
Single and Multi-CPU Performance Modeling for
Embedded Systems

Trevor Conrad Meyerowitz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-36

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-36.html

April 14, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Single and Multi-CPU Performance Modeling for Embedded Systems

by

Trevor Conrad Meyerowitz

B.S. (Carnegie Mellon University) 1999
M.S. (University of California at Berkeley) 2002

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Alberto Sangiovanni-Vincentelli, Chair

Professor Rastislav Bodik
Professor Alper Atamturk

Spring 2008

1

Abstract

Single and Multi-CPU Performance Modeling for Embedded Systems

by

Trevor Conrad Meyerowitz

Doctor of Philosophy in Engineering - Electrical Engineering and Computer

Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

The combination of increasing design complexity, increasing concurrency, grow-

ing heterogeneity, and decreasing time to market windows has caused a crisis for

embedded system developers. To deal with this problem, dedicated hardware is

being replaced by a growing number of microprocessors in these systems, making

software a dominant factor in design time and cost. The use of higher level mod-

els for design space exploration and early software development is critical. Much

progress has been made on increasing the speed of cycle-level simulators for mi-

croprocessors, but they may still be too slow for large scale systems and are too

low-level (i.e. they require a detailed implementation) for effective design space

exploration. Furthermore, constructing such optimized simulators is a significant

task because the particularities of the hardware must be accounted for. For this

reason, these simulators are hardly flexible.

This thesis focuses on modeling the performance of software executing on em-

bedded processors in the context of a heterogeneous multi-processor system on

chip in a more flexible and scalable manner than current approaches. We contend

that such systems need to be modeled at a higher level of abstraction and, to ensure accu-

racy, the higher level must have a connection to lower-levels. First, we describe different

2

levels of abstraction for modeling such systems and how their speed and accuracy

relate. Next, the high-level modeling of both individual processing elements and

also a bus-based microprocessor system are presented. Finally, an approach for au-

tomatically annotating timing information obtained from a cycle-level model back

to the original application source code is developed. The annotated source code

can then be simulated without the underlying architecture and still maintain good

timing accuracy. These methods are driven by execution traces produced by lower

level models and were developed for ARM microprocessors and MuSIC, a hetero-

geneous multiprocessor for Software Defined Radio from Infineon. The annotated

source code executed between one to three orders of magnitude faster than equiv-

alent cycle-level models, with good accuracy for most applications tested.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair

i

To my family.

ii

Contents

1 Introduction 1
1.1 Traditional Embedded System Design 2

1.1.1 Traditional Hardware Development Flow 2
1.1.2 Traditional Software Development Flow 4
1.1.3 Problems with the Traditional Flow 4

1.2 Motivating Trends for System Level Design 5
1.2.1 Complexity and Productivity 5
1.2.2 Multicore Processors . 6
1.2.3 Explosion of Software and Programmability 8

1.3 System-Level Design . 9
1.3.1 The Y-Chart and Separation of Concerns 9
1.3.2 Platform Based Design . 11
1.3.3 Models of Computation . 13
1.3.4 System Level Design Flows . 17
1.3.5 Transaction Level Modeling . 19
1.3.6 Metropolis . 21

1.4 Levels for Modeling Embedded Software 29
1.4.1 Computer Architecture Simulation Technologies 31
1.4.2 Processor Simulation Technologies for Embedded Systems . 32

1.5 Discussion . 34
1.6 Contributions and Outline . 35

2 Single Processor Modeling 37
2.1 Processor Modeling Definitions . 38

2.1.1 Functional Definitions . 38
2.1.2 Architectural Definitions . 41

2.2 Processor Models . 47
2.2.1 High Level Overview . 47
2.2.2 Trace Format . 50

iii

2.2.3 Adding a Memory System to the Models 51
2.2.4 Model Limitations . 54

2.3 Case Study and Results . 54
2.3.1 XScale and Strongarm Processors 55
2.3.2 Accuracy Results . 55
2.3.3 Performance Results and Optimizations 58

2.4 Related Work . 61
2.5 Discussion . 63

3 Multiprocessor Modeling 64
3.1 Introduction . 66

3.1.1 Software Defined Radio . 66
3.1.2 the MuSIC Multiprocessor for Software Defined Radio 67
3.1.3 Prior Architectural Models in Metropolis 68

3.2 Architectural Modeling . 72
3.2.1 Modeling Computation and Communication 72
3.2.2 Modeling Cost and Scheduling 76
3.2.3 Modeling the MuSIC Architecture 79

3.3 Modeling Functionality and Mapping 83
3.3.1 Functionality . 83
3.3.2 Mapping . 85

3.4 Results . 88
3.4.1 Modeling Code Complexity . 88
3.4.2 Architecture Netlist Statistics 89

3.5 Discussion . 91

4 Introduction to Timing Annotation 94
4.1 Basic Information . 95

4.1.1 What is Annotation? . 95
4.1.2 Tool Flow . 95
4.1.3 Basic Definitions . 98

4.2 Annotation Platforms . 99
4.2.1 MuSIC Multiprocessor for Software Defined Radio 101
4.2.2 The XScale Microprocessor . 102

4.3 Related Work . 103
4.3.1 Software Tools . 103
4.3.2 Performance Estimation for Embedded Systems 104
4.3.3 Worst-Case Execution Time Analysis 106
4.3.4 Other Work . 107

4.4 Discussion . 107

iv

5 Backwards Timing Annotation for Uniprocessors 108
5.1 Single Processor Timing Annotation Algorithm 108

5.1.1 Construct Blocks and Lines . 109
5.1.2 Calculate Block and Line-Level Annotations 112
5.1.3 Generating Annotated Source Code 113

5.2 Implementation and Optimizations . 116
5.2.1 Memory Usage Optimizations 117
5.2.2 Trace Storage Optimizations 119

5.3 Uniprocessor Annotation Results . 121
5.3.1 Simulation Platforms Evaluated 121
5.3.2 Results with Identical Data . 122
5.3.3 Results with Different Data . 129
5.3.4 Annotation Framework Runtime 131
5.3.5 Analysis . 134

5.4 Discussion . 136

6 Backwards Timing Annotation for Multiprocessors 137
6.1 Introduction . 138

6.1.1 Motivating Example . 138
6.2 Handling Startup Delays . 139
6.3 Handling Inter-Processor Communication 143

6.3.1 Example with Inter-processor Communication Problems . . . 143
6.3.2 Ignoring Inter-processor Communication Delays 143
6.3.3 Characterizing Inter-Thread Operations 144
6.3.4 Handling Pipelining . 145
6.3.5 Why not analyze all of the processors concurrently? 146

6.4 Results and Analysis . 148
6.4.1 Results with Identical Data . 149
6.4.2 Results with Different Data . 150
6.4.3 Analysis . 152

6.5 Discussion . 153
6.5.1 Limitations . 153

7 Conclusions 155
7.1 Future Work . 156

7.1.1 Modeling . 156
7.1.2 Annotation . 157

7.2 Discussion . 159

Bibliography 162

v

Acknowledgments

First off I would like to thank my advisor, Professor Sangiovanni-Vincentelli, for

his guidance, support, insight, and patience over the years. I also want to thank

Professors Atamturk and Bodik for being the other readers of my dissertation and

for providing helpful feedback. I also want to thank the other professors on my

qualifying exam committee: Professors Atamturk, Keutzer, and Patterson.

A huge amount of thanks and gratitude goes to my great friend David Chin-

nery, who carefully proofread each of these chapters at some stage of development,

gave tough and helpful feedback, and also provided a huge amount of support

throughout this process. Alessandro Pinto read parts of this thesis, and provided

useful feedback, especially on an early version of the processor definitions. While

not touching it directly, Julius Kusuma, has been an excellent friend and taskmas-

ter who pushed me forward at different stages while providing encouragement

and not-so softly forced me into the cult of LaTex, which I now totally appreciate.

Qi Zhu and Haibo Zheng also provided feedback on individual chapters.

I must acknowledge all of the people have participated in this work. Kees Vis-

sers provided the initial idea of using Kahn Process Networks for processor mod-

eling, and Sam Williams with whom the initial work was done. Qi Zhu and Haibo

Zeng made an extension of the models to a superscalar model. Min Chen exam-

ined quasi-static scheduling of the processor models. The multiprocessor mod-

eling was based upon the work of Rong Chen, was done in collaboration with

Jens Harnisch from Infineon. Abhijit Davare and Qi Zhu provided assistance with

mapping and quantity managers in Metropolis. Mike Kishinevsky and Timothy

Kam at intel were the industrial liasons for the uniprocessor modeling work. The

annotation work was done in collaboration with Mirko Sauermann and Dominik

Langen at Infineon. Useful discussions and background support was provided by

other members of the MuSIC SDR team at Infineon including: Cyprian Grassman,

Ulrich Hachman, Wolfgang Raab, Ulrich Ramacher, Matthias Richter, and Alfonso

Troya.

vi

I also want to highlight the excellent officemates that I’ve had: Luca Carloni

(Papa Carloni and Clash Expert), Satrajit ‘Sat’ Chatterjee (Programming and LTris

Guru), Philip Chong, Shauki Elassaad, Yanmei Li, and Fan Mo.

A number of people have had special impact on my graduate experience, and

I list them here. Ruth Gjerde and Mary Byrnes were always there for support

and guidance through the bureaucracy and the general struggles with graduate

school. Luciano Lavagno was the first person I met when visiting Berkeley, and

was always quick to respond with thoughtful and friendly feedback. Jonathan

Sprinkle’s model integrated computing class was most interesting. The FLEET

class run by Ivan Sutherland and Igor Benko, was inspiring and challenging. Pro-

fessor Kristofer Pister provided moral support and advice at a critical juncture.

I’ve had the pleasure to get to know a number of classmates, instructors, men-

tors, visitors, and friends while at Berkeley. They have enhanced the experience

with their friendliness, kindness, humor, and intelligence. These include, but

are not limited to: Alvise Bonivento, Bryan Brady, Robert Brayton, Christopher

Brooks, Mireille Broucke, Luca Carloni, Mike Case, Adam Cataldo, Bryan Catan-

zaro, Donald Chai, Arindam Chakrabarti, Satrajit ‘Sat’ Chatterjee, Rong Chen, Xi

Chen, David Chinnery, Jike Chong, Massimiliano D’Angelo, Abhijit Davare, Fer-

nando De Bernardinis, Douglas Densmore, Carlo Fischione, Arkadeb Ghosal, Gre-

gor Goessler, Matthias Gries, Yujia Jin, Vinay Krishnan, Animesh Kumar, William

Jiang, Edward Lee, Yanmei Li, Cong Liu, Kelvin Lwin, Slobodan Matic, Emanuele

Mazzi, Mark McKelvin, Andrew Mihal, Fan Mo, John Moondanos, Matthew Mosk-

ewicz, Alessandra Nardi, Luigi Palopoli, Roberto Passerone, Hiren Patel, Clau-

dio Pinello, Alessandro Pinto, William Plishker, Kaushik Ravindran, N.R. Satish,

Christian Sauer, Marco Sgroi, Vishal Shah, Niraj Shah, Farhana Sheikh, Alena

Samalatsar, Mary Stewart, Xuening Sun, Martin Trautmann, Gerald Wang, Yoshi

Watanabe, Scott Weber, James Wu, Guang Yang, Yang Yang, Stefano Zanella, Haibo

Zeng, Wei Zheng, and Qi Zhu. To anyone I left out: I apologize, and it was not in-

tentional.

vii

There have been a number talented and friendly administrators that have kept

me paid and sane over the years, they include: Jennifer Stone, Dan MacLeod,

and Jontae Gray, Lorie Mariano (BOOO!!), Gladys Khoury, Flora Oviedo, Nuala

Mattherson, and Mary-Margaret Sprinkle.

Computer support (and salvage) was provided by Brad Krebs, Marvin Motley,

and Phil Loarie. More than once did they save me from failed hardware, crashed

software, or my own mistakes.

I want to thank my parents and sister for their love, advice, and support through-

out this process. I also want to thank my grandparents for their love, for helping

me keep perspective, and for not asking “When again are you planning to finish?”

too often.

I also want to acknowledge a number of great friends that I’ve had outside of

the department who have helped me relax and reconnect with the real world. They

include: Carolina Armenteros, Ryan and Andrew Duryea, Tamara Freeze, Daniel

Hay, Lee Istrail, Ying Liu, Robin Loh, Dave Lockner, Cris Luengo, John and Ang

Montoya, Eleyda Negron, Pavel Okunev, Farah Sanders, and Mel Schramek. I am

sorry if I missed anybody on this list.

This research was funded from a number of sources including: SRC custom

funding from Intel, Infineon Corporation, the Gigascale Systems Research Center,

and the Center for Hybrid and Embedded Systems Software. CoWare donated

software licenses that enabled the annotation work, once a contract was negotiated

with the help of Eric Giegerich.

1

Chapter 1

Introduction

Embedded literally means ‘within’, so an embedded system is a system within

another system. An embedded system is a system that interacts with the real world.

Typically it reads inputs from sensors, performs some computation, and then out-

puts data via actuators. Examples of embedded systems include: cellphones, auto-

motive controls, wireless sensor networks, power plant controls, and mp3 players.

Embedded applications are constrained in ways that normal computer applica-

tions are not: many of them have realtime deadlines that must be met, and factors

such as power usage and system cost are of paramount concern.

This chapter begins by reviewing the traditional design flow for embedded sys-

tem design, including a discussion of why it is insufficient for today’s designs.

Then, Section 1.2 presents motivating trends pushing us towards using system

level design. After this, Section 1.3 reviews key elements of system level design in-

cluding platform-based design, transaction-level modeling and also a description

of the Metropolis system-level design framework. Section 1.4 presents different

levels of abstraction for modeling the performance of software running on an em-

bedded processor, which is critical for putting our work into context. Finally, the

contributions and ordering of this thesis are presented.

2

Register Transfer
Level Models

Logic Gates

Layout

Algorithmic Models

Transaction-Level
Models

Actual Gates

Abstract

Detailed

Specification

Implementation

Figure 1.1: Levels of abstraction for digital hardware design.

1.1 Traditional Embedded System Design

The traditional design flow for mixed hardware-software embedded systems

is to select an architecture, decide where in the architecture different pieces of the

application will be implemented, design the needed hardware and software pieces,

and finally integrate the pieces of system together. The next section presents the

traditional design flow for hardware. Then the traditional design flow for software

is described. Finally, problems with this approach are discussed.

1.1.1 Traditional Hardware Development Flow

Figure 1.1 shows common levels of abstraction for the design of digital hard-

ware, with the top level being an initial algorithmic specification, and the bottom

level being the mask layouts used for manufacturing. We classify Transaction-

Level Modeling (TLM) to be part of system-level design and describe it in depth in

Section 1.3.5.

Register Transfer Level (RTL) is the typical entry point for design, where the al-

gorithmic specification is manually translated into it. An RTL description specifies

the logical operation of a synchronous circuit, with functional blocks connected by

3

wires and registers. Verilog and VHDL are common Hardware Description Lan-

guages (HDLs) used for specifying designs at RTL-level.

HDLs have a synthesizable subset that can be automatically translated into lay-

out via the following design flow. The first step is to perform technology indepen-

dent optimizations on the HDL netlist to generate an optimized logical netlist con-

sisting of AND-gates, inverters, and registers. After this, technology dependent

optimization maps the logical netlist onto a set of actual gates that will be imple-

mented as layout. From here the actual gates are placed and connected via wire

routing. [111] and [61] provide more detailed description of the logic synthesis

flow.

A key element of the different levels of abstraction in the hardware design flow

is how fast they can be simulated, and at what level of accuracy. An algorithmic

model is native code running on the host, which is fast, but has no notion of the

implementation’s performance. Transaction-level models (TLM) feature concur-

rent blocks communicating via function calls to high-level channels; depending on

their level of detail TLM models have a wide range of speed and accuracy. RTL

simulation is performed at the level of individual signals and gates, making it sig-

nificantly slower than the algorithmic and TLM levels. Pieces of the layout-level

are simulated at the circuit-level, and these results (e.g. parasitic capacitance and

noise) are annotated back to the gate level netlists. Going to a higher level of ab-

straction usually results in at least an order of magnitude (and often two or more)

increase in simulation speed.

For different design and verification tasks it is critical to understand what in-

formation is needed and then pick the appropriate level(s) of abstraction to ac-

complish this. For example, there is no point in simulating application software

running processor with transistor-level SPICE models, because it would be far too

slow. We are concerned with RTL and higher level models in this dissertation and

will not mention the lower levels from hereafter.

4

1.1.2 Traditional Software Development Flow

Software development in the traditional design flow for embedded systems can

be broken into two phases: hardware-independent development and hardware-

dependent development. Hardware-independent development involves imple-

menting the pieces of the system that do not directly depend on the underlying

hardware and either ignoring the hardware, or representing it with software stubs

used as placeholders. Often significant pieces of the algorithmic models can be

reused as hardware-independent software, as these models are typically written

in C or C++.

Hardware-dependent software development involves interfacing the software

with the hardware in the system, and also optimizing the software to meet per-

formance constraints. The interfacing of hardware and software is an error prone

and time consuming process that involves using features such as interrupts, real-

time operating systems, and memory-mapped communication. This can only be-

gin when there is a model of the hardware of sufficient detail available. For pre-

existing hardware platforms this is not a problem, but it can be when new plat-

forms are being developed. Often the hardware model is the RTL-level model,

and so it is not ready until late in the design cycle, which can significantly extend

overall development time. Furthermore, co-simulating software running on pro-

cessor models with HDLs can be quite slow. Finally, in order to meet performance

requirements, low-level programming at the assembly level is frequently needed.

Different levels of abstraction for modeling microprocessors are detailed in Section

1.4.

1.1.3 Problems with the Traditional Flow

There are several problems with the traditional approach for designing mixed

hardware-software embedded systems. Since the implementation is done at a low

level it is difficult to change the mapping, or to reuse pieces of the application. If

5

an inadequate system architecture is selected, it will often not be discovered until

late into the design process, and thus can cause great delays. Architects sometimes

compensate for this risk by over-building the system, but this increases the cost of

the system. Also, the lack of formal underpinning of the implementation makes

it difficult, if not impossible, to fully verify such designs. Finally, the disconnect

between the hardware and software design teams can lead to incompatibilities that

only arise at the integration stage. All of these problems are growing as embedded

systems continue to increase in complexity.

1.2 Motivating Trends for System Level Design

As previously discussed, the traditional design flow for embedded systems is

not scaling. This section reviews such trends, all of which point to the need for

higher level design and modeling.

1.2.1 Complexity and Productivity

Moore’s law, illustrated in Figure 1.2, states that the number of transistors on a

chip doubles roughly every 18 months. This must be put to a good competitive ad-

vantage to improve in one or more of the following areas: speed, power, cost, and

the expansion of capabilities. A key challenge of Electronic Design Automation

(EDA) is to help designers keep pace with Moore’s law.

In 1999 the International Technology Roadmap for Semiconductors (ITRS) es-

timated [5] that design complexity is growing at 58% rate, whereas designer pro-

ductivity is only growing at a rate of only 21%. This gap is referred to a the ‘design

productivity gap’. Two key ways of closing this gap are design reuse and doing

design at a higher level of abstraction.

In 1999 Shekhar Borkar of Intel estimated [33] that, were the current power and

frequency scaling trends to continue, the power consumption of a microprocessor

6

Figure 1.2: Moore’s Law illustrated through the transistor count of Intel processors
over time. (Copyright c©2004 Intel Corporation.)

would reach the unsustainable level of 2,000W in the year 2010. In order to avoid

this, processor frequencies actually dropped as Intel moved to less aggressively

pipelined multicore designs; a high-profile example of this was Intel canceling the

Pentium 4 Tejas microprocessor and moving to more efficient dual processors be-

cause of power concerns [66]. Another way to continue Moore’s law without ex-

ceeding power constraints is to use more cores on a chip that are less complicated

than today’s processors. In 2007, Borkar [32] advocated putting hundreds, if not

thousands, of simpler cores on a single chip to scale performance while staying

within the power budget.

1.2.2 Multicore Processors

Many domains are already multicore or multiprocessor, and this trend is only

increasing due to power and performance concerns [24]. The major microproces-

sor producing companies for general purpose and server computing (such as Intel,

7

AMD, Sun, and IBM) all have produced multicore designs for their mainstream

products. In 2007, Intel presented a prototype of an 80 core network on chip run-

ning at up to 4 GHz [142] fabricated in 65nm bulk CMOS. This achieved up to

1.28 TFLOPS of performance, while consuming 181 W of power. By reducing the

voltage by half the chip used 18x less power and was 4x slower. This illustrates

what is currently possible with recent semiconductor technology, and also what

the challenges are; specifically, raising voltage to increase performance is far less

effective than replicating functionality and exploiting parallelism.

In some domains, multiprocessing is already prevalent. Most cellphones today

have a RISC control processor and a DSP processor, with higher end models having

additional processors dedicated to handling demanding multimedia applications

like digital video decoding. Networking applications consist of tasks (e.g. packet

routing) that need to be done quickly and have a large amount of parallelism (e.g.

at the packet level). In 2001, Intel released the IXP1200 [49], which features a single

Strongarm processor along with 6 packet processing microengines. Intel’s latest

network processor (as of February 2008), the IXP2800 [50], has an XScale processor

and 16 packet processing engines along with hardware acceleration for encryp-

tion for performing secure packet routing at up to 1010 packets per second. In

2005, Cisco Systems presented the Metro NP network processor [17]. It features

188 XTensa 32-bit RISC processors with extensions for network processing and a

peak performance of 7.8 × 107 packets per second. It achieves all of this perfor-

mance while only consuming 35 watts of power. Some of the current generation of

gaming consoles also feature multiprocessors. The Cell Broadband Engine [70, 71]

was released in 2006 and powers the Playstation 3 gaming console, servers, super-

computers, and there are plans to add it to consumer-electronics devices, such as

high-definition televisions. The Cell is a heterogeneous multiprocessor featuring

a single traditional microprocessor implementing the Power architecture [9] along

with up to 8 Synegistic Processing Elements (SPEs) connected via a high speed

communication system. Each SPE contains local memory, a high speed memory

8

controller, and a processing element used for high-speed data-parallel computa-

tions. The Xbox360 [22] is also multiprocessor with a core containing three multi-

threaded processors implementing the Power architecture.

1.2.3 Explosion of Software and Programmability

In 2003, Intel’s director of design technology Greg Spirakis estimated software

development to be 80% of the development cost for embedded systems, and said

that the speed of high level modeling for architectural exploration and hardware

software co-design are key concerns [138]. In 2004, Hans Frischorn of BMW (and

now at General Motors) [68] said that 40% of the cost of automobiles is now at-

tributed to electronics and software, where 50% to 70% of this cost is for software

development. Frischorn also said that up to 90% of future vehicle innovations will

be due to electronics and software, and that premium automobiles can have up to

70 Electronic Control Units (ECUs) communicating over five system buses. Fur-

thermore, automotive systems especially challenging because they are distributed

and many have hard real time deadlines.

Programming embedded multiprocessor systems is difficult. They are gener-

ally programmed at a relatively low level using C, C++, or even assembly lan-

guage. The concurrency in these systems is often handled by using multi-threading

libraries. In [94], Lee highlights some of the productivity and reliability issues of

programming parallel systems with threads. He advocates the use of more intu-

itive and analyzable models of computation for concurrent modeling. Recently,

there has been major research funding the exploration of new programming mod-

els for multiprocessor systems [106].

In addition to concurrency, the size of software in such systems is rapidly ex-

panding. Sangiovanni-Vincentelli [135] states that, “In cell phones, more than 1

million lines of code is standard today, while in automobiles the estimated num-

ber of lines by 2010 is in the order of hundreds of millions. The number of lines

of source code of embedded software required for defense avionics systems is also

9

growing exponentially...”. To cope with all of these challenges it is critical to have:

fast and accurate simulation, well defined levels of abstraction, and effective tools

for system analysis and optimization.

1.3 System-Level Design

Whereas the traditional design flow is directly aimed at implementation,

system-level design [103, 135] uses abstract models that can be quickly be changed

in terms of structure, parameters, and components. These higher-level abstractions

enable the exploration of a larger design-space and generally lead superior imple-

mentations. Furthermore, these abstractions often have formal underpinnings and

so can enable verification and synthesis. Key elements of system level design in-

clude: abstract specification, high-level synthesis, and virtual prototyping.

This section first reviews key concepts for system-level design, which include:

the Y-chart, separation of concerns, and models of computation. Then, previous

work in system-level design environments is explained. Section 1.3.5 details trans-

action level modeling. Finally, Section 1.3.6 reviews the Metropolis system level

design framework.

1.3.1 The Y-Chart and Separation of Concerns

Figure 1.3 shows the Y-Chart methodology developed independently by both

Kienhaus et al. [91, 92] and the POLIS group [26]1. A key element of the Y-chart

methodology is developing the application separately from the architecture (as

opposed to developing the application directly on top of the architecture), and then

selecting a mapping of the application onto the architecture. The performance of

the mapped system is then evaluated and, if it is found satisfactory, then the design

1The methodology from Kienhaus and others was based on using an extension Kahn Process
Networks [87], and the POLIS system used Codesign Finite State Machines (CFSMs). The specifics
of these models will be described in Section 1.3.3.

10

Application Architecture

Mapping

Performance

Analysis
Modify

Application

Modify

Architecture

Modify

Mapping

Figure 1.3: An overview of the Y-Chart methodology. The application and archi-
tecture are designed, and then a mapping from the application to the architecture
is specified. After this performance analysis is performed. If the design criteria are
not met, the functionality, architecture, and mapping can be modified.

11

is finished. If performance needs to be improved then three different elements can

be modified, the application, the architecture, and the mapping of the application

onto the architecture. By keeping these elements separated, reuse is improved and

the opportunities for design space exploration are expanded.

The Y-chart methodology keeps the architecture, application, and mapping sep-

arated. Keutzer et al. extended [90] this idea to include a number of other aspects.

Communication and computation have been separated, which is a key element

of transaction level modeling (detailed in Section 1.3.5). Another important piece

is the separation between behavior and performance. By keeping these elements

separated reuse and analyzability are increased.

1.3.2 Platform Based Design

The notion of platforms is widely used in industry. One popular view of a plat-

form is that it is a set of configurable and compatible components. This might in-

clude a family of different microprocessors that all implement the same instruction

set at various levels of cost and performance, or it might extend to include a full

system along with hardware and software. Thus, if a company develops a product

on a particular platform it can be ensured software compatibility, increased per-

formance, and expanded capabilities in future implementations of this platform.

While intuitive, this definition is quite vague.

In [134], Professor Alberto Sangiovanni-Vincentelli (ASV) formalizes the notion

of platform based design in terms of an application’s functionality and the archi-

tecture that can implement this functionality. Figure 1.4(a) shows the ASV-triangles

that form the basis of Sangiovanni-Vincentelli’s framework. The top triangle rep-

resents the functional space, where a particular function instance is mapped to a

system-platform. The bottom triangle represents the architectural space where a par-

ticular instance of an architecture is created and then exported up to the system

platform. The system platform is where the functional instance interacts with the ar-

chitecture platform using a common set of primitives and other information pro-

12

Platform
Design-Space

Export

Platform
Mapping

Architectural Space

Functional Space

Function Instance

Platform Instance

System
Platform

(a) ASV Triangles One Level

Platform 1

Platform 2

Platform 3

…

(b) Multiple Levels of ASV Triangles

Figure 1.4: ASV(Alberto Sangiovanni-Vincentelli)-Triangles for Platform-Based
Design, shown in as single level and also as a flow with of multiple levels. (Source:
Alberto Sangiovanni-Vincentelli)

vided by the platform.

Many design flows and views can be represented in terms of platform-based

design. For a desktop computer the platform might be the x86 instruction set, the

architectural space is the set of processors implementing the instruction set, and

the functional instance would be a C-program connected to libraries targeting the

x86 instruction set. The platform mapping is the compilation of the C-code into

x86 binaries. The platform design-space export might give the compiler a picture

of the microarchitectural implementation of the processor so that it can generate

more efficient binaries (e.g. so as to avoid pipeline stalls or use particular .

In order to provide reasonable design methodology the platforms must be de-

fined so that there is not too large of a gap between the semantics of the functional

space, the system platform, and the architectural space. For example, moving di-

13

rectly from a high level sequential specification to a hardware implementation has

such a large design space and semantic gap that it is difficult to find a ‘good’ result.

Most successful methodologies are broken into multiple levels, where user input

may occur at each level. Figure 1.4(b) shows an example of multiple levels being

used in platform based design. The RTL-synthesis process described in Section

1.1.1 fits well into this flow, with each step being viewed as a platform (i.e. RTL,

boolean algebra, gate-level netlist, and layout).

1.3.3 Models of Computation

A Model of Computation (MOC) is a formal representation of the semantics

of a system. In particular, it define rules on how a set of connected components

execute and interact. Based on the rules of the MOC, its connected components

can be analyzed, simulated, synthesized, or verified to varying degrees of success.

There is a tradeoff between how expressive an MOC is, and how analyzable it

is. For some domains the limits on expressiveness is helpful. Below we review

popular models of computation with an emphasis on those used in this thesis.

1.3.3.1 Finite State Machines

Finite State Machines (FSMs) are a classical model of computation often used

for hardware design. An FSM operates on a set of Boolean inputs and a set Boolean

values indicating the machine’s current state. Based on these, it calculates the next

state of the machine as well as the values of the machine’s outputs. Finite State Ma-

chines map directly into Boolean logic, which makes them easily synthesizeable,

and they are very good for representing control-dominated systems. They are also

amenable to many formal verification techniques [63]. A single FSM is sequen-

tial. FSMs become much more useful (and challenging) when they are combined

together.

There are many extensions to FSMs such as adding: concurrency, hierarchy, and

14

timing. One of the most influential extensions was Statecharts [76], it provided a

visual language that added hierarchy, concurrency, and non-determinism to FSMs.

The Polis [26] project introduced Codesign Finite State Machines (CFSMs), which

are event triggered FSMs communicating via single buffered over-writable chan-

nels.

1.3.3.2 Kahn Process Networks

Kahn Process Networks (KPN) [87] is an early model of computation for pro-

gramming parallel systems.It features components connected by unbounded First

in First Out (FIFO) channels where the components execute concurrently and the

can have internal state. The components only communicate with one another via

blocking reads and non-blocking writes. The execution result of a KPN is deter-

ministic and independent of the execution ordering of its processes. KPN is Turing

complete, which means that proving that the buffers in the system are bounded is

undecidable (whereas this can be easily done for synchronous dataflow).

1.3.3.3 Dataflow Models of Computation

Like Kahn Process Networks, dataflow models feature a set of components that

communicate via unidirectional unshared FIFO channels. Dataflow components

do not have internal state, and instead have particular firing rules based on the

occupancy of their input channels. Synchronous Dataflow (SDF) [97] is one of the

simplest and most analyzable data flow models. It features components where

each input port is given a constant consumption number, and each output port is

given a constant production number. When there are enough tokens in the chan-

nels connected to each of the component’s input ports, the component is enabled

and can execute. When the component executes, it consumes the specified con-

sumption number of tokens on each port, performs some computation based on

the values of the read in tokens, and then produces the specified production num-

ber on each output port. The tokens can have values, but unlike FSMs, their values

15

do not impact the execution ordering. SDF has the powerful property that, based

on an initial number of tokens on the different connections, the firing of the com-

ponents can be statically scheduled (assuming that the initial marking does not

lead to deadlock). This makes SDF useful for generating efficient software for data

streaming applications like signal processing. It can also be used for synthesizing

systems that have bounded-length channels which is key for designing hardware.

SDF is not good for modeling bursty systems or systems that have data dependent

execution.

Over the years a large number of versions of dataflow have emerged with var-

ious properties, [95] provides a good overview of key work. Boolean dataflow

[34], adds Boolean controlled switch and select operator, and can be proven to

use bounded memory in certain cases. Cyclostatic dataflow [30] relaxes the case

of there needing to be a fixed production/consumption numbers on all ports for

each cycle, and allows a fixed but rotating series of numbers for the ports while

maintaining the static schedulability of SDF.

1.3.3.4 Synchronous Languages

Synchronous languages operate on a synchronous assumption that computa-

tion occurs instantaneously and that at every ‘tick’ (there is a logical clock, but

not a physical clock) all signals in the system have values (including not-present).

This can be extended to systems that contain one or more physical clocks systems

as long as computation finishes happen before the next clock tick occurs. The ad-

vantage of the synchronous assumption is that hard to debug cases such as race

conditions or reading stale values can be avoided. Furthermore, these systems

are highly composable and analyzable. The disadvantages are that implement-

ing the synchronous assumption can lead to lower performance systems, and that

feedback loops in these systems are difficult to handle or analyze. Esterel [29] is

a synchronous language for control dominated systems, whereas Lustre [75] and

Signal [98] are synchronous languages for dataflow dominated systems.

16

1.3.3.5 Discrete Event

Discrete Event (DE) is a model of computation that adds in the notion of timing

to events. The hardware description languages Verilog and VHDL are based on

DE, as is the system-level language SystemC [8]. In DE, the ordering of events is

a total order where, for any two non-identical events, one occurs before the other.

In the case of an event occurring with zero delay, it is assigned a delay of a single

delta-cycle, which has zero value in time, but is used to separate ther ordering of

events occurring at the same time stamp.

