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Abstract For parallel clustered applications that demand high-

o ] speed concurrent access to large volumes of data, SAN
Clustered applications in storage area networks (SAN§jfers an attractive architecture for a scalable storage

widely adopted in enterprise datacenters, have traditi§fyckend. In such environments. a clustered middle-
ally relied on distributed locking protoco!s to coordinat@,are service is commonly deployed on application nodes
concurrent access to shared storage devices. In this IERBrbrovide a higher-level primitive such as a filesystem
we examine the semantics of traditional lock services fEéFS [1], OCFS [2], PanFS [3], GPFS [4], Lustre [5]
SAN environments and ask whether they are sufficientyQ [6]) or a relational database (Oracle RAC [7]) on
guarantee data safety at the application level. We argHB of raw disk blocks.

that a traditional lock service design that enforces strictone of the primary design challenges in clustered SAN
mutual exclusiomnd aglobally-consistent view of lockingenyironments is ensuring safe and efficient coordination
stateis neither strictly necessary nor sufficient for ensugs access to application state and metadata that resides
ing application-level correctness in the presence of asyy; shared storage. The traditional approach to concur-
chrony and failures. We also argue that in some casgsycy control in shared-disk clusters involves the use of a
strongly-consistent locking imposes an additional and U chronization module callectistributed lock manager

necessary constraint on application availability. Arm&g ). To obtain exclusive access to a particular shared
with these observations, we develop a set of novel conCi¥zource on disk (e.g., a file, a record, or a piece of appli-

rency control and recovery protocols for clustered SAN,iion metadata) a process must first acquire a lock on the
apphca’uons that achieve safety apd liveness in the facer@épective resource. The DLM service provides the guar-
arbitrary asynchrony, process failures, and network patee of mutual exclusion, ensuring that no two processes
titions. Finally, we present and evaluate Minuet, a N&y the system are concurrent holders of conflicting locks.
synchronization pr|m|t|v§ based_ on these protocols that, apstract terms, providing such guarantees requires
can serve as a foundational building block for safe agtorcing a globally-consistent view of locking state and
highly available SAN applications. one could argue that a traditional DLM design views such
: consistency asn end in itselfrather than a means to

1 Introduction achieving application-level correctness.
In recent years, storage area networks (SANs) have beelm this paper, we take a closer look at the seman-
gaining widespread adoption in enterprise datacenters #ind of a traditional lock service for SAN clusters and
are proving effective in supporting a range of applicatioask whether the assurances of full mutual exclusion and
across a broad spectrum of industries. Some of the castrongly-consistent locking are, in fact, a prerequisite f
mon applications include online transaction processingdarrect application behavior. Our main hypothesis is that
finance and e-commerce, digital media production, buttie standard semantics of mutual exclusion provided by a
ness data analytics, and high-performance scientific cobi-M are neither sufficient nor strictly necessary to guar-
puting. A number of hardware and software vendors, iantee safe coordination of access to shared state on disk
cluding companies such as EMC, HP, IBM, and NetApp the presence of failures and asynchrony.
offer SAN-oriented products and services to their cus-We propose and evaluate a new technique for disk
tomers. access coordination in SAN environments. We aug-

In a SAN storage architecture, a pool of storage dexent target disk devices with a tiny piece of application-
vices, typically disk arrays or specialized storage appiirdependent logic, calledguard, that rejects inconsistent
ances, are exposed to a group of server nodes for shaf@drequests and enables us to provide a property called
access over a switched network. To applications runnisgssion serializability We argue that while this correct-
on these nodes, shared disks appear as locally-attaamess condition is more permissive than strict mutual ex-
devices while in actuality, application’s I/O requests amusion, it is just as useful from the practical standpoint
sent over the network to the corresponding target devimed corresponds to application developers’ expectations.
using a specialized network protocol such as FibreChdare guard logic can be used to make existing SAN proto-
nel or iISCSI. cols safe in the presence of asynchrony and process fail-



ures. in principle, any application node can access and issue
In addition, the guarantee of session serializability @&Read/W rite requests on any piece of data without routing
lows us to develop novel concurrency control and recairese requests to a dedicated server. While in the shared-
ery protocols, which operate safely while offering the folisk model, all I/O requests on a particular data object
lowing benefits over traditional mechanisms that rely oreae centrally serialized, the crucial distinction from the
strongly-consistent DLM: shared-nothingparadigm is that the point of serialization
L . is a hardware disk controller that exposes a well-defined
L Imprqved ava|lab|I|ty_W|th replicated Ioc_k r.nanagersapplication-independent interface on raw physical blocks
ensuring progress with less than a majority of re|0|<1i'nd is oblivious to application semantics and data layout
cas. considerations.
2. Reduced failure recovery times. Generally speaking, the shared-disk paradigm can be
seen as advantageous from the standpoint of availability
3. Control over the tradeoff between strong coordingecause it offers better redundancy and decouples proces-
tion and optimistic concurrency. sor failures from loss of persistent state. Incoming ap-
lication requests can be routed to any available node in
§1e application cluster and in the event of a node failure,
ﬁ)b%)éequent requests can be redirected to the next avail-
e

the presence of guard logic at storage devices and q‘? processor with minimal interruption of service and no
vides applications with locking and transaction reco{g.ng-te.rm impact on datalavailability. In contrast, a serve
ery facilities, while ensuring data safety and liveness ﬁnure in the shared-nothing ”?Ode' may render some por-
the face of arbitrary asynchrony, node failures, and ndgns of the dataset temporarily or permanently unavail-
work partition scenarios. Our evaluation shows that a%- e . ) o )
plications built atop Minuet compare favorably to those ©ON€ Of primary challenges in designing SAN-oriented
that rely on a conventional strongly-consistent DLM d&lustered applications and middleware is ensuring safe
sign, offering improved availability and competitive perand efficient coordination of access to data that resides on
formance. We hope to demonstrate that Minuet is a useffif"ed disks and preserving correct ordering of concur-
general-purpose building block for clustered SAN alo‘o,ri_ent requests from multiple processes. Commonly, a soft-

cations and infrastructure components such as filesystelfi&€ module called distributed lock manage(DLM) is
and databases. employed to provide such coordination. A typical DLM

The rest of this paper is organized as follows. In Set€'VICe €xposes a generalized notion absource- an

tion 2, we describe the relevant background on SAN aﬁgstract application—leve_l entity to which access must be
provide several examples of safety problems. In Sé‘@ntrolled and the goal is to guarantee that no two pro-

tion 3, we present our main contribution, the design gpsses simultaneously possess conflicting locks on the

a novel safe and highly available synchronization mect:2me resource - a form gfoup mutual exclusiofg]. In

nism. Section 4 describes our prototype implementatitiy Simplest form, the shared-exclusive locking protocol

of Minuet and several sample client applications. We ev&ll0WS & group of readers and writers to coordinate their
uate our system in Section 5 and and discuss practical 4SX requests to a piece of shared data that represents some
pects of our approach in Section 6. Finally, we providg§SOUCER. ensuring that every process sees a consistent

an overview of related work in Section 7 and conclude ["29€ OfR. The protocol requires a process to acquire
a shared lock before issuingReadrequest to disk and,

Finally, we describe the implementation of Minuet,
novel synchronization primitive for SAN environment
based on the presented protocols. This system assu

