
On the Duality between Vacuity and Coverage

Orna Kupferman
Wenchao Li
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-26

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-26.html

March 31, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

On the Duality between Vacuity and Coverage

Orna Kupferman∗† Wenchao Li∗ Sanjit A. Seshia∗

∗ Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1770
sseshia@eecs.berkeley.edu, wenchao@berkeley.edu

† School of Computer Science and Engineering
Hebrew University

Jerusalem 91904, Israel
orna@cs.huji.ac.il

March 31, 2008

Abstract

Sanity checks such as vacuity and coverage are used to evaluate the quality of both implementations and specifi-
cations. We show formally that vacuity and coverage aredual concepts, studying them in a setting in which both the
implementation and the specification are given by circuits.To formalize the duality, we present a range of mutations
that one can apply to a circuit and partition them into mutations that add, remove, and modify behaviors. Many
mutations correspond to physical and design faults, such asones in which signals are ignored, flipped, delayed, or
stuck at a value, and combinations thereof. For most of the mutations, we exhibit corresponding mutations also in
the case where the specification is given as a temporal logic formula. We introduce and study the notion ofdual
mutations. A mutationµ that adds or modifies behaviors is dual to a mutationµ̃ that removes or modifies behaviors
if, for all implementationsI and specificationsS , satisfaction ofS by a mutant implementationIµ, obtained fromI
by applyingµ, is related to satisfaction byI of a mutant specificationSµ̃, obtained fromS by applyingµ̃. Thus, the
low coverage ofI by S , which causesIµ to satisfyS , is related to the vacuous satisfaction ofS by I, which causes
I to satisfySµ̃. The notion of dual mutations also applies in a setting in which the specification is a temporal logic
formula.

Beyond the clean theoretical picture that the duality suggests, it offers important applications. First, we obtain new
coverage metrics and new definitions of vacuity that have so far been used only in one of the sanity checks. Second,
when low coverage is detected with a mutation, a tighter specification can be automatically obtained by applying
its dual mutation to the original specification. We present experimental results showing the relevance of tightening
specifications to self-checking circuits.

1 Introduction

Model checking verifies the correctness of a system with respect to its specification [13]. One of the advantages
of model-checking tools is their ability to accompany a negative answer to the correctness query by an erroneous
execution of the system. Such counterexamples to the satisfaction of the specification in the system are very important
since they can help detect subtle errors in complex designs [12]. On the other hand, when the answer to the correctness
query is positive, most model-checking tools provide no additional information. Since a positive answer means that
the system is correct with respect to the specification, thisseems like a reasonable policy. However, there has been
growing awareness to the importance of also challenging positive answers of model-checking tools. One major reason

1

is the possibility of errors in the modeling of the system or the specification. The goal ofsanity checksis to detect
such errors by further automatic reasoning. Two leading sanity checks arevacuityandcoverage.

In vacuity, the goal is to detect cases where the system satisfies the specification in some unintended trivial way.
For example, verifying a system with respect to the specificationϕ = G(req → F grant) (“every request is eventually
followed by a grant”), one should distinguish between satisfaction ofϕ in systems in which requests are sometimes sent
and satisfaction in systems in which requests are never sent. Evidently, the second type of satisfaction suggests some
unexpected properties of the system, namely the absence of behaviors in which the precondition is satisfied. Typical
definitions of vacuity are based on mutations applied to the specification, where the goal is to identify components
of the specification that do not play a role in the verificationprocess. In the above example, the sub-formulaF grant

does not play a role in the satisfaction ofϕ in a system in which requests are never sent, thus such systems would
satisfy even the specification obtained fromϕ by replacingF grant by false. Work on vacuity focuses on finding good
definitions for vacuous satisfaction for a variety of specification formalisms, and for developing efficient algorithms
for detection of vacuous satisfaction [3, 19, 2, 7, 6].

In coverage, the goal is to increase the exhaustiveness of the specification by detecting components of system
behavior that do not play a role (i.e., are “not covered”) in the verification process. For example, a system in which
a request is followed by two grants satisfies the specification ϕ above, but only one of the grants plays a role in the
satisfaction. Coverage has roots in simulation-based verification. There, the system is checked with respect to some
input vectors [4], and it is crucial to measure the exhaustiveness of the input vectors that are checked. Extensive
research in the simulation-based verification community has led to numerous coverage metrics (see the survey by
Tasiran and Keutzer [26]). Measuring the exhaustiveness ofa specification in model checking (“must more properties
be checked?”) has a similar flavor as measuring the exhaustiveness of the input vectors in simulation-based verification
(“do more vectors have to be checked?”). Nevertheless, while for simulation-based verification it is clear that coverage
corresponds to activation during the execution on the inputsequence, it is less clear what coverage should correspond
to in model checking. Early work on coverage in model checking [16, 10, 9] involved applying mutations to the
system, developing efficient algorithms for measuring coverage, and suggesting methods to return useful information
to the user, so that he or she might use this information in order to improve the specification. In our example, a mutant
system in which one of the two grants is removed still satisfiesϕ, implying that only one grant is covered. The user
can then check that there is a correspondence between the requests and the grants.

Vacuity and coverage have a lot in common, as noted previously [17]. In particular, both checks involve iterating
the verification procedure on a mutated input. In vacuity, mutations are introduced in the specification, whereas in
coverage, the system is mutated. In this paper, we formally relate coverage and vacuity. We show in a precise sense
that they are dual, and present useful applications of the duality. The contributions of our paper are further elaborated
below.
Formalizing the duality between vacuity and coverage.We make the first formal connection between vacuity and
coverage, working in a setting in which both the implementation and the specification are given by circuits (finite-state
transducers), at different levels of abstraction. Having the same formalism for the implementation and the specification,
we can formally relate mutations that are applied to either of them, and thus formally relate vacuity and coverage.1

We consider a wide range of mutations that remove, add, or modify behaviors, many of which are considered
for the first time in the context of vacuity and coverage. Manyof the mutations correspond to actual physical and
design faults (e.g., signals ignored, flipped, delayed, or being stuck at a value), and combinations thereof. Consider an
implementationI and a specificationS. We say thatI satisfiesS vacuouslyif I also satisfies a mutant specification
S′ that has fewer behaviors thanS. Intuitively, as in temporal-logic-based vacuity, it means that some components of
S could have been tighter. We say thatI satisfiesS looselyif S is also satisfied in a mutant implementationI ′ that
has more behaviors thanI. Intuitively, as in coverage, it means that some componentsof the implementation could
have been more flexible and the specification would still havebeen satisfied. Finally,I satisfiesS diverselyif S is
also satisfied in a mutant implementationI ′ in which some behaviors ofI are modified, or ifI satisfies a mutant
specificationS′ in which some behaviors ofS are modified. Intuitively, again, the verification process was not tight.
We analyze vacuous, loose, and diverse satisfaction for each of the presented mutations, and demonstrate that they can
all point to errors in the modeling of the system or to an incomplete specification.

1Coverage metrics for the case where specifications are givenby circuits are studied in [8]. The focus there, however, is on efficient calculation
of a particular metric, and the contribution is orthogonal to the one described here.

2

An important concept we introduce is that of adual mutation, which serves to precisely formalize the duality
between coverage and vacuity. A mutationµ that adds or modifies behaviors is dual to a mutationµ̃ that removes or
modifies behaviors if, for all implementationsI and specificationsS, satisfaction ofS by a mutant implementationIµ
obtained fromI by applyingµ is related to satisfaction byI of a mutant specificationSµ̃ obtained fromS by applying
µ̃. Thus, loose satisfactionS by I, which is reflected in the satisfaction ofS by Iµ, is related to vacuous satisfaction
of S by I, which is reflected in the satisfaction ofSµ̃ by I. For example, we show that a mutant implementationIµ
in which the value of a control signalx is always flipped satisfies a specificationS iff the implementationI satisfies a
mutant specificationSµ̃ in which the value ofx is flipped.

Having the same formalism for the implementation and the specification makes the establishment of the dualities
cleaner. In practice, designers often prefer to work with specifications that are given in terms of temporal-logic
formulas. We show that the mutations and the notion of notionof duality are carried over also to a setting in which
the implementation is given by a circuit and the specification is given by a temporal-logic formula. Technically, this
is done by showing how most of the mutations we describe for circuits have corresponding mutations in the temporal-
logic setting. For example, rather than always flipping the value of an observable signalx in a circuit, we can negate
all its occurences in the formula.
Applications of the duality. Beyond the clean theoretical picture that the duality provides, it enables two important
applications. First, the duality leads to improved definitions of vacuity and coverage, solving, for example, the problem
of detecting low coverage in universal specifications.

The second application has to do with the challenge of using coverage information in order to automatically
generate improved specifications. Existing approaches to coverage metrics return information about components that
are not covered. The way from this information to a new and improved specification is still long. Using the duality
between vacuity and coverage, we can easily and automatically derive a specification that is tighter than the original
specification and that is still satisfied by the implementation. Indeed, whenever satisfaction ofS by a mutantIµ
implies satisfaction of a (dual) mutantSµ̃ by I, we can letSµ̃ serve as a tighter specification. In a similar way,
vacuous satisfaction is typically caused by absence of expected behaviors in the implementation. Applying to the
implementation a mutation that is dual to the one with which vacuity has been detected adds such behaviors.

We discuss both applications in Section 5. There, we demonstrate how improvement of specifications can be used
in the synthesis of circuits that check themselves for the occurrence of physical faults: a fault can be thought of as a
mutationµ, and duality can be used to generate a specificationSν that is not satisfied byIµ.

2 Definitions

A sequential circuit (circuit, for short) is a tupleC = 〈I,O,C, θ, δ, ρ〉, whereI is a set of input signals,O is a set of
output signals, andC is a set of control signals that induce the state space2C .2 Accordingly,θ : 2I → 22C

\ ∅ is a
nondeterministic initialization function that maps everyinput assignment (that is, assignment to the input signals)to a
nonempty set of initial states,δ : 2C × 2I → 2(2C) \ ∅ is a nondeterministic transition function that maps every state
and input assignment to a nonempty set of possible successorstates, andρ : 2C → 2O is an output function that maps
every state to the output signals that hold in it. It is required thatI ∩ C = I ∩O = ∅. PossiblyO ∩ C 6= ∅, in which
case for allx ∈ O ∩ C ands ∈ 2C , we havex ∈ s iff x ∈ ρ(s). Thus,ρ(s) agrees withs on signals inC. Note
that the interaction between the circuit and its environment is initiated by the environment. Once the environment
generates an input assignmenti ∈ 2I , the circuit starts reacting with it from one of the states inθ(i). Note also that
θ(i) andδ(s, i) are not empty for alli ∈ 2I ands ∈ 2C . Thus,C is receptive, in the sense that it never gets stuck.
When|θ(s)| = 1 and|δ(s, i)| = 1 for all s ∈ 2C andi ∈ 2I , we say thatC is deterministic. Nondeterminism inθ
andδ reflects abstraction, and would be used whenC models a specification. Then, the setI of inputs may be a strict
subset of a richer set of inputs (with respect to whichθ andδ are deterministic). For example, if the full set of inputs
is {i1, i2} and the abstraction hidesi2 (that it, I = {i1}), we may haveδ(s, {i1}) = {s′, s′′}, which abstracts the
deterministic transitionsδ′(s, {i1}) = {s′} andδ′(s, {i1, i2}) = {s′′}, over{i1, i2}.