Discrete Event is a very expressive model of computation, that is well suited for

representing timed systems. However, it is difficult to analyze, and its simulation

speed can be quite slow. Furthermore, different simulators can execute the same

model with different interleavings (orderings based on the assignment of delta

cycles to different events) and yield different results. Synthesis can be performed

on a synthesizable subsets of Verilog and VHDL that remove the notion of timing

and replace it with explicit clock signals.

1.3.3.6 Other Models of Computation

The above MOCs mentioned are by no means all of the MOCs available. Other

important models of computation include: communicating-sequential processes

(CSP) [81], Petri Nets [115], and timed models of computation like Giotto [80]. For

a good overview of popular MOCs see [64] from Edwards et al., and the tagged-

signal model from Lee and Sangiovanni-Vincentelli [96] is a denotational frame-

work for comparing models different models of computation. The Ptolemy project

[83] provides software that implements a wide range of models of computation

and focuses on hierarchically connecting them. The Metropolis project [27] fea-

tures a metamodel that can represent a wide variety of models of computation,

and is detailed in Section 1.3.6.

17

1.3.4 System Level Design Flows

Here we review important work in developing design flows for system-level

design (SLD). It is broken up into early work on hardware-software codesign and

later work on language-based environments. The intent is to show the evolution

of system-level design flows, and not cover specific tools or companies. For a more

detailed overview of the state of system-level design see [103] or [135].

1.3.4.1 Early Work: Hardware/Software Codesign

We refer to first generation of SLD environments as hardware/software code-

sign. These represented the system as a single description, that was then parti-

tioned into hardware and software. After partitioning the hardware and software

components and the interfaces between them were generated.

Gupta and DeMichelli [72] developed one of the earliest hardware-software

codesign tools. It features systems specified in a language called HardwareC along

with performance constraints. The system begins totally implemented in hardware

and is refined by migrating non-critical pieces to software running a single micro-

controller.

Cosyma [79] is a language for doing the codesign of software-dominated em-

bedded systems. Programs are specified in Cx, a superset of C. From here there

can be fine grained partitioning, where basic-blocks are propagated to coproces-

sors. In Cosyma the software running on the microprocessor communicates with

the coprocessors via a rendezvous mechanism.

Polis [26] is a hardware-software codesign environment from UC Berkeley. It

featured systems specified in Esterel as CFSMs (Codesign Finite State Machines)

which are a network of event-driven FSMs (Finite State Machines) communicating

via single-element buffers. From here software, hardware, and interfaces between

them could be generated. Because of the model of computation, the Polis was well

suited for control-dominated systems. The VCC (Virtual Component Codesign)

18

tool [19] from Cadence was a commercial implementation of many of the ideas in

Polis.

The problems with these environments was that they were very fixed in their

implementation targets (a single processor connected with synthesized hardware),

and also that the gap between the specification and the implementation was suffi-

ciently large that the performance of the synthesized systems was often poor com-

pared to hand-designed systems.

1.3.4.2 Recent Trends: Language-based Environments

To address the problems with the first generation tools, recent work has been

based on flexible design languages. With these the design process can be broken

down into a set of small steps.

SpecC [11] is an influential system-level design language developed at UC

Irvine. It is a superset of the C language with additions for system and hardware

modeling. It contains a methodology to start with a concurrent system description

and then refine it down to an implementation, with a series of well defined steps.

The generation of software is straightforward since the SpecC-specific pieces can

be removed. Hardware relies on behavioral synthesis and requires the use of a

synthesizable subset. It has been a significant influence on the development of

higher-level abstractions in SystemC. See [39] for a comparison between SystemC

and SpecC.

SystemC [8] is an open and popular system-level design language. It is a set

C++ libraries that allow for system modeling. Originally it was for accelerating

RTL-level simulations by representing the core pieces directly and C++ and then

doing cycle-level simulation. In version 2.0 it expanded to include high-level sys-

tem modeling concepts such as interface-based channels. It also has open libraries

for verification [12] and transaction level modeling [131]. In 2005, version 2.2 of

SystemC was standardized by the IEEE (Institute of Electrical and Electronics En-

gineers). It enjoys good commercial support, with environments for development,

19

debug, simulation, and synthesis.

Metropolis [27] is a system-level design framework based on the principles of

platform-based design [134] and orthogonalization of concerns [90]. The frame-

work is based on the Metropolis Metamodel (MMM) language [140] that can be

used to describe function, architecture, and a mapping between the two. It has a

flexible and formal semantics that allows it to express a wide range of models of

computation. Its more flexible semantics and its approach to mapping distinguish

it from SpecC and SystemC. Metropolis is described in detail in Section 1.3.6.

1.3.5 Transaction Level Modeling

Transaction-level modeling (TLM) is a term that implies modeling above the

RTL-level, but it means different things to different people. It is generally agreed

that transaction-level modeling involves a separation of the communication ele-

ments from the computation elements, and that communication occurs via func-

tion calls instead of via signals and events. However, this can range from near-RTL

level cycle-accurate models to untimed algorithmic models.

There have been multiple efforts to further define transaction level modeling.

Cai and Gajski [37] defined transaction level modeling as communication and com-

putation separated and each could have its timing modeled as untimed, approx-

imate, or cycle-accurate. Donlin [62] presented the two primary transaction level

modeling levels used by SystemC along with a variety of use cases. These levels

are communicating processes (CP) and programmer’s view (PV).

The CP view consists of active processes, each with its own thread of control,

communicating among one another via passive channels or media. The CP view

is a concurrent representation of the algorithm without regard to the implementa-

tion. It can be with or without timing. Figure 1.5(a) shows an example of the CP

level model, which is a portion of a JPEG encoder.

The PV view represents the platform in terms of the communication struc-

ture and processing elements visible to the programmer. PV models are usually

20

Quantizer

FIFO

DCT

Huffman

FIFO

(a) Example of Concurrent Processes (CP)

Bus

Arbiter

Master

CPU

Master

ASIC

Slave

Memory

Shared

Bus

Slave

Peripherals

(b) Example of Programmer’s View (PV)

Figure 1.5: Different levels for transaction level modeling (TLM) in SystemC.

register-accurate so as to allow for software development, and can be with or with-

out timing. Figure 1.5(b) shows the structure of a sample PV level model consist-

ing of a CPU and an ASIC (Application Specific Integrated Circuit) connected to

peripherals and memory via a shared bus. Given their correspondence to the ar-

chitecture, PV level models with time (also called PV+T) tend to be more accurate

than CP-level models with time (also called CP+T).

Version 1 of the SystemC TLM library [131] provides blocking and non-blocking

communication mechanisms for uni-directional FIFO channels and bi-directional

transport channels. A draft of version 2 of the standard is currently under pub-

lic review and is summarized in [14]. It adds a timed memory-mapped bus class,

greater support for non-intrusive debug and analysis, interfaces for integrating

timed and untimed models, and support for optimized implementation by allow-

ing pass-by-reference communication in transactions.

The Open Core Protocol International-Partnership (OCP-IP) [7] provides an

open communication interface standard for hardware cores, and has established

different levels of modeling for TLM that are compatible with the SystemC defini-

tions. They provide three transaction levels of increasing abstraction: the transfer-

21

layer (TL1), the transaction-layer (TL2), and the message-layer (TL3). In [93], they

introduce the Architect’s View (AV), which is for modeling system performance to

aid in architectural exploration. This may or may not be functionally complete, but

they specify that the accuracy of an AV model should be of at least 70-80% in order

to be useful. Typically AV models are constructed with TL3 or TL2 layers, and are

sometimes equivalent to PV+T.

Parischa et al. introduced the concept of CCATB [118, 119], which stands for

Cycle Count Accurate at Transaction Boundaries. With it, the timing of transac-

tions along with protocol-specific information is passed along the channels, and

the timing is only added when the transaction is completed. Doing this reduces

the number of times that the simulation manager is called to update timing and

resulted in speedups of up to 1.67x compared to using cycle accurate TLM bus

models. The tradeoff is that intra-transaction timing is not visible, making it too

abstract for tasks such as protocol simulation.

Wieferink et al. presented Packet-level TLM in [147], which is similar to CCATB,

but is at a higher level of abstraction. For Packet-level TLM communication in a

functional specification is simulated very efficiently by treating burst transfers as

single events. In it, delays are simply annotated to give estimates. This yields

high simulation speeds because of the low number of events and the fact that each

computation element is simulating natively on the host.

1.3.6 Metropolis

A significant portion of this research (specifically the uniprocessor modeling

in Chapter 2 and the multiprocessor modeling in Chapter 3) uses the Metropolis

system-level design framework, and so this section describes it in detail. Metropo-

lis [27] is based on the principles of platform-based design [134] and orthogonal-

ization of concerns [90]. The framework is based on the Metropolis Metamodel

(MMM) language [140] that can be used to describe function, architecture, and

mapping. It has a flexible and formal semantics that allows it to express a wide

22

range of models of computation. The major types of elements in it are: netlists,

processes, media, quantity managers, and state media.

Modeling of functionality, architecture, and the mapping of functionality to ar-

chitecture will be reviewed in the next three subsections. Then, the execution se-

mantics of Metropolis will be reviewed. Finally, the tool framework of Metropolis

will be detailed.

1.3.6.1 Functional Modeling

M1
Producer1

p_write

Consumer1

p_read

FuncNetlist

Figure 1.6: Functional netlist example.

Functional modeling consists of a netlist that instantiates and connects a num-

ber of processes and media to represent the behavior of the system. It is typically

done without regard to how the functionality will be implemented on an archi-

tecture. Figure 1.6 shows the netlist called FuncNetlist that consists of a producer

process Producer1 that writes integer values to the medium M1, and the consumer

process Consumer1 that reads the values from M1. Figure 1.7 shows pieces of code

for some of the elements in this example.

Processes are active elements with each one having a single thread of execution

specified by its thread method. Figure 1.7(b) shows the sample code of process

Producer (which is instantiated in FuncNetlist as Producer1), it performs writes via

its writer port p write. The Consumer process is similar, but it performs reads via its

port p read.

Processes can only communicate through media that they are connected to via

their ports. For a port to connect to a medium it must implement compatible in-

terfaces. A port’s interface is compatible with a medium only if it is a superclass

23

interface writer extends Port {
update void write(int i);
eval int space();

}

interface reader extends Port {
update int read();
eval int n();

}
(a) Interface definitions

process Producer {
port writer P write;
thread(){

int z=0;
while(true){

P write.write(z);
z) = z+1;

} // end while loop
} // end thread method

} // end process P
(b) Sample process code

medium M implements reader, writer{
int storage;
int n, space;
void write(int z){

await(space>0; this.writer ; this.writer)
n=1; space=0; storage=z;

}
int read(){ ... }

}
(c) Sample medium code

Figure 1.7: Code excerpts of elements of the example. Bolded words are the names
of particular classes, methods and variables in the code. Italics indicate special
keywords from Metropolis.

24

of (or the same class as) an interface that the medium implements. An interface is

a set of methods implemented by a medium, which a port extending it can call.

Figure 1.7(a) shows the reader and writer interfaces for the example. The keyword

eval is used on a method to indicate that the method only ‘evaluates’ the state of

the component, but does not update the state of the component. The keyword up-

date is used on a method to indicate that the method does update the state of the

component.

Media are passive elements that implement interfaces that can be called by the

ports connected to them. This means that a medium can only be triggered by a

call from a port connected to the it. Media can have ports from which to call other

media. Since media are passive elements, the triggering of a call to a medium must

come from a process (that triggers the initial medium). Figure 1.7(c) shows some

of the code of medium M; it implements the reader and writer interfaces.

The write method in medium M makes a call to the await statement. This state-

ment is used for specifying a set of one or more atomic statements of which one is

non-deterministically selected to execute. For this case there is only one statement,

for an example of multiple atomic statements see Section 3.3.2.1. Each set of atomic

statements has a set of three semicolon-separated conditions that must be met in

order to execute. The first is a guard condition that must be true in order for the

guarded statements to be executed. The second is test-list of port interfaces that

must be available (unlocked) in order to execute, and the third is a set-list of port

interfaces that are locked (so as to be unavailable) when the atomic statements are

executed, and unlocked. In the code for medium M, the writer method’s guard

condition is the space variable being larger than 0, and its writer interface is tested

and set.

1.3.6.2 Architectural Modeling

An architectural netlist usually contains two netlists: a scheduled-netlist and a

scheduling-netlist. The scheduled-netlist is made up of processes and media and is

25

T1 Tn

CpuRtos

cpuRead

ScheduledNetlist SchedulingNetlist

Bus

Mem

busRead

memRead

Request(e,r)

setMustDo(e)

resolve()

CpuScheduler

BusScheduler

MemScheduler

GTime

Figure 1.8: Metropolis simple architecture example (source: [154]). The Sched-
uledNetlist on the left contains processes (T1-Tn), which make calls to the media
(CpuRtos, Bus, and Mem). The media then make requests for scheduling (see bot-
tom arrow) to the schedulers in via state media in the SchedulingNetlist on the right.
The resolve method is then called one or more times, and the results are propagated
back to the processes in the ScheduledNetlist via state media (see top arrow).

26

the set of resources used to implement the architecture. The scheduling-netlist is

a netlist that manages the resources in the architecture by scheduling them and

adding costs to them; it is made up of quantity managers and state media. Figure

1.8 shows the architectural netlist from the Metropolis tutorial [154]. The netlist

on the left is the scheduled netlist and the netlist on the right is the scheduling

netlist. Media in the scheduled netlist make requests to the quantity managers in

the scheduling netlist which resolves these requests.

Quantity managers can serve two functions: scheduling and quantity annotation.

Scheduling is where multiple events request annotation and some of them may be

disabled. Quantity annotation is the association of an event with a particular anno-

tated quantity such as time or power. Because time is commonly used in system

design, Metropolis includes a quantity called GTime that represents a shared global

time.

The quantity annotation process works as follows. A process or medium makes

a request to a quantity manager, and then waits until the quantity manager grants

that request. The quantity manager resolve these requests for annotation based

on its internal policy. Communication to and from quantity managers is done via

means of specialized media called state media. The specifics of quantity managers

are detailed in Section 3.2.2.1.

Constraints and quantity managers in Metropolis operate on events. An event in

Metropolis is defined as the beginning or ending of an action. An action is a specific

process executing a labeled piece of code. The labeled code can either a component

method, or some code explicitly labeled by the user. The events for each action are

called named-events. For example, in the functional example shown in Figures 1.6

and 1.7, the beginning of process Producer1 calling the write method of M1 is an

event.

27

Bus

Arbiter

Master

CPU

Master

ASIC

Slave

Memory

Shared
Bus

Slave

Peripherals

Function Architecture

Mapping

Quantizer

FIFO

DCT

Huffman

FIFO

Figure 1.9: Example of combined view (CP + PV) with mapping. The two views
were shown previously in Figure 1.5

1.3.6.3 Mapping and Constraints

Netlists can instantiate and connect all of the major components of Metropolis.

A netlist also can include constraints for temporal ordering called LTL (Linear Tem-

poral Logic) constraints [63], mapping via synchronization, and also quantitative

constraints called the Logic of Constraints (LOC) [44].

Mapping is typically done via synchronization constraints. For it, three major

netlists are instantiated: an architecture netlist, a functionality netlist, and a top

level netlist that contains the other two netlists as well as the mapping constraints.

For a one-to-one mapping the begin and end events of a method call on the func-

tion side would be synchronized with the begin and end events of a method call

on the architecture side.

Another way to look at it is that Metropolis supports both of the functional (CP)

and architectural (PV) levels of TLM concurrently and also allows them to be com-

bined through its mapping capabilities. In particular, the functional model, which

28

generally corresponds to the CP level of abstraction, is synchronized with events

in the architectural model, which most represents the PV level of abstraction. This

allows the user to use a more natural representation for the functionality and still

get accurate timing information from the architectural model. Figure 1.9 shows a

mapping that combines the CP and PV views. Section 3.3.2 has a detailed example

of mapping using Metropolis.

1.3.6.4 Execution Semantics of Metropolis

Execution begins with each process in the system executing until it hits a named

event or an await statement. Once all processes in the system have paused, then

the scheduling phase executes. In the scheduling phase quantity managers are run

and constraints in the design are resolved. Once all of the constraints are resolved

and the quantity managers are stable the processes in the scheduled netlist resume

execution. This alternation between the scheduled and scheduling netlists contin-

ues until all of the processes have exited or cannot make further progress.

1.3.6.5 Tool Framework

Figure 1.10 shows the framework for tools in Metropolis. It provides a front

end parser that reads in designs described in the Metamodel language, and con-

verts them into an Abstract Syntax Tree. Various tools are implemented by writing

a backend in Java that traverses the Abstract Syntax Tree. These tools include back-

ends for simulation [152], verification [41, 43], analysis [42], and also an interface

to the XPilot high-level synthesis tool [47]. Metropolis also has an interactive shell

where designs can be manipulated and backends can be called.

29

Meta model
compiler

Verification
tool

Synthesis

tool

Front end

Meta model language

Simulator

tool

...Back end1

Abstract syntax trees

Back end2
Back endNBack end3

Verification

tool

Metropolis
interactive

Shell

...

Figure 1.10: Metropolis tool framework.

1.4 Levels for Modeling Embedded Software

There are a variety of levels of abstraction used to simulate software executing

on one or more target processors in an embedded system on a user’s host com-

puter. Figure 1.11 shows common levels of abstraction used for simulating soft-

ware running on a microprocessor along with their levels of detail and speed. The

term microarchitecture refers to how the implementation of the processor is repre-

sented (or if it is). Timing means the granularity of the timing, and listed speeds

are based on the best available information, which is described in the subsections

below.

RTL-level models simulate the individual signals and gates in the system, and

have the most detail and lowest performance. At the next higher level of abstrac-

tion are cycle-accurate models which simulate a program running on the target’s

microarchitecture at the cycle-level, which means that individual signals and prop-

agation delays are abstracted away. The next higher level has instruction-level

30

Register-Transfer
Level Models

Cycle-Accurate
Models

Instruction Level
Models

Algorithmic
Models

Model Speed:

Native Speed

(GHz)

~3 – ~900 MIPS

Microarchitecture / Timing:

None / None

None / Instruction

Counts

~0.1 – ~30 MIPS
“Full” / Cycle-

Count Accurate

~0.1 – ~10 KHz
“Full” / Signal

Level

Figure 1.11: Levels of abstraction for embedded microprocessors.

models, where only the functionality of each instruction is simulated and there is

no notion of the microarchitecture, but counts of instructions remain. At the high-

est level of abstraction are algorithmic models where the application compiled and

run on the user’s host system at native speeds; models at this level are fast, but they

have no notion of the timing, microarchitecture, or instructions of the target.

There is a significant gap between traditional methods of implementing dif-

ferent levels of abstraction and state of the art commercial tools. Furthermore,

commercial tools seldom publish meaningful measurements of their performance

and forbid their users from doing this. In order to get a good relative view of the

performance of the various tools, we divide the instructions per second (insts/sec)

performance of the host platform by the inst/sec rate of the simulator based on

numbers from a listing in Wikipedia [18]. Additionally, there are other criteria that

need to be taken into account when evaluating the performance of such measure-

ments. First, we discuss relevant work in the computer architecture world that

has had a strong influence on work in embedded systems processor simulation.

Then, we present related work on embedded systems that was used to derive the

numbers for Figure 1.11.

31

1.4.1 Computer Architecture Simulation Technologies

Many of the ideas for accelerating the simulation speed of instruction-level

and cycle-level models of microprocessors originated in the computer architec-

ture world. A common baseline for comparison is SimpleScalar [35], which is one

of the most popular microarchitectural simulators for research, and is a highly-

optimized traditional simulator. It supports several instruction sets including: Al-

pha, PowerPC, and ARM. It is listed as having a 4,000x slowdown (compared to

native execution on the host platform) for running the MIPS instruction set [6],

and our experiments with Simplescalar-ARM we found an average slowdown of

4,500x (see Figure 5.8 for details).

One key technique is that of direct execution, where an instrumented binary is

run on the host that has the same instruction-set as a target. This avoids having to

decode the instructions in software, leaving just timing and profiling information

to simulate. Shade [46] does instruction-level simulation for SPARC instruction set

processors [85] and incurs a base overhead of 3-6x compared to native execution

for basic trace collection, and it simulates a MIPS executable (on a SPARC platform)

with slowdown of 8-15x with no trace collection. FastSim [137] uses speculative

direct execution and memoization for out of order execution and is 8.5-14.7x times

faster than Simplescalar with most of the speedup coming from the memoization

(speedup without memoization is 1.1-2.1x faster).

The Wisconsin Wind Tunnel project [128] features direct execution combined

with distributed discrete event simulation on a 64-processor CM-5 from Thinking

Machines that features a slowdown of between 52x and 250x compared with the

target’s execution times. Wisconsin Windtunnel II [113] generalizes the Wind Tun-

nel work to a variety of SPARC platforms, and gives relative speedups for paral-

lel simulation2, but not absolute speed numbers. The GEMS (General Execution-

driven Multiprocessor Simulator) toolset [104] has succeeded Wind Tunnel, and

2For example, they list a speedup from 8.6x to 13.6x for simulating a 256 target system running
parallel benchmarks on a 16 host system.

32

runs by using Virtutech Simics [67] as a full-system functional simulator. This has

shown uniprocessor simulation speeds of up to 1.32× 105 instructions per second

(inst/sec) [105].

Not all of the above-mentioned techniques are applicable to embedded sys-

tems, and there are different concerns for such systems. Direct execution is gener-

ally not usable for embedded systems because the host computers and the target

computers typically have different instruction sets (e.g. x86 vs. ARM). Another key

difference is that for embedded systems instruction-set simulators will often co-

simulate (simulate concurrently) with hardware at the RTL-level, which requires

having lower level interfacing (typically at the signal level). On the other hand,

embedded processors tend to be less complicated than general-purpose proces-

sors and so can often be simulated at higher speeds. The next section describes the

work in processor simulation and co-simulation for embedded systems.

1.4.2 Processor Simulation Technologies for Embedded Systems

In his seminal 1994 paper on cosimulation [132], Rowson explains different

levels for simulating software running on a target processor concurrently with

hardware in terms of their speed (in instructions per second). The ‘synchronized-

handshake’ method is equivalent to our algorithmic-level and runs at native speed,

but has no real accuracy. He lists the instruction-level models to run between 2,000-

20,000 inst/sec (instructions per second), cycle-accurate models to run at 50-1,000

inst/sec, and nano-second accurate (which is basically RTL level) running at 1-100

inst/sec. All of these are considered baseline cases, and there has been significant

work since then. To account for the improved host processors, compilation tech-

niques, and simulator optimizations we scaled these numbers up by a factor of 100

to define the low-end of the speed scale.

An important improvement to cycle-level and instruction-level models since

Rowson’s paper is compiled code simulation, where the binary decoded at compile-

time and then linked with a model of the (micro)architecture. This technique was

33

introduced by Zivojnovic and Meyr in 1996 [143] and was 100x-600x faster than

traditional interpreted cycle-accurate simulators, which they list as having speeds

between 300 and 20,000 instructions per second. When dividing the inst/sec rate

of the host platform by the inst/sec rate of their target simulator the slowdown of

compiled-cosimulation compared to native execution is roughly 34x-200x. In 2000,

Lazarescu et al. [28] developed a similar approach, but instead of doing direct

binary translation they did an assembly-to-C translation and yielded a simulator

with a speed of almost 1.3×107 cycles per second on a 500 MHz Pentium III system.

Given an estimated host performance of 1.3×109 IPS [18] for the host and assuming

a CPI (Cycles per Instruction) of 1 for the target processor, this is 100x slower than

native execution. VaST systems [16] sells very fast virtual processor models that

improve upon the above approaches with static analysis and also low-level hand

optimizations. In 1999 [78], Hellestrand said that their virtual-prototype models

could execute at up to 1.5× 108 instructions per second on a 400 MHz host, which

is approximately 15x faster than Lazarescu’s work in the same time period and has

a slow down of only about 7x compared to native execution.

A major issue with compiled code simulators is that they cannot handle self-

modifying code, which is a key feature in most Real Time Operating Systems

(RTOSs). As a result, direct compiled code simulators have not had commercial

success. What has been successful is having high-speed interpreted simulators

that cache decoded instructions. This approach was introduced by LISAtek (now

CoWare) in 2002 [116], where they reported getting performance approaching that

of cache compiled simulators with speeds of up to 8× 106 instructions per second

for instruction-accurate models generated from LISA descriptions on a 1200 MHz

Athlon. Given a host performance of 3.5 × 109 inst/sec [18] for this processor the

slowdown is a factor of 440. In a whitepaper from 2005 [21] VaST gives the range

of single processor performance to be from 2 × 107 to 2 × 108 inst/sec for cycle-

accurate simulation; for a 2.7 × 1010 inst/sec [18] 2.93 GHz Core 2 Duo processor

this gives a slowdown of between 135x and 1350x. The speed advantages of VaST

34

are because they hand optimize their simulators and sacrifice internal visibility for

the sake of speed. Given the marketing nature of whitepapers we selected a con-

servative value of 3× 107 inst/sec as the upper limit for cycle-accurate simulation

performance. Based on Rowson’s numbers, we assigned instruction-accurate mod-

els a speedup of 30x over cycle-accurate models. There are other products in this

market including offerings from Synopsys (formerly Virtio) and ARM (formerly

AXYS). Virtutech Simics [67] and the Open Virtual Platform (OVP) [48] from Im-

peras provide fast instruction accurate simulation on the order of 1× 108 to 1× 109

instructions per second. The OVP is free for anyone, and Simics is free for univer-

sity use.

A major consideration for embedded processor simulators is the level at which

they are interfaced with. If the model is monolithic, then it does not need to in-

terface with anything else and so has no interfacing overhead. At the transaction-

level, the interfacing occurs via function calls to shared channels. If a model is

interfacing with RTL, then it probably needs to interface at the signal level (either

directly or via an adaptor). Seamless [84], from Mentor graphics, accelerates in-

terfacing cycle-accurate instruction-set simulators (ISSs) with hardware at the RTL

level, by having a direct optimized interface to the shared memory (for commu-

nication between the hardware and software) for the ISS. It is difficult to measure

the impact of the interfacing of these different models, but the speed of simulating

hardware at these different levels serves as a good guide.

1.5 Discussion

Chapter 2 presents uniprocessor microarchitectural modeling that operates at

the cycle level and takes a trace of instructions and memory addresses from an

instruction-level simulator as input. Chapter 3 presents an approach for multipro-

cessor modeling in Metropolis at the transaction level. Chapters 4, 5, and 6 de-

scribe our timing annotation framework that operates on performance traces from

35

Cycle-Accurate

Models

Instruction Level

Models

Algorithmic

Models

Logic Gates

Layout

Actual Gates

Register Transfer

Level Models

Transaction-Level

Models

Algorithmic

Models

Annotation

Framework

Multiprocessor

Modeling

Uniprocessor

Modeling

Hardware View Software/CPU View

Timed

Instruction

Trace

Timing

Annotated

Application

Application

Code and

Binary

Figure 1.12: The work from this thesis in terms of the levels of hardware and soft-
ware representation. This thesis’s work is in the green callouts and plus sign.

cycle-level models and writes the average delays to the original application source

code.

1.6 Contributions and Outline

This chapter has illustrated two main trends: the unsustainability of the low-

level implementation of the traditional design flow, and the increasing importance

of software and multiprocessing in embedded systems. It also explained key pieces

of system-level design.

This thesis concentrates on the abstraction and modeling of microprocessor per-

formance for single and multi-processor embedded systems. Figure 1.12 puts the

main pieces of work of this thesis in terms of the levels of abstraction defined for

the modeling of general hardware as well as software running on a microprocessor.

Its contributions are as follows:

• Section 1.4 in this chapter analyzed different levels of abstraction for simu-

lating embedded microprocessor performance. This sets the context for our

36

research.

• Chapter 2 presents a trace-based approach for modeling the microarchitec-

tures of processors using Kahn Process Networks that is generic, intuitive,

and highly retargetable.

• Chapter 3 describes our high level modeling of bus-based multiprocessors

by representing each piece of the system as a timed resource. This is per-

formed in Metropolis, and improves upon previous architectural modeling

in Metropolis. Also, the structure of a representative application and its map-

ping to the architecture have been performed.

• Chapters 4, 5, and 6 detail our highly retargetable timing annotation frame-

work that operates on performance traces from cycle-level models and writes

the average delays to the original application source code.After the annota-

tion the annotated code can be compiled to the native host platform and run,

with timing information, at speeds one to three orders of magnitude faster

than the cycle-accurate simulator.

From the point of view of platform-based design, this dissertation primarily fo-

cuses on the lower portion of the flow moving from the system to the architecture

platform. In particular, it concentrates on moving results from the architectural

space up to higher levels of abstraction. The uniprocessor modeling allows the

user to quickly creates platform numbers for a given instruction-set. The mul-

tiprocessor architectural model is a high level model that enables mapping, and

allows lower level results to be propagated back to it. The annotation framework

is an approach that propagates timing results gained from cycle-level simulation

up to the original source code in the form of source-level annotations.

37

Chapter 2

Single Processor Modeling

Software executing on one or more microprocessors has become a dominant

factor in the design of embedded systems. The 2004 update of the International

Technological Roadmap for Semiconductors [5] lists embedded software as one

of the key system-level design challenges, and “Design space exploration and

system-level estimation” as a key aspect of the “System Complexity” category.

Evaluating different processors and micro-architectures at the system level is diffi-

cult and thus rarely done. The first generation system-level design environments

(such as VCC [19], POLIS [26], and COSYMA [79]) provide support for at most

several ISAs (Instruction Set Architectures), and typically even fewer microarchi-

tectural instances with little or no extensibility. Second generation tools such as

Model Library [144] from CoWare and Seamless [84] from Mentor Graphics do

have better libraries of processors, but these cannot easily be extended for explo-

ration. Architecture Description Languages (ADLs) such as LISA [123] and Ex-

pression [74] are domain-specific languages for designing new processors and in-

struction sets. They can also automatically generate software tools, simulators, and

hardware from the descriptions. However, ADLs often couple the microarchitec-

ture’s description with that of the functionality, forcing the complete specification

of the processor, which can be time consuming. Microarchitectural simulators,

38

such as SimpleScalar [35], provide stand-alone environments for evaluating the

impact of different microarchitectures implementing one or more ISAs, but are

generally difficult to retarget or use at the system-level. This chapter presents a

high-level approach [107, 108] to model timing performance of a single embedded

microprocessor’s microarchitecture using Kahn Process Networks [87]. The result

is a high-level intuitive model that is retargetable, easy to extend, and fits well

within a system-level environment.

The next section presents formal definitions for modeling processor perfor-

mance. Section 2.2 describes the processor models. Section 2.3 compares the mod-

els to the ARM models from the Simplescalar [35] simulator. Then, section 2.4

reviews related work. Finally, the work is discussed and put into perspective.

2.1 Processor Modeling Definitions

A single program running on a microprocessor can be thought of as a totally

ordered trace of N instructions, where the ordering between instructions repre-

sents their logical execution order. Instruction Ii is the i-th instruction in the trace.

A microprocessor is an architectural implementation of the functionality of an in-

struction set archicture (ISA). When a program executes on a microprocessor, the

beginning and ending of the execution each instruction have times associated with

them, which transforms the instruction trace into a timed instruction trace. First,

we describe the functional aspects of the trace. Then, we describe the microarchi-

tectural aspects. Finally, we give an example and discuss how particular microar-

chitectural features can be represented in this formalism.

2.1.1 Functional Definitions

The ISA (instruction set architecture) of a processor P consists of its logical state

elements (or memories), MP , and the set of instructions that it implements IP . The

39

correct behavior of a processor running a program is the atomic sequential execu-

tion of the instructions modifying its state. All microarchitectures that implement

the ISA of P must be logically consistent with this model, even though the execu-

tion of instructions often overlap due to microarchitectural features like pipelining

and out-of-order execution.

2.1.1.1 Logical State

We call the logical state elements in an ISA memories MP refers to the set of

memories for processor P . Memories represent regular memories, condition codes,

register files, and other state elements in the ISA. Each memory mi in MP has a

unique name and can be read-only, write-only, or read-write. Each memory also has

a certain number of addressable elements n(mi), which typically is a power of 2.

The Program Counter, PC, is a special single element that stores the current lo-

cation of the program in a memory. It can be a memory itself or located in another

memory. For our purposes, we assume that every processor has a memory where

the instructions are locate, and exactly one PC that indicates the current instruc-

tion’s location in memory.

2.1.1.2 Operands

Before defining what instructions are, we first define what operands are. An

operand is a value, or a reference to a value in a memory in an instruction. OP is the

set of all legal operands for processor P . An operand has a name, which is unique

from the names of the other operands in the given instruction. A constant operand

is a value encoded directly in the instruction. It should be noted that constant

operands can only be read operands.

For a processor P , each operand o ∈ OP is characterized by the following func-

tions:

• r(o) : OP → {0, 1} is 1 if o is a read operand.

40

• w(o) : OP → {0, 1} is 1 if o is a write operand.

• M(o) : OP → MP returns the memory accessed by the operand. If M(o) =

null then the operand is a constant operand.

• A(o) returns the address indexed in the memory by this operand. It returns

null for constant operands, or for operands that have yet to have their ad-

dress calculated.

• V (o) : OP → B indicates if the value of the given operand is ready (to read

or write). This is purely used for indicating the state inside of the microar-

chitectural model. V (o) = 0 implies that o has not been read yet, if o is a read

operand, and that its value has not been calculated if o is a write operand. For

more complicated architectures additional states (e.g. ready to write/read)

may need to be added.

