 teams returned
feedback; the results are in Figure 4.3.

Common negative comments tended to involve either details about the user

44

4.2 Student Feedback 4 Educational Experience

Figure 4.3: Student feedback from the 2004 class about the usefulness of Coolaid. 0
means “counterproductive” and 6 means “can’t imagine developing/debugging a
compiler without it.”

interface, or the fact that Coolaid would not catch semantic errors that were not
type errors. A favorite positive comment says,

“I would be totally lost without Coolaid. I learn best when I am using it hands-
on I was able to really understand stack conventions and optimizations
and to appreciate them.”

While it is difficult to measure whether the students have become better compiler
writers through the use of Coolaid (as opposed to simply producing a better Cool
compiler), this comment perhaps suggests positively that Coolaid helped students
understand some key concepts in compiler development.

45

Chapter 5

Conclusion

5.1 Related Work

Proof-carrying code [Nec97] and typed-assembly languages [MWCG99] also check
memory safety of programs at the machine code level. Both traditional and more
recent approaches [AF00, HST+ 02, Cra03] focus more on generality than acces-
sibility; their technical developments are quite involved. A wider audience can
use Coolaid or Coolaid-like verifiers for compiler debugging or reinforcing compiler
concepts.

Note that while the type system is more complex than for bytecode verification,
it is fairly simple compared to traditional encodings of object-oriented languages
into functional typed-assembly languages. This simplification is obtained by spe-
cializing to the Cool object layout and other conventions. While this sacrifices
some bit of generality, it appears more feasible in the context of retrofitting exist-
ing compilers. Furthermore, we assert that encoding object-oriented languages in
functional TALs may be unnatural, much like the compilation of functional lan-
guages to object-oriented intermediate languages, like the JVML; others seem to
concur [CT05]. We might hope to recover some generality, yet maintain some sim-
plicity, by moving towards an “object-oriented TAL”. A design decision in [LST02]
to change the compilation scheme of the type-case rather than introduce a new
tag type (which they found possible but difficult in their system) provides some
additional evidence for the usefulness of such a system.

We seek generality through customizability; that is, we imagine that it will often
be necessary to have customized verifiers for different languages or compilers.
However, the task of building Coolaid-like verifiers should be greatly simplified
by composing sub-verifiers, such as those for the stack and call-return abstraction.
One might even imagine factoring the Coolaid-specific verifier into smaller pieces,
such as for exception handling or dynamic dispatch.

46

5.2 Conclusion 5 Conclusion

Prior work has used several strategies to serve the function that our depen-
dent types do. TALs have traditionally modeled a limited class of relationships
between values using parametric polymorphism. Singleton types provide another
mechanism, and the design of TALs with more complicated dependent type sys-
tems has been investigated [XH01]. League et al. [LST02, LST03] use existential
types. A key difference of our work compared to the work mentioned above using
typed-assembly or typed-intermediate languages is that we elide many more typ-
ing annotations using verification-time inference, which is possible because of the
limits we place on our type system.

The symbolic values used in our abstract state serve a similar purpose as SSA-
variables [CFR+ 91] for traditional compiler optimizations. Both techniques tease
apart the re-use of registers into names that are more analogous to source-level
variables. Others have made a similar observation (between SSA and functional
programming [App98]). A difference is that we reflect these changes in the ab-
stract state as we go rather than using a SSA-transformation pass, which has some
benefit in the number of names needed. These two techniques are not necessarily
incompatible though; one may also imagine a sub-verifier that uses symbolic eval-
uation to do a SSA-like transformation with symbolic values to simplify the work
for higher-level verifiers.

Composing abstract domains has been studied by many since Cousot and Cou-
sot defined the notion of a reduced product, which captures a notion of precise
composition but requires domain-specific reduction operators [CC79]. Others have
looked at obtaining more general combinations while trying to maintain preci-
sion [CCH94, LGC02, CL05]. Lerner et al. combine data-flow analyses for com-
piler optimizations using re-writing of statements to communicate between sub-
analyses [LGC02], similar to the communication between our sub-verifiers; how-
ever, the re-writes in their case are all within the same language, while we consider
different languages between each layer. A difference between our composition of
verifiers and the above mentioned work on composing abstract domains is that
we consider a composition of abstract interpreters interpreting different languages
(with varying degrees of abstraction).