Given an input sequenceξ = i0, i1, . . . ∈ (2I)ω , a computation ofC on ξ is a wordw = w0, w1, . . . ∈ (2I∪O)ω

2Although we refer to our formalism as acircuit, it is not hardware-specific. The formalism is afinite-state transducer, and the theory we
develop here applies also to analysis of software and other systems where finite-state transducers find application.

3

such that there is a paths = s0, s1, . . . ∈ (2C)ω in C that can be traversed while readingξ, andw describes the input
and output along this traversal. Formally,s0 ∈ θ(i0) and for allj ≥ 0, we havesj+1 ∈ ρ(sj , ij) andwj = ij ∪ ρ(sj).
The language ofC, denotedL(C) is union of all its computations.

The notion of refinement between circuits can be formalized in both the linear and the branching framework.
Consider two circuitsI = 〈I,O,C, θ, δ, ρ〉 andS = 〈I ′, O′, C′, θ′, δ′, ρ′〉. We refer toS andI as a specification
and its implementation. Accordingly, we assume thatI ′ ⊆ I, O′ ⊆ O, andC′ ⊆ C. In settings such as hierarchical
refinement, the implementation may still not be precise, so we allow nondeterminism in bothI andS. In the linear
framework, we say thatI is containedin S, denotedI ⊆ S, if L(I) ⊆ L(S). In the branching framework, we
define refinement by means ofsimulation. A binary relationH ⊆ 2C × 2C

′

is asimulationfrom I to S if for all
〈s, s′〉 ∈ H , the following conditions hold: (1)ρ(s) ∩ O′ = ρ′(s′), and (2) For eachi ∈ 2I , andt ∈ δ(s, i) there is
t′ ∈ δ′(s′, i ∩ I ′)) such thatH(t, t′). Consider a simulationH from I to S. We say thatH is initial with respect toI
andS if for every input assignmenti ∈ 2I and states ∈ θ(i), there is a states′ ∈ θ′(i∩ I ′) such thatH(s, s′). We say
thatS simulatesI, denotedI ≤ S, if there is an initial simulation fromI to S. Intuitively, it means thatS has more
observable behaviors thanI. Formally, every universal property over the observable signalsI ′ ∪O′ that is satisfied in
S is also satisfied inI [5, 14].

It is easy to see that the union of two simulations is a simulation. Hence, the maximal simulation fromI to S,
denotedH, is the union of all simulations fromI toS. Note thatS simulatesI iff H is initial with respect toI andS.

The branching approach is stronger, in the sense thatI ≤ S implies thatI ⊆ S, but not vice versa. For a recent
survey comparing the linear and branching approaches see [23].

We say thatI satisfiesS, denotedI |= S if I ⊆ S (in the linear approach) orI ≤ S (in the branching approach).
Temporal-logic formulas can be translated to circuits. An LTL formulaψ is translated to a circuitCψ such that

L(Cψ) contains exactly all computations that satisfyψ [27]. A CTL⋆ formulaψ is translated to a circuitCψ that
is a maximal modelfor ψ, in the sense it simulates all circuits that satisfyψ [18]. In Section 3 below, we define
mutations on circuits and temporal-logic formulas. For a mutation µ on circuits, we say that a mutationµTL on
temporal-logic formulascorrespondsto µ if the circuit obtained by applyingµ to Cψ is equivalent to the circuit of
the temporal-logic formula obtained by applyingµTL to ψ. Note that correspondence can be defined in both the
linear framework, in which case equivalence corresponds totrace equivalence, or in the branching framework, where
equivalence corresponds to two-way simulation.

3 Mutations of Circuits, and their Analysis

In this section, we describe sample mutations to apply to a circuit, and analyse the satisfaction of mutant specifications
by mutant implementations. We partition the mutations to three classes: mutations that remove behaviors (Section 3.1),
modify behaviors (Section 3.2), and add behaviors (Section3.3). For most of the mutations, we also describe corre-
sponding mutations for a setting in which the specification is a temporal-logic formula.3 We then describe a method
for controlling the pattern (over time) that faults inducing the mutations have occurred, and for applying mutations on
top of each other (Section 3.4).

Existing work suggests several definitions for vacuous satisfaction, based on mutations to temporal-logic formulas,
and suggests several coverage metrics, based on mutations to implementations. The mutations described here suggest
new helpful definition and metrics. Moreover, the duality between mutations, which we present in Section 4, relates
mutations for coverage with mutations for vacuity; it enables, for example, vacuity checks that are geared towards the
detection of physical failures.

3.1 Removing behaviors

In this section we describe mutations that remove behaviorsof the circuit. Consider a specificationS and an imple-
mentationI such thatI |= S. If there is a mutantS′ of S such thatS′ has fewer behaviors thanS and stillI |= S′,
we say thatI vacuously satisfiesS. Note that removal of behaviors fromS may result in a mutant circuitS′ that is

3Note that specifications given by temporal-logic formulas refer only to input and output signals. Thus, some of the mutations we describe, and
which refer to pure control signals, do not have corresponding mutations in the temporal-logic setting.

4

not receptive. In this case, no implementation satisfiesS′. Note that in order forS′ to be receptive, the original circuit
S has to be nondeterministic, and removal of behaviors only decreases the amount of nondeterminism.

3.1.1 Removing a given set of behaviors

Consider a circuitC. A restriction for C is a pair of functionsrθ : 2I → 22C

andrδ : 2C × 2I → 22C

. The circuit
obtained fromC by applying the restriction〈rθ, rδ〉 is C′ = 〈I,O,C, θ′, δ′, ρ〉, where for alli ∈ 2I ands ∈ 2C ,
we have thatθ′(i) = θ(i) \ rθ(i) andδ′(s, i) = δ(s, i) \ rδ(s, i). Thus,C′ is obtained fromC by decreasing its
nondeterminismaccording torθ andrδ. We say that a restriction〈rθ , rδ〉 retains receptivenessof C if the circuit
obtained fromC by applying the restriction〈rθ, rδ〉 is receptive.

3.1.2 Removing behaviors that depend on a signal

A mutationC′ in this class is parameterized by a signalx ∈ I ∪C \O and is obtained fromC by removing transitions
that depend onx. Formally,C′ = 〈I,O,C, θ′, δ′, ρ〉, whereθ′ andδ′ depend on the type ofx and are defined as
follows.

• If x ∈ I, then for allt ∈ 2C andi ∈ 2I , we have,t ∈ θ′(i) iff t ∈ θ(i \ {x}) ∩ θ(i ∪ {x}), and for alls, t ∈ 2C

andi ∈ 2I , we havet ∈ δ′(s, i) iff t ∈ δ(s, i \ {x}) ∩ δ(s, i ∪ {x}).

• If x ∈ C \O, we restrictC′ to statess \ {x} ands∪{x} that agree on their output and transitions. Formally, for
all t ∈ 2C andi ∈ 2I , we have{t\{x}, t∪{x}} ⊆ θ′(i) iff {t\{x}, t∪{x}} ⊆ θ(i) andρ(t\{x}) = ρ(t∪{x}).
Also, for all s, t ∈ 2C andi ∈ 2I , we have{t \ {x}, t ∪ {x}} ⊆ δ′(s, i) iff {t \ {x}, t ∪ {x} ⊆ δ(s \ {x}, i) ∩
δ(s ∪ {x}, i) andρ(t \ {x}) = ρ(t ∪ {x}).

Note that we could have excludedx from the set of signals ofC′. For the sake of uniformity among the different
mutations, we leave the set of signals to agree with that ofC. This convention of leaving the signal set unchanged is
going to be the case for other mutations also, and it is convenient when mutations are applied one on top of the other.

Remark 1 Note that the casex is purely an output signal is not interesting, as the behavior of a circuit always depends
on the pure output signals. If we want to define a mutant with respect to a signalx ∈ C ∩ O, the mutant would be
receptive only if we define it with respect to a subsetO′ of the output signals such thatx 6∈ O′.

Remark 2 For a Kripke structureK with state space2C × 2I , one can define an abstraction based on predicates in
C ∪ I. The mutations described above correspond to the case we restrict attention to predicates overC ∪ I \ {x}, and
define the abstraction so that there is a transition from an abstract statea to an abstract statea′ iff all concrete states
that correspond toa have transitions to all the concrete states that correspondto a′.

When the specification is given by a temporal-logic formula,we remove behaviors that depend on a value of an
observable signalx ∈ I by replacing a formulaψ by the formula∀xψ. This mutation, which coincides with the
semantic approach to vacuity of [2], captures better the intuition of removing behaviors that depend on a signal, and
can also be applied to output signals. It does not correspondto the mutation defined for circuits, and a corresponding
mutation on circuits for it involves “alternating” circuits (transitions may be conjunctively related to other transitions
– these that correspond to the dual value of the signal).

3.1.3 Restricting a signal to a value

A mutation in this class is parameterized by a signalx ∈ C ∪O and it restricts the value ofx to 0 (restrictingx to 1 is
similar) by disabling transitions in which the value ofx is changed to1. Formally,C′ = 〈I,O,C, θ′, δ′, ρ〉, where (the
casex ∈ I is not interesting, as thenC′ is clearly not receptive)

• If x ∈ O, then only statest for which x 6∈ ρ(t) are reachable. Thus, for alls ∈ 2C and i ∈ 2I , we have
θ′(i) = θ(i) ∩ {t : x 6∈ ρ(t)}, andδ′(s, i) = δ(s, i) ∩ {t : x 6∈ ρ(t)}.

5

• If x ∈ C, then only statest for which x 6∈ t are reachable. Thus, for alls ∈ 2C and i ∈ 2I , we have
θ′(i) = θ(i)∩{t : x 6∈ t}, andδ′(s, i) = δ(s, i)∩{t : x 6∈ t}. Note that we could have defined the set of control
signals ofC′ to beC \ {x}, asx plays no role inC′ and statest ∈ 2C such thatx ∈ t are not reachable.

Note also that whenx ∈ C ∩O, the definitions coincide.
Restricting the value ofx to 1 is similar: whenx is an output signal, only statest with x ∈ ρ(t) stay reachable,

and whenx is a control signal, only statest with x ∈ t stay reachable.
For the setting of a temporal-logic formula, restricting the value ofx ∈ O to 0 amounts to replacing all the positive

occurences (that is, occurrences in a scope of an even numberof negations) ofx by false. Likewise, restricting the
value ofx to 1 amounts to replacing all the negative occurrences ofx by false. To see that these mutations correspond
to the mutations on the circuit, recall that states inCψ are associated with subformulas ofψ, and the language of a
state associated with a setS of formulas is exactly all computations that satisfy all theformulas inS. Accordingly, the
temporal-logic mutation that replaces positive occurrences ofx by false causes the language of states that contain a
positive occurrence ofx to be empty, which amounts to removing the transitions to them.

