
A Platform-Based Approach to Communication
Synthesis for Embedded Systems

Alessandro Pinto

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-54

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-54.html

May 19, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A Platform-Based Approach to Communication Synthesis for Embedded Systems

by

Alessandro Pinto

Laurea (University of Rome “La Sapienza”) 1999
M.S. (University of California at Berkeley) 2003

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Alberto L. Sangiovanni Vincentelli, Chair

Professor Robert K. Brayton
Professor Zuo-Jun Shen

Spring 2008

The dissertation of Alessandro Pinto is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2008

A Platform-Based Approach to Communication Synthesis for Embedded Systems

Copyright 2008

by

Alessandro Pinto

1

Abstract

A Platform-Based Approach to Communication Synthesis for Embedded Systems

by

Alessandro Pinto

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto L. Sangiovanni Vincentelli, Chair

As the complexity of electronic systems increases, designers adopt a re-use methodology where new

products are assembled out of components. This is a common trend in many application domains.

In consumer electronics, Systems-on-Chips (SoCs) integrate many different cores to provide tens of

different functions. In automotive, modern cars rely on a distributed, networked embedded system

that comprises hundreds of processors to provide comfort, fuel efficiency and entertainment. In

large scale systems, such as avionics and building automation, networked distributed controllers are

used to provide comfort, safety and energy efficiency.

Since the system behavior depends not only on the components, but also on the way in

which they interact, architecting their interconnection is a critical step in the overall design flow. Be-

ing subject to tight performance and cost constraints, the design of the interconnection architecture

needs to be tailored to the specific system application. This task is too complex to be done by hand,

considering also the heterogeneous nature of these systems. Therefore, there is a need for com-

2

munication synthesis tools that, starting from a characterization of the communication constraints

among the components and the library of available communication building blocks, automatically

derive an optimal interconnection architecture.

In this thesis I argue that the essence of the communication synthesis problem is invariant

to the application domain. I introduce a formal framework to capture the communication constraints,

the library of communication building blocks, and the rules to compose them. Using this framework,

I formulate a general communication synthesis problem. I show the generality of the approach

by formulating and solving the problem in two different domains: system-on-chips and building

automation systems.

Professor Alberto L. Sangiovanni Vincentelli
Dissertation Committee Chair

i

To my mother who raised me and let me go to follow my dreams.

ii

Contents

List of Figures iv

List of Tables vi

I Introduction 1

1 Trends in Electronics 2
1.1 System Complexity . 4
1.2 Time-To-Market and Productivity . 9
1.3 Re-Use . 10

2 Design Methodologies 14
2.1 System-Level Design . 16
2.2 Platform-Based Design . 20

2.2.1 Formalizing Platform-Based Design . 22
2.2.2 Example . 31

3 Communication Synthesis 38
3.1 Flows . 39

3.1.1 Maximum Flow . 40
3.1.2 Minimum-Cost Flow . 41
3.1.3 Minimum-Cost Flow with End-To-End Constraints 43

3.2 Optimal Network Design . 44
3.3 Concluding Remarks on Communication Synthesis 46

II Theoretical Background 48

4 Communication Structures 49
4.1 Quantities . 50
4.2 Communication Structures . 52

iii

5 Building Complex Communication Architectures from Components 59
5.1 Composition . 60
5.2 Platforms . 63

6 Communication Synthesis for Networked Systems 68
6.1 Relations Among Communication Structures . 69
6.2 A General Optimization Problem . 76

III Applications 80

7 On-Chip Communications 81
7.1 Design Flow . 84
7.2 Specification . 92
7.3 Library and Composition Rules . 93
7.4 Optimization Algorithm . 97
7.5 Results . 104

7.5.1 Impact of the Application Characteristics 105
7.5.2 Effect of Technology Scaling . 107
7.5.3 Quality of the Solution . 109

8 Building Automation Networks 115
8.1 Specification . 118
8.2 Capturing the Building Geometry . 121
8.3 Wired Networks . 125

8.3.1 Library of Communication Components 127
8.3.2 Communication Platform and Implementation 133
8.3.3 Optimization Algorithm . 134
8.3.4 Results . 141

8.4 Wireless Networks . 146
8.4.1 Library of Communication Components: Modeling ZigBee Networks . . . 147
8.4.2 Formulation of the Optimization Problem 155
8.4.3 Results . 158

9 Conclusions and Future Work 161

Bibliography 166

iv

List of Figures

1.1 System complexity: Number or transistors in Intel microprocessors as a function of
time, also known as Moore’s law (Source: Intel), and number of lines of code for
avionic products [111]. 5

1.2 Hardware design productivity expressed in number of gates per designer per year . 11

2.1 System-level design flows presented in early papers on this topic. 18
2.2 Pictorial representation of a platform-based design flow. 21
2.3 Architecture and Function Platforms . 29
2.4 Mapping of function and architecture . 30
2.5 Platform-based design flow for communication synthesis 37

4.1 Hasse diagrams relative to the domains of three quantities: a) bandwidth, b) latency,
c) the set containing both bandwidth and latency. 51

4.2 Hasse diagram of the partial order ≤(b,l) for subset of communication structures. . . 55
4.3 The system-level specification of a simplified Set-Top Box. Each core in the spec-

ification is annotated with and area in mm2 and each arrow is annotated with a
bandwidth constraint in MB/s. 56

5.1 Example of parallel composition of networks: the set-top box is expanded by adding
a video channel and an extra off-chip memory bank. 61

5.2 Example of a library L for on-chip communication and two alternative implemen-
tations for the set-top box example based on composing elements instanced from
L . 66

6.1 Example of communication implementation for the set-top box. 71
6.2 Summary of the procedure to define problem PR2. 79

7.1 COSI-OCC open software infrastructure. 85
7.2 Specification of the set-top-box example as given to COSI-OCC(a), and, Chip floor-

plan after elaboration from PARQUET(b). 93
7.3 Modeling the NoC components. 95
7.4 Slicing method to find the available area for NoC implementation. 97
7.5 High-level description of the heuristic algorithm. 99

v

7.6 Procedure for adding a new router to the NoC implementation. For an expression
exp, we denote by exp(x\y) the same expression where variable x has been replaced
by y. 101

7.7 Properties of the synthesized NoCs for the MWD, MPEG4, VOPD, dVOPD and
tVOPD applications. Power is expressed in Watts, area in mm2 and latency in
ns/ f lit. We used the following notation: R for routers, W for wires, B for sequential
buffers. Latency is reported on a logarithmic scale. 108

7.8 Properties of the synthesized NoCs for the VProc applications. 110

8.1 A distributed embedded control system: (a) controller specification and (b) net-
worked execution platform. 116

8.2 Example of gateway zone associated to a building floor. 121
8.3 Representation of a two-dimensional face with four vertexes in the Euclidean space. 122
8.4 Intersection of a ray with a face. 123
8.5 Construction of the connectivity graph and example of computation of wire layout

for the example of Figure 8.2. 125
8.6 Example of daisy-chain wiring of a few components in a building automation system.127
8.7 Graphical representation of a daisy-chain bus: (a) logical network, (b) physical net-

work, (c) sequences of messages generated by the token passing protocol for a short
packet transmission. 128

8.8 An example of a token ring bus with k participant v1,...,vk and the graphical repre-
sentation of the token rotation time. 132

8.9 The chains generated by Algorithm 3 and the resulting covering matrix. 138
8.10 Logical components of the synthesized network for the example of Figure 8.2. . . . 142
8.11 Physical deployment of the synthesized network implementation for the example of

Figure 8.2. 143
8.12 Communication specification and building floorplan of a UTRC premise in Hart-

ford, CT. 145
8.13 An area covered by two ZigBee networks (top) and the possible network topologies

for one of them (bottom). 148
8.14 Structure of a superframe as defined by the ZigBee protocol standard. 150
8.15 Relative timing of the superframes in a beacon-enabled ZigBee network. 151
8.16 The two test cases used in our experiments: a) Distributed estimation, b) Centralized

estimation. 159

vi

List of Tables

7.1 Tools for component based design. 87
7.2 Characteristics of the selected SoCs applications. 106
7.3 Evaluating the heuristic algorithm of Figure 7.5. 114

8.1 Characterization of the intrinsic performance and cost of a realistic library of com-
ponents for building automation systems. 131

8.2 Performance and cost of the synthesis result. The cost is a pair (n,w) where n is the
cost of the nodes including the routers and w is the wiring cost. 144

8.3 Library parameters and synthesis results for the two L2 building and big box store
(BB) examples for a new installation. In this table, Bw is the bus speed, lmax is
the maximum allowed bus length, dmax is the maximum latency experienced by any
sensor, and Umax is the maximum bus utilization among all instantiated bus. 144

8.4 Library parameters and synthesis results for the two L2 building and big box store
(BB) examples for a retrofitting installation. In this table, Bw is the bus speed, lmax

is the maximum allowed bus length, dmax is the maximum latency experienced by
any sensor, and Umax is the maximum bus utilization among all instantiated bus. . . 145

8.5 Results for the centralized estimation case. 160

vii

Preface

This thesis is divided in three parts: Introduction, Theoretical Background and Applications. The

first part is an introduction to the problem of designing complex embedded systems and motivates

the necessity for communication centric design flows. In the second part, we provide a formal model

on which we built a software infrastructure that allows the development of dedicated communication

synthesis tools. The third part focuses on domain specific applications. By applications we do not

mean simply case studies. The term ”application” refers to the use of the design methodology and

software infrastructure on a specific domain like on-chip communication and building automation

systems.

Each chapter contained in this thesis starts with a summary of what is presented in the

chapter and provides the context to the reader. Each chapter of the last part of this thesis, “Appli-

cations”, is organized according to the following structure. The communication synthesis problem

is first introduced including domain specific details. The specification of the problem is formally

defined capturing the main concerns of the design. The library of communication components is

described and analytical models used for synthesis are described for realistic components. The

optimization algorithms are described as mapping of the specification on a composition of library

elements. The chapters end with the results obtained by running the algorithms on a set of case

studies.

viii

Acknowledgments

This thesis is the result of years of dedication to understanding problems and viable solu-

tions. Its content benefited from the technical contributions of excellent scientists and moral support

of relatives and friends. My acknowledgment goes to both.

Many of the original ideas included in this thesis stemmed from inspiring discussions with

my advisor Alberto Sangiovanni Vincentelli, by far one of the most energetic and acute people I have

ever met. I am truly impressed by the profound meaning and implications of his statements. He has

been a guide and role model for research and academic integrity, and a moral support when things

seemed to be going in the wrong direction. I would like to thank Luca Carloni that collaborated

with me since I came to Berkeley. The discussions with Luca have always been very detailed and

passionate, and very helpful in refining rough intuitions into high quality work. Thanks for the time

spent in fixing my broken English.

Thanks to my colleagues and friends of the D.O.P. center: Alvise Bonivento, Luca Daniel,

Abhijit Davare, Doug Densmore, Trevor Meyerowitz, Roberto Passerone, Claudio Pinello and

Alessandra Nardi, Marco Sgroi, Guoqiang Wang, Guang Yang and Yanmei Li, and Qi Zho, and

to the research scientists of the Cadence Berkeley Labs, Yosinori Watanabe, Felice Balarin and Lu-

ciano Lavagno. I won’t forget to thank my friends of the graduate office Ruth Gjerde and Mary

Byrnes, for listening to my complaints about politics, women and life in general; and, of course,

many thanks to Lorie Mariano for making every GSRC workshop a good time to have fun. Thanks

to Prof. Robert K. Brayton and Zuo-Jun Shen for reviewing my thesis.

The amazing journey that from Ericsson Lab Italy brought me to U.C. Berkeley stopped at

PARADES, a research lab in Rome where I spent a year and a half. I met great engineers, scientists

ix

and good people. I would like to thank Massimo Baleani, Andrea Balluchi, Luca Benvenuti, Alberto

Ferrai and Donatella Santillo, Leonardo Mangeruca and Tiziano Villa for their technical advice, for

hosting me during my visits in Rome and for their friendship and support. In the last two years

of my Ph.D., I had the luck and pleasure to collaborate with the United Technologies Research

Center. I would like to thank Clas Jacobson and Andrzej Banaszuk for their valuable suggestions

and insights and for supporting my work on building automation systems.

There are many friends I have to thank for decorating my life outside the walls of Cory

Hall. The first semester of my Ph.D. has been cheered up by Alessandro Serra. I met many Italian,

European and American friends through the International Italian Student Association. It would be

difficult to list them all, but to them I am thankful. Many Thanks to my house-mates and friends

Bruno Sinopoli and Massimiliano Fratoni, to my quasi-house-mate and Napolitan friend Massimo

Franceschetti who finally got a position and stopped complaining to us, and to uncle Dino Bellugi

who, being Roman, reminded me of the old good times in the eternal city. I would like to thank

the members of IBERIA (the Berkeley association of Spanish students), in particular Guillermo

José Rein Soto Yarritu de la Gonzalera y Pérez del Hierro Martı́nez de la Cosa y Carvajal de la

Apellidurı́a, also known as Guillermo Rein.

In Berkeley, I met Rebecca Julie Abergel, a devoted chemist and interesting woman who

gradually became my beloved life’s companion. She poured the last few drops of catalyst into my

everyday life to complete this work and step into the future. Thank you Rebechita.

Last, but definitely not least, I thank my family, Gemma, Silvio, Barbara and Daniele.

They saw me growing up, they raised me well and gave me everything I needed. Selfishly, I went

away to build the future I liked. They let me go, and yet they love me.

1

Part I

Introduction

2

Chapter 1

Trends in Electronics

The complexity of electronic systems is constantly increasing. A measure of the com-

plexity of an electronic product is the number of functions that it provides to the user. Technology

scaling allows an increasing number of transistors to be integrated on the same chip, which enables

the convergence of multiple applications on the same platform. The range of devices that can benefit

from the integration of multiple functions are numerous: from hand-held consumer devices to large

distributed systems for societal scale applications.

On the other hand, time-to-market keeps shrinking, posing serious challenges to design-

ers who are required to complete the development of new products within a limited time window.

Arriving first on the market is extremely important to fix the price of new products as to maximize

revenues. Moreover, a larger market share can be gained if there is no competition initially.

The strategic importance of being able to keep pace with both trends is posing serious

challenges to product developers. In fact, design and verification time of electronic systems is di-

rectly dependent on the number of hardware and software components that are used to implement

3

them. Thus, it takes longer to bring new complex systems to the market. A traditional solution to

this problem has been to increase the size of the engineering and verification teams, in hopes of a

corresponding increase in productivity. Unfortunately, communication overhead among team mem-

bers reduces the potential benefits of larger engineering teams. Moreover, if the design methodology

being used is not based on a formal model that supports compositional design, verification must be

carried out on the entire system.

An alternative and promising way of increasing productivity is to re-use pre-designed and

pre-verified components. Re-use has two advantages. Since a system is built by assembling large

components, productivity in terms of number of gates per designer per year increases. Also, since

each component has been pre-verified, the verification of the system is reduced to the verification of

the interaction among components. However, this is not necessarily easier than verifying the entire

system. To reduce, or even eliminate, the verification effort the design flow should be supported

by a correct-by-construction methodology that provides the necessary tools to assemble systems

automatically. Therefore, the automatic synthesis of communication systems, that we refer to as

communication synthesis, is of primary importance in a methodology based on re-use. Notice that,

whenever components are not available, abstract ones can be used instead, leaving their implemen-

tation to the subsequent design steps (at lower abstraction levels). Even in this case, communication

synthesis is of great importance.

A communication synthesis tool should allow the description of the properties that a com-

munication system must preserve. A synthesis algorithm should be able to derive the implementa-

tion of the communication systems by assembling communication components such that, by con-

struction, the properties required by the specification are preserved. In an ideal system design flow,

4

a designer would select a set of components able to implement the system functionality, and then

define the properties that their interconnection must satisfy. These properties are then projected onto

properties of the communication system and passed to a communication synthesis tool. Verification

time is, therefore, completely eliminated because the implementation of the communication system

is guaranteed to be correct with respect to the properties imposed by the designer.

1.1 System Complexity

In 1965, Gordon E. Moore observed that, for economical reasons, the number of tran-

sistors per chip followed an exponential trend [79]. This trend is known as the Moore’s Law. In

his original work, Moore predicted that the number of transistor integrated on the same chip would

double every year. Even though this trend slowed down in recent years, it remains exponential.

Figure 1.1(a) shows the number of transistors per die as a function of time in a logarithmic scale.

The data points correspond to successive processor generations starting from the Intel 4004, the

first example of an integrated processor on a single chip. The last data point, the Dual Core Intel

Itanium, marks the beginning of the Chip-Multi-Processor (CMP) era for Intel. In [22], Borkar

et al. explains that performance and power consumption are the main reasons to embrace paral-

lelism. Traditionally, the demand for more computational power has been satisfied by increasing

the processor clock speed. Unfortunately, memory performance has not been able to keep the same

pace. In fact, memory latency is only slowly decreasing, becoming the major bottleneck in terms

of computation speed. The second argument in favor of parallelism is power consumption. Having

many slower processors instead of a powerful central one gives the flexibility of running part of the

chip at full speed while maintaining the rest asleep. Power management becomes less flexible in

5

(a) Moore’s law

the advances in packaging technology yielding the concept
of system-in-package (SiP). Pure digital chips are also
featuring an increasing number of components. Design
time, cost, and manufacturing unpredictability for deep
submicron technology make the use of custom hardware
implementations appealing only for products that are
addressing a very large market and for experienced and
financially rich companies. Even for these companies, the
present design methodologies are not yielding the
necessary productivity forcing them to increase beyond
reason the size of design and verification teams. These IC
companies (for example Intel, Freescale, ST, and TI) are
looking increasingly to system design methods to allow
them to assemble large chips out of predesigned
components and to reduce validation costs (design reuse).
In this context, the adoption of design models above RTL
and of communication mechanism among components
with guaranteed properties and standard interfaces is only
a matter of time.

2) Embedded Software Complexity: Given the cost and
risks associated to developing hardware solutions, an
increasing number of companies is selecting hardware
platforms that can be customized by reconfiguration and/
or by software programmability. In particular, software is
taking the lion’s share of the implementation budgets and
cost. In cell phones, more than 1 million lines of code is
standard today, while in automobiles the estimated
number of lines by 2010 is in the order of hundreds of

millions [199]. The number of lines of source code of
embedded software required for defense avionics systems
is also growing exponentially as reported in Fig. 1 [made
available by Robert Gold Associate Director, Software and
Embedded Systems, Office of the Deputy Under Secretary
of Defense (Science and Technology)]. However, as this
happens, the complexity explosion of the software
component causes serious concerns for the final quality
of the products and the productivity of the engineering
teams. In transportation, the productivity of embedded
software writers using the traditional methods of software
development ranges in the few tens of lines per day. The
reasons for such a low productivity are in the time needed
for verification of the system and long redesign cycles that
come from the need for developing full system prototypes
for the lack of appropriate virtual engineering methods and
tools for embedded software. Embedded software is
substantially different from traditional software for com-
mercial and corporate applications. By virtue of being
embedded in a surrounding system, the software must be
able to continuously react to stimuli in the desired way,
i.e., within bounds on timing, power consumed, and
cost. Verifying the correctness of the system requires
that the model of the software be transformed to include
information that involves physical quantities to retain
only what is relevant to the task at hand. In traditional
software systems, the abstraction process leaves out all
the physical aspects of the systems as only the functional
aspects of the code matter.

Fig. 1. Software growth in avionics.

Sangiovanni-Vincentelli : Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design

470 Proceedings of the IEEE | Vol. 95, No. 3, March 2007

(b) Software complexity in Avionics

Figure 1.1: System complexity: Number or transistors in Intel microprocessors as a function of time,
also known as Moore’s law (Source: Intel), and number of lines of code for avionic products [111].

6

single processor chips because running a software task, even one of limited complexity, requires the

entire chip to be powered-on. Other companies like Sun and AMD have also moved from single

to multi-processor platforms. This transition does have many consequences on the hardware and

software design flows.

A similar revolution happened in the early 1980’s. Computers with a central control

unit [18, 86] were not able to satisfy the increasing computational demand coming from the scien-

tific computation community, therefore researchers started to conceive and build parallel computers.

The transition from single to multi-processor systems posed many new challenges [61] that are very

similar to the ones that we also face today for multi-processor chips. The two major challenges are

the programming models used to develop software for multiprocessor system and the communica-

tion network that interconnected the processors.

Programmers of multiprocessor systems need a programming model to pass data from

one processing element to the other. Given the distributed nature of these systems, and the fact that

a central memory would slow down computation due to memory latency, asynchronous models like

message passing schemes have been adopted as successful programming models for many recent

multiprocessor systems [13, 52]. Programming models (known as Models of Computation) that

allow the capturing of application level concurrency have been widely studied and adopted in the

design of embedded systems [64, 73]. Using a model of computation that can capture concurrency

is essential since the parallelization of sequential specification is an undecidable problem [128].

The other challenge in the design of multi-processor systems is the interconnection net-

work that provides the infrastructure for inter-processor communication. The most important re-

quirements of the interconnection infrastructure are low latency and scalability. Latency depends

7

on network topology and the protocols used and impacts the overall performance of the multipro-

cessor system. For these reasons several regular interconnection topologies, routing algorithms and

switching techniques have been proposed and characterized [33, 35, 88].

Chip Multi-Processor (CMP) systems for general purpose computing are comprised of a

number of homogeneous cores. The complexity of these new chips is expected to grow exponen-

tially in the future. An example of this kind of computing platforms is the 80-tile Polaris chip [121]

from Intel. This chip features 80 processors interconnected by a mesh network. Depending on the

class of applications targeted by a CMP, the number and types of cores can vary. In fact, there

are many examples where the platform contains a heterogeneous set of cores like, for instance,

the Cell processor [99]. This platform is comprised of 8 processing units and a master processor

interconnected by a bidirectional ring network. Heterogeneous platforms are typically used in em-

bedded systems that need to support several applications with different computation requirements

and activation semantics.

An explosion in design complexity can be observed also for embedded system software.

Figure 1.1(b) shows the number of lines of code of the control software in avionics products [111].

The challenges of real-time software development are related to scheduling, performance and cor-

rectness. In fact, software productivity can be as low as six lines of code per designer per day [107]

if debugging time is also taken into account.

The challenges posed by complexity are also faced by the systems developer, beyond

hardware and software. In consumer electronics, there is a trend to build devices that can per-

form multiple functions. Apple Inc.’s recent iPhone is a smart-phone offering EDGE connectivity,

music and movie play-back, internet navigation, e-mail service, still image and movie capturing,

8

blue-tooth connectivity, calendar and address-book. The user interface is based on a touch screen.

This device is battery operated, and therefore its design must be carefully tailored to provide a

good customer experience while saving power. To provide all of these functions, Apple relied on

third-party components that include: a central processing unit Samsung S5L8900 (which contains

an ARM 1176JZF-S and 1 Gbyte of embedded DRAM), an audio codec, an accelerometer from

ST Microelectronics, a power management unit, a DMA controller, a light proximity sensor from

TAOS, a camera sensor from Micron, an I/O Broadcom device, an EDGE processor from Infineon

that provides also the GSM radio frequency module, a display interface from National Instruments,

a Marvel WLAN chip, a touch-screen from Balda, and a USB power manager and battery charger

from Linear technology [43]. This is not a complete list, but it is long enough to understand that the

complexity in building this device resides in assembling the components such that performance is

guaranteed and power consumption is minimized.

The component integration problem is also faced by developers of large scale systems

such as airplanes and building automation systems. For these systems, the design challenges arise

from the scale of the system and the constraints imposed by the control algorithms. Building au-

tomation systems are highly distributed and are comprised of a large number of sensors, actuators

and local controllers. Moreover, control algorithms of physical quantities, like temperature and

pressure, are implemented by tasks that need to run periodically with a period that depends on the

time scale of the dynamics of the variables that they control. Until a few years ago, building au-

tomation system designers could abstract computation and communication time because the time

scales of the variables to control were much longer than the computation and communication delay.

A common practice in designing these systems has been to over-provision the communication net-

9

work leading to solutions that were either grossly inadequate or over-designed and therefore much

more expensive than needed. As new functionalities become either mandatory or desirable, the time

scale separation property between the control algorithm and the platform does not hold any longer.

Consequently the design problem becomes increasingly difficult. For example, ensuring that in

case of an emergency, buildings can be evacuated safely and efficiently is an important novel re-

quirement. The movement of people in emergency situations follows a fast dynamics so that egress

control requires a sampling period that is comparable to computation and communication delays in

the computing platform. In a survey [103] of 60 buildings conducted by the Lawrence Berkeley

National Labs, 50% had control problems (including hardware, software and communication).

1.2 Time-To-Market and Productivity

The time-to-market is the length of time that elapses from when a product is conceived to

when it appears on the market. This time window is a constraint for designers because the revenues

generated by selling a new product are higher if the product is the first on the market. Time-to-

market for electronic products is domain dependent with a wide variability. However, there is a

common trend that is independent of the domain: Time-to-market continues tightening. A few

years ago, the time-to-market for consumer electronics products was more than one year and it is

today only six months [5]. In automotive, the time-to-market for the electronic equipment was 3

years and it is today one year [5]. Larger systems, like building automation systems, are also facing

stringent time-to-market requirements.

Time-to-market is affected primarily by design and verification time. As systems become

complex, not only design time necessarily increases, but verification time becomes the major bot-

10

tleneck. In fact, the productivity of engineers is inversely proportional to the sum of design and

verification time together.

In 2004, Synopsys reported the productivity data for hardware designers and predicted the

required productivity until 2007. The chart is shown in Figure 1.2(a). Synopsys observed a major

improvement in productivity in 1995 when designers started reusing small blocks of pre-designed

logic (of the order of 2500 to 75000 gates). Synopsys predicted two other major improvements in

productivity: one in 2005 with the introduction of system level design techniques and one in 2007

with the reuse of large blocks of logic (of the order of 1 Milion gates).

Figure 1.2(b) shows the productivity in number of gates per engineer per year predicted

by the International Technology Roadmap of Semiconductors (ITRS [4]) until 2013. This chart

suggests that productivity should grow exponentially with time. Given that design complexity will

keep growing to sustain Moore’s law, the exponential growth in productivity can be only achieved

by reducing design and verification time. Increasing the size of design teams is not a viable solution

to achieve this goal.

1.3 Re-Use

In recent years, re-use has been touted as a possible cure to this malaise whereby a design

is the result of combining appropriately pre-designed and pre-verified components. In this case,

verification amounts to checking the correctness of the interconnection among components. This is

not necessarily easier, especially when components are developed by different providers, because

their interfaces may be incompatible. Moreover, the communication architecture that interconnects

the components affects the quality of the design in terms of performance and correctness. Therefore,

11

0

150000

300000

450000

600000

1990 1993 1995 1997 1999 2001 2003 2005 2007

4000 5550 9090
40000

56000

91000
125000

200000

600000

Reuse of small blocks

(2.5 to 75 K)

Reuse of large blocks

(> 1 M)

ESL

(a) Reported by Synopsys in 2004.

0

2,750,000

5,500,000

8,250,000

11,000,000

2007 2008 2009 2010 2011 2012 2013

2,000,000
2,625,000

3,425,000

4,500,000

5,900,000

7,725,000

10,150,000

(b) Predicted by the International Technology Roadmap of Semiconductors (ITRS).

Figure 1.2: Hardware design productivity expressed in number of gates per designer per year

12

the communication architecture must be carefully designed. The verification process is further

aided if the composition can be formally proven correct. There has been a flurry of activities in

formal verification of interfaces that have clarified the main issues that need to be resolved [108,

97, 36, 114, 25, 96, 26, 27]. One of the key findings is that, if the components are designed with

“clean” interfaces, composing the components, i.e., interconnecting them and establishing protocols

that guarantee “correct” communication, can be done automatically. We call the automation of

the composition of building blocks communication synthesis. Communication synthesis has been

studied for years and, among the first pioneering work, we list Yen and Wolf [126], Ortega and

Borriello [92] and an interesting approach to the synthesis of communication topologies by Gasteie,

Munch and Glesner [50].

The major roadblock to effective reuse is the non-orthogonalization of computation and

communication. The function implemented by a component and its interface are usually interde-

pendent which makes a component work properly only in some specific contexts1. Standardization

of the communication interface is one possible solution to this problem. There are currently many

standardization efforts in different application domains like the Open Core Protocol (OCP) [89] for

on-chip systems, and AUTOSAR [3] for automotive software systems. The building automation

industry is still waiting for a definitive answer but there are at least two emerging standard com-

munication protocols, Bacnet [24] for wired systems, and Zigbee [127] for wireless applications.

Whenever components do not comply to standard interfaces, protocol adaptors need to be developed

to guarantee interoperability.

Standardization does not completely solve the interconnection design problem. This prob-

lem can be stated as follows. Given the specification of a system defined by a set of functionalities

1By context we mean the rest of the system in which the component is used.

13

and a set of properties to be satisfied2, and given a selection of components that implement the

functionalities, design a communication system such that the properties are maintained. The com-

munication system is defined by its topology, i.e. the set of links and intermediate nodes used for

communication, the routing protocol, the medium access control protocol, the type of interfaces and

all other parameters like transmission power and rate.

The design flow proceeds in two steps. In the first step, designers have to project the

system properties to properties that the communication infrastructure must satisfy. For instance, at

the specification level components communicate over point-to-point channels exchanging abstract

data types called tokens. A token can be a real number of an image. The amount of data that is

exchanged between them (for instance all the numbers that describe an image) translates to a certain

amount of bits per token. After the execution rate of the components has been fixed, it is possible

to define a minimum bandwidth requirement between the two components. This requirement is

the property that the communication system must guarantee. Then, the communication system

is designed by assembling communication components in such a way that all requirements are

guaranteed.

Although the first step that may expose some difficulties, we focus on the second step

whose complexity is due to the large number of components to be interconnected and the stringent

cost and performance requirements. In this thesis we develop a Platform-Based design methodology

for communication system design.

2Examples of properties are response time, volume of data to be transferred among components, cost and power
consumption.

14

Chapter 2

Design Methodologies

The problem of designing complex systems can be tackled by raising the level of abstrac-

tion at which the design is carried out. Unnecessary information is hidden from the designer who is

left with a limited, and therefore manageable, set of choices. Abstraction must be done in a judicious

way, so as to preserve the accuracy of those metrics that are used to rank system level design so-

lutions. System-level design means different things to different communities. For System-on-Chip

designers, this term commonly refers to the design of systems conducted at a level of abstraction

that is higher than RTL (for hardware) and C or assembly language (for software). For automotive

companies, system-level design is conducted at even higher abstraction levels, where a system is

comprised of several networked Electronic Control Units (ECU) and mechanical parts.

System-level design for SoCs became popular in the research community in the 90’s.

Many researchers proposed different ways of raising the level of abstraction and bringing a de-

sign from concept all the way down to implementation, using different methodologies. A design

methodology is a procedure that, when followed, should lead to a design with guaranteed quality.

15

The metrics used to judge the quality depend on the application domain. A design flow that adopts

a certain methodology and solves a design problem in a specific application domain has an input

and an output. The input consists in the the problem specification. The output is an implementable

system. Depending on the abstraction gap between the specification and the implementation, the

number of free variables that need to be fixed to obtain a deterministic design can be very large. A

design methodology helps in exploring the space of the free variables in an intelligent way, such

that the complexity can be managed by the designers.

Two generic design methodologies are top-down and bottom up. In a top-down design

methodology, the abstract specification is refined incrementally by fixing a few variables at the time

in a predefined order. This methodology is not always effective. In fact, the quality of the design

depends on how related are the successive design phases.

An example of top-down design methodology for circuit design is the traditional logic

synthesis design flow. In this design flow, a technology independent optimization is followed by

technology mapping and place-and-route. This sequence of optimization steps does not yield good

results in all cases. Interconnect delay is becoming so important that logic synthesis and place-and-

route cannot be completely orthogonal design steps, rather, one may want to consider the impact of

routing and wire delay already during technology mapping [98, 109].

In a bottom-up design methodology, an implementation platform is designed to satisfy a

class of applications. The platform is constructed mainly by experience from previous designs, rely-

ing on predefined architecture templates and selecting the set of components (that includes usually

programmable ones). The specification is then satisfied by customizing the implementation. This

methodology usually leads to over-designed systems.