2.1.1.3 Instructions and Their Properties

The set of all legal instructions for processor P is IP , and it has a fixed set

of types of instructions, TP = {t1, ..., tm}, called the instruction set. Each type tx

specifies the resources used by the instruction, as well as the types of operands

used by it, but not their addresses. Each instruction works by reading operands,

performing some calculations, and then writing operands based on the result. Each

processor also a null/NOP(No Operation) instruction I∅, which has no read or

write operands and is used for microarchitectural modeling.

Each instruction Ii in the program trace has the following functions/properties

associated with it.

• e(Ii) : IP → Bn returns the vector of n-bits1 that represent the encoding of the

instruction Ii.
1This assumes fixed length encoding, but this could be extended to variable length encodings.

41

• t(Ii) : IP → TP returns the type of instruction.

• n(Ii) : IP → N0+ returns the index of the instruction (e.g. n(Ii) = i) as a

non-negative integer. For I∅, n(I∅) = 0.

• R(Ii) returns the set of general read operands in the instruction. These are

defined by the instruction type, its encoding, and possibly the state of the

system.

• W (Ii) returns the set of write operands in the instruction. These are defined

by the instruction type, its encoding, and possibly the state of the system.

They access the same resources as read operands, but cannot refer to con-

stants. Each write operand updates the state of the system for future instruc-

tions.

• a(Ii) returns the address (and memory) where the given instruction is lo-

cated. We separate this from the R(Ii) because it is not dependent on the

encoding or type of the instruction. In the case of interrupts and I∅, the ad-

dress is null.

2.1.2 Architectural Definitions

This section presents definitions used for attaching performance information to

a functional execution trace of a microprocessor. First, the trace formalism is spec-

ified. Then, the refinement of the trace formalism to include stages of execution is

reviewed. Finally, the representation of different microarchitectural features using

the trace formalism is presented.

2.1.2.1 Overview of the Trace Formalism

For a given processor P , there is an application space AppTrace(P) of legal

traces of instruction and data values, and a microarchitectural space uArch(P)

42

for modeling the timing and resources of the program executing on the proces-

sor. Time can either be defined as the set of non-negative real numbers or, for the

case of cycle-level modeling, as the set of non-negative integers.

The TimedAppTrace extends the initial trace by annotating the instruction with

begin and end times. For ax(P) ∈ AppTrace(P) we define :

tax(P) = TimedAppTrace(ax(P)) = ((Ij, Begin(Ij), End(Ij)) | ∀Ij ∈ ax(P)),

and Begin(Ij), End(Ij) ∈ Time

A given application trace ax ∈ AppTrace(P) and a given microarchitecture in-

stance uy ∈ uArch(P), the combination yields a timed application trace as shown

below:

uy(ax) : AppTrace(P)→ TimedAppTrace(P)

The index i of each instruction Ii is a non-zero natural number indicating its

position in the trace. Given this, each instruction in any valid timed application

trace tax(P) must have the following properties:

1. (Begin(Ii) ≤ Begin(Ij)|∀Ii, Ij ∈ ax(P) s.t. i ≤ j)

2. (Begin(Ii) ≤ End(Ii)|∀Ii ∈ ax(P))

2.1.2.2 Refinement to Stages

The execution of an instruction on a processor can be broken up into different

stages that comprise the full execution, such as reading operands from the register

file or writing a value to a memory. A stage is defined as a component that con-

nects to unidirectional queues via input and output ports. It reads zero or more in-

structions in as input, performs some computation, and then outputs zero or more

instructions. Each stage is a process in that it can be thought of as a program with

blocking reads from inputs and blocking writes to the outputs. A stage can access

the memory elements of the instruction set to read and/or update their state, and

43

may perform some modification of the instructions that it inputs (i.e. writing out

operand results). Dependency between stages is shown as an edge (queue) from

the earlier stage to the later stage. We call this dependency graph an Execution Flow

Graph (EFG).

Upon the execution of a trace on a model in the framework, each instruction in

the trace is assigned a time value for when it enters a stage, and another time value

when it leaves the stage. More formally, each stage Sm has two tags Begin(Sm, Ii)

and End(Sm, Ii), which respectively represent the time of the Ii entering and leav-

ing the stage. Given this ordering, we have that Begin(Sm, Ii) ≤ End(Sm, Ii). The

delay of a stage for a given instruction is calculated as the difference between the

end time and the begin time. If the stage is of constant delay, then this difference

is constant.

Another property is that for each instruction running on a microarchitecture,

the sum of the delays in its stages must be equal its total delay. Stated more for-

mally this this means that for every instruction Ii in each stage Sm in the microar-

chitecture uj :∑
Sm∈uj

(End(Sm, Ii)−Begin(Sm, Ii)) = End(Ii)−Begin(Ii)

It is possible for stages and queues to have zero delay, but they cannot have

negative delay. The end tag of an instruction of one stage can be the same as the

begin tag of a successor stage that is connected to the first stage via an queue with

a zero cycle delay.

A given instruction cannot begin execution in a stage before it begins execution

in an earlier stage, although it may be possible to begin execution at the same time

as the preceding stage. An instruction can sometimes ”pass” earlier instructions,

such as in the case of out-of-order execution, but we require that the commits of

each instruction must not happen before the commits of earlier instructions (i.e.

they can happen at the same time).

44

2.1.2.3 Stages of Execution

Fetch Decode

Read

Operands Execute

Write

Operands Commit

SCSWSESRSDSF

Figure 2.1: Example of stages

Figure 2.1 shows the stages for the example laid out in this section. It is based

on the basic RISC/DLX style of microarchitecture presented in [121], and partially

inspired by the notation of the Operation State Machine [126]. While this general

style is true for all microprocessors, they can be split into multiple stages and some

of the ordering of the different stages can be in parallel or in different orders (e.g.

such as having read and decode occur in parallel such as in [121]). Below we detail

the behavior of these individual stages.

Fetch The Fetch stage, SF , loads the instruction from memory. In general, the only

operand that it depends on is the program counter PC.

Decode The Decode Stage, SD, translates the fetched instruction into a form where

its operands and instruction-type are known. The Decode stage cannot begin

on an instruction until the Fetch of it is finished.

Read This stage, called SR, gets some of the read-operand values from various

resources. Its execution may be stalled if any of its read-operands depend

on the write operand of an earlier instruction that has not yet written back

its results. It is important to note that this stage does not necessarily handle

all read operands (e.g. read operands to data memory, such as in a Load

instruction are generally handled in a later stage).

Execute Once the Read stage finishes reading the necessary operands, the Execute

stage, SE , can begin. When this stage finishes all of the instruction’s write

45

operands are given values. It may sometimes access memories, such as load

and store instructions).

Write The write stage, W , involves passing the write operand values to instruc-

tions that depend on them. This happens before the entire system state is

updated. Once it finishes, it will allow instructions that are stalled waiting

for its operand values to proceed. This stage is not strictly necessary, and

may be viewed as immediately following execute and taking no time. We

chose to separate it from execute and commit, so that the forwarding (or lack

thereof) of instruction results can be explicitly modeled.

Commit The commit stage, C, only processes an instruction when the instruction

has finished execution and all instructions before it have been committed or

will commit at the same time. It updates the state of the processor based on

the results of the instruction, making the system logically consistent.

2.1.2.4 Representing Microarchitectural Features

A wide variety of microarchitectural features can be described in terms of the

definitions provided in this section. They are specified by adding different prop-

erties and constraints to the stages and queues in the EFG, or by changing the

structure of the EFG. This is not intended to automate the design of simulators,

but it provides a context the relationships between instructions for different mi-

croarchitectural features.

Pipelining is a well known technique in computer architecture for increasing

clock speeds and allowing the execution of instructions to overlap. To enable

pipelining the execution flow of the processor is broken up into multiple stages

that have registers between them at the boundaries. Once an instruction is fin-

ished with one stage its output is passed to the registers that serve as input for the

next stage. In the next clock cycle the following instruction enters the first stage,

and the original instruction begins execution in the second stage. Since the reg-

46

isters all share the same clock, this clock can only be as fast as the slowest stage.

Also, structural and operand dependencies must be handled in order to assure

correct operation. Pipelining between execution units can be achieved by refin-

ing the queues to have a size of greater than 1. If a stage S is fully pipelined2,

then there is the restriction, for each instruction Ii that enters and leaves it, that

(Begin(Sx, Ij)−Begin(Sx, Ii)) ≥ 1 , where Ij uses stage Sx, and i < j.

Buffering is represented as storage between stages. For stages Sj and Sj+1

where the second stage has a sequential dependence on the first stage, if there is

no storage between them, then for each instruction passing between the stages we

have End(Sj, Ii) = Begin(Sj+1, Ii). Pipelining between two stages can be thought

of as having a buffer of size 1. A buffer’s size indicates the number of instructions

that can be processed by stage Sj and not consumed by its immediate successor

stage(s) before it has to stall. Unless otherwise specified a buffer operates in FIFO

order.

Branch instructions can be handled in multiple ways within this framework.

They are different from other types of instructions in that they update the PC

based on their result, and are generally processed before the execute stage of the

pipeline. One way of dealing with this having the fetch stage handle the branches

and, depending on the result of prediction, it might delay the fetch of the following

instructions. This could also be modeled at a later stage (e.g. decode).

For superscalar execution the Fetch stage SF outputs up to X instructions,

where X is the scalarity of the of the fetch unit. It can output fewer than X in

the case of branch mispredictions. We represent mispredicts as extra delay, but

do not actually fetch the extra instructions. For this to be effective, we must also

increase the number of instances of the other stages. Out of order execution is han-

dled by specifying that an instruction may enter SE before its predecessors if it is

not depending on any operands that have yet to be calculated (operand forward-

ing can be viewed in terms of when an instruction dependency is resolved (i.e. is

2By this we mean that it can accept a new instruction each clock cycle (time unit)

47

it in SW or SC).

2.2 Processor Models

This section provides an overview of the different pieces used to construct the

KPN-based microarchitectural models (these are also referred to as two process

models). Section 2.2.1 provides a high level picture of the models and their be-

havior. Section 2.2.2 explains the trace format used by the models. Then, section

2.2.3 explains how a memory system is added to the models. Finally, section 2.2.4

presents limitations of the modeling style.

2.2.1 High Level Overview

Our microarchitectural model is driven by an instruction trace generated by a

functional ISS (Instruction Set Simulator), and returns the number of cycles that

it takes to execute. To ensure accuracy the model must account for the delays of

individual instructions, the interaction between them, and the impact of limited

resources. The models described in this subsection use the channels in a cyclical

manner, where each cycle every process either reads one token from all of its in-

put channels and writes one token to each of its output channels, or, in the case

of stalling, does not read or write any channels. In order to model a particular

pipeline length, channels are pre-filled with the number of tokens equal to the

pipeline length. As long as the cyclic assumption is maintained the lengths of the

different pipelines stay constant.

This approach uses a two process model like the one pictured in Figure 2.2.

The two processes are a fetch process that handles the fetch and issue of instruc-

tions from an execution trace generated from a functional simulator of the instruc-

tion set, and an execute process that handles the execution, operand dependencies,

and forwarding delays between instructions. These models have three types of

48

Fetch

Process

Execute

Process

…

Stall ChannelIssue Channel

Results Channels

Instruction

Trace File

Figure 2.2: Overview of a two process microarchitectural model.

FIFO channels: an issue-channel that passes instructions from the fetch process to

the execute process, a stall-channel from the execute process to the fetch process,

and one or more result-channels that model the execution delays of instructions by

connecting the execute process to itself.

Each instruction in the execution trace has a type as well as read operands and

write operands. The operands can be either registers or the condition codes3 Each

instruction type is classified by two delays, issue delay and results delay. The is-

sue delay of an instruction, represents the number of cycles that it takes for the

fetch unit to write the instruction to the issue-channel assuming that there is a cache

hit. The results delay of an instruction type is the number of cycles that the next

instruction will have to wait if it depends on one or more write-operands from an

instruction of that type.

2.2.1.1 Fetch Process

Figure 2.3 shows pseudo-code for the Fetch process. The Fetch process begins

execution by pre-loading the issue-channel to model the pipeline between the two

3Constants and memory could also be considered operands, but they are treated differently.
Constants cause no dependency between instructions. Since ARM is a RISC (Reduced Instruction
Set Computer) instruction-set, the only accesses to memory are loads and stores (e.g. there are
no instructions that read directly from memory and then write back to directly to memory). Fur-
thermore, memory accesses are handled in a different way than registers and condition codes are,
which will be discussed in Section 2.2.3.

49

Integer issue stall = 0
Boolean inst = null
preloadIssueChannel()
while inst trace.hasInstructions()

stalled = stall channel.read()
if inst == null // read next instruction from the trace

inst = inst trace.readNextInst()
issue stall = getIssueDelay(inst)

if stalled == false // issue instruction or bubble
if issue stall ≤ 1

issue channel.write(inst)
inst = null

else
issue channel.write(bubble)

issue stall = issue stall - 1

Figure 2.3: Pseudo-code for Fetch process execution.

processes. This delay typically represents the delay of instruction fetch and de-

code. For the main execution loop, which executes every cycle, it reads from the

stall-channel, and if there is no stall then it writes either the fetched instruction

from the instruction trace or, if there is an issue stall, a bubble instruction4 with no

operands to the issue-channel.

2.2.1.2 Execute Process

Figure 2.4 shows the pseudo-code for the execution of the Execute process. Its

execution begins by pre-loading the result-channels to their configured lengths, then

the main loop is entered. In the main loop, if there is no stall from operand depen-

dencies, the next instruction is read from the issue-channel. After this the process

reads from the result-channels and updates the operand dependency table. Then

the Execute process checks to see if any of the read operands of the current instruc-

tion are unavailable and if so it sets the stall variable to true (otherwise it false).
4The bubble (or empty) instructions are used to model stalls or non-operation in the microarchi-

tecture.

50

preloadResultsChannels()
Boolean stalled = false
Instruction curr inst = null
while true

if stalled == false
curr inst = issue channel.read()

readResultChannelsAndDoUpdate()
stalled = checkOperandDependencies(curr inst)
if stalled

writeResultChannels(bubble)
else

writeResultChannels(curr inst)
curr inst = null

stall channel.write(stalled)

Figure 2.4: Pseudo-code for Execute process execution.

If the stall variable is false, then the appropriate result channel is selected for the

instruction and it is written to it. If stall’s value is true, then no results channels are

selected, and the fetch process is informed of the stall via the stall channel. After

this, bubble instructions are written to all of the unselected result-channels, and the

value of stall is written to the stall-channel.

2.2.2 Trace Format

The microarchitectural models are driven by instruction and memory address

traces generated by a modified functional Instruction Set Simulator (ISS). Each in-

struction issued by the ISS is turned into a trace entry that consists of three ele-

ments: a string that indicates if the instruction executes (i.e. “EX”) or does not (i.e.

“NOEX”), a hexadecimal value indicating the PC (Program Counter) address of

the instruction, and the hexadecimal value of the instruction. Figure 2.5 shows the

first four entries of a trace file in the first column, and the decoded entries in the

second column.

A memory address starts with the string “MEM” and on each line is followed

51

Trace File Decoded Instructions
NOEX fffffff8 00000000 andeq r0, r0, r0
NOEX fffffffc 00000000 andeq r0, r0, r0
EX 00000000 ea000011 b 11
EX 0000004c e3a0d702 mov sp, #524288 ; 0x80000

Figure 2.5: Sample trace file and its decoding. The instruction ‘andeq’ ands to-
gether the second and third operands and writes the result to the first operand if
the equal condition code is true. The ‘b’ instruction branches relative to the current
program counter. The final instruction is a ‘mov’ instruction writes the constant
value to the stack-pointer register.

by the hexadecimal address. In a trace, each instruction is immediately followed

by a the list of of the addresses that it accesses. Figure 2.6 shows a load multiple

instruction (LDMIA) and its associated memory addresses.

Trace File Decoded Instruction
EX 8bb8 e8bd8070 ldmia sp!, r4, r5, r6, pc
MEM 1ffff0
MEM 1ffff4
MEM 1ffff8
MEM 1ffffb

Figure 2.6: Sample instruction in execution trace with memory addresses. This
is the load multiple instruction that uses the location of the sp (the stack pointer)
register as its base address, writes the four memory words after it into registers
r4-r6 and pc. It then increments the value of sp.

2.2.3 Adding a Memory System to the Models

This subsection explains how a memory system is added to the KPN-based

models. Figure 2.7 shows the models of the XScale and Strongarm microproces-

sors extended with a memory system. This includes: caches and TLBs (Translation

Lookaside Buffers) for the instruction and data memories, the write buffer, and a

shared memory bus.

52

Fetch
Process

Execute
Process

…

Instruction
TLB

Shared
Memory

Bus

Instruction
Cache

Data
TLB

Data
Cache

Figure 2.7: Memory model overview. TLB stands for Translation Lookaside Buffer,
which is used for caching page table mappings. The write-buffer is not shown be-
cause it is inside of the execute process.

2.2.3.1 Caches and TLBs

The addition of caches and TLBs is straightforward. They are implemented as

media which are checked for a hit of given address and then update their state for

a given address. The write-buffer is implemented as an array inside of the execute

process that tracks the pending store operations. The write-buffer saves the values

of pending stores and, when passed a load address, returns true if that address is

currently being stored in the memory.

For the simple microarchitectures being modeled, the instruction cache has a

simple and predictable behavior because it only reads from memory, and fetches

instructions in order. Upon a miss, in the instruction cache the issue-stall value is

increased by M , where M is the cache miss penalty. The data cache’s behavior is

more complicated because there are multiple concurrent instructions and there are

read and write dependencies between the instructions.

For a store instruction, the data cache is checked for hits on the instruction’s

53

addresses and then, if they all hit, the store instruction is moved to an S cycle delay

results channel, where S is the delay for a store instruction that hits the cache. If

any of the store instruction’s addresses miss, then they are all added to the write

buffer, and the instruction is placed in a results queue with an M cycle delay, where

M is the cache miss penalty. Upon reaching the end of the results channel, a store

instruction updates the data cache and removes its values from the write buffer.

For a load instruction, the write buffer is checked, and if it misses then the data

cache is checked. If there is a hit, then the instruction is put into a L cycle delay

results queue, where L is the results-delay for a load instruction hit. If there is

a miss, then the instruction is put into a M + L cycle-delay results queue. Upon

exiting the results queue, the load instruction updates the state of the data cache if

necessary.

2.2.3.2 Modeling a Non-Pipelined Shared Memory Bus

The memory system as described above does not model the fact that the in-

struction and data cache typically share a single bus to the memory system. This

sharing increases overall execution time because each cache must stall if it tries

to access the bus when the other has control of it. To model this, a Bus medium

which models the mutual exclusion between the two caches accessing memory at

the same time was created.

The Fetch and Execute processes each connect to the Bus medium, and call the

lock and unlock methods that it implements. When two processes attempt to lock

the bus at the same time, one of them is non-deterministically selected as the win-

ner. When the lock method is called, it returns a 1 if the lock was successful, and a

0 otherwise.

On an instruction cache miss, the Fetch process stalls its issuing until it has

successfully locked the bus. Once the instruction is issued, then it the Fetch process

unlocks the bus. On a data-cache miss, the Execute process tries to lock the bus. If

the lock attempt is unsuccessful, then the Execute process stalls until the next cycle

54

and then tries again. Once successful, the Execute process writes the instruction to

the results-channel that adds the delay of the cache miss. Upon writing back the

results from this channel, the Execute process unlocks the bus. This behavior can

be modified to model a pipelined memory bus by having both Fetch and Execute

only lock the bus for a single-cycle, instead of the whole time spent servicing the

miss.

2.2.4 Model Limitations

As implemented, the KPN-based microarchitectural models have some limita-

tions. For simplicity, the caches and translation lookaside buffers (TLBs) treat loads

and stores the same way, and only pipelined execution resources are modeled.

These could be resolved, but might impact the execution time. All of the models

discussed are single-issue models with out of order commit, which matches the

XScale and Strongarm microarchitectures. Aside from branch instructions, value-

dependent instruction latencies are not modeled because the instruction traces do

not capture the values of register operands. Finally, the instruction buffer has not

been modeled and interrupts and exceptions are treated as regular instructions.

2.3 Case Study and Results

This section compares the Kahn Process Network (KPN) models in terms of

speed and accuracy with that of the SimpleScalar-ARM models for the Strongarm

and XScale microarchitectures. The models mentioned in the chapter are using

versions of YAPI [58] written for Metropolis [27] and SystemC [8] were used. YAPI

is an implementation of Kahn Process Networks (KPN) [87] with the addition of a

non-deterministic select operator. These models developed here only use the KPN

semantics, and not the select functionality. The experiments were run on a Linux

workstation with a 3 GHz Xeon Processor and 4 GB of memory.

55

2.3.1 XScale and Strongarm Processors

The ARM (Advanced RISC Machines) [3, 102] instruction set is a 32-bit RISC

(Reduced Instruction Set Computing) developed for use in embedded systems. It

is by far the most popular instruction set for embedded applications, and is used

in a variety of applications including: cellphones, personal digital assistants such

as the Palm TX [145], and MP3 players such as the iPod [86]. The ARM instruc-

tion set is a compact instruction set that can be efficiently implemented. Over the

years there have been a number of extensions to the instruction set including: a

16-bit execution mode called Thumb, optimizations for java execution, and special

instructions for multimedia and multiprocessing.

The DEC Strongarm and Intel XScale are low-power scalar embedded proces-

sors that implement the version 4 of the ARM [102] Instruction Set Architecture

(ISA). The Strongarm [51] processor has a five stage pipeline with static branch

prediction, and has a frequency of up to 206 MHz. The XScale PXA-25x proces-

sor [45, 52] is the successor to the Strongarm, has a seven stage pipeline, dynamic

branch predication, and has a frequency of up to 400 MHz.

2.3.2 Accuracy Results

Figure 2.8 shows the accuracy of the KPN models of the StrongARM and XS-

cale microprocessors versus equivalent SimpleScalar-ARM[35, 73] configurations.

The first benchmark is a simple Fibonacci program and the last three benchmarks

are from the MiBench benchmark suite [73]. The second and third benchmarks

respectively are the small and large versions of the string-search benchmark from

MiBench. The final benchmark is the Fast Fourier Transform (FFT) from MiBench,

but reduced in size.

Table 2.1 shows the accuracy numbers of the two process Metropolis models

compared to Simplescalar. Table 2.1(a) shows the results with idealized memory

where cache and TLB misses have no cost. For the ideal case the average error

56

Table 2.1: Two process model (Metropolis) error compared with SimpleScalar with
matching configurations for real and ideal memory. Ideal memory refers to having
ideal memory where every memory access is a cache hit. Real memory refers to
having realistic delays for cache misses and bus contention. Figure 2.8 is a graph
of the data from these tables.

(a) Results with ideal memory

Measurement Processor Category Fibonacci

String

Search

Small

String

Search

Large

FFT

Tiny

SimpleScalar 31,674 278,327 6,348,218 4,782,014

Metropolis 34,090 310,568 7,165,792 5,032,746
Difference 2,416 32,241 817,574 250,732

Error 7.63% 11.58% 12.88% 5.24%

SimpleScalar 32,426 309,331 7,096,875 5,716,470

Metropolis 36,480 312,402 7,175,016 5,552,785

Difference 4,054 3,071 78,141 -163,685
Error 12.50% 0.99% 1.10% -2.86%

Ideal Memory

Cycles

Strongarm

Xscale

(b) Results with real memory

Measurement Processor Category Fibonacci

String

Search

Small

String

Search

Large

FFT

Tiny

SimpleScalar 70,673 329,486 6,475,559 4,856,919

Metropolis 61,190 346,975 7,254,988 5,101,099
Difference -9,483 17,489 779,429 244,180

Error -13.42% 5.31% 12.04% 5.03%

SimpleScalar 49,524 330,889 7,129,976 5,749,505

Metropolis 57,532 338,155 7,224,987 5,589,563

Difference 8,008 7,266 95,011 -159,942

Error 16.17% 2.20% 1.33% -2.78%

Real Memory

Cycles

Strongarm

Xscale

57

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

Fibonacci Search Search FFT

 Small Large Tiny

Strongarm
Ideal Memory

Strongarm
Real Memory

Xscale Ideal
Memory

Xscale Real
Memory

Figure 2.8: Two process model error compared with SimpleScalar models for
both real and ideal memory. It was given the same configuration for both cases.
Ideal memory means that the caches always hit, whereas Real memory uses realistic
caches. This graph is of the data from Table 2.1

magnitude is 6.85%. Table 2.1(a) shows the results for the ‘real case’ when cache

and TLB misses have costs. For the real case the average error magnitude is 7.28%.

For both models the maximum error magnitude is 16.2%. The memory models

treat loads and stores the same way, and the bus is not pipelined. This causes the

memory impact to underestimated for the Strongarm and overestimated for the

XScale processor.

58

Table 2.2: Simulation performance measurements in cycles/second.

Mode Processor

Base

Metropolis

Optimized

Metropolis

Optimized

SystemC

Simplescalar

ARM

Strongarm 2,000 5,800 66,000 920,000

Xscale 2,000 6,100 67,000 1,010,000

Strongarm 1,500 5,900 60,000 810,000

Xscale 1,500 6,000 60,000 890,000

Ideal

Memory

Real

Memory

2.3.3 Performance Results and Optimizations

Table 2.2 shows the performance of different versions of our models executing

the search-large benchmark from MiBench [73]. The first column shows the base

Metropolis models without performance optimizations. The second column shows

the results of optimized Metropolis models, and the third column shows the execu-

tion times of the optimized model ported to SystemC. The unoptimized Metropolis

models performed at roughly 2,000 cycles/second, which is clearly unacceptable.

Examining profiling results revealed several reasons for the slow simulation rate.

By applying the below described optimizations performance was increased by a

factor of thirty.

The first optimization was to switch the result-channels from general FIFO chan-

nels to fixed size internal arrays. Given the cyclic execution of accessing the FIFO

channels, they stay the same length and so there is no need to do bounds check-

ing or resizing on them. Furthermore, since the Metropolis simulator’s scheduler

uses a media-centric scheduling approach, and by changing these media to fixed

arrays the greatly reduces the scheduling overhead. This optimization increased

performance by approximately a factor of three.

The second optimization was porting the models from Metropolis to SystemC

[8]. SystemC is a less general framework than Metropolis that directly implements

discrete event simulation in its kernel (as opposed to using the Global Time quan-

tity manager), and does not have the support for non-determinism, mapping, or

quantity annotation. Thus, SystemC typically has better simulation performance

59

than Metropolis5. Given this and the fact that Kahn Process Networks are easily

modeled in SystemC, it made sense to switch to it. This modification was achieved

by modifying the SystemC code generated by the Metropolis SystemC based sim-

ulator to run in plain SystemC using bounded FIFO channels. Because the FI-

FOs were of bounded size, it was necessary to use blocking writes to avoid dead-

lock. Porting to SystemC gave a further performance increase of approximately

ten times when compared to the optimized Metropolis version. While these per-

formance increases are encouraging they still are not as fast as Simplescalar, which

ranged from 800 KHz to 1 MHz on the host system. This leaves a gap of roughly

15x between the SystemC KPN-based models and Simplescalar. There are still

many inefficiencies and potential optimizations present, which will be discussed

next.

2.3.3.1 Theoretical Performance Analysis

This section analyzes the theoretical performance limits of the KPN-based mi-

croarchitectural models. This analysis calculates the Worst Case Execution Time

(WCET) for simulating a single cycle in the microarchitecture by assuming that

an instruction is fetched and decoded each cycle to put a bound on the simulator’s

speed. All of this analysis is based upon the below variable definitions:

• R - The number of Results-Channels used by the model. Specifically this is

equal to the number of different delays used in the execution units.

• TF - Time to fetch an instruction (i.e. read an instruction word from the trace

file). For models with memory this includes accesses to the instruction cache

and instruction TLB.

• TD - The time to decode an instruction word.
5In [152], Yang et. al, showed that this overhead can be mitigated in some cases through opti-

mization of the generated simulator, but the two process models in this chapter are tightly coupled
and benefit little from his optimizations.

60

• TI - The time to issue an instruction to a results channel. For models with

memory this will include accesses to the data cache and data TLB for loads,

stores, and other instructions that access memory.

• TFR - The time to read from a FIFO channel.

• TFW - The time to write to a FIFO channel.

• TAR - The time to read from an array channel.

• TAW - The time to write to an array channel.

• TRU - The time it takes for the execute process to update its operand state

based on reading the results from a single a results channel.

The distinction between FIFO channels and array channels is that FIFO chan-

nels are communication media that do boundary checks and can be resized, whereas

each array channel is made from an arrays of a fixed length where reads and writes

alternate (i.e. the cyclic assumption). The array channels have significantly better

performance because they don’t do the boundary checks and, since they are just

regular variables, they don’t cause a context switch between processes like com-

munication media does.

For the initial unoptimized implementation the Worst Case Execution Time

(WCET) for simulating a single cycle is specified as:

WCETBase = TF + TD + TI + (R + 2) ∗ (TFR + TFW) + R ∗ TRU

In this case a new instruction is fetched and decoded, and all of the channels

are read from and written to. This includes the result-channels as well as the issue-

channel and the stall-channel. Finally, all of the operand dependencies are updated

from each result channel.

Below specifies the formula for the optimized Worst Case Execution Time for

simulating a single cycle, WCETOpt, where each result-channel becomes an array

channel. Thus, it is specified as:

61

WCETOpt = TF + TD + TI + 2 ∗ (TFR + TFW) + R ∗ (TAR + TAW) + R ∗ TRU

This means that there are two FIFO reads and writes each cycle instead of R +

2, which reduces the number of potential context switches and also the overall

execution time.

Other optimizations can be viewed in terms of these formulas as well. Caching

decoded instructions or pre-decoding traces can reduce the impact of TD. Simu-

lating the microarchitectural models concurrently with a functional simulator re-

duces the overhead of TF , since it becomes either a shared variable or interprocess

communication, both of which are faster than file input.

2.4 Related Work

SimpleScalar [35] is one of the most popular microarchitectural simulators for

research. It supports several instruction sets including: Alpha, PowerPC, and

ARM. Because of the emphasis on optimization, it is programmed using very low

level C-code with many macros, making it difficult to modify or retarget. While

it does support a wide range of parameters for configuring the memory system

and branch predictors, it assumes a fixed length pipeline and requires assigning

each instruction to a fixed delay resource. These restrictions make it difficult to

faithfully model a real microarchitecture and its fine-grained instruction delays.

Our models are at a higher level of abstraction, allow for more detailed instruction

delays, and are easier to modify and reuse. For example, Simplescalar issues load

and store multiple instructions in a single cycle, whereas both the Strongarm and

XScale implement them with microcode and so take a variable number of cycles to

issue them.

In [82] Hoe and Arvind use term rewriting systems to describe hardware in

terms of state elements and then logical rules based on these elements. The state

elements include: registers, FIFOs and arrays. Then rules based on the state for

62

transforming the system are specified, and control logic for the described system is

synthesized. As an example they synthesize a simple 5-stage-pipelined processor

with area and speed comparable to that of a hand-coded implementation. More

recently, Hoe and Wunderlich [151] prototyped an Itanium microarchitecture on

an FPGA using the Bluespec language, which also uses term rewriting systems.

Our work is just aiming at doing modeling of performance, so it uses a simpler

specification based on two sequential programs.

The Liberty Simulation Environment [141] provides a highly composable envi-

ronment for constructing cycle-accurate simulators, at a medium grain of detail.

It uses the Heterogenous Synchronous Reactive model of computation [65] and a

flexible handshaking protocol, which makes it quite composable, but reduces per-

formance. In [124], Penry et al. perform significant optimizations, but even the

hand customized results perform at 155 KHz, which is roughly 25% of the speed

of Simplescalar’s out of order model running on a similar machine.

The Operation State Machine (OSM)[126, 125] is a formal framework for mod-

eling embedded microprocessors and generating fast simulators. It separates the

modeling of the operation of instructions and the hardware resources present in

the microarchitecture. The operation of a single instruction is represented as a fi-

nite state machine, called the Operation State Machine. Transitions between states

often require requests to the hardware side to token managers for obtaining, query-

ing, and releasing tokens. Each token manager represents a resource: such as a

pipeline stage, a register file, or an execution unit. Each instruction in the system

has its own OSM with its own state, and the interaction of the different OSMs is

modeled via token managers. The hardware side uses the Discrete Event MOC,

and the operation side operates synchronously on each clock cycle. It achieves

a performance of roughly 1 MHz and is simplifies complexity. Our work is at a

coarser level of granularity, and also features the separation between timing and

functionality.

In [129], Reshadi and Dutt used a modified Petri-net description called Re-

63

duced Colored Petri Nets to formally describe and synthesize very high perfor-

mance simulators of up to 10 MHz. Our work is at a coarser level of granularity

than the above-mentioned environment. Given the cyclic nature and behavior of

the KPN-based models it is possible to statically schedule them, which should im-

prove performance further. To have a achieve comparable performance the KPN-

based models would need to be recoded from scratch in highly optimized low level

C or C++ code, and implement many of the optimizations previously mentioned.

2.5 Discussion

This chapter presented an intuitive and generic high-level model of microarchi-

tectural performance written in Kahn Process Networks using two concurrent pro-

cesses communicating via FIFOs and also a shared memory bus. This model is very

portable because it separates the microarchitecture modeling from the functional

modeling, and it does not need to implement the instructions, only decode them. It

can quickly be configured to explore a variety microarchitectures by changing the

lengths of the channels, the configuration of the memory system, and the code that

determines which results channel that an instruction is issued to. This is in con-

trast to traditional simulators that are written sequentially and have to perform

non-intuitive tricks like simulating the pipeline backwards. Other related work

was generally at a lower level of abstraction than ours as well.