Section 8. 2 _ .
similarly, Write requests must be delivered under the pro-

2 Background tection of an exclusive lock.

2.1 Storage area networks (SANS) 2.2 Safety and liveness limitations in SAN

Storage area networks are becoming increasingly popu- environments

lar in enterprise datacenters and are commonly adopteditgrinciple, a DLM service provides sufficient mecha-
support the storage needs of data-intensive clustered pm to ensure safe access to application state on disk,
plications that require high-speed parallel access tashaprovided that every client process obeys the basic locking
persistent state. In the SAN (shared diskmodel, per- protocol and submits its I/O requests only when holding
sistent storage devices, typically disk drive arrays or sgn appropriate lock. In practice, however, guaranteeing
cialized hardware appliances, are attached to a dedicatete ordering of 1/0 requests at shared disks tends to be
storage networland appear to members of the applicatiomore difficult than the above discussion might suggest due
cluster as locally-attached disks. The goal is to provitieprocess failuresindeffects of asynchrony
fully-decentralized access to shared application statle anEnsuring progress in the face of process failures



requires employing mechanisms such as leases afidation safety.
heartbeat-based failure detection. Upon suspicion of fail Scenario 3: Commonly, clustered applications and
ure, the lock manager must reclaim locks previously hefgiddleware services need to enforce transactional seman-
by the suspected process and make them available to otfeer on updates to application state and metadata. In
clients, but inconsistent failure observations can rasulta shared-disk clustered environment, distributed transac
prematurely-reclaimed locks and ultimately threaten dafens have traditionally been supported via the use of
safety. Next, we provide several concrete examples thgb-phase locking in conjunction with a distributed write-
demonstrate how data corruption can arise in a failugghead logging (WAL) protocol and we refer the reader to
prone shared disk cluster. D-ARIES [10] for a detailed exposition of transaction re-
Scenario 1: Consider a space allocation mechanisgovery in the context of a shared-disk parallel RDBMS. In
that employs a bitmap to keep track of free space on dighe abstract, the system maintains a snapshot of applica-
An application process that needs to allocate a free diéwn state along with a set of per-client append-only logs
ablock must read a portion of the bitmap from disk, fin@lso on shared disks) that record Redo and/or Undo infor-
a zero-valued bit representing a free block, flip its valueation for all updates performed by the respective client
and write the updated segment back to disk. This simad the commit status of every transaction. During failure
ple read-modify-write operation is performed under préecovery, the system must examine the suspected client’s
tection of an exclusive lock to ensure that no concurrdag and restore consistency by rolling back all uncom-
allocation attempts would select the same bit. Supposmited updates and replaying all updates associated with
client procesg; is holding a lock on a particular bitmapcommitted transactions that may not have been synced to
fragment and has chosen to flip the bit at positioin the snapshot prior to the failure. An essential underlying
blockB. c; is asserting its liveness status to the lock maassumption in a WAL-based recovery scheme is that once
ager via a heartbeat mechanism, but suppose that becauksdlure suspicion event is delivered and the decision to
of a transient network problem betweenand the rest of initiate log recovery is made, no additiovlrite requests
the cluster, some of its heartbeats fail to reach the redipiérom the suspected process will hit the snapshot or the log
in a timely manner, thereby triggering a failure suspiciatnd data corruption may occur if this assumption is vio-
event. The lock manager reacts by reclaiming the exclated.
sive lock and granting it ta,, which proceeds to reading Ensuring application safety in a shared-disk environ-
B from disk. c;’s update may not have reached the diskent has traditionally required introducing a set of syn-
by the timec,’s Readoperation arrives and as a resulghrony assumptions, such as bounded clock drift rates and
both nodes might select bit which would result in two message propagation delays, that permit construction of
conflicting allocations of the respective datablock. Noteliable heartbeat-driven failure detectors and effetyiv
that in this scenario, both clients obey the basic lockimgnsform an error-prone asynchronous environment into
protocol and the loss of data integrity could be linked @ partially synchronous one. Fundamentally, these as-
the impossibility of reliable failure detection in an asyrsumptions are probabilistic at best and since application
chronous distributed setting [9]. data integrity is predicated on the validity of these as-
Scenario 2: Consider two clients¢; andc,, that are sumptions, failure timeouts are typically tuned to a very
concurrently accessing a data struct@eesiding on a conservative value in order to minimize the probability of
shared diskD in a contiguous array of blocks numberegafety violation. Such (necessarily) pessimistic mettod o
[0-9]. Suppose; is updatingSunder the protection of antuning timeouts may have a profoundly negative impact
exclusive lock and;, wants to prefetch the contents f on failure recovery times - one of the common criticisms
into a local memory buffer and is waiting for a shared lodkf SAN-oriented applications.
on S. ¢; submitsWrite(target= D, of fset= 3,length= Another limitation commonly exhibited by DLM-
5) but crashes before hearing a response and the lock nspported SAN applications Iveness The lock man-
agercorrectlydetects the failure and reacts by reclaiminager represents an additional point of failure and while
the exclusive lock ors and granting it in shared mode tovarious fault tolerance techniques can be applied to im-
Cp. That client proceeds to reading the object and subnfit®ve its availability, the very nature of the semantics en-
Readtarget= D,of fset= 0,length=5), which returns forced by the DLM places a fundamental constraint on
old data. Nextci's delayedW rite request hits the disk the overall system availability. For instance, multipleko
and overwrites data at offsef8— 7|, after whichcy is- manager replicas can be deployed in a cluster, but mutual
suesReadtarget= D,of fset=5,length=5). Note that exclusion can be guaranteed only if clients’ requests are
although each individual I/O request is processed as mesented to them in the same order, which necessitates
atomic operation by the storage device,in the above mechanisms such as state machine replication [11] and
scenario would observe and potentially act upon a partRdxos [12] for request ordering agreement. Alternatively,
Write from ¢z, which may be viewed as a violation of apa single lock manager instance may be elected dynami-



cally [13-15] from a group of candidates and in this casaniquely identified by aesourcelD Each resource re-
ensuring mutual exclusion requires global agreement sides on precisely one storage device, denotealntser
lock manager’s identity. In both cases, reaching agree-Application processes assume the existence of a DLM
ment fundamentally requires access to an active primagrvice and rely on it to coordinate concurrent access to
component - typically a majority of nodes. As as a resuthe set of shared resources. The DLM provides shared-
a large-scale node failure or a network partition that reexclusive locking via the following two operations:
ders the primary component unavailable or unreachable
may bring about a cluster-wide outage and complete lostP
of service. DowngradeLockresourcelD fromModetoMode.

To summarize, today’s SAN applications and middle-
ware face significant limitations along the dimension&he three allowable lock modes a¥®Lock Shared and
of Safety and liveness. At present, several hardwa%XCI and we assume that clients’ interactions with the
assisted techniques, such as out-of-band power mandgleM are well-formed in the following sense:

l . .
ment (STOMITH') [16,17], SAN fabric fencing [18], and When holding a lock ilfNoLockmode, a client may re-

SCSI perS|sten_t reserve [19], can be employed to mitigate quest an upgrade Bharedor E xcl modes.
some of these issues. These mechanisms help reduce the

likelihood of data corruption under typical failure scenar When holding a lock irSharedmode, a client may re-
ios, but do not provide the desired assurances of safety in quest an upgrade ®xcl or a downgrade tdloLock
the general case and, as we would argue, do not address ) ] ]

the underlying problem. We conjecture that the underYVhen holding a lock irexcl mode, a client may request
lying problem is a case afapability mismatctbetween a downgrade t&haredor NoLockmodes.