3.1.4 Analyzing vacuous satisfaction

We now analyze the different types of vacuous satisfaction that the different mutations induce. Our definition of
vacuous satisfaction is astate-basedgeneralization of temporal-logic vacuity. With temporal logic, one looks for sub-
specifications that do not affect the satisfaction of the specification in the system. Technically, we say that a subformula
ϕ of ψ does not affect the satisfaction ofψ in C if all formulas obtained fromψ by replacingϕ by some other formula
are still satisfied inC [3]. In fact, when we talk about a particular occurrence ofϕ in ψ, it is enough to check the most
challenging replacement forϕ [19]. For example, inψ = G(req → F grant), the most challenging replacement of
grant is false. Indeed,grant does not affect the satisfactionψ in C if C also satisfies the formulaG¬req , obtained
fromψ by replacinggrant by false.

We say that a mutationµ does not affect the satisfaction ofS by I if Sµ is receptive andI |= Sµ. We analyze each
of the mutations that remove behaviors in Appendix B, and here we only highlight some mutations and describe the
general common intuition in these mutation: ifµ removes behaviors, and does not affect the satisfaction ofS byI, then
we can conclude that each of the behaviors ofS that have been removed is either not exhibited in the implementation,
or is subsumed by another behavior of the specification. Of particular interest are maximal restrictions, restrictions
that contain a path, restrictions that remove self-loops, the mutations that are parameterized by specific signals, and
restrictions that correspond vacuity in temporal logic.

Let us elaborate on the latter restrictions, as it shows thatour state-based framework subsumes the traditional
temporal-logic-based framework. Replacements of sub-formulas by the most challenging replacement corresponds to
removal of transitions in a specification circuitCψ obtained by a translation of an LTL formulaψ [27]. Intuitively,
since the states ofCψ are associated with sets of subformulas ofψ, it is not hard to map mutations inψ to mutations in
Cψ.4

For simplicity, we assume that the formula is in positive negation form, in which case the polarity of all sub-
formulas is positive, thus the most challenging replacement is false. In typical translations, each state ofS is associated
with a setQ of sub-formulas ofψ. The setQ is consistent, in the sense that a disjunctionϕ1∨ϕ2 is inQ iff at least one
of ϕ1 andϕ2 is inQ, and a conjunctionϕ1∧ϕ2 is inQ iff both ϕ1 andϕ2 are inQ. The temporal operators inψ induce
similar consistency requirements that are reflected in the definition of the transitions. Accordingly, given a circuitS
for ψ, it is possible to obtain fromS a circuitS′ for the formula in whichϕ is replaced by false by removing states
and transitions in which consistency of disjunctions is taken care of byϕ and consistency of conjunctions depends on
ϕ. For example, given a circuit forψ = G(¬req ∨ F grant), settinggrant to false amounts to disabling transitions to
statesQ such that¬req ∨ F grant is inQ but¬req is not inQ. Note that the new circuit does not limit the value of
grant, but its value no longer affects the satisfaction of¬req ∨ F grant .

4The user may prefer to construct a circuit for the revised formula directly. The point we make here is that our state-basedframework subsumes
the temporal-logic-based framework, as replacements of sub-formulas by false corresponds to removal of transitions in the specification circuit.

6

3.2 Modifying Behaviors

In this section we describe mutations that modify the behavior of a circuit. Consider a specificationS and an imple-
mentationI such thatI |= S. If there is a mutantS′ of S such thatS′ has different behaviors thanS and stillI |= S′,
or there is a mutantI ′ of I such thatI ′ has different behaviors thanI and stillI ′ |= S, we say thatI diversely satisfies
S.

3.2.1 Forcing a signal to be flipped or get stuck

We start with forcing a signal to be flipped. A mutation in thisclass is parameterized by a signalx, and the mutation
flips the value ofx; i.e., it takes the opposite value of what it is supposed to take. For a setX , an elementx ∈ X , and a
setY ⊆ X , we usetwinx (Y) to denote the set obtained fromY by dualizing the value ofx. Thus,x ∈ twinx (Y) iff
x 6∈ Y . Given a circuitC and a signalx, the circuit in which the value ofx is always flipped isC′ = 〈I,O,C, θ′, δ′, ρ′〉,
where

• If x ∈ I, thenρ′ = ρ, and for alls ∈ 2C andi ∈ 2I , we haveθ′(i) = θ(twinx (i)) andδ′(s, i) = δ(s, twinx (i)).

• If x ∈ O \ C, thenθ′ = θ, δ′ = δ, and for allt ∈ 2C , we haveρ′(t) = twinx (ρ(t)).

• If x ∈ C, thenρ′ = ρ and for all s ∈ 2C and i ∈ 2I , we haveθ′(i) = {twinx (t) : t ∈ θ(i)}, and
δ′(s, i) = {twinx (t) : t ∈ δ(s , i)}. Thus, wheneverC has a transition to a statet, the mutationC′ goes
instead totwinx (t). Note that whileρ′ = ρ, the change in the transition causes a change in the observable
output.

Note that no matter what the type ofx is, the circuitC′ is receptive.
For the setting of a temporal-logic specification, flipping the value ofx ∈ I ∪ O amounts to negating all the

occurences ofx. To see that the temporal-logic mutation corresponds to theone on the circuit, recall that whenCψ is
in a state associated with a setS of subformulas ofψ, its output isS ∪O, and it gets to the state by reading the input
assignmentI ∩ S.

A mutation that forces a signal to get stuck is parameterizedby a signalx ∈ I ∪O ∪C and it forcesx to get stuck
at 0 (forcingx to get stuck at1 is similar) by acting as ifx = 0 regardless of its actual value. Thus, the mutation is
similar to the one that flips the value ofx, only that here the value is flipped only whenx = 1. As there, the mutant
circuit C′ stays receptive. Note that unlike the mutation described inSection 3.1.3, here we do not disable transitions
after which the value ofx is 1, but rather we flip the value ofx in the destination state. The formal definitions of the
mutation are given in Appendix A.1.

3.2.2 Forcing a delayed or a prematured output

We start with introducing a delay. A mutation in this class causes a delay (of a fixed number of cycles, specified by the
user) in the output of the circuit. For that, the mutant system has additional control signals that remember the output
assignment that should have been output in the previous cycles. Given a circuitC and a numberk ≥ 1 describing the
delay, the mutationC′ of C in which ak-cycle delay is introduced has control signalsC′ = C ∪ (O × {1, . . . , k}).
Intuitively, each state corresponds to a tuple〈s, σ1, . . . , σk〉 ∈ 2C × 2O × · · · × 2O, whereσ1 maintains the output of
the state visited in the previous cycle,σ2 maintains the output of the state visited before that, and soon, untilσk, which
maintains the output of the state visited beforek cycles. The transition function is such that for all〈s, σ1, . . . , σk〉 ∈
2C × 2O × · · · × 2O, andi ∈ 2I , we have thatδ′(〈s, σ1, . . . , σk〉, i) = δ(s, i) × {〈ρ(s), σ1, . . . , σk−1〉}. The full
description of the construction can be found in Appendix A.2. It is not hard to see that the output ofC′ is indeed a
k-cycle delay of the output ofC. For example, whenk = 1, we have thats0, s1, s2, . . . ∈ 2C is a path inC with output
o0, o1, o2, . . . iff 〈s0, ∅〉, 〈s1, o0〉, 〈s2, o1〉, . . . ∈ 2C × 2O is a path inC′ with output∅, o0, o1,

We proceed to introducing prematureness. A mutation in thisclass causes a premature (by a fixed number of
cycles, specified by the user) output of the circuit. For that, the mutant system has additional control signals that
maintain a guess for the output assignment expected in the future. The mutant circuit outputs the guessed output, but
it gets stuck in computations in which the guess turns out notto be valid. The full details of the construction can be
found in Appendix A.2.

7

For the setting of a temporal-logic formula, forcing a delayof k cycles in the output corresponds to replacing all
occurrences of all signalsx ∈ O byXkx, whereX is the temporal next-time operator. Likewise, forcing an output to
be premature byk cycles corresponds to replacing all occurrences ofx ∈ O by Y kx, for the temporal previous-time
operatorY .

3.2.3 Inserting perturbation

This class of mutation contains several sub-classes, all based on the same principle, namely inserting small local per-
turbation to the circuit. The mutations correspond to common faults. We mention here some examples. Apermutation
mutationis parameterized by a permutationπ = 〈i1, i2, . . . , ik〉 in Πk (the set of permutations of lengthk) and when-
ever it is activated, it permutes the nextk output assignments according toπ. Technically, this involves a combination
of the delay and look ahead techniques used above. Astuttering mutationis parameterized by an integerk, and when-
ever it is activated, it ignores the input and stays in the same state fork cycles (the unbounded version corresponds to
adding self loops, and is mentioned in Section 3.3.1). Finally, a noise mutationis also parameterized by an integerk

and, whenever it is activated, it causes the cycle to output arbitrary output for the nextk cycles.
Various perturbations can also be applied to temporal-logic formulas. One can add theX andY temporal operators

arbitrarily, replaceX byF in order to inserting unbounded delay, useX orU in order force a bounded or an unbounded
stuttering, replace assertions about the present by eventualities in order to insert noise, and so on.

3.2.4 Analyzing diverse satisfaction

Our definition of diverse satisfaction is related to the way coverage is measured in formal verification. There, one
looks for components of the circuit that do not play a role in the satisfaction of the specification. The standard way to
check coverage is to look for components that can be modified and still satisfy the specification [16, 10]. Mutations
that change the output of states are studied in [8]. Here, we have generalize the idea to flips in the input and the control
signals, in both the specification and the implementation, and have suggested new mutations. The new mutations are
related to physical faults that cause flips of signals, causea signal to get stuck at a value, or cause a delay in the output.

3.3 Adding behaviors

In this section we describe are mutations that add behaviorsto the circuit. Consider a specificationS and an imple-
mentationI such thatI |= S. If there is a mutantI ′ of S such thatI ′ has more behaviors thanS and stillI ′ |= S, we
say thatI loosely satisfiesS.

3.3.1 Adding a fixed set of behaviors

We first define arbitrary addition of behaviors, dual to the removal of behaviors in Section 3.1.1. Consider a circuit
C. An extensionfor C is a pair of functionsrθ : 2I → 22C

andrδ : 2C × 2I → 22C

. The circuit obtained from
C by applying the extension〈rθ, rδ〉 is C′ = 〈I,O,C, θ′, δ′, ρ〉, where for alli ∈ 2I and s ∈ 2C , we have that
θ′(i) = θ(i) ∪ rθ(i) andδ′(s, i) = δ(s, i) ∪ rδ(s, i). Thus,C′ is obtained fromC by increasing its nondeterminism
according torθ andrδ.