In experiments our models achieved good accuracy, and their initially poor per-

formance were improved by a factor of over 30. There remain more opportunities

to improve performance. The performance was broken down analytically, and the

potential optimizations were explained in terms of this analysis.

64

Chapter 3

Multiprocessor Modeling

Embedded system design requirements are pushed by the often conflicting con-

cerns of increasing algorithmic complexity, low-power requirements, decreasing

development window times, and cost pressures for design and production. Fur-

thermore, in many domains, such as cellular phones and set top boxes, flexibility

and upgradeability are key concerns because of evolving standards and the use

of software for product differentiation. This has pushed wireless chip vendors

to develop specialized multiprocessors for implementing Software Defined Radio

(SDR). These systems are a good design point in terms of power, performance,

and flexibility. However, because of their concurrency and specialization they can

be difficult to program so that they meet performance requirements Furthermore,

evaluating the performance of different application mappings on them typically

involves the use of slow cycle-level simulators, expensive prototypes, or high-level

models. This chapter develops a high level model of a multiprocessor architecture,

a high level model of a representative application, and associates them together

with a high level mapping of the functionality onto the architecture.

A key challenge of high-level modeling is to keep the models abstract enough

to be fast, small, and flexible, but to have enough detail to achieve good accu-

racy. This must be true from the point of view of the architecture, the functionality,

65

and the mapping of the functionality onto the architecture. However, the majority

of modeling styles represent the model in terms of either the functionality or the

architecture. Functionally-centric models are often untimed or highly inaccurate

because they do not take into account the architecture of the model. Architecture-

centric models force the modeler to specify the functionality as a direct mapping

to the architecture, which reduces its flexibility and makes it harder to explore

different implementations. The Metropolis system-level design framework allows

a natural function-centric description of the functionality to be mapped on to an

abstract model of the architecture. This allows for the benefits of both function-

centric and architecture-centric design styles.

This chapter describes using Metropolis to create a high-level model of the ar-

chitecture of a bus-based multiprocessor and then perform high-level mapping of

a representative application to it. This approach models the system’s communi-

cation structure in detail and abstracts the computation elements by representing

them as simple timed resources. It leverages the concepts of orthogonalization of

concerns [90] and platform-based design [134] to create a generic and highly reusable

model. Its improvements upon the previous research are:

1. The significant simplification of the components and interfaces used.

2. Completely moving scheduling of architectural resources into the domain of

quantity managers.

3. The application of an access pattern that allows for intuitive and reproducible

results using quantity managers for scheduling and annotation.

This is demonstrated with the modeling of the MuSIC Software Defined Radio

(SDR) architecture from Infineon and the mapping of the data flow of the payload

processing portion of the receive part of the 802.11b wireless local-area networking

standard [1] to it. The functionality is represented in a way that is not biased to-

wards the architecture and that eases reuse. The mapping assigns pieces of compu-

66

tation in the functionality to computational resources in the architecture, allowing

cost from the architecture to be attached to the functionality.

The next section reviews software defined radio, the MuSIC architecture, and

previous work in architecture modeling using Metropolis. After this, the simpli-

fied architectural model is presented. Then, the functional application model and

the mapping of it to the architecture are explained. Section 3.4 presents results of

the model. Finally, the chapter is summarized and discussed.

3.1 Introduction

3.1.1 Software Defined Radio

Software Defined Radio (SDR) [10, 36, 133] is where the majority of the sig-

nal processing for a wireless system is done digitally. It is considered especially

promising for next generation cellular networks; Sadiku and Akujuobi [133] de-

scribed it as “...the technology of choice in several wireless applications such as

GSM and AMPS.” The potential advantages to this approach including: greater

flexibility, lower costs, faster time to market, and longer product lifetimes. With an

SDR platform it is possible to upgrade to newer standards via firmware upgrades

and even to adjust in real time to changing network conditions. The disadvantages

of this approach are increased power consumption and reduced performance com-

pared to direct hardware implementations.

Despite its promise, SDR is still a piece of ongoing work. Sadiku and Aku-

juobi [133] stated that “Since the computational load of SDR is on the order of

billions of operations per second, it is extremely challenging to implement a SDR

in a battery-powered terminal.” Signal processing applications tend to have high

data-level parallelism and so one effective approach is to use a multiprocessor sys-

tem clocked at lower speeds. Much industrial and academic research has gone on

into developing such architectures, below we overview the project used to drive

67

our modeling and annotation work.

3.1.2 the MuSIC Multiprocessor for Software Defined Radio

Multi-Layer Bus

Finite
Impulse
Response
(FIR)
Filter

Bank
1

Bank
2

Bank
3

Bank
4

Turbo
Viterbi
Decoder

External
Memory
Interface
(Flash/DRAM)

Peripherals

Shared Memory

(RF) Radio
Frequency
Interfaces

SIMD
Core 1

SIMD
Core 2

SIMD
Core 3

SIMD
Core 4 Bus

Bridge

Control
Processor

Local
Mem.

Local
Mem.

Local
Mem.

Local
Mem.

I & D
Cache

SIMD Core
Controller

PE1 PE2 PE3 PE4

I & D
Cache

SIMD Core Cluster

Multi-Tasked SIMD Core

Digital Baseband Processing

Local Memories

Processing Element
(PE) Array

Figure 3.1: MuSIC Architecture for software defined radio (SDR)

MuSIC (Multiple SIMD Cores) [31, 127] is a heterogeneous multiprocessor for

software defined radio (SDR) designed by Infineon. It features high-performance

digital signal processing capabilities and is programmable for a large level of flex-

ibility. Target application areas include cell phones, wireless networking, and dig-

ital video. Figure 3.1 shows the MuSIC system architecture.

The bulk of the architecture’s processing power lies in a cluster of four multi-

tasked SIMD cores. Each SIMD core, pictured at the top of the figure, features four

68

processing elements (PEs) specialized for signal processing each with its own local

memory, and a RISC control processor for each context. The control processors run

a custom multiprocessor RTOS called ILTOS [136], and each one can run a single

thread. MuSIC also features an ARM processor for control layer processing, and

domain specific accelerators for FIR (Finite Impulse Response) filtering and Turbo-

Viterbi decoding.

The baseband signals enter and exit the system via the RF (Radio Frequency)

interfaces. Data can reside at three number main levels. Each SIMD core has its

own local memory that it uses to perform its computation on. Also, there are four

banks of shared memory that are accessed via a multi-layer bus. Finally, exter-

nal memory and peripherals can also be accessed over a separate communication

system, which the SIMD clusters can access through the bus bridge.

3.1.3 Prior Architectural Models in Metropolis

Figure 3.2 shows the basic structure of the simple architecture example in the

Metropolis distribution [154]. The netlist shown contains two other netlists: the a

scheduled-netlist and a scheduling-netlist. The scheduled-netlist consists of media rep-

resenting architectural elements for communication and computation–in this case

a CPU with an RTOS (called CpuRTOS), a Bus, and a Memory–and processes that

make calls to the CPU. The scheduling-netlist has a quantity manager for scheduling

each architectural element which then connects to the global time quantity man-

ager (called GTime). All of these connections are done via state media. While

only individual architectural elements are shown in the figure, the simple archi-

tecture example actually features a multiprocessor system with multiple busses

and shared memories. In it the top level netlist is configured to connect each

CPUs to any or all of the buses, and each bus to any or all of the shared memo-

ries by being passed two-dimensional boolean arrays that indicate the connectiv-

ity. The simple architecture performs timing annotation and scheduling decisions

by chaining quantity managers and their requests together, which can be hard to

69

T1 Tn

CpuRtos

cpuRead

ScheduledNetlist SchedulingNetlist

Bus

Mem

busRead

memRead

Request(e,r)

setMustDo(e)

resolve()

CpuScheduler

BusScheduler

MemScheduler

GTime

Figure 3.2: Metropolis simple architecture example (source: [154]). The Sched-
uledNetlist on the left contains processes (T1-Tn), which make calls to the media
(CpuRtos, Bus, and Mem). The media then make requests for scheduling (see bot-
tom arrow) to the schedulers in via state media in the SchedulingNetlist on the right.
The resolve method is then called one or more times, and the results are propagated
back to the processes in the ScheduledNetlist via state media (see top arrow).

70

debug because it concurrently mixes scheduling and annotation. The simple ar-

chitecture example also features time-based arbiters for FIFO (First In First Out)

and Time-Sliced scheduling of shared resources. This is quite similar to the work

presented in this chapter, but it has a few key differences. Our work is very sim-

ilar, but is more specialized in the connection patterns. Our work also adds: bus

bridges, specialized accelerators, and features quantity managers for implement-

ing Fixed-Priority and Round-Robin scheduling. This chapter’s work separates the

use of quantity managers into two steps: first the scheduling is performed, and

then timing annotation occurs. Furthermore, our work features memory-mapped

I/O (input/output), whereas the simple architecture directly references the differ-

ent slaves which is less natural.

In [59, 60], Densmore et al. develop and use a high level model the Xilinx Vir-

texII Pro FPGA (Field Programmable Gate Array) [55] in Metropolis. This model

is quite similar to the simple architecture example, but it focuses on the features of

the FPGA and connects to a performance characterizer of the FPGA’s communica-

tion system. In particular, it models point to point communication via FSL (Fast

Simplex Links) [54] unidirectional channels. A subset of these models consisting

of multiple MicroBlaze soft-core processors [53] communicating via FSL links and

each accessing its own local memory on the FPGA have been used to model the

performance for mapping exploration of the Motion-JPEG [56] application and a

portion of the H.264 video compression standard [88]. The model features Fixed-

Priority and FIFO arbitration that are implemented in the same manner that the

simple architecture does. In general this model is somewhat lower level and more

specialized than the work described in this chapter. The FSL interfaces are simple

reads and writes like those used by our models, but the bus reads and writes, are

broken into multiple transaction events1.

There have also been some lower-level modeling done using Metropolis. In

1These involve requests, transfers, and acknowledges for the addresses and then requests and
acknowledges for the data. With this multiple protocols can be described.

71

[20], Davare et al. model the Intel MXP5800 image processor and the mapping

of a JPEG encoder to it in Metropolis. Like our work, they also separate the re-

quests for scheduling from requests for annotation. They use processes and me-

dia for the arbiter structure on the bus. In [153], Zeng et al. present a model for

a CAN(Controller Area Network)-based architecture used for automotive applica-

tions, and a mapping of a supervisory control application to it. It features preeemp-

tive fixed-priority scheduling at the CPU level, and non-preemptive fixed-priority

scheduling of the CAN bus. It contains many of the low level details of the CAN

architecture and features a refined processing element. Both of these pieces of work

are quite specialized and are at a lower level than the work in this chapter. The im-

age processor work models a network of processors inside of one of 8 processing

elements, which is equivalent to us modeling the internal structure of the SIMD

processor instead of representing it as a single resource. The automotive model-

ing represents the processing elements as a netlist of resources, whereas we treat a

processing element as a single resource.

In [40], Chen models MuSIC in Metropolis at a level similar to that of the sim-

ple architecture example. It also models a set of processors communicating with

shared memories via multiple buses. It does have several key differences:

1. It specializes the different processing, communication, and memory elements

and it features a fixed bus topology, which makes it less flexible but simpler

to configure (i.e. it is configured by passing the number of SIMD processing

elements used, and does not require connectivity arrays). Our work offers

similar levels of configurability.

2. It features memory mapped I/O that translates bus reads and writes at a

given address into the appropriate reads and writes at a bus slave– this is im-

portant because it allows the models to be driven by address traces generated

from lower level models. We also use memory mapped I/O.

3. It performs bus scheduling by using a special BusArbiter process. Our models

72

eliminate the bus arbiter process and add quantity managers scheduling of

the bus, bus-masters, and bus slaves.

4. It supports a lower level protocol for accessing the bus than does the simple

architecture, and has specific methods for checking the bus status and locking

and unlocking it. We found this level to be error-prone, overly complicated,

and unnecessary for our purposes of high-level mapping. Because of this,

we switched to a level similar to that of the simple architecture that features

blocking read and write methods.

The work presented in this chapter is an extension of Chen’s models. It improves

on them in the following ways: it is more generically and succinctly specified, it

provides scheduling in a more orthogonal manner by using quantity managers,

and, as a result of the first two improvements, it significantly reduces the number

of interface methods used. The next section overviews the extended models and

highlights the improvements.

3.2 Architectural Modeling

This section describes the high-level modeling of a bus-based multiprocessor.

Section 3.2.1 explains the models of the computation and coordination architec-

tural elements in the system. Section 3.2.2 details how scheduling and timing an-

notation are specified. Section 3.2.3 explains the specifics of the models used for

MuSIC.

3.2.1 Modeling Computation and Communication

Like the work from Chen [40], the major components of the architecture are

broken up into Buses, Bus-Slaves, and Bus-Masters. However, since this work puts

the scheduling into the domain of quantity managers and employs significant code

73

reuse the number of interface methods used are significantly reduced (20 vs. over

100) and the coordination behavior is far more decoupled than in Chen’s models.

Bus 1

Master0

P1_0[0] … P1_0[N]

Bus 1

Bus

Slave

Bus

Scheduler

Bus Slave

Scheduler

Bus

Bridge

Bus 2

Master
Bus 2Bus Master

Scheduler

P2[0] … P2[N]

process

medium

quantity

manager

KEY:

Bus 0

Bus 0

Master0

P0[0]

Figure 3.3: Simplified view of the high-level architecture model. Arrows indi-
cate the direction of the API method calls. The scheduling quantity managers
for Bus1Master0, Bus1, and BusSlave are shown. For clarity the other scheduling
quantity managers, the state media, and the global time quantity manager are not
shown.

Figure 3.3 shows a simple example with three buses, three bus masters, a bus

bridge, and a single bus slave. Aside from the bus bridge, all other media do have

connections to schedulers and global time. Also, state media and global time are

not pictured; They will be explained in Section 3.2.2.

Figure 3.4 shows the read and write interface methods used by Bus-Masters,

Bus-Slaves, and Buses in the models. Figure 3.4(b) shows the interface methods

used by the buses and the bus slaves. All of the methods have master id as their

first argument, which indicates where the function call came from and is used to

do scheduling. The read method takes in an address and returns the data present

at that location as an integer. The multi read method is similar but it also takes in a

size argument and returns an array of integers. The write and multi write methods

74

// Read and Multi-read Methods
update int read(int bus type, int addr);
eval int[] multi read(int bus type, int addr, int size);

// Write and Multi-write Methods
update void write(int bus type, int addr, int data);
update void multi write(int bus type, int addr, int[] data, int size);

(a) Interface methods for bus-masters.

// Read and Multi-read Methods
update int read(int master id, int addr);
eval int[] multi read(int master id, int addr, int size);

// Write and Multi-write Methods
update void write(int master id, int addr, int data);
update void multi write(int master id, int addr, int[] data, int size);

(b) Interface methods for buses and bus-slaves.

Figure 3.4: Interface methods used for buses, bus-slaves, and bus-masters. The
update keyword indicates that the interface method updates the state of the me-
dia that implements it. The eval keyword indicates that the media’s state is not
changed by a call to the method.

have a similar structure as their read counterparts, but they return nothing and

they write to bus-slaves at the appropriate addresses. Figure 3.4(a) lists the read

and write interfaces used by bus masters. They are almost identical to those used

by buses and bus-slaves, except the first argument is now the bus type that is being

written to. This is to deal with the fact that different buses may be used to access

the same address space.

It must be noted that all of these interfaces are blocking, which means that they

stall until they can execute successfully (e.g. a resource is available). Chen’s mod-

els provide API functions for locking and unlocking resources as well as support-

ing unsuccessful (i.e. non-blocking) reads and writes. This is something that can

be useful for low-level programming, but is needlessly complicated for high-level

functional applications that use APIs that ensure that reads and writes are always

successful, which is the case for this work.

75

3.2.1.1 Bus Masters

Bus-Masters are media that implement the BusMasterInterface interface and ac-

cess one or more buses. They use quantity managers for resource scheduling and

timing annotation. All masters provide read and write methods for accessing the

buses that they are connected to, and these methods are shown in Figure 3.4(a).

With the exception of BusBridge all of the masters also have execute methods for

modeling processing time, and are passed cycles. Each master is parameterized

with a cycle-time used for execution as well as a unique master-id number for

each bus that it is a master of. Each master has its interface methods called by Bus

Master Processes, which are further explained in Section 3.3.2.1.

3.2.1.2 Buses

All buses in the system implement BusInterface and are derived from the Base-

Bus medium. Each bus instance is called by the bus-masters connected to it and

then in turn accesses its bus-slaves through its ports. BusInterface is shown in Figure

3.4(b) and has four API-methods: read, write, multi read, and multi write.

Buses are specialized through their parameters and also by implementing the

decode and shiftAddress methods. The decode method takes in an address as an argu-

ment and selects the appropriate bus-slave. The shiftAddress method also takes in

an address and calculates the appropriate offset given the address mapping of the

slaves. There are a number of parameters for configuring the buses. CLK FREQ

is the bus’s clock frequency in MHz. NUM MASTERS is the number of masters

using the bus, and NUM SLAVES specifies the number of slaves being used by the

bus. NUM READ CYCLES and NUM WRITE CYCLES respectively indicate the

number of cycles used to read and write an element via the bus. BaseBus also has

parameters that indicate its master ID number for the shared memories and RF

(Radio Frequency) interfaces.

76

3.2.1.3 Bus-Slaves

Bus-slaves are media that are typically accessed via the bus using read and

write methods. The only bus-slave in this model is SharedMem, which represents

a shared memory element2. Each has a STORAGE SIZE parameter indicating the

number of elements stored in it, a parameter called CLK FREQ that indicates clock

frequency of the bus slave in MHz, and cycle counts for individual reads and

writes.

3.2.1.4 Bus Bridges

A Bus-Bridge provides access for the masters of one bus to the slaves of another

bus. It does this by serving as a slave for the first bus, and a master of the second

bus. Like buses and bus slaves it is also configured with a frequency as well as

cycle counts for accessing it. In Figure 3.3 the bus bridge, BusBridge, is a slave of

Bus2 and is a master of Bus1.

3.2.2 Modeling Cost and Scheduling

The models as so far presented offer behavior, but have no notion of timing

and their only notion of resource scheduling is having mutual exclusion, where

only one process at a time can enter critical sections of code, and non-deterministic

scheduling of resources. This section explains how quantity managers are used to

model both timing annotation and resource scheduling. Time is modeled by us-

ing a built in quantity manager called GlobalTime, so these annotations will not be

explained in detail. The following three pieces will be presented: where quantity

managers and state media are used in the models; the use of quantity managers

for scheduling; and a usage pattern for integrating annotations with scheduling.

2The Bus-bridge is also a bus-slave, but since it is also a master it is discussed in a separate section.

77

Global

Time

Bus 1

Master0

P1_0[0] … P1_0[N]

Bus 1

Bus

Slave

Bus

Scheduler

Bus Slave

Scheduler

Bus Master

Scheduler

Bus 0

Bus 0

Master0

P0[0]

Process

Medium

Quantity

Manager

KEY:

Regular

Connection

State

Media

Connection

Figure 3.5: Simplified view of a high-level architecture model with state media
and quantity managers. State media are the small unlabeled circles. Arrows indi-
cate the direction of the API method calls for connections to regular media. Con-
nections via state media are shown by the undirected lines. For readability, the
following items are omitted: the connections from Global-Time to the state media
of the processes, and the schedulers for Bus0Master0 and Bus0.

3.2.2.1 Netlist Structure with Quantity Managers and State Media

Figure 3.5 shows the basic netlist structure for a system with two bus masters,

two buses, and a single bus slave. It also shows the state-media, quantity man-

agers, and their connections. Since the Bus0 and Bus0Master0 are connected to

only one process, so there is no need for scheduling; Despite this they are still con-

nected schedulers, but this is not shown in the figure. Bus1, Bus1Master0, and the

bus slave all potentially have contention and so their connections to schedulers are

shown.

There are two points required for connecting quantity managers. First, a con-

nection via state-media from the requester of the annotation (or scheduling) must

78

be made; which in this case this is from the different resources to the quantity

managers. Second, a quantity manager must connect via state-media to each of

the processes that may request it.

3.2.2.2 Scheduling using Quantity Managers

This work implements the Round Robin and Fixed Priority scheduling policies

using quantity managers. These are both extensions of the SingleResourceArbiter

base quantity manager and can be used interchangeably. The main methods im-

plemented by quantity managers are: request, resolve, stable, and postcond.

request is a method used to make annotation requests. It is passed an event to an-

notate, as well as an object of the type RequestClass, which can be extended to

contain more information for scheduling. For the scheduling policies imple-

mented in this work, RequestClass is extended into SchedReqClass that takes

the boolean argument unlock, which indicates if it is an unlock or lock re-

quest, and the integer argument master id that specifies the ID number of the

master requesting the resource.

resolve is a method used to perform the actual scheduling based on a list of re-

quests to the quantity manager. Based on this it enables and disables the

different events via state media connected to the events’ processes. For fixed-

priority arbitration, the largest (or smallest) master ID numbers are favored.

For round-robin arbitration, the quantity manager contains a variable that

indicates the favored master.

stable is a method used for iterative scheduling. It returns ‘true’ once the schedul-

ing is finished. Typically, the resolve method keeps getting called until the

stable method it returns true. The fixed-priority and round-robin schedulers

both resolve in a single step, so their stable methods always return true. This

is not true for other schedulers which may have iterative resolution.

79

postcond is the method called after scheduling is finished and the stable method

returns ‘true’. It updates the favored master ID number for round-robin

scheduling, and does nothing for fixed-priority scheduling.

3.2.2.3 Usage Pattern for Quantity Managers

This subsection details a protocol for using quantity managers for both timing

annotation and scheduling of shared resources for the bus, bus-slave, bus-master

components. It has been demonstrated to work at all three levels of resources

in the architecture, and shown to be robust. The main idea is to separate the

scheduling requests from the annotation requests, and to perform the scheduling

requests first. Doing it this way ensures that there are no unintended interactions

between the scheduling and annotation, which both can be iterative and quite com-

plicated. The simple architecture example from the Metropolis distribution [154]

makes scheduling requests from the annotation quantity manager, and thus can

suffer interactions between the two.

Figure 3.6 shows pseudo-code for doing the scheduling and then timing anno-

tation for the shared-memory medium. The top box has the annotation portion of

the read method, which requests a lock of the medium, calls the timed read method,

and then unlocks the medium. The timed read method, in the lower box, reads the

addressed value from memory, requests a given delay annotation, and then returns

the addressed value. Figure 3.7 shows the actual Metropolis code for doing this.

3.2.3 Modeling the MuSIC Architecture

Figure 3.8 shows a simplified view of the high-level architecture model of the

MuSIC SDR platform from Infineon. The buses in the system are all derived from

the BaseBus medium and include: the System Bus (called SysBus) and the AMBA

bus (called AMBA Bus). The main bus-slave medium in this model is SharedMem,

which represents a shared memory element, and is used for the shared memories

80

public eval int read(int master id, int addr) {
...
portMemScheduler.request(false, master id);
temp = timed read(master id, addr);
portMemScheduler.request(false, master id);
return temp;

}
...
public eval int timed read(int master id, int addr) {

...
data = Mem[addr];
double elapsed time = pgt.getCurrentTime() + CLK CYCLE TIME;
pgt.request(elapsed time)
return data;

}
...

Figure 3.6: Pseudo-code of shared memory example with scheduling and then
timing annotation implemented via quantity managers. Annotation requests are
underlined.

81

public eval int read(int master id, int addr) {
...
label read{@
{$

beg{
event beg read = beg(getthread(), this.label read);
portMemScheduleSM.request(beg read,

new SchedReqClass(beg read, false, master id));
}
end{

event end read = end(getthread(), this.label read);
portMemScheduleSM.request(end read,

new SchedReqClass(end read, true, master id));
}

$}
temp = timed read(master id, addr);
@}
return temp;

}
...
public eval int timed read(int master id, int addr) {

...
double elapsed time = pgt.getCurrentTime() + CLK CYCLE TIME;
label timed read{@
{$

beg{}
end{

pgt.request(end(getthread(), this.label timed read),
new GlobalTimeRequestClass(elapsed time));

}
$}
data = Mem[addr];
@}
return data;

}
...

Figure 3.7: Metropolis code for the read methods of shared memory with with
scheduling and then timing annotation implemented via quantity managers. The
annotation requests to quantity managers are underlined. Labeled code is pre-
ceded by the label and then bracketed between ‘{@’ and ‘}@’. Request code is
bracketed between ‘{$’ and ‘}$’. Request code on the begin (end) event is the
bracketed code after ‘begin’(‘end’).

82

Bus

Bridge0

RF

Interface1
RF

Interface0-1

FIR

Process

ARM

µµµµP

ARM

Core

CODEC

Process

Turbo/

Viterbi

Process

Medium

Quantity

Manager
Bus

Bridge1

System

Bus 0

SIMD

Core1

Shared

Mem0-3

KEY:

ARM

Scheduler

SIMD0

Scheduler

System Bus 5

Scheduler

FIR

Filter

Shared Mem0-3

Schedulers
RF Interface0-1

Schedulers

SIMD

Core1

SIMD

Core 3

System

Bus 3

SIMD3

Scheduler

System

Bus 4

System

Bus 5

AMBA

Bus0

AMBA

Bus1

Single

connection

Multiple

connections

…

…

…

System Bus 4

Scheduler

ARM

Processes
…………

SIMD

Core1

SIMD

Core 0

…………

SIMD0

Processes
…………

SIMD3

Processes

Figure 3.8: Simplified view of the high-level model of the MuSIC architecture in
Metropolis. For non-disclosure reasons not all elements of the platform are de-
scribed. Stacked shapes indicate multiple blocks, and thicker lines indicate multi-
ple connections. For clarity, state media, the synchronization bus, and the global
time quantity manager are not shown.

as well as the RF interfaces. The system has the following masters: ARM, SIMD

cores 0-3, FIR, BusBridge, and TV. The SIMD cores, the FIR, and the TV are all in-

stantiations of the same medium type (SysBusMaster). The ARM is a master of

two AMBA buses and so is an instance of the DoubleAMBA BusMaster medium.

BusBridge is its own medium that is both a master and a slave. The SIMD cores,

the FIR, and the TV are all driven directly by instantiations of the SysBusMas-

terProcess mapping processes. The ARM is driven by an instance of the process

ARM MasterProcess.

The architectural netlist is configurable in a variety of ways. The number of

SIMD cores, the number of system buses, the number of RF interfaces, and the

number of shared memories are set by changing constant values in the architec-

tural netlist. The number of processes running on these SIMD and ARM processors

are configured by passing values to the architectural netlist constructor (an integer

for the ARM and an array of integers for the SIMDs). Whether or not SIMDs can

83

access an RF interface is specified by an array of boolean variables passed to the

architecture’s constructor.

3.3 Modeling Functionality and Mapping

This section provides an overview of the simplified functional model and the

mapping of it to the high-level architecture model of MuSIC described in the previ-

ous section. The functional model was revised to more closely reflect the payload

processing portion of the receiver part of an 802.11b wireless networking applica-

tion. Also a computation-only mapping of the functional model to the architecture

has been implemented.

It is important to note that only the data flow portion of the functionality is im-

plemented. This is sufficient for driving the mapping models if appropriate num-

bers for computation delays and communication activity (i.e. both sizes and ad-

dresses) are provided. This demonstrates how relatively complicated applications

can be quickly approximated using high-level modeling techniques in Metropolis

or similar frameworks.

3.3.1 Functionality

The functional netlist is built using Kahn Process Networks [87], where concur-

rent processes communicate via unbounded FIFO channels with blocking reads

and non-blocking writes. The netlist is based on the data-flow of the payload pro-

cessing portion of 802.11b receive. Figure 3.9 shows the structure of the functional

netlist. Each rectangle in the diagram represents a process. Each arrow implies the

transmission of a single data token via a request-acknowledge protocol over two

FIFO channels. Figure 3.10 shows a producer-consumer example with the channel

expanded. The request channel is from the consumer to the producer, and the data

channel is from the producer to the consumer.

84

RxSplitter

Processing
Chain 0

Processing
Chain 5

…

Phy
Merger

Processing
Chain 1

MAC

- Data Channel

- State Channel
… …

Figure 3.9: Functional netlist: Payload processing portion of 802.11b receiver (for
wireless networking).

Most processes operate by reading one token from all of their inputs (both data

and requests), calling a fire method that represents computation, and then writing

one token to all of their outputs (both data and requests). This was inspired by

the behavior of actors in the Ptolemy project [83]. From now on, unless explicitly

specified, all references to inputs and outputs mean the entire transaction from the

point of view of the data channel (i.e. as shown in Figure 3.9).

Producer Consumer
FIFO

FIFO

out

req

in

ack

Data Channel

Request Channel

Figure 3.10: Expanded handshake channel example. Data goes from the Producer
to the Consumer via the Data Channel. Requests for data go from the Consumer to
the Producer via the Request Channel.

The application flow begins with the MAC (Media Access Control) process pro-

ducing data that is sent to the RxSplitter process, which distributes data to the dif-

ferent processing chains. For each input token the RxSplitter outputs a token to one

85

of the processing chain processes. It cycles through them in a round-robin manner

starting with ProcessingChain0. Each processing chain has two inputs and two out-

puts. Its horizontal input is the data-input, where it reads the data to be processed

from. Its vertical input is called state-input, where it reads its state from the prior

processing chain. It then outputs an updated state to the next processing chain via

its vertical output, state-output; and then outputs processed data to the PhyMerger

process via its horizontal output, data-output. The state inputs and outputs are

connected in a loop, and the first processing chain is initialized so that it can be-

gin processing without reading its state. The PhyMerger process reads in the data

from the processing chains in a round robin manner (with the same ordering as the

RxSplitter). Finally, to enable pipelining, the MAC process has a preload parameter,

which configures it to initially produce multiple data tokens before reading any

requests. It is important to note that it is only possible to have multiple processing

chains executing concurrently because the time to produce the state-output value is

smaller than the time needed to produce the data-output value. If this weren’t the

case, because of the state dependency between the processor chains, there could

only be a single processing chain running at a time. In the functional model the

state-output is immediately written to after the inputs are read and before fire is

called.

3.3.2 Mapping

Mapping netlists typically instantiate an architectural netlist and a functional

netlist and then relate their executions through synchronization on events. Figure

3.11 shows a mapping netlist of the computation of the processes in the functional

netlist to the computation elements in the architecture. In particular, the begin and

end events of the fire method of each functional process are synchronized with the

begin and end events of the execute method in the architecture process it is mapped

to.

Furthermore, the mapping netlist is configured so that the number of execution

86

ARM

Core
Processing Chain 0

aProc

1

MAC

RxSplitter

PhyMerger

Buses

and

Bus Slaves

Function NetlistArchitecture Netlist

SIMD

Core 0

sProc0_0

sProc0_1

SIMD

Core 1

sProc1_0

sProc1_1

SIMD

Core 2

sProc2_0

sProc2_1

SIMD

Core 3

sProc3_0

sProc3_1

Processing Chain 4

Processing Chain 1

Processing Chain 5

Processing Chain 2

Processing Chain 3

Figure 3.11: Mapping of the functionality to the MuSIC architecture (computation
only). Double arrows indicate mapping of the fire method in the process in the
function netlist to the execute method of the process in the architecture netlist.

cycles used by the architecture block is derived via value-passing from the func-

tional process. The next section shows how non-deterministic execution on the

architecture side can be used for mapping. After this, an example of mapping with

value passing is presented.

3.3.2.1 Mapping Processes

For mapping, architectural resources are driven by processes called mapping pro-

cesses. Mapping is enabled by using the await statement in combination with non-

deterministic values. These non-deterministic calls are then synchronized with events

in the functional netlist, in effect having the execution flow of the architectural

model be driven by the execution flow of the functional model.

Figure 3.12 shows the base iteration of a non-deterministic architecture process.

The await statement contains multiple guarded statements, only one of which will

be non-deterministically executed. Each guarded statement in await has three ar-

87

await {
(true; ;) {write(new Nondet(), new Nondet()); }
(true; ;) { int ReadData = read(new Nondet()); }
(true; ;) { nd execute(new Nondet()); }

}

Figure 3.12: Non-deterministic portion of the execution thread of the ARM process
in the architecture. The call to nd execute, the non-deterministic execute method, is
underlined because it is mapped to in Figure 3.13

guments separated by semicolons, the first is a guard condition that must be true

for it to execute, the second is a test-list of interfaces that must be unlocked to pro-

ceed, and the third is a set-list of interfaces that will be locked while the statement

executes. Its second and third lines are calls to the read and write functions, and

the fourth line calls the master’s non-deterministic execute statement nd execute.

“Nondet” is a special type of variable in Metropolis that can be without a value,

or can have its (integer) value assigned via a synchronization statement. Note that

other types of behavior are usable, and are justified in some cases (e.g. hardwiring

behavior for a testbench).

3.3.2.2 A Mapping Example

Figure 3.13 shows the mapping of the execution portion of the MAC process

to the process my arch aP, which runs on the ARM and is partially listed in Fig-

ure 3.12. The first two code segments define the events and the last segment

defines the synchronization. When the MAC.fire method executes it triggers the

mapped events of calling my arch aP.nd execute with its cycle argument being set

to the value of ARM EXEC CYCLES, which is a constant for the number of cycles

used executing on the ARM core and is specified in the mapping netlist.