16

In recent years, a novel design methodology called Platform-Based Design (PBD) [45,

110, 101] has been proposed and successfully adopted in many application domains. This methodol-

ogy is a meet-in-the-middle, where constraints are propagated top-down and performances bottom-

up. The implementation of a specification is obtained by a mapping step that matches the con-

straints and the performance while minimizing a cost function. One of the key elements of PBD

is the orthogonalization of function (what a system is supposed to do) and architecture (how the

system actually implements the required functionality), and computation and communication that

is particularly important to allow the reuse of the same component in different contexts. Given a

set of interacting components that have been pre-designed and pre-verified, a desirable feature of

a design methodology is that the composition does not introduce undesired behaviors. This can

be achieved by allowing the designer to state the properties that the communication system must

satisfy, and provide her with a design methodology and a set of tools for communication design

(Communication-Based Design and Communication Synthesis, respectively).

2.1 System-Level Design

A design flow starts with the specification of the functionality and constraints that must

be satisfied by an implementation. Then, a synthesis process consists of using a set of primitives

available to the designer to implement the specification so that the constraints are satisfied and

the functionality guaranteed. The higher the level of abstraction, the easier it is to express the

functionality and the constraints as well as to catch design errors early. However, quickly reaching

a high-quality implementation is more difficult, due to the semantic gap between specification and

implementation. Thus, researchers have either chosen to remain at high-levels of abstraction and

17

optimize high-level structures, or to begin with a low-level of abstraction that could reflect the

characteristics of the implementation space. This is the case of early work in System-Level Design

as in [102, 54, 44] where the specification, captured using a formal model, is partitioned in hardware

and software (Hardware/Software Co-Design).

Gupta and De Micheli [54] presented a system-level design flow for hardware/software

co-design shown in Figure 2.1(a). The specification is captured in a language called HARDWAREC

which extends the standard C language with concurrency and is based on a formal semantics. The

HARDWAREC description is then translated into an internal representation that allows verification

and synthesis. The synthesis consists in partitioning the specification tasks into hardware and soft-

ware while also taking into account the overhead of the interface between the two. The partition

should minimize implementation cost while satisfying non-functional constraints, like rate of ex-

ecution and latency, captured in the specification. The design methodology proposed by Ernst et

al. [44] is shown in Figure 2.1(b). In this case the specification is captured in a formal language

called CX that is translated into a graph-based internal representation. The specification is parti-

tioned into hardware and software and standard tool chains are used to generate the gate level and

the assembly level descriptions, respectively.

The approach presented by Gajski [48] proposed the idea of having two abstraction layers.

The specification of the problem is captured by a model called Program-State Machine (PSM) that

is based on Statecharts [56] and Communicating Sequential Processes [60]. The input description

is then translated into an internal representation that can be used for synthesis. The first step of

the synthesis flow consists of allocating resources (processors, memories, busses and hardware) and

partitioning the functionality on these resources. The second step is the refinement of the hardware

18

shows the essential aspects of this approach. A behavioral specification is captured into a system model

that is partitioned for tentative implementation into hardware and software. The partitioned model is

then synthesized into interacting hardware and software components for the target architecture shown

in Figure 5. The target architecture uses one processor which is embedded with an application-specific

hardware. The processor uses only one level of memory and address-space for its instructions and data.

At this time, the application-specific hardware is not pipelined, for the sake of simplifying the synthesis

and performance estimation task for the hardware component. Even with its relative simplicity, the target

architecture is applicable to a wide-class of applications in embedded systems.

Partition
MODEL

SPECIFICATION

process (a, b, c)
 in port a, b;
 out port c;
{
 read(a);
 ...
 write(c);
}

Capture Synthesize

- tradeoffs- performance estimation

- constraint analysis

ASIC

line()
{
a = ..
...
detach
}

circle()
{
r = ...
...
detach
} Interface

- concurrency

- synchronization

Processor

Figure 4: Synthesis approach to embedded systems.

Among the related work, [9] presents implementation of hardware or software from a co-specification;

[10] describes synthesis of hardware or software for interface circuits; [11] describes a methodology for

generation for hardware and software based on a unified FSM based model; given a system specification

as a C-program [12] identifies portions of the program that can be implemented into hardware in order

to achieve a speedup of overall execution times. [13, 14] present frameworks for generation of hardware

and software components of a system. Several new architectures have been proposed that use field-

programmable gate arrays to create special purpose co-processors to speed-up applications (PAM [15],

MoM [16]) or to create prototypes (QuickTurn [17]).

This article is organized as follows. In Section 2 we present how we capture system functionality and

constraints into an intermediate representation where partitioning trade-offs can be explored systematically.

Section 3 we introduce a technique for partitioning system functionality. Section 4 presents synthesis

techniques used for realizing mixed system designs. In Sections 5 and 6 we present an example design

and conclusions from our experiments in system synthesis.

2 Capturing specification of system functionality and constraints

We describe system functionality using a hardware description language, HardwareC [18]. The co-

synthesis approach formulated here does not depend upon the particular choice of the HDL and could

use other HDLs such as VHDL or Verilog. However, use of HardwareC leverages the use of Olympus

4

(a) System-level design flow presented in [54]

Communication

overall timing might be worse than

before partitioning.

Communication area overhead: Be- ,

sides obvious wiring overhead, ~

communication can require buffers
or memories. Buffer or memory size
estimation is not always a simple
problem.

Interlocks: If variables are allocated
to an external hardware register,
they might not (jet) be available by

the time the processorsoftware can
process them. This leads to waiting

time in the software.
Compilereffects: When a program is
fragmented by the extraction of i
statements or basic blocks, the effi-
ciency of compiler optimization

will change. Also, pipeline efficien-
cy and concurrent unit utiliza-

tion (superscalar architectures) will
be different. These effects are hard
to predict.

HardwareC

In addition to the large design space ~

including processor selection, peripher- ~

a1 component and coprocessor defini- 1
tion, and synthesis, which we pointed
out earlier, these side effects make it ~

even harder for a system designer to par- ~

tition at levels of finer granularity. There j Figure 1. The Cosyma system.

are a few exceptions such as floating- '

point or graphics coprocessots.
Nevertheless, finegrain partitioning suitable for partitioning. The following ~

offers a high potential for system optimi- of this internal r e p i

zation, as we will show in our examples.

input constructs including dynamic meet the first and second requirements
ing is one opportunity provided by hard- ' It should completely represent all ly used in high-level synthesis, does not

our approach concentrates on finegrain ~ data structures, recurrence, parallel but is appropriate for the last two. There

The user should have strong influ- ~ graph, or ES graph, which is a syntax

scheduling on the graph should be

possible.

i A control and dataflow graph, typical- The exploitation of fine-grain partition- i

waresoftware cosynthesis. Therefore,

partitioning (currently on the basic-

for coarsegrain partitioning.

The Cosyma system

veloped the cosynthesissystem Cosyma I
(cosynthesis for embedded architec- ,

tures). Figure 1 gives an overview. The
system description in C" is translated ~

into an internal graph representation 1

processes, and timing. ~ fore, we defined an extended syntax

ence on the syntactic structure of ' graph extended by a symbol table and

the software (to maintain good p r e local data and control dependencies.12
grarnming style). The ES graph is a directed acyclic graph

As a platform for our research, we d e ~ The representation should support ~ describing a sequence of declarations,

partitioning and generation of a ~ definitions, and statements. Each identi-
hardware description for parts ~ fier occumng in the graph is accompa-
moved to hardware. 1 nied by a pointer to its definition.

Estimation techniques such as a ~ Conversely, pointers to all instances ex-
simple runtime estimation by local ~ tend each definition, building an implic-

block-level only), but we can also use it

,
~

DECEMBER 1993 67

(b) System-level design flow presented in [44].

Figure 2.1: System-level design flows presented in early papers on this topic.

19

and software components. Other important work are related to mapping of applications to architec-

tures taking into account different aspects like communication [106] and memory hierarchy [74].

Similar ideas have been also exploited in the Polis [15] project which already embodies

some platform-based design concepts (see Section 2.2). The specification is captured using a partic-

ular model of computation called Co-Design Finite State Machine (CFSM) that can efficiently rep-

resent software and hardware. Each CFSM can be automatically refined into a software program, or

into a hardware description language through synthesis algorithms. The result of the synthesis can

be fed into standard refinement and synthesis flow to arrive at the final implementation of the entire

system. The interface between hardware and software, as well as the real time operating system,

can also be automatically generated. The Polis approach was somehow limited by the expressive-

ness of the model of computation that was suited for control dominated applications. Its successor,

Metropolis [17], covers a broader rage of applications by providing a metamodel that can be used

to described several other models of computation. Moreover, the metamodel can be used to capture

architectural components, their composition and the quantities characterizing the performance and

cost of each component. Mapping of a functional description on an architecture is achieved by syn-

chronizing functional events and architectural events [16] using the Metamodel language features.

Given its flexibility, the Metropolis infrastructure can be used to implement application specific

design flows [100]. A further evolution of Metropolis is under development [10].

Other languages and tools for system level design exists and are offered by industry and

academia. A comprehensive survey is provided by Douglas Densmore et. al in [39].

20

2.2 Platform-Based Design

We introduce Platform-Based Design (PBD) with an example. Assume we want to inter-

connect a set of nodes (e.g., computers) so that every node in the set can access every other node.

Initial specifications may include the quality of service that each connection must be able to sup-

port, such as the required bandwidth and the maximum latency of the communication. We can solve

this problem by constructing a network made of several different components such as routers, hubs,

modems, protocol stacks, and links of different nature. The resources must be sized to satisfy the

required constraints. However, the gap between our original, high–level, specification, and the im-

plementation is obviously too large to be bridged in a single synthesis step: clearly, enumerating all

possible topologies and interconnections is not practical, even for networks of modest complexity.

A better way of approaching this problem is to divide this gap in several layers, where each layer

focuses on a particular design choice. The question is then whether this division is optimal and,

more importantly, how much of the entire design space can be explored. Answering these questions

gives us an idea of the quality of the solutions that we obtain. Our approach consists of quantifying

the design exploration process by relating the levels of abstraction corresponding to different layers.

If two layers are too far apart then performance estimation will likely be poor and will not provide

the necessary support for the synthesis algorithms.

In this context, a platform consists of a set of library elements, or resources, that can be

assembled and interconnected according to predetermined rules to form a platform instance. One

step in a platform-based design flow involves mapping a function or a specification onto different

platform instances, and evaluating their performance. This step is pictorially represented by a bow

tie as in Figure 2.2. The left side of the bow tie represents the application space. One particular

21

Ap
pl

ica
tio

n
Sp

ac
e

Platform

Platform Instance

Function

Constraint Propagation Performance Abstraction

Ap
pl

ica
tio

n
Sp

ac
e

Platform

Platform Instance

Function

Constraint Propagation Performance Abstraction

Level 1

Level 2

Figure 2.2: Pictorial representation of a platform-based design flow.

functional specification is a point in this space and it is called the function. The function is the

design intent, or better, what the system is supposed to do. The right side of the bow tie is the

implementation space and it is called the platform. A platform is the set of all valid compositions

of library elements. One particular composition is called a platform instance. A platform instance

can implement many different specification in many different ways. For instance, given a particular

network, the same end-to-end constraints can be satisfied by selecting many different paths in the

network for each constraint. Indeed, platform instances are characterized by performances that can

be computed from the performances of the components and their relations. The mapping of the

specification on the platform instance consists in selecting its parameters optimally such that the

final cost is minimized and the performance matches the constraints. The result of mapping is a

refinement of the original specification and of the platform instance, and plays the role of a new

function at the lower level of abstraction.

22

Similar diagrams can be also found in early work by Gajski and Kuhn in 1987 [47],

and Kienhuis et al. in 1997 [70]. Both diagrams are called Y-charts but they have very different

meanings. The Y-chart presented by Gajski and Kuhn shows three different axes along which a

design can be represented: the structural, functional and geometrical representation. For each of

these axes, several abstraction levels are presented. This specific type of Y-chart is then used to

show the levels of abstractions touched by several design flows. The Y-chart presented by Kienhuis

is instead very close to the platform-based design view.

2.2.1 Formalizing Platform-Based Design

In this section we formalize Platform-Based Design (PBD) [45, 28, 123] using a rigorous

algebraic framework to provide a methodology where we can conjugate the ease of expressing and

verifying designs of high-levels of abstraction with the quality of low-level implementations. In

Chapter 4 we use the same concepts developed in this section to formalize a platform-based design

methodology for communication systems.

A platform consists of a set of library elements, or resources, that can be assembled and

interconnected according to predetermined rules to form a platform instance.

Our formalization of the platform-based design methodology is based on the framework

of Agent Algebra [95]. Informally, an agent algebra Q is composed of a domain D that contains

the agents under study for the algebra, and of certain operators that formalize the most common

operations of the models of computation used in embedded system design. Different models of

computation are constructed by providing different definitions for the domain of agents and the

operators. The algebra also includes a master alphabet A that is used as the universe of “signals”

that agents use to communicate with other agents.

23

Definition 1. An agent algebra Q has a domain Q.D of agents, a master alphabet Q.A , and three

operators: renaming, projection and parallel composition, denoted by rename(r), pro j(B) and ‖.

Each agent p ∈Q.D is associated with an alphabet A⊆A .

The operators of the algebra are partial functions on the domain D and have an intu-

itive correspondence with those of most models of concurrent systems. The operation of renaming,

which takes as argument a renaming function r on the alphabet, corresponds to the instantiation of

an agent in a system. The renaming function is required to be a bijection, so that renaming is pre-

vented from altering the structure of the agent interface, by for example “connecting” two signals

together. Projection corresponds to hiding a set of signals, and takes the set B of signals to be re-

tained as a parameter. Hence it corresponds to an operation of scoping. Finally, parallel composition

corresponds to the concurrent “execution” of two agents. It is possible to define other operators. We

prefer to work with a limited set and add operators only when they cannot be derived from existing

ones. In particular, we will be mainly concerned with the operator of parallel composition. The op-

erators must satisfy certain axioms that formalize their intuitive behavior and provide some general

properties that we want to be true regardless of the model of computation. For example, parallel

composition must be associative and commutative. The definitions of the operators is otherwise

unspecified, and depends on the particular agent model being considered.

The notion of refinement in each model of computation is represented by adding a pre-

order (or a partial order) on the agents, denoted by the symbol �. The result is called an ordered

agent algebra. We require that the operators in an ordered agent algebra be monotonic relative to

the ordering. This is essential to apply compositional techniques. However, since these are par-

tial functions, this requires generalizing monotonicity to partial functions. This generalization is

24

however beyond the scope of this thesis. The interested reader is referred to [95] for more details.

It is easy to construct an agent algebra Q to represent the interface that components expose

to their environment. In this case, the set D consists of the agents of the form p = (I,O) where

I ⊆Q.A is the set of input ports of the components and O ⊆Q.A the set of output ports. The

alphabet of an agent p is simply A = I ∪O, and we require that the set of inputs and outputs be

disjoint, i.e., I ∩O = /0. The parallel composition p = p1 ‖ p2 is defined only if the sets O1 and

O2 are disjoint, to ensure that only one agent drives each port. When defined, a port is an output

of the parallel composition if it is an output of either agent. Conversely, it is an input if it is an

input of either p1 or p2, and it is not concurrently an output of the other agent. Thus O = O1∪O2

and I = (I1∪ I2)− (O1∪O2). Given the definitions, it is clear that in this example connections are

established by name.

The model can be enriched by including type information in the form of a set of possible

values for each port. To ensure type consistency, parallel composition is defined only if the type

of an output port is contained in the type of the corresponding input port, if one exists. For the

refinement relationship, we choose to order agents p1 = (I1,O1) and p2 = (I2,O2) so that p1 � p2 if

and only if p1 and p2 have the same sets of inputs and outputs. In addition, the type of the inputs of

p1 must contain the type of the inputs of p2, while the type of the outputs of p1 must be contained

in the type of the outputs of p2. This ensures that p1 can handle all the inputs that p2 can, and does

not generate outputs that p2 does not.

The model can be further enriched with information about the nature of the signals used

by the agents. For instance, in the case of agents that describe communication topologies, signals

can be distinguished between those that belong to a link, denoted by the symbol l, and those that

25

belong to a component, denoted by the symbol n (non-link). We call this a typed IO agent algebra.

The sets I and O of an agent p thus become sets of pairs of signals together with their type, i.e.,

I ⊆ {(a, t) : a ∈Q.A ∧ t ∈ {l,n}} and similarly for the output ports. Parallel composition can also

be modified so that the operation is defined only if the ports of the agents being connected are not

of the same type, i.e., a link must be used to connect two regular ports. Hence, p1 ‖ p2 is defined if

and only if for all i ∈ I1 and for all o ∈ O2, if i.a = o′.a then i.t 6= o′.t, and viceversa for p2 and p1.

With these definitions, it is in general not possible to derive the components from the

composite. Later, we will see how this can be accomplished for a different model that we use to

define architectures. There, we will also introduce non-trivial orderings of the agents.

We relate different agent algebras by means of conservative approximations. A conser-

vative approximation from Q to Q′ is a pair Ψ = (Ψl,Ψu), where Ψl and Ψu are functions from

Q.D to Q′.D. The first mapping is an upper bound of the agent relative to the order of the algebra:

for instance, the abstract agent in Q′ represents all of the possible behaviors of the agent in the

more detailed domain Q, plus possibly some more. The second is a lower bound: the abstract agent

represents only possible behaviors of the more detailed one, but possibly not all. Formally, a con-

servative approximations is an abstraction that maintain a precise relationship between the orders in

the two agent algebras.

Definition 2. Let Q and Q′ be ordered agent algebras, and let Ψl and Ψu be functions from Q.D

to Q′.D. We say that Ψ = (Ψl,Ψu) is a conservative approximation from Q to Q′ if and only if for

all agents p and q in Q.D,

Ψu(p)�Ψl(q)⇒ p� q.

Thus, when used in combination, the two mappings allow us to relate refinement verifi-

26

cation results in the abstract domain to results in the more detailed domain. Hence, the verification

can be done in Q′, where it is presumably more efficient than in Q. The conservative approxima-

tion guarantees that this will not lead to a false positive result, although false negatives are possible

depending on how the approximation is chosen.

To define the inverse Ψinv of an approximation, we investigate whether there are agents

in Q.D that are represented exactly by Ψu and Ψl rather than just being bounded. We do so by

only considering those agents p for which Ψl(p) and Ψu(p) have the same value p′. Intuitively, p′

represents p exactly in this case, and we therefore define Ψinv(p′) = p. If Ψl(p) 6= Ψu(p), then p is

not represented exactly in Q′. In this case, p is not in the image of Ψinv.

Definition 3. Let Ψ = (Ψl,Ψu) be a conservative approximation from Q to Q′. For p′ ∈Q′.D, the

inverse Ψinv(p′) is defined and is equal to p if and only if Ψl(p) = Ψu(p) = p′.

If the algebra Q is partially ordered (as opposed to preordered), the inverse of the con-

servative approximation is uniquely determined. Otherwise, a choice may be possible among order

equivalent agents. In all cases, however, because of the defining properties of a conservative ap-

proximation, Ψinv is one-to-one, monotonic, and inverse of both Ψl and Ψu.

Assume now that for an agent p, Ψinv(Ψl(p)) and Ψinv(Ψu(p)) are both defined, It is easy

to show that Ψinv(Ψl(p)) � p � Ψinv(Ψu(p)). This fact makes precise the intuition that Ψl(p) and

Ψu(p) represent a lower and an upper bound of p, respectively.

We can use agent algebras to describe formally the process of successive refinement in

a platform-based design methodology. There, refinement is interpreted as the concretization of a

function in terms of the elements of a platform. The process of design consists of evaluating the

performance of different kinds of instances in the platform by mapping the functionality onto its

27

different elements. The implementation is then chosen on the basis of a cost function. We use three

distinct domains of agents to characterize the process of mapping and performance evaluation. The

first two are used to represent the platform and the function, while the third, called the common se-

mantic domain, is an intermediate domain that is used to map the function onto a platform instance.

A platform, depicted in Figure 2.3 on the right, corresponds to the implementation search

space.

Definition 4. A platform consists of a set of elements, called the library elements, and of composi-

tion rules that define their admissible topologies of interconnection.

To obtain an appropriate domain of agents to model a platform, we start from the set

of library elements D0. The domain of agents D is then constructed as the closure of D0 under the

operation of parallel composition. In other words, we construct all the topologies that are admissible

by the composition rules, and add them to the set of agents in the algebra. Each element of the

architecture platform is called a platform instance.

Performance evaluation usually requires that the elements of a platform include informa-

tion regarding their internal structure. Thus, an algebra such as the typed IO agent algebra described

is not suitable for this purpose, since composition does not retain the structure of the agent. The

IO agents can, however, be used as library elements D0. A new domain of agents D can then be

constructed as follows. If p0 ∈D0 is a library element, we include the symbol p0 in the set of agents

Q.D. We then close the set D under the operation of parallel composition. However, we represent a

composition p = p1 ‖ p2 in Q as the sequence of symbols p1 ‖ p2. By doing so, we retain the struc-

ture of the composite, since all the previous composition steps are recorded in the representation.

We call this process a platform closure.

28

Definition 5. Given a set of library elements D0 and a composition operator ‖, the platform closure

is the algebra with domain

D = {p : p ∈ D0}∪{p1 ‖ p2 : p1 ∈ D∧p2 ∈ D} (2.1)

where p1 ‖ p2 is defined if and only if it can be obtained as a legal composition of agents in D0.

The construction outlined above is general, and can be applied to building several different

platforms, as will be shown later. The result is similar to a term algebra with the “constants” in D0

and the operation of composition. Unlike a term algebra, however, our composition is subject to

the constraints of the composition rules. For example an “architecture” platform may provide only

one instance of a particular processor. In that case, topologies that use two ore more instances are

ruled out. In addition, the final algebra must be taken up to the equivalence induced by the required

properties of the operators. For example, since parallel composition must be commutative, p1 ‖ p2

should not be distinguished from p2 ‖ p1. This can be accomplished by taking the appropriate

quotient relative to the equivalence relation. The details are outside the scope of this thesis.

On the other hand, the function, depicted in Figure 2.3 on the left, is represented in an

agent algebra called the specification domain. Here the desired function may be represented deno-

tationally, as the collective behavior of a composition of agents, or may retain its structure in terms

of a particular topology of simpler functions. The denotational representation is typically used at

the beginning of the platform-based design process, when no information on the structure of the

implementation is available. Conversely, after the first mapping, the subsequent refinement steps

are started from the mapped platform instance, which is taken as the specification. Thus, a common

semantic domain, described below, is used as the specification domain. However, contrary to the

mapping process that is used to select one particular instance among several, when viewed as a

29

Library Elements

Platform Instance

Architecture Platform

Function

Function Domain Closure

Figure 2.3: Architecture and Function Platforms

representation of a function the mapped instance is a specification, and it is therefore fixed.

The function and the platform come together in an intermediate representation, called

the common semantic domain. This domain plays the role of a common refinement and is used to

combine the properties of both the platform and the specification domain that are relevant for the

mapping process. The domains are related through conservative approximations.

Definition 6. Given a platform QP and specification domain QS, a common semantic domain

is an agent algebra QC related to QP and QS through conservative approximations ΨP and ΨS,

respectively.

In particular, we assume that the inverse of the conservative approximation is defined at

the function that we wish to evaluate. The function therefore is mapped onto the common semantic

domain as shown in Figure 2.4. This mapping also includes all the refinements of the function that

are consistent with the performance constraints, which can be interpreted in the semantic domain.

30

Platform Realizations Library Elements

Platform Instance

Architecture Platform

Function

Admissible Refinements

Mapped Instance

Function Domain Common Semantic Domain Closure

Figure 2.4: Mapping of function and architecture

If the platform includes programmable elements, the correspondence between the plat-

form and the common semantic domain is typically more complex. In that case, each platform

instance may be used to implement a variety of functions, or behaviors. Each of these functions is

in turn represented as one agent in the common semantic domain. A platform instance is therefore

projected onto the common semantic domain by considering the collection of the agents that can

be implemented by the particular instance. This projection, represented by the rays that originate

from the platform in Figure 2.4, may or may not have a greatest element. If it does, the greatest

element represents the non-deterministic choice of any of the functions that are implementable by

the instance.

The common semantic domain is partitioned into four different areas. We are interested

in the intersection of the refinements of the function and of the functions that are implementable by

the platform instance. This area is marked “Admissible Refinements” in Figure 2.4. Each of the

admissible refinements encodes a particular mapping of the components of the function onto the

services offered by the selected platform instance. These can often be seen as the covering of the

31

function through the elements of the platform library. Of all those agents, those that are closer to

the greatest element are more likely offer the most flexibility in the implementation. Once a suitable

implementation has been chosen (by possibly considering different platform instances), the same

refinement process is iterated to descend to an even more concrete level of abstraction. The new

function is thus the intersection of the behavior of the original function and the structure imposed

by the platform. The process continues recursively at increasingly detailed levels of abstraction to

come to the final implementation.

2.2.2 Example

Figure 2.5 shows and example of PBD flow applied to communication synthesis. First,

we define a simple agent algebra Q to represent the interface that components expose to their

environment. In this case, the set D consists of the agents of the form p = (I,O) where I ⊆Q.A

is the set of input ports of the components and O ⊆ Q.A the set of output ports. The alphabet

of an agent p is simply A = I ∪O, and we require that the set of inputs and outputs be disjoint,

i.e., I ∩O = /0. The parallel composition p = p1 ‖ p2 is defined only if the sets O1 and O2 are

disjoint, to ensure that only one agent drives each port. When defined, a port is an output of the

parallel composition if it is an output of either agent. Conversely, it is an input if it is an input

of either p1 or p2, and it is not concurrently an output of the other agent. Thus O = O1 ∪O2 and

I = (I1 ∪ I2)− (O1 ∪O2). Given the definitions, it is clear that in this example connections are

established by name.

The model can be enriched with information about the nature of the signals used by the

agents. For instance, in the case of agents that describe communication topologies, signals can be

distinguished between those that belong to a link, denoted by the symbol l, and those that belong

32

to a component, denoted by the symbol n (non-link). We call this a typed IO agent algebra. The

sets I and O of an agent p thus become sets of pairs of signals together with their type, i.e., I ⊆

{(a, t) : a ∈Q.A ∧ t ∈ {l,n}} and similarly for the output ports. Parallel composition can also be

modified so that the operation is defined only if the ports of the agents being connected are not of

the same type, i.e., a link must be used to connect two regular ports. Hence, p1 ‖ p2 is defined if

and only if for all i ∈ I1 and for all o ∈ O2, if i.a = o′.a then i.t 6= o′.t, and viceversa for p2 and p1.

The domain for each platform in Figure 2.5 is obtained following the construction of

Definition 5. The set of library elements consists in all cases of appropriate subsets of the typed IO

agent algebra. At the highest level of abstraction, the connectivity platform Qc is only concerned

with point-to-point connections between sources and destinations. The library elements of Qc are

of three types: the set of sources S = {(I,O) : I = /0}, the set of destinations D = {(I,O) : O = /0},

and the set of point-to-point links L = {(I,O) : |I|= |O|= 1}. Furthermore, the input and output

ports of sources and destinations must all have type n, while ports that belong to links have type l.

Hence, given the rules of composition, it is not possible to connect sources and destinations directly.

Architecture templates in the connectivity platform are simply point-to-point connections among a

set of source and a set of destination agents.

A preorder in this algebra can be defined by considering substitutability. In general, an ar-

chitecture that offers more connections can be substituted for another that offers fewer connections.

Hence we define p1 � p2 if and only if p1 and p2 have the same set of sources and destinations,

and for each link between a source-destination pair in p2, there is a corresponding link between

the same source-destination pair in p1. To illustrate the order, consider the simple case shown in

Figure 2.5 to the right. There, one source s1 is connected to two destinations d1 and d2. The most

33

refined architecture instance includes all links of s1 to d1 and d2. Intermediate architectures include

only one link to either d1 or d2. The greatest element is finally the architecture with no links. The

connectivity platform could be used to evaluate the impact of connectivity on the performance of a

system.

The function to be implemented on the architecture is represented in some suitable do-

main. This domain depends on the application. For instance, multimedia applications are usually

described using non-deterministic Khan Process Networks (KPN). For the purpose of mapping, the

function is abstracted using a conservative approximation Ψ f from the function domain to a com-

mon semantic domain, that we call abstract function domain, described by a typed IO agent algebra

Qc f that includes multicommodity flow information.

A commodity is a pair of element (cn,cv) where cn is the type of the commodity and

cv ∈R+ is the commodity value (we only consider this simplified description of the communication

requirements to keep the exposition simple, but other constraints could be take into account like

latency and statistical properties). A port of an agent in the abstract function domain includes a

commodity in addition to its type. A parallel composition is defined only if the link connected to a

port carries the same commodity with a higher value. An order for this model can be defined by con-

sidering the connectivity (as for the connectivity platform) and multicommodity flow containment

(flows have the order induced by the reals). The approximation Ψ f maps the input and output ports

of a function to abstract source-destination pairs and the communication channels to links. The

conservative approximation also assigns commodities to ports, that are estimates of the bandwidth

required by the communication. Since the abstract model has no information about the behavior,

none of the processes can be represented exactly, and the inverse of the conservative approximation

34

is not defined.

The inverse of conservative approximation Ψc
inv maps a connectivity platform instance

in the abstract function domain. If there exists an instance with the required connectivity (case 1

in Figure 2.5), then it is possible to find a set of admissible refinement in the common semantic

domain. It might happen, though, that the intersection between the function instance concretization

and the platform instance concretization is empty. This is the case, for example, when there is

a constraint on the maximum number of links in the connectivity platform. Among all agents in

the set of admissible refinement, the greatest element is the one having the minimum number of

connections, each carrying the minimum commodity such that the function instance constraints are

still satisfied. This agent, that we call connectivity instance, is selected as the function instance for

the next level of abstraction. This choice is made by considering that connections and commodity

values are constraints that must be satisfied in some common semantic domain at lower level of

abstractions. This agent is the less constraining agent and is therefore a good candidate for cheap

implementations.

Platforms used in communication synthesis, however, often include more complex topolo-

gies. To model this situation we build the topology platform Qt , which uses the same elements of

the connectivity platform with the addition of a library component called router. The set of routers

is formally defined as R = {(I,O) : (|I| ≥ 1∧|O|> 1)∨ (|O| ≥ 1∧|I|> 1)}. Notice that we are not

yet considering simple one-input one-output FIFOs. The ports of a router are required to be of type

n, so that links must be used to connect routers to the other elements of the platform. The routers

allow one to construct all the well known topologies like rings, crossbars, stars and busses.

The ordering of agents is defined by the underlying connectivity and the number of hops

35

on each source-destination path (number of routers among all paths from source to destination). In

particular p1 � p2 if and only if p1 connects more source-destination pairs than p2 with fewer or as

many hops. We can establish a relationship between the topology and the connectivity platform by a

conservative approximation Ψt . The upper bound ignores the routers by constructing the underlying

connectivity, while the lower bound is obtained by considering only the existing point-to-point links

between sources and destinations. The inverse of the approximation Ψt
inv thus maps the connectivity

instance to the corresponding fully connected topology.

A mapping between connectivity instance and communication topology is realized in a

common semantic domain Qsp which contains both topology and multicommodity flow informa-

tion. Point-to-point connections in Qc f become source-destination paths in Qsp.

The algebra Qsp is similar to Qc f with the addition of routers as library components.

The library of this platform consists of sets of elements, one for each of the element type: sources,

destinations, links and routers. For instance there are several types of links depending on their

commodities.

The common semantic domain Qsp is related to the abstract function domain Qc f and the

topology platform Qt through appropriate conservative approximations Ψ f s and Ψs, respectively.

In either case, the approximation ignores the information not contained in the respective abstract

algebra. The lower bound defines, as usual, the conditions under which the representation is exact.

For example, a fully connected topology in Qsp can be represented exactly in Qc f . Similarly, any

topology with zero flows is represented exactly in Qt . The inverses Ψ f s
inv and Ψs

inv of such approxi-

mations thus establish correspondences between the elements of Qc f and Qsp and between Qt and

Qsp. In particular, a topology in Qt is refined in an ordered set of topologies by Ψs
inv, the greatest

36

element being the topology with commodities all equal to zero. Similarly, a multicommodity flow

connectivity graph in Qc f is mapped by Ψ f s
inv to all the possible topologies and their flows that satisfy

the connectivity and multicommodity flow constraints imposed by the connectivity instance. These

mappings are represented by the triangles in Figure 2.5, which denote all the refinements in addi-

tion to the mapped element. The intersection of these sets represents all the possible networks that

satisfy connectivity and multicommodity flow requirement. It is possible that a specific topology

maps to a set which does not intersect the concretization of the connectivity instance in the common

semantic domain. In that case, the topology is ruled out from the search space.