"intelligent” application clients that possess full knewl A gharediock on resourc® conflicts with evenExcl
edge of application’s data structures, physical disk l&yoy -\ on R and anExcl lock conflicts with everyShared
and consistency semantics on the one hand and relatiglye ¢l jock on the same resource. In addition, if a lock
"dumb" storage devices on the other. The safety pmble@%ranted to some process and a conflicting lock is
illustrated above can be attributed to disk controller's i'?equested by another process the DLM service may

abilit_y tq identify and appropriately react to_the variougg e aRevokeLodjesourcelDtoMode notification to
application-level events such bk releasefailure sus- ¢, which can be considered a hint thats current lock

picion, andfailure recovery action ownership on the respective resource is blocking another
We suggest that despite this intelligence gap, the safgfignt's progress.

and liveness limitations exhibited by SAN applications to- aAny process (including components of the DLM ser-

day are not an inevitable property of the shared-disk §fte) may fail by crashing, but we do not consider target

chitecture. Our main goal is demonstrating the feasibijevice failures in this report, since those can be handled

ity of a shared disk application that ensures data safglying traditional techniques such as hardware-level redun

partitions, and node failures. We approach this task by

reexamining the notion of concurrency control and the i@ DeSign
tended purpose of a DLM in a shared-disk cluster.

gradelLockresourcelD fromModetoModé

o _ 3.1 Approach overview
2.3 Our model of distributed computation At a high level, our approach reexamines the correctness

We represent computation in a shared-disk cluster usgféjeria that a cluster DLM service must provide to appli-
the following abstract model: We consider a fully asyreations. Traditionally, DLMs tend to treat shared applica-
chronous distributed environment, in which processes rii@n resources as purely abstract entities and achieve co-
at different speeds and communicate via message pa&sgination by enforcing thgroup mutual exclusioprop-

ing over an asynchronous network. We assume a reliagléy: no two client processes may simultaneously hold
FIFO channel for pairwise communication, but a messagenflicting locks on the same shared resource. We note,
may take arbitrarily long to reach its destination. A séowever, that the mutual exclusion property as stated
of network-attached disk devices provides persistent stabove is provably unattainable in an asynchronous sys-
age for application state and clients access this statet@y that is subject to even a single crash failure - a con-
sendingReadandW rite requests to respective disk tarsequence of the impossibility of consensus [22] in such
gets. Each disk device stores some numbeogital re- an environment. Furthermore, a hypothetical lock service
sourceswhich represent application-level entities and atgat does offer such guarantees would not by itself suffice
to guarantee data safety in such a setting, as Scenario 2 in
1"Shoot The Other Machine In The Head" the previous section suggests.




Rather than restricting access to a critical section of ap- Cy Ca

plication code, our approach views the access coordingggradeLock(x, NoLock, Shared) UpgradeLock(X, NoLock, Shared)
tion problem in terms of 1/O request ordering guarantee, 1(9 oL ock(x, Shared, Excl)

that the storage system must provide to application pr@pgradeLock(X, Shared, Excl) WL.2(X) Excl

cesses. We refer to this alternative notion of correctnesi 1 Jscii D) el amsoe Excl, NoLock)
using the ternsession serializabilitywhich we now spec- gg_vg'(‘ggad““k(x’ Bxcl, Shared) .
ify formally. We begin by defining the notion ofsession Rra.1(x) session

DowngradeLock(X, Shared, NoLock)

Shared
session

to a particular shared resource on disk:

Definition 1. If a client processc issues a request

Upgr adeLock(R, ..., Shared) tothe lock service

for some shared resourde and receives a positive ac-

knowledgment, we say thaestablishes &hared session

to R. An existingShared session is terminated whenis- Figure 1. Concurrent request streams to a shared resource
sues a requesdowngr adeLock(R, ..., NoLock). X from two app!ication clilents,. c; and c; Ri.j denotes f[he
Analogously, by calling Upgr adeLock(R . . ., i-th :???dnoperatrlgir;‘frlom client j and, W j represents aWrite

Excl ) a process establishes dxclusive session taR operation, accordingly.

that can subsequently be terminated by downgradmga{ﬂ Excl lock and performs twaVrites and lastly, down-

Shared or NoL ock. grades tc&sharedand performs two morReads. Clientc,

) For a given pointt in the exec,utlon_hlstory, we O"E'acquires &haredlock on X and submits &eadrequest,
fine S(t, ¢, R) to be the set ot’s active sessions to

A X foll db de t&xcl and twoW it ts.
R at timet , determined solely by the sequence of pri P owed by an upgrade ta.xcl and twowTie requests

M0h this scenario, the following two sequences of request
Upgr adeLock andDo_vmgr adeLock requests S“F’m't' observations aX would be consistent with session serial-
ted to the DLM service. S(t, ¢, R} may contain a

Shared or an Exclusive session tdz, or both, or none. izability:

We say that &hared session tdR conflicts with every S =(Ru1, Roq, Wa1, Wo 1, Ra1, Ra1, Ry2, Wi 2, Wo o)
Exclusive session to the same resource andeaelusive ' i ' i ' ' ' ' '
session conflicts with every other session on the same 2 =(Ru1 Ra1, Wag, Riz, Wz, We.2)

source. An execution history that causeX to observe

Definition 2. If an I/0 request on a shared resourcB (Ri.1, Ri2, Ro1, Wi1,Wi2) is not session serializ-
is issued by a client processat timet , we say that is able because it interleavésh ;, an exclusive session
submittedas part of some sessios to Rif s € S(t,c,R). request fromc;, with two shared session requests from
For a given sessioa to some resourcB, we additionally Cz: Ri2 andW ».
defineRequest s('s) to be the set of all I/O requests on Note that session serializability is more permissive than
R submitted by the client as part sf strict mutual exclusion and in particular, permits execu-
L ) . , , ) tion histories in which two clients simultaneously hold
Definition 3. A given execution historid is sesson s&- ¢ qnflicting locks on the same shared resource. At the
rializable with respect to a shared resouréif the se- same time, one could argue that these semantics meaning-
quence of I/O request messages-Mry, 2, ...) observed g1y capture the essence of shared-disk locking, by which
and processed bigs owner satisfies: we mean that the request ordering guarantees in our model
are precisely those that applications developers have come
to expect from a traditional DLM service in such en-
Ar € M such that i< k < j and r, € Requestis’) vironments. Returning to the example of Figure 1, a
) .__conventional locking scheme that grants clients’ requests
fo.r some § that belongs to another client and conflictg, o order(cy (Shared, ¢y (Excl), co(Shared, co(Excl))
with s. would causeX to observes;, while S, would correspond

Informally, the above invariant specifies th#is owner o the following scenario:
disk must observe prefixes of all sessionstim strictly
serial order, ensuring that no two requests in a session a
inte_rleaved by. a conf!if:ting rquest from another client.2_ ¢, executes’; 1 andRy 1.

To illustrate this definition, consider a pair of concurrent

request sequences from two clients shown in Figure 1. I Excl lock onX is granted ta;.
this exampleg; first performs twoReadoperations orX

under the protection of &haredlock, then upgrades to 4. c; executedV; 1

Vri,rj € M such that{r;,r;} C Requests) for some s

}e' Sharedlock onX is granted tac;.



5. ¢; crashes and itSharedand Excl locks are re- Rastate atmanager Client Ry state at target disk

. maxTs, maxTy
claimed. curMode App. Request targgl;D
holgerLjst capsule targ
6. Sharedlock onX is granted tac,. wattertist

-~""1. UpgradeLock | | ockSve () 3. ReadlO "
b

; p
7. ¢y executesR ». | 2. UpgradeGrantea | €N | — R.
4. OK
LockMgr ,\ Disk

8. Excllock onX is granted taco. /. N Response

il > capsule

maxTs, maxT;
9. ¢z executedhy » andWh 5. clienteiD Guard logic

curSessType
Minuet focuses on ensuring safe ordering of 1/O re- Ru state at client

quests at storage devices consistent with session serial-
izability and explicitly avoids enforcing global agreemerfigure 2: Protocol messages and per-resource state at ap-
on the state of locks and group membership views. Adligation clients, lock managers, and shared disks.

result, our design does not necessitate the use of a com-

plex and expensive agreement protocol and does not B¥erY client selects itSIDs via an independent local de-
pose the associated limitations on availability. cision, without attempting to coordinate with the remain-

The basic idea behind our approach is to augment gy of the cluster_ anq this might be an entirely reas_onable
shared disk device with a small amount of applicatioftratedy for applications and workloads characterized by
independent logic, which we call guard, that enforces & conastgntly low raFe .of data cont_entlon. A traditional
the session serializability invariant on the stream of if?LM Service that serializes all session requests at a cen-
coming I/O requests. Minuet associatesession identi- Iral lock server can be viewed as a design point at the
fier (SID) with every lock instance granted to a client arether extreme. Minuet tries to posmon itself in the C(_)ntlr_l
we modify the disk I/0 protocol stack at the client sigdum between these extremes in order to allow application
to annotate all outgoing 1/0 requests with client's curreAgVelopers to trade off lock service availability, synehro
SID for the respective resource. Below, we refer to thfdzation overhead, and I/O performance under heteroge-
annotation as eequest capsule neous data access patterns.