88

// ARM execute events
event begin arm proc nd execute = beg(my arch aP, my arch aP.nd execute);
event end arm proc nd execute = end(my arch aP, my arch aP.nd execute);

// MAC execute events
event begin MAC exec = beg(MAC, MAC.fire);
event end MAC exec = end(MAC, MAC.fire);

// Synchronization Constraint
constraint {

ltl synch(begin MAC exec, begin arm proc nd execute:
cycles@(begin arm proc nd execute,i) ==

ARM EXEC CYCLES@(begin MAC exec,i));
ltl synch(end MAC exec, end arm proc nd execute);

}

Figure 3.13: Code for computation-only mapping of the MAC process from the
functionality onto an ARM process in the architecture. The value mapping is un-
derlined. Synchronization constraints are preceded by the words ltl synch, which
specifies synchronization via an LTL (Linear Temporal Logic) constraint.

3.4 Results

The architecture, functionality and mapping netlists have all been tested to ver-

ify their correctness. Further experiments were not conducted due to the fact that

it was difficult to connect real application and architectural data to the modeling,

and that Infineon encouraged us to pursue approaches that could directly inter-

face with their models. This section explains the size of the models and also their

connectivity.

3.4.1 Modeling Code Complexity

While it is difficult to quantify complexity, using counts of lines of code and

files gives a rough idea of it. Table 3.1 shows the line counts and the number

of files used for the implementation. The majority of the complexity comes (17

89

Table 3.1: The complexity of files used for modeling the MuSIC architecture, the
receiver application, and the mapping of the application to the architecture.

Category Group # of Files Lines of Code

Scheduling Library 5 893

Behavior Library 12 4,675

Netlist 3 1,091

Subtotal 20 6,659

Behavior Library 10 1,278

Netlist 1 203

Subtotal 11 1,481

Base (Unmapped) Netlist 1 208

No-Value Mapping Netlist 1 210

Value Mapping Netlist 1 310

Subtotal 3 728

Overall Total 34 8,868

Architecture

Functionality

Mapping

files and 5,568 lines of code) in the architecture component libraries, whereas the

architecture netlist is relatively simple. The functionality and mapping both have

less than 1,500 lines of code, and the configuration of the value-based mapping is

only 310 lines of code. This means that only minimal changes need to be made to

change the mapping.

3.4.2 Architecture Netlist Statistics

Figure 3.8 summarizes the connectivity of the architecture, but leaves out much

of the details of how the connections were made and the number of components

used; this is especially true for scheduling and annotation. Table 3.2 breaks the

different types of components used in modeling of MuSIC into their core groups

of media, processes, and quantity managers. It lists the number of instances of each

one, whether or not it uses a scheduler (this is only for media), and the number of

state media that all of the instances of the component connect to. All media in

the system have connections to the global time quantity manager. All of the bus-

slaves, the buses, and the non-bridge bus-masters (the ARM core, the SIMD cores,

the FIR filter, and the TV decoder), connect to their own schedulers via state media.

Each process that drives a bus-master is connected to two state media, one for

90

Table 3.2: Instance counts and information of scheduler and state media use for
components in the MuSIC model in Metropolis. A is the number of processes driv-
ing the ARM core, and S is the number of processes driving each SIMD core.

Category Component Count Scheduler Total State Media

SIMDs 4 Y 8

FIR and TV 2 Y 4

ARM Core 1 Y 2

Bus Bridge 2 N 2

Buses 9 Y 18

Bus Slaves 6 Y 12

Subtotal 24 N/A 46

for SIMDs 4*S N 8*S

for ARM A N 2*A

for FIR 1 N 2

for TV 1 N 2

Subtotal 2+4*S+A N/A 4+8*S+2*A

for Masters 7 N/A 0

for Buses 9 N/A 0

for Slaves 6 N/A 0

Global Time 1 N/A 0

Subtotal 23 N/A 0

Total 59+4*S+A 50+8*S+2*A

Media

Processes

Quantity

Managers

scheduling and one for global time annotation. Each scheduler (and global time)

connects to the processes that can be scheduled by it via their state media. Given

all of this information, the number of state media in the model totals 50+8*S+2*A,

where S is the number of processes driving each SIMD core, and A is the number

of processes driving the ARM core.

3.4.2.1 Quantity Managers and State Media

Table 3.3 summarizes the schedulers used by each component, and also the

number of processes that each scheduler connects to. Each scheduler attaches to

each of its processes via an attachment to that scheduler’s processes. When to-

taled up this means that there are 26*S+15*A+16 connections from schedulers to

processes via state media. There are even more connections from the global-time

quantity manager to processes via state media.

91

Table 3.3: Information on the schedulers and quantity managers in the MuSIC
model. A is the number of processes driving the ARM core, and S is the number of
processes driving each SIMD core.

Each Total

ARM 1 A A

SIMD0-3 4 S 4*S

FIR and TV 2 1 2

SysBuses0-3 4 S 4*S

SysBuses4-5 2 S+A+1 4*(S+A+1)

AMBA Buses 2 A 2*A

Shared Memories 4 4*S+A+2 4*(4*S+A+2)

RF Interfaces 2 S+A+1 2*(S+A+1)

Total 8*S+A+5 30*S+15*A+16

Processes ScheduledScheduled

Component

Component

Count

Although this complexity is reduced by the use of for loops and parameters,

it is still too difficult to create a scheduling netlist and properly connecting it to a

scheduled netlist. This makes modeling with quantity managers too error prone

and hard to maintain. The next section will discuss the contributions and results

and also present ongoing work to resolve such limitations.

3.5 Discussion

This chapter has presented the modeling of the MuSIC multiprocessor for Soft-

ware Defined Radio (SDR), and the mapping of the structure of the payload pro-

cessing portion of an 802.11b wireless networking receiver application to it in

Metropolis. These models are done at such a level so that they are relatively simple,

yet they are detailed enough to connect to results generated by lower-level models

(e.g. memory address traces). They improve upon previous work in Metropolis

through code reuse and also by moving scheduling into quantity managers. This

reduced the number of interface methods by a factor of five compared to Chen’s

models. Furthermore, the models are generically implemented and are flexible

enough to be used for mapping and architectural exploration.

The complexity numbers and the structure of the models do highlight some

92

shortcomings of Metropolis. One issue is that using quantity managers and state-

media is too complicated. One simplification is to eliminate state-media all to-

gether and have direct connections to quantity managers (and from them to re-

questing processes). Other improvements on this include separating the schedul-

ing and annotation behaviors into different components and phases of execution.

Event-level mapping is too low-level and mapping should be extended to allow for

mapping at higher levels (e.g. method-level, interface-level, and component-level).

A key problem with Metropolis is the fact that it is its own language and frame-

work, which makes it difficult to integrate models specified in other languages. All

of these shortcomings are currently being addressed through our ongoing develop-

ment of MetroII [57], which is a light-weight successor to Metropolis. It simplifies

and cleans up many of the pieces of Metropolis, and it focuses on IP wrapping so

that components specified in C/C++ or SystemC (and eventually other languages)

can be used by it. One key piece is that execution has been split into three phases so

scheduling and annotation are explicitly separated. Another important feature is

that state media have been eliminated which makes constructing netlists involving

scheduling and annotation significantly easier.

In order for architecture models to be truly useful, they must be driven by re-

alistic workloads. In Chen’s work [40], drove his architectural models with small

traces of 160 instructions or less generated from cycle-level simulators of the Mu-

SIC and also a manual port of the 802.11b wireless networking application. In-

struction traces only test the behavioral correctness of the architecture and do not

include mapping or application functionality. Manual ports of real applications

are time consuming to develop and they still must be associated to the architec-

tural models in a meaningful manner to be useful, for example the manual port

of the 802.11b implementation still had bugs after over one man year of work [77]

and the decision was made to switch to a skeleton of a portion of the application

in order to test and evaluate mapping in a timely manner. The next three chap-

ters present an approach for automated timing backwards annotation where the

93

original application source code is annotated with timing values, and then can be

executed, with the annotated delays, by a timed functional simulator. This is an

important step towards automatically connecting real applications to abstract ar-

chitectural models.

94

Chapter 4

Introduction to Timing Annotation

An issue with cycle-level simulation models is that they generally don’t scale

for large programs running on multiprocessors. The problem with high-level mod-

els is that they are only as accurate as the numbers given to them and estimates

that they can produce based on these. This chapter introduces an approach for

source level timing backwards annotation whereby timing results measured from

a cycle-level model are written to the original application source code, which has

originally no notion of timing or the underlying architecture. The goal of this is to

combine the accuracy of the cycle-level model with the scalability of the high-level

model.

The next section provides an introduction to annotation and an overview of

the annotation approach used in this work. Section 4.2 describes the platforms

for which this technique was implemented and tested. Section 4.3 details related

work. Finally, the chapter is summarized.

The work of in this chapter and the next two chapters is partially covered in

[109]. After this chapter, Chapter 5 discusses how annotation is done for a single

processor. Then, Chapter 6 describes extensions of the uniprocessor approach to

support multiprocessing. Both chapter’s following this one compare the annota-

tion results to cycle-accurate models in terms of speed and accuracy on a variety

95

of applications running different data sets, and analyzes them in detail.

4.1 Basic Information

This section gives background about what annotation is. Then, it overviews

the tool flow used by our annotation framework. Finally, it provides some basic

definitions.

4.1.1 What is Annotation?

Annotation literally means to add notes to something. Performance backwards

annotation means to write back performance results from a lower level model to a

higher level model. One example of this is annotating wire parasitics from a layout

to a gate level netlist to improve the accuracy of timing analysis.

The focus of this and the next two chapters is an approach that annotates de-

lays measured from a cycle-level simulation model of a multithreaded program

running on a single or multiprocessor system back to the original application code.

The code can then be compiled natively to the host and where it runs much faster

and without simulating the underlying architecture. Figure 4.1 is an example of

an annotation that this framework could produce. Figure 4.1(a) shows code from

an implementation of Euclid’s algorithm for calculating the greatest common de-

nominator (GCD), and Figure 4.1(b) shows the same code with delay annotations.

Delays are annotated by calls to the Delay Thread function, where the argument

passed to it is the delay in cycles.

4.1.2 Tool Flow

Figure 4.2 shows the basic annotation tool flow. It begins with an application

coded using the Application Programming Interface API of target platform’s real-

time operating system (RTOS). This can either be compiled and run in an untimed

96

// Excerpt of GCD
// Algorithm
if (a > b) {

a = d;
} else {

b = d;
}
(a) Original Source

// Excerpt of GCD
// Algorithm
Delay Thread(15);
if (a > b) {

Delay Thread(5);
a = d;

} else {
Delay Thread(15);
b = d;

}
(b) Annotated Source

Figure 4.1: Annotation example of an excerpt of Euclid’s algorithm. Calls to De-
lay Thread (in italics) in Figure 4.1(b) are the delay annotations.

manner on the functional simulator natively on the host platform (as shown by

the dotted line), or it can be compiled for the target platform and then run on

either the virtual prototype or the actual architecture. For annotation purposes

the application is compiled for the target and then run on the virtual prototype.

Then the framework reads in the the original application source code, the assembly

files, the disassembled object file, and a processor execution trace produced by

the virtual prototype. Based on the information in these files the delays for each

line of the original source code are calculated and then used to create a timing

annotated version of the source code. This code can then be compiled and run on

the functional simulator to estimate execution delay in a much faster simulation

environment.

4.1.2.1 Cycle-Level Virtual Prototype

The tool flow requires a cycle-accurate simulator of the target system that can

produce execution traces for the processor(s) of interest. Such simulators are often

called virtual prototypes because they simulate the system at a cycle level and

can be used for software development. To be used for annotation the traces must

associate a cycle time with each instruction execution for each processor of interest.

97

Multi-Threaded

Application Code

(C + RTOS API)

Target Binary

(EXE, ASM, DIS)
Target Hardware or

Virtual Prototype

(SystemC, C++)

Target

Compilation

Timed

Functional Simulator

(SystemC, C++)

Performance

Traces

Timing Annotated

Multi-Threaded

Application Code

(SystemC +

RTOS API)

Host

Compilation

((Untimed)

Algorithmic)

Host

Compilation

(Annotated

Algorithmic)

Start

(User

Input)

Finish

(Simulation

Results)

Source Level

Timing Annotation

Framework

(Python)

Figure 4.2: Annotation tool flow. The shaded parts indicate the contributions of
this work. EXE refers to the compiled executable file, DIS is the disassembled
executable, and ASM refers to debug annotated assembly language.

98

4.1.2.2 API-Compatible Timed Functional Simulator

The tool flow also requires a timed functional simulator that is compatible with

the API of the platform’s operating system, so that applications can be compiled

directly to it without modification. Also, it must provide a mechanism for im-

plementing the Delay Thread method. For the case of a uniprocessor running a

standard OS (e.g. Linux) the simulator can be as simple as adding a single static

variable that represents time and a macro function Delay Thread(t) that adds t cy-

cles to the time variable. If the API of the target’s OS is not compatible with the

host OS, then its API must be built on top of the host’s OS or some other simulation

platform (e.g. SystemC). If the system has multiple processors then the timing an-

notation must be implemented in a way that preserves ordering and dependencies

between processors in the system (e.g. via an event queue).

4.1.2.3 Annotator Implementation

The annotation algorithms were implemented in Python 2.5 for the SIMD con-

trol processors in MuSIC. Then, to show the retargetability of the approach, the

algorithms were ported to a uniprocessor XScale system. For both platforms ap-

plications were compiled with debugging information and without optimizations.

The core algorithms are implemented generically, and with primarily the file read-

ing code being platform specific. The file reading code is quite simple1 and reads in

the following file types: assembly files, disassembly file, and processor execution

traces. This makes is straight forward to retarget.

4.1.3 Basic Definitions

An instruction is a single line of assembly at a given program address. An ex-

ecution trace corresponds to a run of the program and consists of the instructions

being executed by each processor at each cycle. A block is a contiguous sequence

1Of the 5,500 lines of annotator code, only 363 are devoted to parsing the files.

99

of instructions in the program that have the same label. A label attaches the given

instruction or block to a given line number2 and function in a particular file. The

labels are extracted from the debug-annotated assembly file for the application

source code. A block must have all of the same labels as the instructions contained

in it. A basic-block is a block that, for the given execution trace, is never interrupted

with external instructions and always executes its final instruction3. A line is the

set of blocks with the same label. Each line is associated with a named function,

which is associated with a source code file.

The delay of instruction for a given execution is calculated by subtracting its

start-time from that of its successor. The delay of a block for a given execution is

equal to the sum of the delays of its instructions for that execution. The delay of

a line for a given execution is determined by combining the delays of its blocks

and externally called code for that execution, and is explained in greater detail in

Section 5.1.2.2.

4.2 Annotation Platforms

The source level annotation approach was implemented for two platforms.

Uniprocessor and multi-processor annotation were implemented for a the MuSIC

multiprocessor [31, 127] from Infineon. Then, to show that this approach is generic,

it was ported to support uniprocessor annotation for the XScale [52] microproces-

sor. A port of the multiprocessor annotation was not done because of the lack of an

additional readily available multiprocessor platform that featured a multithreaded

API interface and simulation models that could generate execution traces (or could

be modified to do so).
2A line number can be the null-value, this indicates that it is the code executed before the first

line of code in the function.
3A basic-block can be entered at a midpoint as long as the remaining instructions in the block

are executed in order without interruption.

100

Multi-Layer Bus

Finite
Impulse
Response
(FIR)
Filter

Bank
1

Bank
2

Bank
3

Bank
4

Turbo
Viterbi
Decoder

External
Memory
Interface
(Flash/DRAM)

Peripherals

Shared Memory

(RF) Radio
Frequency
Interfaces

SIMD
Core 1

SIMD
Core 2

SIMD
Core 3

SIMD
Core 4 Bus

Bridge

Control
Processor

Local
Mem.

Local
Mem.

Local
Mem.

Local
Mem.

I & D
Cache

SIMD Core
Controller

PE1 PE2 PE3 PE4

I & D
Cache

SIMD Core Cluster

Multi-Tasked SIMD Core

Digital Baseband Processing

Local Memories

Processing Element
(PE) Array

Figure 4.3: System architecture of MuSIC, a heterogeneous multiprocessor for SDR
(Software Defined Radio) from Infineon. SIMD stands for Single Instruction Mul-
tiple Data. ‘I & D Cache’ refers to instruction and data caches present in the control
processor and SIMD core controllers.

101

4.2.1 MuSIC Multiprocessor for Software Defined Radio

MuSIC (Multiple SIMD Cores) [31, 127] is a heterogeneous multiprocessor for

Software Defined Radio (SDR) developed at Infineon. It features high-performance

digital signal processing capabilities and is programmable for a large level of flex-

ibility. Target application areas include cell phones, wireless networking, and dig-

ital video. Figure 4.3 shows the MuSIC system architecture.

The bulk of the architecture’s processing power lies in a cluster of four multi-

tasked SIMD cores. Each SIMD core, pictured at the top of the figure, features four

processing elements (PEs) specialized for signal processing each with its own lo-

cal memory, and a RISC control processor for each context. The control processor

coordinates the PEs in the SIMD core for its particular context. The control proces-

sors run a custom multiprocessor RTOS called ILTOS [136], and each one can run a

single thread. MuSIC also features an ARM processor for control layer processing,

and domain specific accelerators for FIR (Finite Impulse Response) filtering and

Turbo-Viterbi decoding.

The base band signals enter the system via the RF interfaces, and are then writ-

ten to the shared memories. There are four banks of shared memory that are ac-

cessed via a multi-layer bus. External memory and peripherals can also be ac-

cessed over a separate communication system, which the SIMD clusters can access

through the bus bridge.

4.2.1.1 Simulation Models

The impact of different levels of simulation for an early SystemC [8] model

of MuSIC consisting of a single SIMD element controlled by an ARM processor

were compared in [117]. These levels consisted of an untimed functional model

and architectural models at the cycle-accurate and instruction-accurate levels. The

functional model was approximately three orders of magnitude faster than the

instruction-accurate model, which was 70 times faster than the cycle-level model.More

102

recently a SystemC-based cycle-accurate Virtual Prototype (VP) and an functional

simulator that is implements the ILTOS API have been developed.

The VP uses a cycle-level model for the control processor, which was created us-

ing CoWare’s Processor Designer software. It also contains a handwritten C/C++

model of the SIMD elements. The communication and memory systems are spec-

ified in SystemC at the cycle level. The virtual prototype is parameterizable in a

variety of ways including: the number of SIMD processors, enabling/disabling

different components, different levels of accuracy (and simulation speed) for dif-

ferent components, and the generation of a variety of statistics and performance

traces. This work uses execution traces for the SIMD control processors generated

by the virtual prototype. The functional model implements the ILTOS API on-top

of the Win32 API, and was ported to SystemC to support effective tracing and

timing annotation.

4.2.2 The XScale Microprocessor

The XScale Microprocessor [45, 52] is a scalar microprocessor implementing

the ARM instruction set[102] designed by Intel. Since its release there have been

multiple redesigns of it each with various speeds we focus on the PXA250 series of

the XScale that featured speeds of up to 400 MHz. It features a seven stage main

pipeline, an eight stage memory pipeline, dynamic branch prediction, and out of

order commit.

4.2.2.1 Simulation Models

For comparison this work used the ARM version of the Simplescalar tool set

[35], which is at: http://www.simplescalar.com/v4test.html. This was used be-

cause it was the only freely available ARM simulation environment distributed

with source code that had a model of the XScale microarchitecture that was found

at the time of this research. The source code was modified to generate traces, and

103

then the original version was used for performance comparisons.

4.3 Related Work

4.3.1 Software Tools

Profilers such as GPROF [13] provide performance numbers for functions in

terms of the number of times that they are executed and an estimate of the time

spent in each function. These operate at the function call level and the measured

times are based on sampling and so are not that accurate. Our approach examines

gets cycle-accurate measurements at the basic block level from actual execution

traces, and then annotates the original source code at the line level.

In [38], Cai et al. present an approach for system-level profiling, where a high-

level specification of an application described in SpecC [11] is profiled at the basic

block level to guide design space exploration. They also provide metrics for es-

timating delay and memory usage, both in general and also for specific architec-

tures. Our work is more focused on performance estimation and fast simulation

of software running on a particular processor, whereas this work deals with high

level decisions and refinement. As a result our approach is more detailed, but less

flexible in its scope. There are also a number of fine-grained profilers for debug-

ging embedded platforms. Companies offering these include: Mentor, Greenhills

Software, and ARM.

Micro-profiling from Meyr et al. [89], apply fine grained instrumentation to

software compiled to a three-address code intermediate representation. This al-

lows the capturing of cycle delays and memory accesses. In experiments it was

9.1x faster than an instruction accurate ISS-based execution, and achieves accu-

racy of within 80%, but it is unclear if this also applies to cycle accurate models.

Our work achieves greater speedup by operating at the source level. Our approach

is more accurate, but it does not handle memory accesses. An interesting question

104

is what level of granularity the simulation and annotation need to be done in order

to achieve reasonable accuracy with the maximum performance increase.

In 2008, Hwang, Abdi, and Gajski presented an approach for retargetable per-

formance estimation based on a compiler’s intermediate representation. This is

very similar to the micro-profiling work, but it doesn’t simulate memory traffic

and it is extended with a model of the host machine’s pipeline. It uses statistical

calculations to estimate branch mispredicts and cache misses (only for their tim-

ing impact). Our work is based on actual executions of the virtual prototype and

so automatically gets the benefit of these estimations. Furthermore our work has

been applied to a multiprocessor system, whereas there work has been applied to

a single processor communicating with hardware peripherals. Their accuracy is

similar to ours and they have a much faster annotation process4, but it was only

evaluated on a single application. Their work is retargetable since it is based on an

intermediate representation, but it may suffer inaccuracies based on architecture-

specific optimizations and specialized instruction sets. Also, their approach creates

annotated code based on the basic blocks generated by the compiler, whereas ours

operates on the actual source code, which makes our more useful for viewing the

performance of individual lines of code.

4.3.2 Performance Estimation for Embedded Systems

There has been much work in software performance estimation for embedded

systems. The POLIS project [26] generates source code based on Codesign Finite

State Machines (CFSMs) specified in Esterel [29]. It features performance estima-

tion [139] based on the CFSMs and also based on S-Graphs generated for the syn-

thesis process. The delays are then estimated based on values calculated by simu-

lating the processor on multiple benchmarks, or by specifying them in characteri-

zation files. For simple processors this approach had a maximum error magnitude

4This is due to our processing of actual execution traces and having the annotation framework
written in Python.

105

of 25% accuracy. It is limited to synthesized code, whereas our technique is based

on the application code and achieves better accuracy.

In [28], the authors explore two different approaches for C Automatic Back-

wards Annotation (CABA): virtual compilation and object code based. The virtual

compilation approach compiles the source code to a generic RISC-like instruction

set and assigns delays to each instruction type based on the given microarchitec-

ture, with the annotations being written back to the original source code. Our

technique also annotates at the source level, but it differs in that it assigns delays

directly based on the results of simulation. The object-code based approach gen-

erates a C-level model based on the assembly from the compiled object code. This

requires significant effort in that the assembly language must be fully parsed and

then implemented in the C-simulation model. Our technique, aside from detect-

ing the class of synchronization instructions, is almost totally independent of the

assembly used and operates on the execution of basic blocks, yet it still achieves

good accuracy. Their work assumed ideal memory, and our work, while it does

not model memory, does factor in the timing impact of non-ideal memory based

on its measurements from the virtual prototype.

Fast Cycle Accurate Simulators with dynamic-translation such as those from

VaST[16] are similar to the object-code based approach, but can handle self modi-

fying code (such as an RTOS). These can reach speeds in the tens of MIPS range for

a single processor, but they are time consuming to build, modify, or retarget. Fur-

thermore, even this speed might be insufficient for large multiprocessors. CoW-

are’s processor designer can generate cache-compiled [116] simulators from pro-

cessors specified in the LISA language [123], but they are an order of magnitude

slower than the hand-customized VaST models. Section 1.4 has a more in depth

description of this type of work.

MESH [122] is a high level environment for exploring different multiprocessor

system on chip architectures. There are three layers to it: a logical layer consist-

ing of individual threads of execution from the application, a physical layer which

106

represents the processing elements and resources of the system, and a scheduling

and protocol layer which connects the logical layer to the physical layer. The logical

threads communicate with the intermediate layers by means of consume statements

which the schedulers turn into requests for physical resources on the physical el-

ements. For processors, the consume statements tend to be instruction counts of

one or more instruction types, and they are user-specified based on estimates or

simulations. We automatically annotate cycle delays obtained directly from target

source code running on the virtual prototype, and could easily extend our frame-

work to output instruction counts.

In [112] Moussa et al. present a methodology where software code are anno-

tated with cycle counts, which are estimated from examining the compiled exe-

cutable, and then multiplied by the frequency for simulation as part of a SystemC-

based Transaction-Level model of the architecture. They do not elaborate on how

the estimate occurs, but do say that there is not recompilation for new processors.

This suggests that the approach does not have high accuracy and is probably sim-

ilar to the approach used in POLIS [26] based on assigning a fixed cycle delay to

each type of instruction.

In [60], Densmore et al. characterize the communication architecture of a Xilinx

FPGA. These measured numbers are stored in a database, and then used to anno-

tate architecture models. Our work is complementary to this in that it focuses on

the computation aspect of performance annotation.

4.3.3 Worst-Case Execution Time Analysis

In 1995, Li and Malik, introduced techniques for doing worst case execution

time using integer linear programming [99, 100, 101]. While quite accurate, these

techniques did not scale to large programs or complicated microarchitectures. Since

then a wide number of improvements upon this approach have taken place. Wil-

helm et al. summarizes these improvements in [149]. The best known of these

comes from AbsInt [2], which combines abstract interpretation with integer linear

107

programming [148] to scale to real industrial examples. It does have the limitations

of only supporting simpler microarchitectures, and, in some cases, needing user-

annotations in the source code to improve accuracy. Our approach is not aimed

at worst case execution time, but could be used to gather statistics to drive such

approaches. Also, since we rely on measurements from an external model, we are

not limited by the complexity of the underlying microarchitectures.

4.3.4 Other Work

The FastVeri [4, 114] tool from InterDesign technologies is the work most simi-

lar to ours. It annotates delays based on analyzing the actual assembly language,

and also simulate IO and cache behavior. With this they claim to reach simula-

tion speeds of up to 100 Million cycles/second. FastVeri adds delays based on

an internal model of the architecture, whereas we measure delays taken from a

cycle-accurate virtual prototype. Their approach requires full parsing and anal-

ysis of assembly code, whereas we do not, making it much easier to retarget the

framework to new instructions sets and processors. Also, our approach supports

execution of multithreaded programs on a multi-processor RTOS, which FastVeri

appears not to do.

4.4 Discussion

This chapter has introduced the concept of annotation. It reviewed the basic

annotation tool flow and the platforms (and simulators) used for the annotation

experiments. It also reviewed related work. It has set the stage for the next two

chapters which detail uniprocessor and multiprocessor annotation respectively.

108

Chapter 5

Backwards Timing Annotation for

Uniprocessors

This chapter explains how source level timing backwards annotation is imple-

mented for a uniprocessor system running a single application. It reads in informa-

tion from application source files, debug-compiled assembly files, the disassem-

bled executable and performance traces from a cycle-accurate simulation model.

Based on this information the original source code is annotated with average de-

lays at the line level.

The next section (Section 5.1) presents the annotation algorithm in detail. Then,

Section 5.2 discusses the implementation and optimizations to it. After this results

annotation results are given and the chapter wrapped up.

5.1 Single Processor Timing Annotation Algorithm

After reading in the assembly, disassembly, and execution trace files the single

processor annotation algorithm has three main steps. First the assembly and disas-

sembly files are unified into a single description and then sliced into smaller code

blocks based on jumps (and branches) in the execution trace. Next, the execution

109

void main (int argc, char** argv) {
...
short *InputI = Alloc Mem(sizeof(short)*64); // line 23
short *InputQ = Alloc Mem(sizeof(short)*64); // line 24
...

Figure 5.1: Original example code.

trace is stepped through instruction by instruction and the timing annotations for

the individual blocks are calculated. When an execution of a block is finished that

annotation is added to its associated line. Finally, the annotated source code is

generated by adding the line-level annotations to the application’s original source

code. Figure 5.1 shows the source code excerpt that will be used to illustrate the

annotation process. It is two memory allocation statements. At each step in the

algorithm this code and its related files will be shown.

5.1.1 Construct Blocks and Lines

The initial step in the algorithm is constructing blocks and lines based on the

input files. This is broken up into two steps: (1) initial calculations and (2) block

slicing.

5.1.1.1 Initial Block and Line Calculations

The assembly for each source file is split up into functions, and these functions

are split up into lines, which are then split into blocks. The blocks are defined

based on the locations of the line numbers and the functions in the debug informa-

tion of the assembly, and the associated instruction addresses and sizes from the

disassembled executable. The instructions in the assembly and disassembly files

are aligned at the function labels present in both of them.

Figure 5.2(a) shows the initial unified assembly and disassembly. The shown

code is turned into three lines, where each line has a single block of code. The first

110

.Fmain:

.L1:
00020200: sub r15, 28
00020202: push r8..r14
00020204: add r15, r15, -0x00cc

; ** line 23
00020208: pgen2 r2, 7
0002020a: mov r3, 4
0002020c: mov r4, 2
0002020e: jl .FAlloc Mem
00020212: nop
00020214: nop
00020216: nop
00020218: nop
0002021a: nop
0002021c: nop
0002021e: mov r12, r2

; **line 24
00020220: pgen2 r2, 7
00020222: mov r3, 4
00020224: mov r4, 2
00020226: jl .FAlloc Mem
0002022a: nop
0002022c: nop
0002022e: nop
00020230: nop
00020232: nop
00020234: nop
00020236: mov r11, r2

; ** line 25
...

(a) ASM/DIS Before Slicing

.Fmain:

.L1:
00020200: sub r15, 28
00020202: push r8..r14
00020204: add r15, r15, -0x00cc

; ** line 23
00020208: pgen2 r2, 7
0002020a: mov r3, 4
0002020c: mov r4, 2
0002020e: jl .FAlloc Mem
00020212: nop
00020214: nop
00020216: nop
00020218: nop
0002021a: nop
0002021c: nop
0002021e: mov r12, r2

; **line 24
00020220: pgen2 r2, 7
00020222: mov r3, 4
00020224: mov r4, 2
00020226: jl .FAlloc Mem
0002022a: nop
0002022c: nop
0002022e: nop
00020230: nop
00020232: nop
00020234: nop
00020236: mov r11, r2

; ** line 25
...

(b) ASM/DIS After Slicing

Figure 5.2: Example Unified Assembly and Disassembly

111

Function Line Block Number Cycle Program Address
main None 1 of 1 22429 0x00020200

22430 0x00020202
22443 0x00020204

main 23 1 of 2 22444 0x00020208
22445 0x0002020a
22453 0x0002020c
22454 0x0002020e
22455 0x00020212
22456 0x00020214
22457 0x00020216

Alloc Mem N/A N/A 22465 ... JUMP to Alloc Mem...
main 23 2 of 2 23016 0x0002021e
main 24 1 of 2 23027 0x00020220

23028 0x00020222
23029 0x00020224
23030 0x00020226
23031 0x0002022a
23032 0x0002022c
23039 0x0002022e

Alloc Mem N/A N/A 23040 ... JUMP to Alloc Mem...
main 24 2 of 2 23361 0x00020236
main 25 23362 0x00020238

Figure 5.3: Example Processor Execution Trace

line has no line number and represents the startup code for the main function. The

second and third lines are for the lines 23 and 24 in the executable.

5.1.1.2 Block Slicing at Jumps in the Execution Trace

The next step extracts the jump locations from the processor’s execution trace

and then slices the blocks at those points. The jump points are whenever an in-

struction in the execution trace is not immediately followed in the trace by its suc-

cessor. Slicing the blocks based on these boundaries guarantees that functions are

separated from the blocks that call them. This improves accuracy and helps the

112

annotator distinguish between known user code and unknown library code.

Figure 5.3 shows an excerpt of the processor trace used to slice the blocks. The

last two columns are the information in the processor trace giving the cycle and the

instruction of the address that begins execution in that cycle. A non-pipelined de-

lay model is used for instructions, so the current instruction ends execution when

its successor begins. The first three columns respectively indicate the function,

lines, and blocks that these instructions are associated with.

In this example, the blocks for lines 23 and 24 are both sliced where the ex-

ecution trace enters the Alloc Mem function. They are sliced three instructions

after the jump instruction going to Alloc Mem executes because of the processor’s

branch delay of three instructions. Figure 5.2(b) shows the unified assembly and

disassembly after the slicing.

5.1.2 Calculate Block and Line-Level Annotations

The next step records the absolute instruction and cycle counts of each execu-

tion of each block, and then adds these to the line level annotation.

5.1.2.1 Block Annotations

The delay of a block for a given execution is equal to the sum of the delays of all

of the instructions in that block for that execution. Its execution begins when the

block is entered, and ends when the block is left. Once a block is left its execution

count is incremented, and the number of cycles for that execution is added to its

line’s annotation. The cycle-count for an execution of a block is the cycle time of the

first instruction for that execution, subtracted from the cycle time of the instruction

following the last instruction of the block for that execution. For example, in Figure

5.3 the first block of line 23 begins execution at cycle 22,444 and the instruction

immediately following it begins at cycle 22,465. Thus, the block’s execution time is

21 cycles, and the second block in line 23 has an execution time of 11 cycles.

