On the Duality between Vacuity and Coverage

Orna Kupferman
Wenchao Li
Sanjit A. Seshia

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-26
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-26.html

March 31, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

On the Duality between Vacuity and Coverage
Orna Kupfermat Wenchao Lf Sanjit A. Seshia

* Department of Electrical Engineering and Computer Scignce
University of California, Berkeley
Berkeley, CA 94720-1770
sseshia@eecs.berkeley.edu, wenchao@berkeley.edu

T School of Computer Science and Engineering
Hebrew University
Jerusalem 91904, Israel
orna@cs.huji.ac.il

March 31, 2008

Abstract

Sanity checks such as vacuity and coverage are used to evéteequality of both implementations and specifi-
cations. We show formally that vacuity and coveragedaral concepts, studying them in a setting in which both the
implementation and the specification are given by circtitsformalize the duality, we present a range of mutations
that one can apply to a circuit and partition them into motatithat add, remove, and modify behaviors. Many
mutations correspond to physical and design faults, suanas in which signals are ignored, flipped, delayed, or
stuck at a value, and combinations thereof. For most of thations, we exhibit corresponding mutations also in
the case where the specification is given as a temporal logioula. We introduce and study the notiondafal
mutations A mutationy that adds or modifies behaviors is dual to a mutafidhat removes or modifies behaviors
if, for all implementationsZ and specifications§, satisfaction ofS by a mutant implementatiaf,,, obtained fron
by applyingy, is related to satisfaction ¥ of a mutant specificatio§;, obtained fromS by applyingf. Thus, the
low coverage off by S, which cause§,, to satisfyS, is related to the vacuous satisfaction®by Z, which causes
7 to satisfyS;. The notion of dual mutations also applies in a setting inclvlihe specification is a temporal logic
formula.

Beyond the clean theoretical picture that the duality setgyé offers important applications. First, we obtain new
coverage metrics and new definitions of vacuity that havessbden used only in one of the sanity checks. Second,
when low coverage is detected with a mutation, a tighterifpation can be automatically obtained by applying
its dual mutation to the original specification. We preseqegimental results showing the relevance of tightening
specifications to self-checking circuits.

1 Introduction

Model checking verifies the correctness of a system withaesio its specification [13]. One of the advantages
of model-checking tools is their ability to accompany a rniegaanswer to the correctness query by an erroneous
execution of the system. Such counterexamples to theagttsh of the specification in the system are very important
since they can help detect subtle errors in complex desifjs On the other hand, when the answer to the correctness
query is positive, most model-checking tools provide noitamltal information. Since a positive answer means that
the system is correct with respect to the specification,d4béms like a reasonable policy. However, there has been
growing awareness to the importance of also challengingipeanswers of model-checking tools. One major reason

is the possibility of errors in the modeling of the systemhm specification. The goal sfnity checkss to detect
such errors by further automatic reasoning. Two leadingsahecks arezacuityandcoverage

In vacuity, the goal is to detect cases where the systenfisatthe specification in some unintended trivial way.
For example, verifying a system with respect to the spetifing = G(req — Fgrant) (“every request is eventually
followed by a grant”), one should distinguish between &attson of o in systems in which requests are sometimes sent
and satisfaction in systems in which requests are never Egittently, the second type of satisfaction suggests some
unexpected properties of the system, namely the absenahafiors in which the precondition is satisfied. Typical
definitions of vacuity are based on mutations applied to gezification, where the goal is to identify components
of the specification that do not play a role in the verificajiwacess. In the above example, the sub-fornitjaant
does not play a role in the satisfactionfin a system in which requests are never sent, thus such systemld
satisfy even the specification obtained frgrby replacingF grant by false. Work on vacuity focuses on finding good
definitions for vacuous satisfaction for a variety of speaifion formalisms, and for developing efficient algorithms
for detection of vacuous satisfaction [3, 19, 2, 7, 6].

In coverage, the goal is to increase the exhaustivenessedpécification by detecting components of system
behavior that do not play a role (i.e., are “not covered”)a verification process. For example, a system in which
a request is followed by two grants satisfies the specifioatiabove, but only one of the grants plays a role in the
satisfaction. Coverage has roots in simulation-basedication. There, the system is checked with respect to some
input vectors [4], and it is crucial to measure the exhaestss of the input vectors that are checked. Extensive
research in the simulation-based verification community led to numerous coverage metrics (see the survey by
Tasiran and Keutzer [26]). Measuring the exhaustiveneassp&cification in model checking (“must more properties
be checked?”) has a similar flavor as measuring the exhaunst$s of the input vectors in simulation-based verification
(“do more vectors have to be checked?”). Neverthelessgviiilsimulation-based verification it is clear that coverag
corresponds to activation during the execution on the ispgtience, it is less clear what coverage should correspond
to in model checking. Early work on coverage in model chegHit6, 10, 9] involved applying mutations to the
system, developing efficient algorithms for measuring cage, and suggesting methods to return useful information
to the user, so that he or she might use this information ier@improve the specification. In our example, a mutant
system in which one of the two grants is removed still sagsfieimplying that only one grant is covered. The user
can then check that there is a correspondence between theste@nd the grants.

Vacuity and coverage have a lot in common, as noted prewi¢Lg]. In particular, both checks involve iterating
the verification procedure on a mutated input. In vacuitytations are introduced in the specification, whereas in
coverage, the system is mutated. In this paper, we formeléte coverage and vacuity. We show in a precise sense
that they are dual, and present useful applications of tladitgduThe contributions of our paper are further elabatate
below.

Formalizing the duality between vacuity and coverageWe make the first formal connection between vacuity and
coverage, working in a setting in which both the implemeateand the specification are given by circuits (finite-state
transducers), at different levels of abstraction. Haviveggame formalism for the implementation and the specifioati
we can formally relate mutations that are applied to eitfiéhem, and thus formally relate vacuity and coverage.

We consider a wide range of mutations that remove, add, oiifjnbdhaviors, many of which are considered
for the first time in the context of vacuity and coverage. Mafiyhe mutations correspond to actual physical and
design faults (e.qg., signals ignored, flipped, delayedeamdpstuck at a value), and combinations thereof. Consider a
implementatior? and a specificatios. We say thaf satisfiesS vacuouslyif Z also satisfies a mutant specification
S’ that has fewer behaviors thah Intuitively, as in temporal-logic-based vacuity, it medahat some components of
S could have been tighter. We say tlasatisfiesS looselyif S is also satisfied in a mutant implementatibnthat
has more behaviors than Intuitively, as in coverage, it means that some componefitse implementation could
have been more flexible and the specification would still Haaen satisfied. Finallyf satisfiesS diverselyif S is
also satisfied in a mutant implementatidhin which some behaviors &f are modified, or ifZ satisfies a mutant
specificationS’ in which some behaviors & are modified. Intuitively, again, the verification processswot tight.

We analyze vacuous, loose, and diverse satisfaction fér@&abe presented mutations, and demonstrate that they can
all point to errors in the modeling of the system or to an inptete specification.

1Coverage metrics for the case where specifications are biyeircuits are studied in [8]. The focus there, however rifiicient calculation
of a particular metric, and the contribution is orthogormeaiite one described here.

An important concept we introduce is that oflaal mutation which serves to precisely formalize the duality
between coverage and vacuity. A mutatjpthat adds or modifies behaviors is dual to a mutafigchat removes or
modifies behaviors if, for all implementatiofisand specifications, satisfaction ofS by a mutant implementatidz),
obtained froni by applyingu is related to satisfaction i of a mutant specificatiof; obtained fromS by applying
ii. Thus, loose satisfactiofi by Z, which is reflected in the satisfaction §fby Z,,, is related to vacuous satisfaction
of S by Z, which is reflected in the satisfaction §f; by Z. For example, we show that a mutant implementafipn
in which the value of a control signalis always flipped satisfies a specificatiSiiff the implementatiorf satisfies a
mutant specificatioss; in which the value of: is flipped.

Having the same formalism for the implementation and theifipation makes the establishment of the dualities
cleaner. In practice, designers often prefer to work withc#firations that are given in terms of temporal-logic
formulas. We show that the mutations and the notion of natioduality are carried over also to a setting in which
the implementation is given by a circuit and the specificatfogiven by a temporal-logic formula. Technically, this
is done by showing how most of the mutations we describe fouits have corresponding mutations in the temporal-
logic setting. For example, rather than always flipping takig of an observable signalin a circuit, we can negate
all its occurences in the formula.

Applications of the duality. Beyond the clean theoretical picture that the duality piesi it enables two important
applications. First, the duality leads to improved defoms of vacuity and coverage, solving, for example, the @bl
of detecting low coverage in universal specifications.

The second application has to do with the challenge of usowgrage information in order to automatically
generate improved specifications. Existing approachesvierage metrics return information about components that
are not covered. The way from this information to a new andrawpd specification is still long. Using the duality
between vacuity and coverage, we can easily and autonmgtitaive a specification that is tighter than the original
specification and that is still satisfied by the implemenotati Indeed, whenever satisfaction 8fby a mutantz,,
implies satisfaction of a (dual) mutas}; by Z, we can letS; serve as a tighter specification. In a similar way,
vacuous satisfaction is typically caused by absence ofa@&gdehaviors in the implementation. Applying to the
implementation a mutation that is dual to the one with whiabuity has been detected adds such behaviors.

We discuss both applications in Section 5. There, we dermatestow improvement of specifications can be used
in the synthesis of circuits that check themselves for trience of physical faults: a fault can be thought of as a
mutationy, and duality can be used to generate a specificatiothat is not satisfied b¥,,.