37

Figure 2.5: Platform-based design flow for communication synthesis

38

Chapter 3

Communication Synthesis

A communication system is the inner layer of a larger system composed of communicat-

ing agents. A communication system should offer the connectivity with a guarantee level of Quality

of Service (QoS). Connectivity between two agents exists if it is possible for them to engage in an

exchange of information. The performance guarantee associated with a connection, like for instance

minimum bandwidth or maximum latency, are called Quality of Service. We refer to connectivity

and QoS as end-to-end communication constraints 1. Given a set of end-to-end constraints, and

a set of components (i.e. nodes and links) that can be used to build a communication system, a

communication synthesis flow automatically builds a network such that the constraints are satisfied

and the total network cost is minimized.

The level of abstraction at which the communication synthesis problem is captured is

much higher than the one in which the implementation is ultimately described. To bridge this gap,

the design is split into several steps that go from the selection of the topology to the selection of

the protocols and interfaces needed to derive the final implementation. In this chapter we discuss

1In other contexts, end-to-end constraints are referred to as demands.

39

some previous work that focuses on the optimization of networks. We first introduce the notion

of flows that represent the flow of information between nodes. Then, we review some work in

optimal network design that deals with networks where some particular structural properties must

be satisfied. In the concluding remarks of this chapter we motivate the need for a formal model and

a framework for communication design in embedded systems.

3.1 Flows

Interconnection networks are communication systems built by means of links (i.e. con-

nections that are used to directly ship goods from one node to another) and nodes (i.e. intermediate

points that serve as arrival and departure stations of goods). Networks are represented by graphs. A

graph G(V,E) is defined by a set of vertexes V and a set of edges E. Let γ : V ×V →R be a function

that associates to each pair of vertexes a real number called capacity.

Definition 7 (Flow). Let G(V,E) be a graph, s ∈ V be a source and t ∈ V a destination, and

γ : V ×V → R the capacity function associated with G. A flow in G is a function f : V ×V → R

such that:

• 0≤ f (u,v)≤ γ(u,v) for all u,v ∈V

• ∑(u,v)∈E f (u,v) = ∑(v,u)∈E f (v,u) for all v ∈ E \{s, t}

This is the classical definition of a flow [94]. If we require a certain amount of flow fs to

exit the source s and enter the destination t, we can add the following two constraints:

∑
(s,v)∈E

f (s,v) = fs, ∑
(u,t)∈E

f (u, t) =− fs

40

In general, we can write all these constraints in a matrix form that can be directly used as a linear

constraint in many linear programming formulation of flow related problems. Let order V and E

such that I = {1, . . . , |V |} is the vertex index set and J = {1, . . . , |E|} is the edge index set. Let

A = [ai j] be the node-arc incidence matrix of G such that:

ai, j =



1 i f arc j ∈ J leaves node i ∈ I

−1 i f arc j ∈ J enters node i ∈ I

0 otherwise

Let f be a vector such that f (j) is the flow on the j-th edge. Then we can write the flow constraints

as follows:

0≤ f≤ γ

Af = b

where b is a vector such that the component corresponding to s is equal to fs, the one corresponding

to t is equal to − fs and all other components are zero. The flow f can be also thought of as the

superposition of several paths in the graph and, in fact, an alternative formulation of the flow con-

straints can be directly based on paths. Constraining the flows to follow only one path in the graph

can be easily achieved by adding the following constraint: f (i) ∈ {0, fs} for all edges j ∈ J.

3.1.1 Maximum Flow

Given a graph G(V,E), a source s ∈ V , a destination t ∈ V , and a capacity function γ ,

one interesting problem to solve is to determine the maximum flow that can be shipped from s to t.

This problem is known as the single-source, single-sink, maximum-flow and has been extensively

studied. A variant of this problem is the multiple-source, multiple-sink maximum flow problem

41

where the objective is to maximize the total flow that can be shipped from a set of sources S⊂V to

a set of destinations T ⊂V . The problem can be formulated as a linear programming problem where

the objective function is the sum of the outgoing flows from all the sources. The standard methods

to solve this problem are the Ford-Fulkerson method [30] and its improvement by Edmonds and

Karp [42], and the push-relabel algorithm [53]. For communication networks, this problem models

the case where we are interested in achieving maximum bandwidth.

3.1.2 Minimum-Cost Flow

In the maximum-flow problem, the objective is to maximize the flow that corresponds to

maximizing the amount of goods that can be shipped from one point to another in a network (e.g.

bandwidth for communication systems or vehicle for transportation systems). In the minimum cost

flow problem the objective is to guarantee a certain amount of flow at minimum cost.

Consider a graph G(V,E) with an associated capacity function γ and let s ∈ V and t ∈ V

be two distinct vertexes. The amount of flow that needs to be shipped from s to t is called demand

and denoted by d. Also, let c : E×R→ R be a cost function that given an edge e(u,v) and the flow

through it f (u,v) returns a cost c(e, f (u,v)). We want to find a flow such that the demand d can be

shipped at minimum cost. The problem can be formulated as follows:

min ∑
e(u,v)∈E

c(e, f (u,v))

sub ject to

1) 0≤ f≤ γ

2) Af = b

42

This problem is called single-source, single-sink, single commodity minimum-cost flow.

A commodity can be best defined as a type of flow. This problem can be easily generalized to

multiple sources and multiple sinks by introducing two virtual nodes: one super-source feeding all

sources, and one super-sink that absorbs the flows of all sinks.

An interesting extension of the problem is to consider multiple commodities. In this

variant of the problem we have a set of source-destination pairs D = {(s1, t1), . . . ,(sk, tk)} and k

demand values d1, . . . ,dk. Each demand di represents a different commodity to be shipped from

source si to destination di. The problem can be formulated as follows:

min ∑
e(u,v)∈E

c(e, f (u,v))

sub ject to

1) f (u,v) =
k

∑
i=1

fi(u,v) ∀(u,v) ∈ E

2) 0≤ f≤ γ

3) Afi = bi

where bi is a vector such that the entry corresponding to si is equal to di, the entry corresponding to

ti is equal to −di and all the other entries are zero. This problem is also known as the capacitated

multi-commodity min-cost flow problem. Notice that the solution of this problem may very well

split a flow at a node. Whenever this is not desirable, the following constraint can be added to the

optimization problem:

4) fi(u,v) ∈ {0,di} ∀i = 1, . . . ,k , ∀(u,v) ∈ E

These flows are called unsplittable. With this additional constraint, each demand is shipped along a

single path from source to destination.

Four cases can arise depending on the cost function:

43

Case 1 The cost function is linear, i.e for all edges e(u,v) ∈ E, c(e, f (u,v)) = cu,v f (u,v). In this

case the problem is a standard linear program (LP) and becomes an integer LP (ILP) when

constraint 4 is also taken intro account.

Case 2 The cost function is concave in f (u,v) for each edge. Concave cost functions are used to

model “economy of scale”. In this case the problem is a concave minimization problem. One

practical case is represented by piecewise-linear concave cost functions. A review of different

approaches to this problem, and a new technique, can be found in [85].

Case 3 The cost function is convex in f (u,v) for each edge. This class of cost functions has been

used to model latency. In fact, the latency experienced by a flow depends on the total flow

through an edge. There are two methods to solve this problem: the flow deviation method

and the projection method (for a survey of this methods, please refer to [93]).

Case 4 The cost function is neither convex nor concave. The solution of the problem usually relies

on ad-hoc heuristic methods.

3.1.3 Minimum-Cost Flow with End-To-End Constraints

The minimum-cost flow problem and all its variants are relevant for many applications

in communication networks. The cost of a link can be modeled as the sum of an installation cost

plus an operation cost, which is usually linear in the total flow through the link. Therefore, in many

cases, the cost function is considered to be concave.

So far, the demands (i.e. the communication constraints) have been modeled by a single

number that represents the value of the amount of goods to be shipped from a source to a destination

(e.g. bandwidth). In many practical problems, it is also important to consider other performance

44

indexes. For instance, in communication networks the end-to-end delay is of extreme importance

when real-time services are involved.

Consider the case of single-source, single-destination, single commodity, uncapacitated,

unsplittable min-cost problem. The solution to this problem can be computed with Dijkstra’s

shortest path algorithm. Let δ (u,v) represent the delay on edge (u,v). The delay of a path π =

{v0, . . . ,vn} is simply δ (π) = ∑n
i=1 δ (vi−1,vi). The problem of finding the shortest path π∗ from

a source s to a destination t such that a delay constraints is met, is the constrained shortest path

problem [66]. It entails to find the shortest path π∗ from s to t such that δ (π∗)≤ ∆. This problem is

NP-hard [49]. A review of techniques to solve this problem can be found in [40]. The constrained

shortest path problem is a particular instance of the unsplittable multi-commodity flow problem

with end-to-end constraints, which is, therefore, at least NP-hard. In resource constrained systems,

like embedded systems, this class of problems is of particular interest because of their tight costs

can be accommodated.

3.2 Optimal Network Design

Flow-based formulations of network design problems opened the doors to optimal route

assignment and link capacity dimensioning. In real network design problems there are many other

constraints to take into account including the type of equipment and the topology of the network.

Excellent reviews of network design problems can be found in [69, 78, 113].

In many variants of the network design problem, the topology of a network is constrained

to be a tree. Since each customer has to be connected to the network, the problem is to find a

minimum spanning tree [30] or a minimum Steiner tree [63] (which is NP-complete in many of

45

its variants) where the customers are the leaves of the tree. Much recent work has addressed the

problem of finding such optimal trees when the switches of the network have a limited number

of ports. The problems are known as the minimum degree-bounded spanning tree [115] and min-

imum degree-bounded Steiner tree [105]. Other interesting topologies to consider are buses and

rings. Busses are appealing for their low cost and effective support of broadcast and multicast

transmissions. The main drawback is the throughput limitation imposed by the shared nature of

the communication media. Bidirectional rings are inherently fault tolerant because the provide two

paths for each source-destination pair.

In many case, communication systems are hierarchically organized. The nodes on one

level of the hierarchy offer services to the nodes at the lower level. A node on one level can use the

services of a node at higher level if they are connected by a communication link. The hierarchy can

have two or more levels. The main problem in hierarchical network design is the location of nodes,

since each node at one level of the hierarchy serves many other nodes at the lower level. A review

of hierarchical network design problems can be found in [71].

Most of the network optimization problems that arise from real life applications are hard

to solve, i.e. they are usually NP-hard. A general class of problems is called bi-criteria network

design [75] that can be formulated as follows. A bi-criteria network design problem (A,B,S) is

defined by two objectives A and B and a membership requirement S that is a class of subgraphs.

The problem is to find a network that minimizes the cost under the B objective and it is within a

budget under the A objective. The network must belong to the class S . For instance, if the class

S is the class of trees, B is the length of the links and A is the degree of the nodes, the problem is

to find a minimum length tree subject to node degree constraints. Ravi et al. prove in [105] that,

46

unless P=NP, it is not possible to find a polynomial time approximation algorithm that satisfies the

budget constraints exactly, i.e. a polynomial time approximation algorithm exists if we also relax

the budget constraints.

3.3 Concluding Remarks on Communication Synthesis

All the techniques reviewed in this chapter can be applied to the synthesis and optimiza-

tion of interconnection networks. However, each technique represents an ad-hoc solution to a spe-

cific optimization problem of the overall communication design problem. Distributed embedded

systems are the composition of heterogeneous components adopting different protocols. The prob-

lem, therefore, does not only lie in the optimization of the topology and routing of the system, but

it touches all the aspects of a communication system including protocols and interfaces.

Moreover, because the applications for which they are used are cost-sensitive, the com-

munication system that interconnects the different parts of the distributed system must be tailored

to the application requirements and cannot be over-designed. Thus, a well designed communica-

tion system is likely to be heterogeneous, given the heterogeneous nature of the distributed system.

Exploring heterogeneous composition of communication sub-systems is essential in the design ex-

ploration phase of a distributed embedded system.

The problem is too large to be tackled at one abstraction level. The communication syn-

thesis problem has to be solved ad different abstraction levels. Moreover, the solution of the entire

problem involves experts from different communities to contribute with optimization algorithms,

communication protocols, partial designs and models for communication components. All these

different aspects of the communication synthesis process should be easily mixed and matched to

47

build rigorous design flows leading to efficient solutions. To allow the exchange of benchmarks

(i.e. specification of communication requirements), components, models, algorithms and results,

the framework has to be based on a formal model that we present in Part II of this thesis.

To allow communication synthesis, we have developed COSI (COmmunication Synthesis

Infrastructure) [31], a public-domain design framework for communication design that accompa-

nies this thesis. COSI embodies a methodology based on the Platform-Based Design paradigm [45,

111]. Specifically, COSI enforces a clean separation among network specification, the library of

building blocks that can be instanced and composed to derive the network implementation, the mod-

els of performance and cost associated with each of them, and the optimization algorithms that are

used to explore the design space. Adopting this methodology allows comparing different communi-

cation system implementations and different building blocks thus smoothing out preconceived ideas

about efficiency of particular communication technology.

48

Part II

Theoretical Background

49

Chapter 4

Communication Structures

In Chapter 2, we reviewed previous work on system-level design. Many of the framework

and tools that we presented start from the description of the application in a high-level language and

build an mathematical representation that is amenable to automatic manipulation. Having a formal

model to express the system is very important to be able to formulate optimization problems and

perform analysis and verification.

This is one of the reason to develop a formal model that helps us in reasoning about com-

munication systems. As already mentioned in Section 3.3, our goal is to develop an infrastructure

for communication design that will allow the collaboration of many experts to combine optimiza-

tion algorithms, communication components, models and partial designs. To serve this purpose, we

need a formal model that is shared among different plug-ins of the same tool.

The mathematical objects that we use are called communication structures. A communi-

cation structure is a set components C and a set of configurations L. Each configuration corresponds

to a particular assignment of quantities to the components. Quantity variables are used to capture

50

either communication constraints or performance of components. We start with the definition of

quantities and communication structures.

To make the formalism understandable, we draw examples from two different applications

domains: on-chip communication and building automation systems.

4.1 Quantities

A quantity q is a variable that takes on values from a domain Dq. The domain of a

quantity is partially ordered by a relation �q. The ordering relation captures the notion of a value

being “better” than another value. We assume that ⊥, which denotes no values, always belongs to

the domain of a quantity Dq. Also, ⊥�q ν for all ν ∈ Dq. A quantity q is finite if Dq is a finite set,

and it is bounded if there exists an element ν̄ ∈ Dq such that ν �q ν̄ for all ν ∈ Dq.

Quantities capture the properties of a component. They are used to specify constraints,

i.e. the required services, as well as the performance, i.e. what level of service a component can

offer. For instance, a quantity b with domain Db = R∪{⊥} is used to specify a minimum bandwidth

requirement between a source and a destination. Another quantity γ with domain Dγ = Db is used

to capture the capacity of a link (i.e. the maximum bandwidth that a link can sustain).

Given a vector of quantities q = (q1, . . . ,qk), the domain of q is the cross product Dq1 ×

. . .×Dqk . It is partially ordered by a relation �q point-wise induced by the relations �qi . We use

the notation ⊥n to denote a n-tuple of ⊥ values.

Example 1. (Bandwidth and Delay): Consider two quantities b and l that represent bandwidth and

latency. Assume that the domains of these quantities are discrete and finite. Specifically, consider

the case where Db = {⊥,10,100} (in Mb/s) and Dl = {⊥,10,100} (in ns).

51

100[ns]

10[ns]

10[Mb/s]

100[Mb/s]

⊥ ⊥

(10[Mb/s],100[ns])

(10[Mb/s],10[ns])

(100[Mb/s],10[ns])

(100[Mb/s],100[ns])

⊥

(⊥,10[ns])

(⊥,100[ns]) (10[Mb/s],⊥)

(100[Mb/s],⊥)

Db Dt

D(b,t)

a) b) c)

Figure 4.1: Hasse diagrams relative to the domains of three quantities: a) bandwidth, b) latency, c)
the set containing both bandwidth and latency.

The two relations �b and �l correspond to the notion of “is better than” that we associate

to the value of the quantities. To this extent, 100Mb/s is better than 10Mb/s, and 10ns is better than

100ns. Therefore, the two relations are such that:

⊥�b 10�b 100, ⊥�q 100�b 10 .

Figure 4.1 shows a representation of the ordering relations using the Hasse diagrams, where we also

retain the unit of measure for the values of the quantities. Starting from the two quantities b and l,

we can define the vector of quantities (b, l). The ordering relation �(b,l) is shows in Figure 4.1-c.

Notice that, even if the two domains Db and Dl are totally ordered, the domain D(b,l) is only partially

ordered.

52

4.2 Communication Structures

The basic element of our formal framework is the communication structure. A commu-

nication structure is meant to represent a set of interconnected components. Although a communi-

cation structure is a very general concept, we will often adopt terms from network and the graph

theory since, ultimately, we will use our framework to solve communication problems. Therefore,

the set of components of a communication structure that we are going to consider are nodes (i.e.

center of computation, switching and routing) and links (i.e. communication channels that are use

to interconnect nodes). Each component is associated with quantities. For instance, each node can

be associated with a physical position, and each link with a bandwidth and a latency.

Definition 8. A communication structure is a tuple N(C ,q,L) where C = {c1, . . . ,cn} is a set of

components, q = (q1, . . . ,qk) is a vector of quantities, and L⊆ [C →Dq] is a set of communication

configurations. 1 Set C is partitioned into the set of nodes V ⊆UV and the set of links E ⊆V ×V .

Let GQ denote the set of all communication structures with quantities Q. The set UV

is called the node universe. Similarly, the component universe is UC = UV ∪U2
V , The set L of

communication configurations captures the different ways in which quantities can be associated

to components. A configuration l ∈ L is a function that associates a tuple of quantities to each

component. It is usually the case that some quantities are only meaningful when associated to nodes

while others are other meaningful for links. The value ⊥ is therefore used not only to denote that a

component cannot be configured under any circumstance, but also that a quantity has not meaning

when associated to that component. The configuration universe is Uq =∪C⊆UC
[C →Dq], the union

of all possible configurations for any subset of components. Let Gq be the set of all communication

1[X → Y] denotes the set of all functions from set X to set Y .

53

structures with quantities q. For a given subscript σ , and vector of quantities q, let Nσ ∈ Gq be a

communication structure. Then, we use Cσ ,Vσ , Eσ and Lσ to denote the sets of components, nodes,

links, and configurations of Nσ , respectively.

Example 2. (Communication structure): Consider the vector of quantities q = (x,y) representing

the horizontal and vertical coordinates of a component. The domain Dq is the set of points where

nodes can be placed. This domain can be described, for instance, by a discrete set of points or by

union of rectangles. If there are no preferred positions, the elements of Dq are not comparable,

therefore the order �q is a flat one, with ⊥ being the minimum element. Given a communication

structure N(C ,q,L), the set of configurations L captures all the admissible placements of the nodes

in V . Since we do not assign any position to the links, for all l ∈ L and for all links e ∈ E, l(e) =⊥2.

The additional constraint that no two nodes occupy the same position requires that for all l ∈ L, and

for all pair of nodes u,v ∈V , l(u) 6= l(v).

We introduce two scoping operators on configurations. Given a communication structure

N(C ,q,L), the restriction of a configuration l ∈ L to a subset of components C ′ ⊆ C , denoted

by l|C ′ , is a function f : C ′ → Dq such that f (c) = l(c) for all c ∈ C ′. In particular, l|V and l|E

are the restrictions of a configuration l to the set of nodes and links, respectively. Given a vector

of quantities q′ obtained from q by projecting away some of the quantities, the projection of a

configuration onto q′ is denoted by l[q′], and corresponds to ignoring the quantities not in q′. We

naturally extend these operators to sets of configurations. For instance, L[(x)]|V denotes the possible

assignments of horizontal positions to nodes in Example 2.

As we will show in later sections, it is often necessary to compare specifications, platform

instances and implementations. For instance, it is important to be able to order different specifica-

54

tions depending on how stringent the constraints are. Similarly, it is important to compare platform

instances depending on their performance. Therefore, we define an ordering relation ≤q on the set

of communication structures Gq as follows:

Definition 9. Given two communication structures N1,N2 ∈ Gq, N1 ≤q N2 if and only if C1 ⊆ C2,

and for all l1 ∈ L1 there exists l2 ∈ L2 such that for all c ∈ C1, l1(c)�q l2(c).

The definition states that a communication structure N2 “is better” than a communication

structure N1 if it contains more components and if it can perform at least as well as N1.

Example 3. (Ordering of Communication Structures): Consider the vector of quantities q =

(b, l) of Example 1. Figure 4.2 shows the relation between a set of communication structures. For

the sake of simplicity, each communication structure in this example has only one configuration that

is explicitly represented by the labels on the links in Figure 4.2. Each communication structure Ni

has a set of components Ci ⊆ {c1,c2,c3,c4,c5}. The following relations are the interesting ones:

N7 ≤(b,l) N4. The two communication structure have the same set of components but L4 = {l4}

dominates L7 = {l7}, i.e. l7(c) �(b,l) l4(c), ∀c ∈ C4. This is also the case for N8 ≤(b,l) N6,

N5 ≤(b,l) N2, N5 ≤(b,l) N3, N2 ≤(b,l) N1 and N3 ≤(b,l) N1.

N7 ≤(b,l) N5. The components of N7 are a subset of the components of N5. The configuration of N5

dominates the one of N7 for the components that they have in common. This is also the case

for N8 ≤(b,l) N5, N4 ≤(b,l) N2 and N6 ≤(b,l) N3.

N4 and N5 are incomparable. These two communication structures are incomparable because even

if C4 ⊂ C5, the configuration of N5 does not dominate the configuration of N4.

55

c1

c2

c3

c4 c5

(100,10)
(100,10)

c1

c2

c3

c4 c5
(100,10)

c1

c2

c3

c4 c5

(100,10)

c1

c2

c3

c4 c5

(100,100)
(100,100)

(100,100)
(100,100)

c1

c2

c4

(100,10)

c2

c3

c5
(100,100)

c1

c2

c4

(100,100)

c2

c3

c5
(100,10)

N1

N2 N3

N4 N5 N6

N7 N8

Figure 4.2: Hasse diagram of the partial order ≤(b,l) for subset of communication structures.

56

PAD1

PAD2 PAD3

PAD4
(0.2, 2.44)

1.44

0.650.2

0.46

124

10

1525

538
207

34 34 297

0.55

0.55

Mutually
exclusive

constraints

dem
(OCP)

aud
(OCP)

vid
(OCP)

mem
(OCP)

HDTV
(OCP)

CPU
(AMBA)

Nstb
C

Figure 4.3: The system-level specification of a simplified Set-Top Box. Each core in the specifica-
tion is annotated with and area in mm2 and each arrow is annotated with a bandwidth constraint in
MB/s.

We close this section with two examples of how communication structures are used to

capture the end-to-end communication requirements of a communication synthesis problem. The

first example is about on-chip communication while the second is about building automation net-

works.

Example 4. (Set-top-box communication requirements): Consider the simplified Set-Top Box

System shown in Figure 4.3. The SoC specification contains six IP cores that exchange messages

through a dozen of point-to-point channels and interact with the external environment through four

major I/O connections (pads). The data input stream is processed by the demux core (dem) that

sends an audio stream to the audio decoder and a video stream to the video decoder. The video

decoder accesses the external memory through a memory controller. The memory is used both as

an intermediate storage and to send the decoded stream to the display controller and HDTV encoder.

Finally, a master CPU controls the operation of all the blocks and handles the interaction with the

environment. Additional non-functional constraints are often part of the specification: e.g, the dem

core must occupy position (0.2,2.44) (in millimeter); the cpu communicates with the other cores,

57

one at the time.

The communication specification is captured as communication structure Nstb
C ∈GqC where

qC = (x,y,a,τ,b,h); nodes represent IP cores (that can be sources and/or destination of a communi-

cation) and have an associated position (x,y) in the Euclidean plane, an area a, and a type τ denoting

the supported interface protocol; links represent distinct inter-core communications. Each links is

associated with two quantities: a minimum average bandwidth b and a maximum latency h (not

shown in the figure to avoid cluttering).

The position of the dem core is fixed at coordinates (0.2,1.44). Hence, each configuration

l ∈ Lstb
C must be such that l(dem) = (0.2,1.44,0.55,OCP,⊥,⊥). Since there are no other floor-

planning constraints, the position of the other IP cores can be determined during the synthesis

process. Moreover, since the constraints between the CPU and the IP cores are mutually exclusive,

for all l ∈ Lstb
C [(b)], only one among l((CPU,dem)), l((CPU,aud)), l((CPU,vid)), l((CPU,mem))

can be different from zero.

Example 5. (Centralized control in buildings): Control algorithms are usually described in a

centralized manner. In control theory jargon, the plant is the object to control. It governs the

evolution of some physical variables, like temperature, that we want to steer to a desired value. To

achieve this goal, a controller observes the physical variables and reacts with control variables that

are sent back to the plant and that influence its evolution.

When the plant occupies a large area, the physical quantities must be observed in different

points through sensors, and the control actions must be applied in different points by actuators. For

instance, in large buildings, temperature must be sensed in each room and control actions must

be sent to dampers that are located in different part of the Heat, Ventilation and Air Conditioning

58

(HVAC) system. Therefore, a network is used to connect sensors and actuators to the controller.

Since the performance of the control algorithm are assessed assuming ideal communication, the

network must provide reliable end-to-end communication with tight precise latency bounds (that

depends on the time scale of the dynamics of the physical variables).

The communication specification is captured as a communication structure NC ∈ GqC ,

qC = (x,y,z,τ, l, t,b, p), where D(x,y,z) = R3 is the position in the Euclidean space,

Dτ = {sensor,actuator,controller} is the type associated with a node, Dl = Dt = Db = R are the

maximum latency, message period and message length, respectively, associated with a communica-

tion requirement, and Dp = [0,1] is the maximum message error rate. In some case, the specification

is restricted to centralized control, i.e. links in NC can only connect sensors to controllers, and con-

trollers to actuators.

59

Chapter 5

Building Complex Communication

Architectures from Components

In this chapter we define how communication structures can be composed to build more

complex communication structures. We define the composition of communication structures and

introduce the concept of communication library and communication platform. The library elements

need first to be instantiated. Instantiation consists in changing the identifiers of the nodes of a

communication structure such that nodes belonging to different communication structures can be

interconnected (simply by having the same identifier). Instances of library elements can be com-

posed according to a composition rule. The composition rule is defined by: 1) an operator that given

the quantities attached to the components of two communication structures define the quantities that

should attached to the result of the composition, and 2) a relation that defines when a configuration

is valid for a set of components.

60

5.1 Composition

To allow the incremental design of complex on-chip communication, we introduce two

operations: renaming and parallel composition. The identifiers of two nodes in different sub-nets

can be renamed to be the same to indicate either that the same node is used to implement both or the

presence of an implicit connection between the two sub-nets at these nodes. A renaming function

r : UV →UV is a bijection on the vertex universe. With R we denote the set of all renaming functions.

Given a communication structure N and a renaming function r, with abuse of notation we use r(N)

to denote a new communication structure where the components have been renamed according to r.

The composition of two communication structures N1 and N2, denoted by N1‖N2, results

in a new communication structure N that contains the set of components C1 ∪C2. We define the

operator ‖ by two rules. The first rule is needed to establish how the configurations of the com-

ponents being merged contribute to the formation of the ones of the combined entity. This rule is

captured by a binary operator on the configuration universe, denoted ⊕q, which must satisfy the

following properties. It must be commutative and associative such that the composition of com-

munication structures will also satisfy these properties. This is important since we want the result

of the composition to be independent of the order in which communication structures are instanti-

ated and composed. Further, if l1 : C1→ Dq and l2 : C2→ Dq, then l = l1⊕q l2 must be such that

l : C1∪C2→Dq. This operator is defined on sets of configurations as follows. Let L1 ⊆ [C1→Dq]

and L2 ⊆ [C2→ Dq], then L1⊕q L2 = {l1⊕q l2|l1 ∈ L1∧ l2 ∈ L2}. A second rule restricts the legal

compositions by forcing the composed structure to satisfy certain properties. This rule, that defines

a class of communication structures the result of the composition must belong to, is given by a

relation between the components and the configurations and it is denoted by R ⊆ 2UC ×Uq.

61

Example 6. (Composition of communication specifications):

dem

aud vid HDTV

mem
CPU

PAD1

PAD2 PAD3

PAD4
(0.2, 2.44)

1.44

0.650.2

0.46124

10

25

538

0.55

0.55

d

v
dec

m
P1

P2

P3

0.65

0.46

124
15

538
207

34 34 297

0.55

0.55
dem

vid HDTV

mem
PAD5

PAD3

124
15

538
207

34 34 297

0.55 PAD60.46

0.650.55

Renaming

Nvch r(Nvch)

PAD5

124

538 PAD6

30
414

68 68 594

Nstb
C ‖r(Nvch)

Figure 5.1: Example of parallel composition of networks: the set-top box is expanded by adding a
video channel and an extra off-chip memory bank.

Definition 10. Given a binary operator ⊕q and a composition rule R, and two communication

structures N1 and N2 belonging to Gq, their composition is N1‖Rq N2 = N ∈ Gq, where C = C1∪C2,

L = {l ∈ L1⊕q L2|(C , l) ∈R} 6= /0; the composition is not defined if L = /0.

We want to add an extra video channel to our set-top box chip by reusing the already

instantiated IP cores. In Fig. 5.1, Nvch is a communication structure capturing the communication

requirements of a set-top-box video channel. To reuse the same IP cores, we rename the nodes

according to a renaming function r such that r(d) = dem, r(m) = mem, r(v) = vid and r(dec) =

HDTV . Since the new video channel must be displayed on the same device, r(P2) = PAD3 forces

the same output pad to be reused. For the demodulator input, though, we need an additional pad.

We also add a new pad to connect a second memory bank to the memory controller. Fig. 5.1 shows

62

the result of the composition Nstb
C ‖RC

qC r(Nvch). Intuitively, we have added the bandwidths of common

requirements and we have restricted the position of the dem core. More precisely, we need to define

the operator ⊕qC . Given two communication structures structures N1, N2 ∈ GqC , let l1 ∈ L1 and

l2 ∈ L2 be two configurations. The configuration l = l1⊕qC l2 is defined as follows:

• there is no “interference” between components not shared by N1 and N2, i.e l(c) = l1(c) for

all c ∈ C1 \C2, and l(c) = l2(c) for all c ∈ C2 \C1;

• common nodes must be “compatible”, meaning that they must agree on the positions and

interfaces:

∀c ∈V1∩V2, l(c) =


l1(c) i f l1(c) = l2(c)

⊥6 i f l1(c) 6= l2(c)

(notice that it is sufficient to have some compatible configurations for the composition to be

defined);

• for all c∈E1∩E2, l[(b)](c)= l1[(b)](c)+l2[(b)](c) and l[(h)](c)= min{l1[(h)](c), l2[(h)](c)}.

We now define the composition rules. We want each node to have an assigned position and in-

terface protocol, therefore we define the following rule: Rv
C = {(C , l) ∈ 2UC ×UqC |∀v ∈ C , ∀q ∈

{x,y,a,τ}, l[(q)](v) 6=⊥}. Also assume, for instance, a designer is given an area budget νa for the

IP cores on a chip then another composition rule can be stated as follows:

Ra
C =

{
(C , l) ∈ 2UC ×UqC

∣∣∣∣∣ ∑
c∈V

l[(a)](c)≤ νa

}

Therefore, the composition rule is RC = Rv
C ∩Ra

C. We give examples of other rules in Section 5.2.

63

5.2 Platforms

In Section 2.2.1, we defined a platform as the closure of a set of library elements under the

operation of parallel composition. These elements either have a corresponding implementation that

is ready to be used or can be synthesized by tools operating at a lower level of abstraction. A com-

munication library L is a collection of communication structures, i.e. L ⊂ Gq. Even though the

platform could be defined in a recursive way as in Definition 5, here we give an iterative definition

that is easier to understand.

Definition 11. The communication platform generated by the communication library L under

composition ‖Rq is

〈L 〉= {N(C ,q,L) = r1(N1)‖Rq . . .‖Rq rm(Nm) | ri ∈ R′, Ni ∈L ,L 6= /0,m≥ 1}

where R′ ⊆ R is a set of valid renaming functions. An element N ∈ 〈L 〉 is called a communication

platform instance.