3.3.2 Freeing a signal

A mutation in this class is parameterized by a signalx and it adds toC behaviors that agree with existing behaviors of
C on everything butx. Formally,C′ = 〈I,O,C, θ′, δ′, ρ〉, where

• If x ∈ I, then for allt ∈ 2C andi ∈ 2I , we havet ∈ θ′(i) iff t ∈ θ(i \ {x})∪ θ(i∪ {x}). Also, for alls, t ∈ 2C

andi ∈ 2I , we havet ∈ δ′(s, i) iff t ∈ δ(s, i \ {x}) ∪ δ(s, i ∪ {x}).

• If x ∈ C, then for allt ∈ 2C andi ∈ 2I , we havet ∈ θ′(i) iff {t \ {x}, t ∪ {x}} ∩ θ(i) 6= ∅. Also, for all
s, t ∈ 2C andi ∈ 2I , we havet ∈ δ′(s, i) iff {t \ {x}, t ∪ {x}} ∩ (δ(s \ {x}, i) ∪ δI(s ∪ {x}, i)) 6= ∅.

• If x ∈ O \ C, we need not construct a mutant and just ignorex when we check for containment or simulation.

8

When the specification is given by a temporal-logic formula,the corresponding mutation frees a signalx ∈ I ∪O
by replacing a formulaψ by the formula∃xψ. Indeed, this amounts to increasing the nondeterminism inCψ by
ignoring the value ofx in transitions.

3.3.3 Analyzing loose satisfaction

Our definition of loose satisfaction suggests a new approachto coverage, which is dual to the approach taken in
vacuity. Rather than modify components of the implementation, we add to it new behaviors, When we add behaviors
that are dual to these exhibited by a component, we can say that the component is covered if the circuit with the dual
behavior no longer satisfies the specification. We analyze each of the mutations that add behaviors in Appendix B,
and here we only highlight some mutations and describe the general common intuition in these mutation: ifµ adds
behaviors, and does not affect the satisfaction ofS in I, then we can conclude that each of the behaviors ofIµ that have
been added is allowed by the specification, or is subsumed by another behavior of the implementation. Of particular
interest are maximal extensions, extensions that contain apath, restrictions that add self-loops, and mutations thatare
parameterized by specific signals.

3.4 Controlled injection of mutations

The mutations described in Sections 3.1, 3.2, and 3.3 correspond to a persistent fault, in the sense that the environment
interacts withC′, rather than withC, from the initialization of the communication ad infinitum.In addition, only a
single type of fault is injected. In this section we generalize our definitions of mutations and make it possible to control
the pattern (over time) in which mutations happen. In addition, it is possible to apply mutations one on top of the other.
For example, the user can generate a mutant circuit in whichx is restricted to 0 at least once in all 5-cycle windows and
y is restricted to1 at least once in all 4-cycle windows. The mutation can be applied universally (in all computations)
or existentially (in at least one computation).

We give the details of the construction in Appendix A.3. Essentially, the original circuit is combined with a circuit
Cmut that specifies the pattern in which the mutations are injected. Each letter in the alphabet ofCmut is an ordered
subset of the set of possible mutations (for some combinations, the order of application of mutations is important) and
the combination withC applies the faults locally.

We note that it is often desirable to specify fault-patternsthat are not safety properties. Then, one has to introduce
fairness toCmut , which then induces fairness also in the controlled-fault version ofC. Accordingly, the containment
and simulation relations we used for satisfaction should bereplaced by fair containment and fair simulation.

Also note that taking the product ofC with Cmut changes not only the language ofC according to the mutations
but, unlessCmut is deterministic, also changes its branching structure. Accordingly, one should either work with a
deterministicCmut , or follow the linear approach.

4 Relating Vacuous, Diverse, and Loose Satisfaction

In this section, we relate vacuous, diverse, and loose satisfaction. We show that many of the mutations suggested in
Section 3 can be paired with adual mutation, and that satisfaction of a mutated specification is relatedto satisfaction
by a dually mutated implementation. We begin with the definition of dual mutation.

Definition 1 LetMa,Mm, andMr be the sets of mutations that respectively add, modify, and remove behaviors. For
a circuit C and a mutationµ, let Cµ denote the mutant circuit obtained fromC by applyingµ.

Then, mutationsµ ∈Ma ∪Mm andµ̃ ∈Mr ∪Mm are fully dual if, for all implementationsI and specifications
S, we have thatIµ |= S iff I |= Sµ̃.

Definition 1 refers to both the linear and branching approaches, and requires the implication betweenIµ |= S and
I |= Sµ̃ to be two-sided. Mutations may also bepartially dual, with only one-sided implication or with the duality
being valid in only the linear or the branching approach. Adual mutationis either a fully-dual or a partially-dual
mutation. The notion of duality in general can be understoodas follows. Consider a set∆ of behaviors. We can add to
I behaviors in∆ that agree withS, and get a mutant implementation that still satisfiesS. Dually, we can remove from

9

S behaviors in∆ that are not present inI, and get a mutant specification that is still satisfied byI. The interesting
phenomenon is that the above two dual sets of behaviors can beobtained by means of mutations described in Section 3.
The rest of this section presents theorems on duality for some interesting mutations.

We start with persistent faults and then study its generalization to arbitrary injection patterns. We first consider
diverse satisfaction and show that a mutation that flips the value of a signal is self-dual.

Theorem 1 Consider a specificationS and an implementationI for it. Let I ′ andS′ be the mutations ofI andS,
respectively, obtained by flipping the value of a signalx. If x ∈ I ∪ O \ C thenI ⊆ S′ iff I ′ ⊆ S andI ≤ S′ iff
I ′ ≤ S. If x ∈ C andO ⊆ C, thenI ≤ S′ iff I ′ ≤ S.

Proof: LetI = 〈I,O,C, θI , δI , ρI〉, I ′ = 〈I,O,C, θ′
I
, δ′

I
, ρ′

I
〉,S = 〈I,O,C, θS , δS , ρS〉, andS′ = 〈I,O,C, θ′

S
, δ′

S
, ρ′

S
〉.

We start with the casex ∈ I. Assume thatI ⊆ S′, and letw′ = w′
0, w

′
1, . . . ∈ (2I∪O)ω be a computation of

I ′. Let w′
j = i′j ∪ o′j with i′j ∈ 2I ando′j ∈ 2O. Then,w = w0, w1, . . . ∈ 2I∪O, with wj = twinx (i ′j) ∪ o′

j is
a computation ofI, and, by the assumption, also a computation ofS′. Now, by the definition ofS′, it follows that
w′′ = w′′

0 , w
′′
1 , . . . ∈ 2I∪O, with w′′

j = twinx (twinx (i ′j)) ∪ o′
j is a computation ofS. Since for alli ∈ 2I we have that

twinx (twinx (i)) = i , we have thatw′′ = w′, thusw′ is also a computation ofS and we are done. The other direction,
namely showing thatI ′ ⊆ S impliesI ⊆ S′ is identical.

Assume now thatI ≤ S′. Let H be an initial simulation relation fromI to S′. We claim thatH is an initial
simulation relation fromI ′ to S. SinceρI = ρ′I andρS = ρ′S , proving thatH is a simulation fromI ′ to S, we only
have to prove that for alls ands′ such thatH(s, s′), and for alli ∈ 2I andt ∈ δ′I(s, i) there ist′ ∈ δS(s′, i) such that
H(t, t′). We first prove thatH is initial with respect toI ′ andS; that is, for alli ∈ 2I andt ∈ θ′

I
(i) there ist′ ∈ θS(i)

such thatH(t, t′).
Consider an input assignmenti ∈ 2I and a statet ∈ θ′I(i). By the definition ofθ′I , we know thatt ∈ θI(twinx (i)).

SinceH initial with respect toI andS′, there is a statet′ ∈ θ′
S
(twinx (i)) such thatH(t, t′). By the definition of

θ′
S

, we know thatt′ ∈ θS(i), and we are done. We now proceed to prove thatH is a simulation. Lets ands′ such
thatH(s, s′). Consider an input assignmenti ∈ 2I and a statet ∈ δ′I(s, i). By the definition ofδ′

I
, we know that

t ∈ δI(s, twinx (i)). SinceH is a simulation fromI to S′, there is a statet′ ∈ δ′
S
(s′, twinx (i)) such thatH(t, t′). By

the definition ofδ′
S

, we know thatt′ ∈ δS(s, i), and we are done.
The other direction, namely showing thatI ′ ≤ S impliesI ≤ S′ is identical: an initial simulation relation from

I ′ to S is also an initial simulation relation fromI to S′.
We proceed to the casex ∈ O \ C. Assume thatI ⊆ S′, and letw′ = w′

0, w
′
1, . . . ∈ 2I∪O be a computation

of I ′. Let w′
j = i′j ∪ o′j with i′j ∈ 2I ando′j ∈ 2O. Then,w = w0, w1, . . . ∈ 2I∪O, with wj = i′j ∪ twinx (o′

j) is
a computation ofI, and, by the assumption, also a computation ofS′. Now, by the definition ofS′, it follows that
w′′ = w′′

0 , w
′′
1 , . . . ∈ 2I∪O, with w′′

j = i′j ∪ twinx (twinx (o′
j)) is a computation ofS. Since for allo ∈ 2O we have

that twinx (twinx (o)) = o, we have thatw′′ = w′, thusw′ is also a computation ofS and we are done. The other
direction is identical.

Assume now thatI ≤ S′. Let H be an initial simulation relation fromI to S′. We claim thatH is an initial
simulation relation fromI ′ to S. SinceθI = θ′I , θS = θ′

S
, δI = δ′

I
, andδS = δ′

S
, we only have to prove that

for all s ands′ such thatH(s, s′), we haveρ′I(s) = ρS(s′). SinceH is a simulation fromI to S′, we know that
ρI(s) = ρ′

S
(s′). Recall thatρ′

I
(s) = twinx (ρI(s)) andρ′

S
(s′) = twinx (ρI(s ′)). Hence,ρI(s) = ρ′

S
(s′) implies that

ρI(s) = twinx (ρS(s ′)), which implies, by the definition oftwinx , that twinx (ρI(s)) = ρS(s ′), which implies our
goal, namelyρ′

I
(s) = ρS(s′). The other direction is identical.

We now move to the casex ∈ C andO ⊆ C. In Example 3 below, we demonstrate that the requirementO ⊆ C is
essential. Assume thatI ≤ S′. LetH be an initial simulation relation fromI toS′. LetHx = {〈twinx (t), twinx (t ′)〉 :
H(t , t ′)}. We claim thatHx is an initial simulation relation fromI ′ to S. We first prove that ifs ands′ are such
thatHx(s, s

′), thenρ′
I
(s) = ρS(s′). SinceHx(s, s

′), thenH(twinx (s), twinx (s ′)). Therefore,ρI(twinx (s)) =
ρ′S(twinx (s ′)). SinceO ⊆ C, we have thatρI(twinx (s)) = twinx (ρI(s)) andρ′S(twinx (s ′)) = twinx (ρ′S(s ′)).
Hence,twinx (ρI(s)) = twinx (ρ′

S
(s ′)), implying thatρI(s) = ρ′

S
(s′). Now, sinceρ′

I
= ρI andρ′

S
= ρS , the latter

implies thatρ′
I
(s) = ρS(s′), and we are done.