The guard logic at target disk devices evaluates incom-Next, we describe the protocol machinery for enforc-
ing 1/0 requests based on the attacl$ and, for each N9 Session serializability on a single shared resource and
request, determines whether its acceptance would viol§ten demonstrate how more complex and useful applica-
session serializability. All such requests are droppechfrdion semantics, such as distributed transactions, can be
the input stream and the originating client is notified viglPPorted using session serializability as a foundational
a special error codEBADSESSIONFrom an applica- building block. Lastly, we address the iss_ue of fault tol-
tion developer's point of view, session rejection appedf§ance and present a quorum-based algorithm for loosely-
as a failed 1/0 request and an exception event notificatigpnsistent replication of lock management state.
from the Iock_ service |nd|cat|ng that a par_tlcu_lar lock IS o Enforcing session serializability
no longer valid. This may require the application to take
a corrective action, such as discarding the respective @tfe use a simple timestamp-based mechanism to enforce
ject from local cache buffers, rolling back any associatedssion serializability semantics on an individual shared
changes and, possibly, retrying the previous operation efsource. A client’s session to a given resourds iden-
ter reacquiring the lock under anoth&iD. tified by a value pair(Ts, Tx) specifying ashared and

The guard logic situated at I/O target devices addressesexclusivetimestamp, respectively. To acquire a lock
the safety problems due to delayed messages and inagnR, a client firstproposesa session timestamp to the
sistent failure observations that plague asynchronous disk manager. These proposal are globally unique - no
tributed environments and enforcing safety at the tardgeto clients propose an identical pair of values and no
device allows us to simplify the core functionality of thelient proposes the same value pair twice. Our current
DLM module. In Minuet, the primary purpose of the locklesign accomplishes this via the following timestamp for-
service is ensuring a consistent and efficient assignmarét: (T.clilD.incNur, whereclilD uniquely identifies a
of session identifiers to clients in a manner that minimizeent process anthcNumis client’s incarnation number
the aggregate rate of session rejection in the cluster. - a monotonic counter used to ensure uniqueness across

Decoupling correctness from performance in this magrashes.
ner enables substantial flexibility in the choice of mecha-The basic locking protocol proceeds as follows: each
nism used to control the assignment of session identifiesent ¢ maintains an estimate of the largest session
At one extreme is a purely optimistic technique, wherellynestamp previously granted to any client, which we



denote MaxTs(c,R) and MaxT(c,R). To acquire a if targSID.Ts > cliSID.Ts and aSharedlock is further

Sharedlock on R, client proposes a new session timestowngraded taNoLockif targSID.T; > cliSID.T. The

tamp (Proposedd; Proposedy), where Proposed] = client also updateMaxT(c,R) andMaxTs(c, R) to reflect

MaxTx(c, R) andProposed{is the smallest unique times-the most recent timestamp values specified in the response

tamp greater thaMaxTs(c, R). capsule and informs the lock manager th&draed down-
Client then sends ad pgradelLockrequest to the lock gradehas taken place.

manager, specifying the desired mo&héred and the

proposed timestamp pair. The lock manager accepigorithm 1 Guard logic at a SAN target device

and enqueues this request if no request with a largergCapsdenotes the request capsule sent by a client

Proposed] value has previously been accepted. Othetong with the respective 1/0 request).

wise, the manager denies the request and responds immeesourcel D— reqCapsresourcelD

diately withU pgradeDeniedwhich specifies the largest (targSID,targCSID « LookupStatgesourcelD

timestamp values previously observed by the managerif (targSID+# NIL) then

In the latter case, the client updates its local estimates decision— REJECT

MaxTs(c, R) andMaxTy(c, R) and submits a new proposal. if (targCSID= reqCapscurCSID) then

After accepting and enqueuing request, the lock man- if (reqCapssType= Shared then

ager eventually grants it and responds witloakGranted if (reqCapscliSID.Tx > targSID.Ty) then
message. Upon receipt of this message, the client sets decision— ACCEPT

cliSID(R) = (Proposed{; Proposed]) andsTypéR) = end if

Shared else{Exclusive session}

Acquisition of anExclusivelock (which includes up- if  ((reqCapscliSID.Ts > targSID.Ts) A
grading fromSharedto Excl) proceeds analogously ex- (reqCapscliSID.Ty > targSID.Ty)) then
cept that clients increment thk value in the proposed decision— ACCEPT
session ID and the lock manager checks lirihposedd end if
and Proposed] when determining whether to enqueue end if
or deny the request. After receivinglackGrantedre- end if
sponse, the requesting client sets the session §pep@ else{Entry not found}
to Excl. decision— ACCEPT

When issuing aRead or a Write request to a disk end if
targetD, the application specifies the ID of the shared if (decision= ACCEPT) then
resource affected by the request. Before transmit- targSID.Ts«— MAX(targSID.Ts,reqCapscliSID.Ts)
ting the request tdD, we augment it with arequest targSID.Tx — MAX(targSID.Ty, reqCapscliSID.Ty)
capsulethat encodes client's session identifier for the targCSID« capsulenextCSID
specified resource in a tuple of the following form: U pdateStat@esourcelD (targSID,targCSID)
(resourcelDsTypecliSID,curCSIDnextCSID. (The rc <+ ProcessIORequest
last two parameters specifpmmit session identifiersan respCaps— NIL
additional piece of state used for supporting transactionaelse
updates and we describe its purpose in Section 3.3.1). rc —— EBADSESSION

For every shared resourd® owned by a target disk respCaps— (resourcelDtargSID,targCSID)
deviceD, the device maintains tharget session identi- end if
fier (targSID(R)). Upon receipt of an I/O request from a Send(rc,respCapgto client
client, D examines the request capsule and looks up the
targSIDentry for the specified resource ID, evaluates
request capsule against the current entry, processesXt

ht%ﬁgaim 1. For every shared resource R, the locking proto-
I

and capsule evaluation mechanism described above

rgquest, gnd sends a response as shown in Algorith &arantees session serializability. (The proof can be
Figure 2 illustrates the basic message exchange betw; N in Appendix A)

a client, a lock manager, and a storage device for a simple
read operation under 8haredlock, as well as locking- 3.3  Supporting transactional semantics
related state maintained at each component.

