
Trading Infinite Memory for Uniform Randomness in
Timed Games

Krishnendu Chatterjee
Thomas A. Henzinger
Vinayak Prabhu

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-4

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-4.html

January 10, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Trading Infinite Memory for

Uniform Randomness in Timed Games⋆

Krishnendu Chatterjee1, Thomas A. Henzinger1,2, and Vinayak S. Prabhu1

1EECS, UC Berkeley; 2CCS, EPFL;
{c krish,vinayak}@eecs.berkeley.edu, tah@epfl.ch

Abstract. We consider concurrent two-player timed automaton games with ω-regular objectives spec-
ified as parity conditions. These games offer an appropriate model for the synthesis of real-time con-
trollers. Earlier works on timed games focused on pure strategies for each player. We study, for the
first time, the use of randomized strategies in such games. While pure (i.e., nonrandomized) strategies
in timed games require infinite memory for winning even with respect to reachability objectives, we
show that randomized strategies can win with finite memory with respect to all parity objectives. Also,
the synthesized randomized real-time controllers are much simpler in structure than the corresponding
pure controllers, and therefore easier to implement. For safety objectives we prove the existence of
pure finite-memory winning strategies. Finally, while randomization helps in simplifying the strategies
required for winning timed parity games, we prove that randomization does not help in winning at
more states.

1 Introduction

Timed automata [2] are models of real-time systems in which states consist of discrete locations and
values for real-time clocks. The transitions between locations are dependent on the clock values.
Timed automaton games [8, 1, 7, 13, 12] are used to distinguish between the actions of several players
(typically a “controller” and a “plant”). We shall consider two-player timed automaton games with
ω-regular objectives specified as parity conditions. The class of ω-regular objectives can express all
safety and liveness specifications that arise in the synthesis and verification of reactive systems,
and parity conditions are a canonical form to express ω-regular objectives [20]. The construction of
a winning strategy for player 1 in such games corresponds to the controller synthesis problem for
real-time systems [11, 16, 17, 21] with respect to achieving a desired ω-regular objective.

The issue of time divergence is crucial in timed games, as a naive control strategy might simply
block time, leading to “zeno” runs. Such invalid solutions have often been avoided by putting
strong syntactic constraints on the cycles of timed automaton games [17, 4, 13, 5], or by semantic
conditions that discretize time [14]. Other works [16, 11, 6, 7] have required that time divergence
be ensured by the controller —a one-sided, unfair view in settings where the player modeling the
plant is allowed to block time. We use the more general, semantic and fully symmetric formalism
of [8, 15] for dealing with the issue of time divergence. This setting places no syntactic restriction
on the game structure, and gives both players equally powerful options for advancing time, but for
a player to win, she must not be responsible for causing time to converge. It has been shown in [15]
that this is equivalent to requiring that the players are restricted to the use of receptive strategies
[3, 19], which, while being required to not prevent time from diverging, are not required to ensure
time divergence. More formally, our timed games proceed in an infinite sequence of rounds. In each

⋆ This research was supported in part by the NSF grants CCR-0208875, CCR-0225610, and CCR-0234690, by the
Swiss National Science Foundation, and by the Artist2 European Network of Excellence.

round, both players simultaneously propose moves, with each move consisting of an action and a
time delay after which the player wants the proposed action to take place. Of the two proposed
moves, the move with the shorter time delay “wins” the round and determines the next state of
the game. Let a set Φ of runs be the desired objective for player 1. Then player 1 has a winning
strategy for Φ if she has a strategy to ensure that, no matter what player 2 does, one of the
following two conditions hold: (1) time diverges and the resulting run belongs to Φ, or (2) time
does not diverge but player-1’s moves are chosen only finitely often (and thus she is not to be
blamed for the convergence of time).

The winning strategies constructed in [8] for such timed automaton games assume the presence
of an infinitely precise global clock to measure the progress of time, and the strategies crucially
depend on the value of this global clock. Since the value of this clock needs to be kept in memory,
the constructed strategies require infinite memory. In fact, the following example (Example 2)
shows that infinite memory is necessary for winning with respect to reachability objectives. Besides
the infinite-memory requirement, the strategies constructed in [8] are structurally complicated, and
it would be difficult to implement the synthesized controllers in practice. Before offering a novel
solution to this problem, we illustrate the problem with an example of a simple timed game whose
solution requires infinite memory.

Example 1 (Signaling hub). Consider a signaling hub that both sends and receives signals at the
same port. At any time the port can either receive or send a signal, but it cannot do both. Moreover,
the hub must accept all signals sent to it. If both the input and the output signals arrive at the
same time, then the output signal of the hub is discarded. The input signals are generated by other
processes, and infinitely many signals cannot be generated in a finite amount of time. The time
between input signals is not known a priori. The system may be modeled by the timed automaton
game shown in Figure 1. The actions b1 and b2 correspond to input signals, and a1 and a2 to output
signals. The actions bi are controlled by the environment and denote input signals; the actions ai

are controlled by the hub and denote signals sent by the hub. The clock x models the time delay
between signals: all signals reset this clock, and signals can arrive or be sent provided the value
of x is greater than 0, ensuring that there is a positive delay between signals. The objective of
the hub controller is to keep sending its own signals, which can be modeled as the generalized
Büchi condition of switching infinitely often between the locations p and q (ie., the LTL objective
2(3p ∧ 3q)). ⊓⊔

Example 2 (Winning requires infinite memory). Consider the timed game of Figure 1. We let κ
denote the valuation of the clock x. We let the special “action” ⊥ denote a time move (representing
time passage without an action). The objective of player 1 is to reach q starting from s0 = 〈p, x = 0〉
(and similarly, to reach p from q). We let π1 denote the strategy of player 1 which prescribes moves
based on the history r[0..k] of the game at stage k. Suppose player 1 uses only finite memory. Then
player 1 can propose only moves from a finite set when at s0. Since a zero time move keeps the game
at p, we may assume that player 1 does not choose such moves. Let ∆ > 0 be the least time delay
of these finitely many moves of player 1. Then player 2 can always propose a move 〈∆/2, b〉 when
at s0. This strategy will prevent player 1 from reaching q, and yet time diverges. Hence player 1
cannot win with finite memory; that is, there is no hub controller that uses only finite memory.
However, player 1 has a winning strategy with infinite memory. For example, consider the player 1
strategy π2 such that π2(r[0..k]) = 〈1/2k+2, a1〉 if r[k] = 〈p, κ〉. and π2(r[0..k]) = 〈1,⊥〉 otherwise.

⊓⊔

2

p q
b2

x > 0 → x := 0

b1
x > 0 → x := 0

a2, x > 0 → x := 0

a1, x > 0 → x := 0

Fig. 1. A timed automaton game.

In this paper we observe that the infinite-memory requirement of Example 1 is due to the
determinism of the permissible strategies: a strategy is deterministic (or pure) if in each round of
the game, it proposes a unique move (i.e., action and time delay). A more general class of strategies
are the randomized strategies: a randomized strategy may propose, in each round, a probability
distribution of moves. We now show that in the game of Example 2 finite-memory randomized
winning strategies do exist. Indeed, the needed randomization has a particularly simple form:
player 1 proposes a unique action together with a time interval from which the time delay is chosen
uniformly at random. Such a strategy can be implemented as a controller that has the ability to
wait for a randomly chosen amount of time.

Example 3 (Randomization instead of infinite memory). Recall the game in Figure 1. Player 1 can
play a randomized memoryless strategy π3 such that π3(〈p, κ〉) = 〈Uniform((0, 1 − κ(x))), ai〉; that
is, the action ai is proposed to take place at a time chosen uniformly at random in the interval
(0, 1− κ(x)). Suppose player 2 always proposes the action bi with varying time delays ∆j at round
j. Then the probability of player-1’s move being never chosen is

∏∞
j=1(1 − ∆j), which is 0 if∑∞

j=1 ∆j = ∞ (by Lemma 15). Interrupting moves with pure time moves does not help player 2,

as 1 −
∆j

1−κ(x) < 1 − ∆j. Thus the simple randomized strategy π3 is winning for player 1 with
probability 1. ⊓⊔

Previously, only deterministic strategies were studied for timed games; here, for the first time,
we study randomized strategies. We show that randomized strategies are not more powerful than
deterministic strategies in the sense that if player 1 can win with a randomized strategy, then she
can also win with a deterministic strategy. However, as the example illustrated, randomization
can lead to a reduction in the memory required for winning, and to a significant simplification
in the structure of winning strategies. Randomization is therefore not only of theoretical interest,
but can improve the implementability of synthesized controllers. It is for this reason that we set
out, in this paper, to systematically analyze the trade-off between randomization requirements
(no randomization; uniform randomization; general randomization), memory requirements (finite
memory and infinite memory) and the presence of extra “controller clocks” for various classes of
ω-regular objectives (safety; reachability; parity objectives).

Our results are as follows. First, we show that for safety objectives pure (no randomization)
finite-memory winning strategies exist. Next, for reachability objectives, we show that pure (no
randomization) strategies require infinite memory for winning, whereas uniform randomized finite-
memory winning strategies exist. We then use the results for reachability and safety objectives
in an inductive argument to show that uniform randomized finite-memory strategies suffice for
all parity objectives, for which pure strategies require infinite memory (because reachability is a
special case of parity). In all our uses of randomization, we only use uniform randomization over

3

time, and more general forms of randomization (nonuniform distributions; randomized actions)
are not required. This shows that in timed games, infinite memory can be traded against uniform
randomness. Finally, we show that while randomization helps in simplifying winning strategies, and
thus allows the construction of simpler controllers, randomization does not help a player in winning
at more states, and thus does not allow the construction of more powerful controllers. In other
words, the case for randomness rests in the simplicity of the synthesized real-time controllers, not
in their expressiveness.

We note that in our setting, player 1 (i.e., the controller) can trade infinite memory also against
finite memory together with an extra clock. We assume that the values of all clocks of the plant
are observable. For an ω-regular objective Φ, we define the following winning sets depending on the
power given to player 1: let [[Φ]]1 be the set of states from which player 1 can win using any strategy
(finite or infinite memory; pure or randomized) and any number of infinitely precise clocks; in [[Φ]]2
player 1 can win using a pure finite-memory strategy and only one extra clock; in [[Φ]]3 player 1 can
win using a pure finite-memory strategy and no extra clock; and in [[Φ]]4 player 1 can win using
a randomized finite-memory strategy and no extra clock. Then, for every timed automaton game,
we have [[Φ]]1 = [[Φ]]2 = [[Φ]]4. We also have [[Φ]]3 ⊆ [[Φ]]1, with the subset inclusion being in general
strict. It can be shown that at least one bit of memory is required for winning of reachability
objectives despite player 1 being allowed randomized strategies. We do not know whether memory
is required for winning safety objectives (even in the case of pure strategies).