Notice that the set of admissible renaming functions is restricted to a subset R′ of all

renaming functions. For instance, we may forbid to rename a router node to a source node. The

definition of a platform is very general. We have already seen a platform in Examples 4 and 5 that

is the specification platform. The library in this case contains one simple communication structure

that is a point-to-point connection between a source and a destination node. The specification is a

platform instance of the specification platform.

The set of alternative implementations are also captured by a library of components and

composition rules, i.e. by a platform. In this case we are interested in all those platform instances

that are possible candidates for implementing the specification. Let qP be the vector of quantities

64

associated with the communication structures in the platform. While the vector of quantities qC

associated with the specification represents the required services, the vector qP represents the ca-

pabilities of the components in the platform, i.e what the components can do. For instance, a pair

of quantities (x,y) associated with a component in the specification denote the coordinates where a

component must be located, whereas the same quantities associated to a component of a platform

instance denote the coordinates where a component can be located. Similarly, while quantity b

represents the required minimum bandwidth between a source and a destination, we will use γ to

denote the maximum bandwidth that a link can support, i.e. the link capacity.

Example 7. Communication Platform for On-Chip Communication: The vector of quantities

that characterizes the on-chip communication platform is qP = (x,y,τ, in,out,γ). Each node has

an associate position (x,y), a type τ , two multisets in and out of input and output port interfaces,

respectively. Each link is associated with a capacity γ , i.e. the maximum bandwidth that it can

sustain, a singleton set in denoting the input interface of the target not and a singleton out denoting

the output interfaces of the origin node.

The definition of composition ‖RP
qP captures the set of valid communication architectures

(i.e. communication platform instances) that can be obtained out of the communication library.

The rest of this example shows the flexibility that our framework provides in defining the set of

communication structures that can be obtained by composition of library elements.

Consider a communication library whose elements are nodes and links. Fig. 5.2 shows

a communication library L and two possible platform instances N1
P and N2

P. Library L contains

the following set of components: a bus node and a bidirectional bus-segment connecting two bus

nodes; a mesh node and two mesh links for East-West connection and North-South connection,

65

respectively. It contains also a set of interface communication structures to connect IP cores to

bus nodes and mesh nodes. Each node has an associated multi-set of input interfaces in and output

interfaces out (depicted as filled and non-filled shapes attached to nodes in Fig. 5.2). A link connects

an output interface of a node to an input interface of another node. Mesh links have an associated

maximum capacity γM
max while bus-segments (including the link between an IP core and a bus node)

have an associated interval of capacities [0,γB
max] corresponding to different configurations. We

introduce two more quantities ix and iy for mesh structures that are the row and column index of a

node. Now, we state a set of composition rules such that the only platform instances that are valid

in this platform are either busses or meshes:

1. The number of bus nodes can be at most the number of bus segments minus one. This ensures

that the topology of a bus is a collection of trees. Also, since a bus node has only two

bidirectional ports to connect to other bus nodes,each bus is a chain of IP cores (as shown

by the platform instance N1
P).

2. An East-West mesh link can connect two mesh nodes (u,v) only if l[(ix, iy)](u) = (i, j) and

l[(ix, iy)](v) = (i, j + 1); a North-South mesh link can connect two mesh nodes (u,v) only if

l[(ix, iy)](u) = (i, j) and l[(ix, iy)](v) = (i+1, j) (as shown by the platform instance N2
P).

3. Each bus configuration l must be such that the sum of the capacities of the links connecting

the cores to the bus is less then γB
max. This rule restricts the possible configuration of a bus,

and it models the fact that the total bus capacity is shared among all IP cores connected to it.

These three rules define RP for this specific platform.

Remark 1. (Communication Platform for Building Automation): In building automation sys-

66

NN

S S

E
EW

W

NN

S S

W
W

NN

S S

W
WE

E
E
E

NN

S S

W
W E

E

NN

S S

W
W E

E

L

(Bus node) (Mesh node)

(Bus segment)

(EW mesh link)

(N
S

m
es

h
lin

k)

(Interfaces)

N1 N2

N3

N4

N5

N6

N7

N9

i, j i, j + 1

i + 1, j

i, j

lmax

dem

aud vid HDTV

memCPU

dem

aud vid HDTV

memCPU

−1,−1

0, 0
0,−1

−1, 0

0, 1

−1, 1

N1
P

N2
P

N ′
P = r1(N6)

N ′
P ‖r2(N6)‖r3(N3)

γM
max

γM
max

[0, γB
max]

Figure 5.2: Example of a library L for on-chip communication and two alternative implementations
for the set-top box example based on composing elements instanced from L .

tems, networks are usually hierarchical. In Chapter 8 we give some detailed explanation of this

interesting applications. Sensors and actuators are locally connected by buses. Each bus is con-

nected to a switch that, in turn, is connected to the central controller. In other applications (see

Section 8.4), the network is a tree where sensors and actuators are the leaves.

The vector of quantities that characterizes the platform is qP = (x,y,z,τ, in,out,γ, p)

where (x,y,z) represent the position in the Euclidean space, τ is the type of a component, γ is

the capacity of a link in maximum number of messages per seconds and p is the minimum mes-

67

sage error rate. The two quantities in and out have the same meaning as in the case of on-chip

communication.

The composition rules that we consider for buses is the same as in the case of on-chip

communication. Other rules are also reported in Chapter 8.

68

Chapter 6

Communication Synthesis for

Networked Systems

In this chapter we present a general formulation of the communication synthesis problem

where:

• the input specification consists of a set of end-to-end communication constraints captured by

a communication structure NC.

• The platform is implicitly described by a communication library L that contains the commu-

nication components and the composition rule ‖Rq .

• The output consists of a communication structure that satisfies all end-to-end constraints in

NC, uses only components in L , and such that the total cost of the implementation is mini-

mized.

69

To define the optimization problem we first relate an implementation to a communication structure

that represents the possible communication scenarios (i.e. the specifications) that the implementa-

tion can support. Also, we relate an implementation with a platform instance. The relations are

defined by abstraction functions. Finally, we define a general optimization problem to explore the

entire design space.

6.1 Relations Among Communication Structures

The same specification can be implemented by many platform instances. On the other

hand, the same platform instance can implement a variety of different specifications. For a given

platform instance, deriving an implementation that implements a given specification is called map-

ping in the platform-based design terminology. The implementation is a refinement of both the

specification and the platform instance. Being a refinement means that the implementation con-

tains more details, that are captured not only by the number of components of the communication

structure defining the implementation, but also by the vector of quantities. In our example, the

implementation of a communication specification is a communication structure derived from a plat-

form instance by adding the information regarding the routing of packets and the latency. Routing

is captured by a quantity ρ called transfer table. To define ρ , we introduce another quantity λ with

domain Dλ representing a name attached to each component. To simplify the notation, we assume

that this quantity implicitly belongs to any vector of quantities. For a component c, we denote its

name with λ (c) (instead of the more cumbersome notation l[λ](c), simply because each configura-

tion assigns the same name to the same component). The name of a component c is different from

its identifier which is denoted by the symbol c itself. In particular, the renaming function does not

70

change the name of a component but only its identifier (this is the main reason to distinguish them).

The domain of ρ is Dρ = 2Dλ×Dλ×Dλ . Therefore, a transfer table is a set of triples (λ (s),λ (d),λ (v))

where λ (s) and λ (d) are the names associated with the source and destination of the packets, re-

spectively, and λ (v) is the name of a node in the communication structure. Each triplet specifies the

name of the next hope for each packet that arrives at the node from a given source in its transit to a

given destination. An implementation is a communication structure NI(CI,qI,LI) where qI contains

all the quantities in qP with the addition of quantity ρ and other implementation dependent quanti-

ties (like for instance latency h as defined in Section 4.1). The vector of quantities qI also contains

the quantities coming from the specification domain.

During the refinement from the specification and the platform toward the implementation,

some quantities are added that are dependent on the value of other quantities. For instance, the

latency information associated to the components of an implementation depends on the actual net-

work traffic which is known only after mapping. This quantity is derived from the others. However,

if it is measured in number of hops, then it is an independent quantity and each link has a latency

equal to one while each node has a latency equal to zero. Another example of derived quantity is

the bit error rate over wireless communication links that depends on the interference from other

nodes in a communication structure. These quantities depend on the abstraction of the specific pro-

tocol that is used at the network level and at the lower level of abstraction (e.g., Layer 2 of the

OSI protocol stack [8]). For instance, packets traveling on a BUS incur in different latencies if the

protocol is AMBA rather then OCP. To compute derived quantities, that are often used to model

specification dependent metrics, we formally introduce the notion of a model. Let q denote a de-

rived quantity. Two cases can arise. If the configurations of a component c of a communication

71

dem

aud vid HDTV

memCPU

(λ(dem), λ(aud), λ(aud))
(λ(CPU), λ(aud), λ(aud))

(λ(dem), λ(vid), λ(v3))
(λ(CPU), λ(dem), λ(v2))

γ = 100

γ = 50
γ = 600

γ = 700

γ = 1300

h = m′
h(N2

I , (dem, v1))

(Paths)

v1

v2

N2
I

v3

Figure 6.1: Example of communication implementation for the set-top box.

structure contain enough information to determine the value of q, then the quantity is directly de-

rived from a function mq : Dq→ Dq, and we call mq a direct model for q. For instance, the power

dissipated on a link is directly derived from its communication bandwidth. If the computation of the

value of q depends not only on the configuration but also on the other components and how they are

configured in the communication structure, then the quantity is indirectly derived from a function

m′q : Gq×UC → Dq, and we call m′q an indirect model for q. During the refinement process, some

quantities can be determined by models (like latency, for instance) while independent quantities are

computed by optimization algorithms (like transfer tables, for instance).

Example 8. Transfer tables and latency: Fig. 6.1 shows a bus-based implementation of the set-

top box example of Fig. 4.3. The light-gray arrows represent paths in the communication structures.

The paths are implicitly defined by the transfer tables of each bus-node. For instance, the transfer

table of node v2 contains an element (λ (CPU),λ (dem),λ (v1)) meaning that a packet from the CPU

core to the dem core must be sent to v1. The transfer table information can be used at a lower

72

abstraction level to optimize the bus circuitry (e.g. decoders and multiplexers) or even to segment

the bus and insert bus bridges.

The latency to access the bus for each IP core depends on the actual set of components

and the bus configuration. When refining the platform instance N1
P shown in Fig. 5.2 into the imple-

mentation N2
I , shown in Fig. 6.1, a range of latencies [hmin,hmax] is first considered for the access

link (dem,v1). This range can be computed by a best and worst case analysis of a bus. An indirect

model m′h is used to restrict the range of latencies depending on the actual specification mapped on

the implementation. Therefore, the indirect model becomes part of a composition rule that can be

stated as follows:

Rh
I = {(C , l) ∈ 2UC ×UqI | l[(h)](c) = m′h((C ,qI,{l}),c), ∀c ∈ C }

The latency of an end-to-end communication is the sum of the latencies of all components in the

path. Notice that in this example of bus model we lump the latencies on the access link to the bus

and assign a latency equal to zero to each bus segment.

Assuming a 128 bit-wide bus and 200Mhz clock frequency, the maximum theoretical

throughput is 1.6GB/s. Hence, we can assign capacities to the links connecting the cores to the bus

nodes as shown in Fig. 5.2. Given the capacity assignment, the communication implementation can

support a larger set of specifications than the one in Fig. 4.3. For instance, the throughput of the

dem core can be increased up to 100MB/s. In the rest of this section we define precisely the set of

specifications that an implementation can support.

Other examples of composition rules are the following. For each configuration l of a

communication structure NI(C ,qI,L), the bandwidth on each link must be less than or equal to

the capacity of the link, i.e. l[(b)] ≤ l[(γ)], A possible additional rule is deadlock freedom, which

73

requires the channel dependency graph of NI to be acyclic [33].

Remark 2. (On transfer tables): One may think that transfer tables are only needed for routers

or switches that have multiple input and multiple output ports. Their task is to observe the packet

header and look up in a table to find the output port to forward the packet to. In the case of buses, a

transfer table is not necessary because a data that is posted on the bus gets broadcast to all the other

bus participants. Nevertheless, in a refinement step, transfer tables associated to bus nodes can be

used to further optimize the bus by distributing simple muxes and demuxes on bus nodes and/or

segmenting the bus.

To define a general synthesis problem for communication structures, besides defining the

cost of a communication implementation, we also need to define the constraints that the implemen-

tation must satisfy. The constraints, that we will explain in details in Section 6.2, come from the

specification and from the platform. In short, the implementation must satisfy the communication

constraints captured by the specification NC and must be a composition of library elements (i.e. must

belong to the platform). Therefore, we need to relate an implementation to the set of specifications

that it can correctly implement, and to a platform instance. We define these relations by abstraction

functions as follows.

Given an implementation NI , a path of length n is a sequence of n links π = (e1, . . . ,en)

such that ei = (vi−1,vi). Even if the topology is such that a path can be found between two nodes

in NI , packets may not be able to flow through the path. A real path from a source node s to

a destination node d according to a configuration l ∈ LI is such that v0 = s, vn = d and ∀ei ∈

π, ∃(λ (s),λ (d),λ (vi)) ∈ l[(ρ)](vi−1).

The communication structure NC that characterizes the set communication specifications

74

that an implementation NI can correctly implement is given by the a function Π : GqI → GqC called

path abstraction. The path abstraction depends on the vector of quantities qI and qC and it is

specified by defining the two following abstractions:

Component abstraction . The nodes VC ⊆ CC are a subset of the nodes VI ⊆ CI . The set of links

that belongs to CC are defined as follows. There exists a link (s,d) ∈ CC if and only if there

exists a real path from s to d in NI according to some configuration lI ∈ LI . Notice that the

configuration bears the information regarding the transfer tables and therefore it determines

the set of real paths in an implementation.

Configuration abstraction . The set of configuration LC is determined by a function NI → LC that

is not necessarily injective.

We give a specific example of path abstraction for the case of on-chip communication. A similar

abstraction can also be defined for building automation systems.

Example 9.: Given an an on-chip communication implementation NI , the communication structure

NC characterizing the set of specifications that NI can correctly implement is given by the path

abstraction Π : GqI → GqC , which is defined by the following construction:

• the nodes of VC of NC are the nodes of VI of NI that are IP cores.

• a configuration lC belongs to LC if an only if there exists a configuration lI ∈ LI such that the

following conditions are satisfied:

1. lC(c) = lI(c) for all c ∈VC

2. for all links e ∈ CI

∑
(s,d)∈CC:e∈π(s,d)

lC[(b)](s,d) = lI[(b)](e)

75

i.e. the sum of the bandwidth of all end-to-end communication that share a link e must

be equal to the bandwidth specified in the implementation.

3.

∑
e∈π(s,d)

lI[(h)](e) = lC[(h)](s,d)

i.e the end-to-end latency from a source to a destination is equal to the sum of the

latencies along the path.

To relate implementations and platform instances we introduce the abstraction relation

Ψ : GqI → GqP that removes the transfer tables and the latency quantities, i.e. given an imple-

mentation NI it returns Ψ(NI) = NP(CI,qP,LI[qP]). Given a specification NC and a platform 〈L 〉,

implementation NI must satisfy two constraints: NC ≤qC Π(NI) and Ψ(NI) ∈ 〈L 〉. When the im-

plementation is constrained to have a specific topology such as a mesh or a torus, an additional

condition Ψ(NI) ≤qP NP must be satisfied where NP is the platform instance capturing the specific

topology.

Remark 3. (On the generality of the path abstraction): Notice that in defining the implementa-

tion we only need the the type of the nodes, their interfaces and their transfer tables. Based on these

quantities, we can derive the other constraints. In particular, we can compute the real paths of an

implementation and therefore we can check the end-to-end requirements and the local constraints

on nodes and links.

76

6.2 A General Optimization Problem

Our objective is to find an implementation NI that minimizes a given cost function F :

GqI → R+. We assume that the cost function is monotonic, i.e. N1 ≤qI N2⇒ F(N1)≤ F(N2). This

is a reasonable assumption since a less performing communication structure should also cost less.

First, we formulate the problem of configuring a platform instance NP to implement a specification.

The communication synthesis problem can be stated as follows:

PR1(NP) : min
CI ,LI

F(NI)

sub ject to NC ≤qC Π(NI), (6.1)

Ψ(NI) ∈ 〈L 〉 (6.2)

Ψ(NI)≤qP NP (6.3)

(CI, lI) ∈RI, ∀lI ∈ LI (6.4)

Constraints 6.1 and 6.2 require NI to implement the specification and to be a refinement of

a platform instance. Constraint 6.3 requires the implementation to be contained in the performance

envelope of the given platform instance NP and Constraint 6.4 requires the implementation to satisfy

the rules defined at the implementation level (e.g. deadlock freedom). Let Alg be a hypothetical

algorithm that solves problem PR1 exactly. Given a library L , platform 〈L 〉 can be explored by

using Alg to solve problem PR1 for each NP ∈ 〈L 〉. The following lemma relates the cost of the

solution to problem PR1 for different platform instances.

Lemma 1. Let NC be a specification, NP,1 and NP,2 two platform instances such that NP,1 ≤qP

NP,2. Let N∗I,1 and N∗I,2 be the implementations found by Alg for platform instances NP,1 and NP,2,

77

respectively. Then F(N∗I,2)≤ F(N∗I,1).

By contradiction. . Since N∗I,1 solves problem PR1, NC ≤qC Π(N∗I,1). Also,

Ψ(N∗I,1)≤qP NP,1 ≤qP NP,2, therefore, N∗I,1 is a solution of PR1 for NP = NP,2. Suppose that F(N∗I,1) <

F(N∗I,2). This condition would contradict the optimality of Alg, since we found a solution that has a

cost less than F(N∗I,2). Therefore F(N∗I,2)≤ F(N∗I,1) must hold.

According to Lemma 1, if we can find the greatest element NP of 〈L 〉 with respect to the

ordering relation ≤qP , then the solution of problem PR1 with NP = NP is the best communication

structure among all possible platform instances. Unfortunately, such greatest element is not guar-

anteed to exist in any given platform. Hence, instead of looking for it, we can look for an upper

bound N〈L 〉P of 〈L 〉 (which is not required to belong to the platform). The existence of an upper

bound is related to the platform being finite (i.e. containing a finite number of platform instances).

A communication structure is finite if the set of its components is finite. A library is finite if it is a

finite set of finite communication structures.

Proposition 1. Given a vector of quantities q such that each quantity is either finite or bounded, a

finite library L ∈ Gq and a finite set of valid renaming function R′ ⊂ R, for any composition rule R

and operator ⊕q, there exists an upper bound N〈L 〉 ∈ Gq of the communication platform 〈L 〉 with

respect to the ordering relation ≤q.

By construction. . Any platform instance is finite. A platform instance can be written as N =

r1(N1)‖Rq · · ·‖Rq rk(Nk), for ri ∈ R′ and Ni ∈L . Because R′ is finite and the library is also finite, N is

finite. Let C̄ be the largest set of components that any platform instance can contain. Let the vector

of quantities q be partitioned in the vector of finite quantities q′ and the set of bounded quantities q′′.

78

The domain Dq′′ has a greatest element ν ′′ that is the vector of all greatest elements of the quantities

in q′′. Now, let the set of values for q be:

D̄q = {ν ∈ Dq | ν [q′] ∈ Dq′ ∧ν [q′′] = ν ′′}

We define the communication structure

N̄(C̄ ,q, [C̄ → D̄q])

and we prove that N〈L 〉 = N̄. Let N(C ,q,L) be a platform instance. By construction C ⊆ C̄ . We

need to prove that for each l ∈ L there exists a configuration l′ ∈ [C̄ → D̄q] such that l(c) �q l′(c)

for all components in C . By construction, there exists a configuration l′ ∈ [C̄ → D̄q] such that

l[q′](c) = l′[q′](c). Also for this configuration, l[q′′](c)�q′′ ν ′′ = l′[q′′](c). Therefore, there exists a

configuration l′ ∈ [C̄ → D̄q] such that l(c)�q l′(c) for all c∈C . From the generality of N it follows

that N̄ is an upper bound of 〈L 〉, i.e. N〈L 〉 = N̄.

Assuming that the upper bound can be constructed, it follows from Lemma 1 and Proposi-

tion 1 that in order to solve the communication synthesis problem we need to solve the optimization

problem PR2≡ PR1(N〈L 〉P). In general the upper bound N〈L 〉P does not satisfy the composition rules

RP (in fact, these rules are not taken into account by the constructive proof of the upper bound it-

self). Constraint 6.2 makes sure that the final implementation is a refinement of a platform instance.

The solution N∗I to problem PR2 is the best communication structure that implements the specifi-

cation among all possible implementations that can be constructed from L through composition.

Notice that, once the upper bound has been found, Constraint 6.2 is the only constraint that depends

on the library L . Thus, the properties of the optimization problem can potentially depend on the

library and consequently, an algorithm that solves the communication synthesis problem efficiently

79

GQC GQP

GQI

〈L 〉

NP

NI

NC

Π
Ψ

N〈L 〉P

NC ≤QC Π(NI)

Φ(NI)

Ψ

Figure 6.2: Summary of the procedure to define problem PR2.

could also depend on the library.

Figure 6.2 summarizes the main results of this section. Given the upper bound N〈L 〉P , we

define an implementation NI with the same set of components and capacity configurations such that

the transfer tables are still to be decided. Their values are decided such that the abstraction Π(NI)

corresponds to a specification that at least satisfies the given specification. Notice that Π(NI) =

Π(Φ(NI)) since NI and Φ(NI) have the same set of real paths by definition. On the other hand,

once the unused components are removed from NI , the abstraction Ψ(Φ(NI)) must be a platform

instance.

80

Part III

Applications

81

Chapter 7

On-Chip Communications

With the advances of IC technology, global interconnects have become the dominant fac-

tor in determining chip performance: they are not only becoming responsible for a larger fraction of

the overall delay and power dissipation but exacerbate also design problems such as noise coupling,

routing congestion, and, timing closure, thereby imposing severe limitations on design productiv-

ity [77]. Because of these characteristics, most VLSI circuits can be considered distributed systems,

a fact that challenges traditional design methodologies and the electronic design automation tools

that are based on them. Systems-on-Chip (SoCs) are typically designed by assembling intellectual

property (IP) components from different vendors and/or different divisions of the same company in

the attempt of reducing time-to-market by reusing pre-designed and pre-verified elements. How-

ever, since these components are designed independently, the assembly step is often a challenging

problem that requires the design of communication interfaces to match different protocols and data

parallelism and the routing of global interconnect wires to meet the constraints imposed by the target

clock period.

82

The Open Core Protocol (OCP) [89] tackles this problem by defining a standard open-

domain interface with which IP cores should comply to allow fast integration using appropriate

interconnect architectures. While there is no intrinsic limitation on the interconnect architecture

for OCP, most designers rely on traditional bus architectures so that pre-designed components can

be used. In this domain, proprietary protocols such as the ARM AMBA BUS and the IBM Core-

Connect are popular among SoC designers making the adoption of a universal standard difficult at

best.

We argued that SoCs are distributed systems. For this reason, bus architectures may not

be always ideal; in fact, scalable, multi-hop, packet-switched Networks-on-Chip (NoCs) have been

proposed in a set of seminal papers [57, 34, 19] as a solution for the integration of IP components as

an interesting alternative. Borrowing from the communication networks literature, the components

that can be combined to build an NoC can be heterogeneous including elements such as interfaces,

routers, and links. Because of the many degrees of freedom in NoCs (such as choice, topology,

and positions of the communication components, core interfaces, protocols) and composition rules,

and of the many objectives that are of interest (such as performance, power consumption, reliabil-

ity, and occupied area) to find an optimal or just a good solution is a very challenging proposition.

Hence, the NoC design problem had been simplified by limiting the number and types of compo-

nents considered, by focusing on a subset of the relevant objectives, by constraining NoC topology

and components positions, and by dividing the optimization process in successive stages. Limiting

the degrees of freedom has also the important side effect of reducing implementation and layout

complexity. In NETCHIP [20] an application-specific NoC is obtained by mapping the application

cores on standard topologies (e.g torus, mesh, hypercube) in an optimal way (SUNMAP [83]).

83

In [62], Hu and Marculescu perform mapping and routing on the NoC with optimal energy and per-

formance. Lahiri et al. use standard topologies consisting of collections of channels (point-to-point

links or shared busses) interconnected by bridges [72]. Ogras et al. [91] proposed a perturbation

method that starting from the mapping of an application on a standard topology, optimizes the initial

performance and cost by inserting custom long links between routers. In [84] Murali et al. synthe-

size NoCs that, albeit being more general than the approaches that start from a regular topology,

are still constrained to be “two-level structures”, where star topologies are interconnected by links

chosen to to satisfy inter-cluster communication requirements.

Srinivasan et al. proposed to synthesize an application-specific NoC without assuming

any pre-existing interconnection fabric [116]. The design flow is based on floorplan, generation of

admissible router positions, and optimal routing. The synthesis problem is solved via integer linear

programming (ILP). Due to the complexity of ILP, only a few locations for the installation of routers

are considered. This simplification still yields running time of the order of several hours even for

relatively small instances. More recently, the same authors proposed an efficient approximation

algorithm that guarantees the optimality of the solution within a certain bound from the global

optimum [117]. This bound is strongly tied to the cost model. Specifically, the per-hop cost is

lumped on the NoC links and is assumed to be linear in the bandwidth, while no constraints are

imposed on the router size.

We showed that a rich set of interesting results for NoCs exist; however, few are the

examples of practical applications of NoCs. In fact, the debate between those who favor standard

bus architectures or variations thereof and those who advocate the adoption of NoC approaches

ranging from constrained architectures to custom ones is vibrant. We do not take sides even though

84

the NoC approach has undisputable fundamental merits that may make it successful in the long

run. Instead, we propose a general methodology for the design of on-chip communication that can

explore a large number of alternatives including as special cases NoCs, bus architectures and hybrid

ones. Given the generality of our approach, it can be used to build a framework where different

constrained solutions can be compared using a number of evaluation factors.

Our approach is based on the synthesis of optimal heterogeneous network topologies by

assembling components from a fine-grained library without enforcing any constraint on the topology

other than the ones formally captured in the library. In particular, the network that we obtain need

not be direct and not even connected if these constraints are not captured in the composition rules of

the communication components. The possible choice by the synthesis algorithms for a multistage

network rather than a direct network is a consequence of the number of concurrent accesses to

shared resource (e.g. DRAM controllers) and of the constraints on the amount of communication

resources provided by the routers (i.e. number of input and output ports) and by the links (i.e.

bandwidth capacity).

7.1 Design Flow

Figure 7.1 shows the software organization of COSI-OCC. The input to COSI-OCC is a

project file that contains pointers to the communication specification and to the library. All files

are in XML format. The communication specification contains a list of IP cores and inter-core

communication constraints. The specification is parsed to yield an internal communication structure

where the nodes are the IP core and the links represent constraints. If there are unplaced IP cores,

PARQUET is used to floor-plan the chip [11]. The result of the floor-plan is parsed to extract two

85

Project

Communication
Specificaion

Any
Unplaced IP

Core ?

Run PARQUET NC

Opt.
Parameters

Library

Quantities

Algorithm1
Algorithm 2

Algorithm 3

L

〈L〉
Direct models

Indirect Models

NI Code generation

SystemC +
MakefileDotSvg Report SysCLibg++

Simulation

N

Y

Nodes
Links

Components

x,y,z
Position

mm2
Area

Interface
Type

bps
Bandwidth

ns
Latency

RP

RI

Figure 7.1: COSI-OCC open software infrastructure.

information: a bipartite graph where the nodes are the output (sources) and input (destinations) ports

of the cores and the links are the communication constraints, and a set of polygons representing the

area not occupied by IP cores. Additional area can be reserved by adding special IP cores to the input

specification. The library file contains the description of each library element and the parameters of

the performance and cost models attached to them. The library is used to construct the platform data

structure that also contains a description of additional constraints like, restriction on the position of

nodes, topological constraints or requirements on the implementation like deadlock freedom. The

project file includes also the optimization parameters such as the relative weights of power and area

costs. The communication specification and the platform are passed to the synthesis algorithm that

derives the network implementation NI .

86

COSI-OCC includes a set of code generators to produce an SVG graphical representation

and a DOT logical representation of NI . A SYSTEMC netlist can be generated from NI by assembling

the corresponding SYSTEMC-view of each element instantiated from the library that is contained in

SysCLib, also part of the COSI-OCC distribution. The generation of the SYSTEMC netlist is a further

refinement of NI that requires the binding of each port of the nodes to links, the generation of the

routing tables, and the computation of the weights for the weighted fair queuing algorithm, which is

used by the routers to schedule flits. The COSI-OCC distribution includes a set of algorithms to solve

some variants of the communication synthesis problem. For instance, we provide an algorithm that

generates deadlock-free networks, e.g. for cases where support for virtual channels is not available

in the routers. Our approach to solve this problem is different from the one proposed in [84] where

a graph with all possible connections is constructed explicitly (i.e the Switch-Cost Graph) and the

set of prohibited turns is precomputed before deciding the routing of packets. In COSI-OCC, we

build the solution incrementally by instantiating links from the library. The optimization algorithm

operates directly on the channel-dependency graph of the communication structure and at run-time

checks that such graph is kept acyclic (i.e. it checks that the corresponding composition rule is

satisfied). More information on COSI-OCC is available at the COSI project web site [31].

Comparison with Component Composition Frameworks

In this section, we compare COSI-OCC with component composition frameworks (CCFs)

(Table 7.1).

The comparison of COSI-OCC with other CCFs will be done at the component-composition

language (CCL) level, i.e. the language used by the CCF to define the structural aspect of a design.

The following criteria are selected for comparison: the formal framework underlying the CCL, what

87

C
C

F
To

ol
Fo

rm
al

M
od

el
C

ap
tu

re
s

L
ib

ra
ry

C
om

po
si

tio
n

R
ul

es
Fe

at
ur

es
B

A
L

B
O

A
[3

8]
N

/A
St

ru
ct

ur
e

an
d

ty
pe

s
IP

in
C

++
,

R
T

L
L

ev
el

Ty
pe

co
m

pa
tib

ili
ty

Ty
pe

re
so

lu
tio

n

L
SE

[1
20

]
N

/A
St

ru
ct

ur
e

th
ro

ug
h

m
od

ul
es

an
d

in
te

r-
fa

ce
s

C
om

po
ne

nt
s

w
ri

tte
n

in
C

-l
ik

e
la

ng
ua

ge
(R

T
L

L
ev

el
)

In
te

rf
ac

e
co

m
pa

ti-
bi

lit
y

Po
ly

m
or

ph
is

m
,t

yp
e

in
fe

re
nc

e,
U

se
-

ba
se

d
sp

ec
ia

liz
at

io
n

M
C

F
[7

6]
U

M
L

m
et

am
od

el
E

nt
iti

es
an

d
re

la
-

tio
ns

hi
ps

,
po

rt
s

an
d

in
te

rf
ac

es
,

Tr
an

sa
c-

tio
n

an
d

R
T

le
ve

l,
tr

an
sa

ct
or

s,
bu

ss
es

an
d

sw
itc

he
s

IP
in

Sy
st

em
C

E
nt

ity
an

d
re

la
tio

n-
sh

ip
co

ns
tr

ai
nt

s
in

O
C

L

C
on

si
st

en
cy

ch
ec

k-
in

g
an

d
ty

pe
in

fe
r-

en
ce

SP
A

R
TA

C
A

S
[8

0]
R

os
et

ta
la

n-
gu

ag
e

[1
2]

In
te

rf
ac

es
an

d
be

-
ha

vi
or

R
os

et
ta

m
od

el
s

In
pu

t-
ou

tp
ut

va
lu

es
m

at
ch

in
g

A
ut

om
at

ed
co

m
po

-
ne

nt
ad

ap
ta

tio
n

A
B

R
IE

[2
9]

A
ut

ho
rs

’d
efi

ne
d

C
om

po
ne

nt
s’

ty
pe

an
d

po
rt

s,
co

n-
st

ra
in

ts
on

po
rt

s;
co

nn
ec

tio
ns

’
ty

pe
an

d
ro

le
,c

on
st

ra
in

ts
on

ro
le

s

O
bj

ec
t

or
so

ur
ce

co
de

(s
of

tw
ar

e
on

ly
)

Po
rt

m
at

ch
in

g
(i

n-
cl

ud
in

g
fu

nc
tio

n
co

nt
ai

nm
en

t)

A
ut

om
at

ed
co

m
po

-
ne

nt
se

le
ct

io
n

an
d

m
at

ch
in

g

C
O

S
I-

O
C

C
D

om
ai

ns
of

co
m

-
m

un
ic

at
io

n
st

ru
c-

tu
re

s

C
om

po
ne

nt
s,

co
n-

ne
ct

io
ns

,
ty

pe
s,

po
rt

s,
pe

rf
or

m
an

ce
m

et
ri

cs

Se
t

of
co

m
m

un
ic

a-
tio

n
st

ru
ct

ur
es

U
se

r-
de

fin
ab

le
m

et
-

ri
cs

co
m

po
si

tio
ns

an
d

re
la

tio
n

on
co

m
m

un
ic

at
io

n
st

ru
ct

ur
es

Sy
nt

he
si

s

Ta
bl

e
7.