5.2 Conclusion

We describe in this paper how to extend data-flow based type checking of interme-
diate languages to work at the level of assembly language, while maintaining the
ability to work without annotations inside a procedure body. The additional cost
is that the checker must maintain a lattice of dependent types, which are designed
to match a particular representation of run-time data structures. While this in-

47

5.2 Conclusion 5 Conclusion

creases the complexity of the algorithm, it has the advantage that it enables the use
of type-checking technology for debugging native-code compilers, not just those
that produce bytecode. Furthermore, the ability to infer types reduces greatly the
demands on the compiler to generate annotation, thus enabling the technique for
more compilers. In fact, we were able to use the technique on existing compilers
without any modifications.

We consider our experiments in the context of an undergraduate compiler class
to be very successful. We found that data-flow based verification fits very well with
other concepts typically covered in a compiler class (e.g., types, data-flow analy-
sis). At the same time, it introduces students to the idea that language-based tools
can be effective for improving software quality and safety. Furthermore, packag-
ing these ideas into a tool whose interface resembles a debugger allows students
to experiment hands-on with important concepts, such as data-flow analysis and
types.

While our results are fairly convincing for the case of early-development com-
pilers, it is not clear at all how they apply to mature compilers. We expect that a
smaller ratio of compiler bugs result in errors that could be caught by type check-
ing. Nevertheless, the arguments would be strong to include type checking in the
standard regression testing procedure, if only for its ability to pinpoint otherwise
often hard to find type-safety errors very precisely.

There were certain cases when Coolaid could not keep up with correct compila-
tion strategies or optimizations. While this is not a big issue for bytecode compil-
ers, because the bytecode language can express very few optimizations, it becomes
a serious issue for native code compilers where representation choices have a big
effect on the code generation strategy. In the context of the Open Verifier project,
we are working on ways that would allow a compiler developer to specify, at a
high-level, alternative compilation strategies, along with proofs of soundness with
respect to the existing compilation strategies [CCNS05a].

48

Bibliography

[AC98] Martı́n Abadi and Luca Cardelli. A Theory of Objects. Monographs in
Computer Science. Springer, 1998.

[AF00] Andrew W. Appel and Amy P. Felty. A semantic model of types and
machine instructions for proof-carrying code. In Proc. of the 27th ACM
Symposium on Principles of Programming Languages (POPL’00), pages
243–253, January 2000.

[Aik96] Alexander Aiken. Cool: A portable project for teaching compiler con-
struction. ACM SIGPLAN Notices, 31(7):19–24, July 1996.

[App98] Andrew W. Appel. Ssa is functional programming. SIGPLAN Not.,
33(4):17–20, 1998.

[BCM+ 93] Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh, Robert van Gent, Al-
lyn Dimock, and Robert Muller. Safe and decidable type checking
in an object-oriented language. In Proc. of the 8th Annual ACM Con-
ference on Object-oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’93), pages 29–46, October 1993.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proc. of the 4th ACM Symposium on Prin-
ciples of Programming Languages, pages 234–252, January 1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program
analysis frameworks. In POPL ’79: Proceedings of the 6th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages
269–282, New York, NY, USA, 1979. ACM Press.

[CCH94] Agostino Cortesi, Baudouin Le Charlier, and Pascal Van Hentenryck.
Combinations of abstract domains for logic programming. In POPL

49

BIBLIOGRAPHY BIBLIOGRAPHY

’94: Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 227–239, New York, NY, USA,
1994. ACM Press.

[CCNS05a] Bor-Yuh Evan Chang, Adam Chlipala, George C. Necula, and
Robert R. Schneck. The Open Verifier framework for foundational
verifiers. In Proc. of the 2nd ACM Workshop on Types in Language Design
and Implementation (TLDI’05), January 2005.

[CCNS05b] Bor-Yuh Evan Chang, Adam Chlipala, George C. Necula, and
Robert R. Schneck. Type-based verification of assembly language for
compiler debugging. In Proc. of the 2nd ACM Workshop on Types in
Language Design and Implementation (TLDI’05), pages 91–102. ACM,
January 2005.

[CFR+ 91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Trans. Program. Lang.
Syst., 13(4):451–490, 1991.

[CL05] Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation
with alien expressions and heap structures. In Proc. of the 6th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI’05), volume 3385 of LNCS, January 2005.

[CLN+ 00] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark
Plesko, and Kenneth Cline. A certifying compiler for Java. In Proc.
of the ACM 2000 Conference on Programming Language Design and Imple-
mentation (PLDI), pages 95–107, May 2000.

[Cra03] Karl Crary. Toward a foundational typed assembly language. In Proc.
of the 30th ACM Symposium on Principles of Programming Languages
(POPL’03), pages 198–212, January 2003.