We now prove thatHx is initial with respect toI ′ andS. Consider an input assignmenti ∈ 2I and a state
t ∈ θ′

I
(i). By the definition ofθ′

I
, we know thattwinx (t) ∈ θI(i). SinceH initial with respect toI andS′,

10

there is a statet′ ∈ θ′
S
(i) such thatH(twinx (t), t ′). The statetwinx (t ′) then satisfies bothtwinx (t ′) ∈ θS(i) and

Hx(t, twinx (t ′)), and we are done.
It is left to prove thatHx is a simulation. Lets ands′ be such thatHx(s, s

′). Consider an input assignmenti ∈ 2I

and a statet ∈ δ′I(s, i). By the definition ofδ′
I
, we know thattwinx (t) ∈ δI(s , i). SinceH is a simulation fromI to

S′, there is a statet′ ∈ δ′S(s′, i) such thatH(twinx (t), t ′). The statetwinx (t ′) then satisfies bothtwinx (t ′) ∈ δS(s ′, i)
andHx(t, twinx (t ′)), and we are done.

The other direction is identical.

Note that for the casex ∈ C, we require thatO ⊆ C. In Example 1 we show that the requirement is essential.

Example 1 In Figure 1 below, we describe an implementationI with I = {z}, C = {x, y}, andO = {x, v}. We
describe the value ofz on the edges, the values ofx andy in the two-bit vector at the top of each state, and the value
of v is at the bottom of each state. For example, on inputz = 0, the implementationI goes to a state withx = 0 and
y = 1, in whichv = 1. A specificationS for I is described at the right. A bold edge stands for edges from all states
(including a self loop). Thus, for example, no matter what the current state is, the specification can move, on input
z = 1, either to a state withx = y = 0, in which v = 0, or to a state withx = 1 andy = 0, in whichv = 0. It is
easy to see that the nondeterministic specification has morebehaviors than the implementation, thusI |= S (in both
the linear and branching approaches).

Consider now the mutationS′ of S that flips the value of the (observable) control signalx. It is easy to see that the
value ofx does not affect the behavior ofS and thatS′ = S. On the other hand, flipping the value ofx in I results
in new behaviors. For example, on inputz = 0, the implementationI ′ goes to a state in whichv = 0, which is not
possible inI, and is not allowed byS. Thus,I 6|= S.

0

S = S′:

0
00

1
1
01

1

I ′:

0
11

1

I:

1
11 10

1
01

0
01

0

0

0

0

0

1

1

0

110 1

10

0 1

1

1

0

1

Figure 1: A counter example for the casex ∈ C, all states are reachable, butO 6⊆ C.

Note also that ifC ⊆ O, thenH(s, s′) implies thats = s′. Thus, in this case, if all the states that are reachable
in I ′ are also reachable inI, the flip mutation is self-dual. On the other hand, states that are not reachable inI and
become reachable inI ′ are problematic, as we show in Example 2.

Example 2 In Figure 2 below, we describe an implementationI with I = {z},O = {x, v}, andC = {x}. The state
with x = 0 is not reachable inI. It is easy to see thatI |= S (in both the linear and branching approaches). Flipping
x in S does not changeS, thusI |= S′. On the other hand, flippingx in I makes the state withx = 0 andv = 1
reachable. Since the state withx = 0 in S hasv = 0, we have thatI ′ 6|= S.

Next, we study duality between a delayed implementation anda premature specification. As demonstrated in
Example 3, changing the timing of the outputs may change the branching nature of the circuit. This is why Theorem 2
is valid for the linear approach but not for the branching approach.

Theorem 2 Consider a specificationS, an implementationI, and an integerk ≥ 1. LetI ′ be the mutation ofI in
which ak-cycle delay is introduced, and letS′ be the mutation ofS in which ak-cycle prematureness is introduced.
Then,I ′ ⊆ S implies thatI ⊆ S′.

11

0
0
1

0, 1

0, 1

0 0
0 1

I: S:

0, 1
0, 1

0, 1

0, 1

0, 1

1

Figure 2: A counter example for the casex ∈ C ⊆ O, yetO 6⊆ C.

Proof: LetI = 〈I,O,C, θI , δI , ρI〉, I ′ = 〈I,O,C, θ′
I
, δ′

I
, ρ′

I
〉,S = 〈I,O,C, θS , δS , ρS〉, andS′ = 〈I,O,C, θ′

S
, δ′

S
, ρ′

S
〉.

Consider a computationw = w0, w1, . . . ∈ (2I∪O)ω of I. Recall that there is an input sequenceξ = i0, i1, . . . ∈
(2I)ω and a paths = s0, s1, . . . ∈ (2C)ω in I such thatπ can be traversed while readingξ andw describes the
input and output along this traversal. By the definition ofI ′, the paths′ = 〈s0, ∅, . . . , ∅〉, 〈s1, ρI(s0), ∅, . . . , ∅〉,
〈s2, ρI(s1), ρI(s0)∅, . . . , ∅〉, . . . is a path inI ′. SinceI ′ ⊆ S, there is a patht = t0, t1, . . . in S that can be traversed
while readingξ and for whichρ′

I
(〈sj , ρI(sj−1), . . . , ρI(sj−k)〉) = ρS(tj) for all j ≥ k. Sinceρ′

I
(〈sj , ρI(sj−1), . . .

, ρI(sj−k)〉) = ρI(sj−k), it follows thatρI(sj) = ρS(tj+k) for all j ≥ 0. Then, however, the patht′ = 〈t0, ρS(t1), . . . , ρS(tk)〉,
〈t1, ρS(t2), . . . , ρS(tk+1)〉, 〈t2, ρS(t3), . . . , ρS(tk+2)〉, . . . is a path ofS′ that can be traversed while readingξ. Since
ρ′
S
(〈tj , ρS(tj+1), . . . , ρS(tj+k) = ρS(tj+k)〉 for all j ≥ 0, we got thatρI(sj) is equal toρ′

S
(〈tj , ρS(tj+1), . . . , ρS(tj+k)〉

for all j ≥ 0, and we are done.

Note that only one direction of the duality is established inTheorem 2. The other direction is correct up to the
labeling of the firstk output assignments in each computation. Indeed, sinceI ′ does not restrict the firstk output
assignments,I ⊆ S′ only impliespost-stabilizationcontainment ofI ′ in S, namely containment ignoring the firstk
output assignments. By making the definition of the delay mutation more complicated, one can work this through and
have full duality in the linear approach.

In Example 3 below, we demonstrate that changing the timing of the outputs may change the branching nature of
the circuit.

Example 3 In Figure 1 below, we describe a circuitC and its1-cycle delayC′ (note thatI = ∅). The output of a state
xy in C′ is y. WhileL(C′) = {a · w : w ∈ L(C)}, the branching structure ofC′ is substantially different than that of
C, andC′ is does not simulate a circuit obtained fromC by adding an initial state labeled bya.

C′ :
a

c

b

d

cc

cb db

dd

ba

aa
C :

Figure 3: Introducing a delay changes the branching structure.

We now turn to study vacuous versus loose satisfaction. Heretoo, we do not have full duality, and the implication
that holds is in the opposite direction from that one in Theorem 2. We discuss below the intuition for this difference.

Theorem 3 Consider a specificationS and an implementationI for it. Let S′ be the mutation ofS obtained by
removing behaviors that depend onx, and letI ′ be the mutation ofI obtained by freeingx. If x ∈ I, thenI ⊆ S′

implies thatI ′ ⊆ S andI ≤ S′ implies thatI ′ ≤ S. If x ∈ C \O andO ⊆ C, thenI ≤ S′ implies thatI ′ ≤ S.

12

Proof: LetI = 〈I,O,C, θI , δI , ρI〉, I ′ = 〈I,O,C, θ′
I
, δ′

I
, ρ′

I
〉,S = 〈I,O,C, θS , δS , ρS〉, andS′ = 〈I,O,C, θ′

S
, δ′

S
, ρ′

S
〉.

We start with the casex ∈ I. Assume thatI ⊆ S′, and letw′ = w′
0, w

′
1, . . . ∈ 2I∪O be a computation of

I ′. Let w′
j = i′j ∪ o

′
j with i′j ∈ 2I ando′j ∈ 2O. Then, there is a computationw = w0, w1, . . . ∈ 2I∪O of I such

thatwj = ij∪o′j for ij ∈ {i′j \{x}, i
′
j∪{x}}. By the assumption,w is also a computation ofS′. Now, by the definition

of S′, it follows that all computationsw′′ = w′′
0 , w

′′
1 , . . . ∈ 2I∪O, for whichw′′

j = i′′j ∪oj with i′′j ∈ {ij \{x}, ij∪{x}}
are computations ofS. Since for allj ≥ 0 we have thati′j ∈ {ij \{x}, ij∪{x}}, independent of whetherij = i′j \{x}
or i′j ∪ {x}, it follows thatw′ is also a computation ofS and we are done.

Assume now thatI ≤ S′. Let H be an initial simulation relation fromI to S′. We claim thatH is an initial
simulation relation fromI ′ to S. SinceρI = ρ′I andρS = ρ′S , proving thatH is a simulation fromI ′ to S, we only
have to prove that for alls′ ands such thatH(s′, s), and for alli ∈ 2I andt′ ∈ δ′I(s

′, i) there ist ∈ δS(s, i) such that
H(t′, t). In first prove thatH is initial with respect toI ′ andS; that is, for alli ∈ 2I andt′ ∈ θ′

I
(i) there ist ∈ θS(i)

such thatH(t′, t).
Consider an input assignmenti ∈ 2I and a statet ∈ θ′

I
(i). By the definition ofθ′

I
, we know thatt ∈ θI(i \ {x})∪

θI(i ∪ {x}). Assume without loss of generality thatt ∈ θI(i \ {x}). SinceH is a simulation fromI to S′, there is a
statet′ ∈ θ′

S
(i \ {x}) such thatH(t, t′). By the definition ofθ′

S
, we know thatt′ ∈ θS(i \ {x}) ∩ θS(i ∪ {x}). Since

eitheri \ {x} = i or i ∪ {x} = i, we got that there ist′ ∈ θS(i) such thatH(t, t′), and we are done.
We now proceed to prove thatH is a simulation. Lets ands′ such thatH(s, s′). Consider an input assignment

i ∈ 2I and a statet ∈ δ′I(s, i). By the definition ofδ′
I
, we know thatt ∈ δI(s, i\{x})∪δI(s, i∪{x}). Assume without

loss of generality thatt ∈ δI(s, i \ {x}). SinceH is a simulation fromI toS′, there is a statet′ ∈ δ′
S
(s′, i \ {x}) such

thatH(t, t′). By the definition ofδ′
S

, we know thatt′ ∈ δS(s′, i \ {x}) ∩ δS(s′, i ∪ {x}). Since eitheri \ {x} = i or
i ∪ {x} = i, we got that there is there ist′ ∈ δS(s, i) such thatH(t, t′), and we are done.