1:
To

ol
s

fo
rc

om
po

ne
nt

ba
se

d
de

si
gn

.

88

the CCL captures, the supported library of components, the supported composition rules, and the

features provided by the CCF. BALBOA and Liberty Simulation Environment (LSE) are not based

on a rigorous formal model (as also noted in [76]). Both assume that the library of components

is described in an imperative language such as C or C++ and that the components are exported

using an interface description language. The only composition rule is that the types of connected

components must be compatible. They can both perform type inference.

The Metamodeling-driven Component composition Framework (MCF) is based on a meta-

model captured in UML. Compared to BALBOA and LSE, MCF supports components described

at the RTL level or at the transition level. The two levels can communicate through transactors.

Composition rules are captured using the Object Constraint Language (OCL) that is able to ex-

press constraints on entities (components) and relationships (connections). MCF is geared toward

SystemC IP libraries and can perform consistency checking and type inference.

As opposed to the previous tools, SPARTACAS captures the architectural specification

and the library components using the same language, Rosetta. The reason is that SPARTACAS

defines the composition rules on the set of inputs and output values of components, and it features

automated component adaptation. In this context, the specification of the problem is the desired

input-output relation and the adaptation selects components from the library to match the problem

specification.

ABRIE as been developed mainly for software reuse. A system is defined by components

and connections. Each component has a type and a set of ports. Each component has a type and a

role. There are constraints on the ports that can be connected to certain roles. ABRIE also provides

automated component selection.

89

COSI-OCC has been developed for the synthesis of communication infrastructures. It is

based on a formal model centered around a mathematical object called communication structure

(Section 4.2) that captures components in terms of nodes and links. Different form the other CCFs,

we attach also performance metrics to components and define ordering relations based on those.

Because we target synthesis, rather than simulation, our approach to model libraries is similar to

SPARTACAS. A library is a set of communication structures, i.e. it is captured in the same way as

the specification of the problem. In contrast to the other CCFs, we allow the user to define the com-

position rules such that different systems can be obtained using the same library. Composition rules

can be defined in a general way as relations between components and their properties (Section 5.1).

Finally, COSI-OCC features the automatic synthesis of communication structures.

Remarkably, the output of COSI-OCC could very well be a description of a communication

structure in one of the other CCFs. At the same time, once a system is simulated in a CCF, the

communication requirement on each connection among components can be passed to COSI-OCC that

uses synthesis to automatically refine the connections into a more sophisticated communication

structure.

Comparison with NoC design frameworks

There is a large number of interesting contributions in the area of analysis and optimiza-

tion methods for NoC design. In this section, we limit our attention to the ones that are more readily

comparable to COSI-OCC. When comparing different approaches, we use our framework presented

in Part II so that a direct comparison with COSI-OCC is immediate.

NetChip [20]. The NetChip design environment provides a complete solution to design, simulate

and synthesize NoCs. The specification is captured by a core graph that is a communication struc-

90

ture NC where qC = (b). A platform instance is captured by a communication structure NP where

qP = (γ). In NetChip, the library L contains a set of predefined topologies (like meshes, tori etc.).

The NoC optimization is carried out by solving PR1(NP) for each topology in the library. Once and

implementation NI is found, other tools generate a SystemC executable simulation.

Gerstlauer et al. [51]. In this work, there are two abstraction levels: the network level and the

link level. In this methodology, the specification is given as a set of processing elements and a

set of channels between them. The first step is the assignment of channels to busses. The library

that is available to the user contains busses, masters, slaves and transducers (that transfer data from

one bus to another). The second step of the methodology consists in optimizing the link design.

This environment is very interesting, but it lacks automatic synthesis and it only provides bus-based

communications. On the other hand, the vector of quantities that are taken into account is very large

and includes the protocol behavior.

SlicNet [6]. A variety of different analysis and optimization technique for NoCs have been devel-

oped within the SlicNet project. Each problem corresponds to a variant of PR1(NP) for a particular

NP. For instance, Ogras and Marculescu propose a technique to insert long links in a regular struc-

ture to improve the performance of the NoC [91]. In this case NP is a mesh with some other extra

links added. The cost function F(NI) is the value of network traffic at which the network enters a

congested state. The objective is to maximize this value. Constraint 6.4 of problem PR1 includes an

upper bound on the number of long links that can be inserted. Besides this work, other optimization

techniques only consider regular topologies. Other contributions are in the development of direct

and indirect statistical models for many quantities related to NoCs, as well as FPGA prototyping of

NoCs.

91

Srinivasan et al. [116]. This work discusses a formulation of problem PR2 for a specific library of

communication components that contains routers and links. The problem is formulated as an integer

linear programming problem. Therefore, highly non-linear constraints, such as deadlock freedom,

cannot be taken into account. Also, function F is considered to be linear in the value of quantity b.

QNoC [21]. The focus of the QNoC architecture is on quality of service. This NoC provides

different service classes for the network traffic. This corresponds to consider the domain of quantity

b as the set of sets of commodities, where each commodity is a source-destination flow with its

own quality of service. Some tools are provided to map an application on a regular mesh and then

remove nodes and links that do not belong to real paths (problem PR1(NP) with NP being a mesh

topology).

APSRA [82]. This work proposes a methodology for the computation of deadlock free routing

functions such that the adaptiveness of the routing algorithm is not compromised. The model used

to capture routing is very similar to the definition of the quantity ρ . Moreover, as in COSI-OCC, the

definition of deadlock is also based on the channel dependency graph. The authors solve problem

PR1(NP) for a given NP. The decision variable of the problem is l[(ρ)](v) for each node v. The cost

function to maximize is a measure of the adaptiveness of the routing protocol. Constraint 6.4 of

problem PR1 is that the network must be deadlock free.

GeNoC [23]. This is the only work that proposes a formal model for NoC that is used for veri-

fication. This work does not solve an optimization problem but a feasibility problem. Given the

description of NI in the Common Lisp language, the ACL2 theorem prover [68] is used to verify

that Constraint 6.1 and Constraint 6.4 of problem PR1 are satisfied.

92

7.2 Specification

As described in Section 4.2, we capture the specification of the communication require-

ments of a SoC as a communication structures NC(CC,qC,LC) with quantities qC = (x,y,a,τ,b,h).

A node represents the port of a core and a link represent an end-to-end communication requirement

between two cores. A port can be assigned to a specific position (x,y) on the chip or it can be un-

placed, in which case the set of configurations LC contains all possible assignment of the core port

to positions on the die area.

Since the performance and cost of the on-chip communication depend on the position of

the cores, the first step in our design flow is to restrict the possible configurations of a specifica-

tion by fixing the position of the ports of each core. In COSI-OCC we rely on the capabilities of

the PARQUET floor-planner [11] to obtain these positions. In particular, we generate an input to

PARQUET as follows:

1. For each link in e(u,v) ∈ Cc, we generate a net with a weight that is proportional to the

maximum bandwidth requirement between from u to v.

2. For each placed core, i.e. for each core with an assigned (x,y) position on the chip, we give

directions to PARQUET to fix its position in the floorplan.

3. Each block is considered as a hard rectangular block with aspect ration between 0.5 and 2.

The result of the floorplanning is then reinterpreted as a new communication structure

N′C ≤qC NC where each component has a fixed assigned position on the chip. The communication

structure N′C is the input to the communication synthesis algorithm that is described in Section 7.4.

An example of specification and chip floorplan is shown in Figure 7.2 for the set-to-box

93

mem
 a=460000

CPU
 a=1440000

100Mb/s

HDTV
 a=600000

10048Mb/s

mpeg2
 a=550000

18976Mb/s

100Mb/s

aud
 a=200000

10Kb/s 10Kb/s dem
 a=550000

10Kb/s

4752Mb/s

13584Mb/s

160Mb/s 240Mb/s

pad1
 (x,y)=(0,100)

992Mb/s

pad2
 (x,y)=(0,200)

992Mb/s

(a) (b)

Figure 7.2: Specification of the set-top-box example as given to COSI-OCC(a), and, Chip floorplan
after elaboration from PARQUET(b).

example of Figure 4.3.

7.3 Library and Composition Rules

Figure 7.3(a) shows the internal architecture of an input-queued router. Data flits arriving

at the inputs are buffered into queues and then sent to the right output by a cross-bar switch according

to the information stored in a routing table. 1 Depending on the number of virtual channels supported

by the router, there can be one or more queues for each input, called lanes. A router with i inputs

and j outputs is characterized by an energy-per-flit metric E(i, j) and an area metric A(i, j). The

table in Figure 7.3(b) reports E(i, j) values across different router configurations and technology

processes. Given a target technology process, the area and energy dissipation of a router depend

on five parameters: number of inputs, flit-width, number of lanes, queue length inputs, and number

of outputs. We obtained these values not through an analytical model, but by running a series of

1We assume that the bit-width of each port is equal to the flit-width. The routing table and scheduler are not shown in
Figure 7.3.

94

simulations with ORION [124].

Network interfaces are directly connected to cores. Their characterization in terms of

power and area is the same as for the routers. Differently from routers, interfaces need to provide

extra services such as protocol conversion, flit-width adjustment, and packetization. Hence, their

performance can be very different from the one of a router especially in terms of throughput and la-

tency. We are aware of this difference and we plan to incorporate more detailed models for network

interfaces in future release of COSI-OCC.

A link is a bundle of wires that connects the output port of a node with the input port

of another node. Figure 7.3(c) shows the first-order RC model of a buffered wire where: Rd is

the transistor driving resistance, w is the width of the buffer NMOS transistor normalized by the

minimum technology width, β is the PMOS-to-NMOS sizing ratio, Cd and Cg are the diffusion and

gate capacitance per unit width, Rw and Cw are the wire resistance and capacitance per unit length,

and lsg is the length of the buffered segment. The delay d of such segment is :

d = 0.7

[
Rd

w
·C1 +(Rw +Cw)

l2
sg

2
+ lsg ·Rw ·w(β +1)Cg

]

where C1 = (w(β + 1)(Cd +Cg)+ lsg ·Cw). To make the delay linear in the wire length, designers

can insert an optimal number of buffer with optimal-size w? spaced by a distance l?sg called critical

length [14, 58, 59]. The delay d? of a critical length is called critical delay. Assuming a synchronous

design implementation with target clock frequency f , the maximum distance that a signal can travel

on an optimally repeated wire within one clock period T = 1/ f is lst =
⌊ T

d? · l?sg
⌋

and it is called

critical sequential length.

The power dissipated by an optimally-buffered line of length l, where lsg < l < lst , running

at frequency 1
T with an activity factor α (the fraction of buffers that are switched during an average

95

XBAR

#lanes

#inputs
#outputs

fw

u v

lsg

Rd/w Rwlsg

w(β + 1)Cd Cwlsg w(β + 1)Cg

ln 90nm 65nm 45nm
1.2V 0.9V 0.6V

3x3
1 13.6 5.6 2.2
4 22.6 8.7 3.1

4x4
1 19.9 8 3.1
4 35.1 13.4 4.6

5x5
1 27.1 10.9 4.1
4 50 18.9 6.4

90nm 65nm 45nm

fclk (GHz) 1.5 2.25 3
VDD (V) 1.2 0.9 0.6
l!sg (mm) 9.98 4.73 3.47
w! 99 85 52
Ed (pJ/mm) 0.48 0.2 0.07
Pl(µW/mm) 0.8 1.3 1.2

||l[x, y](u)− l[x, y](v)|| ≤ lst

l[γ](u, v) = bmax

Router Metrics

Wire Metrics
s d

u

v

s

v d

u

s

v

d

u

v

u

oif

iif

oif

iif

L1
L2

Ni

a)

c)

b)

d)

e)

Figure 7.3: Modeling the NoC components.

clock cycle) is:

P =
l

l?sg
·
[α

T
V 2

dd ·
(
C?

1 +Cw
)
+

Vdd

2
· (w?(Io f f

n +2Io f f
p)wmin

n
)]

where Vdd is the supply voltage and Io f f
n (Io f f

p) is the leakage currents per unit NMOS(PMOS), and

wmin
n is the width of the NMOS transistor of a minimum-size inverter. The two terms of the sum are

the switching power and the leakage power. 2

2We simplified the formula omitting the contribution of the short-circuit current which is negligible with respect to the other two
contributions.

96

The table in Figure 7.3(d) summarizes the metrics of interests for the purpose of NoC

synthesis. In particular, each link is characterized by an energy dissipation per bit per unit length

Ed/l and an area per bit per unit length, which includes the wiring and buffer areas.

Figure 7.3(e) shows the basic NoC component Ni, i.e. a link. The set of configurations of

a component contains all assignments of positions to the two nodes such that their distance is not

greater than the maximum distance lst . The capacity of a link is equal to bmax and the latency is

equal to one hop. The capacity bmax is different from the clock frequency. In fact, in order to avoid

router congestion, the capacity of a link should be set in such a way that the routers’ injection rate

is far from saturation. Otherwise, the actual communication latency would grow exponentially.

In Figure 7.3, L1 and L2 are two possible communication libraries. There are many

types of nodes: s is a source node (withou any input), d is a destination node (without any output),

u and v are routers, ii f is an input interface and oi f is an output interface. Since each component in

L1 has the same interface, this library allows establishing direct connections between a source and

a destination. Instead, library L2, where the source interface ii f is different from the destination

interface oi f , supports a design flow where there are dedicated sockets to connect the cores to the

NoC.

Two important composition rules are implemented in COSI-OCC. At the platform level,

rule RP allows only communication structures where the number of input and output links of a node

does not exceed the number of input and output ports, respectively. At the implementation level,

rule RI allows only deadlock-free communication structures by forcing the channel-dependency

graph of an implementation to be acyclic. Moreover, the bandwidth on any channel cannot exceed

its capacity.

97

dem

vid
mem

HDTV

aud

CPU

a

yb(a)

yt(a)

xr(a)xl(a)

xrxl

yt

yb

0

0

xr

yt

x

y
Positions

Figure 7.4: Slicing method to find the available area for NoC implementation.

7.4 Optimization Algorithm

We begin our optimization process by assigning a fixed position to each core with a floor-

planner. To identify some of the degrees of freedom of the optimization variables, we define the

area AC available to lay out the network. We assume that placing the network over the cores is not

allowed. Hence, AC is the area of the chip that is not occupied by the IP cores. Fig. 7.4 shows the

floor-plan of the set-top box example and a possible layout of the bus implementation of Fig. 6.1. AC

can be represented as the union of a finite set of rectangles A that can be automatically computed.

Each rectangle a ∈ A is described by four real numbers xl(a), xr(a), yt(a) and yb(a), denoting its

left, right, top and bottom boundaries, respectively.

Next, we discretize the rectangles to make quantities x and y finite and apply Proposition 1,

98

We assume that the available positions are uniformly distributed in a with a given density δ , Hence

the number of positions available is equal to dδ · (xr(a)− xl(a))(yt(a)− yb(a))e. The set D(x,y) is

the union of the positions in all rectangles in A . Quantity τ is also finite and quantity γ is bounded,

moreover we assume to have a finite library. Because we want lI[(x,y,τ)] to be injective (i.e. only

one component of a specific type can be installed in a particular location), the maximum number

of nodes in any platform instance is limited to |D(x,y,τ)|. Thus, let U ′V ⊂UV be a set of nodes such

that |U ′V | = |D(x,y,τ)|. The set of valid renaming functions R′ is such that each node of the library

elements is renamed to one of the nodes in U ′V . Hence, it is possible to find an upper bound N〈L 〉P

following the construction of Proposition 1.

At this point, we may attempt at solving Problem PR2 with Integer Linear Programming

(ILP). To illustrate this approach, consider library L1 of Fig. 7.3. First, we have to linearize the cost

function by assuming that the cost of a router is the sum of the cost of each input port plus the cost

of each output port. Then, we define the energy per flit as mini, j[E(i + 1, j)−E(i, j)] for an input

port and as mini, j[E(i, j+1)−E(i, j)] for an output port (and, similarly, the leakage power and area

occupation). This linearized cost function is a lower bound of the real cost of the network. Hence

solving the ILP with this cost function returns a solution that is optimistic. Using one binary variable

for each installation site denoting whether a router is installed at that site, one binary variable for

each link that can be installed between two sites, and one binary variable to denote that a constraint

is routed through a link, the number of variables of the ILP problem becomes very large. It is equal

to |U ′V |2 · |EC|+ |U ′V |2 + |U ′V | where the first term is the square of the number of installation sites

times the number of constraints. For the simple example of Fig. 4.3 with 70 installation sites, the

number of binary variables is 93,170. This many variables causes an ILP solver to run very slow.

99

 Order()

Return

Find links
to remove

Return

Can add
new node?

Add New
Node

Return
Empty

For all
 FindPath(,NoDegree)

NI ← Empty

RI

satisfied?
Y

N
Found Not FoundFor all links

 Remove the set of path
 Remove
 ReRoute all paths
 If cannot ReRoute,
 Add to
 Add all paths to
 Else
 Add the new paths to

RI

satisfied?

Y

N

N

Y

(Find initial solution)

(Re-route flows to remove links,
if not possible then backtrack)

Figure 7.5: High-level description of the heuristic algorithm.

Moreover, some composition rules (e.g deadlock freedom) cannot be included in the ILP since they

are highly non linear. Because of these difficulties, we devised a heuristic approach to solve problem

PR2. In Section 7.5, we compare the results obtained by the heuristic with a lower bound provided

with a further optimistic approximation of the ILP formulation.

Structure of the Algorithm

Figure 7.5 shows the high-level structure of the heuristic algorithm. In the first step, we

find an initial solution not taking into consideration node degree constraints. In the second, we

use an iterative procedure that removes degree violations by deleting links and/or adding routers.

The initial solution is found with the same technique that is used in algorithms for global routing:

100

the end-to-end constraints in EC are first ordered by decreasing bandwidth. One path in N〈L 〉P

is then found for each constraint one at a time (the actual implementation of procedure FindPath

depends on the composition rules). In this phase, the degree constraint rule is not taken into account;

however, if we are lucky, NI may still satisfy the degree rule, in which case the algorithm returns NI

and stops. Otherwise, we activate an iterative procedure to remove the degree constraint violations.

This procedure implements a rip-up and reroute approach one link at a time. The links

connected to the output of nodes with output degree violations and links connected to the input of

nodes with input degree violations are the ones that are considered for rip-up and re-route. For each

link, all source-destination paths containing that link are re-routed by procedure FindPath that now

takes into account the degree constraint rule. If a path cannot be removed, the algorithm back-tracks

by reinserting the link and all the paths. Otherwise, the new paths are added to the communication

implementation. If the re-routing procedure finds an implementation that satisfies the composition

rules, the algorithm ends with success.

Otherwise we try adding a new node (router) to yield a feasible solution. The idea is that

when a new node is added, multiple links entering/exiting a node can be merged/split into/from one

link, thereby reducing the degree of the node (Figure 7.6). However, if no node can be added (e.g.,

because delay constraints would be violated) the algorithm ends with an empty implementation

implying that no solution was found. Figure 7.6 illustrates how new nodes are added. First, among

all nodes with input/output degree violations, the one with the highest number of input/output links

is selected. All input/output links to/from the node are candidates for the merge operation. A subset

of them is chosen with a criterion that depends on the optimization goal. The source and target

nodes of the selected links are connected to the new router, which is instanced in a position such

101

d1

d1

r1

r2

r1

1) Degree violations at

2) AddNode

4) AddNode

(x1, y1)

(x2, y2)

d1

d1

3) Degree violations at d1

v1 v2

v3

v4

v1 v2

v3

v4

v1 v2

v3

v4

o1 o2

o3

o4

o5

o6

o1 o2

o3

o4 lI [(ρ)](r1) = ∪i=1,...,4lI [(ρ)](vi)(oi\o5)

lI [(ρ)](r2) = lI [(ρ)](r1)(o5\o6) ∪ lI [(ρ)](v4)(o4\o6)

Figure 7.6: Procedure for adding a new router to the NoC implementation. For an expression exp,
we denote by exp(x\y) the same expression where variable x has been replaced by y.

that the cost of the links is minimized. The transfer table of the router is set according to the new

paths flowing through it. As it executes this local transformation the algorithm makes sure that link

capacities and degree constraints are not violated. Note that the merge operation does not change

the number of nodes with degree violations.

The FindPath procedure

This procedure is available in different forms to search for the “best” path between a

source and a destination core depending on the particular composition rules that the user specified.

If a delay model must be taken into account to check delay constraints (rule R1), the best path is

discovered by a labeling algorithm (SpLabeling) that finds the minimum-cost constrained shortest

path between two nodes; a modified version of the Dijkstra shortest path algorithm is used other-

wise. If deadlock freedom (rule R2) is included in the set of rules RI , then FindPath runs on

the channel-dependency graph of the communication implementation to make sure that this graph

remains acyclic. The degree constraints of the nodes can be taken into account by adding rule R3).

102

Procedure Reach(NI ,v,R,L)
NR← empty communication structure ;
forall Ni ∈L with Ci = {vi,ui,(ui,vi)} do

forall li ∈ Li do
if lI(v) = li(ui) then1

let N′i (Ci,qP,{li}) ;2

N′′i ← r(Ni), with r(ui) = v,r(vi) = id(li(ui)) ;3

if Ψ(NI)‖Rq N′′i is defined then4

NR← NR‖Rq N′′i

return NR ;

FindPath explores the upper bound N〈L 〉P without building an explicit representation.

In fact N〈L 〉P is explored locally at run-time by procedure Reach. This procedure takes as input

parameters the current communication implementation NI , a node v ∈ CI , the composition rules R,

and the platform library L . Reach checks which links can be instantiated with the source node

v (Line 1). For each link, an instance is generated by renaming the nodes appropriately (Lines 2

and 3). Function id associates a unique identifier to a node depending on its type and position.

If the new link can be composed with the communication implementation without violating the

composition rules (Line 4), then it is added to the reachable communication structure NR (note that

NR ∈ GQP . Therefore the set of rules R must contain RP).

Procedure SpLabelling is one particular implementation of FindPath. It solves the

constrained shortest-path problem [55] using a labeling algorithm [37]. We use the number of hops

as a model for latency. A distance label is a tuple D = (H,C) associated to a node v where H is

the number of hops of the path from the source s to v with minimum cost C. A distance label D is

dominated by D′, written D < D′ if D.H ≤ D′.H, D.C ≤ D′.C, and D.H 6= D′.H ∨D.C 6= D.C′. A

set of distance labels D[v] is associated to each node v. The queue Q contains pairs (v,D) where v is

a node and D ∈ D[v] is a distance label of v. Distance labels in the queue are ordered by number of

103

Procedure SpLabelling(s,d,NI ,L ,R,RI)

D[s]←{(0,0)}, D[v]← /0, ∀ v ∈U ′V \{s} ;1

Q← (s,(0,0)) ;2

while Q 6= /0 do
(v,Dv)← ExtractMin(Q) ;3

Nπ ← path from (s,(0,0)) to (v,Dv) ;4

NR← Reach(NI‖qI Nπ ,v,RP,L) ;
forall (v,u) ∈ CR do5

l← Configure(LI , (v,u)) ;
define N′({(u,v)},qI,{l}) ;
if NI‖RI

qI N′ is defined then6

f ← Compute incremental cost ∆F ;7

Du = (Dv.H +1,Dv.C + f) ;8

if @D ∈ D[u] s.t. D < Du then
D[u]← D[u]∪{Du} ;9

Insert(Q,(u,Du)) ;10

π[(u,Du)]
N′←− (v,Dv) ;11

if D[d] = /0 then12
return /0 ;

else
return ToGraph(π) ;

104

hops and for the same number of hops, by cost. The procedure starts with an empty set of distance

labels for all nodes but the source, which has the distance label {0,0}. The pair (s,{0,0}) is the

only element in the queue (Line 2). The minimum distance label node is extracted from the queue

(Line 3) and the set of possible links departing from the node (computed by procedure Reach) is

processed (Lines 4 and 5). Each link is first configured by selecting one possible configuration,

then composition rules are checked (Line 6). If this distance label is not dominated by any other

already present at u, then it is added to the set of distance labels of u (Line 9), the new pair is

added to the queue (Line 10), and the predecessor tree is updated (Line 11). A path from s to d

that satisfies the hop constraint exists if the set of distance labels at d is not empty (Line 12). If this

is the case, the path with minimum cost C is selected and returned. During the construction of the

initial solution, the composition rules R and RI do not contain rule R3, which is added during the

re-routing procedure instead.

7.5 Results

Table 7.2 lists the SoCs that we used in our experiments. We selected the test cases based

on several criteria:

• the number of IP cores |VC|, ranging from 12 to 42, and the size of the chip, as large as 48mm2;

• the total bandwidth requirement, defined as the sum of the bandwidth requirements over all

end-to-end constraints EC, and ranging from 9 to 99 Gbps;

• the maximum input degree of a destination core and the maximum output degree of a source

core, ranging from 2 to 25 depending on the SoC application.

105

The goal of our experiments is to study the impact of these application features on the synthesized

NoC. Specifically we are interested in the following metrics: the power and area breakdown, the

maximum and average input and output degree of the nodes, the maximum and average number

of hops among all source-destination paths, and the maximum and average latency. The latency

measurements are obtained by simulating the SYSTEMC implementation of the NoC generated by

COSI-OCC. The maximum latency is the largest end-to-end delay experienced by any packet over

the entire simulation, i.e. the time that elapses between the generation of the head flit to the delivery

of the tail flit to the destination. The average latency is computed by dividing the sum of the latencies

of each packet over the simulation run by the total number of flits sent. The SYSTEMC model of the

NoC implements wormhole routing and weighted round robin packet scheduling. Moreover, each

packet has one header flit, one tail flit, and four payload flits.

7.5.1 Impact of the Application Characteristics

The SoC applications used in this experiment were: a Multi-Window Displayer (MWD),

an MPEG4 decoder (MPEG4), a Video Object Plane Decoder (VOPD) as well as two applications,

called dVOPD and tVOPD obtained by instantiating two and three VOPDs, respectively sharing a

common memory. We assumed a 100nm technology and a clock frequency of 1.5GHz. The link

capacity bmax was set to 1.12GBps We used six libraries of communication components differing

for the flit-width of the data path (32 bits and 128 bits corresponding to 280 · 106 and 70 · 106 flits

per second, respectively) and the size of the largest switch available in the library (2×2, 5×5 and

8×8).

The results are reported in Figure 7.7. Each histogram is divided into five zones, one for

each application. Each zone contains six bars, one for each library.

106

Name |VC| |EC| Area (mm2) Total Bw. (Gbps) Ref.

MWD 12 13 3×4 8.96

[20]
MPEG4 12 27 3×2.35 27.8

VOPD 12 15 1.53×1.18 27.9

dVOPD 26 34 2×2.23 66.6
[104]

tVOPD 38 51 2.78×2.37 98.84

VProc 42 69 8×6 78.2

Table 7.2: Characteristics of the selected SoCs applications.

The power consumption and the area occupied by the network are increasing functions of

the total bandwidth requirement. Most test cases do not need the instantiation of large routers. For

instance, the number of input and output ports on each router in the NoCs supporting the MWD and

the VOPD applications is no greater than two since each core is a source and/or destination of few

communication constraints. These NoCs are basically a set of dedicated point-to-point links with

very little sharing. Hence, the difference between the maximum and the average latency is small.

The dVOPD and tVOPD applications show the effect of merging different communica-

tions into a common link. In these applications, a central memory is shared among a few cores.

Since the memory has only one input and one output port, one or more routers are needed to merge

concurrent accesses to memory using time multiplexing. Allowing the installation of larger routers

provides two advantages: (1) the total power consumption is reduced (14% and 12% for dVOPD and

tVOPD, respectively) as a consequence of a reduced hop count, and (2) the end-to-end latency (both

107

the maximum and average value) is reduced. The latency decrease is modest compared to the re-

duced number of hops because the time spent for contention among the input FIFOs grows with the

router size. Generally, however, for these applications the reduced number of hops counterbalances

the negative effect due to contention.

In the MPEG4 application, the SDRAM is shared among many more cores than in the

case of the dVOPD and tVOPD applications. Hence, the use of larger routers does not give the

same benefits. Despite the significant differences between the maximum number of hops in the

2×2 and 8×8 cases, there are no gains in terms of maximum latency, which in fact is even worse

for larger routers (a 73% increase with respect to the 2× 2 case). Here, port contentions cannot

be counterbalanced by the reduced hop count, as opposed to the dVOPD and tVOPD cases where

routers have no more than five inputs.

This set of test cases shows that the power consumption and the area occupied by the

NoC implemented with 32-bit links is much smaller than in the 128-bit implementation. The latter

case gives smaller link utilization (i.e. flit rate), which reduces the latency due to contention. This,

however, is a minor gain and does not justify the use of wider data parallelism, which should be

limited to cases when the required bandwidth cannot be achieved with narrower links.

7.5.2 Effect of Technology Scaling

For the second set of experiments we selected the VProc SoC as a representative embed-

ded system application and we studied the impact of scaling the technology on the performance and

cost of the synthesized NoC. VProc features a central memory that serves 25 different cores. Each

core requires a write and read bandwidth of 960Mbps (in each direction). Technology scaling gen-

erally enables higher transistor densities and clock frequencies. Hence, as we scale the technology

108

0

0.08

0.16

0.24

0.32

0.40

Power (W)

W dyn
W leak
R dyn
R leak

0

0.2

0.4

0.6

0.8

1.0

Area (mm^2)

W
B
R

0

1

2

3

4

5

6

7

8

Hop count

Max
Avg

1.0

1.3

1.8

2.5

3.3

4.5

6.0

8.1

11.0

14.8

20.0

Latency (ns/flit)

Max
Avg

0

1.5

3.0

4.5

6.0

7.5

Input degree

Max
Avg

0

1.5

3.0

4.5

6.0

7.5

Output degree

Max
Avg

MWD MPEG4 VOPD dVOPD tVOPD MWD MPEG4 VOPD dVOPD tVOPD MWD MPEG4 VOPD dVOPD tVOPD

fw=32

fw=128

2x2 5x5 8x8

Figure 7.7: Properties of the synthesized NoCs for the MWD, MPEG4, VOPD, dVOPD and tVOPD
applications. Power is expressed in Watts, area in mm2 and latency in ns/ f lit. We used the following
notation: R for routers, W for wires, B for sequential buffers. Latency is reported on a logarithmic
scale.

we double the bandwidth requirements from each core to the central memory while keeping the

core size fixed. This choice mimics the fact that two cores can fit in the area of one, as the transistor

density doubles with the new process generation.

We used a total of 9 libraries obtained as the combination of three different technology

processes with three different router designs: specifically, we used 100nm, 70nm, and 50nm tech-

nologies while the routers’ maximum size was set equal to 2×2, 5×5 and 8×8, respectively. The

clock frequency was set to 1.5Ghz at 100nm. Since the total memory bandwidth is 3GBps, we set

the flit width to 128 bits to achieve a link capacity of 3.2GBps with a maximum flit rate of 200 ·106

per input port of the routers. We increased the clock frequency to 2.25GHz and 3GHz for the 70

and 50nm, respectively. We also increased the link capacities to 6.4 and 12.8GBps for the two tech-

nologies, respectively. The synthesis constraints were set as follows: the density of the installation

sites was fixed to 20, which gives a total of 364 different possible locations to install the routers; the

synthesis goal is minimum latency with a constraint that each path be no longer than 10 hops. The

109

results are reported in Figure 7.8.

The critical sequential length drops from 9.98mm at 100nm down to 3.47mm at 50nm due

to the different electrical parameters of the wires and also to the increased clock frequency (from

1.5 to 3 GHz). Since the chip size is 8×6mm2, the entire chip can be spanned in one clock cycle at

100nm while 3 cycles are needed at 50nm. Hence, it is not surprising that the maximum number of

hops at 50nm does not change much across the various router configurations because intermediate

FIFOs are needed to segment long interconnection links. The use of larger routers does not help to

reduce the number of hops while it increases the chance of contention. Therefore, contrary to the

100nm case, the reduced number of hops does not balance the higher contention probability and,

ultimately, the average latency obtained by simulation actually increases.