We note that removing the global clock from winning strategies is nontrivial. The algorithm
of [8] uses such a global clock in a µ-calculus formulation to construct winning strategies. Without
a global clock, time cannot be measured directly, and we need to argue about other properties
of runs which ensure time divergence. For safety objectives, we construct a formula that depends
only on clock resets and on particular region valuations, and we argue that the satisfaction of that
formula is both necessary and sufficient for winning. This allows us to construct pure finite-memory
winning strategies for safety objectives. For reachability objectives, we construct “ranks” for sets
of states of a µ-calculus formula, and use these ranked sets to obtain a randomized finite-memory
strategy for winning. The proof requires special care, because our winning strategies are required
to be invariant over the values of the global clock. Finally, we show that if player 1 does not have
a pure (possibly infinite-memory) winning strategy from a state, then for every ε > 0 and for
every randomized strategy of player 1, player 2 has a pure counter strategy that can ensure with
probability at least 1− ε that player 1 does not win. This shows that randomization does not help
in winning at more states.

2 Timed Games

In this section we present the definitions of timed game structures, runs, objectives, strategies and
the notions of sure and almost-sure winning in timed game structures.

Timed game structures. A timed game structure is a tuple G = 〈S,A1,A2, Γ1, Γ2, δ〉 with the
following components.

– S is a set of states.
– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively. We assume that

⊥ 6∈ Ai, and write A⊥
i for Ai ∪{⊥}. The set of moves for player i is Mi = IR≥0×A⊥

i . Intuitively,
a move 〈∆,ai〉 by player i indicates a waiting period of ∆ time units followed by a discrete
transition labeled with action ai.

4

– Γi : S 7→ 2Mi \ ∅ are two move assignments. At every state s, the set Γi(s) contains the moves
that are available to player i. We require that 〈0,⊥〉 ∈ Γi(s) for all states s ∈ S and i ∈ {1, 2}.
Intuitively, 〈0,⊥〉 is a time-blocking stutter move.

– δ : S×(M1∪M2) 7→ S is the transition function. We require that for all time delays ∆,∆′ ∈ IR≥0

with ∆′ ≤ ∆, and all actions ai ∈ A⊥
i , we have (1) 〈∆,ai〉 ∈ Γi(s) iff both 〈∆′,⊥〉 ∈ Γi(s) and

〈∆ − ∆′, ai〉 ∈ Γi(δ(s, 〈∆
′,⊥〉)); and (2) if δ(s, 〈∆′,⊥〉) = s′ and δ(s′, 〈∆ − ∆′, ai〉) = s′′, then

δ(s, 〈∆,ai〉) = s′′.

The game proceeds as follows. If the current state of the game is s, then both players simultaneously
propose moves 〈∆1, a1〉 ∈ Γ1(s) and 〈∆2, a2〉 ∈ Γ2(s). The move with the shorter duration “wins”
in determining the next state of the game. If both moves have the same duration, then player 2
determines whether the next state will be determined by its move, or by the move of player 1. We
use this setting as our goal is to compute the winning set for player 1 against all possible strategies
of player 2. Formally, we define the joint destination function δjd : S × M1 × M2 7→ 2S by

δjd(s, 〈∆1, a1〉, 〈∆2, a2〉) =





{δ(s, 〈∆1, a1〉)} if ∆1 < ∆2;
{δ(s, 〈∆2, a2〉)} if ∆2 < ∆1;
{δ(s, 〈∆2, a2〉), δ(s, 〈∆1, a1〉)} if ∆2 = ∆1.

The time elapsed when the moves m1 = 〈∆1, a1〉 and m2 = 〈∆2, a2〉 are proposed is given
by delay(m1,m2) = min(∆1,∆2). The boolean predicate blamei(s,m1,m2, s

′) indicates whether
player i is “responsible” for the state change from s to s′ when the moves m1 and m2 are proposed.
Denoting the opponent of player i by ∼i = 3 − i, for i ∈ {1, 2}, we define

blamei(s, 〈∆1, a1〉, 〈∆2, a2〉, s
′) =

(
∆i ≤ ∆∼i ∧ δ(s, 〈∆i, ai〉) = s′

)
.

Runs. A run of the timed game structure G is an infinite sequence r = s0, 〈m
0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . .

such that sk ∈ S and mk
i ∈ Γi(sk) and sk+1 ∈ δjd(sk,m

k
1 ,m

k
2) for all k ≥ 0 and i ∈ {1, 2}. For k ≥ 0,

let time(r, k) denote the “time” at position k of the run, namely, time(r, k) =
∑k−1

j=0 delay(mj
1,m

j
2)

(we let time(r, 0) = 0). By r[k] we denote the (k + 1)-th state sk of r. The run prefix r[0..k] is the
finite prefix of the run r that ends in the state sk. Let Runs be the set of all runs of G, and let
FinRuns be the set of run prefixes.

Objectives. An objective for the timed game structure G is a set Φ ⊆ Runs of runs. We will be
interested in the classical reachability, safety and parity objectives. Parity objectives are canonical
forms for ω-regular properties that can express all commonly used specifications that arise in
verification.

– Given a set of states Y , the reachability objective Reach(Y) is defined as the set of runs that
visit Y , formally, Reach(Y) = {r | there exists i such that r[i] ∈ Y }.

– Given a set of states Y , the safety objective consists of the set of runs that stay within Y ,
formally, Safe(Y) = {r | for all i we have r[i] ∈ Y }.

– Let Ω : S 7→ {0, . . . , k − 1} be a parity index function. The parity objective for Ω requires that
the maximal index visited infinitely often is even. Formally, let InfOften(Ω(r)) denote the set of
indices visited infinitely often along a run r. Then the parity objective defines the following set
of runs: Parity(Ω) = {r | max(InfOften(Ω(r))) is even }.

A timed game structure G together with the index function Ω constitute a parity timed game
(of index k) in which the objective of player 1 is Parity(Ω). We use similar notations for reachability
and safety timed games.

5

Strategies. A strategy for a player is a recipe that specifies how to extend a run. Formally, a
probabilistic strategy πi for player i ∈ {1, 2} is a function πi that assigns to every run prefix r[0..k] a
probability distribution Di(r[k]) over Γi(r[k]), the set of moves available to player i at the state r[k].
Pure strategies are strategies for which the state space of the probability distribution of Di(r[k])
is a singleton set for every run r and all k. We let Πpure

i denote the set of pure strategies for
player i, with i ∈ {1, 2}. For i ∈ {1, 2}, let Πi be the set of strategies for player i. If both both
players propose the same time delay, then the tie is broken by a scheduler. Let TieBreak be the
set of functions from IR≥0 to {1, 2}. A scheduler strategy πsched is a mapping from FinRuns to
TieBreak. If πsched(r[0..k]) = h, then the resulting state given player 1 and player 2 moves 〈∆,a1〉
and 〈∆,a2〉 respectively, is determined by the move of player h(∆). We denote the set of all scheduler
strategies by Πsched. Given two strategies π1 ∈ Π1 and π2 ∈ Π2, the set of possible outcomes of the
game starting from a state s ∈ S is denoted Outcomes(s, π1, π2). Given strategies π1 and π2, for
player 1 and player 2, respectively, a scheduler strategy πsched and a starting state s we denote by
Prπ1,π2,πsched

s (·) the probability space given the strategies and the initial state s.

Receptive strategies. We will be interested in strategies that are meaningful (in the sense that
they do not block time). To define them formally we first present the following two sets of runs.

– A run r is time-divergent if limk→∞ time(r, k) = ∞. We denote by Timediv the set of all time-
divergent runs.

– The set Blamelessi ⊆ Runs consists of the set of runs in which player i is responsible only for
finitely many transitions. A run s0, 〈m

0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . belongs to the set Blamelessi, for

i = {1, 2}, if there exists a k ≥ 0 such that for all j ≥ k, we have ¬ blamei(sj,m
j
1,m

j
2, sj+1).

A strategy πi is receptive if for all strategies π∼i, all states s ∈ S, and all runs r ∈
Outcomes(s, π1, π2), either r ∈ Timediv or r ∈ Blamelessi. Thus, no what matter what the oppo-
nent does, a receptive strategy of player i cannot be responsible for blocking time. Strategies that
are not receptive are not physically meaningful. A timed game structure G is well-formed if both
players have receptive strategies. We restrict our attention to well-formed timed game structures.
We denote ΠR

i to be the set of receptive strategies for player i. Note that for π1 ∈ ΠR
1 , π2 ∈ ΠR

2 ,
we have Outcomes(s, π1, π2) ⊆ Timediv.

Sure and almost-sure winning modes. Let SureG
1 (Φ) (resp. AlmostSureG

1 (Φ)) be the set of states
s in G such that player 1 has a receptive strategy π1 ∈ ΠR

1 such that for all scheduler strategies
πsched ∈ Πsched and for all player-2 receptive strategies π2 ∈ ΠR

2 , we have Outcomes(s, π1, π2) ⊆
Φ (resp. Prπ1,π2,πsched

s (Φ) = 1). Such a winning strategy is said to be a sure (resp. almost sure)
winning receptive strategy. In computing the winning sets, we shall quantify over all strategies, but
modify the objective to take care of time divergence. Given an objective Φ, let TimeDivBl1(Φ) =
(Timediv∩ Φ)∪ (Blameless1 \Timediv), i.e., TimeDivBl1(Φ) denotes the set of paths such that either
time diverges and Φ holds, or else time converges and player 1 is not responsible for time to converge.
Let SureG

1 (Φ) (resp. AlmostSureG
1 (Φ)) be the set of states in G such that for all s ∈ SureG

1 (Φ) (resp.
AlmostSureG

1 (Φ)), player 1 has a strategy π1 ∈ Π1 such that for all strategies for all scheduler
strategies πsched ∈ Πsched and for all player-2 strategies π2 ∈ Π2, we have Outcomes(s, π1, π2) ⊆ Φ
(resp. Prπ1,π2,πsched

s (Φ) = 1). Such a winning strategy is said to be a sure (resp. almost sure) winning
for the non-receptive game. The following result establishes the connection between Sure and Sure

sets.

Theorem 1 ([15]). For all well-formed timed game structures G, and for all ω-regular objectives
Φ, we have SureG

1 (TimeDivBl1(Φ)) = SureG
1 (Φ).

6

We now define a special class of timed game structures, namely, timed automaton games.

Timed automaton games. Timed automata [2] suggest a finite syntax for specifying infinite-
state timed game structures. A timed automaton game is a tuple T = 〈L,C,A1,A2, E, γ〉 with the
following components:

– L is a finite set of locations.
– C is a finite set of clocks.
– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.
– E ⊆ L × (A1 ∪A2) × Constr(C) × L × 2C is the edge relation, where the set Constr(C) of clock

constraints is generated by the grammar

θ ::= x ≤ d | d ≤ x | ¬θ | θ1 ∧ θ2

for clock variables x ∈ C and nonnegative integer constants d. For an edge e = 〈l, ai, θ, l′, λ〉,
the clock constraint θ acts as a guard on the clock values which specifies when the edge e can be
taken, and by taking the edge e, the clocks in the set λ ⊆ C are reset to 0. We require that for
all edges 〈l, ai, θ

′, l′, λ′〉, 〈l, ai, θ
′′, l′′, λ′′〉 ∈ E with l′ 6= l′′, the conjunction θ′∧ θ′′ is unsatisfiable.