[CT05] Juan Chen and David Tarditi. A simple typed intermediate language
for object-oriented languages. In Proc. of the 32nd ACM Symposium on
Principles of Programming Languages (POPL’05), January 2005.

[GS01] Andrew D. Gordon and Don Syme. Typing a multi-language inter-
mediate code. In Proc. of the 28th ACM Symposium on Principles of Pro-
gramming Languages (POPL’01), pages 248–260, January 2001.

50

BIBLIOGRAPHY BIBLIOGRAPHY

[GTN04] Sumit Gulwani, Ashish Tiwari, and George C. Necula. Join algorithms
for the theory of uninterpreted functions. In Proc. of the 24th Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’04), LNCS, December 2004.

[HST+ 02] Nadeem A. Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and
Zhaozhong Ni. A syntactic approach to foundational proof-carrying
code. In Proc. of the 17th Annual IEEE Symposium on Logic in Computer
Science, pages 89–100, July 2002.

[Lar94] J. R. Larus. Assemblers, linkers, and the SPIM simulator. In Computer
Organization and Design: The Hardware/Software Interface, Appendix A.
Morgan Kaufmann, 1994.

[Ler03] Xavier Leroy. Java bytecode verification: algorithms and formaliza-
tions. Journal of Automated Reasoning, 30(3–4):235–269, 2003.

[LGC02] Sorin Lerner, David Grove, and Craig Chambers. Composing
dataflow analyses and transformations. In POPL ’02: Proceedings of the
29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 270–282, New York, NY, USA, 2002. ACM Press.

[LST02] Christopher League, Zhong Shao, and Valery Trifonov. Type-
preserving compilation of Featherweight Java. ACM Transactions on
Programming Languages and Systems, 24(2):112–152, 2002.

[LST03] Christopher League, Zhong Shao, and Valery Trifonov. Precision in
practice: A type-preserving Java compiler. In Proc. of the 12th Interna-
tional Conference on Compiler Construction (CC’03), April 2003.

[LY97] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
The Java Series. Addison-Wesley, Reading, MA, USA, January 1997.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From sys-
tem F to typed assembly language. ACM Transactions on Programming
Languages and Systems, 21(3):527–568, May 1999.

[Nec97] George C. Necula. Proof-carrying code. In Proc. of the 24th Annual
ACM Symposium on Principles of Programming Languages (POPL’97),
pages 106–119, January 1997.

[Nec00] George C. Necula. Translation validation for an optimizing compiler.
In Proc. of the ACM 2000 Conference on Programming Language Design
and Implementation (PLDI), pages 83–94, June 2000.

51

BIBLIOGRAPHY BIBLIOGRAPHY

[PSS98] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation vali-
dation. In Bernhard Steffen, editor, Proc. of 4th International Confer-
ence on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’98), volume 1384 of LNCS, pages 151–166, March 1998.

[RM99] Martin Rinard and Darko Marinov. Credible compilation. In Proc. of
the Run-Time Result Verification Workshop, July 1999.

[Sch04] Robert R. Schneck. Extensible Untrusted Code Verification. PhD thesis,
University of California, Berkeley, May 2004.

[XH01] Hongwei Xi and Robert Harper. A dependently typed assembly lan-
guage. In Proc. of the International Conference on Functional Programming
(ICFP’01), pages 169–180, September 2001.

52

Appendix A

Abstract Transition and Typing Rules

In this chapter, we collect the rules that define the type-based abstract interpreter.
Section 3.2 describe and explain the interesting rules for the stack and call-return
verifier. Many of the Coolaid-specific rules are sketched through example in Sec-
tion 2.3 and others are explained in Section 3.3.

A.1 Stack

I : Sp →s S′p

Sp Z I ⇒s Is . S′p Is : S′p _s S′′p′

I : Sp →s S′′p′
s-step

A.1.1 Translation

Sp Z I ⇒s Is . S′p

Γs ` Σs(ae) ⇓s α + n . Γ′s Γ′s(α) = sp0 nlo ≤ n ≤ nhi n ≡ 0 (mod 4)

〈Σs # Γs # nlo # nhi〉 Z r := mem[ae] ⇒s r := rsp0+n . 〈Σs # Γ′s # nlo # nhi〉
s-read

Γs ` Σs(ae0) ⇓s α + n . Γ′s Γ′s(α) = sp0 nlo ≤ n ≤ nhi n ≡ 0 (mod 4)