If client receivesEBADSESSIONN response to its
I/O request, Minuet examines the response capsule dndnsactions, defined by Gray [23] as transformations of
notifies the application process that its lock on the rstate having the properties of atomicity (all or nothing),
spective resource is no longer valid. Specifically, a lockurability (effects survive failures) and consistencydea c
held previously inExcl mode is downgraded t8hared rect transformation), are widely regarded as a useful pro-

3.3.1 Overview



gramming primitive. In distributed shared-disk applicasalid - we call this step theerification phaseDuring this
tions, transactional semantics are typically supported bphase, client issues I/O requests to all storage devices tha
two-phase locking protocol for isolation and a write-ahedwbld resources touched by the transaction and proceeds to
logging facility (in some cases referred tojasrnaling) committing only if it collects a positive response for every
to achieve update atomicity and durability. Commonlyesource, indicating that its sessions are still valid.sThi
in order to commit a transaction, an application procesgchanism allows us to identify and resolve cases of con-
appends to the log a sequence of Redo records that dtioting access from multiple clients due to inconsistent
cisely describe the set of modifications performed by thacking state and can be seen as a variant of optimistic
transaction, after which a spect@bmmitrecord is force- concurrency control - a well-known technique in database
appended to the log. Prior to releasing a lock on a dirdgsign [24].
resourceR, its holder must sync all committed updates (2) Avoid enforcing a globally-consistent view of
to the snapshot dR, so as to ensure that the next readgfocess group membership. Rather than relying on a
observes the effects of every committed transaction. Ieoup membership service to detect client failures and ini-
client process fails while holding locks on a non-empijating recovery proactively in response to perceived fail
subset of resources, the system enters a recovery phasss, our design exploreslazy or on-demancdapproach
during which a (potentially distributed) recovery process transaction recovery that tries to postpone the recov-
examines the faulty client’s portion of the log, determinesgy action until the affected data is needed, which permits
the set of transactions with operations that need to be ife system to function without global agreement on group
played or rolled back, and performs the correspondifgembership. As we demonstrate below, keeping a small
operations in order to restore the set of affected resouggRount of additional per-resource state at a storage device
snapshots to a consistent state. allows us to detect cases when an incoming 1/0O request
At a high level, our approach tries to borrow fromwould touch a potentially inconsistent piece of data (e.g.,
state-of-the art mechanisms for transaction support to thissing some updates from a committed transaction). All
largest extent possible, while introducing several extesuch requests are rejected by the storage device with the
sions to address their liveness and safety limitations FBADSE SSIONesponse code. Upon receiving this re-
an asynchronous setting. Since the primary focus of @ponse, an application process may choose to reacquire
work is feasibility rather than performance optimizatiorits lock on the respective resource which, under normal
our current design provides only a subset of features tywnditions, would cause its current holdey)(to observe
ically found in a state-of-the-art transaction servicehsua RevokelLockequest, sync updates to the snapshot, and
as D-ARIES [10]. Below, we present a design that impleventually downgrade the lock. Alternatively, upon sus-
ments redo-only logging to support the "no force no stegdicion thatc, has crashed, the process may initiate a re-
buffer policy’ and currently, our design permits only oneovery action and attempt to bring the snapshot back to
active transaction at a time - after starting a transactiorna consistent state by reapplying missing updates from the
client must commit or abort before starting the next trani®g. Crucially, the choice betweeamordinatingandiniti-
action. Finally, we assume unbounded log space for eatimng failure recoveryis a local decision and the integrity
client. These restrictions allow us to focus the discussiofiapplication state on disk is not dependent upon correct-
on the novel aspects of our approach and we believe thass of the failure observation.
additional optimizations, such as support for Undo log- (3) Avoid introducing assumptions of synchrony
ging, can be retrofitted onto the scheme presented hgjsically required for log-based recovery in a shared-
in a relatively straightforward manner. Below is a list ofiisk setting. The session serializability disk extension
principles and requirements that guided our design:  proposed in Section 3.2 enables a target disk to detect
(1) Eliminate reliance on strongly-consistent lock- and reject I/O requests that conflict with log recovery and
ing. Rather than requiring all clients to coordinate concurrould otherwise result in violation of safety. For instance
rent activity through a strongly-consistent DLM servicey delayed\ rite command from a faulty client that car-
the session serializability logic we added to the storages an update to some resouiRevould get rejected by
devices provides a limited form of transaction coordin®s owner device if another client has already opensd
tion and allows us to relax the degree of consistency ieg and started reapplying missing updates to the image
quired from the DLM. Before committing (or completingof R under a session with a larger timestamp.
a read-only transaction), we require clients to verify that ) )
all locks acquired at the start of the transaction are sfii3-2 Basic transaction protocol

_ Our current design uses a set of per-client logs on shared
2No forcemeans that committing a transaction does not require ﬂus(ljl-sks to record transaction redo information. These Iogs
ing all updates to the snapshot - it suffices to write a commineto ’

the log.No stealimplies that dirty data buffers containing updates frortPPear to cli_ents as regL_JIar lockable resources that can be
uncommittedransactions cannot be flushed to stable storage. read and written to, while the underlying storage device




is assumed to provide session serializability guaranté®D(R),of fsetlen data), whereRis the resource being
in cases of concurrent access from multiple clients. Thpdated and(R) is the disk on whiciR resides.
physical location (i.e., disk identifier and starting ofjse Next, transaction proceeds to tkerification phasge
of a client’s log is easily computable from the client praduring which the client confirms the validity of its ses-
cess identifierdlilD). sions for all resources touched by the transaction (and
To support distributed transactions, we extend thence, the accuracy of cached data). Algorithm 3 specifies
basic session serializability machinery introduced the VerifySessioriunction in high-level pseudocode. For
Section 3.2 with an additional piece of state, whickvery resource in thReadSetthe client contacts its target
we call a commit session identifier (CSIDpf the device and verifies that its current session ID is still valid
form (clilD,xactID). For each shared resouré® its and that no conflicting transaction has attempted to com-
owner device maintains thargCSID(R) value alongside mit*. For elements of the/riteSet in addition to verify-
targSID(R). Conceptually, the value ¢argCSIOR) ata ing that the exclusive session identifier is valid, the dlien
particular point in the execution history identifies the moalso prepares them for committing the active transaction
recent transaction that may have upda®and commit- by specifying (clilD,activeXactXID in the nextCSID
ted without syncing the corresponding changes to diskfigld of the request capsule. As shown in Algorithm 1,
targCSIDR) = NIL, the image on disk is guaranteed td the request successfully passes verification at the targe
be consistent with the set of committed transactions atielvice, thetargCSID value is set to theextCSIDfield
can thus be safely accessed. ConversalgCSID= NIL of the request capsule. As a result, a subsequent attempt
indicates thaR's current state on disk might be missindpy another process to access soneteSetelementR
some updates from a committed transaction and therefatguld fail and observe a noNiL targCSIDvalue in the
cannot be assumed valid. In this case, ¢hED portion response capsule and that process would either wait for
of targCSID can be used to locate the log of the clierthe local process to flush the corresponding updates to the
responsible for these modifications, identify the comniihage ofR or initiate a recovery action and updd&dérom
status of relevant transactions, and restore consisteéncjooal client’s log.
R by reapplying the missing updates from the log. This Note that the extra round of communication added by
is the basis of the lazy recovery mechanism, which wlee verification phase is the penalty our approach pays for
describe more fully in Section 3.3.4. the absence of strict coordination provided by a strongly-
Algorithm 2 illustrates transaction execution in higheonsistent DLM. Following successful verification, the
level pseudocode. Unless specified otherwise, every H@nsaction enters theommit phasein which the client
request to a remote disk affecting a resouRazarries the appends £&ommitXactrecord to its log and forces the log
following state in its request capsule: tail to disk.
The basic protocol outlined above provides transaction
(resourcelD sType SID, curCSID nextCSID isolation, identifying cases of conflicting access during
=(R, RsTypeR.cliSID, the verification phase. However, recall that under our
(clilD,RxactID), (clilD,RxactID)) weakly-consistent model of locking and session serializ-
S ) ) ability semantics, any disk 1/0 operation (including acces
Dgrmg |n|t|al|;at|on, a client processacquires an ex- 1, 5 client’s log) may fail withE BADSE SSIONue to a
clusive lock on its own log resource (denotetlog) and  cqnfiicting access from another client. This leads to sev-
reads its content from disk, thereby establishing an excliz additional exception cases at various stages of trans-
sive session to the log. To begin a new transaclioR  4tion execution, which are shown in Algorithm 2 (num-
mcrements_the a(_:tlve tra_nsacnon identietiveXactiD pers 1 through 5) and are briefly discussed below.
a monotonically increasing counter, and append$ea 456 (1):Client loses a session to its log while trying to
ginXactrecord to its log. Next, in the Read phase of theaq it during initialization and receivé&BADSE SSION
transaction,c acquiresSharedlocks on all resources ingnq 4 forced downgrade MoLock In this case, the client
the ReadSeof T and reads the corresponding data froQ)yp|y reacquires the lock on its log resource under an-
disk into local buffers. In the update phasehat fol- oher'sID and retries, repeating the process if necessary.
lows, client pe_rfo_rms fche deswed_set of updf'ite operationg- 55 (2): During the Read phase, an attempt
on resources in |tWr|teSet(at_ this stage without forc- 1 aoq some resourck from disk is rejected with
ing Ioca!ly—buffered data to disk) aljd appends the CHBADSESSIONand a forced downgrade tbloLock
responding set of) pdaterecords to its log. Each suchjignt recovers by aborting and restarting the current