This requirement ensures that a state and a move together uniquely determine a successor state.
– γ : L 7→ Constr(C) is a function that assigns to every location an invariant for both players. All

clocks increase uniformly at the same rate. When at location l, each player i must propose a
move out of l before the invariant γ(l) expires. Thus, the game can stay at a location only as
long as the invariant is satisfied by the clock values.

A clock valuation is a function κ : C 7→ IR≥0 that maps every clock to a nonnegative real. The set
of all clock valuations for C is denoted by K(C). Given a clock valuation κ ∈ K(C) and a time
delay ∆ ∈ IR≥0, we write κ + ∆ for the clock valuation in K(C) defined by (κ + ∆)(x) = κ(x) + ∆
for all clocks x ∈ C. For a subset λ ⊆ C of the clocks, we write κ[λ := 0] for the clock valuation in
K(C) defined by (κ[λ := 0])(x) = 0 if x ∈ λ, and (κ[λ := 0])(x) = κ(x) if x 6∈ λ. A clock valuation
κ ∈ K(C) satisfies the clock constraint θ ∈ Constr(C), written κ |= θ, if the condition θ holds when
all clocks in C take on the values specified by κ. A state s = 〈l, κ〉 of the timed automaton game T

is a location l ∈ L together with a clock valuation κ ∈ K(C) such that the invariant at the location
is satisfied, that is, κ |= γ(l). Let S be the set of all states of T. In a state, each player i proposes
a time delay allowed by the invariant map γ, together either with the action ⊥, or with an action
ai ∈ Ai such that an edge labeled ai is enabled after the proposed time delay. We require that for
i ∈ {1, 2} and for all states s = 〈l, κ〉, if κ |= γ(l), either κ + ∆ |= γ(l) for all ∆ ∈ IR≥0, or there
exist a time delay ∆ ∈ IR≥0 and an edge 〈l, ai, θ, l′, λ〉 ∈ E such that (1) ai ∈ Ai and (2) κ+ ∆ |= θ
and for all 0 ≤ ∆′ ≤ ∆, we have κ + ∆′ |= γ(l), and (3) (κ + ∆)[λ := 0] |= γ(l′). This requirement
is necessary (but not sufficient) for well-formedness of the game. Given a timed automaton game
T, the definition of an associated timed game structure [[T]] is standard [8]. We shall restrict our
attention to randomization over time — a random move of a player will consist of a distribution
over time over some interval I, denoted DI , together with a discrete action ai.

Clock region equivalence. Timed automaton games can be solved using a region construction
from the theory of timed automata [2]. For a real t ≥ 0, let frac(t) = t − ⌊t⌋ denote the fractional
part of t. Given a timed automaton game T, for each clock x ∈ C, let cx denote the largest
integer constant that appears in any clock constraint involving x in T (let cx = 1 if there is no
clock constraint involving x). Two clock valuations κ1, κ2 are said to be region equivalent, denoted
by κ1

∼= κ2 when all the following conditions hold: (a) for all clocks x with κ1(x) ≤ cx and

7

κ2(x) ≤ cx, we have ⌊κ1(x)⌋ = ⌊κ2(x)⌋; (b) for all clocks x, y with κi(x) ≤ cx and κi(y) ≤ cy,
we have frac(κ1(x)) ≤ frac(κ1(y)) iff frac(κ2(x)) ≤ frac(κ2(y)); (c) for all clocks x with κ1(x) ≤ cx

and κ2(x) ≤ cx, we have frac(κ1(x)) = 0 iff frac(κ2(x)) = 0; and (d) for any clock x, κ1(x) > cx

iff κ2(x) > cx. Two states 〈κ1, l1〉 and 〈κ1, l1〉 are region equivalent iff l1 = l2 and κ1
∼= κ2. A

region R of a timed automaton game T is an equivalence class of states with respect to the region
equivalence relation. We find it useful to sometimes denote a region R by a tuple 〈l, h,P(C)〉
where (a) l is a location of T; (b) h is a function which specifies the integer values of clocks
h : C → (IN ∩ [0,M]) (M is the largest constant in T); and (c) P(C) is a disjoint partition of
the clocks {C−1, C0, . . . Cn | ⊎Ci = C,Ci 6= ∅ for i > 0}. A state s with clock valuation κ is then
in the region R when all the following conditions hold: (a) the location of s corresponds to the
location of R; (b) for all clocks x with κ(x) ≤ cx, ⌊κ(x)⌋ = h(x); (c) for κ(x) > cx, h(x) = cx;
(d) for all pair of clocks (x, y), with κ(x) ≤ cx and κ(y) ≤ cy, we have frac(κ(x)) < frac(κ(y)) iff
x ∈ Ci and y ∈ Cj with 0 ≤ i < j (so, x, y ∈ Ck with k ≥ 0 implies frac(κ(x)) = frac(κ(y))); (e) for
κ(x) ≤ cx, frac(κ(x)) = 0 iff x ∈ C0; and (f) x ∈ C−1 iff κ(x) > cx. There are finitely many clock
regions; more precisely, the number of clock regions is bounded by |L| ·

∏
x∈C(cx + 1) · |C|! · 2|C|.

For a state s ∈ S, we write Reg(s) ⊆ S for the clock region containing s. For a run r,
we let the region sequence Reg(r) = Reg(r[0]),Reg(r[1]), · · · . Two runs r, r′ are region equiva-
lent if their region sequences are the same. Given a distribution Dstates over states, we obtain a
corresponding distribution Dreg = Regd(Dstates) over regions as follows: for a region R we have
Dreg(R) = Dstates({s | s ∈ R}). An ω-regular objective Φ is a region objective if for all region-
equivalent runs r, r′, we have r ∈ Φ iff r′ ∈ Φ. A strategy π1 is a region strategy, if for all prefixes
r1 and r2 such that Reg(r1) = Reg(r2), we have Regd(π1(r1)) = Regd(π1(r2)). The definition for
player 2 strategies is analogous. Two region strategies π1 and π′

1 are region-equivalent if for all
prefixes r we have Regd(π1(r)) = Regd(π

′
1(r)). A parity index function Ω is a region parity index

function if Ω(s1) = Ω(s2) whenever s1
∼= s2. Henceforth, we shall restrict our attention to region

objectives.

Encoding Time-Divergence by Enlarging the Game Structure. Given a timed automa-
ton game T, consider the enlarged game structure T̂ with the state space Ŝ ⊆ S × IR[0,1) ×

{true, false}2, and an augmented transition relation δ̂ : Ŝ × (M1 ∪ M2) 7→ Ŝ. In an augmented
state 〈s, z, tick , bl1〉 ∈ Ŝ, the component s ∈ S is a state of the original game structure [[T]], z is
value of a fictitious clock z which gets reset to 0 every time it hits 1, or if a move of player 1 is
chosen, tick is true iff z hit 1 at last transition and bl1 is true if player 1 is to blame for the last
transition. Note that any strategy πi in [[T]], can be considered a strategy in T̂. The values of the
clock z, tick and bl1 correspond to the values each player keeps in memory in constructing his
strategy. Any run r in T has a corresponding unique run r̂ in T̂ with r̂[0] = 〈r[0], 0, false, false〉
such that r is a projection of r̂ onto T. For an objective Φ, we can now encode time-divergence as:
TimeDivBl(Φ) = (23 tick → Φ) ∧ (¬23 tick → 32¬ bl1). Let κ̂ be a valuation for the clocks in

C∪{z}. A state of T̂ can then be considered as 〈〈l, κ̂〉, tick , bl1〉. We extend the clock equivalence re-
lation to these expanded states: 〈〈l, κ̂〉 tick , bl1〉 ∼= 〈〈l′, κ̂′〉, tick ′, bl ′1〉 iff l = l′, tick = tick ′, bl1 = bl ′1
and κ̂ ∼= κ̂′. For every ω-regular region objective Φ of T, we have TimeDivBl(Φ) to be an ω-regular

region objective of T̂.

We now present a lemma that states for region ω-regular objectives region winning strategies ex-
ist, and all strategies region-equivalent to a region winning strategy are also winning. (see Appendix
for proof).

8

Lemma 1. Let T be a timed automaton game and T̂ be the corresponding enlarged game structure.
Let Φ̂ be an ω-regular region objective of T̂. Then the following assertions hold.

– There is a pure finite-memory region strategy π1 that is sure winning for Φ̂ from the states in

Sure
bT
1 (Φ̂).

– If π1 is a pure region strategy that is sure winning for Φ̂ from Sure
bT
1 (Φ̂) and π′

1 is a pure strategy

that is region-equivalent to π1, then π′
1 is a sure winning strategy for Φ̂ from Sure

bT
1 (Φ̂).

Note that there is an infinitely precise global clock z in the enlarged game structure T̂. If T

does not have such a global clock, then strategies in T̂ correspond to strategies in T where player 1
(and player 2) maintain the value of the infinitely precise global clock in memory (requiring infinite
memory).

3 Safety Objectives: Pure Finite-memory Receptive Strategies Suffice

In this section we show the existence of pure finite-memory sure winning strategies for safety
objectives in timed automaton games. Given a timed automaton game T, we define two functions
P>0 : C 7→ {true, false} and P≥1 : C 7→ {true, false}. For a clock x, the values of P>0(x) and
P≥1(x) indicate if the clock x was greater than 0 or greater than or equal to 1 respectively, during

the last transition (excluding the originating state). Consider the enlarged game structure T̃ with
the state space S̃ = S × {true, false} × {true, false}C × {true, false}C and an augmented

transition relation δ̃. A state of T̃ is a tuple 〈s, bl1, P>0, P≥1〉, where s is a state of T, the component
bl1 is true iff player 1 is to be blamed for the last transition, and P>0, P≥1 are as defined earlier.

The clock equivalence relation can be lifted to states of T̃ : 〈s, bl1, P>0, P≥1〉 ∼= eA
〈s′, bl ′1, P

′
>0, P

′
≥1〉

iff s ∼=T s′, bl1 = bl ′1, P>0 = P ′
>0 and P≥1 = P ′

≥1.

Lemma 2. Let T be a timed automaton game in which all clocks are bounded (i.e., for all clocks

x we have x ≤ cx, for a constant cx). Let T̃ be the enlarged game structure obtained from T. Then

player 1 has a receptive strategy from a state s iff 〈s, ·〉 ∈ Sure
eT
1 (Φ), where

Φ = 23(bl1 = true) →


(
∧

x∈C

23(x = 0)) ∧




(∨
x∈C 23((P>0(x) = true) ∧ (bl1 = true))

)

∨(∨
x∈C 23((P≥1(x) = true) ∧ (bl1 = false))

)




 .

Proof. We prove inclusion in both directions.