2 Definitions

A sequential circuitgircuit, for short) is a tupl€ = (I, 0, C, 6,4, p), wherel is a set of input signals) is a set of
output signals, and’ is a set of control signals that induce the state sp4cé Accordingly,d : 2/ — 22¢ \Disa
nondeterministic initialization function that maps evargut assignment (that is, assignment to the input sighaia)
nonempty set of initial states,: 2¢ x 27 — 2(2%) \ 0 is a nondeterministic transition function that maps evéayes
and input assignment to a nonempty set of possible succstsges, ang : 2¢ — 2° is an output function that maps
every state to the output signals that hold in it. It is regdithat/ N C' = I N O = . PossiblyO N C #), in which
case forallz € O N C ands € 2¢, we havexr € siff z € p(s). Thus,p(s) agrees withs on signals inC. Note
that the interaction between the circuit and its environniemmitiated by the environment. Once the environment
generates an input assignmerg 2!, the circuit starts reacting with it from one of the stateg(ii). Note also that
6(i) andé(s,i) are not empty for ali € 2/ ands € 2. Thus,C is receptive in the sense that it never gets stuck.
When|d(s)| = 1 and|é(s,i)| = 1 for all s € 2¢ andi € 2!, we say that’ is deterministic. Nondeterminism #h
ands reflects abstraction, and would be used wlienodels a specification. Then, the geif inputs may be a strict
subset of a richer set of inputs (with respect to wiidndé are deterministic). For example, if the full set of inputs
is {i1,i2} and the abstraction hidés (that it, I = {i1}), we may haveéi(s, {i1}) = {s’, s}, which abstracts the
deterministic transition§' (s, {i1}) = {s'} andd’(s, {i1,i2}) = {s"}, over{iy,iz}.

Given an input sequende= i, iy, ... € (2/)“, a computation of on¢ is a wordw = wq, w1, ... € (21Y9)

2Although we refer to our formalism asdircuit, it is not hardware-specific. The formalism idfinite-state transducerand the theory we
develop here applies also to analysis of software and oylsterss where finite-state transducers find application.

such that there is a path= s, s1,... € (2¢)“ in C that can be traversed while readifigandw describes the input
and output along this traversal. FormaHy,< 6(io) and for allj > 0, we haves; 1 € p(s;,4;) andw; = i; U p(s;).
The language of, denoted(C) is union of all its computations.

The notion of refinement between circuits can be formalizefiath the linear and the branching framework.
Consider two circuitd = (1,0,C,0,0,p) andS = (I',0',C", 6,8, p'). We refer toS andZ as a specification
and its implementation. Accordingly, we assume tha€ I, O’ C O, andC’ C C. In settings such as hierarchical
refinement, the implementation may still not be precise, sailow nondeterminism in both andS. In the linear
framework, we say thaf is containedin S, denotedZ C S, if L(Z) C L(S). In the branching framework, we
define refinement by means sifnulation A binary relation” C 2¢ x 2¢ is asimulationfrom Z to S if for all
(s,s") € H, the following conditions hold: (1)(s) N O" = p/(s’), and (2) For each € 2!, andt € §(s, i) there is
t' e §'(s',iNI")) suchthatd (¢, t'). Consider a simulatioff fromZ to S. We say thaf is initial with respect taZ
andsS if for every input assignmerite 2! and states € 0(i), there is a stat¢’ € ¢/(in1’) such thatH (s, s’). We say
thatS simulatesZ, denotedZ < S, if there is an initial simulation fronT to S. Intuitively, it means thaS has more
observable behaviors thdn Formally, every universal property over the observalgaais!’ U O’ that is satisfied in
S is also satisfied i [5, 14].

It is easy to see that the union of two simulations is a sinmutatHence, the maximal simulation frofto S,
denotedH, is the union of all simulations fro to S. Note thatS simulate<Z iff 7 is initial with respect t& andS.

The branching approach is stronger, in the senseZthatS implies thatZ C S, but not vice versa. For a recent
survey comparing the linear and branching approaches 8ge [2

We say thaf satisfiesS, denoted’ |= S if Z C S (in the linear approach) & < S (in the branching approach).

Temporal-logic formulas can be translated to circuits. Ai lformula is translated to a circuit, such that
L(Cy) contains exactly all computations that satigfyf27]. A CTL* formula is translated to a circuif,, that
is a maximal modefor 1, in the sense it simulates all circuits that satighf18]. In Section 3 below, we define
mutations on circuits and temporal-logic formulas. For aatian p on circuits, we say that a mutatignr;, on
temporal-logic formulagorrespondgo . if the circuit obtained by applying to C is equivalent to the circuit of
the temporal-logic formula obtained by applyipg;, to ¢». Note that correspondence can be defined in both the
linear framework, in which case equivalence correspondist® equivalence, or in the branching framework, where
equivalence corresponds to two-way simulation.

3 Mutations of Circuits, and their Analysis

In this section, we describe sample mutations to apply tocaitj and analyse the satisfaction of mutant specification
by mutantimplementations. We partition the mutations tedftlasses: mutations that remove behaviors (Section 3.1)
modify behaviors (Section 3.2), and add behaviors (Se&i8h For most of the mutations, we also describe corre-
sponding mutations for a setting in which the specificatga temporal-logic formuld.We then describe a method
for controlling the pattern (over time) that faults indugithe mutations have occurred, and for applying mutations on
top of each other (Section 3.4).

Existing work suggests several definitions for vacuousfatiion, based on mutations to temporal-logic formulas,
and suggests several coverage metrics, based on mutationglementations. The mutations described here suggest
new helpful definition and metrics. Moreover, the dualityvbeen mutations, which we present in Section 4, relates
mutations for coverage with mutations for vacuity; it ereahlfor example, vacuity checks that are geared towards the
detection of physical failures.

3.1 Removing behaviors

In this section we describe mutations that remove behawibtfse circuit. Consider a specificatidghand an imple-
mentationZ such thatZ |= S. If there is a mutans’ of S such thatS’ has fewer behaviors tha®and stillZ = &,
we say thafZ vacuously satisfieS. Note that removal of behaviors fro&may result in a mutant circu#’ that is

3Note that specifications given by temporal-logic formulefer only to input and output signals. Thus, some of the riantatwe describe, and
which refer to pure control signals, do not have correspundiutations in the temporal-logic setting.

not receptive. In this case, no implementation satisfiedNote that in order foS’ to be receptive, the original circuit
S has to be nondeterministic, and removal of behaviors ontyedeses the amount of nondeterminism.

3.1.1 Removing a given set of behaviors

Consider a circui€. A restrictionfor C is a pair of functions: : 2/ — 92 andrs : 2¢ x 2 — 229, The circuit
obtained fromC by applying the restrictiodry, rs) is C' = (I,0,C, 0,5, p), where for alli € 2! ands € 2¢,

we have that'(i) = 0(i) \ ro(i) andd’(s,i) = 0(s,4) \ rs(s,4). Thus,C’ is obtained fronC by decreasing its
nondeterminismaccording torg andrs. We say that a restrictiofyy, r5) retains receptivenessf C if the circuit

obtained fronC by applying the restrictiokiry, r5) is receptive.

3.1.2 Removing behaviors that depend on a signal

A mutationC’ in this class is parameterized by a signat 7 U C'\ O and is obtained frord by removing transitions
that depend on.. Formally,C’ = (I,0,C,#',¢, p), whered’ andd’ depend on the type af and are defined as
follows.

e If x € I, then for allt € 2¢ andi € 27, we havet € ¢'(i) iff t € 0(i \ {x}) N O(i U {}), and for alls, t € 2¢
andi € 27, we havet € §'(s,i) iff t € 6(s,i \ {z}) N d(s,iU {z}).

o If x € C'\ O, we restrictC’ to states; \ {z} ands U {z} that agree on their output and transitions. Formally, for
allt € 2¢ andi € 21, we have{t\ {z},tu{z}} C &' (i) iff {t\{x},tU{z}} C 0(i) andp(t\{x}) = p(tu{z}).
Also, for all s, t € 2¢ andi € 2/, we have{t \ {z},t U {z}} C &§'(s,4) iff {t\ {x},tU{z} C(s\ {z},9) N
5(s U{},) andp(t \ {x}) = p(t U {x}).

Note that we could have excludedrom the set of signals a’. For the sake of uniformity among the different
mutations, we leave the set of signals to agree with thét afhis convention of leaving the signal set unchanged is
going to be the case for other mutations also, and it is caaméwhen mutations are applied one on top of the other.

Remark 1 Note that the caseis purely an output signal is not interesting, as the behafia circuit always depends
on the pure output signals. If we want to define a mutant witpeet to a signat € C' n O, the mutant would be
receptive only if we define it with respect to a sub@ébf the output signals such thatz O’.]

Remark 2 For a Kripke structures’ with state space® x 2/, one can define an abstraction based on predicates in
C' U I. The mutations described above correspond to the case trietraiention to predicates ovétU I \ {z}, and
define the abstraction so that there is a transition from atradi state: to an abstract stat€ iff all concrete states
that correspond ta have transitions to all the concrete states that corresgmoa(d [l

When the specification is given by a temporal-logic formua,remove behaviors that depend on a value of an
observable signat € I by replacing a formula) by the formulavzy. This mutation, which coincides with the
semantic approach to vacuity of [2], captures better thgtioh of removing behaviors that depend on a signal, and
can also be applied to output signals. It does not corresfmtiae mutation defined for circuits, and a corresponding
mutation on circuits for it involves “alternating” circgi{transitions may be conjunctively related to other trizmss
— these that correspond to the dual value of the signal).

3.1.3 Restricting a signal to a value

A mutation in this class is parameterized by a signal C' U O and it restricts the value afto 0 (restrictingz to 1 is
similar) by disabling transitions in which the valuewofs changed td. Formally,C’ = (1,0, C,¢,d, p), where (the
casex € [is notinteresting, as thefi is clearly not receptive)

e If x € O, then only states for whichz ¢ p(t) are reachable. Thus, for all € 2¢ andi € 2!, we have
(@) =00@)N{t:x ¢ p(t)}, andd’(s,i) = d(s,0) N{t:x & p(t)}.

e If z € C, then only stateg for which z ¢ t are reachable. Thus, for all € 2¢ andi € 2/, we have
0'(i) =0(@)N{t:z & t},andd’'(s,i) = §(s,i) N{t: = & t}. Note that we could have defined the set of control
signals ofC’ to beC'\ {z}, asz plays no role irC’ and states € 2¢ such that: € ¢ are not reachable.

Note also that whem € C N O, the definitions coincide.

Restricting the value of to 1 is similar: whenz is an output signal, only stateswith « € p(t) stay reachable,
and whenz is a control signal, only stateswith « € ¢ stay reachable.