〈Σs # Γ′s # nlo # nhi〉 Z mem[ae0] := ae1 ⇒s rsp0+n := ae1 . 〈Σs # Γ′s # nlo # nhi〉
s-write

S Z I ⇒s I . S
s-iddecomp

53

A.2 Call-Return A Abstract Transition and Typing Rules

A.1.2 Transition

Is : Sp _s S′p′

L : : S _s S
s-label

jump L : S _s SL
s-jump

r := ae : 〈Σs # Γs # nlo # nhi〉 _s 〈Σs[r 7→ Σs(ae)] # Γs # nlo # nhi〉
s-set

Γs ` Σs(ae) ⇓s ((α0 + n0) ⊕ (α0 + n1)) ≫ 20 6= 0 . Γ′s
Γ′s(α0) = sp0
n1 < nlo ≤ n0 ≤ nhi

branch ae L : 〈Σs # Γs # nlo # nhi〉p _s 〈Σs # Γ′s # n1 # nhi〉p+1
s-spF

Γs ` Σs(ae) ⇓s ((α0 + n0) ⊕ (α0 + n1)) ≫ 20 = 0 . Γ′s
Γ′s(α0) = sp0
n1 < nlo ≤ n0 ≤ nhi

branch ae L : 〈Σs # Γs # nlo # nhi〉 _s 〈Σs # Γ′s # n1 # nhi〉L
s-spT

branch ae L : S _s S
s-branchF

branch ae L : S _s SL
s-branchT

A.2 Call-Return

I : Fp →f F′p
I : Fp ok

Fp Z I ⇒f If . F′p If : F′p _f F′′p′

I : Fp →f F′′p′
f-step

Fp Z I ⇒f If . F′p If : F′p ok

I : Fp ok
f-ok

A.2.1 Translation

Fp Z I ⇒f If . F′p
Fp Z Is

·⇒f If . F′p
S Z I ⇒s Is . S′ 〈Σf # Γf # npop # S′〉 Z Is

·⇒f If . 〈Σ′f # Γ′f # n′pop # S′′〉

〈Σf # Γf # npop # S〉 Z I ⇒f If . 〈Σ′f # Γ′f # n′pop # S′′〉
f-decomp

Γf ` Σf(ae) ⇓f α . Γ′f Γ′f(α) = ra

〈Σf # Γf # npop # S〉 Z jump [ae] ·⇒f return rrv . 〈Σf # Γ′f # npop # S〉
f-return

Γf ` Σf(rra) : codeaddr(L′) . Γ′f (&L′ = p + 1)

ei =


rsp + npop(L) if ri is rsp
ri if ri is preserved by the callee
? otherwise

〈Σf # Γf # npop # S〉p Z jump L ·⇒f call L(rarg0 , . . . , rarg`
) : rrv ,−−−−→r := e . 〈Σf # Γ′f # npop # S〉p

f-call

Γf ` Σf(rra) : codeaddr(L′) . Γ′f (&L′ = p + 1)

ei =

{
ri if ri is preserved by the callee
? otherwise

〈Σf # Γf # npop # S〉p Z jump [ae] ·⇒f call [ae] : rrv ,−−−−→r := e . 〈Σf # Γ′f # npop # S〉p

f-icall

54

A.3 Coolaid A Abstract Transition and Typing Rules

F Z Is
·⇒f Is . F

f-iddecomp

A.2.2 Transition

If : Fp _f F′p′
If : Fp ok

Γf ` Σf(rcs) ⇓f α . Γ′f Γ′f(α) = cs(rcs) (for all callee-save rcs)
S.Γs ` S.Σs(rsp) ⇓s α + npop . Γ′s Γ′s(α) = sp0

return ae : 〈Σf # Γf # npop # S〉 ok
f-returnok

S.Γs ` S.Σs(rsp) ⇓s α + n . Γ0
s Γ0

s (α) = sp0 n ≡ 0 (mod 4)
S0 = 〈S.Σs # Γ0

s # S.nlo # S.nhi〉
n + 4 · nargs(L) ≤ S0.nhi n + 4 · nargs(L)− framesize(L) ≥ S0.nlo

ri := ei : 〈Σi
f # Γi

f # ni
pop # Si〉 _f 〈Σi+1

f # Γi+1
f # ni+1

pop # Si+1〉 (for 0 ≤ i < k)