We proceed to the casex ∈ C andO ⊆ C. Assume thatI ≤ S′, and letH ⊆ 2C × 2C be the maximal simulation
relation fromI toS′. We claim thatH′ = {〈t, t′〉 : H(t \ {x}, t′) orH(t∪{x}, t′)} is an initial simulation fromI ′ to
S. We first prove thatH′ is initial. Consider an input assignmenti ∈ 2I and a statet ∈ θ′

I
(i). By the definition ofθ′

I
,

we know that{t \ {x}, t ∪ {x}} ∩ θ(i) 6= ∅. Assume without loss of generality thatt \ {x} ∈ θI(i). SinceI ≤ S′,
there ist′ ∈ θ′

S
(i) such thatH(t \ {x}, t′). By the definition ofθ′

S
, we have thatt′ ∈ θS(i). Also, by the definition of

H′, we also have thatH′(t, t′), and we are done.
It is left to prove thatH′ is a simulation. Lets ands′ such thatH(s, s′). Consider an input assignmenti ∈ 2I and a

statet ∈ δ′I(s, i). By the definition ofδ′
I
, we know that{t\{x}, t∪{x}}∩(δI(s\{x}, i)∪δI(s∪{x}, i)) 6= ∅ Assume

without loss of generality thatt\{x} ∈ δI(s\{x}, i). SinceH is a simulation fromI toS′, there is a statet′ ∈ δ′S(s′, i)
such thatH(t, t′). By the definition ofδ′

S
, we know thatt′ ∈ δS(s′ \{x}, i)∩δS(s′∪{x}, i). Since bothH(t\{x}, t′)

andH(t∪ {x}, t′), we are done. Finally, sinceO ⊆ C, andx 6∈ O, we have thatρ′
I
(s \ {x}) = ρ′

I
(s∪ {x}) = ρI(s).

Also, ρS(s′) = ρ′
S
(s′). Hence,H′(s, s′) implies thatρ′

I
(s) = ρS(s′).

Note that duality does not hold for the linear approach in thecasex is a control signal. The reason is that a
path inI ′ need not correspond to a path inI. If, for example,δI(s0, i1) = s1 \ {x}, δI(s1 ∪ {x}, i2) = s3, and
{s3 \{x}, s3∪{x}}∩δI(s1 \{x}, i2) = ∅, thens3 is reachable froms0 in I ′ by readingi1 andi2, but neithers3 \{x}
nors3 ∪{x} are reachable froms0 in I by readingi1 andi2. In the branching approach, on the other hand, simulation
guarantees that intermediate states are related too, and hence duality exists.

Remark 3 The challenges in relating the mutations in Theorem 3 are related to the challenges in reachability analysis
in abstractions. Indeed, the mutant specificationS′ corresponds to an under-appoximation ofS, and the mutant imple-
mentationI ′ corresponds to an over-approximation ofI. Theorem 3 relates satisfaction of an under-approximationof
the specification to satisfaction by an over-approximationof the implementation.

In Example 4, we show that the other direction (that is,I ′ |= S implies I |= S′) does not hold, in both the
linear and branching approaches, even if we apply bisimulation minimization to the specification before we remove
behaviors.

Example 4 In Figure 4 below, we describe an implementationI and a specificationS with I = {x}, O = {v}, and
C = {y}. The value ofy is described at the top of the states and the value ofv at the bottom. Note thatI = S.

13

Adding toI behaviors that dualize the behavior ofx results in an implementationI ′ in which an initial transition to
bothy = 0 andy = 1 is enabled with bothx = 0 andx = 1. Since the two statesy = 0 andy = 1 havev = 0,
we have thatI ′ |= S (in both approaches). On the other hand, the specificationS′ obtained by removing behaviors
that depend onx is not receptive, thusI 6|= S′. The example may seem weak, as the statesy = 0 andy = 1 of S are
bisimilar. Note, however, we could strengthen it by adding to S different behaviors from the statey = 0 andy = 1.
For example, we could add a transition fromy = 0 to a new state in which the value ofv is 1. Adding behaviors to
the specification does not violate the satisfaction ofS′ in I ′, and shows that the problem exists even if we require the
specification not to have bisimilar states.

A counterexample for the casex ∈ C is similar. LetI = {z},O = {v}, andC = {x}, and letI = S go to both
x = 0 andx = 1 on inputz = 0. Also, the value ofv agrees with that ofx. While the mutantI ′ coincides withI, the
mutantS′ is not receptive, as the statesx = 0 andx = 1 have different outputs. One can strengthen the example by
addingv toC, makingO ⊆ C.

1

I = S:
0

0, 1

1

0, 10 0
0 1

I ′:

0, 1 0, 1

0, 1 0, 1

0 0
0

Figure 4: A counter example for the directionI ′ |= S impliesI |= S′

Recall that some of the dualities are not full. We consideredboth the linear and the branching approaches to
specification and it turned out that in some cases, duality exists only in one of the approaches. Intuitively, the linear
approach has the advantage that mutations may change not only the set of computations, but also the branching
structure of the circuit. On the other hand, the branching approach has the advantage of being local, which is useful
for mutations parameterized by control signals.

We also considered both directions of the implication in Definition 1. It turns out that full duality goes only with
diverse satisfaction. On the other hand, while vacuous satisfaction implies loose satisfaction, the other direction does
not always hold. To see the intuition behind this, recall that vacuous satisfaction hints on absence of behaviors that the
designer expects to find in the implementation – behaviors that would cause the mutant specification not to be satisfied.
Applying the dual mutation to the implementation adds thesebehaviors. On the other hand, loose satisfaction suggests
that we can add to the implementation behaviors that agree with original behaviors on everything butx. These new
behaviors can be simulated (only) by behaviors of the specification that do depend onx, so vacuous satisfaction is not
guaranteed.

Finally, the dualities presented in Theorems 1, 2, and 3 refer to persistent faults. The dualities are maintained in
the presence of a controlled injection of faults if the faults are injected to the specification and the implementation at
thesame cycles. If, for example,x is flipped inS′ in the 5th cycle, it has to be flipped inI ′ also at the 5th cycle. Note
that a persistent fault is a special case of the above. On the other hand, if the injection of faults in the specification and
implementation follows the same pattern-circuitCmut (see Section 3.4), but the language ofCmut is not a singleton,
the dualities are, in general, no longer valid.

5 Discussion and Experimental Results

We described a state-based approach to vacuity and coverageand showed that when the implementation and the
specification are both modeled as circuits, vacuity and coverage are dual. We now describe some applications of this
duality.

First, amongst the new coverage metrics and vacuity definitions that duality suggests, there is one that is of partic-
ular interest. As discussed in previous work [11], coveragemetrics that are induced from simulation-based coverage
often involve a disabling of a behavior. For example, an adoption of branch coverageto model checking involves
model checking mutations of the implementations in which branches are disabled. Thus, the mutant implementation

14

has fewer behaviors and is guaranteed to satisfy all universal specifications (i.e., specifications that apply to all behav-
iors, as in linear temporal logic) that the original implementation has satisfied. This is problematic, as we need to asses
the role of a component in the satisfaction of a specificationthat is clearly satisfied in a mutant implementation without
this component. This problem has been addressed [11] by checking whether the satisfaction of the specification in the
mutant implementation has become vacuous. The duality between coverage and vacuity we present here suggests that
this solution coincides with one that captures better our intuition of coverage: a behavior of the implementation is cov-
ered by a universal specification ifaddingto the implementation the dual behavior results in a mutant implementation
that no longer satisfies the specification.

In addition, the duality suggests, for the first time, afeasible, automatable methodology for tightening specifica-
tions. One of the popular examples for the effectiveness of coverage is an implementation containing a computation
in which a request is followed by two grants. Such a computation satisfies the specification “every request is followed
by a grant” and coverage information, which reveals the factthat each of the two grants can be flipped, is likely to
urge the designer to tighten the specification to one that requires a correspondence between the requests and the grants.
All this is very nice, but the way from the actual output of thecoverage process (a list of uncovered elements) to the
realization that some uncovered elements are related (as isthe case with the two grants), and then to a tighter specifi-
cation, is long. Returning more meaningful coverage information to the user is a challenging problem. One approach
is to arrange the information gathered by the coverage algorithm in helpful ways, such as returning computations that
contain many uncovered states. The approach taken here is different. Applying the dual mutant to the specification
automatically generates a tighter specification. In the above case, the designer works with a “flip grant once” mutation,
and applying the dual flip to the specification teaches him that some computations also satisfy a specification in which
requests are followed by two grants. This is not the end of thestory, as the application of the dual mutation results in
a mutant specification that is satisfied in the implementation. Thus, it is not going to immediately detect bugs. The
mutant specification, however, and the fact it is still satisfied, is of great help to the designer in manually tightening
the specification, as it directly points to the unexpected behavior.5 In this sense, the dual specification plays a role that
is similar to the one played by a counterexample – while it does not directly suggest a repair to an erroneous imple-
mentation, it is of great help in understanding where the error is. We plan to investigate this relation between tighter
specifications and counterexamples further and check whether the duality between coverage and vacuity studied here
is derived from a more general duality, namely the one between program repair and tightening of specifications.

5.1 Experimental Results

We conclude by illustrating two practical use of the duality, specifically of Theorems 1 and 2.

5.1.1 Illustration of Vacuity from Coverage

The first experiment illustrates how useful vacuity information can be obtainedfor free once coverage has been
checked. On an implementation of the Peripheral Interconnect Bus (PI-BUS) from the texas-97 benchmarks [25],
we checked an LTL property of the formG(φ =⇒ x = 1), and found it to hold even when a persistent flip was
performed onx. This implied that the implementation also satisfiedG(φ =⇒ x = 0), and thus thatG¬φ, computing
the same result that vacuity checking would.

We elaborate on this experiment below. The specification of interest, denotedS, checks the read operation: in the
absence of an error or timeout, the31st bit of the master’s data buffer should have the same value as the31st bit of the
data that the slave sends out at the same cycle. In LTL,S is the formula

G

(
(slave.state = ADDRESS∨ slave.state = DATA WAIT) ∧ (slave.acknowledgment= RDY)

∧ (slave.READ = 1) ∧ (slave.dataout[31] = 1) ∧ (slave.SEL = 1) ⇒ (master.datain[31] = 1)

)

5Our framework applies to other settings in which the implementation and the specification are described using similar formalism. In particular,
in scenario-based specifications [15], mutating a specification directly suggests a repair to the implementation.

15

whereslave.state is the state of the slave interface FSM,slave.acknowdgement is the acknowledgement signal
from slave to master,slave.READ is the read request from master to slave, andslave.SEL indicates whether this slave
is selected by the master.