For the setting of a temporal-logic formula, restricting thalue ofz € O to 0 amounts to replacing all the positive
occurences (that is, occurrences in a scope of an even nwhbegations) ofc by false. Likewise, restricting the
value ofz to 1 amounts to replacing all the negative occurrenceslof false. To see that these mutations correspond
to the mutations on the circuit, recall that state€jnare associated with subformulas:f and the language of a
state associated with a sebf formulas is exactly all computations that satisfy all themulas inS. Accordingly, the
temporal-logic mutation that replaces positive occuresmufz by false causes the language of states that contain a
positive occurrence af to be empty, which amounts to removing the transitions tonthe

3.1.4 Analyzing vacuous satisfaction

We now analyze the different types of vacuous satisfactiat the different mutations induce. Our definition of
vacuous satisfaction issiate-basegeneralization of temporal-logic vacuity. With tempoiagic, one looks for sub-
specifications that do not affect the satisfaction of thegjpation in the system. Technically, we say that a subfdamu
o of 1) does not affect the satisfaction®fin C if all formulas obtained from) by replacingp by some other formula
are still satisfied i€ [3]. In fact, when we talk about a particular occurrencepan 1, it is enough to check the most
challenging replacement fgr [19]. For example, in) = G(req — Fgrant), the most challenging replacement of
grant is false. Indeed,grant does not affect the satisfactianin C if C also satisfies the formul@—req, obtained
from ¢ by replacinggrant by false.

We say that a mutatiop does not affect the satisfaction&ty 7 if S, is receptive and = S,,. We analyze each
of the mutations that remove behaviors in Appendix B, an@ ex only highlight some mutations and describe the
general common intuition in these mutationuifemoves behaviors, and does not affect the satisfactiSrbgtzZ, then
we can conclude that each of the behaviors difiat have been removed is either not exhibited in the impieation,
or is subsumed by another behavior of the specification. @fcgpdar interest are maximal restrictions, restrictions
that contain a path, restrictions that remove self-lodps,nhutations that are parameterized by specific signals, and
restrictions that correspond vacuity in temporal logic.

Let us elaborate on the latter restrictions, as it shows dhatstate-based framework subsumes the traditional
temporal-logic-based framework. Replacements of subniitas by the most challenging replacement corresponds to
removal of transitions in a specification circdif obtained by a translation of an LTL formula[27]. Intuitively,
since the states @f;, are associated with sets of subformulagoit is not hard to map mutations ihto mutations in
Cyt

For simplicity, we assume that the formula is in positive atemn form, in which case the polarity of all sub-
formulas is positive, thus the most challenging replacernsdalse. In typical translations, each state&5a$ associated
with a set) of sub-formulas of). The set) is consistent, in the sense that a disjunctian ¢- is in Q iff at least one
of 1 andys is in @, and a conjunction; Ay- is in Q iff both ¢ andp, are inQ. The temporal operators ininduce
similar consistency requirements that are reflected in &imition of the transitions. Accordingly, given a circdit
for ¢, it is possible to obtain fron$ a circuitS’ for the formula in whichy is replaced by false by removing states
and transitions in which consistency of disjunctions ietakare of byp and consistency of conjunctions depends on
. For example, given a circuit faf = G(—req V F grant), settinggrant to false amounts to disabling transitions to
states) such that-req VV Fgrant is in Q but —req is not in@Q. Note that the new circuit does not limit the value of
grant, but its value no longer affects the satisfaction-eéq vV F grant.

4The user may prefer to construct a circuit for the revisethfda directly. The point we make here is that our state-b&sedework subsumes
the temporal-logic-based framework, as replacementstsfaunulas by false corresponds to removal of transitionthé specification circuit.

3.2 Modifying Behaviors

In this section we describe mutations that modify the bedvanf a circuit. Consider a specificatighand an imple-
mentatiorZ such thafZ = S. If there is a mutan’ of S such thatS’” has different behaviors thahand stillZ = &,
or there is a mutarit’ of Z such thafZ’ has different behaviors thahand stillZ’ = S, we say thaf diversely satisfies
S.

3.2.1 Forcing a signal to be flipped or get stuck

We start with forcing a signal to be flipped. A mutation in thiass is parameterized by a sigaaland the mutation
flips the value ofr; i.e., it takes the opposite value of what it is supposedke.t&or a sefX, an element € X, and a
setY C X, we usetwin, (Y') to denote the set obtained frorhby dualizing the value aof. Thus,z € twin, (Y) iff
x €Y. Given a circuiC and a signat, the circuitin which the value aof is always flipped i€’ = (1,0, C, ¢',§, p'),
where

e If z € I,thenp’ = p, and for alls € 2¢ andi € 27, we have?’ (i) = 0(twin, (i)) andd’ (s, i) = (s, twin,(i)).
e If €0\ C,thend = 0,5 =6, and for allt € 2¢, we havey' (t) = twin, (p(t)).

e If x € C, thenp’ = pand for alls € 2¢ andi € 2!, we haved'(i) = {twin,(t) : t € 6(4)}, and
8 (s,i) = {twing(t) : t € §(s,i)}. Thus, wheneve€ has a transition to a state the mutationC’ goes
instead totwin, (t). Note that whilep’ = p, the change in the transition causes a change in the ob$ervab
output.

Note that no matter what the type ofs, the circuitC’ is receptive.

For the setting of a temporal-logic specification, flippitg tvalue ofx € I U O amounts to negating all the
occurences af. To see that the temporal-logic mutation corresponds titieeon the circuit, recall that wheh, is
in a state associated with a setf subformulas of), its output isS U O, and it gets to the state by reading the input
assignmenf N S.

A mutation that forces a signal to get stuck is parametetigea signalk: € 7 U O U C and it forcese to get stuck
at0 (forcing x to get stuck at is similar) by acting as i = 0 regardless of its actual value. Thus, the mutation is
similar to the one that flips the value of only that here the value is flipped only when= 1. As there, the mutant
circuit C’ stays receptive. Note that unlike the mutation describegkiction 3.1.3, here we do not disable transitions
after which the value of: is 1, but rather we flip the value af in the destination state. The formal definitions of the
mutation are given in Appendix A.1.

3.2.2 Forcing a delayed or a prematured output

We start with introducing a delay. A mutation in this clasases a delay (of a fixed number of cycles, specified by the
user) in the output of the circuit. For that, the mutant syskas additional control signals that remember the output
assignment that should have been output in the previousgy€iven a circui€ and a numbek > 1 describing the
delay, the mutatior®” of C in which ak-cycle delay is introduced has control signéls= C U (O x {1,...,k}).
Intuitively, each state corresponds to a tupler, . .., o) € 2¢ x 29 x --- x 29, wheres; maintains the output of
the state visited in the previous cycte, maintains the output of the state visited before that, arahsantil o, which
maintains the output of the state visited befreycles. The transition function is such that for@l oy, ...,0%) €

2¢ x 29 x ... x 29, andi € 2!, we have that'((s, 01, ...,0%),i) = &(s,i) x {{p(s),01,...,06_1)}. The full
description of the construction can be found in Appendix.Atds not hard to see that the output©fis indeed a
k-cycle delay of the output @f. For example, wheh = 1, we have thasg, sy, so, ... € 29 is a path inC with output
00,01,092, ... iff <So, @>, <81, 00>, <82, 01>, ... € 2¢ x 2%isa path inC’ with OUtpUt(Z), 00,01, ...

We proceed to introducing prematureness. A mutation indlass causes a premature (by a fixed number of
cycles, specified by the user) output of the circuit. For,thia mutant system has additional control signals that
maintain a guess for the output assignment expected in thesfuThe mutant circuit outputs the guessed output, but
it gets stuck in computations in which the guess turns outmbt valid. The full details of the construction can be
found in Appendix A.2.

For the setting of a temporal-logic formula, forcing a detdiyt cycles in the output corresponds to replacing all
occurrences of all signals € O by X*xz, whereX is the temporal next-time operator. Likewise, forcing atpoitito
be premature by cycles corresponds to replacing all occurrences af O by Y*z, for the temporal previous-time
operatory.

3.2.3 Inserting perturbation

This class of mutation contains several sub-classes, sdéiban the same principle, namely inserting small local per-
turbation to the circuit. The mutations correspond to comffaalts. We mention here some examplegpekmutation
mutationis parameterized by a permutation= (i1, io, . . ., i) in II; (the set of permutations of lengkf) and when-
ever it is activated, it permutes the néxéutput assignments accordingsto Technically, this involves a combination
of the delay and look ahead techniques used abowtuttering mutations parameterized by an integerand when-
ever it is activated, it ignores the input and stays in theesatate fork cycles (the unbounded version corresponds to
adding self loops, and is mentioned in Section 3.3.1). Binalnoise mutations also parameterized by an integer
and, whenever it is activated, it causes the cycle to outfitrary output for the next cycles.

Various perturbations can also be applied to temporaklfmgimulas. One can add thé andY temporal operators
arbitrarily, replaceX by F' in order to inserting unbounded delay, User U in order force a bounded or an unbounded
stuttering, replace assertions about the present by eadétigs in order to insert noise, and so on.

3.2.4 Analyzing diverse satisfaction

Our definition of diverse satisfaction is related to the wayearage is measured in formal verification. There, one
looks for components of the circuit that do not play a rolehia $atisfaction of the specification. The standard way to
check coverage is to look for components that can be modifiddstll satisfy the specification [16, 10]. Mutations
that change the output of states are studied in [8]. Here awve §eneralize the idea to flips in the input and the control
signals, in both the specification and the implementatiod,tzave suggested new mutations. The new mutations are
related to physical faults that cause flips of signals, causgnal to get stuck at a value, or cause a delay in the output.

3.3 Adding behaviors

In this section we describe are mutations that add behatddiee circuit. Consider a specificatidhand an imple-
mentatiorZ such thatZ |= S. If there is a mutant’ of S such thafZ’ has more behaviors thahand stillZ’ = S, we
say thatZ loosely satisfies.