record describes a single write I/O operation that mogiznsaction. Note that if the response capsule supplied by
fies a contiguous region of data on disk and is of the form

40ur current design implements Verify 1/O requests as zergtten
30f course, locks and memory buffers holding cached copies Réads and Writes, whose sole purpose is to transport a capsile
shared resources can be retained across transactionfidamefy. target device for verification.




the target disk indicatesargCSID+# NIL, the image of Algorithm 2 Basic transaction protocol

R on disk may be missing some committed updates agghrt the transaction service:

if the client process specified WargCSIDclilD is sus- (One-time initialization)

pected to be faulty, the local client may choose to initiate UpgradeLock(c.Log, NoLock, Excl)
log recovery and restorie to a consistent state, using the ReadFromDisk(c.Log)

protocol presented in Section 3.3.4. curXactD« largestX ID found in the log

Cases (3) and (4):A verify request is rejected with
EBADSESSIONnd a forced downgrade ®haredLock
or NoLock We treat this scenario analogously to case (2):
client aborts the transaction and performs recovery on th
set of resources that failed session verification and whd3@ad Phase:
response capsules specify a néH- targCSIDvalue. for all resourcefRRin ReadSetlo

Case (5):Transaction passes the verification phase and UpgradelLockik, NoLock Shared
successfully updatesargCSID on all resources in the ReadFromDiskg) (into local buffer)
WriteSet but forcing aXactCommitrecord fails due to  end for
loss of session to the log. In this scenario, the active iranfpdate Phase:
action cannot be committed since another client may havgq, 411 resourceR in W riteSetdo
chosen to initiate log recovery for the local client, read it UpgradeLockR, NoLock Excl)
log, and abort this transaction. The local client aborts the o, ) update operatioris on R do

Begin Transaction:
curXactlD+« curXactID+1

active transaction and may restart it after reestablisaing Apply U to local copy ofR
exclusive session to its log. LogAppendRea(Update,U))
ReadSet- (ReadSet {R})
3.3.3 Syncing updates to disk end for
yneing tp end for

Since our current design provides redo-only Iogging'\/%rification Phase:
dirty memory buffer holding a modified copy of some re-
sourceR may be flushed to disk only if every prior trans-
action that modifiedR has been successfully committed.
Typically, a client process would write back its buffered
copy ofRto disk upon receiving a lock revocation request
onRfrom the DLM service.

To sync a modified copy of resour&e a client simply
writes out the local buffer to the target device, issuing a
sequence of one or more digkrite requests and specify-
ing the following parameters in the request capsule:

RejectSet— 0

for all resourcefRin ReadSetlo
rc < VerifySessionR, Read)
if (rc = EBADSE SSIONthen

RejectSet— RejectSet {R}

end if

end for

for all resourcefRin WriteSetdo
rc < VerifySessionR, Write)
if (rc = EBADSE SSIONthen

(resourcelD sType SID, curCSID nextCSID RejectSet— RejectSet {R}
=(R, Excl, RcliSID, (clilD,RxactID}, (1) end if
(clilD,R.xactID)) end for

Completion Phase:

df (RejectSet 0) then
if (WriteSet£ 0) then
LogAppendRegCommitXact)
ForceTailToDisk(c.Log)
for all resource®Rin WriteSetdo
R.xactID « activeXactID
end for
return COMMITTED
else{Read-only transaction}
return COMPLETED
end if
N else
return ABORTED
end if

The last request in the sequence speciiiegCSID=
NIL and, upon receiving and processing this request, th
target device resets itargCSIDto NIL, which effectively
marks the disk image d® as "clean” for the next reader.
After completing this step, abl pdateSyncedecord of
the form (R, R.xactID) is appended to the log, indicating
that the image oR on disk has been updated to reflect the
effects of all transactions up ®R.xactID. A committed
transactionT can be purged from the log, and the corre-
sponding space reclaimed, if for every elemBrin T's
WriteSet anU pdateSyncedecord(R, R xact|D) satisfy-
ing R.xactID > T.xactID has been added to the log.

If the sync operation fails to complete due to loss o
session withR, the client simply invalidates the cached
buffer and no additional actions need to be taken.

40gAppendRed(BeginXact,curXactiD))

@)

)

3)

(4)

©)
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Algorithm 3 Function VerifySessiofR modg Due to loosely-consistent locking, the recovery process

curCSID«+ (clilD,R.xactID) may experience loss of its exclusive sessions to the log or
if (mode= Read then the actual resource being repaired. This may happen, for
nextCSID— (clilD, R xactID) instance, if a remote client initiates a concurrent recpver

reqCaps— (R, RsTypeR.cliSID,curCSID nextCSIDaCtion onR and succeeds in reapplying some or all of the
rc «— ReadFromDiskR reqCaps {Zero-length missing updates, thus breaking local client’s sessions. In
read} both cases, itis safe to simply abort the recovery operation

else and reattempt the application-level action.

nextCSID— (clilD,activeXactID P
capsule— (R RsTypeRcliSID, curcSIDnextcsip S+ -OCk manager replication
rc — WriteToDisKR, reqCaps {Zero-length write} The manager component of a cluster lock service can
end if be replicated for fault tolerance and typically, strongly-
returnrc consistent replication is needed to provide the desired co-
ordination semantics. In our model, the DLM service is
not required to guarantee full mutual exclusion; instead,
3.3.4 Lazy transaction recovery the goal is to provide some limited form of coordination
If an I/0 request from a clientto a shared resour@®fails  that enables efficient access to data and minimizes the rate