1. (⇐). For a state s̃ ∈ Sure
eT
1 (Φ), we show that player 1 has a receptive strategy from s̃. Let π1 be

a pure sure winning strategy: since Φ is an ω-regular region objective such a strategy exists by
Lemma 1. Consider a strategy π′

1 for player 1 that is region-equivalent to π1 such that whenever
from a state s̃′ the strategy π1 proposes a move 〈∆,a1〉 such that s̃′ + ∆ satisfies (x > 0),
then π′

1 proposes the move 〈∆′, a1〉 such that Reg(s̃′ + ∆) = Reg(s̃′ + ∆′) and s̃′ + ∆′ satisfies
(x > 0)∧ (∨y∈C y > 1/2). Such a move always exists; this is because, if there exists ∆ such that
s̃ + ∆ ∈ R ⊆ (x > 0), then there exists ∆′ such that s̃ + ∆′ ∈ R ∩ ((x > 0) ∧ (∨y∈C y > 1/2)).
Intuitively, player 1 jumps near the endpoint of R. By Lemma 1, π′

1 is also sure-winning for Φ.
The strategy π′

1 ensures that in all resulting runs, if player 1 is not blameless, then all clocks are
0 infinitely often (since for all clocks 23(x = 0)), and that some clock has value more than 1/2
infinitely often. This implies time divergence. Hence player 1 has a receptive winning strategy
from s̃.

9

2. (⇒). For a state s̃ /∈ Sure
eT
1 (Φ), we show that player 1 does not have any receptive strategy

starting from state s̃. Let ¬Φ =

(23(bl1 = true))∧


(
∨

x∈C

32(x > 0)) ∨



∧

x∈C

32




(bl1 = true → (P>0(x) = false))
∧

(bl1 = false → (P≥1(x) = false))






 .

The objective of player 2 is ¬Φ. Consider a state s̃′ of T̃. Suppose player 2 has some move from
s̃′ to a region R′′, against a move of player 1 to a region R′, then (by Lemma 14) it follows
that from all states in Reg(s̃′), for each move of player 1 to R′, player 2 has some move to R′′.
Since the objective ¬Φ is a region objective, only the region trace is relevant. Thus, for obtain-
ing spoiling strategies of player 2, we may construct a finite-state region graph game, where
the the states are the regions of the game, and edges specifies transitions across regions. Note
that for a concrete move m1 of player 1, if player 2 has a concrete move m2 = (∆2, a2) with
a desired successor region R, then for any move m′

2 = (∆′
2, a2) with ∆′

2 < ∆2, the destination
is R against the move m1. The objective ¬Φ can be expressed as a disjunction of conjunc-
tion of Büchi and coBüchi objectives, and hence is a Rabin-objective. Then there exists a pure
memoryless region-strategy for player 2 in the region-based game graph. In our original game,
for all player 1 strategies π1 there exists a player 2 strategy π2 such that from every region
the strategy π2 specifies a destination region, and Outcomes(s̃, π1, π2) ∩ ¬Φ 6= ∅. Consider a
player 1 strategy π1 and the counter strategy π2 satisfying the above conditions. Consider a run
r ∈ Outcomes(s̃, π1, π2)∩¬Φ. If for some clock, we have 32(x > 0), then time converges (as all
clocks are bounded in T), and thus π1 is not a receptive strategy. Suppose we have ∧x∈C 23(x =
0), then

∧
x∈C 32 ((bl1 = true → (P>0(x) = false)) ∧ (bl1 = false → (P≥1(x) = false)))

holds. This means that after some point in the run, player 1 is only allowed to take moves
which result in all the clock values being 0 throughout the move, this implies she can only take
moves of time 0. Also, if player 2’s move is chosen, then all the clock values are less than 1. Recall
that in each step of the game, player 2 has a specific region he wants to go to. Consider a region
equivalent strategy π′

2 to the original player 2 spoiling strategy in which player 2 takes smaller
and smaller times to get into a region R. If the new state is to have ∧x∈C (P≥1(x) = false),
then player 2 gets there by choosing a time move smaller than 1/2j in the j-th step. Since the
destination regions are the same, and since smaller moves are always better, π′

2 is also a spoiling
strategy for player 2 against π1. Moreover, time converges in the run where player 2 plays with

π′
2. Thus, if a state s̃ /∈ Sure

eT
1 (Φ), then player 1 does not have a receptive strategy from s̃.

⊓⊔

Lemma 2 is generalized to all timed automaton games in the following lemma. Theorem 2 follows
from Lemma 3 (see Appendix for the proof of the following lemma and the theorem).

Lemma 3. Let T be a timed automaton game, and T̃ be the corresponding enlarged game. Then

player 1 has a receptive strategy from a state s iff 〈s, ·〉 ∈ Sure
eT
1 (Φ∗), where Φ∗ = 23(bl1 = true) →∨

X⊆C φX , and φX =

(
∧

x∈X

32(x > cx)

)
∧


(

∧

x∈C\X

23(x = 0)) ∧




(∨
x∈C\X 23((P>0(x) = true) ∧ (bl1 = true))

)

∨(∨
x∈C\X 23((P≥1(x) = true) ∧ (bl1 = false))

)





 .

10

Theorem 2. Let T be a timed automaton game and T̃ be the corresponding enlarged game. Let Y
be a union of regions of T. Then the following assertions hold.

1. Sure
eT
1 (2Y) = Sure

eT
1 ((2Y) ∧ Φ∗), where Φ∗ is as defined in Lemma 3.

2. Player 1 has a pure, finite-memory, receptive, region strategy that is sure winning for the safety

objective Safe(Y) at every state in Sure
eT
1 (2Y).

4 Reachability Objectives: Randomized Finite-memory Receptive Strategies

Suffice

We have seen in Example 2 that pure sure winning strategies require infinite memory in general for
reachability objectives. In this section, we shall show that uniform randomized almost-sure winning
strategies with finite memory exist. This shows that we can trade-off infinite memory with uniform
randomness.

Let SR be the destination set of states that player 1 wants to reach. We only consider SR such
that SR is a union of regions of T. For the timed automaton T, consider the enlarged game structure
of T. We let ŜR = SR×IR[0,1]×{true, false}2. From the reachability objective (denoted Reach(SR))
we obtain the reachability parity objective with index function ΩR as follows: ΩR(〈s, z, tick , bl1〉) =
1 if tick ∨ bl1 = true and s 6∈ SR (0 otherwise). We assume the states in SR are absorbing. We let

ŜR = SR × IR[0,1] × {true, false}2.

Lemma 4. For a timed automaton game T, with the reachability objective SR, consider the en-
larged game structure T̂, and the corresponding reachability parity function ΩR. Then we have that
Sure1(TimeDivBl(Reach(SR))) = Sure1(Parity(ΩR)).

We first present a µ-calculus characterization for the sure winning set (using only pure strategies)
for player 1 for reachability objectives. The controllable predecessor operator for player 1, CPre1 :

2
bS 7→ 2

bS , defined formally by s̃ ∈ CPre1(Z) iff ∃m1 ∈ Γ̂1(ŝ) ∀m2 ∈ Γ̂2(ŝ) . δ̂jd(ŝ,m1,m2) ⊆ Z.
Informally, CPre1(Z) consists of the set of states from which player 1 can ensure that the next state
will be in Z, no matter what player 2 does. From Lemma 4 it follows that the sure winning set
can be described as the µ-calculus formula: µY νX

[
(Ω−1(1) ∩ CPre1(Y)) ∪ (Ω−1(0) ∩ CPre1(X))

]
.

The winning set can then be computed as a fixpoint iteration on regions of T̂. We can also obtain
a pure winning strategy πpure of player 1 as in [10]. Note that this strategy πpure corresponds to an
infinite-memory strategy of player 1 in the timed automaton game T, as she needs to maintain the
value of the clock z in memory.

To compute randomized finite-memory almost-sure winning strategies, we will use the struc-
ture of the µ-calculus formula. Let Y ∗ = µY νX

[
(Ω−1(1) ∩ CPre1(Y)) ∪ (Ω−1(0) ∩ CPre1(X))

]
.

The iterative fixpoint procedure computes Y0 = ∅ ⊆ Y1 ⊆ · · · ⊆ Yn = Y ∗, where Yi+1 =
νX

[
(Ω−1(1) ∩ CPre1(Yi)) ∪ (Ω−1(0) ∩ CPre1(X))

]
. We can consider the states in Yi \Yi−1 as being

added in two steps, T2i−1 and T2i(= Yi) as follows:

1. T2i−1 = Ω−1(1) ∩ CPre1(Yi−1). T2i−1 is clearly a subset of Yi.
2. T2i = νX

[
T2i−1 ∪ (Ω−1(0) ∩ CPre1(X))

]
. Note that (T2i \ T2i−1) ∩ Ω−1(1) = ∅.

Thus, in the odd stages, we add states with index 1, and in even stages, we add states with index
0. The rank of a state ŝ ∈ Y ∗ is j if ŝ ∈ Tj \ ∪j−1

k=0Tk. For a state of even rank j, we have that
player 1 can ensure that she has a move such that against all moves of player 2, the next state

11

either (a) has index 0 and belongs to the same rank or less, or (b) the next state has index 1 and
belongs to rank smaller than j. For a state of odd rank j, we have that player 1 can ensure that
she has a move such that against all moves of player 2, the next state belongs to a lower rank (and
has index either 1 or 0).

We now consider the rank sets for the reachability fixpoint in more detail. We have that SR is
a union of regions of T. T0 = T1 = ∅, and T2 consists of all the states in ŜR together with the states
where tick = bl1 = false, and from where player 1 can ensure that the next state is either in ŜR,
or the next state continues to have tick = bl1 = false; formally T2 = νX(Ω−1(0) ∩ CPre1(X)).
Henceforth, when we refer to a region R of T, we shall mean the states R× IR[0,1] ×{true, false}2

of T̂.

Lemma 5. Let T2 = νX(Ω−1(0) ∩ CPre1(X)). Then player 1 has a (randomized) memoryless
strategy πrand such that she can ensure reaching ŜR ⊆ Ω−1(0) with probability 1 against all receptive
strategies of player 2 and all strategies of the scheduler from all states ŝ of a region R such that
R ∩ T2 6= ∅. Moreover, πrand is independent of the values of the global clock, tick and bl1.

We break the proof of Lemma 5 into several parts. For a set T of states, we shall denote by
Reg(T) the set of states that are region equivalent in T to some state in T . We let πpure be the pure

infinite-memory winning strategy of player 1 to reach ŜR. First we prove the following result.

Lemma 6. Let T2 = νX(Ω−1(0) ∩ CPre1(X)). Then, for every state in Reg(T2), player 1 has a
move to ŜR.

Proof. Suppose T2 6= ŜR (the other case is trivial). Then player 1 must have a move from every

state in T2 \ ŜR to ŜR in T̂, for otherwise, for any state in T2 \ ŜR, player 2 (with cooperation from
the scheduler) can allow player 1 to pick any move, which will result in an index of 1 in the next
state, contradicting the fact that player 1 had a strategy to stay in T2 forever (note all the states
in T2 have index 0). Moreover, since ŜR is a union of regions of T, we have that the states in T2

from which player 1 has a move to ŜR, consist of a union of sets of the form T2 ∩ R for R a region
of T. This implies that player 1 has a move to ŜR from all states in Reg(T2) (Lemma 13). ⊓⊔

If at any time player 1’s move is chosen, then player 1 comes to ŜR, and from there plays a
receptive strategy. We show that player 1 has a randomized memoryless strategy such that the
probability of player 1’s move being never chosen against a receptive strategy of player 2 is 0. This
strategy will be pure on target left-closed regions, and a uniformly distributed strategy on target
left-open regions. We now describe the randomized strategy.