3.3.1 Adding a fixed set of behaviors

We first define arbitrary addition of behaviors, dual to themogal of behaviors in Section 3.1.1. Consider a circuit
C. An extensiorfor C is a pair of functionsy : 2/ — 229 andrs : 2€ x 21 — 22, The circuit obtained from

C by applying the extensiofry, ;) is C' = (I,0,C,¢",68',p), where for alli € 2/ ands € 2, we have that
0'(1) = 0(i) Urg(i) andd’(s,4) = d(s,4) Urs(s,i). Thus,C’ is obtained fronC by increasing its nondeterminism
according tay andrs.

3.3.2 Freeing a signal

A mutation in this class is parameterized by a signahd it adds t& behaviors that agree with existing behaviors of
C on everything but. Formally,C’ = (I,0,C,#',¢', p), where

e If z € I, thenforallt € 2¢ andi € 27, we havet € ¢/ (i) iff t € 0(i \ {«})UO(i U {z}). Also, for alls, t € 2¢
andi € 27, we havet € §'(s,i) iff t € §(s,i \ {z}) Ud(s,i U {x}).

e If z € C, then for allt € 2¢ andi € 2!, we havet € ¢'(i) iff {¢t\ {z},t U {z}} N6(i) # 0. Also, for all
s,t €20 andi € 2, we havet € &' (s, 1) iff {t\ {a},tU {2}} N (8(s\ {x},4) Udz(s U {z},1)) # 0.

e If z € O\ C, we need not construct a mutant and just ignorehen we check for containment or simulation.

When the specification is given by a temporal-logic formtha, corresponding mutation frees a signa 7 U O
by replacing a formula) by the formula3zt. Indeed, this amounts to increasing the nondeterminisgyirby
ignoring the value of: in transitions.

3.3.3 Analyzing loose satisfaction

Our definition of loose satisfaction suggests a new appréacioverage, which is dual to the approach taken in
vacuity. Rather than modify components of the implemeatgative add to it new behaviors, When we add behaviors
that are dual to these exhibited by a component, we can sath#haomponent is covered if the circuit with the dual
behavior no longer satisfies the specification. We analyzk ehthe mutations that add behaviors in Appendix B,
and here we only highlight some mutations and describe thergecommon intuition in these mutation:ifadds
behaviors, and does not affect the satisfactio§i inf Z, then we can conclude that each of the behaviofs, dhat have
been added is allowed by the specification, or is subsumeddthar behavior of the implementation. Of particular
interest are maximal extensions, extensions that contaailg restrictions that add self-loops, and mutationsahat
parameterized by specific signals.

3.4 Controlled injection of mutations

The mutations described in Sections 3.1, 3.2, and 3.3 quonekto a persistent fault, in the sense that the environment
interacts withC’, rather than withC, from the initialization of the communication ad infiniturin addition, only a
single type of fault is injected. In this section we genematur definitions of mutations and make it possible to céntro
the pattern (over time) in which mutations happen. In additit is possible to apply mutations one on top of the other.
For example, the user can generate a mutant circuit in whishestricted to O at least once in all 5-cycle windows and
y is restricted tal at least once in all 4-cycle windows. The mutation can beiagpiniversally (in all computations)

or existentially (in at least one computation).

We give the details of the construction in Appendix A.3. Esisdly, the original circuit is combined with a circuit
Cmut that specifies the pattern in which the mutations are injediach letter in the alphabet 6f,,; is an ordered
subset of the set of possible mutations (for some combingtibe order of application of mutations is important) and
the combination witl applies the faults locally.

We note that it is often desirable to specify fault-pattaha are not safety properties. Then, one has to introduce
fairness taC,,.,;, which then induces fairness also in the controlled-faetsion ofC. Accordingly, the containment
and simulation relations we used for satisfaction shoultebtaced by fair containment and fair simulation.

Also note that taking the product 6fwith C,,,; changes not only the language®#tccording to the mutations
but, unles<,,,,; is deterministic, also changes its branching structurecofdingly, one should either work with a
deterministicC,,,..¢, or follow the linear approach.

4 Relating Vacuous, Diverse, and Loose Satisfaction

In this section, we relate vacuous, diverse, and loosefaetiisn. We show that many of the mutations suggested in
Section 3 can be paired withdual mutation and that satisfaction of a mutated specification is reltdeshtisfaction
by a dually mutated implementation. We begin with the deénibf dual mutation.

Definition 1 Let M,, M,,,, and M,. be the sets of mutations that respectively add, modify, amdve behaviors. For
a circuit C and a mutatiory, letC,, denote the mutant circuit obtained frafrby applying.

Then, mutationg € M, U M,,, andji € M, U M,, are fully dual if, for all implementation® and specifications
S, we have thaf, = Siff Z = S;.

Definition 1 refers to both the linear and branching appreachnd requires the implication betwegnl= S and
7 = S; to be two-sided. Mutations may also partially dual, with only one-sided implication or with the duality
being valid in only the linear or the branching approachdual mutationis either a fully-dual or a partially-dual
mutation. The notion of duality in general can be understofbllows. Consider a sét of behaviors. We can add to
7 behaviors inA that agree witht, and get a mutant implementation that still satise®ually, we can remove from

S behaviors inA that are not present i, and get a mutant specification that is still satisfiedZbyThe interesting
phenomenonis that the above two dual sets of behaviors catntéi@ed by means of mutations described in Section 3.
The rest of this section presents theorems on duality folesateresting mutations.

We start with persistent faults and then study its genextidin to arbitrary injection patterns. We first consider
diverse satisfaction and show that a mutation that flips #beevof a signal is self-dual.

Theorem 1 Consider a specificatio§ and an implementatiof for it. Let Z’ and S’ be the mutations of and S,
respectively, obtained by flipping the value of a signalf x € TUO \ C thenZ C §'iff 7/ C S andZ < &' iff
I'<S.IfzxeCandO C C,thenZ < §'iff 7' < S.

Proof: LetZ = (I,0,C,0z,6z,p1), T = (I,0,C, 04,87, py), S = (I,0,C, 0s,5s, ps), andS’ = (I,0, C, 0ls, 8, pls).

We start with the case € I. Assume thaf C &', and letw’ = w),w},... € (2IV9)* be a computation of
7. Letw = 27 U OJ with zJ e 2f ando € 29, Then,w = wq,wr,... € 2199, with w; = twin, (i 7) U 0 is
a computa‘uon off, and, by the assumpuon also a computatloﬂofNow by the definition ofS’, it follows that
w" = wy,wy,... €2 withw! = twmw(twmw(/)) U o} is a computation of. Since for alli € 2" we have that
twing (twing (1)) = i, we have that” = w’, thusw’ |s also a computation & and we are done. The other direction,
namely showing thaf’ C S impliesZ C S’ is identical.

Assume now thaf < S’. Let’® be an initial simulation relation frorf to S’. We claim thatH is an initial
simulation relation fronZ’ to S. Sincep; = p}; andps = p', proving thatH is a simulation froniZ’ to S, we only
have to prove that for all ands’ such that(s, s’), and for alli € 27 andt € & (s, %) there ist’ € ds(s’,4) such that
H(t,t'). We first prove that{ is initial with respect t&’ andS; that is, for alli € 2! andt € 0/ (i) there ist’ € 0s(i)
such that(t,t).

Consider an input assignmeint 2/ and a state € 0/-(i). By the definition 0¥, we know that € 07 (twin, (i)).
SinceM initial with respect taZ andS’, there is a staté € 6'(twin,(4)) such thatH(¢,t’). By the definition of
¢, we know that’ € 6s(i), and we are done. We now proceed to prove #ias a simulation. Let ands’ such
that (s, s’). Consider an input assignmeint 2 and a staté € §/(s,i). By the definition ofd’, we know that
t € 0z(s, twing(i)). SinceH is a simulation front to &', there is a statef € 05(s', twing (4)) such thatH (¢, t’). By
the definition ofd’;, we know that’ € ds(s,), and we are done.

The other direction, namely showing tH&t < S impliesZ < &’ is identical: an initial simulation relation from
7’ to S is also an initial simulation relation frofto S'.

We proceed to the casec O \ C. Assume that C S, and letw’ = w},w},... € 2IY° be a computation
of 7'. Letw) = i; U o; with i/, € 2f ando) € 20, Then,w = wo, wy, ... € 21VY9, with w; = i, U twing (0j) is
a computation ofZ, and, by the assumption also a computation;ofNow by the definition ofS’, it follows that
w" = wy,wy,... € 29, with w/ =i} U twmw(twmw(7)) is a computation of. Since for allo € 2° we have
that twmw(twmw(o)) = o, we have that” = v/, thusw’ is also a computation of and we are done. The other
direction is identical.

Assume now thaf < &’. Let H be an initial simulation relation frord to S’. We claim thatH is an initial
simulation relation frontZ’ to S. Sinced; = 67, s = 05, 67 = 07, andds = J%, we only have to prove that
for all s ands’ such thatH(s, s"), we havep,(s) = ps(s’). SinceH is a simulation fronZ to S, we know that
pz(s) = ps(s’). Recall thap’(s) = twin, (pz(s)) andpls(s’) = twing(pz(s’)). Hencepz(s) = pls(s’) implies that
pz(s) = twing(ps(s’)), which implies, by the definition ofwin,, thattwin, (pz(s)) = ps(s’), which implies our
goal, namely’.(s) = ps(s’). The other direction is identical.

We now move to the casee C andO C C'. In Example 3 below, we demonstrate that the requirerdeit C is
essential. Assume that< S’. Let’H be an initial simulation relation frofito S’. LetH, = {{twin, (t), twing(t')) :
H(t,t')}. We claim thatH,, is an initial simulation relation fron’ to S. We first prove that ifs ands’ are such
that H, (s, s’), thenpZ(s) = ps(s’). SinceH,(s,s’), thenH (twin,(s), twin,(s")). Therefore,oz(twing(s)) =
ps(twmm()). SinceO C C, we have thabz(twmx()) = twing(pz(s)) and pls (twing (s')) = twing (ps(s")).
Hence twin, (pz(s)) = twing (p’s(s’)), implying thatpz(s) = ps(s’). Now, sincep’, = pz andps = ps, the latter
implies thatp’.(s) = ps(s’), and we are done.