with EBADSE SSIONNd if anonNIL targCSIDvalue ©f I/O rejection for a given application workload. This en-
is specified in the response capsule then the imadge okbles a simpler and generally more available replication
on disk may be missing some committed updates. In tiigsign that allows clients to retain progress in the face of
casetargCSIDclilD identifies the client process resporextensive node and connectivity failures. For instance, ou
sible for these updates atargCSIDxact!D specifies the design does not require connectivity to a majority of man-
most recent transaction in the respective client’s log tH@er processes - a lock can be acquired as long as at least
may have updateR. If ¢ suspects that client to be faultyone of the manager instances is reachéble
it may initiate a recovery action that brings the disk image To support manager replication, we extend the ba-
of Rup to date and proceeds as follows: sic locking protocol presented in Section 3.2 as follows:
The recovery process acquires an exclusive lock ¥vhen acquiring or upgrading a lock, client selects a sub-
targCSIDclilD .Log and reads its content from diskset of managers, which we call itsquest quorumand
It searches the log for the most recémpdateSynced sends arlJ pgradeLockrequest with the corresponding
record for resourceR and setsMaxSyncedXactiDto timestamp proposal to all members of this set. The lock
the xactID field of that record. Next, the client idends considered granted (and the application is notified)
tifies the set of committed transactions wiXactID > once anJ pgradeGrantedesponse is collected from alll
MaxSyncedXactIDthat include one or moré pdate quorum members. If any of the members respond with
records for resourcB and aggregates these updates intbpgradeDenieddue to an outdated timestamp in the re-
aredo operation list After acquiring an exclusive lock quest, the client downgrades the lock on all members that
on R and obtaining the corresponding session identifieave previously responded withpgradeGranted then
(R.cliSID), the client reapplies the sequence of operationgdates ittMaxTs and MaxTy values, and resubmits the
in the redo list by issuing corresponding write requests wpgrade request with a new timestamp proposal. For effi-
the target disk. The following set of parameters is speciency, we allowJ pgradelLockequests to specify am-
fied in the request capsule: plicit downgradefor an earlier timestamp, which permits
(resourcelDsTypeSID, curCSID nextCSID us to combine thesg two requests into a single message.
) Incoming revocation requests from quorum members
=(R.Excl,RcliSID, targCSID targCSID) that have responded with pgradeGrantedare buffered
The last request in the sequence specifiegCSID= until the client hears back from the entire quorum. Even-
NIL, which causes the target device to resgCSID tually, if the upgrade is granted by all members, the ap-
to NIL, thereby indicating to the next reader thdlication process is notified and any pending revocation
the disk image ofR has been brought up to dateféquests are also delivered at that time.
As the last step, the recovery process force-appenddo illustrate, consider a basic scenario with two clients
U pdateSynce@R targCSIDxactID) to faulty client's (ci andcp) and two manager processes (andmp) and
log®.

can be recovered in an analogous lazy manner after a rejectedsa
5Note that as an optimization, in addition to recovering tetesof ~attempt.

resourceR that initially triggered the recovery action, we can attetopt 6ln an extreme case, that instance can be the local DLM cligeif it

repair the missing updates for all resources touched by thg/felient which would simply grant its own proposals without coordingtwith

from the log, but this is not strictly necessary. In prineipny resource other clients.
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suppose these clients make concurrent attempts to acqiinetrated in Algorithm 4.

an exclusive lock on some resouReSuppose the times-

tamp proposals ar@, 1) and(0,2) for ¢; andcy, respec- Ajgorithm 4 Minuet client library API

tively, and suppose their upgrade requests reach the W& sic lock service:

managers in opposite orders; first observes the request UpgradeLock(resID, upgradeMode, coordFactor)
from ¢; and grants the lock immediately and later, upon DowngradeLock(resID, downgradeMode)
receivingcy's request with a higher timestamp, accepts it Shared disk 1/O: '

and places; on the queue of waiteram, first observes DiskRead(diskID, resID, offset, length, dataBuf)

the U pgradeLockmessage front, and grants the lock DiskWrite(diskID, resID, offset, length, dataBuf)
immediately and wheu's request arrives, this manager ,.,nsaction service:

denies it becausey’s proposal with a higher timestamp BeginXact()

has been observed. Upon receivihggradeDeniedrom AddUpdate(resID, diskiD, offset, length, data)
mp, ¢1 selects a new timestamp proposal, $8y8), and AbortCurXact()

sends another upgrade request to both managers, additio?fommitCurXact(readset writeset)

ally specifying an implicit downgrade of®, 1). Whenm MarkResourceSynced(resID, xactID)
receives this message, it honors the downgrade request,

grants the lock to the next waiterc;, and places; on

the queue of waiters because its timestamp proposal noWyvhen issuing arU pgradeLockrequest for some re-
supercedesy’s. Likewise, m; acceptsc:’s request and sourceR, an application optionally specifies theordina-
enqueues it. At this point; has been granted locks byon factor(C), which determines the size of the lock man-
both managers and can proceed to issuing I/O requestgggr quorun®, i.e., the number of manager processes that
R under session 100,2). Whenc, completes its opera-must agree to grant the requested lockRnCurrently,
tion onR, it sends a downgrade request to both manageffe quorum size is computed as follow@:= (C% +1],
They both grant the lock to, - the next waiter, which thenwhereM is the total number of lock manager replicas.
proceeds to accessiigunderSID (0,3) and thus, proper  This parameter allows application developers to tune
serialization is achieved. _ the degree of locking consistency provided by the DLM,
The basic scheme suggested above is by no megRgpling a choice between optimism and strict coordina-
the only feasible replication mechanism for a looselyipn and a tradeoff between availability and synchroniza-
consistent lock service and a number of obvious optimizgyn overhead. A small quorum size works well for low-
tions can be considered. For example, lock managers ggRtention resources; it helps keep the lock message over-
coordinate among themselves and disseminate chang&ssigy low and permits clients to make progress in a parti-
the list of holders and waiters in a lazy manner and in Qfpned network, but exposes application clients to I/O re-
der to reduce the frequencydpgradeDeniedesponses, jection and forced downgrades in the event of conflicting
clients can gossip about the maximum known timestarggcess. Conversely, a large quorum reduces the probabil-
for each resource. We hope to explore and evaluate sqf)&f rejection, but requires connectivity to a larger num-
of these optimizations in future work. ber of manager replicas. If every application process spec-
. ifies a coordination factor of 1 (i.e., a majority quorum)
4 lmplementatlon for every lock acquisition request, our system would ef-
We have implemented a proof-of-concept prototype tgctively behave as a traditional strongly-consistent DLM
Minuet based on the design presented in the precediffjen the upgrade request is granted by a quorum, an
section along with several sample parallel applicatiodspgradeGrantechotification is posted to the application
The prototype has been implemented on the Linux pl&vent queue.
form in C and the implementation consists of a client The client-side DLM module maintains a heartbeat ses-
DLM library, a lock manager process (7630 LoC), a stosion with each manager process (currently implemented
age process that emulates a SAN target device (630 LoGa TCP keepalive) and a local estimate of its liveness.
and sample applications (920 LoC). If a client succeeds in acquiring a lock on some resource
. . . . R from a quorum of lock managers and the last remaining
4.1 Client-side lock service library manager in that quorum crashe§essionE x poseubtifi-
The client-side component of Minuet is implemented asition is posted to the application event queue. This event
a statically-linked library and offers C language bindingaforms the application that all records of its lock (and
for client applications. It is based on an asynchronotle corresponding session) Brmay have been lost and a
event notification mechanism and provides a basic lockiaghsequent attempt by another client to establish a session
service, an I/O interface to remote disks, and a transactmmR may be granted immediately and thereby cause loss
service. The core elements of the application interface afesession at the local client. In order to prevent this, the
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application can issue anothgmpgradelLockrequest and manager attempts to revoke the lock from current hold-
attempt to reacquire the lock under the sé@hB from an- ers by sending them RevokelLocknessage, which in
other quorum. This mechanism helps reduce the amoturh causes the application on these nodes to observe a
of I/O rejection occurring as result of a manager failufRevokeLoclevent. A heartbeat mechanism is used to de-
and is particularly useful for protecting long-running-sesect client failures and after a failure suspicion, the man-
sions (e.g., fetching a large data structure from disk irager reclaims all of the locks previously held by suspected
local memory) that are costly to redo. client and makes them available to the next waiter.