Consider a state ŝ in some region R′ ⊆ Reg(T2 \ ŜR) of T. Now consider the set of times at
which moves can be taken so that the state changes from ŝ to ŜR. This set consists of a finite union
of sets Ik of the form (αl, αr), [αl, αr), (αl, αr], or [αl, αr] where αl, αr are of the form d or d−x for
d some integer constant, and x some clock in C (this clock x is the same for all the states in R′).
Furthermore, these intervals have the property that {ŝ + ∆ | ∆ ∈ Ik} ⊆ Rk for some region Rk,
with Rl ∩Rj = ∅ for j 6= l. From a state ŝ, consider the “earliest” interval contained in this union:
the interval I such that the left endpoint is the infimum of the times at which player 1 can move
to ŜR. We have that {ŝ + ∆ | ∆ ∈ I} ⊆ R1. Consider any state ŝ′ ∈ R′. Then from ŝ′, the earliest
interval in the times required to get to ŜR is also of the form I. Note that in allowing time to pass
to get to R1, we may possibly go outside T2 (recall that T2 is not a union of regions of T).

12

If this earliest interval I is left closed, then player 1 has a “shortest” move to ŜR. Then this
is the best move for player 1, and she will always propose this move. We call these regions target
left-closed. If the target interval is left open, we call the region target left-open. Let the left and
the right endpoints of target intervals be αl, αr respectively. Then let player 1 play a probabilistic
strategy with time distributed uniformly at random over (αl, (αl + αr)/2] on these target left-open
regions. Let us denote this player-1 strategy by πrand.

Lemma 7. Let T2 = νX(Ω−1(0) ∩ CPre1(X)). Then, for every state in Reg(T2) the strategy πrand

as described above ensures that player 1 stays inside Reg(T2) surely.

Proof. Consider a state ŝ in T2 \ ŜR. Since {ŝ + t | t ∈ I} is a subset of a single region of T, no
new discrete actions become enabled due to the randomized strategy of player 1. If player 2 can
foil player 1 by taking a move to a region R′′ for the player 1 randomized strategy, she can do so
against any pure (infinite-memory) strategy of player 1. No matter what player 2 proposes at each
step, player 1’s strategy is such that the next state (against any player 2’s moves) lies in a region
R′′ (of T) such that R′′ ∩ T2 6= ∅. Because of this, player 1 can always play the above mentioned
strategy at each step of the game, and ensure that she stays inside Reg(T2) (until the destination
ŜR is reached). ⊓⊔

Lemma 8. Consider the the player 1 strategy πrand and any receptive strategy π2 of player 2. Let
r ∈ Outcomes(s, πrand, π2) be a run with s ∈ Reg(T2). If there exists m ≥ 0 such that πrand(r[0..j])
is left-closed for all j ≥ m, then we have that r visits ŜR.

Proof. Consider a run r for the player 1 strategy πrand against any strategy π2 of player 2. Note that
we must have Reg(r[k]) ⊆ Reg(T2) for every k by Lemma 7. Let r[m] = ŝ′ = 〈s′, z, tick , bl1〉 ∈ R′.
Consider the pure winning strategy πpure from a state ŝ′′ = 〈s′, z′, tick ′, bl ′1〉 ∈ R′ ∩ T2 (such a state
must exist). The state ŝ′′ differs from ŝ′ only in the values of the clock z, and the boolean variables
tick and bl1. The new values do not affect the moves available to either player. Consider ŝ′′ as the
starting state. The strategy πpure cannot propose shorter moves to ŜR, since πrand proposes the

earliest move to ŜR. Hence, if a receptive player 2 strategy π2 can prevent πrand from reaching ŜR

from ŝ′, then it can also prevent πpure from reaching ŜR from ŝ′′, a contradiction. ⊓⊔

Lemma 9. Consider the the player 1 strategy πrand and any receptive strategy π2 of player 2. Let
r ∈ Outcomes(s, πrand, π2) be a run with s ∈ Reg(T2). There exists m ≥ 0 such that for all j ≥ m,
if πrand(r[0..j]) is left-open, then the left endpoint is αl = 0.

Proof. Let αl correspond to the left endpoints for one of the infinitely occurring target left-open
regions R.

1. We show that we cannot have αl to be of the form d for some integer d > 0.
We prove by contradiction. Suppose αl is of the form d > 0. Then player 2 could always
propose a time blocking move of duration d, this would mean that if the scheduler picks the
move of player 2 (as both have the same delay), the next state would have tick = true, no
matter what the starting value of the clock z in R, contradicting the fact that R ∩ T2 6= ∅
(T2 = νX(Ω−1(0) ∩ CPre1(X))). We have a contradiction, as player 1 had a pure winning
strategy πpure from every state in T2. Take any ŝ ∈ R∩T2. Then πpure must have proposed some

move to ŜR, such that all the intermediate states (before the move time) had tick = false. The
strategy πrand picks the earliest left most endpoint to get to ŜR. This means that πpure must also

13

propose a time which is greater than or equal to the move proposed by πrand. Hence αl cannot
be d for d > 0 (otherwise the player 2 counter strategy to πpure can take the game out of T2 by
making tick = true).

2. We show that we cannot have αl to be of the form d − x for some integer d > 0.
We prove by contradiction. Suppose αl = d−x for some some clock x for the target constraint.
Let player 2 counter with any strategy.
Suppose clock x is not reset infinitely often in the run r. Then the fact that the clock x has
not progressed beyond d at any time in the run without being reset implies time is convergent,
contradicting the fact that player 2 is playing with a receptive strategy (note that only player 2’s
moves are being chosen). Thus, this situation cannot arise.
Suppose x is reset infinitely often. Then between a reset of x, and the time at which player 1 can
jump to ŜR, we must have a time distance of more than d. Suppose R′ is one of the infinitely
occurring regions in the run with the value of x being 0 in it. So player 2 has a strategy against
our player 1 strategy such that one of the resulting runs contains a region subsequence R′

 R.
If this is so, then she would have a strategy which could do the same from every state in R′∩T2

against the pure winning strategy of player 1 (since the randomized strategy πrand does not
enable player 2 to go to more regions than against πpure, as πrand proposes moves to the earliest

region in ŜR). But, if so, we have that tick will be true no matter what the starting value of
z in R′ ∩ T2, before player 1 can take a jump to ŜR from R ∩ T2, taking the game outside of
T2. Since player 1 can stay inside T2 at each step with the infinite memory strategy πpure, this
cannot be so, that is, we cannot observe the region subsequence R′

 R for the randomized
strategy of player 1. Thus the case of αl = d − x cannot arise infinitely often.

The only remaining option is αl = 0, and we must have that the only randomized moves player 1
proposes after a while are of the form (0, αr/2]. ⊓⊔

Lemma 10. Consider runs r with r[0] ∈ Reg(T2) for the player 1 strategy πrand against any recep-
tive strategy π2 of player 2 and a scheduler strategy πsched. Let E be the set of runs such that for
all m ≥ 0 there exists j ≥ m such that πrand(r[0..j]) is left-open, with the the left endpoint being
αl = 0. Then, we have Prπrand,π2,πsched

r[0]
(Reach(SR) |E) = 1.

Proof. Let one of the infinitely often occurring player 1 left-open moves be to the region R. Player 1
proposes a uniformly distributed move over (0, αr/2] to R. Let βi be the duration of player 2’s
move for the ith visit to R Suppose αr = d. Then the probability of player 1’s move being never
chosen is less than

∏∞
i=1(1 − 2βi

d
), which is 0 if

∑∞
i=1 βi = ∞ by Lemma 15. A similar analysis

holds if player 2 proposes randomized moves with a time distribution D(βi,·],D[βi,·],D(βi,·) or D[βi,·).
Suppose αr = d − x. Again, the probability of player 1’s move being never chosen is less than∏∞

i=1(1 − 2βi

(d−κi(x))), and since βi

(d−κi(x)) > βi

d
, this also is 0 if

∑∞
i=1 βi = ∞ by Lemma 15 . Finally,

we note that if player 2 does not block time from T2, then for at least one region, she must propose
a βi sequence such that

∑∞
i=1 βi = ∞, and we will have that for this region, player 1’s move will

be chosen eventually with probability 1. ⊓⊔

Proof (Lemma 5). Lemmas 6, 7, 8, 9 and 10 together imply that using the randomized memoryless
strategy πrand, player 1 can ensure going from any region R of T such that R ∩ T2 6= ∅ to ŜR with
probability 1, without maintaining the infinitely precise value of the global clock. ⊓⊔

The following lemma states that if for some state s ∈ T, we have (s, z, tick , bl1) ∈ T2i+1, for
some i, then for some z

′, tick ′, bl ′1 we have (s, z′, tick ′, bl ′1) ∈ T2i. Then in Lemma 12 we present the
inductive case of Lemma 5. The proof of Lemma 12 is similar to the base case i.e., Lemma 5.

14

Lemma 11. Let R be a region of T such that R ∩ T2i+1 6= ∅. Then R ∩ T2i 6= ∅.

Lemma 12. Let R be a region of T such that R ∩ T2i 6= ∅, and R ∩ Tj = ∅ for all 2 ≤ j < 2i.
Then player 1 has a (randomized) memoryless strategy πrand to go from R to some R′ such that
R′ ∩ Tj 6= ∅ for some j < 2i with probability 1 against all receptive strategies of player 2 and all
strategies of the scheduler. Moreover, πrand is independent of the values of the global clock, tick and
bl1.

Once player 1 reaches the target set, she can switch over to the finite-memory receptive strategy
of Lemma 3. Thus, using Lemmas 3, 5, 11, and 12 we have the following theorem.

Theorem 3. Let T be a timed automaton game, and let SR be a union of regions of T.
Player 1 has a randomized, finite-memory, receptive, region strategy π1 such that for all states
s ∈ Sure1(Reach(SR)), and for all scheduler strategies πsched, the following assertions hold: (a) for
all receptive strategies π2 of player 2 we have Prπ1,π2,πsched

s (Reach(SR)) = 1; and (b) for all strategies
π2 of player 2 we have Prπ1,π2,πsched

s (TimeDivBl1(Reach(SR))) = 1.

5 Parity Objectives: Randomized Finite-memory Receptive Strategies Suffice

In this section we show that randomized finite-memory almost-sure strategies exist for par-
ity objectives. Let Ω : S 7→ {0, . . . , k} be the parity index function. We consider the case
when k = 2d for some d, and the case when k = 2d − 1, for some d can be proved us-
ing similar arguments. If k = 2d − 1, then we will will look at the dual odd parity objective:
Parityodd(Ω

′) = {r | max(InfOften(r)) is odd }, with Ω′ = Ω +1 : S 7→ {1, . . . , 2d}. If we get an odd
parity objective with Ω′ : S 7→ {1, . . . , 2d−1}, then we can map it back to an even parity objective
with Ω = Ω′ − 1.