We now prove that, is initial with respect taZ’ andS. Consider an input assignmeintc 2! and a state
t € 0%7(i). By the definition off’, we know thattwin,(¢t) € 6z(i). Since™ initial with respect toZ and S,

10

there is a stat¢/ € 05(:) such thatH(twin,(t),t"). The statetwin,(t') then satisfies bottwin,(t') € 6s(i) and
H.(t, twin, (")), and we are done.

Itis left to prove thatH,, is a simulation. Let ands’ be such thatt, (s, s’). Consider an input assignmeng 27
and a state € ¢/(s, 7). By the definition ofé’,, we know thattwin, (t) € dz(s, i). SinceH is a simulation froni to
&', thereis astaté € §%5(s’,) such that(twin,(t), t'). The statdwin, (t') then satisfies bothwin, (t') € ds(s’, 7)
andH, (¢, twin,(t')), and we are done.

The other direction is identical.
O

Note that for the case € C, we require thaD C C'. In Example 1 we show that the requirement is essential.

Example 1 In Figure 1 below, we describe an implementatiowith I = {z}, C = {z,y}, andO = {z,v}. We
describe the value of on the edges, the valuesofandy in the two-bit vector at the top of each state, and the value
of v is at the bottom of each state. For example, on inpsit0, the implementatioff goes to a state with = 0 and
y = 1, in whichv = 1. A specificationS for Z is described at the right. A bold edge stands for edges frostatks
(including a self loop). Thus, for example, no matter what trrent state is, the specification can move, on input
z = 1, either to a state withk = y = 0, in whichv = 0, or to a state withe = 1 andy = 0, in whichv = 0. Itis
easy to see that the nondeterministic specification has bedraviors than the implementation, tti$= S (in both
the linear and branching approaches).

Consider now the mutatiaf’ of S that flips the value of the (observable) control signalt is easy to see that the
value ofz does not affect the behavior 8fand thatS’ = S. On the other hand, flipping the value oin Z results
in new behaviors. For example, on input= 0, the implementatio’ goes to a state in which = 0, which is not
possible inZ, and is not allowed by. Thus,Z |~ S.

T
0o 1 S=8" Jo 1
X&) &)
0 1
0 ° A

1" 0 1
e &)
RN
HOERGIE
0 1
0
Figure 1: A counter example for the case C, all states are reachable, imtZ C.

Note also that iiC’ C O, thenH(s, s") implies thats = s’. Thus, in this case, if all the states that are reachable
in Z' are also reachable iB, the flip mutation is self-dual. On the other hand, statesahanot reachable ifi and
become reachable i are problematic, as we show in Example 2.

Example 2 In Figure 2 below, we describe an implementatiowith I = {z}, O = {z, v}, andC = {z}. The state
with = 0 is not reachable iff. It is easy to see th&t = S (in both the linear and branching approaches). Flipping
2 in § does not chang§, thusZ = S’. On the other hand, flipping in Z makes the state with = 0 andv =1
reachable. Since the state with= 0 in S hasv = 0, we have thaf’ |~ S.

Next, we study duality between a delayed implementation apdemature specification. As demonstrated in
Example 3, changing the timing of the outputs may changerdedhing nature of the circuit. This is why Theorem 2
is valid for the linear approach but not for the branchingrapph.

Theorem 2 Consider a specificatio§, an implementatio, and an integek > 1. LetZ’ be the mutation of in
which ak-cycle delay is introduced, and I&f be the mutation of in which ak-cycle prematureness is introduced.
Then,Z’ C S implies thatZ C S’

11

S: 0,1 0,1
0 G

Figure 2: A counter example for the case C C O, yetO Z C.

Proof: LetZ = (I,0,C,0z,6z,p1), T =(I1,0,C,0%,0%,p%), S = (I,0,C,0s,ds,ps),andS’ = (I,0,C, 0%, 55, p’s).

Consider a computatiom = wo, w1, ... € (2/Y9)« of Z. Recall that there is an input sequerce g, iy, ... €
(2h)» and a paths = sg,s1,... € (2¢)“ in Z such thatr can be traversed while readiggandw describes the
input and output along this traversal. By the definitionZéf the paths’ = (sq,0,...,0), (s1,pz(s0),0,...,0),
(s2, pz(s1), pz(80)0,...,0),...isapathinZ’. SinceZ’ C S, there is a path = t,t1,...in S that can be traversed
while readingt and for whichp’Z ((s;, pz(sj—1), ..., pz(sj—k))) = ps(t;) forall j > k. Sincep’({s;, pz(sj-1), ..
,pz(8j-k))) = pz(sj—k), itfollowsthatpz(s;) = ps(t;+x) forall j > 0. Then, however, the path= (to, ps(t1), ..., ps(tk)),
(t1, ps(ta), ..., ps(te+1)), (ta, ps(ts), ..., ps(tk+2)), - .. is a path ofS’ that can be traversed while readihgSince
Ps((tj; ps(tjvr), .-, ps(tj+r) = ps(tjsr)) forall j > 0, we gotthapz(s;) is equaltops((t;, ps(tj+1), - - -, ps(tjvr))
forall j > 0, and we are done.

[

Note that only one direction of the duality is established ireorem 2. The other direction is correct up to the
labeling of the firstt output assignments in each computation. Indeed, shhaoes not restrict the first output
assignments] C S’ only impliespost-stabilizatiorcontainment o’ in S, namely containment ignoring the firkst
output assignments. By making the definition of the delayatioth more complicated, one can work this through and
have full duality in the linear approach.

In Example 3 below, we demonstrate that changing the timfrigeooutputs may change the branching nature of
the circuit.

Example 3 In Figure 1 below, we describe a circditand its1-cycle delayC’ (note thatl = (J). The output of a state
zy inC'isy. While L(C') = {a - w : w € L(C)}, the branching structure ¢f is substantially different than that of
C, andC’ is does not simulate a circuit obtained fréhiby adding an initial state labeled lay

SROs IS 3
c@?@g C Q

Figure 3: Introducing a delay changes the branching strectu

We now turn to study vacuous versus loose satisfaction. téereve do not have full duality, and the implication
that holds is in the opposite direction from that one in Tle@o2. We discuss below the intuition for this difference.

Theorem 3 Consider a specificatios and an implementatiof for it. Let S’ be the mutation of obtained by
removing behaviors that depend snand letZ’ be the mutation of obtained by freeing:.. If z € I, thenZ C &’
implies thatZ’ C S andZ < &’ impliesthatZ’ < S. If x € C'\ O andO C C, thenZ < &' implies thatZ’ < S.

12

Proof: LetZ = (I,0,C,0z,6z,p1), 2T =(I,0,C,0%,0%,p%), S = (I,0,C,0s,6s,ps),andS’ = (I,0,C, 0%, 55, p's).

We start with the case € I. Assume thal C &', and letw’ = wj,w,... € 2/YC be a computation of
7' Letw) = i} U of with i} € 2" ando; € 2°. Then, there is a computatian = wo, wy, ... € 2" of 7 such
thatw; = i;U0] ford; € {i’\{x},4;U{x}}. By the assumptiony is also a computation &’. Now, by the definition
of &', it follows that all computations” = w(, wY, ... € 2%9, forwhichw! = i/ Uo; with i’/ € {i;\{z}, i;U{z}}
are computations &. Since for allj > 0 we have that; € {i;\ {=},i;U{z}}, independentof whethey = i’ \ {z}
ori’; U {z}, it follows thatw’ is also a computation & and we are done.

Assume now thaf < &’. Let H be an initial simulation relation frord to S’. We claim thatX is an initial
simulation relation fronZ’ to S. Sincep; = p}; andps = p', proving thatH is a simulation froniZ’ to S, we only
have to prove that for al’ ands such that(s’, s), and for alli € 27 andt’ € §/(s’,) there ist € ds(s, i) such that
H(t',t). In first prove thatH is initial with respect td’ andS; that is, for alli € 27 andt’ € 0%.(i) there ist € 0s(i)
such that(¢', t).

Consider an input assignment 2 and a state € 6%.(). By the definition o®’;, we know that € 67(i \ {z})U
67(i U {z}). Assume without loss of generality tha€ 6,(i \ {x}). SinceH is a simulation fron¥ to &', there is a
statet’ € 0%5(i \ {«}) such that(¢,'). By the definition ofd’s, we know that’ € 0s(i \ {z}) N6s(i U {z}). Since
eitheri \ {x} =ioriU{z} =i, we gotthatthere is € 0s(i) such that(¢,¢’), and we are done.

We now proceed to prove thét is a simulation. Let ands’ such thatH(s, s’). Consider an input assignment
i € 2/ and a state € &/ (s, i). By the definition o6, we know that € dz(s,i\{z})Udz(s,iU{z}). Assume without
loss of generality that € 67 (s, \ {z}). SinceH is a simulation front to &', there is a stat& € d’5(s’,4\ {«}) such
that(t,t'). By the definition ofd’s, we know that’ € ds(s’,4\ {z}) Nds(s’,i U {z}). Since eithes \ {x} =i or
iU {z} =4, we got that there is there 5 € ds(s, %) such that(¢, '), and we are done.

We proceed to the casec C andO C C. Assume thaf < &', and letH C 2¢ x 2¢ be the maximal simulation
relation fromZ to §’. We claim that’ = {(¢,t') : H(t\ {z},t') or H(t U {z},¢')} is an initial simulation fron¥’ to
S. We first prove that{’ is initial. Consider an input assignment 2/ and a state € 0’(i). By the definition of’,
we know that{¢ \ {z},t U {x}} Né(i) # 0. Assume without loss of generality that {z} € 6z(i). SinceZ < &',
there ist’ € 0'(¢) such that(¢ \ {z},t'). By the definition o, we have that’ € 6s(i). Also, by the definition of
H’, we also have that{’(¢,t'), and we are done.