call L(rarg0 , . . . , rarg`
) : rrv ,−−−−→r := e : 〈Σ0

f # Γ0
f # n0

pop # S〉 _f 〈Σk
f # Γk

f # nk
pop # Sk〉

f-callok

r := ae : S _s S′

r := ae : 〈Σf # Γf # npop # S〉 _f 〈Σf[r 7→ Σf(ae)] # Γf # npop # S′〉
f-set

If : S _s S′

If : 〈Σf # Γf # npop # S〉 _f 〈Σf # Γf # npop # S′〉
f-follow

A.2.3 Typing

Γf ` e : τf . Γ′f

Γf ` e ⇓f α . Γ′f Γ′(α) = τf

Γf ` e : τf . Γ′f
f-var

A.3 Coolaid

I : Ap → A′
p

I : Ap ok

Ap Z I ⇒ Ic . A′
p Ic : A′

p _ A′′
p′

I : Ap → A′′
p′

c-step
Ap Z I ⇒ Ic . A′

p Ic : A′
p ok

I : Ap ok
c-ok

55

A.3 Coolaid A Abstract Transition and Typing Rules

A.3.1 Translation

Ap Z I ⇒ Ic . A′
p

Ap Z If
·⇒ Ic . A′

p

Fp Z I ⇒f If . F′p 〈Σ # Γ # F′〉p Z If
·⇒ Ic . 〈Σ′ # Γ′ # F′′〉p′

〈Σ # Γ # F〉p Z I ⇒ Ic . 〈Σ′ # Γ′ # F′′〉p′
c-decomp

Γ ` Σ(ae) : τ ptr . Γ′

〈Σ # Γ # F〉 Z r := mem[ae] ·⇒ r := ?τ . 〈Σ # Γ′ # F〉
c-read

Γ ` Σ(ae0) : τ ptr . Γ′ Γ′ ` Σ(ae1) : τ . Γ′′

〈Σ # Γ # F〉 Z mem[ae0] := ae1
·⇒ noop . 〈Σ # Γ′′ # F〉

c-write

Γ ` Σ(ae) : meth(α, n) . Γ′
Σ(rarg0) = α Γ′ ` α : nonnull C . Γ′′
T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . }
(m is the method at offset n of class C)
Γ′′ ` Σ(rxp) : excframe . Γ′′′

〈Σ # Γ # F〉 Z call [ae] : rrv ,−−−−→r := e
·⇒ invokevirtual C.m(rarg1 , . . . , rarg`

) :
rrv ,−−−−→r := e 8 incaller . 〈Σ # Γ′′′ # F〉

c-meth

Γ ` Σ(ae) : meth(α, n) . Γ′
Σ(rarg0) = α Γ′ ` α : nonnull C . Γ′′
T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . }
(m is the method at offset n of class C)
F.S.Γs ` F.S.Σs(rxp) ⇓s α + nxp . Γ′s Γ′s(α) = sp0
F.Γf ` F.Σf(rsp0+nxp) :f codeaddr(L) . Γ′f
F′ = 〈F.Σf # Γ′f # F.npop # 〈F.S.Σs # Γ′s # F.S.nlo # F.S.nhi〉〉

e′i =

{
r′i if r′i is preserved by the callee
? otherwise

〈Σ # Γ # F〉 Z call [ae] : rrv ,−−−−→r := e
·⇒ invokevirtual C.m(rarg1 , . . . , rarg`

) :

rrv ,
−−−−→
r := e 8 rrv ,

−−−−−→
r′ := e′ @L . 〈Σ # Γ′′ # F′〉

c-methx

Γ ` Σ(ae) : smeth(C, n) . Γ′
Γ′ ` Σ(rarg0) : nonnull C . Γ′′
T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . }
(m is the method at offset n of class C)
Γ′′ ` Σ(rxp) : excframe . Γ′′′

〈Σ # Γ # F〉 Z call [ae] : rrv ,−−−−→r := e
·⇒ invokesmeth C.m(rarg1 , . . . , rarg`

) :
rrv ,−−−−→r := e 8 incaller . 〈Σ # Γ′′′ # F〉

c-smeth

Γ ` Σ(ae) : smeth(C, n) . Γ′
Γ′ ` Σ(rarg0) : nonnull C . Γ′′
T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . }
(m is the method at offset n of class C)
F.S.Γs ` F.S.Σs(rxp) ⇓s α + nxp . Γ′s Γ′s(α) = sp0
F.Γf ` F.Σf(rsp0+nxp) :f codeaddr(L) . Γ′f
F′ = 〈F.Σf # Γ′f # F.npop # 〈F.S.Σs # Γ′s # F.S.nlo # F.S.nhi〉〉

e′i =

{
r′i if r′i is preserved by the callee
? otherwise

〈Σ # Γ # F〉 Z call [ae] : rrv ,−−−−→r := e
·⇒ invokesmeth C.m(rarg1 , . . . , rarg`