113

5.1.2.2 Line Annotations

Each time a block completes an execution, its annotation is added to its associ-

ated line. From this list two types of annotations are extracted for each line of code:

internal annotations and external annotations. Internal annotations are the cycles and

instructions of the blocks associated with that line of code. External annotations are

the cycles and instructions executed between source blocks in the execution, and

if they are between blocks from different lines they are associated with the earlier

block. Examples of these are calls to library functions or other functions where the

original source code is not available. This is consistent with the definitions for the

delays of blocks and instructions.

The internal and external annotations are summed together for each execution

of the line of code to get the cycle delay for that execution. The number of execu-

tions of a line is approximated as the largest number of executions of its internal

blocks at that point in the trace. This is generally true except for rare cases such

as recursive self loops and multiple statements written on a single line, which the

framework does not handle.

The delay annotations for each line can be calculated based on the cycle counts

for each execution. The delay annotation options include: average cycle delay,

maximum cycle delay, and minimum cycle delay. Since this work tries to match

the timing of the simulator and average cycle delays are used. If the goal was worst

(or best) case timing analysis then maximum (or minimum) cycle delay would be

used instead.

5.1.3 Generating Annotated Source Code

Once all of the line-level annotations have been calculated, the annotated source

code is generated. Figure 5.5 shows examples of the different annotation cases.

For the general case a line of code has the its cycle count written directly before

it in the annotated source file. For-loops and while-loops require special handling

114

void main (int argc, char** argv) {
...
Delay Thread(583); // line 23 delay
short *InputI = Alloc Mem(sizeof(short)*64); // line 23
Delay Thread(335); // line 24 delay
short *InputQ = Alloc Mem(sizeof(short)*64); // line 24
...

Figure 5.4: Annotated example code.

Delay Thread(Dstatement1);
<statement1>

Delay Thread(Dstatement2);
<statement2>

...
(a) Basic Statements

Delay Thread(Dtest);
while (<test>) {

Delay Thread(Dtest);
Delay Thread(Dbody);
<body>

}
(b) While Loop

do {
Delay Thread(Dbody);
<body>

Delay Thread(Dtest);
}while (<test>);

(c) Do-While Loop

Delay Thread(Dinit + Dtest);
for (<init> ; <test>; <update>) {

Delay Thread(Dtest + Dupdate);
Delay Thread(Dbody);
<body>

}
(d) For Loop

Figure 5.5: Annotation Examples

115

and are detailed below. Figure 5.5(a) shows this typical case where the two state-

ments, <statement1> and <statement2>, are annotated with their respective delays

of Dstatement1 and Dstatement2 cycles using the Delay Thread function.

For the example, we examine the single execution of line 23 pictured in Figure

5.3. The first block of line 23 is an internal delay of 21 cycles (i.e. 22,465 - 22,444

cycles). The call of Alloc Mem from line 23 takes 551 cycles (i.e. 23,016 - 22,444),

and is counted as an external delay. The second block of contributes an internal

delay of 11 cycles (i.e. 23,027 - 23,016 cycles). This leads line 23 to have an internal

delay of 32 cycles and a total delay of 582 cycles. Based on the processor trace, line

24 has a total delay of 335 cycles. Figure 5.4 shows the resultant annotated source

code for the sample lines.

5.1.3.1 Annotating While Loops

A while-loop consists of a test condition that guards the execution of the loop

body. If the condition evaluates to true, then the loop body executes once. This

process is repeated until the condition evaluates to false. If a while-loop executes

N times, then its condition evaluates N+1 times (N times to true, and 1 time to

false). Figure 5.5(b) shows an annotated while loop example. In the figure <test>

represents the test condition, and <body> is the loop body. Dtest and Dbody repre-

sent the cycle delays of the test and body blocks.

While-loops are detected by examining each line of the source code for lines

that begin with the while keyword, which can be preceded by whitespace and com-

ments. In this case, the condition delay is annotated before and after the while loop

statement. This exactly matches the real behavior of the while-loop.

Do-while loops do not need special handling because in them the test condition

executes the same number of times as the body does. Figure 5.5(c) shows an anno-

tated do-while loop. This is automatically generated with the default annotation

behavior.

116

5.1.3.2 Annotating For Loops

Like the while-loop, the for-loop has a test condition, but it adds an initialization

statement and an update statement. Each time the for-loop executes it runs the ini-

tialization statement once, and then checks the test condition. If the test condition

is true, then the loop body is executed once, otherwise the loop ends. After each

execution of the loop body the update code runs once and the condition is checked

again. This continues until the test condition evaluates to false. If a for-loop’s body

executes N times, then the test condition runs N+1 times and the update statement

runs N times.

Figure 5.5(d) shows an annotated for-loop. The sections for initialization, test-

ing, and update pieces of the for loop are denoted by <init>, <test>, and <update>

respectively. Dinit, Dtest, and Dupdate are their delays. The body of loop is <body>,

and Dbody is its delay.

For-loops are detected in the same manner as while-loops, except that the search

is for the for keyword. The initialization statement will always be the first block

executed in a for-loop. Given this, we subtract the delays for this block from the

for-loop’s line delay. The delay of the first block is annotated above the for-loop’s

line, and the line’s remaining delay is annotated directly below the for-loop’s line.

5.2 Implementation and Optimizations

For the annotation algorithm, its runtime complexity is equal to O(A + D + P),

where A is the number of instructions in assembly code, D is the number of instruc-

tion in the disassembled executable, and P is the number of entries in the processor

execution execution trace. This is true given that we hash the instruction accesses

so that they have constant access time. These numbers are by far dominated by the

size of the processor execution trace, and it turns out that memory usage and disk

storage must be optimized in order to handle realistically sized benchmark runs.

This section uses the below described variable definitions:

117

B - The set of blocks in the given system.

I(b) - The number of instructions for block b ∈ B.

L - The set of lines in the given system.

B(l) - The set of blocks that make up line l ∈ L.

Eb - The number of executions of blocks b ∈ B.

El - The number of executions of line l ∈ L.

EB - The number of blocks in the executed in the given system (
∑

b∈B Eb).

EL - The number of executions of lines in the given system.

The next subsection (Section 5.2.1) describes different storage schemes for the

annotations and what their memory usage is. The subsection following (Section

5.2.2) it presents optimizations made to reduce the storage size for the processor

trace and also the time need to process it.

5.2.1 Memory Usage Optimizations

Since the annotations are stored for each block and also for each line, then the

overall annotation memory usage for storing each annotation separately is:

O(B + L + EB + EL)

This can quickly grow quite large for longer benchmarks. For example, assume

that there is a system with a million blocks executed and 2.5 × 105 lines executed.

Assuming that storing each block execution takes 16 bytes of memory and that

storing each line execution 32 bytes of memory, this leads to a memory usage of

24×106 bytes1, which works out to approximately 23 Megabytes (24×106/(10242) =

22.89). However if 100 million blocks and 25 million lines had executed it would

consume over 2 Gigabytes of memory. Considering that some benchmarks execute

116× 1× 106 + 32× 2.5× 106 = 16× 106 + 8× 106 = 24× 106

118

billions of blocks, this is clearly not scalable. Two main approaches to deal with this

are presented below, and then other memory usage optimizations are discussed.

5.2.1.1 Optimization 1: Only store the current block annotations

Since the annotations are performed at the line level it is unnecessary to store

every block annotation. In fact, since block annotations are added to their given

line upon completion of an execution, only the current block’s execution data

needs to be stored. This leads to a memory usage of O(B+L+EL), and reduces the

example’s memory consumption by two-thirds to approximately 7.7 Megabytes

for annotation. This approach still stores all of the line annotations, and so still

may result excessive memory usage for larger benchmarks.

5.2.1.2 Optimization 2: Store combined line annotations

Given that the average (or maximum or minimum) of the cycle count of each

line’s executions is annotated to the original source code, it is not necessary to

store all of the annotations for each line. Thus, these annotations can be stored

in a combined manner. Specifically each line has the sum of they delays of its

executions, the number of times it was executed, and its minimum and maximum

execution delays. With this implementation the memory usage becomes O(B + L)

and is independent of the number of executions of lines and blocks, making it

scalable to arbitrarily large traces.

There are some drawbacks to using this line-level annotation storage. Since

a running average is kept for each line it is difficult to do path-based analysis or

calculate other statistics such as the median2. One could imagine using different

levels of optimized annotations to allow for a mixture of scalability and more de-

tailed statistics gathering.

2The optimized storage does track the minimum and maximum times for each line could be
easily be extended to track the standard deviation.

119

5.2.1.3 Other Memory Usage Optimizations

There are other optimizations that don’t impact the overall algorithmic storage

complexity, but significantly impact scalability. One of the first items is combining

what is being stored into a single number. For example, if each line is broken up

into internal cycles, external cycles, internal ignore cycles, external ignore cycles,

and pre-ignore cycles (used for the annotation of for-loops), then 5 numbers are re-

quired for each line. Except for the pre-ignore cycles, all of the others can be added

together to achieve a single number, which reduces the storage to 2 numbers. Also,

depending on the use of the annotator, instruction counts may be ignored which

halves the annotation overhead.

5.2.2 Trace Storage Optimizations

Because an execution trace of billions of cycles can be quite large it is impera-

tive to store such traces compactly. Furthermore, when dealing with traces gener-

ated from external tools there might be extraneous information in them that causes

them to be even larger. This section presents two optimizations that reduce the size

of stored traces.

For all cases the data traces are stored as a text file where, for each instruction

execution, the cycle upon which the instruction begins execution and the instruc-

tion’s address are stored. This leads to a usage of approximately 17 bytes per in-

struction execution (7 for address, 8 for cycle count, and 2 for spacing and new

lines). Which for 1 million instruction executions, leads to a storage overhead of

approximately 15 megabytes of disk space.

The first optimization is to store the trace file using differential encoding, where

only the difference between the current execution cycle and instruction and the

prior one are stored in the file. In practice, this reduces the number of characters

used for addresses and cycles to approximately 2 each. This means that the storage

overhead become less than 5 bytes per instruction execution (2 for address, 1 for

120

Table 5.1: Compression size results from small input set for MiBench[73]. The
second column shows the average number of bytes used for each line in the
trace for the base uncompressed non-differential encoding. The third, fourth, and
fifth columns show the compression ratios respectively for: compressing the non-
differential encoding, uncompressed differential encoding, and compressed differ-
ential encoding.

Benchmark

Base Case (Bytes

/ Line)

Compressed Non-

Differential

Uncompressed

Differential

Compressed

Differential

adpcm.encode 17.11 4.35 4.16 217.09

adpcm.decode 16.88 4.39 4.09 243.17

dijkstra 17.41 5.47 4.20 552.31

patricia 18.23 4.22 4.22 54.42

rijndael.encode 16.95 3.59 4.15 570.85

rijndael.decode 16.93 3.54 4.16 649.41

sha 16.81 4.53 4.13 366.08

stringsearch* 15.09 4.62 3.56 218.71

average 16.93 4.34 4.08 359.01

Compression Ratio (Base Size / Compressed Size)

cycles, and 2 for spaces and new line), leading to a space reduction of over 3x.

The second optimization is using gzip to compress on the resultant trace files.

The compression ratio for the differentially encoded traces tends to be somewhat

better than the original traces because fewer types of characters are used, which

allows for greater compression. Table 5.1 shows the base size (per trace entry) for

the uncompressed entry and then shows the compression ratio for applying the

different optimizations. Compressing the base case and using differential encod-

ing have similar compression ratios of more than 4x. Whereas compressing the

differential coded trace reduces its size by 88x; this reduction is so dramatic be-

cause of the regularity of the trace, most address and cycle changes are the same

(4 and 1 respectively) and so the trace files are dominated by these numbers and

also the newline and space characters, leading to much better compression. Sec-

tion 5.3.4 investigates the impact of compression on execution runtime, and also

techniques for minimizing their impact on the runtime. .

There are other optimizations for storage that are possible, but were not im-

121

plemented. One is to pre-process the trace and only save the execution times of

the instructions from the assembly files and only save the overhead of the other

instructions. This could potentially significantly decrease the trace file size, but it

causes a loss of information, such as external function calls and instruction mem-

ory traffic, that might be needed to add extensions such as memory traffic to the

annotation. Another extension, is to run the annotator directly with the virtual pro-

totype that is generating the trace information. This would eliminate the need for

trace files, but would reduce the performance of the cycle level model and requires

that one has the capability to connect the annotator directly with the cycle-level

model.

5.3 Uniprocessor Annotation Results

Uniprocessor annotation was first evaluated on the same code running on the

same data in order to determine the baseline accuracy. Then it was evaluated on

the same code running on different data and different configurations, to see how

well it generalizes. Dhrystone [146] and some tests from MiBench[73] were evalu-

ated on the MuSIC and XScale platforms, and MuSIC also ran some internal tests

on a single control processor. Dhrystone [146] is a classic benchmark that fits in

cache and is used to calculate MIPS (Millions of Instructions Per Second) for typ-

ical integer workloads. MiBench[73] is a free set of representative embedded ap-

plications broken up into categories including: telecom, automotive, networking,

and office.

5.3.1 Simulation Platforms Evaluated

5.3.1.1 MuSIC: A Heterogeneous Multiprocessor for Software Defined Radio

The applications targeting a single SIMD control processor of MuSIC were com-

piled without optimization and then run on the virtual prototype. The annotated

122

source code was compiled with Microsoft Visual C++ 2005 and linked to the timed

functional simulator. The timed functional model was implemented using Sys-

temC 2.2, and it implemented delay annotation by using the timed wait function

in SystemC. The annotated source code running on the timed functional simulator

was compared to the same source code running on the virtual prototype in terms

of speed and accuracy. For non-disclosure purposes the numbers are given in a

relative manner. Unless otherwise noted, all of the experiments for the MuSIC

platform were run on a 2.0 GHz Core Duo laptop running Windows XP with 1 GB

of memory.

5.3.1.2 XScale Uniprocessor Platform

For the XScale processor tests, the annotation was compared against the ARM

[102] port of the Simplescalar[35] cycle-level out of order simulator using a config-

uration file matching the configuration of the XScale PXA250 architecture [45, 52].

The simulator was modified to generate execution traces for the annotator, and the

results from the annotator were compared against the unmodified version of the

simulator. Since this was only for uniprocessor annotation, the timing was stored

in a single static double precision floating point variable that was shared between

the annotated files via a common include file. All of the annotated code was com-

piled with -O2 optimizations using GCC version 4.1.1. Unless otherwise noted, all

XScale experiments were run on a 3.06 GHz Intel Xeon CPU with 512 KB cache and

3 GB of memory that runs Linux.

5.3.2 Results with Identical Data

5.3.2.1 MuSIC Results with Identical Data

Table 5.2 shows the results for the annotation of non-MiBench tests running

on a single MuSIC control processor. Aside from the Dhrystone 2.1 benchmark,

every benchmark is an internal test. The second column shows the error for an-

123

Table 5.2: Uniprocessor results for internal ILTOS tests run on identical data for
MuSIC.

Direct

Benchmark

Measurement

Error % Error %

Speedup

(vs VP)

alloc_test 0.00% -0.59% 33

dhrystone -0.09% -0.21% 47

libc_test -0.46% -0.46% 94

payload1 -0.02% 4.41% 33

ratematch -0.04% -0.04% 11

syncmng_test 0.00% 1.59% 13

udt_test -0.02% -0.02% 25

fft64 0.00% -0.03% 48

cck_test -0.15% -0.15% 139

udt_test2 0.00% 0.00% 23

average magnitude 0.08% 0.75% 47

maximum magnitude 0.46% 4.41% 139

minimum magnitude 0.00% 0.02% 11

Characterization Based

notation based on directly measuring the delays. The final two columns show the

cycle count and error for the annotation where the measured delays of the ILTOS

API functions are substituted with characterized delays. Characterized delays are

used for dealing with multiprocessor annotation and will be explained in the next

chapter.

For the annotations based solely on the measured delay of each line the aver-

age error magnitude is 0.08%, with a maximum error magnitude of 0.46%. The

annotations with the delays of the calls to the ILTOS API functions replaced with

characterized delays have a maximum error magnitude of 4.41%, and an aver-

age error magnitude of 1.21%. It makes sense that the characterized results are at

most as accurate the measured results, since they rely on average delays of the API

functions measured over several applications, whereas the measured delay ver-

sion only uses the numbers for that particular application. The speedup for these

tests ranged from 11x to 139x, with the average speedup being 47x.

The annotation was also tested on eight benchmarks from the MiBench bench-

mark suite [73] that could be easily ported to a single SIMD control processors

124

Table 5.3: MiBench results for small and large data sets for the MuSIC platform.

Benchmark Error (%) Speedup Error (%) Speedup

adpcm.encode -1.67% 16 -0.70% 16

adpcm.decode -2.25% 16 -1.31% 40

dijkstra -12.63% 26 -17.46% 28

patricia -0.47% 82 -1.18% 66

rijndael.encode -1.26% 130 -2.96% 230

rijndael.decode -6.52% 159 -1.69% 234

sha 0.00% 1,031 0.00% 984

stringsearch 3.85% 15 -13.95% 29

average magnitude 2.80% 184 4.91% 203

maximum magnitude 12.63% 1,031 17.46% 984

minimum magnitude 0.00% 15 0.00% 16

Small Dataset Results Large Dataset Results

using the internal compiler. Table 5.3 shows the results using characterization-

based annotation. The first set of results are for the benchmarks running on the

small data set to exercise the functionality, and the second set of results is for the

larger data set that is more realistic. The maximum error magnitude is 17.5%, and

the average error magnitude is approximately 4%. The less accurate applications

use language constructs that are not well modeled in the annotator such as else-if,

and sometimes have multiple lines of code on the same physical line. There anno-

tated code has a wide range of speedup between 14x and 1030x, with an average

speedup of 194x. Table 5.4 shows the speedup of unannotated code running in the

framework compared to the virtual prototype, and how much faster it is than the

annotated code. The unannotated code has is between 160x and 130,000x faster

than the virtual prototype, which makes it on average almost 300x faster than the

annotated code with a maximum speedup of nearly 9,000x when compared to the

annotated code. There is a wide variation between these speedups because of the

granularity of the annotations, but this gives a rough boundary on the performance

potential of the annotated framework.

125

Table 5.4: MiBench speedup on MuSIC for no annotations versus the virtual pro-
totype’s runtime, and then the slowdown caused by having annotations.

Benchmark

No Annotation

Speedup vs VP

Annotation

Slowdown vs No

Annotation

No Annotation

Speedup vs VP

Annotation

Slowdown vs No

Annotation

adpcm.encode 2,696 165 3,045 187

adpcm.decode 5,288 340 6,504 162

dijkstra 7,181 279 52,233 1,897

patricia 7,497 92 10,663 163

rijndael.encode 12,529 96 69,223 302

rijndael.decode 34,189 215 131,685 562

sha 6,214 6 25,539 26

stringsearch 160 11 2,089 73

average 9,469 151 37,623 421

maximum 34,189 340 131,685 1,897

Small Dataset Results Large Dataset Results

5.3.2.2 XScale Results with Identical Data

The Dhrystone benchmark and the MiBench applications run on MuSIC were

also evaluated on the XScale platform. The Dhrystone accuracy results running on

identical data are found in the bolded table entries in Table 5.10, it features error

magnitudes from 0.2% to 3.8%. The runtimes for Dhrystone on the XScale platform

are not compared since they are too small to be significant.

Both the small and large data sets of the MiBench applications from the pre-

vious section were run on the XScale platform and their full results are listed in

Tables 5.5 and 5.6 respectively. Table 5.7 summarizes the accuracy and speedup

for the MiBench applications. The error magnitude is within 11.1% and averages

3.8%. The speedup compared to the virtual prototype ranges from 100x to 5,900x

and averages 2,500x. The speedup is so large because annotation based on writing

to a shared variable is significantly faster than using delay calls to an event queue

like the MuSIC platform uses. Table 5.8 examines how much faster unannotated

native code is than the annotated code. It ranges from 1x to 8.3x faster, with the

average speedup being 2.1x.

126

Table 5.5: Full MiBench results for small data set for the XScale platform. Results
were run on both the Simplescalar-ARM simulator (referred to as the virtual pro-
totype) and on annotated source code produced from the framework.

Benchmark Cycles

 Execution

Time (s) Cycles

Error vs.

Virtual

Prototype

Execution

Time (s)

adpcm.encode 125,343,711 193 119,174,880 -4.92% 0.121

adpcm.decode 91,935,992 109 85,766,470 -6.71% 0.2

dijkstra 163,031,337 193 162,711,423 -0.20% 0.039

patricia 170,500,688 198 169,819,746 -0.40% 0.073

rijndael.encode 85,648,291 105 81,244,318 -5.14% 0.04

rijndael.decode 84,033,024 94 93,281,916 11.01% 0.04

sha 55,428,098 61 54,963,544 -0.84% 0.017

stringsearch 520,785 0.64 515,253 -1.06% 0.006

Annotated CodeVirtual Prototype

Table 5.6: Full MiBench results for large data set for the XScale platform.

Benchmark Cycles

 Execution

Time (s) Cycles

Error vs.

Virtual

Prototype

Execution

Time (s)

adpcm.encode 2,517,606,335 3004 2,397,704,255 -4.76% 2.29

adpcm.decode 1,824,189,623 2152 1,704,274,244 -6.57% 3.83

dijkstra 761450299 950 759,843,517 -0.21% 0.161

patricia 1,049,309,863 1296 1,045,457,551 -0.37% 0.41

rijndael.encode 891,186,440 1018 845,714,696 -5.10% 0.41

rijndael.decode 874,323,248 993 971,037,597 11.06% 0.41

sha 576,573,536 637 571,769,532 -0.83% 0.114

stringsearch 11,450,854 14 11,329,927 -1.06% 0.017

Virtual Prototype Annotated Code

127

Table 5.7: Summary of MiBench results for small and large data sets for the XScale
platform.

Benchmark Error (%) Speedup Error (%) Speedup

adpcm.encode -4.92% 1,595 -4.76% 1,312

adpcm.decode -6.71% 545 -6.57% 562

dijkstra -0.20% 4,949 -0.21% 5,901

patricia -0.40% 2,712 -0.37% 3,161

rijndael.encode -5.14% 2,625 -5.10% 2,483

rijndael.decode 11.01% 2,350 11.06% 2,422

sha -0.84% 3,588 -0.83% 5,588

stringsearch -1.06% 107 -1.06% 824

average magnitude 3.78% 2,309 3.75% 2,781

maximum magnitude 11.01% 4,949 11.06% 5,901

minimum magnitude 0.20% 107 0.21% 562

Small Dataset Large Dataset

Table 5.8: MiBench speedup running on XScale for no annotations versus VP, and
then the slowdown of having annotations.

Benchmark

No Annotation

Speedup vs VP

Annotation

Slowdown vs No

Annotation

No Annotation

Speedup vs VP

Annotation

Slowdown vs No

Annotation

adpcm.encode 8042 5.0 2,704 2.1

adpcm.decode 4542 8.3 737 1.3

dijkstra 8773 1.8 12,500 2.1

patricia 2829 1.0 3,248 1.0

rijndael.encode 2625 1.0 2,545 1.0

rijndael.decode 2350 1.0 2,483 1.0

sha 5545 1.5 13,271 2.4

stringsearch 107 1.0 875 1.1

average 4351 2.6 4,795 1.5

maximum 8773 8.3 13,271 2.4

minimum 107 1 737 1.0

Small Results Large Results

128

Error Magnitudes for MiBench

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%
18.00%
20.00%

ad
pc

m
.e

nco
de

ad
pc

m
.d

eco
de

di
jks

tra

pa
tri

ci
a

rij
nd

ael
.e

nc
od

e

rij
nd

ael
.d

ec
od

e
sh

a

st
rin

gse
arc

h

av
er

ag
e

|Xscale Small Error|

|Xscale Large Error|

|MuSIC Small Error|

|MuSIC Large Error|

Figure 5.6: MiBench accuracy results for XScale and MuSIC annotations on the
same data.

5.3.2.3 Comparison between XScale and MuSIC results

Figure 5.6 shows the accuracy for the MiBench applications running on the

large and small data sets for both XScale and MuSIC. On average the XScale results

are slightly more accurate (3.8% vs. 3.9%). and it has a lower maximum error

magnitude (11.1% vs 17.5%).

Figure 5.7 shows the speedups of the annotated source code for the MiBench

experiments on the XScale and MuSIC. The average speedup of the XScale is sig-

nificantly greater (2250x vs. 190x) because it simply uses a static global variable

for storing annotations. For Music the annotations are implemented by calls to the

wait function in SystemC, which is much less efficient.

129

Annotation Speedup on MiBench

1

10

100

1,000

10,000

ad
pc

m
.e

nco
de

ad
pc

m
.d

eco
de

di
jks

tra

pa
tri

ci
a

rij
nd

ael
.e

nc
od

e

rij
nd

ael
.d

ec
od

e
sh

a

st
rin

gse
arc

h

av
er

ag
e

XScale Small Speedup

XScale Large Speedup

MuSIC Small Speedup

MuSIC Large Speedup

Figure 5.7: MiBench speedup results for XScale and MuSIC annotations on the
same data (log scale).

5.3.3 Results with Different Data

5.3.3.1 MuSIC Results with Different Data

The results so far mentioned are quite accurate because, since the same data is

used, the annotated code takes the same path through the program’s control flow

graph as the original run did. To better evaluate the performance it is necessary to

compare the accuracy of the annotated code running on different data and different

control flows than those used in the characterization. This section presents the

results for the tests that were easily modified to have different execution flows

either by changing constants or running them on different input files.

The Dhrystone benchmark was run with loop counts of 1, 10, 100, 500, and 1000

to generate annotated source files. Each annotated result was then run on all of the

loop counts to evaluate the data-dependence accuracy of the annotation. Table 5.9

shows these error results. The single loop count results in the first row have an

average error magnitude of 25% and a maximum error magnitude of 47%. These

130

Table 5.9: Annotation error for Dhrystone benchmark for the MuSIC platform
trained and run on different numbers of iterations. The rows indicate the number
of iterations to generate the annotated sources. The columns indicate the number
of iterations run on the annotated sources. The last row and column indicate the
average error magnitudes for the testing columns and training rows respectively.
The bolded values in the table indicate the error for having the same iteration count
for generation and testing.

Generating Count /

Testing Count 1 10 100 500 1000

Average

Magnitude

1 -0.1% 5.3% 28.4% 43.7% 46.9% 24.9%

10 -1.2% -0.6% 2.4% 4.4% 4.9% 2.7%

100 -0.8% -1.1% -2.2% -2.8% -2.9% 1.9%

500 -0.4% -0.8% -2.4% -3.2% -3.4% 2.1%

1000 -0.2% -0.7% -2.3% -3.3% -3.5% 2.0%

Average Magnitude 0.6% 1.7% 7.5% 11.5% 12.3% 6.7%

large errors are to be expected, because the annotations are only based on the initial

execution where the code is loaded into the instruction cache. The loop count

of 10 has reduced error, but is still biased from the initial cache misses. The last

three loop counts have much better error numbers, with average error magnitudes

under 2.1%, and maximum error magnitudes of under 3.5%.

We also modified the size of the file that the internal test application udt test

writes out and then reads in, and produced annotated source files trained by these

numbers. The sizes were: 15, 31, 63, 127, and 255. In this case the maximum error

magnitude was 4.9%, and the average error magnitude was 1.7%.

For all of the mentioned MiBench tests, except for stringsearch which initialized

data in the source code, the large data set trained annotated code was run on the

small data sets, and vice versa. For the large data set trained code the average and

maximum magnitudes were 4.6% and 17.5%, and the magnitudes were 2.9% and

12.6% for the small data set trained code.

131

5.3.3.2 XScale Results with Different Data

The Dhrystone benchmark was run with loop counts of 1, 10, 100, 500, and 1000

to generate annotated source files. Each annotated result was then run on all of the

loop counts to evaluate the data-dependence accuracy of the annotation. Table

5.10 shows these error results. The single loop count results in the first row have

an average error magnitude of 77% and a maximum error magnitude of 145%.

These large errors are to be expected, because the annotations are only based on

the initial execution where the code is loaded into the instruction cache. The last

three loop counts have much better error numbers, with average error magnitudes

of 3.1% and below, and maximum error magnitudes of 3.8% and below.

For all of the mentioned MiBench tests, except for stringsearch which initialized

data in the source code, the large data set trained annotated code was run on the

small data sets, and vice versa. In both cases the maximum error magnitude stayed

within 0.1% of the annotated code running on the same data. The small data set

trained code running on the large data set had an average error magnitude of 6.3%,

which increases the average error magnitude by 2.7 percentage points. The large

data set trained code running on the small data set had an average error magnitude

of 4.7%, and which is a 1 percentage point increase in average error magnitude.

5.3.4 Annotation Framework Runtime

For the small dataset running on MuSIC the annotation time ranges from 1x

to 3.5x the virtual prototype’s simulation time, and from 0.5x to 1.5x for when the

processor trace is cached (i.e. preprocessed). For the large dataset of MiBench for

MuSIC the annotation runtime ranged from 1x to 2.9x that of the virtual proto-

type’s runtime (the cached results were not calculated for these).

The XScale uniprocessor annotation runtime numbers are more relevant than

those from MuSIC since they are absolute instead of relative. Table 5.11 shows the

annotation framework runtime of Mibench running on the Millenium cluster of

132

Table 5.10: Annotation error for Dhrystone benchmark for the XScale platform
trained and run on different number of iterations. The rows indicate the number
iterations run to generating the annotated sources. The columns indicate the num-
ber of iterations that the annotated code was tested on. The last row and column
indicate the average error magnitudes for the testing columns and training rows
respectively. The bolded values in the table indicate error for running on the same
data as what used to generate the annotated code.

Generating Count /

Testing Count 1 10 100 500 1000

Average

Magnitude

1 -0.2% 16.1% 87.1% 135.2% 145.1% 76.7%

10 -2.2% -0.6% 5.7% 10.0% 10.9% 5.9%

100 -2.2% -2.1% -2.4% -2.5% -2.5% 2.3%

500 -2.3% -2.3% -3.1% -3.6% -3.7% 3.0%

1000 -2.3% -2.3% -3.2% -3.7% -3.8% 3.1%

Average Magnitude 1.8% 4.7% 20.3% 31.0% 33.2% 18.2%

Table 5.11: Annotation runtime compared to virtual prototype runtime for
MiBench results run on the XScale platform. Scaling refers to the annotator’s run-
time divided by that of the virtual prototype (i.e. SimpleScalar).

Benchmark

Annotator

Runtime (s)

Scaling

(Annotator

Runtime / VP

Runtime)

Annotator

Runtime (s)

Scaling

(Annotator

Runtime / VP

Runtime)

Large

Scaling /

Small

Scaling

adpcm.encode 10535.4 54.6 74415.2 24.8 0.45

adpcm.decode 8152.1 74.8 32868.0 15.3 0.20

dijkstra 4255.7 22.1 17357.7 18.3 0.83

patricia 2564.4 13.0 13021.6 10.0 0.78

rijndael.encode 1338.6 12.7 11981.6 11.8 0.92

rijndael.decode 1224.3 13.0 7427.4 7.5 0.57

sha 1183.5 19.4 8190.5 12.9 0.66

stringsearch 15.0 23.5 274.5 19.6 0.84

average 3658.6 29.1 20692.1 15.0 0.66

maximum 10535.4 74.8 74415.2 24.8 0.92

minimum 15.0 12.7 274.5 7.5 0.20

Small Results Large Results

133

Linux computers at Berkeley3. The annotator runtimes are between 13x and 75x

that of the virtual prototype for the small data set, and the range is from 8x to 25x

for the large data set. These are larger than those for MuSIC because the simulator

used for the virtual prototype is much simpler (uniprocessor with a single ded-

icated memory, vs. multiprocessor with a complicated shared memory system),

and thus much faster. An interesting point is that the runtime scale actually de-

creases from the small data set to that of the large data set. If the scale stayed the

same for multiple data points this would imply a linear relation to the runtime of

the VP, but more experiments need to be done to evaluate this runtime.

It is important to note that there are many inefficiencies in the annotation frame-

work. First off, since compressed trace files are used this adds some overhead.

Then there is the fact that this is written in Python, which is an interpreted lan-

guage, whereas a native version should be significantly faster. Finally, it could be

integrated to run directly with the simulator (either compiled directly, or possibly

communicating via sockets on a different computer), which would alleviate much

of the current overhead. Next we examine the impact of using compressed trace

files.

5.3.4.1 Impact of Compression and Caching on Annotator Runtime

In order to reduce the execution overhead of the trace pre-processing, the re-

sults are saved in compressed files (one for each processor’s trace). Also, the jump

points and the lengths of the traces for each processor are saved in files. When

the annotator is run the modification time of the original processor trace file is

compared with those from the processed files, and if it is older, then only the pre-

processed files are read out. We refer to this as caching trace files.

To determine the impact of using caching and gzip compression we compared

the execution times of the annotation framework using different combinations of
3These computers also feature a 3 GHz Xeon Processors with 3 GB of Memory, but they

each have 1 MB of Cache and feature a high-speed filesystem. For more information go to:
http://www.millennium.berkeley.edu/PSI/index.html

134

Table 5.12: Runtime impact of compression and caching on the annotation process
for the small dataset of MiBench [73]. Caching runtime reduction is the runtime of
the cached version subtracted from the uncached version and then divided by the
runtime of the uncached version. Compression runtime increase is the runtime of
the uncompressed version subtracted from the runtime of the compressed version
and then divided by the runtime of the uncompressed version.