Itis left to prove thatH’ is a simulation. Let ands’ such thaf(s, s’). Consider an input assignment 27 and a
statet € §7(s,). By the definition 0B, we know tha{¢\ {z}, tU{z}} N (dz(s\{z},7)Udz(sU{z},4)) # O Assume
without loss of generality that {«} € dz(s\{z},). SinceH is a simulation fronT to S’, thereis a staté € d5(s’, i)
such that(¢,t'). By the definition o, we know that’ € ds(s’\ {z},i)Nds(s'U{x},%). Since botlH (¢t\ {z},')
andH(tU {z},t'), we are done. Finally, sin@@ C C, andz ¢ O, we have thap/(s\ {z}) = pZ(sU{z}) = pz(s).
Also, ps(s’) = pls(s’). HenceH'(s, s") implies thatp’(s) = ps(s’).

O

Note that duality does not hold for the linear approach indasez is a control signal. The reason is that a
path inZ’ need not correspond to a pathZn If, for example,dz(sg,41) = s1 \ {z}, éz(s1 U {z},i2) = s3, and
{s3\{z}, ssU{z}} Ndz(s1\{z},i2) = 0, thenss is reachable from, in Z’ by reading; andis, but neithers; \ {x}
nor sz U {x} are reachable from, in Z by readingi; andis. In the branching approach, on the other hand, simulation
guarantees that intermediate states are related too, acd teality exists.

Remark 3 The challenges in relating the mutations in Theorem 3 aeggélto the challenges in reachability analysis
in abstractions. Indeed, the mutant specificafiénorresponds to an under-appoximatiosofind the mutant imple-
mentatioriZ’ corresponds to an over-approximatiorfofTheorem 3 relates satisfaction of an under-approximation
the specification to satisfaction by an over-approximadittme implementation. U

In Example 4, we show that the other direction (thatZis,= S impliesZ = S’) does not hold, in both the
linear and branching approaches, even if we apply bisinwrlahinimization to the specification before we remove
behaviors.

Example 4 In Figure 4 below, we describe an implementatiband a specificatios with I = {z}, O = {v}, and
C = {y}. The value ofy is described at the top of the states and the value aifthe bottom. Note thaf = S.

13

Adding toZ behaviors that dualize the behavioraofesults in an implementatidfi in which an initial transition to
bothy = 0 andy = 1 is enabled with bothx = 0 andz = 1. Since the two stateg = 0 andy = 1 havev = 0,
we have thaf’ = S (in both approaches). On the other hand, the specific&tiarbtained by removing behaviors
that depend on is not receptive, thug |~ S’. The example may seem weak, as the states) andy = 1 of S are
bisimilar. Note, however, we could strengthen it by addimg tdifferent behaviors from the state= 0 andy = 1.
For example, we could add a transition frgm= 0 to a new state in which the value ofis 1. Adding behaviors to
the specification does not violate the satisfactiooin Z’, and shows that the problem exists even if we require the
specification not to have bisimilar states.

A counterexample for the casec C is similar. Let] = {z}, O = {v}, andC = {z}, and letZ = S go to both
2 = 0andx = 1 on inputz = 0. Also, the value ob agrees with that af. While the mutanf’ coincides withZ, the
mutantS’ is not receptive, as the states= 0 andz = 1 have different outputs. One can strengthen the example by
addingv to C', makingO C C.

=S 0) 7" 0.1 0.1
DOJO CERN6T0
Figure 4: A counter example for the directiéh = S impliesZ = S’

Recall that some of the dualities are not full. We considdreth the linear and the branching approaches to
specification and it turned out that in some cases, dualisternly in one of the approaches. Intuitively, the linear
approach has the advantage that mutations may change ryothenket of computations, but also the branching
structure of the circuit. On the other hand, the branchimgagch has the advantage of being local, which is useful
for mutations parameterized by control signals.

We also considered both directions of the implication in Bigbn 1. It turns out that full duality goes only with
diverse satisfaction. On the other hand, while vacuousfaation implies loose satisfaction, the other directiorsl
not always hold. To see the intuition behind this, recalt tteruous satisfaction hints on absence of behaviors that th
designer expects to find in the implementation — behaviatstbuld cause the mutant specification not to be satisfied.
Applying the dual mutation to the implementation adds thedwaviors. On the other hand, loose satisfaction suggests
that we can add to the implementation behaviors that agréeosiginal behaviors on everything but These new
behaviors can be simulated (only) by behaviors of the spatidin that do depend an so vacuous satisfaction is not
guaranteed.

Finally, the dualities presented in Theorems 1, 2, and 3 tefpersistent faults. The dualities are maintained in
the presence of a controlled injection of faults if the fawte injected to the specification and the implementation at
thesame cycledf, for examplez is flipped inS’ in the 5th cycle, it has to be flipped #i also at the 5th cycle. Note
that a persistent fault is a special case of the above. Ontltiee lband, if the injection of faults in the specification and
implementation follows the same pattern-ciratijt,; (see Section 3.4), but the languageCgf,; is not a singleton,
the dualities are, in general, no longer valid.

5 Discussion and Experimental Results

We described a state-based approach to vacuity and covaraiyjshowed that when the implementation and the
specification are both modeled as circuits, vacuity and emeare dual. We now describe some applications of this
duality.

First, amongst the new coverage metrics and vacuity defirstihat duality suggests, there is one that is of partic-
ular interest. As discussed in previous work [11], covenagérics that are induced from simulation-based coverage
often involve a disabling of a behavior. For example, an &dapof branch coverageo model checking involves
model checking mutations of the implementations in whicinches are disabled. Thus, the mutant implementation

14

has fewer behaviors and is guaranteed to satisfy all urdspecifications (i.e., specifications that apply to alldeh

iors, as in linear temporal logic) that the original implertation has satisfied. This is problematic, as we need t@asse
the role of a componentin the satisfaction of a specificatianis clearly satisfied in a mutant implementation without
this component. This problem has been addressed [11] bkiclipwhether the satisfaction of the specification in the
mutant implementation has become vacuous. The dualitydsstwoverage and vacuity we present here suggests that
this solution coincides with one that captures better owiition of coverage: a behavior of the implementation is-cov
ered by a universal specificatioratidingto the implementation the dual behavior results in a mutaptémentation

that no longer satisfies the specification.

In addition, the duality suggests, for the first timegasible, automatable methodology for tightening spesific
tions One of the popular examples for the effectiveness of caeeiman implementation containing a computation
in which a request is followed by two grants. Such a compartagatisfies the specification “every request is followed
by a grant” and coverage information, which reveals the tlaat each of the two grants can be flipped, is likely to
urge the designer to tighten the specification to one thalfiresja correspondence between the requests and the grants.
All this is very nice, but the way from the actual output of twerage process (a list of uncovered elements) to the
realization that some uncovered elements are related (as ase with the two grants), and then to a tighter specifi-
cation, is long. Returning more meaningful coverage infatiom to the user is a challenging problem. One approach
is to arrange the information gathered by the coverage idthgoin helpful ways, such as returning computations that
contain many uncovered states. The approach taken heréeiedt. Applying the dual mutant to the specification
automatically generates a tighter specification. In thevaloase, the designer works with a “flip grant once” mutation,
and applying the dual flip to the specification teaches hirhgbme computations also satisfy a specification in which
requests are followed by two grants. This is not the end oftbey, as the application of the dual mutation results in
a mutant specification that is satisfied in the implementatibhus, it is not going to immediately detect bugs. The
mutant specification, however, and the fact it is still $atd is of great help to the designer in manually tightening
the specification, as it directly points to the unexpectathbir® In this sense, the dual specification plays a role that
is similar to the one played by a counterexample — while itsdoet directly suggest a repair to an erroneous imple-
mentation, it is of great help in understanding where theras: We plan to investigate this relation between tighter
specifications and counterexamples further and check wh#ib duality between coverage and vacuity studied here
is derived from a more general duality, namely the one beatveegram repair and tightening of specifications.

5.1 Experimental Results

We conclude by illustrating two practical use of the duakfyecifically of Theorems 1 and 2.

5.1.1 lllustration of Vacuity from Coverage

The first experiment illustrates how useful vacuity infotioa can be obtainedbr free once coverage has been
checked. On an implementation of the Peripheral InterconBas (PI-BUS) from the texas-97 benchmarks [25],
we checked an LTL property of the for@@(¢ = 2 = 1), and found it to hold even when a persistent flip was
performed orx. This implied that the implementation also satisfi@tty —> x = 0), and thus tha&—¢, computing
the same result that vacuity checking would.

We elaborate on this experiment below. The specificationtefést, denoted, checks the read operation: in the
absence of an error or timeout, thiest bit of the master’s data buffer should have the same valtieed 1st bit of the
data that the slave sends out at the same cycle. In &Tik the formula

G ((slave.state = ADDRESS V slave.state = DATA_WAIT) A (slave.acknowledgment = RDY)

A (slave.READ = 1) A (slave.dataout[31] = 1) A (slave.SEL = 1) = (master.datain[31] = 1))

50ur framework applies to other settings in which the implataton and the specification are described using simitanddism. In particular,
in scenario-based specifications [15], mutating a spetificalirectly suggests a repair to the implementation.

15

whereslave.state is the state of the slave interface FS&lave.acknowdgement is the acknowledgement signal
from slave to masteglave.READ is the read request from master to slave, ahalve.SEL indicates whether this slave
is selected by the master.

Let i be the mutation that persistently flips the valuemakter.datain[31] andZ be the original implemen-
tation. In our coverage analysis, = S. By Theorem 1, we havé = S;, wherey is the mutation of flipping
master.datain[31]in S. CombiningS andS;, we get a new specificatia$y :

G - ((slave.state = ADDRESS V slave.state = DATA_WAIT) A (slave.acknowledgment = RDY)
A (slave.READ = 1) A (slave.dataout[31] = 1) A (slave.SEL = 1)>

which is satisfied byZ. This is the same as the antecedentSdfeing always false, and hence indicates vacuous
satisfaction ofS in Z. Specifically,S is vacuously satisfied becauseave.SEL is never high in the implementatidh

5.1.2 Monitoring Faults in a Router Design

The setting for our second experiment is the synthesis ofiiterthat monitor themselves for the occurrence of physica
faults, such as soft (transient) flips in latches. The got synthesize monitors (for, say, temporal-logic progsiti
that detect such faults locally within a module, before thatfpropagates all the way to the output of the circuit, so
that local error recovery can be performed.