Given a timed game structure T, a set X (S, and a parity function Ω : S 7→ {0, . . . , 2d},
with d > 0, let 〈T′, Ω′〉 = ModifyEven(T, Ω,X) be defined as follows: (a) the state space S′ of T′

is {s⊥} ∪ S \ X, where s⊥ /∈ S; (b) Ω′(s⊥) = 2d − 2, and Ω′ = Ω otherwise; (c) Γ ′
i (s) = Γi(s)

for s ∈ S \ X, and Γ ′
i (s

⊥) = Γi(s
⊥) = IR≥0 × ⊥; and (d) δ′(s,m) = δ(s,m) if δ(s,m) ∈ S \ X,

and δ′(s,m) = s⊥ otherwise. We will use the function ModifyEven to play timed games on a subset
of the original structure. The extra state, and the modified transition function are to ensure well-
formedness of the reduced structure. We will now obtain receptive strategies for player 1 for the
objective Parity(Ω) using winning strategies for reachability and safety objectives. We consider the
following procedure.

1. i := 0, and Ti = T.

2. Compute Xi = Sure
Ti

1 (3(Ω−1(2d))).

3. Let 〈T′
i, Ω

′〉 = ModifyEven(Ti, Ω,Xi); and let Yi = Sure
T′

i

1 (Parity(Ω′)). Let Li = Si \Yi, where Si

is the set of states of Ti.

4. Compute Zi = Sure
Ti

1 (2(Si \ Li)).
5. Let (Ti+1, Ω) = ModifyEven(T, Ω, S \ Zi) and i := i + 1.

6. Go to step 2, unless Zi−1 = Si.

Consider the sets S \ Zi that are removed in each iteration. For every Li, the probability of
player 1 winning in T is 0. This is because, from Li, player 1 cannot visit the index 2d with positive
probability, thus we can restrict our attention to T′, and in this structure, Li is not winning for

15

player 1 almost surely. This in turn implies that S\SureTi

1 (2(S\Li)) is a losing set for player 1 almost
surely in the structure T. Thus, at the end of the iterations, we have SureT

1 (Parity(Ω)) ⊆ Zi. Hence,
we have (S \ Zi) ∩ SureT

1 (Parity(Ω)) = ∅. We now exhibit randomized, finite-memory, receptive,
region almost-sure winning strategies to show that the set Zi is almost-sure winning.

The set Zi on termination has two subsets: (a) Xi = SureTi

1 (3(Ω−1(2d))); and (b) Yi = Si \
Xi such that player 1 wins in the structure T′

i for the parity objective Parity(Ω). Let πY be a
randomized, finite-memory, receptive, region almost-sure winning strategy for player 1 in T′

i; since
the range of Ω T′

i is {0, 1, . . . , 2d− 1}, by inductive hypothesis such a strategy exists. Consider any
receptive strategy of player 2. If the game is in Yi, then player 1 use the strategy πY , using the the
run suffix rY , where rY is the largest suffix of the run such that all the states of rY belong to Yi .
Moreover, player 1 is never to blame if time converges (since πY is a receptive strategy). Suppose
the game hits Xi. Then, player 1 uses a randomized, finite-memory, receptive, region almost-sure
winning strategy πX to visit the index 2d, and as soon as 2d is visited, she switches over to a pure,
finite-memory, receptive, region safety strategy for the objective 2(Zi) to allow a fixed amount
of time ∆ > 0 to pass. This can be done similar to the receptive strategies of Theorem 2 with
an imprecise clock (in the imprecise clock the time elapse between any two ticks is at least ∆).
Once time more than ∆ has passed, player 1 switches over to πX or πY , depending on whether the
current state is in Xi or Yi, respectively, and repeats the process. This is a receptive strategy which
ensures that the maximal priority that is visited infinitely often is even almost-surely. The strategy
also requires only a finite amount of memory.

Theorem 4. Let T be a timed automaton game, and let Ω be a region parity index function.
Suppose that player 1 has access to imprecise clock events such that between any two events,
some time more than ∆ passes for a fixed real ∆ > 0. Then, player 1 has a randomized, finite-
memory, receptive, region strategy π1 such that for all states s ∈ Sure1(Parity(Ω)), and for all
scheduler strategies πsched, the following assertions hold: (a) for all receptive strategies π2 of
player 2 we have Prπ1,π2,πsched

s (Parity(Ω)) = 1; and (b) for all strategies π2 of player 2 we have
Prπ1,π2,πsched

s (TimeDivBl1(Parity(Ω))) = 1.

Winning sets with Randomization. In pure timed games, player 1 wins for the objective Φ
iff she has a strategy π1 that works against all possible strategies of player-2 for the objective
TimeDivBl(Φ) in the non-receptive game. Suppose player-1 wins from state s in a pure timed game.
This means that player-1 has a strategy π1 that wins against all possible pure strategies of player-2.
A randomized strategy may be viewed as a random choice over pure strategies. Thus, π1 will also
win surely against all possible randomized strategies of player-2. Hence, if player-1 can win from
state s in the pure case, she can win from s surely in the randomized game.

We now present an informal argument to show that if player-1 cannot win from s in the pure
game, then she cannot do so either with randomized strategies. Let T be a timed automaton
game with an ω-regular region objective Φ. Suppose ŝ is a not a sure winning state for player 1,
i.e., ŝ ∈ S \ SureT

1 (Φ). We show that for all randomized strategies π1, for all ε > 0, there ex-
ists a pure region strategy π2 for player 2 and a strategy πsched for the scheduler such that
Prπ1,π2,πsched

bs
(TimeDivBl1(Φ)) ≤ ε. Using Lemma 14, it is possible to construct a region-based turn-

based game graph T̂ , where player 1 first selects a destination region, then player 2 picks a counter-
move to specify another destination region. Since Φ is an ω-regular region strategy, in the game
graph T̂ , if player 1 cannot win surely, then there is a pure region spoiling strategy π∗

2 for player 2

that works against all player 1 strategies in T̂ (for some strategy of the scheduler). Fix some ε > 0,

16

and a sequence (εi)i≥0 such that εi > 0, for all i ≥ 0, and
∑

i≥0 εi ≤ ε. Consider a randomized

strategy π1 of player 1 in T̂. We will construct a counter strategy π2 for player 2 to π1. If player 1
proposes a pure move, then the counter move of player 2 can be derived from the strategy π∗

2 in T̂ .
Suppose player 1 proposes a randomized move of the form 〈D(α,β), aj

1〉 (the case where the move is

of the form 〈D[α,β), aj
1〉, 〈D

[α,β], aj
1〉, 〈D

(α,β], aj
1〉 is similar) at a state ŝj in the j-th step. The inter-

val (α, β) can be decomposed into 2k +1 intervals (β0, β1), {β1}, (β1, β2), {β2}, . . . , {βk}, (βk , βk+1),
with β0 = α and βk+1 = β, such that for all 0 ≤ i ≤ k, the set Hi = {ŝj + ∆ | βi < ∆ < βi+1} is a

subset of a region R̂i, and R̂i 6= R̂j , for i 6= j, and similar result hold for the singletons. Consider the

counter strategy π∗
2 of player 2 in the region game graph for the player 1 moves to R̂1, . . . , R̂2k+1.

The counter strategy π2 at the j-th step is as follows.

– Suppose the strategy π∗
2 allows player 1 moves to all R̂1, . . . , R̂2k+1. Then the strategy π2 picks

a move in a region R̂′ such that R̂′ is a counter move of player 2 against R̂2k+1 in π∗
2 .

– Suppose the strategy π∗
2 allows player 1 moves to R̂1, . . . R̂m, and not to R̂m+1. Let the counter

strategy π∗
2 pick some region R̂′ (together with some action a2) against the player 1 move to

R̂m+1. The strategy π2 is specified considering the following cases.
1. Suppose R̂′ is a closed region, then from ŝj there is an unique time move ∆j such that

ŝj + ∆j ∈ R̂′, and the strategy π2 of player 2 picks 〈∆j, a2〉 such that ŝ + ∆j ∈ R̂′.

2. Suppose R̂′ is an open region. If R̂′ lies “before” R̂1, then π2 picks any move to R̂′. Otherwise,
let R̂′ = R̂2l+1 for some l with 2l + 1 ≤ m + 1. Then, player 2 has some move 〈∆j , a2〉, such

that 〈∆j , a2〉 will “beat” player 1 moves to R̂m+1, · · · , R̂2k+1 with probability greater than

1 − εj and ŝj + ∆j ∈ R̂′, and π2 picks the move (∆j, a2).

The player 2 strategy π2 ensures that some desired region sequence (complementary to player 1’s
objective) is followed with probability at least 1 − ε for some strategy of the scheduler. This gives
us the following result.

Theorem 5. Consider a timed automaton game T with an ω-regular objective Φ. For all s ∈ S \
SureT

1 (Φ), for every ε > 0, for every randomized strategy π1 ∈ Π1 of player 1, there is a player 2 pure
strategy π2 ∈ Πpure

2 and a scheduler strategy πsched ∈ Πsched such that Prπ1,π2,πsched
s (TimeDivBl1(Φ)) ≤

ε.

It follows from Theorem 5 that for timed automaton games the set of sure and almost-sure
winning states coincide for ω-regular objectives. It also shows that though randomization can get
rid of infinite memory with respect to almost-sure winning, randomization does not help to win in
more states.

References

1. B. Adler, L. de Alfaro, and M. Faella. Average reward timed games. In FORMATS 05, LNCS 3829, pages 65–80.
Springer, 2005.

2. R. Alur and D.L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235, 1994.
3. R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In CONCUR 97, LNCS 1243, pages

74–88. Springer, 1997.
4. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata. In HSCC 99, LNCS

1569, pages 19–30. Springer, 1999.
5. P. Bouyer, F. Cassez, E. Fleury, and K.G. Larsen. Optimal strategies in priced timed game automata. In FSTTCS

04, LNCS 3328, pages 148–160. Springer, 2004.

17

6. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial observability. In CAV 03,
LNCS 2725, pages 180–192. Springer, 2003.

7. F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. Efficient on-the-fly algorithms for the analysis of
timed games. In CONCUR 05, LNCS 3653, pages 66–80. Springer, 2005.

8. L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. The element of surprise in timed
games. In CONCUR 03, LNCS 2761, pages 144–158. Springer, 2003.

9. L. de Alfaro, T.A. Henzinger, and R. Majumdar. From verification to control: Dynamic programs for omega-
regular objectives. In LICS 01, pages 279–290. IEEE Computer Society Press, 2001.

10. L. de Alfaro, T.A. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-state games. In CONCUR 01,
LNCS 2154, pages 536–550. Springer, 2001.

11. D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications. In STACS 02, LNCS 2285,
pages 571–582. Springer, 2002.

12. M. Faella, S. La Torre, and A. Murano. Automata-theoretic decision of timed games. In VMCAI 02, LNCS 2294,
pages 94–108. Springer, 2002.

13. M. Faella, S. La Torre, and A. Murano. Dense real-time games. In LICS 02, pages 167–176. IEEE Computer
Society, 2002.