Benchmark

Compressed

Trace

Uncompressed

Trace Uncached Trace Cached Trace

adpcm.encode 13.39% 12.95% 3.57% 3.04%

adpcm.decode 13.69% 13.45% 3.93% 3.64%

dijkstra 17.03% 20.34% 1.83% 6.07%

patricia 32.40% 39.33% 5.15% 17.17%

rijndael.encode 26.15% 31.94% 1.11% 9.72%

rijndael.decode 27.87% 31.81% 3.79% 9.78%

sha 21.21% 20.36% 4.70% 3.58%

stringsearch 14.86% 15.66% 2.10% 3.07%

average 20.82% 23.23% 3.27% 7.01%

Caching Runtime Reduction Compression Runtime Increase

caching and compression. Table 5.12 shows these results. The cached runtime re-

duction can be thought of as the percentage of time used for trace reading, which

takes 20.8% and 23.2% of the runtime on average for the compressed and uncom-

pressed traces. The average runtime increase for using compression on cached and

uncached traces an additional runtime of 3.3% and 7% respectively. Furthermore,

each trace is read through twice in the uncached version, so the runtime values

are roughly doubled here. This makes it clear that the trace reading time is a large

bottleneck for performance, but the compression is not.

5.3.5 Analysis

5.3.5.1 MuSIC Analysis

On MuSIC, the annotated uni-processor applications running on the same data

the error magnitude as within 18%, with an average error magnitude of 4%. Mul-

tiple factors contribute to error in the annotated code. Since some programs rely

135

on assembly programs running on the SIMD elements, and these are not modeled

in the timing annotated simulator, some accuracy is lost. Finally, the handling of

for-loops is inexact because the first condition check of the loop is currently not

counted.

For the applications running on different data on the MuSIC architecture, only

the Dhrystone benchmark had significantly reduced accuracy. The generally excel-

lent accuracy is somewhat misleading. This work only annotated measured timing

results from the virtual prototype, and the tests run are relatively simple and with

very regular memory access patterns. Thus most of the programs fit into the in-

struction cache, and there is little contention for the shared memory. For more

complicated examples that are impacted by contention in the communication sys-

tem or caching effects, the accuracy is expected to decrease.

The speedup of the annotated code MuSIC compared to the virtual prototype

was 10x to 1000x. Tests that call external functions (e.g. printf) or utilize the SIMD

or co-processors have greater speedup since these features are cheap or not mod-

eled in the timed simulator. Another way to think of this is that the number of

instructions per annotation is less. Each delay annotation slows down the perfor-

mance of the simulator, since it places an event on the SystemC event queue and

returns control to the SystemC scheduler. While measuring cycles-per-second of

an event based simulator is not fully fair, it does show how the annotated code

running on the functional simulator performs compared to the virtual prototype.

It is important to note that little effort has been made to optimize the speed of

the functional simulator. In addition to speeding up the code, performance can be

increased by combining annotations in straight line application code and also by

experimenting with different compilation options. Finally, switching to a commer-

cial SystemC simulator may further increase the annotation performance.

136

5.3.5.2 XScale Analysis

For the MiBench applications running on the same data on the XScale microar-

chitecture, the error magnitude was within 11.1% with an average of 3.8%. For

Dhyrstone, the error ranged from 0.2% to 3.8%. The accuracy here is very similar

to those of MuSIC. Interestingly, there is more variation for the Dhyrstone results,

but less variation on the MiBench.

For different data, the XScale had worse results than MuSIC for both Dhyr-

stone and the MiBench applications. On average the Dhrystone on XScale had an

average error magnitude of 18.2%, significantly worse than the that of MuSIC. For

MiBench the increase in error magnitudes was also worse than on MuSIC, but had

a very small change. We believe that this large impact on the XScale is because

it has a more complicated memory system and a longer pipeline than the MuSIC

control processors.

For the XScale the annotated code ran on average 2,300x faster than code run-

ning on Simplescalar, and its slowdown compared to native execution is 2x. The

annotation here is significantly more efficient than in the case of MuSIC because it

is done with a local variable and not using the SystemC event queue. Also, since

the operating system of the target and host are both Linux, there is no need to

implement the interface functions for the operating system.

5.4 Discussion

This chapter presented a technique for source level timing annotation for a sin-

gle processor application. This promising technique is easily retargeted to other

architectures. It was implemented for a heterogenous multiprocessor from Infi-

neon and then ported to the XScale microarchitecture. The next chapter extends

this approach to multiprocessor annotation. In particular, it describes different is-

sues encountered when moving to multiprocessor annotation and how to handle

them.

137

Chapter 6

Backwards Timing Annotation for

Multiprocessors

The previous chapter presented a method for the automated source-level tim-

ing annotation of programs running on a single processor. This chapter expands

this method to the multiprocessor realm. The first attempt was to directly unify

the measurements from each processor and annotate the code that way, but this

caused some problems. This chapter presents an example which illustrates these

problems and then explains solutions to these problems that do not rely on con-

currently analyzing multiple traces. This yields a scalable, accurate, and flexible

annotation technique.

The next section (Section 6.1) presents a motivating example that illustrates the

need for special handling of startup delays and inter-processor communication.

The handling of startup delays and inter-processor communication are detailed in

Sections 6.2 and 6.3 respectively. Section 6.4 presents results on a number multi-

processor applications, and then the chapter is wrapped up.

138

Line # Source Code
20 void main(void) {
21 thread* next thread;
22 next thread = Create Thread(main);
23 Wait Exit(next thread);
24 Exit();
}

Figure 6.1: Thread test example: initial unannotated code.

6.1 Introduction

It is important to note that this annotation technique has a few restrictions.

Also, it assumes an SMP (Symmetric Multi-Processor) RTOS running a single pro-

gram on the system where there is no preeemption. Furthermore, where each

processor can only run a single thread and new threads are allocated to unused

processors.

6.1.1 Motivating Example

Figure 6.1 shows the source code and line numbers for a multi-threaded ap-

plication called thread test1. This example instantiates a new thread running the

same main function by calling the Create Thread function and then it waits for the

child thread to exit through the Wait Exit function. Once the child thread exits, the

original thread exits by calling the Exit function. If the platform running this ap-

plication supported an arbitrary number of threads, then it would execute forever

(or until it ran out of memory). However, for this example, each CPU can only run

one thread, and the system has five CPUs. Thus, when Create Thread is called for

the fifth time a thread is not created and a null pointer is returned. Then, when

the fifth thread calls the Wait Exit function on the null pointer it immediately ex-

its. Given this and the below-specified delays, different annotation strategies are

1Thread test is taken from an internal multiprocessor tests described in Section 6.4.

139

presented and compared.

• Create Thread() has a delay of 1,000 cycles

• Wait Exit() has a delay of 0 cycles

• Exit() has a delay of 1,000 cycles

The startup delay is the number of cycles that it takes from when the program

begins execution to when actual user code in the main function starts executing.

Much of this is for system bring-up, which occurs concurrently in all processors.

For the example, the startup delay is 10,000 cycles.

Figure 6.2 shows the correct execution of the example for the specified system

properties. In it all threads finish their startup code at cycle 10,000. At this point

thread 0 calls Create Thread(main), and the other threads pause until they are trig-

gered by the Create Thread call. These creation calls take 1,000 cycles each, and

upon finishing each thread calls Wait Exit(t) which has a delay of 0, but stalls the

thread until the thread t exits. Once Wait Exit finishes executing the thread calls

the Exit function and exits 1,000 cycles later. This leads to a total delay of 20,000

cycles.

6.2 Handling Startup Delays

Figure 6.3 shows annotated code based directly on measurements without any

special handling of startup delays. The problem is that every time a thread with

the main function is created the startup delay is added. This leads to running the

startup-delay five times instead of just once (since all processors start up concur-

rently). Figure 6.4 shows the results of having these extra startup delays. This

leads to the last Create Thread function finishing at 55,000 cycles in the annotated

execution, which is 40,000 cycles longer than the actual execution. Two steps are

taken to properly handle the startup delay. First, the startup delay is distinguished

140

Startup

Startup

Startup

Startup

Startup

Create

Thread

Create

Thread

Create

Thread

Create

Thread

Create

Thread
Exit

Exit

Exit

Exit

Exit

10000 12000 14000 16000 18000 20000

Thread

4

Thread

3

Thread

2

Thread

1

Thread

0
Wait Exit

Wait Exit

Wait Exit

Wait Exit

End of

Program

Cycles

Figure 6.2: Thread-delay graph for thread-test example’s actual execution. Arrows
between threads indicate inter-thread communication. An upward arrow repre-
sents the creation of a new thread. A downward arrow represents a thread exiting
and returning control to its waiting parent thread.

from other delays. Second, modifications are made to make the startup delay occur

only for the first thread.

6.2.0.1 Separating the Startup Delay

In order to treat the startup delay properly, it needs to be distinguished from

the other delays. This is done by measuring when the first instruction associated

to the source code is executed for each processor and taking the smallest of these

times. The measured startup delay is then placed before the first line of user code

executing in the system.

6.2.0.2 Making the Startup Delay Execute Only Once

In cases such as the thread-test example, the separated startup code can run

multiple times, which annotates its delay multiple times as well, leading to excess

141

Line # Source Code
20 void main(void) {
21 thread* next thread;

Delay Thread(10000); // startup delay
Delay Thread(1000); // line 22 delay

22 next thread = Create Thread(main);
Delay Thread(4000); // line 23 delay

23 Wait Exit(next thread);
Delay Thread(1000); // line 24 delay

24 Exit();
}

Figure 6.3: Thread-Test example with incorrect startup annotation underlined.

Startup

Startup

Startup

Create

Thread

Create

Thread

Create

Thread

11000 22000 33000 44000 55000

Thread

4

Thread

3

Thread

2

Thread

1

Thread

0

Startup
Create

Thread

Startup
Create

Thread

Cycles (not to scale)

Final

Create

Thread

Ends

Figure 6.4: Thread delay graph (startup only) of annotated thread-test example
with broken startup.

142

static int started up = 0;
...
if (started up == 0) {

started up = 1;
Delay Thread(<startup delay>);

}

Figure 6.5: Startup delay handling code

Line # Source Code
20 void main(void) {
21 thread* next thread;

if (started up == 0) {
started up = 1;
Delay Thread(10000); // startup delay
}
Delay Thread(1000); // line 22 delay

22 next thread = Create Thread(main);
Delay Thread(4000); // line 23 delay

23 Wait Exit(next thread);
Delay Thread(1000); // line 24 delay

24 Exit();
}

Figure 6.6: Thread-test example annotated code with corrected startup annota-
tion (first underlined portion), but incorrect delay assigned to Wait Exit (second
underlined portion).

delay. To prevent this a static variable called started up is included in the functional

simulator. It is originally set to zero, and then once the delay is executed it is set

to one. Then, for all other threads the startup delays are ignored. Figure 6.5 shows

the fixed startup delay annotation code.

Figure 6.6 shows the annotated source code with the startup annotation fixed.

With this, the startup delay will only be added to the first thread executing it.

There are problems with the some of the other annotations, which are explained

and addressed in the next section.

143

6.3 Handling Inter-Processor Communication

Inter-processor communication requires special handling because the proces-

sors’ execution traces are all handled independently. First, an example of why spe-

cial handling is needed is presented. Then, the techniques of ignoring the delays

of inter-processor communication function in the annotation calculations and then

adding in characterized delays for the inter-processor communication functions at

simulation are presented. Finally, reasons for why the traces are not concurrently

analyzed are presented.

6.3.1 Example with Inter-processor Communication Problems

If the delays of the calls to Wait Exit are directly measured and averaged, then

it ends up being assigned a delay of 4,000 cycles2; which leads to the annotated

code shown in Figure 6.6. Figure 6.7 shows the execution trace resulting from the

annotated code , where the dark Extra Wait blocks indicate the extra delay added

to the Wait Exit function calls. In this case, the extra delay only impacts thread 4’s

delay causing the total annotated delay of the program to be 4,000 cycles too large.

6.3.2 Ignoring Inter-processor Communication Delays

Since the line-level annotations are calculated independently for each proces-

sor, the inter-processor communication delays are counted on both sides of the

communication, leading to double counting. This is dealt with by ignoring the

delays of multiprocessor functions in the RTOS API. Once a multiprocessor RTOS

API function is called, annotation calculations are ignored until an internal piece

of code is executed. This is the same as ignoring the RTOS API function, as long

as none of the annotated code is called by the function, which is a reasonable as-

sumption. Figure 6.8 shows the example code with the delays of Wait Exit and

2Given this behavior the wait time for threads 0 to 4 respectively are: 8000, 6000, 4000, 2000, and
0 cycles; with the average wait time being 4,000 cycles.

144

Startup

Startup

Startup

Startup

Startup

Create

Thread

Create

Thread

Create

Thread

Create

Thread

Create

Thread
Exit

Exit

Exit

Exit

Exit

10000

Thread

4

Thread

3

Thread

2

Thread

1

Thread

0

Wait

Exit

Wait

Exit

Wait

Exit

Wait

Exit

End of

Program

Cycles (not to scale)

Extra

Wait

Extra

Wait

Extra

Wait

Extra

Wait

Extra

Wait

24000

Figure 6.7: Thread delay graph of thread-test example with code incorrect anno-
tated because of the direct measurement of the delays of the Wait Exit function.
The extra delays are in the dark boxes and are labeled “Extra Wait”.

Create Thread ignored. This leads to an under-calculation of delay of 5,000 cycles

(1,000 cycles for each call to Create Thread).

6.3.3 Characterizing Inter-Thread Operations

Ignoring the delay of the RTOS API functions leads to an under-calculation of

delay. This is dealt with by adding in delays to the ignored API function calls di-

rectly in the timed-functional simulator. The characterizations of the API functions

are based on some of the multiprocessor benchmarks3 and uniprocessor programs

written especially to measure these particular delays. The characterization-based

simulations in Section 6.4 use the average of these measurements for each multi-

processor function. In the example, the code from Figure 6.8 at runtime each call of

Create Thread will have 1,000 cycles of delay added to it and calls to Wait Exit have

no delay added to them. This leads to the proper timing behavior by the annotated

code.
3The benchmarks used were: thread test, message test, and streaming test

145

Line # Source Code
20 void main(void) {
21 thread* next thread;

if (started up == 0) {
started up = 1;
Delay Thread(10000);
}

22 next thread = Create Thread(main);
23 Wait Exit(next thread);

Delay Thread(1000); // line 24 delay
24 Exit();
}

Figure 6.8: Thread-test example with corrected startup annotation, and with the
delays of Wait Exit and Create Thread ignored.

6.3.4 Handling Pipelining

Since most microprocessors are pipelined and the trace only gives one delay

number for each instruction instance’s execution, the linear delay model used is

inexact. Thus, if the current instruction execution is a synchronization instruction

that must stall and there are instructions after it in the pipeline, then the synchro-

nization delay of the current instruction execution may be allocated to its successor.

If this happens and the successor is associated with the next line, then the synchro-

nization delay will be associated with the next line, and thus will not be ignored

by the annotation framework.

While this seems like an unlikely case it did occur for the MuSIC processor be-

cause it has intrinsic instructions that directly some of implement the synchroniza-

tion functions in a single instruction, whereas function calls typically have multiple

clean up instructions after them which helps avoids this problem. These intrinsics

resulted in the synchronization delay for some calls of Wait Event to be assigned

to the instruction after it, and thus it wasn’t ignored for the delay calculation of

that line. Figure 6.9 shows the resultant source code that results from having the

measured wait delay added to after the Wait Exit line and Figure 6.10 shows its

146

Line # Source Code
20 void main(void) {
21 thread* next thread;

if (started up == 0) {
started up = 1;
Delay Thread(10000); // startup delay
}

22 next thread = Create Thread(main);
23 Wait Exit(next thread);

Delay Thread(4000); // line 24 extra delay
Delay Thread(1000); // line 24 delay

24 Exit();
}

Figure 6.9: Thread-test example annotated code with incorrect delay assigned after
the Wait Exit function call underlined.

execution trace. This adds 4,000 cycles to each thread’s execution and results in a

total annotation delay of 40,000 cycle, which is twice the actual execution time.

To deal with this situation the execution cycle time of each intrinsic synchro-

nization instruction and one or more of its successors are ignored. These synchro-

nization instructions are detected by examining the disassembly of the file, this is

the only case where actual instruction words are examined. The implementation

of this required only ten lines of source code, and the accuracy lost by ignoring the

succeeding instructions is negligible.

6.3.5 Why not analyze all of the processors concurrently?

An exact approach to handling inter-processor communication functions would

be to analyze all of the traces concurrently. This implementation would require un-

derstanding the synchronizations between the different processors at these points.

Such synchronization can be viewed as having one function call (such as a notify

or a spawn) as the producer which triggers an action, and another function call

(such as a wait or begin execution) as the consumer.

147

Wait

Exit

Wait

Exit

Startup

Startup

Startup

Startup

Startup

Create

Thread

Create

Thread

Create

Thread

Create

Thread

Create

Thread

10000

Thread

4

Thread

3

Thread

2

Thread

1

Thread

0

Wait

Exit

Wait

Exit End of

Program

Cycles (not to scale)
40000

Exit
Extra

Exit

Exit
Extra

Exit

Exit
Extra

Exit

Exit
Extra

Exit

Exit
Extra

Exit

Figure 6.10: Thread delay graph of thread-test example with incorrect annotations
from Exit added after the Exit function.

To calculate the inter-processor delays directly there are four main pieces: de-

tecting the producer in the multi-processor interaction, detecting the consumer

in the multi-processor interaction, associating the correct producer with the cor-

rect consumer, and measuring the delays between the two. The detections could

be handled by the function-call detection that already implemented, along with

specifying the basic semantics for each function (such as: if it is a producer or a

consumer). Associating the correct producer with the correct consumer is difficult

because the inter-thread functions operate on variables (e.g. a pointer to a thread

or a mutex) and these would have to be interpreted by the annotator to discover

the correspondence, which probably involves OS or architecture-specific program

analysis. Finally, measuring the delays between corresponding calls requires con-

currently analyzing the execution traces of all of the processors which significantly

increases the execution complexity and the memory overhead of the annotator.

On the other hand, the characterization-based results so far have been quite accu-

rate (within 8% for code that does not reference raw hardware addresses directly).

Also, it is a natural extension of the uni-processor annotation techniques and scales

linearly with both the number of processors and the size of the execution trace.

148

6.4 Results and Analysis

The accuracy of this technique was evaluated by running tests from the MuSIC

library. First, this approach was evaluated on the same code running on the same

data in order to determine the baseline accuracy, as well as the speedup of the

annotated code versus the virtual prototype. The approach was also evaluated on

different data and different configurations, to see how these changes impacted its

accuracy.

The annotator was run on three multiprocessor tests:

thread test, message test, streaming test, and jpeg multi. Thread test has the main

thread create a new thread running the same code and then waits for it to finish.

This creation and waiting happens until each of the 19 control processors in the

system is allocated one thread (each processor can only run a single thread), and

then the threads terminate one by one. Message test and streaming test feature

inter-thread communication with three and four threads respectively. Jpeg multi

features a five process JPEG encoder ported from a Pthreads application

The applications targeted the SIMD control processors of MuSIC and were com-

piled without optimization and then run on the virtual prototype. The annotated

source code was compiled with Microsoft Visual C++ 2005 and linked to the timed

functional simulator. The timed functional model was implemented using Sys-

temC 2.2, and it implemented delay annotation by using the timed wait function

in SystemC. The annotated source code running on the timed functional simulator

was compared to the same source code running on the virtual prototype in terms

of speed and accuracy. For non-disclosure purposes the numbers are given in a

relative manner. Unless otherwise noted, all of the experiments for the MuSIC

platform were run on a 2.0 GHz Core Duo laptop running Windows XP with 1 GB

of memory.

149

Table 6.1: Multiprocessor Annotation Results for Identical Code with Identical
Data

Thread

Direct

Measurement
Benchmark Count Error % Error % Speedup vs VP vs Annotated

message test 3 0.0% 0.2% 80 166 2.07

streaming_test 4 48.8% 0.2% 207 857 4.13

thread_test 19 767.2% -2.2% 527 1651 3.13

JPEG_multi 5 93.4% -7.4% 17 63 3.71

Average Magnitude 227.4% 2.5% 208 684 3.26

Maximum Magnitude 767.2% 7.4% 527 1651 4.13

Minimum Magnitude 0.0% 0.2% 17 63 2.07

Characterization

Based

No Annotation

Speedup

6.4.1 Results with Identical Data

Table 6.1 shows the results for the multiprocessor examples, with the third and

fourth columns indicating the error percentage for direct measurement and char-

acterization based annotations respectively. The direct measured approach results

in an average error magnitude of 227% with a maximum error magnitude of 767%,

whereas the characterized approach has an average error magnitude of 2.5% and

a maximum error magnitude of 7.39%. The direct-measured results are this bad,

because the waiting time between synchronization events is incorporated on both

sides, whereas in reality this waiting time is based on the execution of the other

thread and should not be incorporated into the annotation at all. Doing this leads

to double counting this waiting time which often can be significant (e.g. one thread

waiting for another to terminate).

The fifth column in Table 6.1 shows the speedup of the characterization based

annotated code compared to the virtual prototype. The gains range from 80x to

527x. In general, the multiprocessor case exhibits more speedup since the VP

is concurrently simulating the one processor for each thread, which significantly

slows things down, whereas in the timed simulator each processor is represented

by a single thread.

To test the efficiency of the annotated code executing on the timed functional

simulator its runtime was compared to the runtime of unannotated code on the

150

same simulator. The sixth and seventh columns in Table 6.1 show the speedup

of unannotated code running on the functional simulator compared to the virtual

prototype and the annotated code respectively. The slowdown due to the annota-

tions on average was a factor of 3.3x. This slowdown is much less than that of the

uniprocessor tests for MuSIC, because of the large amount of interaction between

threads in these applications, each of which requires a switch to the simulation

manager, whereas the uniprocessor applications have none of these calls.

The annotator was also run on a multi-threaded JPEG encoder ported from

PThreads, featuring five threads. It was evaluated on images of the following sizes:

32 x 32, 64 x 64, and 160 x 160. For these cases the error was below 8.2%, and the

speedup was between 14x and 18x. The speedup is not that great because the

source code here is very low level, and so the annotations are at a very fine level

of granularity. This causes many context switches between the threads and the

SystemC scheduler, which significantly slows things down.

6.4.2 Results with Different Data

The results so far mentioned are so accurate in part because they are annotat-

ing the same control flow graph with performance measured from the application

running on the same data. To better evaluate the performance it is necessary to

compare the accuracy of the annotated code running on different data and differ-

ent control flows than those used in the characterization. This section presents

the results for the tests that were easily modified to have different execution flows

either by changing constants or running them on different input files.

First, the multiprocessor JPEG encoder was trained and tested on different sizes

of images, and its accuracy wasn’t significantly impacted with its error staying

within 8.2%. We then ran the streaming test multiprocessor benchmark on stream

files with 15, 20, 40, 100, and 500 elements. We then measured the accuracy of each

of the generated annotated source files for each number of elements running on all

of number of elements. The results had 0.7% maximum error magnitude, and an

151

1.000

1.200

1.400

1.600

1.800

2.000

2.200

2.400

2.600

2.800

3.000

1 3 5 7 9

Number of Worker Threads

N
o

r
m

a
li

z
e
d

 V
a
lu

e

Normalized VP

Execution Time

Normalized Char. Based

Execution Time

Normalized Annotation

Time

Figure 6.11: Normalized execution and annotation times for streaming test with
varying numbers of worker threads

152

average error magnitude of 0.3%.

Finally, the number of worker threads in streaming test were then varied from 1

to 10 for a file with 500 elements. These had a maximum error magnitude of 0.26%

when running on the same data. Figure 6.11 shows the normalized execution and

annotation times for the initial runs- this shows that the annotated code scales

significantly better than the VP. All of the generated source files were then tested

on all of the worker thread configurations, and had a maximum error magnitude

3.03%. The speedup for the one worker was 46x.

6.4.3 Analysis

So far, for applications that do not directly access architecture addresses, our

annotation accuracy is within 5% for both uni-processor and multi-processor ap-

plications running on the same data sets. For different data, only the dhrystone

benchmark had significantly reduced accuracy. The other benchmarks examined

were either operating on data from files or doing multiprocessor communication,

neither of which has significant cache activity. The generally excellent accuracy is

misleading. This work only annotated measured timing results from the virtual

prototype, and the tests run so far are fairly simple and with very regular memory

access patterns. Thus most of the programs fit into the instruction cache, and there

is little contention for the shared memory. For more complicated examples that are

impacted by contention in the communication system or caching effects, we expect

the accuracy to decrease.

The speed of the annotated code has been good, especially for multiprocessor

benchmarks. While measuring cycles-per-second of an event based simulator is

not fully fair, it does show how our simulation performs compared to the virtual

prototype. The range of speedup was between two and four orders of magnitude.

It is important to note that little effort has been made to optimize the speed of

the functional simulator. In addition to speeding up the code, performance can be

increased by combining annotations in straight line application code and also by

153

experimenting with different compilation options. Finally, switching to a commer-

cial SystemC simulator may further increase the annotation performance.

6.5 Discussion

This chapter presented extensions to the uniprocessor annotation technique so

that it was scalably extended to multiprocessor annotation while maintaining good

accuracy. This is done by special handling of startup delays and interprocessor

communication function delays. The next chapter presents the annotation results,

and shows that the characterization-based approach achieves good accuracy.

6.5.1 Limitations

6.5.1.1 Framework Limitations

This framework is implemented as a proof of concept and does have some lim-

itations. Most of these limitations could be overcome with more work, and they

do not impact the results obtained from the framework.

Currently the framework does not fully parse the original C application code. It

makes some assumptions on the syntax, such as requiring curly braces for all loop

and if-then-else clauses. Furthermore, its accuracy can be impacted by putting

multiple commands on the same line, and this is something that debuggers can

have problems with. These issues could be resolved by doing a more complete

parsing of the source files, staying within the syntax limitations, or by using a

code reformatter such as Uncrustify[15].

Also, because the framework does not parse the original application code an-

notations can be placed in illegal places. This is generally solved by manually relo-

cating offending annotations. For the MuSIC functional simulator the Sometimes

annotations are placed before variable declarations, for the MuSIC functional sim-

ulator this is a problem because the annotated code is compiled with Visual C++

154

2005 as C-code, which does not allow function calls before variable declarations.

It is important to note that the XScale annotated applications do not suffer this

limitation since they are compiled by GCC, and after minor modifications to the

annotation code4 none of the annotated applications needed to be modified man-

ually in order to compile and execute properly after annotation.

All of the experiments are run on target applications compiled with out opti-

mization. Using compiler optimizations makes obtaining the accurate annotations

more difficult. This also impacts debuggers, and work such as [150] addresses

it. The annotation only operates on execution times of instructions, so it does not

need to deal with values like a debugger would.

6.5.1.2 Simulator Limitations

The functional simulator for MuSIC does have a few limitations. First, it is only

for the control processors and it does not model the SIMD elements or any of the

accelerators. Also, it does not execute properly on architecture-specific addresses.

It is possible to re-map constants in the original application code to appropriate

constructs in the simulator, but it cannot handle applications that directly refer to

those addresses.

4The block handling was slightly different due to how the debug information was annotated.
Also blocks needed to be sliced at the exit and entry points.

155

Chapter 7

Conclusions

This is an exciting and challenging time in the field of embedded systems de-

sign. The continuation of Moore’s Law has enabled an unprecedented amount of

computational capability to be integrated onto a single microchip. This has led to

heterogeneous systems that are highly concurrent and have a growing number of

software programmable elements. To cope with this increasing complexity, the use

of high level models for design space exploration and early software development

has become critical. While cycle-level simulation technologies have made great

strides in the past decade, they still may be overwhelmed by large concurrent sys-

tems, and they are difficult to create and modify. We contend that it is important

to use multiple levels of abstraction and that these are most effective if there is a

way to propagate performance data from lower-level models up to higher-level

models.

This thesis has attacked the problem of modeling microprocessor performance

in embedded systems at different levels of abstraction, and through annotating

timing information from cycle-level models back to the original application source

code. After motivating the problem, we reviewed system level design with specific

emphasis on the different levels of simulating microprocessor performance in the

design process. We then presented an intuitive and highly retargetable approach

156

for modeling a processor’s microarchitecture using Kahn Process Networks. This

was followed by a high-level model of a multiprocessor where architectural el-

ements are treated as timed resources. Finally, a source-level timing annotation

framework for single and multiprocessor systems was developed. Using this anno-

tation framework, results from slow cycle-level simulations were propagated back

to the original application where they were simulated one to three orders of magni-

tude faster without the underlying architecture, while maintaining good accuracy.

An important result of this timing annotation was the extension of it from unipro-

cessor to multiprocessor by handling each processor’s annotation separately and

then substituting in characterized delays for inter-processor communication func-

tions, which was found to be accurate and made the annotator’s runtime linear in

the sum of the size of the instruction traces.

7.1 Future Work

Our work has explored multiple levels of abstraction for processor modeling,

and also relating one to another via timing annotation. There is much future re-

search possible in this area. We overview it in terms of modeling and annotation.

7.1.1 Modeling

There are many potential extensions for our uniprocessor microarchitectural

models. First and foremost the speed of the uniprocessor models should be im-

proved; potential optimizations include: static scheduling, replacing channels with

global variables, and by reducing the overhead of instruction decoding through

caching decoded instructions or pre-decoding instruction traces. Interesting exten-

sions of these models include modeling more complicated resources (e.g. shared

resources and unpipelined/partially pipelined execution units), superscalar exe-

157

cution1, and expanding the ease of porting and configuring such models (In [110]

we presented a language for quickly describing instruction sets and synthesizing

instruction decoders from them). Our queue based models should port quite nicely

to hardware and could be useful for performance modeling using FPGAs (Field

Programmable Gate Arrays), like in the RAMP project [23].

There are also many interesting directions to go with the multiprocessor mod-

els. One is to expand to more complicated timing models (e.g. pipelining) and

finer grained interfaces while still supporting high-level mapping. Also, it is cru-

cial to be able to easily interface with application models and also with lower-level

simulators (e.g. like a single processor cycle-level simulator). On the application

front our annotation work is a step towards this, and on the architectural front our

ongoing development of MetroII [57] will ease interfacing with other models.

7.1.2 Annotation

There are many interesting extensions and applications of our performance

backwards annotation work. Here we list a couple promising paths going forward.

7.1.2.1 Performance Optimizations

Currently, there is huge potential for improving the runtime of the annotation

framework and the speed of the generated annotated code. Right now the frame-

work is written in the interpreted language Python. We expect its performance

would substantially improve if it were rewritten in C++. Also, the processing of

execution trace files is a significant portion of the runtime; this could be reduced

by further optimizing the trace file format, or by having the annotation framework

run concurrently with the virtual prototype generating the instruction traces (and

thus not having to save the traces on disk).

1An abstract superscalar extension of our models was created by Qi Zhu and Haibo Zeng as a
class project.

158

The execution speed of generated code can be improved as well. Currently

each line of source code is separately annotated with delays, and there is special

handling of for and while loops. By analyzing the program’s flow, the annotations

of multiple lines that always execute in the same order into a single annotation.

For the multiprocessor case, the execution speed of annotated applications could

improve significantly by having each thread (processor) store its time locally and

only make synchronize timing with the other threads (processors) when a function

call to the operating system causing interprocessor communication occurs.

7.1.2.2 Handling Optimized Code

It would be quite interesting to extend the annotator to operating on optimized

code. As of now it has run on unoptimized executables. This should be possible

by leveraging work on debugging optimized code like that presented in [150].

7.1.2.3 Memory and Communication Annotation

Source-level timing annotation works well in some cases, its accuracy can sig-

nificantly decrease if the given application’s performance depends significantly

upon communication traffic, and especially so if this traffic is irregular or data

dependent. For these cases the communication aspects of the application should

be represented in the annotations and attached to a simplified architectural model

(like the one developed in Chapter 3) so as to enable more accurate analysis during

architectural exploration.

Adding memory and communication to the annotation framework presents

some unique challenges. The first challenge is that of storing memory and com-

munication traffic. If individual addresses are stored for each execution then the

memory usage of the annotator grows incredibly quickly. Annotating memory

traffic amounts instead of actual addresses is one way to handle this, and should

work well for certain classes of applications, like streaming computation. There

is also the challenge of what to annotate for memory and communication traffic.

159

Instruction traffic is straight forward to handle, but accesses to data might vary

wildly based on pointers, array indices, or other dynamic factors. One interesting

approach is to map the host-machine’s addresses to calls in the target model. A

simpler, but less accurate, option is to just annotate the used memory traffic and

possibly annotate it with statistical miss rates.

7.1.2.4 Combining Annotation with Timing Analysis

Another interesting idea is combining annotation with timing analysis tools

such as AbsInt’s worst case timing analysis tools [2]. In particular, the annota-

tion framework could be leveraged to automatically add additional annotations to

analyzed code and increase the applicability of such timing analysis tools. Further-

more, annotated code could be generated from such tools and mixed with back-

wards annotated code and dynamic simulation for system-level exploration.

7.2 Discussion

Figure 7.1 summarizes the future extensions of the modeling and annotation

work. In particular, it highlights attaching the uniprocessor models to the mul-

tiprocessor models and extending the annotator to handle memory and commu-

nication traffic. This extended annotated code could then be attached to abstract

architectural models, such as the ones presented in this dissertation. Below we

highlight other promising future directions to enable productive system-level de-

sign.