Our case study was a version of a chip multiprocessor roetgded in Verilog [24]. The router has two input and
two output ports; a block diagram of the router is given indf&@5. There are four main modules of the router. The
first, called thanput controller, buffers incoming flits, determines their destination partd interacts with aarbiter
module in order to reserve an output port. In Peh’s desigh B¢ reservation of an output port is performed on
receipt of a head flit. Thereafter, all body flits and tail fire directed to the output port without incurring any furthe
latency. The arbiter is fair, assigning priorities to inpotts based on a simple round-robin scheme. The remaining
modules are thencoderandcrossbar which contain logic to copy flits to the output port from timput port that has
been assigned that output port. The router’s function isrectiincoming packets, calleftts, to the correct output

input
port O req
BUFO alloc
ARBITER ENCODER
. BUF1 resp
glé)rttltl select
INPUT flit 0
CONTROLLER output port (
CROSSBAR
flit 1 output port :

Figure 5:Chip multiprocessor router block diagram. There are four main modules: the input controller, the arbit
the encoder, and the crossbar. Not all interconnectionstenen.

port, within a latency bound & cycles. The arbiter module of the router mediates acce$®toutput ports based on
a fair round-robin scheme.

The Verilog was automatically translated to an SMV modelicltwas instrumented to latch an incoming flit at
a single, non-deterministically chosen cycle on each portport i, we track this latched flit with the control signal
latched_input_flit,. The control signalatched_a_flit; is a flag that starts &t and is permanently set tb

16

after an incoming flit is latched. The output flit at pgrtat any cycle, is stored iflit_out;. The overall router
specification can thus be written as the LTL prop@rty

8
G(latched_a_fliti = \/ X*(1atched_input_flit, = flit_outj))
k=1

If a transient bit flipy, occurs in the priority state bit of the arbiter module, theabproperty will not hold
because the flip makes the arbiter unfair long enough thafiitrerrives at the output port later than the specified
latency bound. This was verified using Cadence SMV. Howdherfransient fauli; did not violate the following
local property specified on the request/grant lines of arfitodule for porj: G(request, = \/i:1 X*grant,).

Treating the arbiter module as the implementafigrthe above temporal-logic specification&sand a4-cycle
delay fault in thegrant, output signal as a mutation we found thafZ,, |= S. Using Theorem 2, we obtaifi = Sy,
wherer makesgrant, premature byt cycles inS, yielding the propertyG(request, — Vi:l Xkgrant,). We
found that this property catches the transient bit flig.e.,Z,, = S;. Moreover,Z = S;. We can thus usé; to
synthesize a monitor that catches transient errors in thiteamodule.

In general, the effectiveness of using duality to tightescsiications depends greatly on the choice of the mutation
used and the available duality results. For future work, {@a po study more mutations and extend the set of duality
results.

Acknowledgments

This work was supported in part by the Gigascale SystemsaRes€ocus Center, one of five research centers funded
under the Focus Center Research Program, a SemicondusieaiRk Corporation program.

References
[1] M. Abadi and L. Lamport. The existence of refinement magpi TCS 82(2):253—-284, 1991.

[2] R. Armon, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, Femeyer, and M.Y. Vardi. Enhanced vacuity
detection for linear temporal logic. Froc 15th CAY2003.

[3] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficiertattion of vacuity in ACTL formulas.FMSD,
18(2):141-162, 2001.

[4] L. Bening and H. FosterPrinciples of verifiable RTL design — a functional codindesgupporting verification
processesKluwer Academic Publishers, 2000.

[5] M. C. Browne, E. M. Clarke, and O. Grumberg. Charactewinite Kripke structures in propositional temporal
logic. TCS 59:115-131, 1988.

[6] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, an&.Wardi. Regular vacuity. IfProc. 13th CHARME
LNCS 3725, pages 191-206. 2005.

[7] M. Chechik and A. Gurfinkel. Extending extended vacuityy Proc. 5th Int. Conf. on Formal Methods in
Computer-Aided Desigh.NCS 3312, pages 306—321, 2004.

[8] H. Chockler and O. Kupferman. Coverage of implementaiby simulating specifications. Froc. 2nd IFIP
TCS volume 223JFIP Conf. Proceedingpages 409—-421. Kluwer Acad. Publishers, 2002.

[9] H. Chockler, O. Kupferman, R.P. Kurshan, and M.Y. Vaiipractical approach to coverage in model checking.
In Proc 13th CAYLNCS 2102, pages 66—78, 2001.

6There is one such property for each of the four input-outjut pairs(i, j), but by symmetry, we need to check it for only such pair.

17

[10] H. Chockler, O. Kupferman, and M.Y. Vardi. Coverage riostfor temporal logic model checking. Proc. 7th
TACASLNCS 2031, pages 528 — 542, 2001.

[11] H. Chockler, O. Kupferman, and M.Y. Vardi. Coverage riestfor formal verification. IrProc. 12th CHARME
LNCS 2860, pages 111-125, 2003.

[12] E. M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao.flefent generation of counterexamples and witnesses
in symbolic model checking. IRroc. 32th DAC pages 427-432. IEEE Computer Society, 1995.

[13] E. M. Clarke, O. Grumberg, and D. Pelédodel CheckingMIT Press, 1999.
[14] O. Grumberg and D.E. Long. Model checking and modulaifieation. ACM TOPLAS$16(3):843—-871, 1994.

[15] D. Harel, H. Kugler, and A. Pnueli. Synthesis revisitg@enerating statechart models from scenario-based
requirements. lirormal Methods in Software and System ModelldgCS 3393, pages 309-324, 2005.

[16] Y. Hoskote, T. Kam, P.-H Ho, and X. Zhao. Coverage edtiomafor symbolic model checking. IRroc. 36th
DAC, pages 300-305, 1999.

[17] O. Kupferman. Sanity checks in formal verification.llith CONCURLNCS 4137, pages 37-51, 2006.

[18] O. Kupferman and M.Y. Vardi. Modular model checkirfgroc. Compositionality WorkshopNCS 1536, pages
381-401, 1998.

[19] O. Kupferman and M.Y. Vardi. Vacuity detection in temmpbmodel checkingSTT& T, 4(2):224-233, 2003.
[20] R.P. KurshanComputer Aided Verification of Coordinating Procesgegnceton Univ. Press, 1994.
[21] S.S. Lam and A.U. Shankar. Protocol verification viagjection. IEEE TSE 10:325-342, 1984.

[22] N. A. Lynch and M.R. Tuttle. Hierarchical correctness@fs for distributed algorithms. IRroc. 6th PODC
pages 137-151, 1987.

[23] S. Nain and M.Y. Vardi. Branching vs. linear time: Serieal perspective. IfProc. 5th ATVALNCS 4762,
2007.

[24] L.-S. Peh. Flow Control and Micro-Architectural Mectisms for Extending the Performance of Interconnection
Networks. PhD thesis, Stanford University, August 2001.

[25] Texas-97 benchmarkist t p: / / enbedded. eecs. ber kel ey. edu/ Respep/ Resear ch/ vi s/ t exas-97/ .

[26] S. Tasiran and K. Keutzer. Coverage metrics for funlovalidation of hardware design$EEE Design and
Test of Computerd 8(4):36-45, 2001.

[27] M.Y. Vardi and P. Wolper. Reasoning about infinite corgtions. Information & Computation115(1):1-37,
1994.

A Mutations

A.1 Forcing a signal to get stuck

A mutation in this class is parameterized by a signa I U O U C and it forcesr to get stuck a6 (forcingx to get
stuck atl is similar) by acting as if: = 0 regardless of its actual value. Thus the mutation is sinbidlahe one that
flips the value oft, only that here the value is flipped only whenr= 1. As there, the mutant circui¥ stays receptive.
Note that unlike the mutation described in Section 3.1.8; e do not disable transitions after which the value of
is 1, but rather we flip the value af in the destination state. Formalt/, = (1,0, C,¢',¢', p), where

e If x € I, theny’ = p, and for alls € 2¢ andi € 27, we have?’ (i) = 0(i \ {z}) andd’(s,i) = §(s,i \ {x}).

18

e If €0\ C,thend = 0,5 =6, and for allt € 2¢, we havey/(t) = p(t) \ {x}.

e If z € C, thenp’ = pand foralls € 2¢ andi € 2!, we have?'(i) = {t\ {z} : t € 0(i)}, and&'(s,i) =
{t\ {z} : t € (s,4)}. Thus, whenevef has a transition to a statethe mutatiorC’ goes instead to\ {z}.

Stickingz at1 is similar, and is done by replacingby = U {1}.
For the setting of a temporal-logic formula, sticking théuesofx € 7UO to 0 amounts to negating all the positive
occurences af. Likewise, stickingr to 1 amounts to negating all its negative occurrences.

A.2 Introducing Delay and Prematurness

Given a circuitC and a numbet > 1 describing the delay, the mutation®in which ak-cycle delay is introduced is
C'=(1,0,C",0,4,p), where

e C'=CU(Ox{1,...,k}). We refer to states a’ as tuplegs, o1, ...,0%) € 2¢ x 20 x --- x 20, whereos;
maintains the output of the state visited in the previousssye maintains the output of the state visited before
that, and so on, unti,, which maintains the output of the state visited beforycles.

e Foralli € 2/, we have tha’(i) = 6(i) x 29 x --- x 29. Thus, the output in the firdt cycles is arbitrary. The
user can choose a different initialization to the new cdrsignals.

e Forall (s,o1,...,0,) € 2¢ x 29 x ... x 29, andi € 2!, we have that'({s,01,...,0k),i) = §(s,i) X
{<p(8)3017"'70k*1>}‘
e Forall(s,oq,...,0%) €2 x 29 x --- x 29, we have thap'((s, 01, ...,0k)) = 0.