In terms of power consumption, while there is an advantage in using larger routers with

the 100nm technology, the picture changes at 50nm. In fact, the higher clock frequency and the

increase in the transistor leakage power discourage the use of larger routers. When stateful repeaters

are needed to span large distances among the cores, it is more efficient to spatially distribute small

routers on the chip. Finally, the result highlights the need for more accurate timing models for

synthesis rather than the simple measure based on hop count.

7.5.3 Quality of the Solution

The cost of the solution obtained by our algorithm can be compared to the solution to

an equivalent Mixed Integer Linear Programming (MILP) formulation of the the same problem.

Consider an SoC specification as in Figure 4.3 that is comprised of a set of n cores and m end-to-

end communication constraints. After floor-planning, the chip area A is partitioned in two disjoint

regions: AIP = A1∪ ...∪An is the region occupied by the cores and AN = A\AIP is the (non-convex)

110

0

1

2

3

4

5

6

7

8

Input degree

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Power (W)

W dyn
W leak
R dyn
R leak

0

0.4

0.8

1.2

1.6

2.0

Area (mm^2)

W
B
R

0

1

2

3

4

5

6

7

8

Output degree

Max
Avg

0

2.5

5.0

7.5

10.0

Hop count

Max
Avg

3.6
3.0

1.9
2.22.22.5

3.33.33.7

26.028.226.5
35.035.035.3

52.452.751.0

Latency (ns/flit)

Max
Avg

100nm 70nm 50nm 100nm 70nm 50nm 100nm 70nm 50nm

2x2 5x5 8x8 2x2 5x5 8x8 2x2 5x5 8x8 2x2 5x5 8x8 2x2 5x5 8x8 2x2 5x5 8x8 2x2 5x5 8x8 2x2 5x5 8x8 2x2 5x5 8x8

Max
Avg

Figure 7.8: Properties of the synthesized NoCs for the VProc applications.

region available for the NoC. AN can be sampled such that a finite number of points are considered

as installation sites for routers. We use variables like u and v to refer to these points. The set of

all valid network topologies can be implicitly captured by a graph G(V,E) where V represent the

set of installation sites and E the links among them. Notice that E does not have to be V ×V

necessarily, but some constraints (for instance the maximum distance that a link can span) can be

used to prune the set E. We want to install the necessary amount of routers and links to implement

the specification at minimum expense.

Let C = {1, ...,m} be an index set such that each end-to-end constraint is associated to one

index q ∈ C . With s(q),d(q),b(q) and h(q) we denote the source, destination, minimum bandwidth

requirement and maximum number of hops of constraint q. Let xuv be an integer variable that is

equal to 1 if the link (u,v) belongs to the network implementation and 0 otherwise. Let xe be a

vector of all xuv for some ordering of E. Also, let yq
uv be an integer variable that is equal to 1 if

the path from s(q) to d(q) contains edge (u,v), and yq be the vector of all yq
uv. With Y we denote

the matrix whose columns are the vectors yq. For each installation site u, let xu = 1 if a router is

111

installed at u and xu = 0 otherwise. With x we denote the vector of all xu for some ordering of V .

For the same ordering of V , we define the vector bq as follows: bq(v) = 1 if v = s(q),

bq(v) =−1 if v = d(q) and bq(v) = 0 otherwise. Finally, with M we denote the node-edge incidence

matrix of G. The NoC optimization problem can be written as follows:

PRMILP :

minF = ∑
(u,v)∈E

fuv + ∑
u∈V

fu

sub ject to

1) xuv ≤ xu∧ xuv ≤ xv ∀(u,v) ∈ E

2) xuv ≥ yq
uv ∀(u,v) ∈ E, ∀q ∈ C

3) Myq = bq ∀q ∈ C

4) ∑
q∈C

yq
uvb(q)≤ bmax ∀(u,v) ∈ E

5) ∑
(u,v)∈E

yq
uv ≤ h(q) ∀q ∈ C

6) ∑
u∈V :(u,v)∈E

xuv ≤ inmax(v) ∀v ∈V

7) ∑
v∈V :(u,v)∈E

xuv ≤ outmax(v) ∀u ∈V

8) xu ∈ {0,1} ∀u ∈V

9) xuv ∈ {0,1} ∀(u,v) ∈ E

10) yq
uv ∈ {0,1} ∀(u,v) ∈ P,∀q ∈ C

Constraints 1 ensure that a link in installed between two nodes only if such nodes are

present in the network. Constraint 2 ensures that a link is used by a path only if it belongs to

the implementation. Constraint 3 is the flow-conservation constraint. Constraint 4 is the capacity

constraints saying that for each edge the total bandwidth cannot exceed the edge capacity. Constraint

112

5 says that the number of edges in a path cannot be greater than the hop constraint. Constrain 6 and

7 are the input and output degree constraints, respectively.

The cost function F is the sum of the cost of the links plus the cost of the nodes that

can be written as: fuv = αuv(xe)+ βuv(xe,Y) and fu = αu(xe)+ βu(xe,Y). The installation cost of

a component (i.e. area and leackage power), denoted by αu(xe) for nodes and αuv(xe) for edges,

depends only on the way in which components are interconnected. The utilization cost (i.e. the

dynamic power consumption), denoted by βu(xe,Y) for the nodes and βuv(xe,Y) for the edges,

depends on the topology and on the the bandwidth flowing in each component (i.e. the routing

decisions).

The cost function F is, in general, neither convex nor convex. In fact, the area, leakage

power and energy per flit metrics of a router depend on the product of the number of input and

output ports (due to the complexity of the crossbar switch). If F can be approximated by a convex

or a piece-wise concave function, specialized algorithms exists to solve this problem ([85, 93]) when

constraints 6 and 7 are not taken into account.

Ideally, we would like to compare the exact solution of problem PR2 with the one found

by our heuristic algorithm. Therefore, we linearize the cost function as sketched in Section 7.4.

However, the best we can do is to compare our results with a lower bound since even the relaxed

ILP formulation has prohibitive running times for our test cases. We relaxed the problem further by

converting the ILP into a Linear Program (LP). We used CPLEX [32] to solve the linear program.

We then computed the ratio of the power consumption of the solution found by CPLEX over the one

of our heuristic algorithm across various benchmarks. Table 7.3 report these results together with

the number of positions |D{xy}|, the computation time ’tcpu LP’ of CPLEX and the computation

113

time ’tcpu H’ of our heuristic.

In most cases our heuristic algorithm is 2-3 orders of magnitude faster than solving the

LP (a remarkable fact since the LP DOES not find a feasible solution). The power of the NoC found

by the heuristic is within 2x from the power found by CPLEX that is very optimistic for the change

in the cost function and for the relaxation of the integer constraints.

114

Name |D(x,y)| tcpu LP tcpu H Ratio

MWD 2x2 94 4.76 0.11 1

MWD 5x5 94 4.83 0.11 1

MWD 8x8 94 4.78 0.11 1

MPEG4 2x2 117 434 5.29 0.49

MPEG4 5x5 117 479 1.46 0.55

MPEG4 8x8 117 394 1.32 0.48

VOPD 2x2 63 1.98 0.13 0.73

VOPD 5x5 63 0.87 0.13 0.78

VOPD 8x8 63 0.85 0.13 0.78

dVOPD 2x2 147 130 1.8 0.69

dVOPD 5x5 147 60 1.66 0.66

dVOPD 8x8 147 60 1.65 0.66

tVOPD 2x2 150 438 4.54 0.71

tVOPD 5x5 150 423 3.32 0.66

tVOPD 8x8 150 426 3.34 0.66

Table 7.3: Evaluating the heuristic algorithm of Figure 7.5.

115

Chapter 8

Building Automation Networks

Electronics controllers for a large number of applications such as public infrastructure

management, industrial plant control, automotive networks, avionics, and building automation are

networked because of the distributed nature of the plant that they control. Figure 8.1 illustrates the

design process of mapping an embedded control specification onto a networked execution platform.

At the specification level, an abstract model of the plant is used to derive the desired properties of the

feedback controllers such as stability and robustness [90]. Each controller Ci is derived assuming a

continuous-time model and then discretized with the choice of a suitable sampling period ∆ti that

preserves its properties [46]. Complex plants with multiple physical quantities to be controlled

typically require multiple controllers that may be discretized with different sampling periods. At

each sampling period, a certain amount of data is transferred from the sensors to the input of the

controllers and from the controllers’ outputs to the actuators. Therefore, each logical connection

between the controllers and the plant implicitly defines a message frequency. For instance, controller

C1 in Figure 8.1(a) receives bp1 messages per second from the sensors and sends b1p messages per

116

Plant Plant

Sensor1

Actuator1

LAN

Gateway

Router1

(a) (b)

LAN Gateway Router

ẋ2(t) = f2(u2, x2, t)
y2(t) = g2(u2, x2, t)

ẋ1(t) = f1(u1, x1, t)
y1(t) = g1(u1, x1, t)

Controller1

Controller2

Sensors

Actautors

b1pb2p
bp1 bp2

∆t1

∆t2

tC tG
tR1

tR2

Figure 8.1: A distributed embedded control system: (a) controller specification and (b) networked
execution platform.

second to the actuators. Moreover, distributed computation requires multiple computers that need

to exchange data via an interconnect network1.

The network shown in Figure 8.1(b)) is heterogeneous and hierarchical; it contains a

high-performance local area network (LAN), also known as the backbone network, that connects

the various computers and is attached via a gateway to a control network island, or zone. In general,

the plant is partitioned into multiple zones according to its physical characteristics. The various

zones are also connected via gateways. Each zone contains a subset of the sensors and actuators

that are linked to its gateway by a network of links and routers. For simplicity, Figure 8.1(b)) shows

only a single zone: here the control network is made of six sensors, three actuators, and three routers

that are linked via the gateway to the backbone network.

1These computers are given different names in different application areas, like direct digital controls in building
automation, programmable logic controllers in industrial automation, and electronic control units (ECU) in automotive
electronics.

117

This two-tier architecture is not the only possible network organization, but it is becom-

ing increasingly popular for many important applications including heating, ventilation and air-

conditioning (HVAC) control systems [67]. Generally, the goal of feedback control in a HVAC

system is to regulate physical quantities such as temperature, humidity, and pressure to optimize

an indoor environment for human comfort (comfort HVAC) or for machine operations (industrial

HVAC) while minimizing operation, installation, and maintenance costs. The design of the com-

munication network plays an increasingly important role in reaching these goals.

Once distributed over a set of computers interconnected by a backbone LAN, the overall

control system requires that the worst-case computation time tC be bounded. The messages from(to)

the sensors(actuators) need to cross the gateway that accounts for a worst-case communication delay

equal to tG. Since a controller Ci can tolerate a loop delay not greater than its sampling period ∆ti,

the design of the control networks must satisfy a set of real-time constraints like (tRi ≤ ∆ti− tC− tG)

while guaranteeing that all required messages are gathered from the sensors and delivered to the

actuators. In addition, the network cost (given by the sum of the costs of its components and of the

installation costs) should be minimized.

Today it is standard practice to deploy the networked embedded system first on a prede-

fined distributed architecture chosen on the basis of experience and heuristic considerations and then

tweak the software implementation of the control algorithm to meet latency, bandwidth, and reliabil-

ity requirements. This tuning phase can become a nightmare for engineers and technicians because

the behavior of the control algorithm is affected by the loop delay that is the result of computation

and communication delay. To detangle the behavior of the control algorithm from the communica-

tion delay, the network is often over-designed. This is far from ideal, since many systems are highly

118

cost sensitive and using a network that is not tailored to the application and not optimized is clearly

expensive. Moreover, the complexity of large networked embedded systems continues to increase,

thus making heuristic and experience-based design practices inadequate. Two factors contribute to

the complexity of these systems:

• The scale of control networks for the automation of large buildings is of the order of thousands

of sensors distributed on a surface of hundreds of thousands of square meters.

• A rich variety of alternative protocols and technologies are available to build such networks [67].

The number of alternative implementations that can be constructed by assembling heteroge-

nous components represents a great opportunity to match the network and the communica-

tion requirements with the intent to reduce cost. Unfortunately, the difficulties encountered

in handling heterogeneous networks represent an obstacle that cannot be easily overcome by

experience. This is the reason why systems tend to be homogenous and often sub-optimal.

We apply our methodology with the intent of assisting engineers in the design process so

that the final implementation satisfies specifications while taking into consideration the overall cost

of deployment including development cost and time.

8.1 Specification

The specification of a communication synthesis problem for building automation systems

is divided in two parts: the specification of the communication constraints and the definition of the

environment in which the network is embedded. The environment consists of the geometry of the

119

building in terms of walls and cable ladders2 and a way of capturing them is explained in details in

Section 8.2. In this section we focus on capturing the communication constraints.

The specification is comprised of nodes that are sensors, actuators and gateways, and

end-to-end communication constraints. Each constraint is characterized by a message period, a

message length and a maximum latency. Therefore a specification is a communication structure

NC(CC,qC,LC), where vector of quantities qC = (τ,x,y,z, t,b,m) contains the type of the nodes τ ,

the variables x,y and z that represent the position of the nodes in the Euclidean space, the maximum

latency t in seconds, the message frequency b in number of bits and the message length m in bits.

As discussed in the introduction of this chapter, a building automation system (BAS)

is usually partitioned into multiple gateway zones according to the physical characteristics of the

building. Typically a gateway zone coincides with a floor and the gateways can only be installed in

specific closets [67]. The computers processing the control algorithms are also typically installed in

pre-determined locations. The control network for the entire building is then obtained as the com-

position of the control network of each gateway zone and the high-speed backbone LAN (that can

also be synthesized using the same techniques that we show in the rest of this chapter). Figure 8.2

illustrates a gateway zone for a simplified version of a building automation system. The floor of the

building measures 30× 20 m2 and the ceiling height is 3m. In Figure 8.2, A = {a1, ...,a10} is the

set of actuators that are placed at the ceiling level, and S = {s1, ...,s9} is the set of sensors that are

placed 1.3m above the floor. The gateway is placed on the north wall and up to four routers may be

installed on the other walls. Each potential router in the set R = {i1, . . . , i4} has an associated fixed

position p(i j).

2Other details can be captured. We capture walls and cable ladders only since these two elements are the ones that
most affect the performance and cost of a network.

120

A gateway zone contains a gateway g, a set S of sensors and a set A of actuators. Therefore,

for this simple example, the nodes contained in the specifications are VC = {g}∪S∪A, and the links

are EC = (S× g)∪ (g×A). Sensors and actuators are connected to the gateway through switches

and routers. The number of these intermediate nodes within the control network may vary as well

as their positions. The number of possible nodes positions, however, is typically limited since they

must be easy to access and kept away from possible hazards. In fact, the choice of how many nodes

to install and where to install them is part of the design of the control network and does affect

its cost. For wired networks, sensors and actuators are connected to routers on simple networks

implemented with twisted-pair wire technology, while the links between the routers and the gateway

offer relatively high-bandwidth and low-latency. Typically, a bus connects a subset of the sensors

and the actuators and one router such that nodes on different busses can communicate trough the

routers that are connected by high bandwidth links. The choice of a bus standard and the length of

the wires implementing the link affects directly the cost of the control network. Various protocol

standards at different layers of the OSI model are available to control these busses like BacNet[87,

24], LonWorks [41], and ARCNET [1]. Wireless technology is a promising alternative option for

future implementations since the installation cost of a network can be potentially reduced. However,

wireless communication is less reliable than wired communication Therefore extra attention has to

be paid at design time to make sure that the location of wireless nodes, transmission power, routing

strategy and access control mechanisms are configured to guarantee the end-to-end specification

constraints.

121

Gateway

Router

Sensor

Actuator

Room 1

Room 3

Room 2

Room 4

20

30

i1

i2

i3

i4

a1 a2

a3

a4

a5

a6 a7

a8

a9

a10

s1

s2

s3

s4

s5

s6

s7

s8

s9

g

σ1

σ2

σ3

σ4

Figure 8.2: Example of gateway zone associated to a building floor.

8.2 Capturing the Building Geometry

The cost of a building automation network is affected by the building geometry. The

cost of a wired network depends on the wire length of each link that can be computed only if the

wire layout is known. The cost of a wireless network depends on the number of nodes and their

power consumption. The number of nodes, as well as their transmitting power, depends on the

path loss experienced by the wireless signal. Obstacles, like walls, contribute to the path loss and

may require the use of intermediate wireless router to function as repeater such that connectivity

is guaranteed. Therefore, we need a way of capturing the geometry of a building with a model

that is amenable to fast computation of wire length and path loss. We capture a building as a set

122

p1

p2

p3
p4

x

y

z

a1
a2

p
σ

Figure 8.3: Representation of a two-dimensional face with four vertexes in the Euclidean space.

of two-dimensional faces with four vertexes (in a three-dimensional space). First, we introduce a

parametric representation of this type of faces. Then, we show some geometric relations that will

be useful in later sections. Figure 8.3 shows a reference system in the Euclidean space with a face

σ . The four vertexes of the face are named p1, p2, p3 and p4. The convention that we use is the

following: with p1 we denote the vertex that is closest to the origin of the reference system; p2 and

p4 are the vertexes adjacent to p1; p3 is the remaining vertex. The two unit vectors a1 and a2 have

the same directions as the two edges of the face that are incident to p1. In particular, these two unit

vectors have the following expressions:

a1 =
p2−p1

||p2−p1|| , a2 =
p4−p1

||p4−p1||

123

x

y

z

ps

pr

p1

a1 a2

asr

Figure 8.4: Intersection of a ray with a face.

Any point p on the two-dimensional face can be written as linear combination of the the two unit

vectors as follows:

p = p1 + t1a1 + t2a2, 0≤ t1 ≤ ||p2−p1||, 0≤ t2 ≤ ||p4−p1||

When a face is used to capture the presence of a wall, we also add the thickness information.

Similarly, we can write the parametric equation of a segment in a three dimensional space as follows.

Let ps and pr be the two extreme points of the segment. The set of points belonging to the segment

is defined by the following parametric equation:

p = ps + ta, a =
ps−pr

||ps−pr|| , 0≤ t ≤ ||ps−pr||

These representation provides an inexpensive way of computing the intersection of two

segments and the intersection of a segment with a face. Consider a segment from a point ps to a

point pr and a face σ . Figure 8.4 depicts this setting. A point is common to the line and to the face

124

if and only if we can find three parameters t1, t2 and t such that:

ps + tasr = p1 + t1a1 + t2a2, 0≤ t1 ≤ ||p2−p1||, 0≤ t2 ≤ ||p4−p1||,0≤ t ≤ ||pr−ps||

This is a system of three equations in three unknowns. If the system can be solved and the three

parameters satisfy the inequality constraints, then an intersection point exists and can, indeed, be

computed.

Consider another segment from pu to pv. The following system defines the intersection of

two segments:

ps + t1asr = pu + t2auv, 0≤ t1 ≤ ||ps−pr||, 0≤ t2 ≤ ||pu−pv||

This is a system of three equations in the two unknowns t1 and t2. To find a solution, we project

the system on the x-y plane. If the 2 by 2 system does not have a solution or if the two parameters

do not satisfy their inequalities, then the two segments do not intersect. Otherwise, we check if the

two parameters t1 and t2, found after the projection of the system, also satisfy the equation along the

z axis. If this is the case, then we found an intersection point, otherwise the two segments do not

intersect.

We rely on the computation of the intersection point between two segments to compute

the actual wire layout between two points for a given set of cable ladders (captured by horizontal

faces located at the ceiling level). Figure 8.5 shows the four cable ladders from the example of

Figure 8.2. First, we compute the intersection points for each pair of surface (x1, x2 and x3 in this

example). Then, we define a connectivity graph that has two types of vertexes: Intersection points

(shown as large nodes in Figure 8.5) that have a fixed position, and ancillary nodes representing

any point on a surface (shown as small circles in Figure 8.5). An ancillary node of a surface σi is

connected to an intersection point x j if the point belongs to the surface.

125

σ1

σ2

σ3

σ4

x1

x2

x3

ps

pr

js

jr

x1

x2

x3
σ1

σ2

σ3

σ4ps

pr

js

jr
||ps− js||

(ps, js,x1,x2,x3, jr,pr)

Connectivity Graph

Figure 8.5: Construction of the connectivity graph and example of computation of wire layout for
the example of Figure 8.2.

Consider two points ps and pr. To compute the wire layout that connects them, we first

compute the closest points js and jr to ps and pr, respectively. These points must belong to cable

ladders. Let σs and σr be the two surfaces representing the cable ladders, respectively (these two

surfaces are σ1 and σ4 in the example of Figure 8.5). To compute the actual path followed by the

wire from ps to pr, we set the position of the ancillary node σs to js and of the ancillary node σr

to jr. Finally, we compute the shortest path between ps and pr on the connectivity graph where the

length of the edges is simply the distance between the positions associated to its extreme nodes. In

the example of Figure 8.5, the wiring layout follows the list of points (ps, js,x1,x2,x3, jr,pr).

8.3 Wired Networks

In this section we explain the sequence of steps that should be followed to define a syn-

thesis flow for wired networks for building automation systems. We first define the platform, which

entails defining the library of communication components and the composition rules (Section 8.3.1).

126

Then, we formulate an optimization problem that aims at finding an optimal implementation of the

communication architecture supporting the control application (Section 8.3.3).

The cost of a wired network is mainly attributed to the installation cost. This cost is

the cost of installing the components plus the cost of installing the wired connections. Because

the installation of sensors and actuators is mandatory (and it is given as part of the specification),

their cost is a fixed constant in the optimization problem. The variables of the optimization are the

position and number of routers to install, and for each router, the subset of sensors and actuators that

connect to it. Therefore, the problem is to select the minimum number of sub-networks such that

each node in the specification is covered. Notice that there is a limit on the number of nodes and

total bandwidth for a sub-network. Moreover, depending on these two quantities, the delay incurred

by messages changes.

Further restrictions are imposed on the topology of the sub-networks. In practice, inde-

pendently of the protocol of choice, the suggested topology for the physical implementation of the

network is the daisy-chain bus. The main reason behind this choice is the impedance matching that

can be performed by installing simple devices at the end of the chain. Due to their ubiquity, we focus

our attention on daisy-chain bus topologies. Nevertheless, the extension to other kinds of topologies

is supported by the framework and impact the formulation and efficiency of the algorithm. In fact,

in Section 8.4.2, we synthesize wireless networks with tree topologies.

Figure 8.6 shows an example of wire layout for a daisy-chain bus that connects a sensor

and two actuators to a router. The layout is constrained by the network topology and the building

structure. The standard way of laying out wires relies on raceways or cable ladders that are installed

along the building aisles. Special conduits are used to bring wires from the nodes to the cable

127

Figure 8.6: Example of daisy-chain wiring of a few components in a building automation system.

ladders. We capture these constraints with a set Σ of rectangular surfaces in the Euclidean space.

We constraint wires to only travel on these surfaces. Wires from nodes are first laid out to the closest

raceway and then towards their destination. For the example of Figure 8.2, the set of surfaces is

Σ = {σ1, ..,σ4}. They are about one meter wide and disposed at the ceiling level.

8.3.1 Library of Communication Components

There are many networking technologies that are appealing solutions for building automa-

tion networks. The two most common wired protocols are BACNET [24] and LONWORKS [41].

These two protocol define layer 3 and above3 of the OSI protocol stack [8] and can use many LAN

technologies for low level communication (i.a medium access control and physical layer). For a

good review of control busses, we refer the interested reader to [112, 119].

We are interested in optimizing the network cost while guaranteeing performance con-

straints. The cost of the network depends mainly on the wiring, while the performance of a bus

3Level 1 is the physical layer and level 2 is the data link layer.

128

s1

a1 a2

i

BUS
s1

a1 a2

i

Logical link
Physical link

j1j2j3 j4
j5(127)

(128) (129)

(130)
ls

lp

39 39 17 105
IIT FBE ACK PAC ACK

ta + tsta + tp ta + ts ta + ts ta + ts

17

(a) (b)

(c)

Figure 8.7: Graphical representation of a daisy-chain bus: (a) logical network, (b) physical network,
(c) sequences of messages generated by the token passing protocol for a short packet transmission.

depends mainly on the characteristics of the medium access control protocol. Therefore, we need

accurate models for the wire length (i.e. the distance between two nodes) and the timing behavior of

the bus protocol. A simple way to guarantee deterministic timing properties is to use a token passing

scheme among the bus participants. One such protocol is ARCNET [1]. ARCNET is a token pass-

ing bus with deterministic performance that can operate at different speeds ranging from 19Kbps

up to 10Mbps (but optimized for 2.5Mbps). A token passing bus (Figure 8.7(a)) is a centralized

communication system where nodes are logically organized in a ring. A node can send messages

only when it holds the token. The token is passed from one node to its logical neighbor which is the

one with the next highest address.

To model the performance of a set of LonWorks components connected in a daisy-chain

129

on an ARCNET bus, we need to analyze the token passing bus protocol. Consider the case where

sensor s1 sends a short packet to router i. A successful transmission of a message requires a sequence

of protocol messages that includes: a token pass (Invitation to Transmit IIT), a Free Buffer Enquiry

(FBE), an Acknowledge (ACK), a Packet (PAC) and a final ACK. Figure 8.7(c) shows each message

in the sequence annotated with its length in number of bits (in this example we assumed that the

payload of the message contains one byte only).

Between one protocol message and the next one, two other delays contribute to the total

communication delay: the response time ta of the chip that implements the protocol interface, and

the propagation delays tp and ts relative to the signal traveling distances lp and ls, respectively (Fig-

ure 8.7(b)). The real distance between them depends on the physical path traveled by the twisted-

pair wires. The distance does not only affect performance, but also cost. In fact, the wire installation

cost is a major concern in the design of building automation networks especially in retrofitting of in-

stallations. Given two points in the Euclidean space p1 = (x1,y1,z1) and p2 = (x2,y2,z2), the length

of a link connecting them can be defined at different abstraction levels. For instance, for a given

ceiling level h, we could define the distance as d(p1, p2) = |z1−h|+ |z2−h|+ ||(x1,y1)− (x2,y2)||1

if p1 6= p2, and zero otherwise. This definition captures the fact that each vertex must be wired to

the ceiling first. The use of the L1-norm captures the fact that wires follow straight lines, but it does

not capture the real layout of the wires. In fact, the effective distance between any pair of elements

of the control network is neither the L1- norm, i.e. the Manhattan distance, nor the L2-norm, i.e. the

Euclidean distance. We adopt the more refined model presented in Section 8.2. We first compute

the distance from p1 to the closest point q1 in space that belongs to a raceway. Then, we compute

the distance from p2 to the closest point q2 that belongs to a raceway. Finally, we derive the actual

130

layout of the wire between q1 and q2 and we compute its length. The final distance between p1 and

p2 is obtained by adding up these three contributions.

We define a wiring path as a sequence of points in space and we assume that wires follow

a straight line between two points. For instance, in Figure 8.7(c) the wiring path between a1 and s1

is πw(a1,s1) = (j3, j5). The length of this path is

|πw(a1,s1)|= ||p(a1)− j3||1 + || j3− j5||1 + || j5− p(s1)||1

The physical lengths in the example of Figure 8.7(b) are ls = |πw(s1,a1)|+ |πw(a1,a2)|+ |πw(a2, i)|

and lp = |πw(a2,a1))|+ |πw(a1,s1)|. Therefore, when we instantiate an ARCNET bus, we can attach

a quantity to each wire that represent its wiring path and compute the latency and cost of each daisy-

chain bus. The set of parameters defined in Table 8.1 are used to compute cost and performance of a

wired network based on LonkWorks technology. (where the delay of 12.6µs refers to ta). From this

table, we observe that a bus must satisfy many constraints like the maximum number of nodes that

can connect to it (i.e. the degree) and the maximum length of the daisy chain. These two parameters

change depending on the speed of the bus. The cost of a daisy chain bus can be computed by adding

together the cost of each node plus the wiring cost. Notice that, for each component, the installation

cost must also be taken into account.

The delay between two nodes is the sum of two contributions: the time required to acquire

ownership of the bus, and the delay incurred by a message on the path from its source to its desti-

nation. Notice that the source and the destination of a packet may be attached to different busses

which makes the computation of the delay not trivial. For toke ring busses, the time to access the

bus is called token rotation time. Figure 8.8 shows a typical configuration of a bus with k partici-

pants. The token rotation time can be computed as follows. The total number of bits sent on the

131

Component Performance Cost

BUS (twisted-pair)

Degree : 8 Price: $0.6/m

Length: 120m Inst.: $7/m

Delay: 5.5ns/m

Bandwidth: 2.5Mpbs

Router Delay: 320ns
Price: $500

Inst.: $240

Sensor Delay: 12.6µs
Price: $110

Inst.: $50

Actuator Delay: 12.6µs
Price: $200

Inst.: $50

Table 8.1: Characterization of the intrinsic performance and cost of a realistic library of components
for building automation systems.

bus during a token rotation (i.e. from the token being passes to v1 to the token returning to v1) is

the sum of the bits sent by all nodes on the bus. To send an m bit message on the bus, a software

task running on a node sends the the message to the protocol interface which adds several protocol

related information. Figure 8.7 shows the protocol phases and their length in bits that are IIT (39

bits), FBE (39 bits), ACK (17 bits) and PAC, whose length depends on the length of the payload.

Moreover, each byte of the payload is protected with 3 additional bits for error checking purposes.

Thus, the number of bits injected on the bus by a sender can be computed as follows:

IIT +FBE +ACK +PAC +ACK = 2 ·39+2 ·17+PAC +11 ·
⌈m

8

⌉
where PAC = 94 if the message is shorter than 256 bytes and PAC = 105 if the message between

256 and 507 bytes. If a node does not send messages but only receives them, it will just pass on the

token and contribute with a total number of bits equal to 39. Let M be the total number of bits sent

on the bus for a complete rotation of the token and let speed represent the bus speed. The token

132

rotation time can be approximated by M/speed. It is possible to refine this model adding also the

physical delays like ta and the signal propagation time.

v1 vk
IIT

FBE ACK PAC ACK

IITFBEACKPA
C

AC
K

v1

vk

Token Rotation Time

Figure 8.8: An example of a token ring bus with k participant v1,...,vk and the graphical representa-
tion of the token rotation time.

Consider the case where each node on the bus sends one byte to a central node also on

the same bus. The number of bits required for each message is 217, therefore if we use ARCNET

at 2.5Mbps, the time required to sent the message is 217/2.5 = 86.8µs plus five times ta, plus

the propagation delays. Multiplying this value by the number of nodes on the bus gives the token

rotation time. To compute the maximum number of messages per second that a bus can support,

we proceed as follows. Consider an ARCNET bus configured at 2.5Mbps. The number of bits

necessary to send a message of one byte is 217, therefore we obtain that at most 2.5 · 106/217 =

11520 packets per second can be sent on the bus.

The delay between two nodes can be computed as follows. If two nodes vi and v j are on

the same bus, the delay between them is the token rotation time of that bus. If the two nodes are on

two different busses, BUSi and BUS j, respectively, then the delay between them is the token rotation

time of BUSi plus the token rotation time of BUS j plus the delay of the higher level network that

connects the two busses. As discussed in the introduction to this chapter, the higher level network

133

is usually much faster than the busses and its delay can often be neglected.

The token rotation time can be interpreted as the worst case access time of a node to a

bus. This time is computed by an indirect model that, given the configuration of the bus, computes

the token rotation time. We denote this model by trt.

8.3.2 Communication Platform and Implementation

The platform is characterized by the vector of quantities qP = (τ,x,y,z,πw,γ) where the

triple (x,y,z) represents the position of nodes, τ represents the type of nodes, γ is the number of bits

per second sent by a node, and πw represents the wiring path associated to each link.

The composition rules RP that must be satisfied by any composition of platform instances

are the follows. Given a pair (CP,LP) of components and configurations of a platform instance the

following topological constraints must be satisfied:

• The result of a composition must be a set of daisy-chains. These constraints are described

formally as follows. The degree of each vertex deg(v) (i.e. the number of links incident to the

vertex) is at most 2. Since we don’t want isolated vertexes to be instantiated, the degree must

be at least one. These two constraints are called degree constraints. Self loops are not allowed.