) :

rrv ,
−−−−→
r := e 8 rrv ,

−−−−−→
r′ := e′ @L . 〈Σ # Γ′′ # F′〉

c-smethx

Γ ` Σ(ae) : init(α) . Γ′
Σ(rarg0) = β Γ′ ` β : nonnull classof(α) . Γ′′
Γ′′ ` Σ(rxp) : excframe . Γ′′′

〈Σ # Γ # F〉 Z call [ae] : rrv ,−−−−→r := e
·⇒ invokeinit C :

rarg0 ,−−−−→r := e 8 incaller . 〈Σ # Γ′′′ # F〉

c-init

Γ ` Σ(ae) : init(α) . Γ′
Σ(rarg0) = β Γ′ ` β : nonnull classof(α) . Γ′′
F.S.Γs ` F.S.Σs(rxp) ⇓s α + nxp . Γ′s Γ′s(α) = sp0
F.Γf ` F.Σf(rsp0+nxp) :f codeaddr(L) . Γ′f
F′ = 〈F.Σf # Γ′f # F.npop # 〈F.S.Σs # Γ′s # F.S.nlo # F.S.nhi〉〉

e′i =

{
r′i if r′i is preserved by the callee
? otherwise

〈Σ # Γ # F〉 Z call [ae] : rrv ,−−−−→r := e
·⇒ invokeinit C :

rarg0 ,
−−−−→
r := e 8 rrv ,

−−−−−→
r′ := e′ @L . 〈Σ # Γ′′ # F′〉

c-initx

56

A.3 Coolaid A Abstract Transition and Typing Rules

Γ ` Σ(ae) : sinit(C) . Γ′
Σ(rarg0) = β Γ′ ` β : nonnull C . Γ′′
Γ′′ ` Σ(rxp) : excframe . Γ′′′

〈Σ # Γ # F〉 Z call [ae] : rrv ,−−−−→r := e
·⇒ invokeinit C :

rarg0 ,−−−−→r := e 8 incaller . 〈Σ # Γ′′′ # F〉

c-sinit

Γ ` Σ(ae) : sinit(C) . Γ′
Σ(rarg0) = β Γ′ ` β : nonnull C . Γ′′
F.S.Γs ` F.S.Σs(rxp) ⇓s α + nxp . Γ′s Γ′s(α) = sp0
F.Γf ` F.Σf(rsp0+nxp) :f codeaddr(L) . Γ′f
F′ = 〈F.Σf # Γ′f # F.npop # 〈F.S.Σs # Γ′s # F.S.nlo # F.S.nhi〉〉

e′i =

{
r′i if r′i is preserved by the callee
? otherwise

〈Σ # Γ # F〉 Z call [ae] : rrv ,−−−−→r := e
·⇒ invokeinit C :

rarg0 ,
−−−−→
r := e 8 rrv ,

−−−−−→
r′ := e′ @L . 〈Σ # Γ′′ # F′〉

c-sinitx

Γ ` Σ(ae) : handler . Γ′

〈Σ # Γ # F〉 Z jump [ae] ·⇒ throw rrv . 〈Σ # Γ′ # F〉
c-throw

A Z If
·⇒ If . A

c-iddecomp

A.3.2 Transition

Ic : Ap _ A′
p′

Ic : Ap ok

Γ ` ae : τrv . Γ′ return ae : F ok

return ae : 〈Σ # Γ # F〉 ok
c-returnok

Γ ` Σ(rxp) : excframe . Γ′ Γ′ ` Σ(ae) : Object . Γ′′

throw ae : 〈Σ # Γ # F〉 ok
c-throwok

T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . } Γ0 ` Σ0(rarg1) : τ1 . Γ1 · · · Γ`−1 ` Σ0(rarg`
) : τ` . Γ`

ri := ei : 〈Σi # Γ`+i # Fi〉 _ 〈Σi+1 # Γ`+i+1 # Fi+1〉 (for 0 ≤ i < k)
call m(rarg1 , . . . , rarg`