14. T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid automata. Theoretical Computer

Science, 221:369–392, 1999.
15. T.A. Henzinger and V.S. Prabhu. Timed alternating-time temporal logic. In FORMATS 06, LNCS 4202, pages

1–17. Springer, 2006.
16. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems (an extended

abstract). In STACS 95, pages 229–242, 1995.
17. A. Pnueli, E. Asarin, O. Maler, and J. Sifakis. Controller synthesis for timed automata. In Proc. System Structure

and Control. Elsevier, 1998.
18. C.C. Pugh. Real Analysis. Springer, 2002.
19. R. Segala, R. Gawlick, J.F. Søgaard-Andersen, and N.A. Lynch. Liveness in timed and untimed systems. Inf.

Comput., 141(2):119–171, 1998.
20. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages, volume 3, Beyond Words,

chapter 7, pages 389–455. Springer, 1997.
21. H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems. In Proc. of 30th Conf.

Decision and Control, pages 1527–1528, 1991.

6 Appendix

We first present the proof ideas for Lemma 1. We start with the statement of a classical result of [2]
that the region equivalence relation induces a time abstract bisimulation on the regions.

Lemma 13 ([2]). Let Y, Y ′ be regions in the timed game structure T. Suppose player i has a move
from s1 ∈ Y to s′1 ∈ Y ′, for i ∈ {1, 2}. Then, for any s2 ∈ Y , player i has a move from s2 to some
s′2 ∈ Y ′.

Let Y, Y ′
1 , Y

′
2 be regions. We prove in Lemma 14 that one of the following two conditions hold:

(a) for all states in Y there is a move for player 1 with destination in Y ′
1 , such that for all player 2

moves with destination in Y ′
2 , the next state is in Y ′

1 ; or (b) for all states in Y for all moves for
player 1 with destination in Y ′

1 there is a move of player 2 to ensure that the next state is in Y ′
2 .

Lemma 14. Let Y, Y ′
1 , Y

′
2 be regions in the timed game structure T. Suppose player i has a pure-

time move from s1 ∈ Y to s′1 ∈ Y ′
i , for i ∈ {1, 2}. Then, one of the following cases must hold:

1. From all states s ∈ Y , for every player-1 pure-time move ms
1 with δ(s,ms

1) ∈ Y ′
1, for all pure-

time moves ms
2 of player 2 with δ(s,ms

2) ∈ Y ′
2, we have blame1(s,m

s
1,m

s
2, δ(s,m

s
1)) = true and

blame2(s,m
s
1,m

s
2, δ(s,m

s
2)) = false.

18

2. From all states s ∈ Y , for every player-1 pure-time move ms
1 with δ(s,ms

1) ∈ Y ′
1, for all pure-

time moves ms
2 of player 2 with δ(s,ms

2) ∈ Y ′
2, we have blame2(s,m

s
1,m

s
2, δ(s,m

s
2)) = true.

Proof. We first present the proof for the case when Y ′
1 6= Y ′

2 . The proof follows from the fact that
each region has a unique first time-successor region. A region R′ is a first time-successor of R 6= R′

if for all states s ∈ R, there exists ∆ > 0 such that s + ∆ ∈ R′ and for all ∆′ < ∆, we have
s + ∆′ ∈ R ∪ R′. The time-successor of 〈l, h,P(C)〉 is 〈l, h′,P ′(C)〉 when

– h = h′, P(C) = 〈C−1, C0 6= ∅, C1, . . . , Cn〉, and P ′(C) = 〈C−1, C
′
0 = ∅, C ′

1, . . . , C
′
n+1〉 where

C ′
i = Ci−1, and h(x) < cx for every x ∈ C0.

– h = h′, P(C) = 〈C−1, C0 6= ∅, C1, . . . , Cn〉, and P ′(C) = 〈C ′
−1 = C−1 ∪ C0, C

′
0 = ∅, C1, . . . , Cn〉,

and h(x) ≥ cx for every x ∈ C0.
– h = h′, P(C) = 〈C−1, C0 6= ∅, C1, . . . , Cn〉, and P ′(C) = 〈C ′

−1, C
′
0 = ∅, C ′

1, . . . , C
′
n+1〉 where

C ′
i = Ci−1 for i ≥ 2, h(x) < cx for every x ∈ C ′

1 ⊆ C0, and h(x) ≥ cx for every x ∈ C0 \C ′
1, and

C ′
−1 = C−1 ∪ C0 \ C ′

1.
– P(C) = 〈C−1, C0 = ∅, C1, . . . , Cn〉, P

′(C) = 〈C−1, C
′
0 = Cn, C1, . . . , Cn−1〉, and h′(x) = h(x) +

1 ≤ cx for every x ∈ Cn, and h′(x) = h(x) otherwise.
– P(C) = 〈C−1, C0 = ∅, C1, . . . , Cn〉, P

′(C) = 〈C ′
−1 = C−1 ∪ Cn, C0, C1, . . . , Cn−1〉, and h′(x) =

h(x) = cx for every x ∈ Cn, and h′(x) = h(x) otherwise.
– P(C) = 〈C−1, C0 = ∅, C1, . . . , Cn〉, P ′(C) = 〈C ′

−1 = C−1 ∪ Cn \ C ′
0, C

′
0, C1, . . . , Cn−1〉, and

h′(x) = h(x) + 1 ≤ cx for every x ∈ C ′
1 ⊆ Cn, h′(x) = h(x) = cx for every x ∈ Cn \ C ′

1, and
h′(x) = h(x) otherwise.

In case Y ′
1 = Y ′

2 , then player 2 can pick the same time to elapse as player 1, and ensure that
the conditions of the lemma hold. ⊓⊔

Lemma 14 indicates that if a state s belongs CPre1 of a union of regions, then player 1 has a
destination region R such that for any s′ ∈ Reg(s), any move m′

1 to R will take player 1 to the
prescribed union of regions.

The proof of the first part of Lemma 1 then follows from the µ-calculus algorithm of [9] which
uses the CPre1 operator.

We now prove the second part of Lemma 1. Let π1 be a pure region sure win-

ning strategy for player 1 form Sure
bT
1 (TimeDivBl1(Φ)), and let π′

1 be surely region equiv-
alent to π1. Consider any strategy π2 of player 2. We have Outcomes(s, π′

1, π2) = {r |

∀ k ≥ 0∃mk
1 ∈ Support(π′

1(r[0..k])) and r[k + 1] = δ̂jd(r[k],mk
1 , π2(r[0..k]))}. We then have

Outcomes(s, π′
1, π2) = {r | ∃π′′

1 ∈ Πpure
1 ∀k ≥ 0π′′

1 (r[0..k]) ∈ Support(π′
1(r[0..k])) and r[k + 1] =

δ̂jd(r[k], π′′
1 (r[0..k]), π2(r[0..k])) and π′′

1 behaves like π1 on other runs.}. Now in the above set, each
π′′

1 is region equivalent to π1, and hence is a winning strategy for player 1. Thus, in partic-

ular, Outcomes(s, π′′
1 , π2) ⊆ Sure

bT
1 (TimeDivBl1(Φ)). taking the union over all π′′

1 , we have that

Outcomes(s, π′
1, π2) is surely a subset of Sure

bT
1 (TimeDivBl1(Φ)). A similar claim holds if π′

1 is almost
surely region equivalent to π1. ⊓⊔

6.1 Proofs for Results on Safety Objectives

Proof of Lemma 3:
This result is a generalization of Lemma 2. Note that once a clock x becomes more than cx, then
its actual value can be considered irrelevant in determining regions. If only the clocks in X ⊆ C

19

have escaped beyond their maximum tracked values, the rest of the clocks still need to be tracked,
and this gives rise to a sub-constraint φX for every X ⊆ C. ⊓⊔

Proof of Theorem 2:
We prove for the general case (where clocks might not be bounded).

1. If a state s̃ ∈ Sure
eT
1 (2Y ∧ Φ∗), then as in Lemma 3, there exists a receptive region strategy for

player 1, and moreover this strategy ensures that the game stays in Y .

If s /∈ s̃ ∈ Sure
eT
1 (2Y ∧ Φ∗), then for every player-1 strategy π1, there exists a player-2 strategy

π2 such that one of the resulting runs either violates 2Y , or Φ∗. If Φ∗ is violated, then π1 is not
a receptive strategy. If 2Y is violated, then player 2 can switch over to a receptive strategy as

soon as the game gets outside Y . Thus, in both cases s /∈ Sure
eT
1 (2Y).

2. Result similar to lemma 1 holds for the structure T̃. Since the objective Φ∗ can be expressed
as a Streett (strong fairness) objectives, it follows that player 1 has a pure finite-memory sure

winning strategy for every state in Sure
eT
1 ((2Y) ∧ Φ∗). The desired result then follows using the

first part of the theorem.
⊓⊔

6.2 Proofs for Results on Reachability Objectives

Proof of Lemma 4:
To show Sure1(TimeDivBl(Reach(SR))) = Sure1(Parity(ΩR)), we prove inclusion in both directions.

1. Suppose player 1 can win for the reachability objective SR. Let π1 be the winning strategy.
Consider any player-2 strategy π2, and any run r̂ ∈ Outcomes(〈s, 0, false, false〉, π1, π2). Sup-

pose r̂ visits ŜR. Then since SR is absorbing, and all states in ŜR have index 0, only the index
0 is seen from some point on.

2. Suppose r̂ does not visit ŜR, and let r̂ be time-diverging. If the moves of player 1 are chosen
infinitely often in r̂, then the index 1 is visited infinitely often. If the moves of player 1 are
chosen only finitely often, then from some point on, the clock z is reset only when it hits 1, and
thus since time diverges, tick is true infinitely often. The index 1 is again visited infinitely often
in this case.
Suppose r̂ does not visit ŜR, and let r̂ be time-converging. If the moves of player 1 are chosen
infinitely often in r̂, then player 1 is to blame for blocking time. In this case 1 is visited infinitely
often. If the moves of player 1 are only chosen finitely often, then again from some point on,
the clock z is reset only when it hits 1. Since time does not diverge, tick is true only finitely
often. Thus after some point, only the index 0 is seen, in agreement with the fact that player 1
is blameless.

⊓⊔

Lemma 15 ([18]). Let 1 ≥ ∆j ≥ 0 for each j. Then, limn→∞
∏n

j=1(1 − ∆j) = 0 if
limn→∞

∑n
j=1 ∆j = ∞.

Proof. Suppose ∆j = 1 for some j. Then, clearly limn→∞
∏n

j=1(1 − ∆j) = 0. Suppose ∆j < 1 for

all j. We then have
∏n

j=1(1 − ∆j) > 0 for all n. Consider ln
(∏n

j=1(1 − ∆j)
)

=
∑n

j=1 ln(1 − ∆j).

Let g(x) = x + ln(1 − x). We have g(0) = 0 and dg
dx

= 1 − 1
1−x

= −x
1−x

≤ 0 for all 1 > x ≥ 0. Thus,

20

g(x) ≤ 0 for all 1 > x ≥ 0. Hence, 0 ≤ ∆j < − ln(1−∆j) for every j. Since limn→∞
∑n

j=1 ∆j = ∞,
we must have limn→∞

∑n
j=1(− ln(1 − ∆j)) = ∞, which means limn→∞

∑n
j=1 ln(1 − ∆j) = −∞.