The degree constraints are not enough since they might leave space for ring structures. The

additional constraint is that the number of links must be less than or equal to the number of

vertexes minus one. This constraint is called topology constraint. Summarizing:

Degree constraint : 1≤ deg(v)≤ 2, ∀v ∈VP

Topology constraint : |EP| ≤ |VP|−1

• If |EP|= |VP|−k, then the number of connected components of a platform instance is equal to

134

k. Since the maximum number of nodes connected to a bus is limited by a maximum degree

nmax, the following must hold: ⌈ |VP|
|VP|− |EP|

⌉
≤ nmax

• The total length of the wires in each connected component must be less than or equal to lmax.

Let Ni
P be the i-th connected component in NP, corresponding to a bus. Then, the total length

of the bus is the sum of the length of the wiring paths on all the edges. The following must

hold for any connected component Ni
P ≤QP NP:

∑
e∈E i

I

|l[πw](e)| ≤ lmax, ∀l ∈ LP

• Let VB ⊂CP be the set of vertexes on a connected component of NP representing a daisy chain

bus. Then the following must hold:

∑
v∈VB

lP[γ](v)≤ speed, ∀lP ∈ LP

The implementation NI(CI,qI,LI) is characterized by the vector of quantities

qI = (τ,x,y,z, t,b,m,πw,γ,d) where d is the access time to a bus. For the node v ∈ VI and a

configuration lI ∈ LI , the quantity lI[d](v) is indirectly derived and must satisfy the constraint

lI[d](v) = trt(CI, lI,v).

8.3.3 Optimization Algorithm

In this section we present our approach to solve the communication synthesis problem

for wired networks in building automation systems. First, we define the conditions under which

an implementation satisfies a specification. Let NC denote the communication specification. Also,

let NI denote the communication implementation that we assume to be the composition of a set of

135

daisy chain busses and a higher level network. Therefore, we assume that NI = N1
I ||...||Nn

I ||NH
I . To

ensure connectivity, each component Ni
I must contain a router among the ones given as input to the

problem. Let ri ∈V i
I be the router associated with bus Ni

I .

The implementation satisfies the specification if the following constraints are satisfied:

• For all constraints e(u,v) ∈ EC and for all configurations lC ∈ LC

lI[γ](u)≥
(

2 ·39+2 ·17+PAC +11 ·
⌈

lC[m](e)
8

⌉)
lC[b](e)

This constraint ensures that the node is able to send at least as many bits as required by the

specification. To make this rule more general, we introduce a model for the bandwidth (in

bits per second) that, given the message length and the message frequency, returns the total

bandwidth taking into account the protocol overhead. We denote the model by a function

bandwidth(µ,β) of the message length µ and the message frequency β , and write lI[γ](u)≥

bandwidth(lC[m](e), lC[b](e)).

• For all constraints e(u,v) ∈ EC and for all configurations lC ∈ LC, if u belongs to chain Ni
I and

v belongs to chain N j
I , then the following must hold:

lI[d](u)+ lI[d](r j)≤ lC[t](e)

If u and v are on the same bus then:

lI[d](u)≤ lC[t](e)

Clearly, the router is essential to allow communication among different busses. Each router con-

tributes to the bus traffic by injecting messages sent to nodes that belong to the bus from nodes that

belong to other busses.The message frequency at which the router injects messages on a bus can be

136

computed as follows. For a given specification configuration lC, the aggregate message frequency

of router ri is:

βi = ∑
(u,v)∈EC:v∈C i

I∧u/∈C i
I

lC[b](e)

Also let the message length be defined as:

µi = max{lC[m](e) : e(u,v) ∈ EC ∧ v ∈ C i
I ∧u /∈ C i

I }

Therefore the following constraint must hold:

lI[γ](ri)≥ bandwidth(µi,βi)

In deploying a bus, the algorithm needs to take into account the composition rules defined

in Section 8.3.2 and needs to make sure that bandwidth and latency requirements are satisfied. We

say that a daisy-chain, or simply a chain, is valid if it satisfies all the aforementioned constraints.

Given a specification NC, a valid network implementation is a set of valid daisy chains, each con-

taining exactly one router, such that each node in CC is contained in exactly one chain.

We solve the communication synthesis problem with a two-step approach: (1) chain gen-

eration and (2) chain selection. The chain generation algorithm is in charge of generating a set of

valid chains while the chain selection algorithm picks a subset of these chains such that each node

in the specification is contained in exactly one bus.

Algorithm 3 is a greedy algorithm that generates minimum-length valid chains. We use

the example in Figure 8.9 to explain how the algorithm proceeds.

For each possible router position r, the algorithm starts by creating a chain NI that initially

contains only a router vertex (line 1) in position pr. Then, it tries to expand this chain by attaching

other vertices, each representing a node in the specification (i.e. either a sensor, an actuator or a

137

Algorithm 3: Find all minimum-length valid chains
Input: Available routers R = {r1, ...,rm} with associated positions pri ; Specification NC
Output: Set of valid daisy chain busses C
forall r ∈ R do

A[v]← f alse,∀v ∈VC
Initialize NI with r in position pr1
Extended← true
while Extended do2

Extended← f alse
(u∗,v∗)← arg minv∈VC :A[v]= f alse∧u∈VI∧deg(u)≤1 d(u,v)3
Instantiate N′I(C ′I ,qI ,{l′I} such that:
C ′I = {(u∗,v∗),u∗,v∗}
l′I(u∗) = lI(u∗) and l′I [(τ,x,y,z)](v∗) = lc[(τ,x,y,z)](v∗)
γv← ∑(v∗,z)∈EC

lC[b](v∗,z)
µv←max{lC[m](v∗,z) : (v∗,z) ∈ EC}
l′I [γ](v∗) = Bandwidth(µv,γv)
l′I [πw](u∗,v∗) = WiringPath(u∗,v∗)
NI ← NI ||QI N

′
I

UpdateRouter(NI ,r)
UpdateDelay(NI ,trt)
A[v∗]← true
C′← /0
forall Ni

I ∈C(i) s.t. u ∈V i
I and deg(u)≤ 1 do4

N′′I ← Ni
I ||QI N

′
I5

UpdateDelay(N′′I ,trt)
if N′′I is valid then6

C′←C′∪{N′′I }
Extended← true

C(i)←C(i)∪C′

return C

138

s1

s2

a1

!

!!

!

!

!

!

!

!

s2 a1 s1

c1

c2

c3

c4

c5

a2

i1

i2

i1 a2

!

!

!

!

i2

c6

c7

c8

Figure 8.9: The chains generated by Algorithm 3 and the resulting covering matrix.

controller), that may end up being “covered” by router r. If this attempt fails then the chain is

discarded as an invalid chain. Otherwise, it is included in the set of valid chains that are passed

to chain selection algorithm. An array A is used to track those vertices that have been already

considered to extend chains. At each iteration of the main loop, the algorithm attempts to select a

vertex v∗ that is closest to one of the extreme vertexes of the chain and that has not been considered

yet (lines 3). The domain of arg min contains those vertexes with degree less then or equal to 1,

which ensures that new vertexes are only attached to the extreme of a chain. For instance, consider

router i1 in Figure 8.9. During the first iteration actuator a1 is selected as the the closest vertex to

extend the chain of i1. Chain c1 that only covers vertex a1 is generated.

139

On line 4, the algorithm starts analyzing all the previously generated chains that should

be extended. If node v∗ is to be added to the chain, and u∗ is the extreme node of the chain that

is closest to v∗, then among the previously generated chains only the ones containing u∗ as one

extreme vertex are considered for extension.

On line 6, the algorithm checks if the chain can be extended with the new vertex v∗.

Checking if the extension is possible means checking that it satisfies the composition rules and the

constraints of bandwidth, length, degree and delay. If this is not the case the chain is not extended.

All newly generated chains are saved in the set C′ and eventually added to C(r).

In the example of Figure 8.9, chain c contains a1 and i1. The closest vertex to a1 is s2,

while the closest to i1 is s1. Since s2 is closer to a1 than s1 is to i1, the algorithm extends the chain

by attaching s2 to a1 and generating the new chain c2. Chain c now contains s2, a1 and i1. The

next vertex is s1 which is closer to i1. Therefore, the algorithm extends all chains in C(i1) with i1 as

extreme vertex. The newly-generated chains are c3, c4 and c5.

If an extension violates the constraints, then the extended chain is not generated and,

therefore, not added to the set of chains of a router r. Algorithm 3 returns a set of valid chains each

covering a subset of the sensors and actuators and having a cost associated with them. This can be

directly translated into a covering matrix for the chain selection algorithm.

In the example of Figure 8.9, chains c6, c7 and c8 are generated for router i2. Vertexes

s2 and a1 are only covered by router i1, while vertex a2 is only covered by router i2. Hence, in

this case, both routers are essential and must be installed. Which of the two routers will cover

sensor s1 depends on the cost of the chains. For this example, the only two possible solutions are

C′ = {c2,c8} and C′′ = {c5,c6}. The cost of C′ is f2 + f8 while the cost of C′′ is f5 + f6. The chain

140

selection algorithm will select the least cost solution.

The complexity of the chain generation algorithm depends on the maximum degree of the

chains. Let D denote the maximum degree. The main loop starting at line 2 is executed at most 2 ·D

times corresponding to D left and D right extensions. Each loop iteration removes one vertex from

the set of sensors and actuators to be covered. Also, at most |C(i)| new chains are generated at each

iteration. Therefore, the number of basic operations in the main loop is at most

2·D
∑
i=1

[(|S|+ |A|− i)+(i+1)]

where S and A are the sets of sensors and actuators, respectively. For |S|+ |A| � D the complexity

is O(D(|S|+ |A|)). The maximum number of chains that are generated by the algorithm is (D +

1)(D+2)/2−1.

The second step of our algorithm consists in selecting a set of chains to cover all the

nodes of a specification NC. Let C = {N1
I , ...,Nn

I } be the set of all valid chains and fi be the cost of

chain Ni
I . Let z j ∈ {0,1} be a binary variable that evaluates to one if chain N j

I is taken in the final

implementation. Also, we define two other binary variables (that are not decision variables in the

optimization problem, but are computed statically from the set of chians). Let xv j be 1 if v ∈ V j
I

and 0 otherwise, and let yr j be 1 if router r ∈ R belongs to V j
I and 0 otherwise. The optimization

problem that we want to solve can be stated as follows:

min
n

∑
j=1

f jz j

s.t.
n

∑
j=1

xv jz j = 1,∀v ∈VC (1)

n

∑
j=1

xr jz j = 1,∀r ∈ R (2)

ziz j = 0,∀(u,v) ∈ EC,∀i 6= j s.t. xui = xv j = 1, li
I[d](u)+ l j

I [d](r j)≥ lC[t](u,v) (3)

141

Constraint (1) forces a node to be covered by only one chain4. Constraint (2) forces a router to

serve only one chain5. Constraint (3) is a set of delay constraints. If the source u and the destination

v of a communication constraint belong to two different chains Ni
I and N j

I , respectively, then the

sum of the delay from u to router ri plus the delay from router r j to destination v must be less than

the latency constraint from u to v. This problem is an instance of the Binate Covering Problem

(BCP), which is NP-complete. Various algorithms for the exact or heuristic solution of BCP are

known [122].

8.3.4 Results

We first show the results provided by our algorithm for the the example of Figure 8.2

and for two different ARCNET configurations: 2.5Mbps and 78Kbps. We generate three different

outputs to analyze the synthesis result: a textual report of the performances and cost of the network,

a dot [2] file that shows the logical structure, and an svg [7] file that shows the physical structure

of the network.

Figure 8.10 shows the logical structure of the LonWorks network on ARCNET @2.5Mbps.

The solution has three daisy-chain busses. The daisy-chains are limited both by the maximum num-

ber of nodes (8) and by the maximum wire length (120m). Given the high speed of the bus, there is

a large bandwidth and delay slack. Figure 8.11 shows the physical implementation of the network.

Table 8.2 shows the estimation of cost and performance for each sub-network. The cost

is represented by a pair of values: the first value is the cost of the components (sensors, actuators,

and routers) and the second value is the cost of the wires. Observe that the delay is considerably

4This constraint can be modified to force a node to be covered by more that one chain in the case of fault tolerance
requirements.

5This constraint can be modified if a router has multiple ports and can actually serve more that one daisy chain bus.

142

Gateway

BUS1

s4

a6

s3

i1

s5
a1a3

BUS3

s6

i3

a7

s2

a5

s1

BUS4a4

s9

a10 a2
s7

i4

a8

a9

s8

Figure 8.10: Logical components of the synthesized network for the example of Figure 8.2.

smaller than the required delay and that the bandwidth utilization is fairly low. This suggests that

for this network we could consider a different implementation with lower speed and lower cost. For

instance, with a slower signaling, wires can be longer and, moreover, the degree can be higher.

For instance, at 78Kbps ARCNET allows to connect up to 64 nodes on a bus segment that

can be as long as 1200m. Using this kind of protocol, we obtain a considerably cheaper solution

($5760 compared to $7160) in exchange for a longer delay. The delay is longer not only because

the number of devices connected on the bus is higher but also because its signaling speed is much

143

Figure 8.11: Physical deployment of the synthesized network implementation for the example of
Figure 8.2.

lower. The bandwidth utilization is close to 50%.

On the other hand, while the cheaper solution is sufficient to support the application under

design, once it is deployed it may prevent the future extension of the building automation system to

support other applications. Since the deployment of a wired network in a building has considerable

installation costs, this is another trade-off that must be considered carefully. In this regard, our tool

can be useful to quickly analyze alternative solution hypothesis during the design-exploration phase.

We selected two other examples to test our design flow. The floor-plan of the first exam-

ple, together with the communication constraints, are shown in Figure 8.12. It refers to one floor

of the L2 building that is part of the United Technologies Research Center situated in Hartford,

Connecticut. The second example is a typical case of big-box store, but the detailed floor-plan is a

sensitive information that we cannot show in this thesis.

144

Router Deg Length Delay Bandwidth Cost
[m] [µs] [Kbps] [dollars]

ARCNET @ 2.5Mbps

i2 8 53 1367 17.3 (2380,404)

i3 3 20 607 6.5 (1400,152)

i4 8 58 1377 17.3 (2380,442)

ARCNET @ 78kbps

i4 19 142 54000 41.1 (4680,1080)

Table 8.2: Performance and cost of the synthesis result. The cost is a pair (n,w) where n is the cost
of the nodes including the routers and w is the wiring cost.

Building Bw lmax Degree dmax Umax Router Wires Total

(Kb/s) (m) (ms) (%) ($) ($) ($)

L2
78 1000 32 91 89 3700 5020 18960

250 400 20 22 20 5180 4939 20359

BB
78 1000 32 91 89 2220 4317 16777

250 400 20 19 20 4440 4131 18811

Table 8.3: Library parameters and synthesis results for the two L2 building and big box store (BB)
examples for a new installation. In this table, Bw is the bus speed, lmax is the maximum allowed
bus length, dmax is the maximum latency experienced by any sensor, and Umax is the maximum bus
utilization among all instantiated bus.

The floor-plans of these two examples occupy approximately the same area with a slightly

different form factor (72×32 m2 and 60×56 m2, respectively). The number of sensors is 64 in both

examples and the communication constraints are the same as in the example of Figure 8.2. We

considered six possible locations for the routers (represented by yellow dots in Figure 8.12).

Table 8.3 reports the synthesis result in the case of a new installation while Table 8.4

shows the result in the case of retrofitting. We report the maximum delay among all sensors dmax

and the maximum bus utilization Umax among all installed daisy-chain buses together with the cost

breakdown among routers and wires. It is interesting to highlight the difference in cost between

145

72m

32mσ5

σ1

σ2σ3

σ4

Sensor Gateway Rotuer

Figure 8.12: Communication specification and building floorplan of a UTRC premise in Hartford,
CT.

Building Bw lmax Degree dmax Umax Router Wires Total

(Kb/s) (m) (ms) (%) ($) ($) ($)

L2
78 1000 32 91 89 5920 12680 28844

250 400 20 22 20 5180 13744 29198

BB
78 1000 32 91 89 3700 12044 25984

250 400 20 19 20 4440 11855 26535

Table 8.4: Library parameters and synthesis results for the two L2 building and big box store (BB)
examples for a retrofitting installation. In this table, Bw is the bus speed, lmax is the maximum al-
lowed bus length, dmax is the maximum latency experienced by any sensor, and Umax is the maximum
bus utilization among all instantiated bus.

146

the L2 building and the big-box store. Despite the similarities in the square footage and number

of sensors, the network cost is different. Also, the difference in cost between a low speed network

and a high speed network becomes negligible in the case of retrofitting since the cost of wiring

dominates the cost of the routers.

8.4 Wireless Networks

With the introduction and improvement of wireless technology, new ways of implement-

ing distributed applications in buildings have become feasible. The number of applications that can

benefit from this are numerous, such as fire detection systems, temperature control, as well as more

advanced applications such as distributed control and estimation of air flow in buildings. Wireless

networks are particularly interesting because they eliminate the cost of wiring. This cost becomes

the main concern in retrofitting old buildings, or in instrumenting part of a building that cannot be

reached by wires.

Because wireless links do not rely on a mechanical connection, they are resilient to haz-

ards like fire, and to unchecked operation. In fact, when building a wired network, multiple indepen-

dent paths should be provided for each connection such that, even if one wire is cut or interrupted,

the network can still provide the required quality of service. Wireless system are robust from this

point of view. However, communication over wireless media is not as reliable especially in an

indoor environment. Moreover, even if installing a wireless network is potentially cheaper than a

wired one, the maintenance cost due battery replacement may be high. The lifetime of nodes in a

wireless network is a critical parameter to judge its cost effectiveness and it is affected by transmis-

sion power and data rates.

147

The application domain that we target for wireless network is building automation sys-

tems. The specification of the communication problem is the same as in the case of wired networks

with the addition of the end-to-end maximum packet error rate. The rest of this section will cover

the modeling of library components and the formulation of the optimization problem. We will close

this chapter with experimental results.

8.4.1 Library of Communication Components: Modeling ZigBee Networks

ZigBee [127] is currently considered the most appealing technology for wireless sen-

sor networks. It offers a set of operational modes that are well-suited for a large set of low-rate

and power-constrained network applications. The protocol stack of a ZigBee node is composed of

the physical layer and Medium Access Control (MAC) Layer described in the IEEE802.15.4 stan-

dard [9], and a network layer and an application framework defined by the ZigBee Alliance [127].

A ZigBee network, called Personal Area Network (PAN), is organized in a hierarchical

manner. Nodes are divided in three categories depending on the services that they offer to other

nodes. Each ZigBee network has a unique coordinator called the PAN coordinator. This device is

the one that started the network and that decides the network identifier, PANid, and the superframe

parameters like the beacon order and the superframe order that are going to be defined later in

this section. The second category is the routers. A router maintain a routing table and can relay

messages. The last category is the end-devices. An end-device can only transmit messages to its

parent. Coordinators and routers are the only devices that can allow other devices to join a network.

When a node i joins a network thorough a node j, j is called the parent of i and i the child of j.

148

STAR TREE MESH

Figure 8.13: An area covered by two ZigBee networks (top) and the possible network topologies
for one of them (bottom).

Topology and Routing Figure 8.13 shows a field covered by two ZigBee networks operating on

two different logical channels. Each network has its own coordinator, a set of routers and a set of

end-devices. In identifying the two networks, we purposely omitted the explicit representation of

any link (i.e. the network topology). Rather, we only show the membership of the nodes to the

networks. The actual network topology can be one of the following:

• A star topology, in which the Zigbee coordinator controls all the nodes in the network; devices

directly communicate with the ZigBee coordinator; this is basically the case of a PAN with a

149

PAN coordinator and a set of devices directly associated with it;

• A mesh topology, in which peer-to-peer communications between devices are allowed; The

ZigBee coordinator is still responsible for starting the network, but it can be extended by

the use of ZigBee routers. The ZigBee routers are devices that act as coordinators in the

IEEE802.15.4 PAN. Coordinators shall not send beacons in the mesh topology.

• A tree topology, in which ZigBee routers move data and control messages through the net-

work using a hierarchical routing strategy. Beacon-enabled communications in the PAN are

allowed.

The routing protocol defined by the ZigBee standard is tree routing for star and tree topologies. This

is the topology that we assume for our modeling and experiments since performance assessment is

easier.

Medium Access Control At the MAC layer, nodes are grouped in PANs (Personal Area Net-

works). A PAN is started by a node that assumes the role of PAN Coordinator, which establishes the

values of a set of configuration parameters. These parameters have to be adopted by all the nodes

that want to be associated with such a PAN. Basically, the coordinator fixes the physical channel,

the Beacon Order (BO) and the Superframe Order (SO) of the superframe structure.

While simultaneous transmissions in different PANs can not collide, because they take

place in different channels, intra-PAN transmissions need to be coordinated. The superframe struc-

ture (see Fig.8.14) is a flexible way to manage medium access control inside a PAN.

The PAN coordinator can periodically transmit a beacon frame (beacon-enabled mode).

The time interval between two consecutive beacons is called Beacon Interval (BI) and it is defined as

150

Figure 8.14: Structure of a superframe as defined by the ZigBee protocol standard.

BI = aBaseSuper f rameDuration× 2BO symbols. The aBaseSuper f rameDuration has a constant

duration of 960 symbols. BO can range from 0 to 14. BO = 15 means that no beacon has to be

transmitted (nonbeacon-enabled mode). The BI is composed of an active part and an (optional)

inactive part. The duration of the active part is determined by the Superframe Duration (SD), which

is defined as SD = aBaseSuper f rameDuration× 2SO symbols. SO can range from 0 to BO (no

inactive period).

The active period can be further divided in two parts:

• A Contention Access Period, in which transmissions are ruled by a slotted CSMA/CA algo-

rithm and therefore collisions can occur. A mininum length (440 symbols) of the contention

access period has to be guaranteed for the transmission of management frames.

• An (optional) Contention Free Period, which is composed of up to inmax = 7 Guaranteed Time

Slots (GTSs). A GTS can be of transmit or receive type, meaning that the GTS can be used by

the device for transmission (reception) of data to (from) the coordinator. Transmissions in the

GTS do not need to be ruled by the CSMA/CA algorithm, since a GTS is uniquely allocated

to a device, and concurrent transmissions by other devices in the same PAN are forbidden.

151

INACTIVEACTIVEACTIVE INACTIVE

ACTIVE INACTIVE

ACTIVE INACTIVE

ACTIVE INACTIVE

StartTime > SD

Parent-Child
Reletionship

PAN
Coordinator

Router

Figure 8.15: Relative timing of the superframes in a beacon-enabled ZigBee network.

In the inactive part, nodes can put the transceiver into a sleep state to save energy. Op-

tionally, a device can assume the role of coordinator, which has to adopt the same BO and SO as

the PAN coordinator. In a beacon-enabled PAN (BO 6= 15), such a device will start transmitting

its own beacon. Its active part must not overlap with the active part of other coordinators in the

network. Figure 8.15 shows how the active parts are scheduled within a superframe. Consider a

network organized according in a tree topology that establishes a parent-child relationships among

all the coordinators, with the PAN coordinator being the root of the tree. The beacon transmitted by

a parent is the incoming beacon for the children. Each children emits the outgoing beacon after a

certain time called StartTime. The start time is determined by a device when it joins a network. The

maximum number of coordinators in a beacon-enabled PAN, including the PAN coordinator itself,

can be no more than nmax = BI/SD.

When a device starts acting as a coordinator, the physical size of the network can increase;

devices that are not able to associate with the PAN coordinator (e.g. they are too far from it) can

join the network through a coordinator. From the perspective of contention-free communications,

152

an additional coordinator makes a new set of GTSs available; if a proper number of coordinators

is available in the network, such that no more than 7 devices are associated with each one of them,

communications among nodes can be completely performed in a contention-free manner.

Physical Layer At the physical layer, the IEEE802.15.4 standard offers a total of 27 channels,

with a peak rate of 250Kbit/s. The distance at which packets are successfully received with some

desired probability depends on the modulation format, encoding, output radio power, packet size,

noise floor, interference and channel conditions. The relation among the physical layer parameters

and the successful packet reception probability is shortly described below.

Let us consider a node i of the network transmitting packets with a radio power level Pi to-

ward node j. The distance between node i and j is denoted with di, j. We denote with PL(di, j) dB the

path loss attenuation between the transmitter and the receiver. For example, for the Telos Sky [81]

wireless sensors, the following generic yet representative model of the path-loss can be used [118]:

PL(di, j) dB = PL(d0) dB +10 β log10

(
di, j

d0

)
+Ωi, j

where PL(d0) is the path loss computed at a reference distance d0, β is the path loss exponent, and

Ωi, j is the shadowing attenuation, which is modelled as a Gaussian random variable having zero

average and variance σ2
i, j. The model of the path loss in the previous equation can also be used

when there are walls between the transmitter and the receiver by adding an extra attenuation for

each wall. The path loss is used to compute the received radio power Pi, j(d) at the node j from the

node i:

10 log10 Pi, j = 10log10 Pi−PL(di, j) dB

Given the received power, it is not difficult to compute the Signal to Interference plus Noise Ratio

153

(SINR) in dB for which we can use the following model:

10 log10 SINRi, j = 10log10 Pi, j−Pn dB (8.1)

In Equation (8.1), we assume that nodes are not simultaneously transmitting, so that the collision

probability can be neglected and Pn summarizes the thermal noise and the power of the interference

coming from co-channel radio systems (as, e.g., WIFI networks). Hence, we assume that the power

spectral density of the noise is a constant term N0. A typical value for the power of the thermal noise

for the Telos Sky receivers is N0 =−170dBm.

Given the SINR, the bit error probability of the link from node i to node j can be expressed

as follows:

pb(SINRi j) , f1(SINRi j) (8.2)

where f1(·) is a function that accounts for the relation among the modulation format, the statistical

distribution of the SINR, and the bit error rate. For example, let us consider a wireless propagation

scenario where sensors do not move, so that the shadow fading can be considered constant over short

period of times (less than 0.5s). Furthermore, we make the assumption that there are slowly moving

obstacles causing slow fading. The Telos Sky nodes use O-QPSK (offset quadrature phase shift

keying) modulation with DSSS. The bit error probability for O-QPSK with coherent demodulation

in a slow Rayleigh fading environment, which exhibits non-selective behavior both in frequency

and in time, can be expressed by [118]

f1(SINRi, j)≈ 1
2

(
1−
√

SINRi, j

1+SINRi, j

)

Using (8.2), it is possible to express the packet loss probability. Assume that a packet at

the data-link layer is composed of an overhead of O bits and a payload of bi bits, which incorporates

154

data that node of level i wish to transmit. Notice that the payload may have variable size according

to the source coding technique employed, and the amount of data available. Under the assumption

that the CRC code is always able to detect erroneous packets (see [65] for an experimental support),

the packet loss probability, without any retransmission mechanism, can be expressed as:

p′(i, j) , f2(SINRi j) = 1− [1− pb(SINRi j)]
O+bi (8.3)

Notice that in previous expression we did not include any forward error correction mechanism

(FEC). However, (8.3) can be easily extended to include FEC. For example, convolutional or block

codes may be used.

Cost of a Wireless Network The cost of a wireless network is the sum of the cost of the nodes.

Each node has a retail price and an installation cost that may be dependent on its position. Moreover,

it has a maintenance cost that is the cost of replacing the batteries over 20 years of operation. If

Etx and Erx are the energy to transmit and receive one bit (respectively) on a wireless channel, and

E is the battery capacity (expressed in Joule), then the total number of batteries to be replaced is

B = (brxErx +btxEtx)/E where brx and btx are the total number of bits received and transmitted over

20 years. The maintenance cost can be calculated as B · cB where cB is the sum of the retail price of

the batteries plus the cost of replacing them.

The parameters that we use in our experiments are the following:

• the energy per bit used in transmission mode depends on the transmitting power. Therefore, in

our synthesis flow this is an input parameter. We use the data available from the Xbow [125]

data-sheet. For instance, for a transmission power of −10dbm, the transmission energy is

approximately 132nJ. The energy spend in receiving mode is 236nJ.

155

• The total energy stored in a battery depends on the battery capacity. The unit of measure

for the battery capacity is Ampere-Hour (Ah). We assume the availability of two 2Ah, 1.5V

batteries on a node, therefore the total energy stored in the batteries is 2 ·2 ·1.5 ·3600 = 21600J

• The price of a node is $ 40, the installation cost is $ 60 and the cost of changing the batteries

is $ 20.

The energy used by a node depends on the time spent in an active mode (either transmit

or receive). It is therefore convenient to have node in a sleep mode as long as possible. However,

this is not always possible especially for those applications with fast dynamics. The experimental

results in Section 8.4.3 will show the trade-offs involved in the design of wireless networks.

8.4.2 Formulation of the Optimization Problem

We formulate the synthesis problem for wireless network as an integer linear program

(ILP). The inputs to the problem are the same as the ones described in Section 8.1. The commu-

nication constraints are captured by a communication structure NC(CC,qC,LC) where qC now also

contains a variable PER representing the packet error rate. The set of possible routers that can be

installed is denoted by R, and for each router r ∈ R a position pr is also given. Since R and VC are

finite, it is possible to define a node-edge incidence matrix A of the induced graph on R∪VC. An

entry of the matrix A(v,e), with v ∈ R∪VC and e ∈ (R∪VC)2 is equal to 1 (respectively −1) if a

wireless link e can be installed with its source(destination) being v, and 0 otherwise. The matrix A is

used to express the flow conservation constraints as described in Section 3.1. We assume that nodes

in VC are simple sensors and actuators (e.g. reduced function devices in ZigBee terminology) that

don’t provide routing services, and that the network is a tree where the leaves are the nodes in VC.

156

The network relies on a synchronization service such that each router transmits/receives to/from its

children at regular intervals called beacon intervals.

Let xu be a binary variable that is equal to 1 if node u is installed and 0 otherwise. Let luv

be a binary variable that is equal to 1 if a wireless link is instantiated between node u and node v

and v is the parent of u. Moreover, for a constraint e = (s,d) ∈ EC, let yuve be a binary variable that

is equal to 1 if the path from s to d uses the wireless link available between node u and node v, and

ye be the column vector of such variables6 for all the edges. A path from s to d is an assignment

to the components of ye that satisfies Aeye = be, where be is a vector such that be(v) = 1 for v = s,

be(v) = −1 for v = d and be(v) = 0 otherwise. The components of yv that are equal to 1 are the

wireless links belonging to the path, thus we simply refer to a solution of Aeye = be as a path.

Given a path and given an additive quantity w(u,v) defined on each link, we can compute

the end-to-end value of the quantity with a linear expression w(s,d) = ∑u,v yuvew(u,v). Because we

assume synchronization, each wireless link is characterized by an upper bound on the delay that is

equal to the beacon interval. Instead of using the packet error rate PER as a measure of the quality

of a path, we consider the probability of success PSR = 1−PER that can be expressed as:

PSR(s,d) = ∏
(u,v)∈(R∪VC)2:yuve=1

PSR(u,v)

which is not a linear expression. Therefore we use the logarithm of PSR in the formulation of the

problem:

logPSR(s,d) = ∑
(u,v)∈(R∪VC)2

yuve logPSR(u,v)

6We assume a fixed ordering of the edges.

157

The following ILP models the synthesis problem:

minx,yq F

s.t.

1. xu + xv−2luv ≥ 0 ∀u,v ∈ R∪VC

2. luv + lvu ≤ 1 ∀u,v ∈ R∪VC

3. luv = 0 ∀v ∈VC

4. ∑(u,v)∈(R∪VC)2 luv−∑z∈R∪VC
xz =−1

5. ∑u∈R∪VC
luv ≤ inmax ∀v ∈ R

6. luv + lvu− yuve ≥ 0 ∀u,v ∈ R∪VC,∀e ∈ EC

7. luv + lvu− yvue ≥ 0 ∀u,v ∈ R∪VC,∀e ∈ EC

8. Aeye = be ∀e ∈ EC

9. ∑e∈EC
yuvebandwidth(lC[m](e), lC[b](e))≤ bmax ∀u,v ∈ R∪VC

10. ∑r∈R xr ≤ nmax

11. ∑(u,v)∈(R∪VC)2 yuvedelay(u,v)≤ lC[t](e) ∀e ∈ EC

12. ∑(u,v)∈(R∪VC)2 yuve logPSR(u,v)≤ log(1− lC[PER](e)) ∀e ∈ EC

13. xu, luv, yuve ∈ {0,1} ∀u,v ∈ R∪VC,∀e ∈ EC

where the cost function (defined in details in Section 8.4.1) can be expressed as follows:

F = ∑
i

cixi +∑
i j

ci j ∑
q

yi jq

The cost ci includes the cost to install a node while ci j contribute to the maintenance cost of nodes i

and j (that obviously depends on the number of bits transmitted by i and received by j).