Since multiprocessors are becoming prevalent in all aspects of computation

there are many potential gains with them. The application of parallel processing to

multiprocessor embedded system simulation, can potentially greatly increase the

performance of such simulations. Also, since the annotation handles each proces-

sor’s trace independently, it should be easy to parallelize.

Standardization of interfaces and levels of abstraction is of great importance.

160

Cycle-Accurate

Models

Instruction Level

Models

Algorithmic

Models

Logic Gates

Layout

Actual Gates

Register Transfer

Level Models

Transaction-Level

Models

Algorithmic

Models

Extended

Annotation

Framework

Extended

Multiprocessor

Modeling

Uniprocessor

Modeling

Hardware View Software/CPU View

Timed

Instruction

and

Memory

Trace

Timing +

Communication

Annotated

Application

Application

Code and

Binary

Timing

Annotated

Application

Figure 7.1: Future work summarized in terms of levels of abstraction. Dashed lines
represent extensions and new areas of work. Solid lines represent work presented
in this dissertation.

The emergence of SystemC [8] and its transaction-level modeling libraries [14, 131]

has enabled an ecosystem of transaction-level tools for hardware, but microproces-

sor and software performance modeling remains relatively closed due to a lack of

interface standards. In particular, creating extension interfaces for microprocessor

simulators is of great importance. Without such standards developing, porting and

applying tools, such as the ones developed in this thesis, is unnecessarily compli-

cated. This is not merely an academic concern, for recently IBM and Tensilica have

called for such standards [130]. The UNISIM framework [25] is an academic project

going in this direction with SystemC-based modular multi-level simulator devel-

opment environment with support for the import of external simulators. Also, the

emergence of free fast instruction set simulators from Imperas [48] and Virtutech

(for academic users) [67] provides some key pieces for this sort of research. Projects

such as GEMS [104] from Wisconsin, build upon these technologies to create cycle

level models.

161

From a theoretical perspective there needs to be more work done on defin-

ing different levels of abstraction and their different levels of relationship. Cur-

rently, most transaction level modeling is done either totally untimed or at the

cycle level. Furthermore, the relationships between the different levels of abstrac-

tion for transaction-level modeling are still somewhat unclear and require further

definition. This is especially true from the perspective of different communication

interfaces, protocols, and models of computation. The tagged signal model [96]

and, more recently, Passerone’s work the agent algebra [120] have looked at such

comparisons and interfacings of different models of computation.

162

Bibliography

[1] 802.11 wireless standard (Wikipedia) -

http://en.wikipedia.org/wiki/IEEE 802.11.

[2] AbsInt Website - http://www.absint.com.

[3] Arm website: http://www.arm.com.

[4] FastVeri Product Overview -

http://www.interdesigntech.co.jp/english/fastveri/.

[5] International Technology Roadmap for Semiconductors, 2004.

http://public.itrs.net/.

[6] Mips web site: http://www.mips.com.

[7] Open Core Protocol International Partnership Website:

http://www.ocpip.org.

[8] Open SystemC Initiative Web Site: http://www.systemc.org.

[9] Power architecture website: http://www.power.org.

[10] SDR Forum Website- http://www.sdrforum.org.

[11] SpecC Website: http://www.cecs.uci.edu/∼specc/.

[12] SystemC Verification Library (SVC) available at: http://www.systemc.org.

163

[13] The GNU Profiler -

http://www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html.

[14] Transaction Level Modeling using OSCI TLM 2.0.

[15] Uncrustify web site: http://uncrustify.sourceforge.net/.

[16] VaST Website: http://www.vastsystems.com.

[17] W. Eatherton ‘The Push of Network Processing to the Top of the Pyra-

mid,’ keynote address at the Symposium on Architectures for Network-

ing and Communications Systems, October 26-28, 2005. Slides available at:

http://www.cesr.ncsu.edu/ancs/slides/eathertonKeynote.pdf.

[18] Wikipedia (February 2008) Instructions Per Second at:

http://en.wikipedia.org/wiki/Instructions per second .

[19] Cadence Design Systems Inc (1998). Cierto vcc user guide [online] at:

http://www.cadence.com.

[20] John Moondanos Alberto Sangiovanni-Vincentelli Abhijit Davare, Qi Zhu.

JPEG Encoding on the Intel MXP5800: A Platform-Based Design Case Study.

In IEEE 2005 3rd Workshop on Embedded Systems for Real-time Multimedia,

September 2005.

[21] Casey Alford. Virtual prototyping benefits in safety-critical automotive sys-

tems. Whitepaper available at: www.vastsystems.com, October 2005.

[22] Jeff Andrews and Nick Baker. Xbox 360 System Architecture. Micro, IEEE,

26(2):25–37, March-April 2006.

[23] Arvind, Krste Asanovic, Derek Chiou, James C. Hoe, Christoforos

Kozyrakis, Shih-Lien Lu, Mark Oskin, David Patterson, Jan Rabaey, and John

164

Wawrzynek. RAMP: Research Accelerator for Multiple Processors - A Com-

munity Vision for a Shared Experimental Parallel HW/SW Platform. Techni-

cal Report UCB/CSD-05-1412, EECS Department, University of California,

Berkeley, Sep 2005.

[24] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James

Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester

Plishker, John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The

Landscape of Parallel Computing Research: A View from Berkeley. Tech-

nical Report UCB/EECS-2006-183, EECS Department, University of Califor-

nia, Berkeley, Dec 2006.

[25] David August, Jonathan Chang, Sylvain Girbal, Daniel Gracia-Perez, Gilles

Mouchard, David A. Penry, Olivier Temam, and Neil Vachharajani. Unisim:

An open simulation environment and library for complex architecture de-

sign and collaborative development. Computer Architecture Letters, 6(2):45–

48, February 2007.

[26] Felice Balarin, Massiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurec-

ska, Luciano Lavagno, Claudio Passerone, Alberto Sangovanni-Vincentelli,

Ellen Sentovich, Kei Suzuki, and Bassam Tabbara. Hardware-software co-

design of embedded systems: the Polis approach. Kluwer Academic Publishers,

Boston; Dordrecht, 1997.

[27] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio

Passerone, and Alberto Sangiovanni-Vincentelli. Metropolis: An Integrated

Electronic System Design Environment. Computer Magazine, pages 45–52,

April 2003.

[28] Jwahar R. Bammi, Edwin Harcourt, Wido Kruijtzer, Luciano Lavagno, and

Mihai T. Lazarescu. Software performance estimation strategies in a system-

level design tool. Proceedings of CODES, pages 82–6, 2000.

165

[29] Gerard Berry. The Foundations of Esterel. Proof, Language and Interaction:

Essays in Honour of Robin Milner, 2000.

[30] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-static

dataflow. Signal Processing, IEEE Transactions on [see also Acoustics, Speech,

and Signal Processing, IEEE Transactions on], 44(2):397–408, Feb 1996.

[31] Hans-Martin Bluethgen, Cyprian Grassmann, Wolfgang Raab, Ulrich Ra-

macher, and Josef Hausner. A programmable baseband platform for

software-defined radio. In Proceedings of SDR FORUM 2004, 2004.

[32] Shekhar Borkar. Thousand core chips: a technology perspective. In DAC ’07:

Proceedings of the 44th annual conference on Design automation, pages 746–749,

New York, NY, USA, 2007. ACM.

[33] Shekhar Borkar. Design challenges of technology scaling. IEEE Micro,

19(4):23–29, Jul-Aug 1999.

[34] Joseph T. Buck and Edward A. Lee. Scheduling dynamic dataflow graphs

with bounded memory using the token flow model. Proceedings of IEEE In-

ternational Conference on Acoustics, Speech, and Signal Processing, May 1993.

[35] Doug Burger and Todd M. Austin. The SimpleScalar Toolset Version 2.0.

Tech Report. 97-1342, Department of Computer Science, University of Wisconsin-

Madison, June 1997.

[36] Paul Burns. Software defined radio for 3G. Arctech House, Inc., Norwoood,

MA.

[37] Lukai Cai and Daniel Gajski. Transaction level modeling: an overview. Pro-

ceedings of CODES, pages 19–24, 2003.

166

[38] Lukai Cai, Andreas Gerstlauer, and Daniel Gajski. Retargetable profiling for

rapid, early system-level design space exploration. In Proceedings of DAC,

pages 281–286, 2004.

[39] Lukai Cai, Shireesh Verma, and Daniel D. Gajski. Comparison of SpecC and

SystemC Languages for System Design. Technical Report CECS-03-11, Cen-

ter for Embedded Computer Systems, University of California, Irvine, May

2003.

[40] Rong Chen. Platform-based Design for Wireless Embedded Systems. PhD thesis,

University of California at Berkeley, December 2005.

[41] Xi Chen, Fang Chen, Harry Hsieh, Felice Balarin, and Yosinori Watanabe.

Formal verification of embedded system designs at multiple levels of ab-

straction. High-Level Design Validation and Test Workshop, 2002. Seventh IEEE

International, pages 125–130, 27-29 Oct. 2002.

[42] Xi Chen, Abhijit Davare, Harry Hsieh, Alberto Sangiovanni-Vincentelli, and

Yosinori Watanabe. Simulation based deadlock analysis for system level de-

signs. In Design Automation Conference, June 2005.

[43] Xi Chen, Harry Hsieh, Felice Balarin, and Yosinori Watanabe. Automatic

trace analysis for logic of constraints. Design Automation Conference, 2003.

Proceedings, pages 460–465, 2-6 June 2003.

[44] Xi Chen, Harry Hsieh, Felice Balarin, and Yosinori Watanabe. Logic of Con-

straints: A Quantitative Performance and Functional Constraint Formalism.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

August 2004.

[45] Lawrence T. Clark, Eric J. Hoffman, Jay Miller, Manish Biyani, Yuyun Liao,

Stephen Strazdus, Michael Morrow, Kimberley E. Velarde, and Mark A.

167

Yarch. An embedded 32-b microprocessor core for low-power and high-

performance applications. IEEE Journal of Solid-State Circuits, 36(11):1599–

1608, November 2001.

[46] Bob Cmelik and David Keppel. Shade: a fast instruction-set simulator for

execution profiling. In SIGMETRICS ’94: Proceedings of the 1994 ACM SIG-

METRICS conference on Measurement and modeling of computer systems, pages

128–137, New York, NY, USA, 1994. ACM.

[47] Jason Cong, Yiping Fan, Guoling Han, Wei Jiang, and Zhiru Zhang. Behavior

and Communication Co-Optimization for Systems with Sequential Commu-

nication Media. In Design Automation Conference, July 2006.

[48] Imperas Corporation. Open Virtual Platform Website:

http://www.ovpworld.org.

[49] Intel Corporation. “Intel IXP1200 Network Processor,” Product Datasheet,

December 2001.

[50] Intel Corporation. “Intel IXP2855 Network Processor,” Product Brief, 2005.

[51] Intel Corporation. SA-110 Microprocessor Technical Reference Manual. Santa

Clara, CA, 2000.

[52] Intel Corporation. Intel Xscale Microarchitecture User’s Manual. Santa Clara,

CA, March 2003.

[53] Xilinx Corporation. Microblaze Processor Reference Guide.

[54] Xilinx Corporation. Fast Simplex Link (FSL) Bus (v2.00a), December 2005.

[55] Xilinx Corporation. Virtex-II Pro and Virtex-II Pro X FPGA User Guide,

november 2007.

168

[56] Abhijit Davare. Automated Mapping for Heterogeneous Multiprocessor Embedded

Systems. PhD thesis, University of California at Berkeley, September 2007.

[57] Abhijit Davare, Douglas Densmore, Trevor Meyerowitz, Alessandro Pinto,

Alberto Sangiovanni-Vincentelli, Guang Yang, Haibo Zeng, and Qi Zhu. A

Next-Generation Design Framework for Platform-Based Design. In Confer-

ence on Using Hardware Design and Verification Languages (DVCon), February

2007.

[58] E. A. de Kock, G. Essink, W. J. M. Smits, P. vd Wolf, J.-Y. Brunel, W. M. Krui-

jtzer, P. Lieverse, and K. A. Vissers. Yapi: Application modeling for signal

processing systems. Proceedings of Design Automation Conference, pages 402–

405, 2000.

[59] Douglas Densmore. A Design Flow for the Development, Characterization, and

Refinement of System Level Architectural Services. PhD thesis, University of

California at Berkeley, May 2007.

[60] Douglas Densmore, Adam Donlin, and Alberto Sangiovanni-Vincentelli.

FPGA Architecture Characterization for System Level Performance Analy-

sis. Proceedings of Design, Automation, and Test Europe, March 2006.

[61] Srinivas Devadas, Abhijit Ghosh, and Kurt Keutzer. Logic Synthesis.

McGraw-Hill, 1994.

[62] Adam Donlin. Transaction level modeling: flows and use models. Proceed-

ings of CODES, pages 75–80, 2004.

[63] E.Clarke, O. Grumberg, and D. Long. Verification Tools for Finite State Con-

current Systems. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, ed-

itors, A Decade of Concurrency-Reflections and Perspectives, volume 803, pages

124–175, Noordwijkerhout, Netherlands, 1993. Springer-Verlag.

169

[64] Stephen Edwards, Luciano Lavagno, Edward A. Lee, and Alberto

Sangiovanni-Vincentelli. Design of Embedded Systems: Formal Models, Val-

idation, and Synthesis. Proceedings of the IEEE, 85(3):366–390, 1997.

[65] Stephen A. Edwards. The Specification and Execution of Heterogeneous Syn-

chronous Reactive Systems. PhD thesis, University of California at Berkeley,

March 1997.

[66] Eetimes.com. ‘Intel cancels Tejas, moves to dual-core designs’,

http://www.eetimes.com/showArticle.jhtml?articleID=20000251, May 7,

2004.

[67] Jakob Engblom and Mattias Holm. A Fully Virtual Multi-Node 1553 Bus

Computer System. In Data Systems in Aerospace, May 2006.

[68] Hans Frischkorn. ‘Automotive SoftwareThe Silent Revolution’ Keynote Ad-

dress at the Automotive Software Workshop, February 2004.

[69] Cyprian Grassmann, Mathias Richter, and Mirko Sauermann. Mapping the

physical layer of radio standards to multiprocessor architectures. In Proceed-

ings of DATE 2007, 2007.

[70] Michael Gschwind. Chip multiprocessing and the cell broadband engine. In

Proceedings of the 3rd conference on Computing frontiers, pages 1–8, New York,

NY, USA, 2006. ACM.

[71] Michael Gschwind, David Erb, Sid Manning, and Mark Nutter. An open

source environment for cell broadband engine system software. Computer

Magazine, 40(6):37–47, 2007.

[72] Rajesh K. Gupta and Giovanni De Michelli. Hardware-software cosynthesis

for digital systems. IEEE Design and Test of Computers, 1993.

170

[73] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin,

Trevor Mudge, and Richard B. Brown. Mibench: A free, commercially repre-

sentative embedded benchmark suite. Proceedings of the 4th IEEE International

Workshop on Workload Characterization, pages 3–14, 2001.

[74] Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt, and

Alex Nicolau. Expression: A language for architecture exploration through

compiler/simulator retargetability. Proceedings of the European Conference on

Design, Automation and Test (DATE), pages 485–490, March 1999.

[75] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-

flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–

1320, September 1991.

[76] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and

a. Shtul-Trauring. Statemate: a working environment for the development

of complex reactive systems. In ICSE ’88: Proceedings of the 10th international

conference on Software engineering, pages 396–406, Los Alamitos, CA, USA,

1988. IEEE Computer Society Press.

[77] Jens Harnisch. Personal Communication, September 2005.

[78] Graham R. Hellestrand. The revolution in systems engineering. IEEE Spectr.,

36(9):43–51, 1999.

[79] Jörg Henkel, Thomas Benner, Rolf Ernst, Wei Ye, Nikola Serafimov, and Ger-

not Glawe. Cosyma: a software-oriented approach to hardware/software

codesign. Journal of Computer Software Engineering, 2(3):293–314, 1994.

[80] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch.

Embedded control systems development with giotto. In LCTES/OM, pages

64–72, 2001.

171

[81] C. A. R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666–677, 1978.

[82] James C. Hoe and Arvind. Synthesis of operation-centric hardware descrip-

tions. Proceedings of International Conference on Computer-Aided Design, pages

511–518, 2000.

[83] Christopher Hylands, Edward Lee, Jie Liu, Xiaojun Liu, Stephen Neuendorf-

fer, Yuhong Xiong, and Haiyang Zheng Yang Zhao. Overview of the ptolemy

project. In Technical Memorandum UCB/ERL M03/25, University of California,

Berkeley, CA 94720, July 2006.

[84] Mentor Graphics Inc. Seamless Product Sheet available at:

https://www.mentor.com/seamless.

[85] SPARC International Inc. The SPARC Architecture Manual, Version 9. Prentice

Hall, Englewood Cliffs, NJ, 2000.

[86] iSuppli Corporation. ‘iSuppli Teardown Reveals Apples iPod

touch is More Than an iPhone Without a Phone’, Available at:

http://www.isuppli.com/news/default.asp?id=8717, December 19 2007.

[87] Gilles Kahn. The semantics of a simple language for parallel programming.

Proceedings of the IFIP Congress, pages 471–5, August 1974.

[88] Shinjiro Kakita, Yosinori Watanabe, Douglas Densmore, Abhijit Davare, and

Alberto Sangiovanni-Vincentelli. Functional Model Exploration for Multi-

media Applications via Algebraic Operators. Proceedings of the Sixth Interna-

tional Conference on Application of Concurrency to System Design (ACSD 2006),

June 2006.

[89] Torsten Kempf, Kingshuk Karuri, Gerd Ascheid Stefan Wallentowitz, Rainer

Leupers, and Heinrich Meyr. A SW performance estimation framework for

172

early System-Level-Design using fine-grained instrumentation. In Proceed-

ings of DATE, 2006.

[90] Kurt Keutzer, Sharad Malik, A. Richard Newton, Jan Rabaey, and Alberto

Sangiovanni-Vincentelli. System Level Design: Orthogonolization of Con-

cerns and Platform-Based Design. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 19(12), December 2000.

[91] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Peter Van Der Wolf. An

approach for quantitative analysis of application-specific dataflow architec-

tures. Application-Specific Systems, Architectures and Processors, 1997. Proceed-

ings., IEEE International Conference on, pages 338–349, 14-16 Jul 1997.

[92] Bart Kienhuis, Ed F. Deprettere, Pieter van der Wolf, and Kees Vissers. A

methodology to design programmble embedded systems: the y-chart ap-

proach. pages 18–37, 2002.

[93] Tim Kogel, Anssi Haverinen, and James Aldis. OCP TLM for Architectural

Modeling. Whitepaper available at: www.ocpip.org, July 2005.

[94] Edward A. Lee. The Problem With Threads. Technical Report UCB/EECS-

2006-1, EECS Department, University of California, Berkeley, January 2006.

[95] Edward A. Lee and Thomas M. Parks. Dataflow process networks. Proceed-

ings of the IEEE, 83(5):773–801, May 1995.

[96] Edward A. Lee and Alberto L. Sangiovanni-Vincentelli. Comparing models

of computation. In ICCAD, pages 234–241, 1996.

[97] Edward Ashford Lee and David G. Messerschmitt. Static scheduling of syn-

chronous data flow programs for digital signal processing. IEEE Trans. Com-

put., 36(1):24–35, 1987.

173

[98] P. LeGuernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-

time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321–1336, Sep

1991.

[99] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded

software using implicit path enumeration. In Proceedings of Design Automa-

tion Conference, pages 456–461, June 1995.

[100] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Effcient microarchi-

tecture modeling and path analysis for real-time software. In Proceedings of

the IEEE Real-Time Systems Symposium, pages 298–307, December 1995.

[101] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance estima-

tion of embedded software with instruction cache modeling. Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design, pages 380–

387, November 1995.

[102] ARM Ltd. ARM Architecture Reference Manual. Cambridge, England, 2000.

[103] Grant Martin and Andrew Piziali. ESL Design and Verification : A Prescription

for Electronic System-Level Methodology. Morgan Kaufman, San Francisco, CA,

2007.

[104] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R.

Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and

David A. Wood. Multifacet’s general execution-driven multiprocessor sim-

ulator (GEMS) toolset. SIGARCH Computer Architecture News, 33(4):92–99,

2005.

[105] Carl J. Mauer, Mark D. Hill, and David A. Wood. Full-system timing-first

simulation. In SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS

international conference on Measurement and modeling of computer systems, pages

108–116, New York, NY, USA, 2002. ACM.

174

[106] Rick Merritt. ‘Multicore puts screws to parallel-programming models’, EE-

Times.com, February 15, 2008.

[107] Trevor Meyerowitz. Metropolis ARM CPU Examples. In Technical Memoran-

dum UCB/ERL M04/39, University of California, Berkeley, CA 94720, September

2004.

[108] Trevor Meyerowitz and Alberto Sangiovanni-Vincentelli. High Level CPU

Microarchitecture Models Using Kahn Process Networks. In Proceedings of

SRC TechCon, October 2005.

[109] Trevor Meyerowitz, Mirko Sauermann, Dominik Langen, and Alberto

Sangiovanni-Vincentelli. Source-Level Timing Annotation and Simulation

for a Heterogeneous Multiprocessor. In to appear in the Proceedings of DATE

2008, March 2008.

[110] Trevor Meyerowitz, Jonathan Sprinkle, and Alberto Sangiovanni-Vincentelli.

A visual language for describing instruction sets and generating decoders. In

Proceedings of OOPSLA Workshop on Domain Specific Modeling, October 2004.

[111] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-

Hill, 1994.

[112] Imed Moussa, Thierry Grellier, and Giang Nguyen. Exploring sw perfor-

mance using soc transaction-level modeling. Prooceedings of DATE, 02:20120,

2003.

[113] Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Falsafi, Mike Litzkow,

Mark D. Hill, David A. Wood, Steven Huss-Lederman, and James R. Larus.

Wisconsin wind tunnel ii: A fast, portable parallel architecture simulator.

IEEE Concurrency, 8(4):12–20, 2000.

[114] Michiaki Muraoka, Noriyoshi Itoh, Rafael K. Morizawa, Hiroyuki Ya-

mashita, and Takao Shinsha. Software execution time back-annotation

175

method for high speed hardware-software co-simulation. In 12th Workshop

on Synthesis and System Integration of Mixed Information Technologies, pages 169

– 175, October 2004.

[115] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings

of the IEEE, 77(4):541–580, Apr 1989.

[116] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich

Meyr, and Andreas Hoffmann. A universal technique for fast and flexi-

ble instruction-set architecture simulation. In DAC ’02: Proceedings of the

39th conference on Design Automation, pages 22–27, New York, NY, USA, 2002.

ACM.

[117] Ilia Oussorov, Primrose Mbanefo, and Wolfgang Raab. System-level design

of umts baseband parts with systemc. In Proceedings of DVCON 2004, 2004.

[118] Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdhane. Extending the

transaction level modeling approach for fast communication architecture ex-

ploration. In DAC ’04: Proceedings of the 41st annual conference on Design au-

tomation, pages 113–118, New York, NY, USA, 2004. ACM.

[119] Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdhane. Fast explo-

ration of bus-based on-chip communication architectures. In CODES+ISSS

’04: Proceedings of the international conference on Hardware/Software Codesign

and System Synthesis, pages 242–247, Washington, DC, USA, 2004. IEEE Com-

puter Society.

[120] Roberto Passerone. Semantic Foundations for Heterogeneous Systems. PhD the-

sis, University of California at Berkeley, May 2004.

[121] David Patterson and John Hennessy. Computer Architecture a Quantitative

Approach, 2nd Edition. Morgan Kaufman, San Francisco, CA, 1996.

176

[122] Joann M. Paul, Donald E. Thomas, and Andrew S. Cassidy. High-level mod-

eling and simulation of single-chip programmable heterogeneous multipro-

cessors. ACM Trans. Des. Autom. Electron. Syst., 10(3):431–461, 2005.

[123] Stefan Pees, Andreas Hoffmann, Vojin Zivojnovic, and Heinrich Meyr. LISA

- machine description language for cycle-accurate models of programmable

DSP architectures. Proceedings of the Design Automation Conference, pages 933–

8, 1999.

[124] David A. Penry and David I. August. Optimizations for a simulator con-

struction system supporting reusable components. In DAC ’03: Proceedings

of the 40th conference on Design automation, pages 926–931, New York, NY,

USA, July 2003. ACM.

[125] Wei Qin. Modeling and Description of Embedded Processors for the Development

of Software Tools. PhD thesis, Princeton University, November 2004.

[126] Wei Qin and Sharad Malik. Flexible and formal modeling of microproces-

sors with application to retargetable simulation. Proceedings of the European

Conference on Design, Automation and Test (DATE), pages 556–61, March 2003.

[127] Wolfgang Raab, Hans-Martin Bluethgen, and Ulrich Ramacher. A low-

power memory hierarchy for a fully programmable baseband processor. In

WMPI ’04: Proceedings of the 3rd workshop on Memory performance issues, pages

102–106, New York, NY, USA, 2004. ACM Press.

[128] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C.

Lewis, and David A. Wood. The wisconsin wind tunnel: virtual prototyping

of parallel computers. SIGMETRICS Perform. Eval. Rev., 21(1):48–60, 1993.

[129] Mehrdad Reshadi and Nikil Dutt. Generic pipelined processor modeling

and high performance cycle-accurate simulation generation. Proceedings of

the European Conference on Design, Automation and Test (DATE), March 2005.

177

[130] EE Times Rick Merritt. ‘IBM calls for modeling standards’, EEtimes.com.

[131] Adam Rose, Stuart Swan, John Pierce, and Jean-Michel Fernandez. Trans-

action Level Modeling in SystemC. Whitepaper available at: www.systemc.org,

2005.

[132] J.A. Rowson. Hardware/software co-simulation. Design Automation, 1994.

31st Conference on, pages 439–440, 6-10 June 1994.

[133] M.N.O. Sadiku and C.M. Akujuobi. Software-defined radio: a brief

overview. Potentials, IEEE, 23(4):14–15, Oct.-Nov. 2004.

[134] Alberto Sangiovanni-Vincentelli. Defining platform-based design. EE De-

sign, March 2002.

[135] Alberto Sangiovanni-Vincentelli. Quo Vadis, SLD? Reasoning About the

Trends and Challenges of System Level Design. Proceedings of the IEEE,

95(3):467–506, March 2007.

[136] Mirko Sauermann. Iltos-the operating system for embedded

multiprocessors-design and implementation. In Proceedings of IESD

2006, 2006.

[137] Eric Schnarr and James R. Larus. Fast out-of-order processor simulation us-

ing memoization. International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, 33(11):283–294, 1998.

[138] Greg Spirakis. Keynote Address at the EMSOFT: the conference on embedded

software, 2003.

[139] Kei Suzuki and Alberto Sangiovanni-Vincentelli. Efficient software perfor-

mance estimation methods for hardware/software codesign. Proceedings of

the Design Automation Conference, pages 605–610, 1996.

178

[140] The Metropolis Design Team. The metropolis meta model version 0.4. In

Technical Memorandum UCB/ERL M04/38, University of California, Berkeley, CA

94720, September 14, 2004.

[141] Manish Vachharajani, Neil Vachharajani, David A. Penry, Jason Blome, and

David August. Microarchitectural exploration with Liberty. Proceedings of the

35th International Symposium on Microarchitecture, pages 271–282, November

2002.

[142] Sriram Vangali, Jason Howard, Gregory Ruhi, Saurabh Dighe, Howard Wil-

son, James Tschanz, David Finan, Priya Iyer, Arvind Singh, Tiju Jacob,

Shailendra Jain, Sriram Venkataraman, Yatin Hoskote, and Nitin Borkar. An

80-Tile 1.28 TFLOPS Network-on-Chip in 65nm CMOS. Interational Solid-

State Circuits Conference, Digest of Technical Papers., pages 98–9,589, 11-15 Feb.

2007.

[143] Vojin Živojnovic and Heinrich Meyr. Compiled hw/sw co-simulation. In

DAC ’96: Proceedings of the 33rd annual conference on Design automation, pages

690–695, New York, NY, USA, 1996. ACM.

[144] CoWare Website:. Coware model library ip listing-

http://www.coware.com/pdf/products/modellibrary iplisting.pdf.

[145] Palm website. ‘Palm TX specifications’,

http://www.palm.com/us/products/handhelds/tx/tx specs.html, Febru-

ary 2008.

[146] Reinhold P. Weicker. Understanding variations in dhrystone performance.

Microprocessor Report, pages 16–17, May 1989.

[147] Andreas Wieferink, Rainer Leupers, Gerd Ascheid, Heinrich Meyr, Tom

Michiels, Achim Nohl, and Tim Kogel. Retargetable generation of TLM bus

interfaces for MP-SoC platforms. Proceeding of CODES, pages 249–254, 2005.

179

[148] Reinhard Wilhelm. Why AI + ILP Is Good for WCET, but MC Is Not, Nor

ILP Alone. In VMCAI 2004, volume 2937 of LNCS, pages 309–322, 2004.

[149] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,

Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,

Reinhold Heckmann, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan

Staschulat, and Per Stenstrm. The Determination of Worst-Case Execution

Times—Overview of the Methods and Survey of Tools. accepted for ACM

Transactions on Embedded Computing Systems (TECS), 2007.

[150] Le-Chun Wu. Interactive Source-Level Debugging of Optimized Code. PhD the-

sis, University of Illinois at Urbana-Champaign, August 1999.

[151] Roland Wunderlich and James Hoe. In-system FPGA prototyping of an Ita-

nium microarchitecture. Proceedings of IEEE International Conference on Com-

puter Design: VLSI in Computers and Processors, pages 288–94, 2004.

[152] Guang Yang, Yosinori Watanabe, Felice Balarin, and Alberto Sangiovanni-

Vincentelli. Separation of Concerns: Overhead in Modeling and Efficient

Simulation Techniques. In Fourth ACM International Conference on Embedded

Software (EMSOFT), September 2004.

[153] Haibo Zeng, Abhijit Davare, Alberto Sangiovanni-Vincentelli, Sampada Son-

alkar, Sri Kanajan, and Claudio Pinello. Design Space Exploration of Auto-

motive Platforms in Metropolis. In Proceedings of Society of Automotive Engi-

neers Congress, April 2006.

[154] Haibo Zeng, Vishal Shah, Douglas Densmore, and Abhijit Davare. Simple

Case Study in Metropolis. In Technical Memorandum UCB/ERL M04/37, Uni-

versity of California, Berkeley, CA 94720, September 14, 2004.

	Introduction
	Traditional Embedded System Design
	Traditional Hardware Development Flow
	Traditional Software Development Flow
	Problems with the Traditional Flow

	Motivating Trends for System Level Design
	Complexity and Productivity
	Multicore Processors
	Explosion of Software and Programmability

	System-Level Design
	The Y-Chart and Separation of Concerns
	Platform Based Design
	Models of Computation
	System Level Design Flows
	Transaction Level Modeling
	Metropolis

	Levels for Modeling Embedded Software
	Computer Architecture Simulation Technologies
	Processor Simulation Technologies for Embedded Systems

	Discussion
	Contributions and Outline

	Single Processor Modeling
	Processor Modeling Definitions
	Functional Definitions
	Architectural Definitions

	Processor Models
	 High Level Overview
	Trace Format
	Adding a Memory System to the Models
	Model Limitations

	Case Study and Results
	XScale and Strongarm Processors
	Accuracy Results
	Performance Results and Optimizations

	Related Work
	Discussion

	Multiprocessor Modeling
	Introduction
	Software Defined Radio
	the MuSIC Multiprocessor for Software Defined Radio
	Prior Architectural Models in Metropolis

	Architectural Modeling
	 Modeling Computation and Communication
	 Modeling Cost and Scheduling
	 Modeling the MuSIC Architecture

	Modeling Functionality and Mapping
	Functionality
	Mapping

	Results
	Modeling Code Complexity
	Architecture Netlist Statistics

	Discussion

	Introduction to Timing Annotation
	Basic Information
	What is Annotation?
	Tool Flow
	Basic Definitions

	Annotation Platforms
	MuSIC Multiprocessor for Software Defined Radio
	The XScale Microprocessor

	Related Work
	Software Tools
	Performance Estimation for Embedded Systems
	Worst-Case Execution Time Analysis
	Other Work

	Discussion

	Backwards Timing Annotation for Uniprocessors
	Single Processor Timing Annotation Algorithm
	Construct Blocks and Lines
	Calculate Block and Line-Level Annotations
	 Generating Annotated Source Code

	Implementation and Optimizations
	Memory Usage Optimizations
	Trace Storage Optimizations

	Uniprocessor Annotation Results
	Simulation Platforms Evaluated
	Results with Identical Data
	Results with Different Data
	Annotation Framework Runtime
	Analysis

	Discussion

	Backwards Timing Annotation for Multiprocessors
	Introduction
	Motivating Example

	Handling Startup Delays
	Handling Inter-Processor Communication
	Example with Inter-processor Communication Problems
	Ignoring Inter-processor Communication Delays
	Characterizing Inter-Thread Operations
	Handling Pipelining
	Why not analyze all of the processors concurrently?

	Results and Analysis
	Results with Identical Data
	Results with Different Data
	Analysis

	Discussion
	Limitations

	Conclusions
	Future Work
	Modeling
	Annotation

	Discussion

	Bibliography