) : rrv ,−−−−→r := e : F0 _f F′ (β fresh)

invokevirtual C.m(rarg1 , . . . , rarg`
) : rrv ,−−−−→r := e 8 exchandler

: 〈Σ0 # Γ0 # F0〉 _ 〈Σk[rrv 7→ β] # Γ`+k[β 7→ τrv] # F′〉

c-methok

T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . } Γ0 ` Σ0(rarg1) : τ1 . Γ1 · · · Γ`−1 ` Σ0(rarg`
) : τ` . Γ`

r′i := e′i : 〈Σi # Γ`+i # Fi〉 _ 〈Σi+1 # Γ`+i+1 # Fi+1〉 (for 0 ≤ i < k) (β fresh)

invokevirtual C.m(rarg1 , . . . , rarg`
) : rrv ,

−−−−→
r := e 8 rxv ,

−−−−−→
r′ := e′ @L

: 〈Σ0 # Γ # F0〉 _ 〈Σk[rxv 7→ β] # Γ`+k[β 7→ Object] # Fk〉L

c-methxok

T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . } Γ0 ` Σ0(rarg1) : τ1 . Γ1 · · · Γ`−1 ` Σ0(rarg`
) : τ` . Γ`

ri := ei : 〈Σi # Γ`+i # Fi〉 _ 〈Σi+1 # Γ`+i+1 # Fi+1〉 (for 0 ≤ i < k)
call m(rarg1 , . . . , rarg`

) : rrv ,−−−−→r := e : F0 _f F′ (β fresh)

invokesmeth C.m(rarg1 , . . . , rarg`
) : rrv ,−−−−→r := e 8 exchandler

: 〈Σ0 # Γ0 # F0〉 _ 〈Σk[rrv 7→ β] # Γ`+k[β 7→ τrv] # F′〉

c-smethok

T(C) = class C . . . { . . . τrv m(τ1, . . . , τ`) . . . } Γ0 ` Σ0(rarg1) : τ1 . Γ1 · · · Γ`−1 ` Σ0(rarg`
) : τ` . Γ`

r′i := e′i : 〈Σi # Γ`+i # Fi〉 _ 〈Σi+1 # Γ`+i+1 # Fi+1〉 (for 0 ≤ i < k) (β fresh)

invokesmeth C.m(rarg1 , . . . , rarg`
) : rrv ,

−−−−→
r := e 8 rxv ,

−−−−−→
r′ := e′ @L

: 〈Σ0 # Γ # F0〉 _ 〈Σk[rxv 7→ β] # Γ`+k[β 7→ Object] # Fk〉L

c-smethxok

57

A.3 Coolaid A Abstract Transition and Typing Rules

ri := ei : 〈Σi # Γ`+i # Fi〉 _ 〈Σi+1 # Γ`+i+1 # Fi+1〉 (for 0 ≤ i < k)
call C.init(rarg0) : rarg0 ,−−−−→r := e : F0 _f F′

invokeinit C : rarg0 ,−−−−→r := e 8 exchandler
: 〈Σ0 # Γ0 # F0〉 _ 〈Σk[rarg0 7→ Σ0(rarg0)] # Γ`+k # F′〉

c-initok

r′i := e′i : 〈Σi # Γ`+i # Fi〉 _ 〈Σi+1 # Γ`+i+1 # Fi+1〉 (for 0 ≤ i < k) (β fresh)

invokeinit C : rarg0 ,
−−−−→
r := e 8 rxv ,

−−−−−→
r′ := e′ @L

: 〈Σ0 # Γ # F0〉 _ 〈Σk[rxv 7→ β] # Γ`+k[β 7→ Object] # Fk〉L

c-initxok

r := ? : F _f F′ (α fresh)

r := ?τ : 〈Σ # Γ # F〉 _ 〈Σ[r 7→ α] # Γ[α 7→ τ] # F′〉
c-setty

r := ae : F _f F′

r := ae : 〈Σ # Γ # F〉 _ 〈Σ[r 7→ Σ(ae)] # Γ # F′〉
c-set

Γ ` Σ(ae) ⇓ α R k . Γ′ Γ′(α) = tag(β, N) Γ′(β) = nonnull C N′ = {n ∈ N | ¬(n R k)} 6= ∅
branch ae L : F _f F′

branch ae L : 〈Σ # Γ # F〉p _ 〈Σ # Γ′[α 7→ tag(β, N′)][β 7→ nonnull taglub(N′)] # F′〉p+1

c-refinetagF

Γ ` Σ(ae) ⇓ α R k . Γ′ Γ′(α) = tag(β, N) Γ′(β) = nonnull C N′ = {n ∈ N | n R k} 6= ∅
branch ae L : F _f F′

branch ae L : 〈Σ # Γ # F〉 _ 〈Σ # Γ′[α 7→ tag(β, N′)][β 7→ nonnull taglub(N′)] # F′〉L
c-refinetagT