Constraints 1 through 5 define the tree topology of the network. Constraint 1 says that

a link can only be installed between two installed nodes. Constraint 2 imposes a unidirectional

parent-children relationship while constraint 3 says that sensors cannot be parent nodes. Constraint

4 forces the topology to be a tree by forcing the number of edges to be one less than then number

of nodes. Constraints 5 limits the maximum number of children per node. Constraints 6 and 7 say

that a path can be routed on an link only if that link is installed. Constraint 8 is the classical balance

equation. Constraint 9 is a constraint on the maximum utilization of a link. We use a notation

158

similar to the one introduced in Section 8.3.3 where bandwidth is a model that takes into account

the message length, message frequency and protocol overhead to estimate bandwidth. Constraint

10 limits the maximum number of routers that can be installed. Constraint 11 and 12 are the end-

to-end constraint on the delay and packet error rate. Finally, constraint 13 requires all variables to

be binary. Notice that this problem is still very general and can be directly written by interpreting

the constraints given by the platform in terms of the available components, the building structure

and the performance and cost models of each component. In fact, the ILP formulation represents a

class of problems. One instance of the ILP corresponds to one particular building and one particular

network configuration.

8.4.3 Results

As a case study, we consider the centralized and distributed estimation of a physical quan-

tity in a building. Figure 8.16 shows the input to the network synthesis problem. The building that

we model is one floor of a business premises that is comprised of 25 rooms for a total dimension of

32×70 m2. Green dots represent sensors, the red dot corresponds to a central gateway and yellow

dots are the positions where routers can be installed. A connector between two dots corresponds

to a communication constraint with associated latency, period, number of bits and packet error rate

requirements. Figure 8.16-b shows the communication constraints in the case of centralized esti-

mation where the samples coming from all the sensors must be delivered to the central gateway.

Figure 8.16-a shows the communication constraints in the case of distributed estimation. The num-

ber of sensors is less than in the centralized case, but there is mutual interaction between sensors

corresponding to neighboring states. The mutual interaction is considered bidirectional and takes

place at a higher rate than communication with the central gateway.

159

l = t = 2.5s
b = 16
p = 10−5

l = 0.5s
t = 1s
b = 16
p = 10−5

32m

70m

Sensor

Gateway

Router
Position

a)

b)

Figure 8.16: The two test cases used in our experiments: a) Distributed estimation, b) Centralized
estimation.

160

BO SO Cost ($ in 20 yr) Tcpu (s) Gap

7 3 2376 1400 5%

8 3 15150 590 4.9%

8 4 22900 1400 6%

Table 8.5: Results for the centralized estimation case.

Table 8.5 shows the results of the optimization for the centralized case. We report the

beacon order BO, the superframe order SO, the total network cost over 20 years, the computation

time Tcpu in seconds and the optimality gap. The problem is unfeasible for SO < 3 due to the

bandwidth requirements and for BO > 8 due to the latency requirements. The minimum difference

between BO and SO must be 4 because the minimum number of routers needed for this network

is greater than 8. This is due not only to the number of sensors, but also to the packet error rate

constraint and the building structure that limit the maximum length of a hop intersecting multiple

walls. We also mention that the wired network implementation for this application has a total cost

of $18,000.

In the distributed estimation case, the number of sensors to connect is reduced by half.

However, the stringent latency requirements between neighboring nodes limit the maximum beacon

order to 5. The reduced bandwidth requirement at the gateway, allows a superframe order of 1

making the duty-cycle equal to 6.25%. This instance of the problem has been solved to the global

optimum for a total cost of $23,400.

161

Chapter 9

Conclusions and Future Work

The automatic synthesis of communication networks for distributed embedded systems

is an essential part of a system-level design flow. The ever increasing complexity of electronic

systems, together with time-to-market constraints, is causing a major design paradigm shift from

components to their interaction. In fact, to increase productivity, systems are designed by assem-

bling pre-designed and pre-verified components using a suitable interaction scheme. To support

designers in the selection of the communication infrastructure and to guarantee the quality of the

solution without incurring in long verification cycles, a correct-by-construction design flow for com-

munication systems is an essential enabling technology.

In this thesis we proposed a platform-based design methodology to design cost effective

communication systems. We formally defined the specification of the problem as a set of end-to-

end communication constraints among the agents of a system. These constraints include the quality

of service requested for each communication, interface compatibility, as well geometric constraints

like distance and obstacles from each source-destination pair. These are the properties that the com-

162

munication system must preserve. The set of valid implementations is captured by the notion of

a platform that is the set of communication systems that can be obtained by composing commu-

nication components from a library (i.e. platform instances). Each component is characterized by

performance and cost. We formally capture these metrics as quantities and we provide composition

operators that derive the performance and cost of the composite from the same metrics defined on

the components. The final implementation is defined as the mapping of the specification onto a

platform instance and it is computed by synthesis algorithms.

Many optimization algorithms are available in the literature, mainly developed over the

years by the Computer Science and Operation Research communities that can find a direct ap-

plication to the communication synthesis problems for networked embedded systems. However,

taking into account real life end-to-end constraints like delay and reliability, as well as component

constraints, such as the limited number of ports, makes the problem difficult to abstract and hard

to solve. Moreover, the possibility of exploring different solutions by simply selecting different

platforms is of great importance to allow designers to explore large design spaces and choose the

implementation technology that best fits their needs. These desirable features can be only achieved

by disentangling specification, libraries of components and platforms, models of performance and

cost, and optimization algorithms. Implementing a software infrastructure that provides all these

features requires a major engineering effort.

COSI, the software infrastructure that is an integral part of this thesis, was built keeping

the designer’s needs in mind. Obviously, the input functions to parse the specification of the problem

(which also include the description of the environment the network is embedded in) and the output

functions to present the results, as well as the quantities that characterize a communication structure

163

change depending on the application domain. COSI provides the basic data structures that can be

adapted to implement design flows for many application domains. We have used COSI to solve

the communication synthesis problem in two application domains: on-chip communications and

building automation systems, and for different network implementation technologies.

This is the beginning of a long term project thato touches the research needs of many

different areas. What follows is a list of research directions aimed at providing a complete solution

for the communication synthesis problems that arise in networked embedded systems.

Theoretical investigation. COSI provides a prototype of an environment for the automatic design

of embedded networks. To improve its generality and usability the following theoretical aspects

should be investigated:

Extension of the algorithms. The optimization algorithms should be extended to take into account

fault tolerance. This can be achieved by adding redundancy constraints and component reliability:

the general theoretical framework should be already capable of capturing both. The second exten-

sion deals with on-line optimization algorithms. In many situations, the environment can undergo

abrupt changes that are difficult to predict. In these cases, a distributed network control algorithm

should be able to dynamically reconfigure the network such that some level of quality of service can

still be guaranteed. This task requires to study distributed versions of the optimization algorithms.

The balance between deployment cost and on-line capabilities should be investigated.

Assessment of the sensitivity of the solution. The solution of the synthesis problem depends on the

cost and performance of the components of in the library. These models are analytical abstractions

of the real metrics that allow the synthesis problem to be solved efficiently. It is desirable that the

solution does not depends too much on modeling errors (or uncertainty on the cost functions). The

164

sensitivity of the solution should be assessed by analyzing the overall design flow. From the user

perspective, a design environment should provide a set of solutions rather than the prescription of

one implementation.

Interface refinement and synthesis. Since networked systems are heterogeneous, the interfaces be-

tween different components are often incompatible. In general, it is be desirable to have an auto-

matic way of synthesizing interfaces between incompatible protocols.

Experimental setting. Even if we advocate the correct-by-construction deployment of networked

embedded systems, to limit the complexity of the design problem we use models that can only

approximate reality. The validation of the results produced by a design flow consists in verifying that

the embedded network design satisfies the specification. This goal can be achieved by simulation or

by implementation on a real testbed.

Virtual Prototyping. As networked systems become complex, building a real testbed for academic

purposes is not a viable solution. Thus, a virtual prototyping environment is very desirable. This

environment must have two important features. It must be able to simulate heterogeneous networks

with different components, protocols and transmission media. At the same time, it must be able

to incorporate models for physical phenomena like wireless propagation, air-flow propagation and

human interaction. We plan to reuse existing tools for heterogeneous design, but a major effort is

needed to develop accurate simulation models.

Real testbeds. The actual implementation of a networked embedded system will require the collab-

oration with industrial partners.

Automatic distribution of control algorithms on networked architectures. The cost of the com-

munication infrastructure supporting a networked control application depends on the requested level

165

of quality of service. Therefore, it is clear that the selection of the control algorithm and its dis-

tributed implementation affect the cost/performance trade-off of the networked embedded system.

The quality of a centralized control algorithm as a function of the communication characteristics

should be quantified. The control strategy should be selected in such a way that the network require-

ments are minimized. Then, an automatic procedure should be developed to derive a distributed im-

plementation of the centralized control. The distribution should be driven by the trade-off between

the network cost and the computation cost.

Stochastic optimization for networked embedded system design. Stochastic optimization is a

promising tool in automated system design to deal with uncertainties of all kinds. There are at least

three reasons to use stochastic optimization methods. First, one way of making the design robust

is to abstract modeling errors as random variables. Second, many environmental effects can only

be characterized as stochastic processes. Third, network components themselves are unreliable and

their behavior can only be statistically characterized.

166

Bibliography

[1] Ata. arcnet (http://www.arcnet.com/lit.htm).

[2] Graphviz (http://www.graphviz.org/).

[3] http://www.autosar.org.

[4] http://www.itrs.net/.

[5] Private communication with prof. alberto l. sangiovanni vincentelli.

[6] SLICNET.

[7] Svg (http://www.w3.org/graphics/svg/).

[8] ISO/IEC 7498-1, Information Technology – Open Systems Interconnection – Basic Reference

Model: The Basic Model. 1994.

[9] Part 15.4: Wireless medium access control (mac) and physical layer (phy) specifications for

low-rate wireless personal area networks (wpans). IEEE Std 802.15.4-2996, September 2006.

[10] Trevor Meyerowitz-Alessandro Pinto Alberto Sangiovanni-Vincentelli Guang Yang Haibo

Zeng Qi Zhu Abhijit Davare, Douglas Densmore. A next-generation design framework for

167

platform-based design. In Conference on Using Hardware Design and Verification Lan-

guages (DVCon), February 2007.

[11] S. N. Adya and I. L. Markov. Fixed-outline floorplanning : Enabling hierarchical design.

IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 11(6):1120–1135, December

2003.

[12] P. Alexander, D. Barton, and C. Kong. Rosetta usage guide. Technical report, University of

Kansas, 2000.

[13] F. Allen, G. Almasi, W. Andreoni, D. Beece, B. J. Berne, A. Bright, J. Brunheroto, C. Cas-

caval, J. Castanos, P. Coteus, P. Crumley, A. Curioni, M. Denneau, W. Donath, M. Elefthe-

riou, B. Fitch, B. Fleischer, C. J. Georgiou, R. Germain, M. Giampapa, D. Gresh, M. Gupta,

R. Haring, H. Ho, P. Hochschild, S. Hummel, T. Jonas, D. Lieber, G. Martyna, K. Maturu,

J. Moreira, D. Newns, M. Newton, R. Philhower, T. Picunko, J. Pitera, M. Pitman, R. Rand,

A. Royyuru, V. Salapura, A. Sanomiya, R. Shah, Y. Sham, S. Singh, M. Snir, F. Suits,

R. Swetz, W. C. Swope, N. Vishnumurthy, T. J. C. Ward, H. Warren, and R. Zhou. Blue

gene: a vision for protein science using a petaflop supercomputer. IBM Syst. J., 40(2):310–

327, 2001.

[14] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley, Read-

ing,MA, 1990.

[15] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska, Lu-

ciano Lavagno, Claudio Passerone, Alberto L. Sangiovanni-Vincentelli, Ellen Sentovich, Kei

168

Suzuki, and Bassam Tabbara. Hardware Software Co-Design of Embedded Systems: The

Polis Approach. Kluwer Academic Publishers, 1997.

[16] Felice Balarin, Luciano Lavagno, Claudio Passerone, Alberto Sangiovanni-Vincentelli, Yosi-

nori Watanabe, and Guang Yang. Concurrent execution semantics and sequential simulation

algorithms for the metropolis meta-model. In CODES ’02: Proceedings of the tenth interna-

tional symposium on Hardware/software codesign, pages 13–18, New York, NY, USA, 2002.

ACM.

[17] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio Passerone, and

Alberto Sangiovanni-Vincentelli. Metropolis: An integrated electronic system design envi-

ronment. Computer, 36(4):45–52, 2003.

[18] G. H. Barnes, R. M. Brown, M. Kato, D. Kuck, D. Slotnick, and R. Stokes. The ILLIAC IV

computer. IEEE Trans. on Computers, 8(17):746–757, August 1968.

[19] L. Benini and G. De Micheli. Networks on chip: A new SoC paradigm. IEEE Computer,

2002.

[20] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. De Micheli.

NoC synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE

Trans. on Parallel and Distributed Systems, 16(2):113–129, February 2005.

[21] Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. Qnoc: Qos architecture

and design process for network on chip. J. Syst. Archit., 50(2-3):105–128, 2004.

[22] S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski, and J. Rattner. Platform

2015: Intel processor and platform evolution for the next decade, 2005.

169

[23] Dominique Borrione, Amr Helmy, Laurence V. Pierre, and Julien Schmaltz. A generic model

for formally verifying noc communication architectures: A case study. In NOCS, pages 127–

136, 2007.

[24] Steven T. Bushby. BacnetT M - a standard communication infrastructure for intelligent build-

ings. Automation in Construction, 6(5–6):529–540, 1997.

[25] S. Chaki, S.K. Rajamani, and J. Rehof. Types as models: Model checking message-passing

programs. In Proc. 29th ACM Symp. Princ. of Prog. Lang., 2002.

[26] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, Marcin Jurdzinski, and Freddy

Y. C. Mang. Interface compatibility checking for software modules. In Proceedings of the

14th International Conference on Computer-Aided Verification (CAV), volume 2404 of Lec-

ture Notes in Computer Science, pages 428–441. Springer-Verlag, 2002.

[27] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Marielle Stoelinga. Re-

source interfaces. In Proceedings of the Third International Conference on Embedded Soft-

ware (EMSOFT), volume 2855 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[28] Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew J. McNelly, and Lee Todd.

Surviving the SOC Revolution. A Guide to Platform-Based Design. Kluwer Academic Pub-

lishers, Norwell, MA, 1999.

[29] Yonghao Chen and Betty H. C. Cheng. Facilitating an automated approach to architecture-

based software reuse. In Automated Software Engineering, pages 238–245, 1997.

[30] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. MIT Press, second edition, 2001.

170

[31] The Communication Synthesis Infrastructure (COSI).

http://embedded.eecs.berkeley.edu/cosi/.

[32] CPLEX. http://www.ilog.com/products/cplex/.

[33] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor interconnection

networks. IEEE Trans. Comput., 36(5):547–553, 1987.

[34] W. J. Dally and B. Towles. Route packets, not wires: On-chip interconnection networks. In

Proc. of the Design Automation Conf., June 2001.

[35] William J. Dally and B. Towles. Principles and Practices of Interconnection Networks. Mor-

gan Kaufmann Publishers, San Mateo, CA, 2004.

[36] Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based design. In

Proceedings of the First International Workshop on Embedded Software, pages pp. 148–165.

Lecture Notes in Computer Science 2211, Springer-Verlag, 2001.

[37] M. Desrochers and F. Soumis. A generalized permanent labelling algorithm for the shortest

path problem with time windows. Information Systems and Operations Research, 26(3):191–

212, 1988.

[38] Frederic Doucet, Sandeep K. Shukla, Masato Otsuka, and Rajesh K. Gupta. Balboa: a

component-based design environment for system models. IEEE Trans. on CAD of Integrated

Circuits and Systems, 22(12):1597–1612, 2003.

[39] Alberto Sangiovanni-Vincentelli Douglas Densmore, Roberto Passerone. A platform-based

171

taxonomy for esl design. IEEE Design and Test of Computers, 23(5):359– 374, September

2006.

[40] I. Dumitrescu and N. Boland. Algorithms for the weight constrained shortest path problem.

International Transactions in Operational Research, 8(1):15–29, January 2001.

[41] Echelon. Lonworks core technology (http://www.echelon.com/developers/lonworks/default.htm).

[42] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for

network flow problems. Journal of the ACM, 19(2):248 – 264, April 1972.

[43] EDN. http://jima4media.wiki.zoho.com/iphone-contents.html.

[44] Rolf Ernst, Jorg Henkel, and Thomas Benner. Hardware-software cosynthesis for microcon-

trollers. IEEE Des. Test, 10(4):64–75, 1993.

[45] Alberto Ferrari and Alberto L. Sangiovanni-Vincentelli. System design: Traditional concepts

and new paradigms. In Proceedings of the International Conference on Computer Design,

pages 1–12, October 1999.

[46] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic

Systems. Prentice Hall, 4th edition, 2002.

[47] D Gajski and R Kuhn. New vlsi tools. Computer, 16(12):11 – 14, Dec 1983.

[48] D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specsyn: An environment supporting the

specify-explorerefine paradigm for hardware/software system design, 1998.

[49] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the Theory of

172

NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, January

1979.

[50] M. Gasteier, M. Münch, and M. Glesner. Generation of interconnect topologies for

communication synthesis. In DATE ’98: Proceedings of the conference on Design, automa-

tion and test in Europe, pages 36–43, Washington, DC, USA, 1998. IEEE Computer Society.

[51] Andreas Gerstlauer, Dongwan Shin, Junyu Peng, Rainer Dmer, and Daniel Gajski. Automatic

layer-based generation of system-on-chip bus communication models. IEEE Trans. on CAD

of Integrated Circuits and Systems, 26(9):1676–1687, 2007.

[52] Greg Gibeling, Andrew Schultz, and Krste Asanovic. The ramp architecture & description

language. Technical report, U.C. Berkeley, February 2006.

[53] A V Goldberg and R E Tarjan. A new approach to the maximum flow problem. In STOC

’86: Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages

136–146, 1986.

[54] R. K. Gupta and G. De Michelli. Hardware-software cosynthesis for digital systems. IEEE

Design and Test of Computers, 1993.

[55] G. Handler and I. Zang. A dual algorithm for the constrained shortest path problem. Net-

works, 1980.

[56] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,

8(3):231–274, 1987.

[57] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Vberg, M. Millberg, and D. Lindqvist.

173

Network on chip: An architecture for billion transistor era. In Proc. of the IEEE NorChip

Conference, November 2000.

[58] S. Heo and K. Asanovic. Replacing global wires with an on-chip network: a power analysis.

In Proc. of the Intl. Symp. on Low Power Electronics and Design, pages 369–374, 2005.

[59] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. Proceedings of the IEEE, pages

490–504, April 2001.

[60] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, 1978.

[61] R. Michael Hord. Parallel Supercomputing in Mimd Architectures. CRC Press, 1993.

[62] J. Hu and R. Marculescu. Energy- and performance-aware mapping for regular NoC archi-

tectures. IEEE Trans. on CAD of Integrated Circuits and Systems, 24(4):551–562, November

2005.

[63] F K. Hwang, D S. Richards, and P Winter. The steiner tree problem. Jan 1992.

[64] Axel Jantsch. Modeling Embedded Systems and SoC’s: Concurrency and Time in Models of

Computation. Morgan Kaufmann, 2004.

[65] Jaein Jeong and Cheng Tien Ee. Forward error correction in sensor networks. Technical

report, EECS Department, University of California, Berkeley, 2003.

[66] H.C. Jokcsh. The shortest route problem with constraints. Journal of Mathematical Analysis

and Applications, 14:191–197, 1966.

[67] Wolfgang Kastner, Georg Neugschwandtner, Stefan Soucek, and H. Michael Newman.

174

Communication systems for building automation and control. Proceedings of the IEEE,

93(6):1178–1203, June 2005.

[68] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-Aided Reasoning:

An Approach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[69] Aaron Kershenbaum. Telecommunications network design algorithms. McGraw-Hill, Inc.,

New York, NY, USA, 1993.

[70] B Kienhuis, E Deprettere, K Vissers, and P Van Der Wolf. An approach for quantitative

analysis of application-specific dataflow architectures. Application-Specific Systems, Archi-

tectures and Processors, 1997. Proceedings., IEEE International Conference on, pages 338

– 349, Jun 1997.

[71] J. G. Klincewicz. Hub location in backbone/tributary network design: a review. Location

Science, 6(1):307–335, May 1998.

[72] K. Lahiri, A. Raghunathan, and S. Dey. Design space exploration for optimizing on-chip

communication architectures. IEEE Trans. on CAD of Integrated Circuits and Systems,

23(6):952–961, December 2004.

[73] Luciano Lavagno, Alberto Sangiovanni-Vincentelli, and Ellen Sentovich. Models of compu-

tation for embedded system design. pages 45–102, 1999.

[74] Yanbing Li and Wayne Wolf. Hardware/software co-synthesis with memory hierarchies. In

ICCAD ’98: Proceedings of the 1998 IEEE/ACM international conference on Computer-

aided design, pages 430–436, New York, NY, USA, 1998. ACM Press.

175

[75] Madhav V. Marathe, R. Ravi, Ravi Sundaram, S. S. Ravi, Daniel J. Rosenkrantz, and III

Harry B. Hunt. Bicriteria network design problems. J. Algorithms, 28(1):142–171, 1998.

[76] Deepak A. Mathaikutty and S. K. Shukla. MCF: A metamodeling based component com-

position framework – composing SystemC IPs for executable system models. To Appear,

2008.

[77] J. D. Meindl. Interconnect opportunites for gigascale integration. IEEE Micro, 2003.

[78] Michael Minoux. Network synthesis and optimum network design problems: Models, solu-

tion methods and applications. Networks, (19):313–360, 1989.

[79] Gordon E. Moore. Network synthesis and optimum network design problems: Models, solu-

tion methods and applications. Electronics, 38(8), April 1965.

[80] Brandon Morel. Spartacas automating component reuse and adaptation. IEEE Trans. Softw.

Eng., 30(9):587–600, 2004. Senior Member-Perry Alexander.

[81] Moteiv. Tmote sky data sheet (http://www.moteiv.com/products/docs/tmote-sky-

datasheet.pdf).

[82] S.Kumar V.Catania M.Palesi, R.Holsmark. Apsra: A methodology for design of application

specific routing algorithms for noc systems. Technical Report DIIT-TR-01-060406, Universit

di Catania, Italy, April 2006.

[83] S. Murali and G. De Micheli. SUNMAP: A tool for automatic topology selection and gener-

ation for NOCs. In Proc. of the Design Automation Conf., pages 914–919, June 2004.

176

[84] Srinivasan Murali, Paolo Meloni, Federico Angiolini, David Atienza, Salvatore Carta, Luca

Benini, Giovanni De Micheli, and Luigi Raffo. Designing application-specific networks on

chips with floorplan information. In Proc. Intl. Conf. on Computer-Aided Design, pages

355–362, November 2006.

[85] Ana Muriel and Farhad N. Munshi. Capacitated multicommodity network flow problems

with piecewise linear concave costs. IIE Transactions, 36:683–696, 2004.

[86] John Von Neumann. First draft of a report on the edvac. Res. Div. Rep. 50–9, Contract

W-36-O34-ORD-7593 with Ordnance Dept., Dept. of the Army, November 1945.

[87] H. Michael Newman. Direct Digital Control of Building Systems: Theory and Practice.

Wiley, 1994.

[88] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in direct networks.

pages 492–506, 2000.

[89] OCP-IP.

[90] Katsuhiko Ogata. Modern Control Engineering. Prentice Hall, 4th edition, 2001.

[91] U. Ogras and R. Marculescu. Application-specific network-on-chip architecture customiza-

tion via long-range link insertion. In Proc. Intl. Conf. on Computer-Aided Design, November

2005.

[92] Ross B. Ortega and Gaetano Borriello. Communication synthesis for distributed embedded

systems. In ICCAD ’98: Proceedings of the 1998 IEEE/ACM international conference on

Computer-aided design, pages 437–444, New York, NY, USA, 1998. ACM Press.

177

[93] A. Ouorou, P. Mahey, and J.-Ph. Vial. A survey of algorithms for convex multicommodity

flow problems. Manage. Sci., 47(1):126–147, 2000.

[94] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms

and Complexity. Dover Publications, Inc., 1998.

[95] Roberto Passerone. Semantic foundations for heterogeneous systems. PhD thesis, University

of California at Berkeley, 2004.

[96] Roberto Passerone, Luca de Alfaro, Thomas A. Henzinger, and Alberto L. Sangiovanni-

Vincentelli. Convertibility verification and converter synthesis: Two faces of the same coin.

In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (IC-

CAD’02), November 2002.

[97] Roberto Passerone, James A. Rowson, and Alberto L. Sangiovanni-Vincentelli. Automatic

synthesis of interfaces between incompatible protocols. In DAC, San Francisco, CA, June

1998.

[98] M. Pedram, N. Bhat, and E. Kuh. Combining technology mapping with layout, 1997.

[99] S.; Bolliger M.; Day M.N.; Hofstee H.P.; Johns C.; Kahle J.; Kameyama A.; Keaty J.; Ma-

subuchi Y.; Riley M.; Shippy D.; Stasiak D.; Suzuoki M.; Wang M.; Warnock J.; Weitzel S.;

Wendel D.; Yamazaki T.; Yazawa K. Pham, D.; Asano. The design and implementation of

a first-generation cell processor. Solid-State Circuits Conference, 2005. Digest of Technical

Papers. ISSCC. 2005 IEEE International, pages 184–592 Vol. 1, 6-10 Feb. 2005.

[100] A. Pinto. Metropolis design guidelines. Technical Report UCB/ERL M04/40, EECS Depart-

ment, University of California, Berkeley, 2004.

178

[101] Alessandro Pinto, Alvise Bonivento, Alberto L. Sangiovanni-Vincentelli, Roberto Passerone,

and Marco Sgroi. System level design paradigms: Platform-based design and communication

synthesis. ACM Trans. Des. Autom. Electron. Syst., 11(3):537–563, 2006.

[102] Shiv Prakash and Alice C. Parker. Synthesis of application-specific heterogeneous multi-

processor systems (abstract). In ISCA ’92: Proceedings of the 19th annual international

symposium on Computer architecture, page 434, New York, NY, USA, 1992. ACM Press.

[103] National Building Controls Information Program. Building energy use and control problems:

Defining the connection, May 2002.

[104] Antonio Pullini, Federico Angiolini, Paolo Meloni, David Atienza, Srinivasan Murali, Luigi

Raffo, Giovanni De Micheli, and Luca Benini. 65 nm NoC design: Opportunities and chal-

lenges. Proc. of the 1st Intl. Symp. on Networks-on-Chips, 2007.

[105] R. Ravi, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz, and Harry B. Hunt III.

Approximation algorithms for degree-constrained minimum-cost network-design problems.

Algorithmica, 31(1):58–78, 2001.

[106] David L. Rhodes and Wayne Wolf. Co-synthesis of heterogeneous multiprocessor systems

using arbitrated communication. In ICCAD ’99: Proceedings of the 1999 IEEE/ACM inter-

national conference on Computer-aided design, pages 339–342, Piscataway, NJ, USA, 1999.

IEEE Press.

[107] Fabio Romeo. Embedded Systems: The Real Story, Magneti Marelli Electronic Division.

Invited Talk, Design Automation Conference, 2001.

179

[108] James A. Rowson and Alberto Sangiovanni-Vincentelli. Interface-based design. dac, 00:178,

1997.

[109] A. Salek, J. Lou, and M. Pedram. An integrated logical and physical design flow for deep

submicron circuits, 1999.

[110] Alberto Sangiovanni-Vincentelli. Defining platform-based design. EEDesign of EETimes,

February 2002.

[111] Alberto L. Sangiovanni-Vincentelli. Quo vadis sld: Reasoning about trends and challenges

of system-level design. Proceedings of the IEEE, 95(3):467–506, March 2007.

[112] G. Schickhuber and O. McCarthy. Distributed fieldbus and control network systems. Com-

puting and Control Engineering Journal, 8(1):21–32, Feb 1997.

[113] Roshan Lal Sharma. Network Topology Optimization. John Wiley & Sons, Inc., New York,

NY, USA, 1990.

[114] Kanna Shimizu and David L. Dill. Deriving a simulation input generator and a coverage

metric from a formal specification. In DAC, New Orleans, LA, June 10-14 2002.

[115] Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to

within one of optimal. In STOC ’07: Proceedings of the thirty-ninth annual ACM symposium

on Theory of computing, pages 661–670, New York, NY, USA, 2007. ACM.

[116] K. Srinivasan, K. S. Chatha, and G. Konjevod. Linear-programming-based techniques for

synthesis of network-on-chip architectures. IEEE Trans. on Very Large Scale Integration

(VLSI) Systems, 14(4):407–420, April 2006.

180

[117] Krishnan Srinivasan, Karam S. Chatha, and Goran Konjevod. Application specific network-

on-chip design with guaranteed quality approximation algorithms. In ASPDAC, January

2006.

[118] G. L. Stüber. Priciples of Mobile Communication. Kluwer Academic Publishers, 1996.

[119] J.-P. Thomesse. Fieldbus technology in industrial automation. Proceedings of the IEEE,

93(6):1073–1101, June 2005.

[120] Manish Vachharajani, Neil Vachharajani, and David August. The liberty structural specifica-

tion language: A high-level modeling language for component reuse. In Proc. of the Conf.

on Programming Language Design and Implementation, pages 195–206, June 2004.

[121] J.; Ruhl G.; Dighe S.; Wilson H.; Tschanz J.; Finan D.; Iyer P.; Singh A.; Jacob T.; Jain

S.; Venkataraman S.; Hoskote Y.; Borkar N. Vangal, S.; Howard. An 80-tile 1.28tflops

network-on-chip in 65nm cmos. Solid-State Circuits Conference, 2007. ISSCC 2007. Digest

of Technical Papers. IEEE International, pages 98–589, 11-15 Feb. 2007.

[122] Tiziano Villa, Timothy Kam, Robert Brayton, and Alberto L. Sangiovanni-Vincentelli. Ex-

plicit and implicit algorithms for binate covering problems. IEEE Transactions on Computer-

Aided Design, 16(7):677–691, July 1997.

[123] Alberto Sangiovanni Vincentelli. Defining platform-based design. EEDesign of EETimes,

February 2002.

[124] H. S. Wang, X. Zhu, L. S. Peh, and S. Malik. Orion: A power-performance simulator for

interconnection networks. In Proc. of the 35th Intl. Symp. on Microarchitecture, pages 294–

305, November 2002.

181

[125] Xbow. http://www.xbow.com/.

[126] Ti-Yen Yen and Wayne Wolf. Communication synthesis for distributed embedded systems.

In ICCAD ’95: Proceedings of the 1995 IEEE/ACM international conference on Computer-

aided design, pages 288–294, Washington, DC, USA, 1995. IEEE Computer Society.

[127] ZigBee. Zigbee alliance (http://www.zigbee.org).

[128] Hans Zima and Barbara Chapman. Supercompilers for parallel and vector computers. ACM

Press, New York, NY, USA, 1991.

	List of Figures
	List of Tables
	I Introduction
	Trends in Electronics
	System Complexity
	Time-To-Market and Productivity
	Re-Use

	Design Methodologies
	System-Level Design
	Platform-Based Design
	Formalizing Platform-Based Design
	Example

	Communication Synthesis
	Flows
	Maximum Flow
	Minimum-Cost Flow
	Minimum-Cost Flow with End-To-End Constraints

	Optimal Network Design
	Concluding Remarks on Communication Synthesis

	II Theoretical Background
	Communication Structures
	Quantities
	Communication Structures

	Building Complex Communication Architectures from Components
	Composition
	Platforms

	Communication Synthesis for Networked Systems
	Relations Among Communication Structures
	A General Optimization Problem

	III Applications
	On-Chip Communications
	Design Flow
	Specification
	Library and Composition Rules
	Optimization Algorithm
	Results
	Impact of the Application Characteristics
	Effect of Technology Scaling
	Quality of the Solution

	Building Automation Networks
	Specification
	Capturing the Building Geometry
	Wired Networks
	Library of Communication Components
	Communication Platform and Implementation
	Optimization Algorithm
	Results

	Wireless Networks
	Library of Communication Components: Modeling ZigBee Networks
	Formulation of the Optimization Problem
	Results

	Conclusions and Future Work
	Bibliography