Let µ be the mutation that persistently flips the value ofmaster.datain[31] andI be the original implemen-
tation. In our coverage analysis,Iµ |= S. By Theorem 1, we haveI |= Seµ, whereµ̃ is the mutation of flipping
master.datain[31] in S. CombiningS andSeµ, we get a new specificationS′:

G ¬

(
(slave.state = ADDRESS∨ slave.state = DATA WAIT) ∧ (slave.acknowledgment= RDY)

∧ (slave.READ = 1) ∧ (slave.dataout[31] = 1) ∧ (slave.SEL = 1)

)

which is satisfied byI. This is the same as the antecedent ofS being always false, and hence indicates vacuous
satisfaction ofS in I. Specifically,S is vacuously satisfied becauseslave.SEL is never high in the implementationI.

5.1.2 Monitoring Faults in a Router Design

The setting for our second experiment is the synthesis of circuits that monitor themselves for the occurrence of physical
faults, such as soft (transient) flips in latches. The goal isto synthesize monitors (for, say, temporal-logic properties)
that detect such faults locally within a module, before the fault propagates all the way to the output of the circuit, so
that local error recovery can be performed.

Our case study was a version of a chip multiprocessor router designed in Verilog [24]. The router has two input and
two output ports; a block diagram of the router is given in Figure 5. There are four main modules of the router. The
first, called theinput controller, buffers incoming flits, determines their destination port, and interacts with anarbiter
module in order to reserve an output port. In Peh’s design [24], the reservation of an output port is performed on
receipt of a head flit. Thereafter, all body flits and tail flitsare directed to the output port without incurring any further
latency. The arbiter is fair, assigning priorities to inputports based on a simple round-robin scheme. The remaining
modules are theencoderandcrossbar, which contain logic to copy flits to the output port from the input port that has
been assigned that output port. The router’s function is to direct incoming packets, calledflits, to the correct output

input
port 0

input
port 1

output port 0

output port 1

req

resp

alloc

select

flit 0

flit 1

INPUT
CONTROLLER

BUF0

BUF1

ENCODERARBITER

CROSSBAR

Figure 5:Chip multiprocessor router block diagram. There are four main modules: the input controller, the arbiter,
the encoder, and the crossbar. Not all interconnections areshown.

port, within a latency bound of8 cycles. The arbiter module of the router mediates access to the output ports based on
a fair round-robin scheme.

The Verilog was automatically translated to an SMV model, which was instrumented to latch an incoming flit at
a single, non-deterministically chosen cycle on each port;for port i, we track this latched flit with the control signal
latched input fliti. The control signallatched a fliti is a flag that starts at0 and is permanently set to1

16

after an incoming flit is latched. The output flit at portj, at any cycle, is stored inflit outj . The overall router
specification can thus be written as the LTL property6

G

(
latched a fliti =⇒

8∨

k=1

X
k(latched input fliti = flit outj)

)

If a transient bit flipµ occurs in the priority state bit of the arbiter module, the above property will not hold
because the flip makes the arbiter unfair long enough that theflit arrives at the output port later than the specified
latency bound. This was verified using Cadence SMV. However,the transient faultµ did not violate the following
local property specified on the request/grant lines of arbiter module for portj: G(requesti =⇒

∨8
k=1 X

kgranti).
Treating the arbiter module as the implementationI, the above temporal-logic specification asS, and a4-cycle

delay fault in thegranti output signal as a mutationν, we found thatIν |= S. Using Theorem 2, we obtainI |= Sν̃ ,
whereν̃ makesgranti premature by4 cycles inS, yielding the propertyG(requesti =⇒

∨4
k=1 X

kgranti). We
found that this property catches the transient bit flipµ, i.e.,Iµ 6|= Sν̃ . Moreover,I |= Sν̃ . We can thus useSν̃ to
synthesize a monitor that catches transient errors in the arbiter module.

In general, the effectiveness of using duality to tighten specifications depends greatly on the choice of the mutation
used and the available duality results. For future work, we plan to study more mutations and extend the set of duality
results.

Acknowledgments

This work was supported in part by the Gigascale Systems Research Focus Center, one of five research centers funded
under the Focus Center Research Program, a Semiconductor Research Corporation program.

References
[1] M. Abadi and L. Lamport. The existence of refinement mappings.TCS, 82(2):253–284, 1991.

[2] R. Armon, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M.Y. Vardi. Enhanced vacuity
detection for linear temporal logic. InProc 15th CAV, 2003.

[3] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL formulas.FMSD,
18(2):141–162, 2001.

[4] L. Bening and H. Foster.Principles of verifiable RTL design – a functional coding style supporting verification
processes. Kluwer Academic Publishers, 2000.

[5] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in propositional temporal
logic. TCS, 59:115–131, 1988.

[6] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and M.Y. Vardi. Regular vacuity. InProc. 13th CHARME,
LNCS 3725, pages 191–206. 2005.

[7] M. Chechik and A. Gurfinkel. Extending extended vacuity.In Proc. 5th Int. Conf. on Formal Methods in
Computer-Aided Design, LNCS 3312, pages 306–321, 2004.

[8] H. Chockler and O. Kupferman. Coverage of implementations by simulating specifications. InProc. 2nd IFIP
TCS, volume 223,IFIP Conf. Proceedings, pages 409–421. Kluwer Acad. Publishers, 2002.

[9] H. Chockler, O. Kupferman, R.P. Kurshan, and M.Y. Vardi.A practical approach to coverage in model checking.
In Proc 13th CAV, LNCS 2102 , pages 66–78, 2001.

6There is one such property for each of the four input-output port pairs(i, j), but by symmetry, we need to check it for only such pair.

17

[10] H. Chockler, O. Kupferman, and M.Y. Vardi. Coverage metrics for temporal logic model checking. InProc. 7th
TACAS, LNCS 2031, pages 528 – 542, 2001.

[11] H. Chockler, O. Kupferman, and M.Y. Vardi. Coverage metrics for formal verification. InProc. 12th CHARME,
LNCS 2860 , pages 111–125, 2003.

[12] E. M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. Efficient generation of counterexamples and witnesses
in symbolic model checking. InProc. 32th DAC, pages 427–432. IEEE Computer Society, 1995.

[13] E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.

[14] O. Grumberg and D.E. Long. Model checking and modular verification. ACM TOPLAS, 16(3):843–871, 1994.

[15] D. Harel, H. Kugler, and A. Pnueli. Synthesis revisited: Generating statechart models from scenario-based
requirements. InFormal Methods in Software and System Modeling, LNCS 3393 , pages 309–324, 2005.

[16] Y. Hoskote, T. Kam, P.-H Ho, and X. Zhao. Coverage estimation for symbolic model checking. InProc. 36th
DAC, pages 300–305, 1999.

[17] O. Kupferman. Sanity checks in formal verification. In17th CONCUR, LNCS 4137, pages 37–51, 2006.

[18] O. Kupferman and M.Y. Vardi. Modular model checking,Proc. Compositionality Workshop, LNCS 1536, pages
381-401, 1998.

[19] O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking.STT& T, 4(2):224–233, 2003.

[20] R.P. Kurshan.Computer Aided Verification of Coordinating Processes. Princeton Univ. Press, 1994.

[21] S.S. Lam and A.U. Shankar. Protocol verification via projection. IEEE TSE, 10:325–342, 1984.

[22] N. A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms. InProc. 6th PODC,
pages 137–151, 1987.

[23] S. Nain and M.Y. Vardi. Branching vs. linear time: Semantical perspective. InProc. 5th ATVA, LNCS 4762,
2007.

[24] L.-S. Peh. Flow Control and Micro-Architectural Mechanisms for Extending the Performance of Interconnection
Networks. PhD thesis, Stanford University, August 2001.

[25] Texas-97 benchmarks,http://embedded.eecs.berkeley.edu/Respep/Research/vis/texas-97/.

[26] S. Tasiran and K. Keutzer. Coverage metrics for functional validation of hardware designs.IEEE Design and
Test of Computers, 18(4):36–45, 2001.

[27] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information & Computation, 115(1):1–37,
1994.

A Mutations

A.1 Forcing a signal to get stuck

A mutation in this class is parameterized by a signalx ∈ I ∪O ∪ C and it forcesx to get stuck at0 (forcingx to get
stuck at1 is similar) by acting as ifx = 0 regardless of its actual value. Thus the mutation is similarto the one that
flips the value ofx, only that here the value is flipped only whenx = 1. As there, the mutant circuitC′ stays receptive.
Note that unlike the mutation described in Section 3.1.3, here we do not disable transitions after which the value ofx

is 1, but rather we flip the value ofx in the destination state. Formally,C′ = 〈I,O,C, θ′, δ′, ρ〉, where

• If x ∈ I, thenρ′ = ρ, and for alls ∈ 2C andi ∈ 2I , we haveθ′(i) = θ(i \ {x}) andδ′(s, i) = δ(s, i \ {x}).

18

• If x ∈ O \ C, thenθ′ = θ, δ′ = δ, and for allt ∈ 2C , we haveρ′(t) = ρ(t) \ {x}.

• If x ∈ C, thenρ′ = ρ and for alls ∈ 2C andi ∈ 2I , we haveθ′(i) = {t \ {x} : t ∈ θ(i)}, andδ′(s, i) =
{t \ {x} : t ∈ δ(s, i)}. Thus, wheneverC has a transition to a statet, the mutationC′ goes instead tot \ {x}.

Stickingx at1 is similar, and is done by replacingx by x ∪ {1}.
For the setting of a temporal-logic formula, sticking the value ofx ∈ I∪O to 0 amounts to negating all the positive

occurences ofx. Likewise, stickingx to 1 amounts to negating all its negative occurrences.

A.2 Introducing Delay and Prematurness

Given a circuitC and a numberk ≥ 1 describing the delay, the mutation ofC in which ak-cycle delay is introduced is
C′ = 〈I,O,C′, θ′, δ′, ρ′〉, where

• C′ = C ∪ (O×{1, . . . , k}). We refer to states ofC′ as tuples〈s, σ1, . . . , σk〉 ∈ 2C × 2O × · · · × 2O, whereσ1

maintains the output of the state visited in the previous cycle,σ2 maintains the output of the state visited before
that, and so on, untilσk, which maintains the output of the state visited beforek cycles.

• For all i ∈ 2I , we have thatθ′(i) = θ(i)× 2O × · · · × 2O. Thus, the output in the firstk cycles is arbitrary. The
user can choose a different initialization to the new control signals.

• For all 〈s, σ1, . . . , σk〉 ∈ 2C × 2O × · · · × 2O, andi ∈ 2I , we have thatδ′(〈s, σ1, . . . , σk〉, i) = δ(s, i) ×
{〈ρ(s), σ1, . . . , σk−1〉}.

• For all 〈s, σ1, . . . , σk〉 ∈ 2C × 2O × · · · × 2O, we have thatρ′(〈s, σ1, . . . , σk〉) = σk.

Given a circuitC and a numberk ≥ 1 describing the prematureness, the mutation ofC in which ak-cycle prema-
tureness is introduced isC′ = 〈I,O,C′, θ′, δ′, ρ′〉, where

• C′ = C ∪ (O × {1, . . . , k}). We refer to states ofC′ as tuples〈s, σ1, . . . , σk〉 ∈ 2C × 2O × · · · × 2O, where
σ1 maintains a guess for the output of the next state ofC, σ2 maintains a guess for the output of the state after it,
and so on.