Given a circuitC and a numbek > 1 describing the prematureness, the mutatio@ of which ak-cycle prema-
tureness is introduced® = (I,0,C", ¢, ¢, p'), where

e C'=CU(O x{1,...,k}). We refer to states a¥’ as tupless, o1, ...,0%) € 2¢ x 20 x ... x 29, where
o1 maintains a guess for the output of the next statg, of, maintains a guess for the output of the state after it,
and so on.

e Foralli € 27, we have thaf’ (i) = 0(i) x 29 x 29 x - .- x 29, Thus, the initial transitions nondeterministically
guess the output for the firststates of.

e Forall (s,o1,...,0k) € 2¢ x 20 x ... x 29, andi € 2!, we have that'((s,o1,...,0%),i) is (4(s,i) N
p~ Y1) x {{o2,...,0%)} x 29. Thus,C’ goes only to successors ofor which the guess maintained in
turns out to be valid, and it updates the guesses by shiftiagntand adding a guess for the state€db be
reached aftek transitions.

e Forall(s,oy,...,04) € 2¢ x 29 x --- x 29, we have thap'({(s, o1, ..., 01)) = 0. Thus, the output of a state
is the guess for the output of the stateCdb be reached aftédr transitions.

Note that the output of’ is indeedk-cycle prematureness of the outpuitbfFor example, whek = 1, we have
thatsg, s1, 52, ... € 2¢ is a path inC with outputog, 01, 02, . . . iff {s0,01), (51,02), (s2,03),... € 2¢ x 29 is a path
in C’ with outputos, 02, 03,

Note also that when a state @f maintains a wrong guess, it may not have outgoing transitidhusC’ may not
be receptive. We still refer t6’ as a receptive circuit, as for all states 2¢ and computation that starts a, the
circuitC’ contains a statés, o, . .., 01,) € 2¢ x 29 x - x 29 that maintains a guess that is correctfoand along
which the interaction of’ with the environment does not get stuck.

19

A.3 Controlled Injection of Mutations

In this section we give the details of the generalization wf definitions of mutations to make it possible to apply
mutations one on top of the other and to control the patterar(ime) in which mutations happen.

Since the method involves applications of faults one on fap®other, it is convenient to assume that the mutant
circuit has the same set of signals as the original one. Bhisie for most of the mutations described above, and it
is not hard to adjust the definition of mutations or the carcdton here to the case the set of signals does change.
Another technical assumption we make for is the existenaefahctionapply that takes an initialization function,

a transition function, or an output function, and a type otation, and returns the mutated initialization function,
transition function, or output functions. It is not hard &eghat the descriptions of mutations in Sections 3.1, 3.2,
and 3.3 induce such a function.

For some sets of mutations, the order of application is npoirant. For example, if we remove behaviors that
depend onx: and then remove behaviors that depend otine result is identical to the circuit we get if we first rereov
behaviors that depend gnand then remove behaviors that depend:oin general, however, the order is important.
For example, ift € C and the statesandt are such thaft \ {z},t U {z}} C (s \ {z},7) Nd(sU{z},q), for some
input assignment € 27, and we first remove behaviors that depend:@nd then stick: to 0 by disabling transitions
that go to states in which the valueois 1, thent \ {z} € ¢'(s\ {z}). But if we first stickz to 0 and then remove
behaviors that depend an thent \ {z} & ¢’(s \ {z}). Note that this example is for two mutations both of which
remove behaviors.

Accordingly, the fault pattern that the user specifies dessrnot only the set of mutations that occur at each
moment in time, but also the order in which they are appliest. i/ be a set of signals that encode ordered subsets of
the set of all possible mutations. rAutation patterris a safety languagé,, ... over M. For example, if there are two
possible mutationsp, andms, thenM encodes elements of the §€b, (m1), (ma), (m1, m2), (ma, m1)} andL .
may be the set of all words in which every subword of length&taims a letter i (m1), (m1,m2), (ma,m1)} and a
letter in{(m2), (m1,m2), (m2, m1)}. Such a language corresponds to a pattern in which a fawltingm, occurs
in all 5-cycle windows, the same for a fault inducing, and the fault may occur at the same cycle, in which case the
order of application is not important. A natural way to déser,,..; is by a looping automaton ovef’. Since we are
going to combine the fault pattern with the original cir¢uie describe this automaton by means of a cir€it: with
input M and outpuf{ T} such that,,,.; outputsT as long as the sequence of mutations read so far can be edtende
to a word inL,,,:. Formally,£,,...; is given by amutation-pattern circuit,,.; = (M, {T}, Q, Omut, Smut, Pmut) iN
which a wordw over M leads to a state for which p,,,,..(¢) = {T } iff w can be extended to a word ify,,.,;.

For a circuitC and a mutation-pattern circut,,,; = (M, {T}, Q, Omut, Srmut, Pmut), We define thecontrolled-
fault version ofC as the circuitC’ = (I,0,C U @, 8,4, p’) defined below. Let{m;,...,ms} be the set of all
possible mutations. For an ordered sequenee (m;,,m,,, ..., m;) of mutations, and an initialization functigh
we useapply(6, o) as an abbreviation afpply(- - - apply(apply(0, m;,), m;,) -+, m;). Thatis,apply(6, o) is the
initialization function obtained fror by first applyingm;, on it, thenm;,, and so on untiln;,. The notation for the
transition function and the output function is similar. Now

o 0'(i) = Uycom{c Uq : ¢ € apply(0,0)(i), ¢ € Omut(0), andppui(q’) = {T}}.
e ¥ (cUq,i) =Uyeam{cUq : ¢ € apply(d,0)(c,i), ¢ € dmut(q,0), andpmui(q’) = {T}}.

e p'(cUq) = apply(p,o)(c).

B Analyzing Vacuous and Loose Satisfaction

In this section we give the details for the analysis of vasend loose satisfaction for the different mutations dbscti
in Sections 3.1 and 3.3.

B.1 Analyzing vacuous satisfaction

Removing a given set of behavior§Ve say that a restrictiofry, rs) of S does not affect the satisfaction 8fin Z if
(rg, rs) retains the receptiveness&fandZ = &', for the circuitS’ obtained fromS by applying(rg, rs). Consider a

20

restriction(rg, rs) of S that does not affect the satisfaction®fn Z. If ¢t € ry(4), then we can conclude that each of
the behaviors of that starts with input and in state is either not exhibited in the implementation, or is subsdme
by another behavior of the specification. Likewise, & r5(s, 7), then we can conclude that each of the behaviors of
S that reaches and continues té on inputi is either not exhibited in the implementation, or is subsdimganother
behavior of the specification. While the user can checkiamlyitestrictions, some restrictions are of particulagiast.

We say that a restrictiofrg, r5) is maximalif (ry, r5) does not affect the satisfaction8fn Z and every restriction
(ry, %) that strictly containgrg, rs) does affect the satisfaction. Note that there may be sewexsimal restrictions.
Maximal restrictions are interesting as they correspontigiotest specifications that are based®mand are still
satisfied byZ.

Some restrictions correspond to physical failures. Fonede, if a restriction that removes self loops from the
circuit (thatis,rs(s, i) = {s}) does not affect the satisfaction8fin Z, we can conclude that the specification allows
unbounded delays that are actually fulfilled in the impletagan in the present. The connection of restrictions to
physical failures is more interesting for mutations thatifioor add behaviors, as such mutations are applied to the
implementation.

Another class of interesting restrictions are these thataio a path (rather than isolated transitions). Thusgther
is a sequence, i1, . . ., i, Of input assignments and a sequerges, . . ., iy, Of states, such thay € ry(io) and for
all0 = j < k, we haves; 1 € r5(s;,7;41). Such a restriction that does not affect the satisfactiafi iof Z points to
a linear behavior that is allowed by the (abstract) spetifinaand is still either not exhibited by the implementation
or subsumed by another behavior of the specification.

Removing behaviors that depend on a signalssume that the signal is such that the mutatio§’ obtained by
removing behaviors that depend onas defined in Section 3.1.2, is receptive, Znig- S’. Then, further abstraction

of the specification (namely, one in whighis abstracted) is possible. This hints on a problem: eitherspecifier
does not fully understand the specification, as he expettisio play a role, or the design does not exhibit behaviors
that distinguish between the different valuescaind that the specifier expects the design to exhibit.

Restricting a signal to a valueAssume that the signal is such that ifZ = S’ for the mutationS’ obtained by
restrictingz to 0, as defined in Section 3.1.3. Where O \ C andS’ is defined over the same getof output signals
asZ, we can conclude that no states in whick- 1 are reachable ifi. We note that such a conclusion may be reached
by performing simpler checks thdn= S’. Whenz € C'\ O, it may still be the case that the implementation reaches
states withe = 1, but these states agree on their label with states of théfigtions in whichz = 0. Thus, behaviors

of the implementations in which = 1 exist also in the specification, but there they are exhitatedg states in which

z = 0.

B.2 Analyzing loose satisfaction

Adding a given set of behaviorsWe say that an extensighng, rs) of S does not affect the satisfaction &fin Z if
T’ = S, for the circuitZ’ obtained fromZ by applying(ry,rs). Consider an extensiofry, s) of S that does not
affect the satisfaction of in Z. If ¢t € ry(i), then it means that a behaviors that starts with inpand in statet
and then continue with an existing behavior of the circuitrirstater does not violate the specification. Thus, such a
behavior is exhibited in the specification, or is subsumedrmther behavior of the implementation.

As in the case of removal of behaviors, of particular inter@se extensions that contain a path. Thus, there is a
sequencey, i1, . . ., i Of input assignments and a sequengess, . . ., i; Of states, such thay € ry(ip) and for all
0 =j < k,we haves; 1 € rs(s;,i;41). Such an extension that does not affect the satisfacti¢hiofZ points to a
linear behavior that can be added to the implementatiorowitiiolating the specification.

Another interesting type of extensions are these that déitbes to the circuit. IfZ’ = S, we can conclude that
the the specification actually allows an unbounded, andlplgsafinite stuttering in the implementation.
Adding behaviors that depend on a signalAssume that the signal is such thatZ’ | S, for the mutationZ’ of
7 obtained by adding behaviors that dualize the behaviar, @s defined in Section 3.3.2, afid= S’. Then, the
specification does not restrict the behaviors to the pdatictalue ofz that the designer has implemented. This hints
on a problem: either the specification should be tightenethendesign disables behaviors expected by the designer.

21