This in turn implies that limn→∞
∏n

j=1(1 − ∆j) = 0. ⊓⊔

Proof of Lemma 11:
Consider a state 〈s, z, tick , bl1〉 ∈ T2i+1 and let s ∈ R. All the states in T2i+1 have the property
that player 1 can always guarantee that the next state has a lower rank, no matter what the
move of player 2. Consider the player-2 move of 〈0,⊥〉 at state 〈s, z, tick , bl1〉 ∈ T2i+1. The next
state is then going to be 〈s, z, tick ′ = false, bl ′1 = false〉. Since tick ∨ bl1 = false, the index of
〈s, z, tick ′ = false, bl ′1 = false〉 is 0, and hence it must belong to an even rank which is lower than
2i + 1. Finally, we note that ∪2i−1

k=0 Tk ⊂ T2i. ⊓⊔

Proof of Lemma 12:
The proof follows along similar line to that of Lemma 5. Let A = {ŝ′ | ŝ′ ∈ R′ and R′ ∩ Tj 6=
∅ for some j < 2i}. Note that A ⊆ Reg(T2i). We show player 1 can reach A, without encountering
a region R′ such that R′ ∩ (T2i ∪ A) = ∅. Let ŝ ∈ R, with R ∩ T2i 6= ∅, and R ∩ Tj = ∅ for all
2 ≤ j < 2i. The result follows from Lemmas 16, 17, 18, 19, and 20. ⊓⊔

Lemma 16. Let R be a region of T such that R∩T2i 6= ∅, and R∩Tj = ∅ for all 2 ≤ j < 2i. Then,
player 1 has a move from every state in R to A.

Proof. Note that according to πpure, player 1 always propose a move from T2i ∩ R to A as the
destination of the move of player 1 must be in rank 2i − 1 or lower (note that a move of player 1
being chosen makes the index 1). Thus, since player 1 has a move from T2i ∩ R to A according to
πpure, he must have a move from every ŝ ∈ R to A by Lemma 13. ⊓⊔

Consider a state ŝ in some region R′ ⊆ Reg(T2i) of T. Now consider the set of times at which
moves can be taken so that the state changes from ŝ to A. This set consists of a finite union of
sets Ik of the form (αl, αr), [αl, αr), (αl, αr], or [αl, αr] where αl, αr are of the form d or d − x for
d some integer constant, and x some clock in C (this clock x is the same for all the states in R′).
Furthermore, these intervals have the property that {ŝ + ∆ | ∆ ∈ Ik} ⊆ Rk for some region Rk,
with Rl ∩Rj = ∅ for j 6= l. From a state ŝ, consider the “earliest” interval contained in this union:
the interval I such that the left endpoint is the infimum of the times at which player 1 can move
to A. We have that {ŝ + ∆ | ∆ ∈ I} ⊆ R1. Consider any state ŝ′ ∈ R′. Then from s′, the earliest
interval in the times required to get to A is also of the form I. Note that in allowing time to pass
to get to R1, we may possibly go outside T2i (recall that T2i is not a union of regions of T).

If this earliest interval is left closed, then player 1 has a “shortest” move to A. Then, this is
the best move in our strategy for player 1, and she will always propose this move. Let the left
and the right endpoints of target intervals be αl, αr respectively. Then, if the target interval is left
open, let player 1 play a probabilistic strategy with time distributed uniformly at random over
(αl, (αl + αr)/2]. Let us denote this player-1 strategy by πrand. Also note that the z, tick and the
bl1 components play no role in determining the availability of moves.

Lemma 17. Let R be a region of T such that R ∩ T2i 6= ∅, and R ∩ Tj = ∅ for all 2 ≤ j < 2i.
Then, the strategy πrand ensures that from any state in R, the game stays in Reg(T2i) surely till A
is visited.

21

Proof. Let R be a region of T such that R ∩ T2i 6= ∅, and R ∩ Tj = ∅ for all 2 ≤ j < 2i. Consider a
state ŝ ∈ R∩T2i. In πpure, player 1 proposes a move to A from each state in R∩T2i. By Lemma 14,
we have a unique set M2i

2 = {R′ | player-2 moves to R′ from R beat player-1 moves to A}. Since
{ŝ + t | t ∈ I} constitutes a single region of T, and I is the earliest interval that can land player 1
in A, no new discrete actions become enabled due to the randomized strategy of player 1 — if
player 2 can foil the randomized strategy of player 1 by taking a move to a region R′ such that
R′ ∩ Reg(T2i) = ∅, she can do so against πpure. Thus, by induction using Lemma 14, we have that
player 1 can guarantee with the randomized strategy that the game will stay in Reg(T2i) starting
from a state in R∩T2i. Since the values z, tick and the bl1 components play no role in determining
the availability of moves, player 1 can ensure that the game states within Reg(T2i) starting from
any state in a region R such that R∩T2i 6= ∅, and R∩Tj = ∅ for all 2 ≤ j < 2i till A is visited. ⊓⊔

If at any time the move of player 1 is chosen, then player 1 comes to A. We show that when
player 1 uses the randomized memoryless strategy πrand, the probability of the move of player 1
being never chosen against a receptive strategy of player 2 is 0.

Lemma 18. Let R be a region of T such that R ∩ T2i 6= ∅, and R ∩ Tj = ∅ for all 2 ≤ j < 2i.
Consider any receptive strategy π2 of player 2, and a run r ∈ Outcomes(s, πrand, π2) with s ∈ R.
Suppose there exists m ≥ 0 such that for all k ≥ m, if r[0..k] has not visited A, then we have
πrand(r[0..k]) to be left-closed. Then, we have that r visits A.

Proof. Note that if a move of player 1 is chosen at any point, then A is visited. Suppose the
moves of player 1 are never chosen. Consider a run r against any strategy of player 2. Let us
consider the run from r[m] onwards. Only target left-closed regions occur form this point on.
Let r[m] = ŝ′ = 〈s′, z, tick , bl1〉 ∈ R′. Consider the pure winning strategy πpure from a state
ŝ′′ = 〈s′, z′, tick ′, bl ′1〉 ∈ R′ ∩ T2i (such a state must exist). The state ŝ′′ differs from ŝ′ only in
the values of the clock z, and the boolean variables tick and bl1. The new values do not affect
the moves available to either player. Consider ŝ′′ as the starting state. The strategy πpure cannot
propose shorter moves to A ∩ (∪2i−1

i=2 Tj), since πrand proposes the earliest move to A. Hence, if a
receptive player-2 strategy π2 can prevent πrand from reaching A from ŝ′, then it can also prevent
πpure from reaching A ∩ (∪2i−1

i=2 Tj) from ŝ′′, a contradiction. ⊓⊔

Lemma 19. Let R be a region of T such that R ∩ T2i 6= ∅, and R ∩ Tj = ∅ for all 2 ≤ j < 2i.
Consider any receptive strategy π2 of player 2, and a run r ∈ Outcomes(s, πrand, π2) with s ∈ R.
There exists m ≥ 0 such that for all k ≥ m if (a) r[0..k] has not visited A, and (b) πrand(r[0..k]) is
left-open with left-endpoint being αl, then we have αl = 0.

Proof. Let αl correspond to the left endpoint for one of the infinitely often occurring target left-open
interval region R′.

1. We show that we cannot have αl to be of the form d for some integer d > 0.
We prove by contradiction. Suppose αl is of the form d for some integer d > 0 for a region
R′. Then, player 2 can always propose a time blocking move of d, this would mean that if the
scheduler picks the move of player 2 (as both have the same delay), the next state will have tick
true, no matter what the starting value of the clock z is. Now consider any state in R′ ∩ T2i.
The strategy πpure always proposes some move to A, and the time duration must be greater
than d. Because of the d time-blocking move of player 2 new state will then be not in A, and
have tick = true, hence, it will actually have an index of more than 2i, contradicting the fact
that πpure ensured that the rank never decreased. Thus, d > 0 can never arise.

22

2. We show that we cannot have αl to be of the form d − x for some integer d > 0 and clock x.
We prove by contradiction. Suppose clock x is not reset infinitely often in the run r. Then,
the fact that the clock x has not progressed beyond d after some point in the run without
being reset implies time is convergent, contradicting the fact that player 2 is playing with a
receptive strategy (note that only moves of player 2 are being chosen). Thus, this situation
cannot arise. Suppose x is reset infinitely often. Then, between a reset of x, and the time at
which player 1 can jump to A, we must have a time distance of more than d. Suppose R′′ is one
of the infinitely occurring regions in the run with the value of x being 0 in it. So player 2 has
a strategy against our player-1 strategy such that one of the resulting runs contains a region
subsequence R′′

 R′. If this is so, then she would have a strategy which could do the same
from every state in R′′∩T2i against the pure winning strategy of player 1 (since the randomized
strategy πrand does not enable player 2 to go to more regions than against πpure, as πrand proposes
moves to the earliest region in A). But, if so, we have that tick will be true no matter what
the starting value of z in R′′ ∩ T2i, before player 1 can take a jump to A from R′ ∩ T2i, taking
the game outside of A ∪ T2i. Since player 1 can stay inside T2i, or visit A at each step with
the infinite memory strategy πpure, this cannot be so, that is, we cannot observe the region
subsequence R′′

 R′ for the player-1 randomized strategy. Hence the case of αl = d−x cannot
arise infinitely often.

The only remaining option is αl = 0, and we must have that the only randomized moves player 1
proposes after a while are of the form (0, αr/2]. ⊓⊔

Lemma 20. Let R be a region of T such that R ∩ T2i 6= ∅, and R ∩ Tj = ∅ for all 2 ≤ j < 2i.
Consider any receptive strategy π2 of player 2, and a strategy πsched of the scheduler. Let E denote
the set of runs containing runs r ∈ Outcomes(s, πrand, π2) with s ∈ R. such that there exists m ≥ 0
and for all k ≥ m (a) r[0..k] has not visited A, and (b) πrand(r[0..k]) is left-open with left-endpoint
being αl = 0. Then, we have Prπrand,π2,πsched

r[0] (Reach(A) |E) = 1.

Proof. Let R′ be one of the infinitely often occurring regions in r with the target left-endpoint
being αl = 0. Let βi be the duration of the move of player 2 for the ith visit to R′ Suppose αr = d.
Then the probability of a move of player 1 being never chosen is less than

∏∞
i=1(1−

2βi

d
), which is 0

if
∑∞

i=1 βi = ∞ by Lemma 15. A similar analysis holds if player 2 proposes randomized moves with
a time distribution D(βi,·],D[βi,·],D(βi,·) or D[βi,·). Suppose αr = d− x. Suppose αr = d − x. Again,
the probability of a move of player 1 being never chosen is less than

∏∞
i=1(1−

2βi

(d−κi(x))), and since
βi

(d−κi(x)) > βi

d
, this also is 0 if

∑∞
i=1 βi = ∞ by Lemma 15. Finally, we note that if player 2 does

not block time from T2i, then for at least one region, she must propose a βi sequence such that∑∞
i=1 βi = ∞, and we will have that for this region, a move of player 1 will be chosen eventually

with probability 1. ⊓⊔

23