• For all i ∈ 2I , we have thatθ′(i) = θ(i)×2O×2O×· · ·×2O. Thus, the initial transitions nondeterministically
guess the output for the firstk states ofC.

• For all 〈s, σ1, . . . , σk〉 ∈ 2C × 2O × · · · × 2O, andi ∈ 2I , we have thatδ′(〈s, σ1, . . . , σk〉, i) is (δ(s, i) ∩
ρ−1(σ1)) × {〈σ2, . . . , σk〉} × 2O. Thus,C′ goes only to successors ofs for which the guess maintained inσ1

turns out to be valid, and it updates the guesses by shifting them and adding a guess for the state ofC to be
reached afterk transitions.

• For all〈s, σ1, . . . , σk〉 ∈ 2C ×2O×· · ·×2O, we have thatρ′(〈s, σ1, . . . , σk〉) = σk. Thus, the output of a state
is the guess for the output of the state ofC to be reached afterk transitions.

Note that the output ofC′ is indeedk-cycle prematureness of the output ofC. For example, whenk = 1, we have
thats0, s1, s2, . . . ∈ 2C is a path inC with outputo0, o1, o2, . . . iff 〈s0, o1〉, 〈s1, o2〉, 〈s2, o3〉, . . . ∈ 2C × 2O is a path
in C′ with outputo1, o2, o3,

Note also that when a state ofC′ maintains a wrong guess, it may not have outgoing transitions. Thus,C′ may not
be receptive. We still refer toC′ as a receptive circuit, as for all statess ∈ 2C and computationπ that starts ats, the
circuit C′ contains a state〈s, σ1, . . . , σk〉 ∈ 2C × 2O × · · · × 2O that maintains a guess that is correct forπ, and along
which the interaction ofC′ with the environment does not get stuck.

19

A.3 Controlled Injection of Mutations

In this section we give the details of the generalization of our definitions of mutations to make it possible to apply
mutations one on top of the other and to control the pattern (over time) in which mutations happen.

Since the method involves applications of faults one on top of the other, it is convenient to assume that the mutant
circuit has the same set of signals as the original one. This is true for most of the mutations described above, and it
is not hard to adjust the definition of mutations or the construction here to the case the set of signals does change.
Another technical assumption we make for is the existence ofa functionapply that takes an initialization function,
a transition function, or an output function, and a type of mutation, and returns the mutated initialization function,
transition function, or output functions. It is not hard to see that the descriptions of mutations in Sections 3.1, 3.2,
and 3.3 induce such a function.

For some sets of mutations, the order of application is not important. For example, if we remove behaviors that
depend onx and then remove behaviors that depend ony, the result is identical to the circuit we get if we first remove
behaviors that depend ony and then remove behaviors that depend onx. In general, however, the order is important.
For example, ifx ∈ C and the statess andt are such that{t \ {x}, t∪ {x}} ⊆ δ(s \ {x}, i)∩ δ(s ∪ {x}, i), for some
input assignmenti ∈ 2I , and we first remove behaviors that depend onx and then stickx to 0 by disabling transitions
that go to states in which the value ofx is 1, thent \ {x} ∈ δ′(s \ {x}). But if we first stickx to 0 and then remove
behaviors that depend onx, thent \ {x} 6∈ δ′(s \ {x}). Note that this example is for two mutations both of which
remove behaviors.

Accordingly, the fault pattern that the user specifies describes not only the set of mutations that occur at each
moment in time, but also the order in which they are applied. LetM be a set of signals that encode ordered subsets of
the set of all possible mutations. Amutation patternis a safety languageLmut overM . For example, if there are two
possible mutations,m1 andm2, thenM encodes elements of the set{〈 〉, 〈m1〉, 〈m2〉, 〈m1,m2〉, 〈m2,m1〉} andLmut

may be the set of all words in which every subword of length 5 contains a letter in{〈m1〉, 〈m1,m2〉, 〈m2,m1〉} and a
letter in{〈m2〉, 〈m1,m2〉, 〈m2,m1〉}. Such a language corresponds to a pattern in which a fault inducingm1 occurs
in all 5-cycle windows, the same for a fault inducingm2, and the fault may occur at the same cycle, in which case the
order of application is not important. A natural way to describeLmut is by a looping automaton over2M . Since we are
going to combine the fault pattern with the original circuit, we describe this automaton by means of a circuitCmut with
inputM and output{⊤} such thatCmut outputs⊤ as long as the sequence of mutations read so far can be extended
to a word inLmut . Formally,Lmut is given by amutation-pattern circuitCmut = 〈M, {⊤}, Q, θmut, δmut , ρmut〉 in
which a wordw overM leads to a stateq for whichρmut(q) = {⊤} iff w can be extended to a word inLmut .

For a circuitC and a mutation-pattern circuitCmut = 〈M, {⊤}, Q, θmut, δmut , ρmut〉, we define thecontrolled-
fault version ofC as the circuitC′ = 〈I,O,C ∪ Q, θ′, δ′, ρ′〉 defined below. Let{m1, . . . ,mk} be the set of all
possible mutations. For an ordered sequenceσ = 〈mj1 ,mj2 , . . . ,mjl〉 of mutations, and an initialization functionθ,
we useapply(θ, σ) as an abbreviation ofapply(· · · apply(apply(θ,mj1),mj2) · · · ,mjl). That is,apply(θ, σ) is the
initialization function obtained fromθ by first applyingmj1 on it, thenmj2 , and so on untilmjl . The notation for the
transition function and the output function is similar. Now,

• θ′(i) =
⋃
σ∈2M {c′ ∪ q′ : c′ ∈ apply(θ, σ)(i), q ′ ∈ θmut(σ), andρmut(q

′) = {⊤}}.

• δ′(c ∪ q, i) =
⋃
σ∈2M {c′ ∪ q′ : c′ ∈ apply(δ, σ)(c, i), q ′ ∈ δmut(q, σ), andρmut(q

′) = {⊤}}.

• ρ′(c ∪ q) = apply(ρ, σ)(c).

B Analyzing Vacuous and Loose Satisfaction

In this section we give the details for the analysis of vacuous and loose satisfaction for the different mutations described
in Sections 3.1 and 3.3.

B.1 Analyzing vacuous satisfaction

Removing a given set of behaviorsWe say that a restriction〈rθ, rδ〉 of S does not affect the satisfaction ofS in I if
〈rθ, rδ〉 retains the receptiveness ofS andI |= S′, for the circuitS′ obtained fromS by applying〈rθ , rδ〉. Consider a

20

restriction〈rθ, rδ〉 of S that does not affect the satisfaction ofS in I. If t ∈ rθ(i), then we can conclude that each of
the behaviors ofS that starts with inputi and in statet is either not exhibited in the implementation, or is subsumed
by another behavior of the specification. Likewise, ift ∈ rδ(s, i), then we can conclude that each of the behaviors of
S that reachess and continues tot on inputi is either not exhibited in the implementation, or is subsumed by another
behavior of the specification. While the user can check arbitrary restrictions, some restrictions are of particular interest.

We say that a restriction〈rθ, rδ〉 is maximalif 〈rθ, rδ〉 does not affect the satisfaction ofS in I and every restriction
〈r′θ, r

′
δ〉 that strictly contains〈rθ, rδ〉 does affect the satisfaction. Note that there may be severalmaximal restrictions.

Maximal restrictions are interesting as they correspond totightest specifications that are based onS and are still
satisfied byI.

Some restrictions correspond to physical failures. For example, if a restriction that removes self loops from the
circuit (that is,rδ(s, i) = {s}) does not affect the satisfaction ofS in I, we can conclude that the specification allows
unbounded delays that are actually fulfilled in the implementation in the present. The connection of restrictions to
physical failures is more interesting for mutations that modify or add behaviors, as such mutations are applied to the
implementation.

Another class of interesting restrictions are these that contain a path (rather than isolated transitions). Thus, there
is a sequencei0, i1, . . . , ik of input assignments and a sequences0, s1, . . . , ik of states, such thats0 ∈ rθ(i0) and for
all 0 |= j < k, we havesj+1 ∈ rδ(sj , ij+1). Such a restriction that does not affect the satisfaction ofS in I points to
a linear behavior that is allowed by the (abstract) specification and is still either not exhibited by the implementation
or subsumed by another behavior of the specification.
Removing behaviors that depend on a signalAssume that the signalx is such that the mutationS′ obtained by
removing behaviors that depend onx, as defined in Section 3.1.2, is receptive, andI |= S′. Then, further abstraction
of the specification (namely, one in whichx is abstracted) is possible. This hints on a problem: either the specifier
does not fully understand the specification, as he expectsx to do play a role, or the design does not exhibit behaviors
that distinguish between the different values ofx and that the specifier expects the design to exhibit.
Restricting a signal to a valueAssume that the signalx is such that ifI |= S′ for the mutationS′ obtained by
restrictingx to 0, as defined in Section 3.1.3. Whenx ∈ O \C andS′ is defined over the same setO of output signals
asI, we can conclude that no states in whichx = 1 are reachable inI. We note that such a conclusion may be reached
by performing simpler checks thanI |= S′. Whenx ∈ C \O, it may still be the case that the implementation reaches
states withx = 1, but these states agree on their label with states of the specifications in whichx = 0. Thus, behaviors
of the implementations in whichx = 1 exist also in the specification, but there they are exhibitedalong states in which
x = 0.

B.2 Analyzing loose satisfaction

Adding a given set of behaviorsWe say that an extension〈rθ, rδ〉 of S does not affect the satisfaction ofS in I if
I ′ |= S, for the circuitI ′ obtained fromI by applying〈rθ, rδ〉. Consider an extension〈rθ, rδ〉 of S that does not
affect the satisfaction ofS in I. If t ∈ rθ(i), then it means that a behaviors that starts with inputi and in statet
and then continue with an existing behavior of the circuit from statet does not violate the specification. Thus, such a
behavior is exhibited in the specification, or is subsumed byanother behavior of the implementation.

As in the case of removal of behaviors, of particular interests are extensions that contain a path. Thus, there is a
sequencei0, i1, . . . , ik of input assignments and a sequences0, s1, . . . , ik of states, such thats0 ∈ rθ(i0) and for all
0 |= j < k, we havesj+1 ∈ rδ(sj , ij+1). Such an extension that does not affect the satisfaction ofS in I points to a
linear behavior that can be added to the implementation without violating the specification.

Another interesting type of extensions are these that add self loops to the circuit. IfI ′ |= S, we can conclude that
the the specification actually allows an unbounded, and possibly infinite stuttering in the implementation.
Adding behaviors that depend on a signalAssume that the signalx is such thatI ′ |= S, for the mutationI ′ of
I obtained by adding behaviors that dualize the behavior ofx, as defined in Section 3.3.2, andI |= S′. Then, the
specification does not restrict the behaviors to the particular value ofx that the designer has implemented. This hints
on a problem: either the specification should be tightened, or the design disables behaviors expected by the designer.

21