Γ ` Σ(ae) ⇓ α R 0 . Γ′ Γ′(α) = b R∈ {=, 6=}

τ =

{
nonnull b if ¬(α R 0) ≡ α 6= 0
null if ¬(α R 0) ≡ α = 0

branch ae L : 〈Σ # Γ # F〉p _ 〈Σ # Γ′[α 7→ τ] # F′〉p+1
c-nullchkF

Γ ` Σ(ae) ⇓ α R 0 . Γ′ Γ′(α) = b R∈ {=, 6=}

τ =

{
nonnull b if α R 0 ≡ α 6= 0
null if α R 0 ≡ α = 0

branch ae L : 〈Σ # Γ # F〉 _ 〈Σ # Γ′[α 7→ τ] # F′〉L
c-nullchkT

Ic : F _f F′

Ic : 〈Σ # Γ # F〉 _ 〈Σ # Γ # F′〉
c-follow

A.3.3 Typing

Γ ` e : τ . Γ′

Γ ` e ⇓ α . Γ′ Γ′(α) = τ

Γ ` e : τ . Γ′
var

Γ ` e : τ ′ . Γ′ Γ′ ` τ ′ <: τ

Γ ` e : τ . Γ′
subsump

Γ ` e ⇓ α + n . Γ′ Γ′ ` α : nonnull C . Γ′′
T(C) = class C . . . { . . . τ f . . . } (f is the field at offset n of class C)

Γ ` e : τ ptr . Γ′′
fieldptr

Γ ` e ⇓ α + 8 . Γ′ Γ′ ` α : nonnull C . Γ′′

Γ ` e : disp(α) ptr . Γ′′
dispptr

Γ ` e ⇓ β + n . Γ′ Γ′′ ` α : nonnull C . Γ′′′
Γ′ ` β : disp(α) . Γ′′ (C has a method at offset n)

Γ ` e : meth(α, n) ptr . Γ′′′
methptr

Γ ` e ⇓ α + 8 . Γ′ Γ′ ` α : nonnull exactly C . Γ′′

Γ ` e : sdisp(C) ptr . Γ′′
sdispptr

Γ ` e ⇓ β + n . Γ′
Γ′ ` β : sdisp(C) . Γ′′ (C has a method at offset n)

Γ ` e : smeth(C, n) ptr . Γ′′
smethptr

58

A.3 Coolaid A Abstract Transition and Typing Rules

Γ ` e ⇓ &init table+ 4 · β . Γ′
Γ′ ` β : tag(α, N) . Γ′′

Γ ` e : nonnull classof(α) ptr . Γ′′
protptr

Γ ` e ⇓ &init table+ 4 · β + 4 . Γ′
Γ′ ` β : tag(α, N) . Γ′′

Γ ` e : init(α) ptr . Γ′′
initptr

Γ ` e ⇓ α . Γ′ Γ′(α) = nonnull C

Γ ` e : tag(α,{n | n = tagof (C′)∧ Γ′ ` C′ <: C}) ptr . Γ′
tagptr

Γ ` e ⇓ α . Γ′ Γ′(α) = nonnull exactly C

Γ ` e : tag(α,{tagof (C)}) ptr . Γ′
tagptrexactly

Γ ` e ⇓ α . Γ′ Γ′(α) = nonnull classof(β) Γ ` β : tag(γ, N) ptr . Γ′

Γ ` e : tag(γ, N) ptr . Γ′
tagptrclassof

Γ ` e ⇓ α . Γ′ Γ′ ` α : excframe . Γ′′

Γ ` e : handler ptr . Γ′′
throwptr

59

	Introduction
	Concept
	Challenges
	Abstract State
	Values
	Types
	Join

	Example Verification
	Lazy Typing

	Details
	Preliminaries
	Stack and Call-Return Abstractions
	Abstract Transition and Typing
	Static Dispatch
	Object Allocation and Initialization
	Type-Case
	Exceptions

	Initialization

	Educational Experience
	Student Performance Results
	Student Feedback

	Conclusion
	Related Work
	Conclusion

	Abstract Transition and Typing Rules
	Stack
	Translation
	Transition

	Call-Return
	Translation
	Transition
	Typing

	Coolaid
	Translation
	Transition
	Typing