FunctionsDiskReadand DiskWrite provide an inter-
face for submitting I/O requests to remote disks. V\f("a'3 Storage process
need to intercept these requests in the client library in §@ur current implementation emulates the functionality of
der to augment them with resource session identifiers aguard-augmented disk target via a user-level process that
described in Section 3.2. For each I/O request, the fgns on a dedicated node, communicates with clients over
source being accessed is specified by the application &BCP socket, and writes data to a local disk partition or
function argument. The DLM client retrieves the corre file in a local filesystem. While this may not be an ideal
sponding session state and piggybacks it onto the requegresentation of a SAN-attached disk, we were careful
in the form of a capsule. When a response is receivéd preserve the semantics of a "dumb" storage device that
anioCompletionnotification is posted to the applicatiorsupports onljReadsandW riteson raw data blocks. Our
event queue. /O requests rejected by the target disk retotetadata t@rgSID and targCSID requires 16 bytes of
status cod&€ BADSE SSI0MnNd for all such requests, thenemory per resource and the storage process currently
DLM client additionally posts &orcedDowngradenoti- maintains it in RAM using a hash table.
flcatlo_n to inform the application that its lock on the re 4 Sample applications
spective resource has been downgraded to some weaker
mode. Distributed chunkmap Our first application imple-

The transaction module implements the design of Ségents a read-modify-write operation on a distributed data
tion 3.3. Internally, it implements a log abstraction offructure comprised of a set of fixed-length data chunks. It
top of raw disk and uses the basic lock service to enstiémnics atomic updates to a distributed chunkmap - a com-
session serializable access to the log. Its applicati@n-intmon scenario in clustered middleware such as filesystems
face includes functions for initiating a transaction, logind databases. The chunkmap may represent a bitmap of
ging an update, aborting, committing, and syncing uffee space blocks (e.g., Scenario 1 in Section 2), an array
dated resources to disk. The commit function requires tpe-node structures, or an array of directory entry slots in
application to specify th&®eadSetand WriteSetof the @ directory file. In each operation, the application process
current transaction, which are examined during the véglects arandom 4-KByte chunk, reads it from shared disk
ification phase. If verification fails due to loss of seddto a local buffer, modifies a randomly-selected region
sions, a corresponding set BbrcedDowngradenotifi-  Within the chunk, and writes it back to disk. Locking is
cations is sent to the application. In addition, a comntf€d to ensure update atomicity: prior to reading the block
operation may fail if the client loses its exclusive sessidiPm disk, the application process acquires an exclusive
to the log, in which case the application is notified via I8¢k from Minuet on the respective block and releases it

X actSvcFailuresvent. after writing the modified version to disk. In our evalua-
tion, we measure the aggregate operation throughput from
4.2 Lock manager process multiple clients under strong and loosely-consistent{ock

Minuet's lock manager process is responsible for grarlffag under varying levels of block contention.

ing and revoking locks using the timestamp mechBistributed transactional update To demonstrate the
nism (Section 3.2) and several manager instances &aasibility of serializable transactions (Section 3.3) in
be deployed in a cluster for fault tolerance. For eadliinuet, we extend the basic chunkmap application de-
lockable resourcdR in the system, the manager mainscribed above with multi-block atomic update operations.
tains the current lock mode, a list of current holdn each iteration, the application process selects up to
ers, a queue of blocked upgrade requests, and five distinct data blocks, acquires the respective locks,
largest proposed timestamp values observedifeo far reads and updates their content, and attempts to commit
((MaxProposedd(R), MaxProposedJ(R))). When an these updates to disk in a single atomic action. This ap-
U pgradelLockrequest orR arrives from some client, plication exercises Minuet’s write-ahead logging module
the manager evaluates its proposed timestamps and eiéimel transaction API routinedBéginXact AddU pdate
accepts it and addsto the queue of waiters or respond€ommitCurXact andMarkResourceSyncgdIf a trans-
with U pgradeDenied When a new request incompatiblection aborts due to loss of session to a datablock or the
with the current mode appears on the waiter queue, tient’s log, the application reacquires the lock on the
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respective resource and retries the transaction (withoutWe ran each experiment for 10 minutes and repeated it
backoff) until it commits successfully. 8 times to compute the mean and standard deviation.

5 Evaluation 5.2 Distributed chunkmap

In the previous sections, we have shown how Minuet prbhe distributed chunkmap application performs read-
vides safety by adding guard logic to SAN target device®odify-write operations on an array of data blocks and
In this section, we evaluate the performance and availaglies on Minuet locking to ensure update atomicity. We
ity of the sample applications built atop Minuet and préonfigured the block size to 4 KByte and varied the num-
vide comparison with traditional strongly-consistentdoc ber of client instances to evaluate the zero-consistency

ing. locking and the strong-consistency locking with different
i | number of lock manager replicas.
5.1 Experimental setup Figure 3 shows the operation throughput, the denied

We ran our experiments in an emulated SAN environmdatk requests at lock managers due to conflicting ac-
with 16 identical machines in our local cluster. Each nodess, and the rejected 1/O requests at SAN target devices
is a dual 3GHz Xeon machine equipped with 2 GBy#&ith the uniformworkload. Since there are a large num-
RAM, two 7200 RPM IDE disks, and a Gigabit Etherber of blocks in the storage servers, these results repre-
net NIC. The machines were interconnected via a Giggent a low-contention scenario. We observe that there
bit switch. We allocated five machines for storage servesslittle performance difference betweestrong(x) and
and these nodes collectively provided 5 GB of logical diskeak-ownup to 16 clients, but in a high load case (32
space, equally striped across the servers. Three additiatients) strong(x) shows considerably lower throughput
machines were assigned to serve as dedicated lock nthanweak-own This is because clients compete with each
agers, each running a single instance of the Minuet manther to acquire locking state in lock manager processes
ager process. Client instances were equally split acressl their requests are denied as shown in Figure 3 (cen-
the remaining seven machines and they saturated neitieey. On the contraryweak-owndoes not incur locking
RAM nor CPU. Note, however, that when evaluating theverhead and scales throughput linearly, although a small
zero-degree locking consistency (i.e., theak-ownsce- fraction of clients’ I/O requests is rejected at the dislg(Fi
nario described below), a lock manager process sharaat@ 3 (right)). This result suggests that our approach is
machine with a matched client process. also beneficial in improving application throughput in sce-
In our experiments, we evaluated the performance rdrios where the overall load is high, but contention for a
our applications under the following three scenarios: single resource is relatively rare.
) . We conclude that the current practice of enforcing full
strong(x): A strongly-consistent locking protocol thaty, 5| exclusion via strongly-consistent locking is chgar
requires a client get permission from a majorigy ( 5 gyerkill when it comes to such a sparse access pattern.
of lock manager processes. Furthermore, if multiple lock manager replicas are de-

weak-own An extreme form of weakly-consistent lockP10yed for fault tolerance, strong locking pays the addi-
ing, where each client acts as its own lock manag%‘?”al penalty of keeping the replicas consistent. On the

and does not attempt to coordinate with other clienf&n€r hand, the optimistic method of concurrency control
enabled by Minuet can progress without the heavy lock-

weak-partition(x): Simulates a failure scenario, inng overhead, while ensuring update atomicity in the rare
which the network is partitioned into distinct seg- cases of conflicting access. Although I/O requests are sus-
ments. Within a segment, Minuet provides stronglgeptible to rejection at the storage device, the rejection
consistent coordination through a single lock mapenalty does not appear to have a measurable effect on
ager, but no coordination between segments takbs overall application throughput.
place. The rate of 1/O rejection could become more signif-

Wi d th ; h | b icant when a system has resource hotspots (e.g., index
e measured the performance as the total number gl in 4 database), but weakly-consistent locking can

application operations per second, varying the numbergy ovide a reasonable performance in such scenarios,

clfientskEi.ea, offere? I.oad). We also considered two fomgg, .o traditional strong locking would also face explosive
ot workioad, namely. synchronization overhead. Figure 4 shows the through-

t and the rate of 1/O rejection under a high- contention
skewed(5/95orkload). In this experimentstrong(1)
displays higher throughput thaveak-own since rejected
skewedk/y): y% of operations touchx% of the /O requests, whose percentage goes up to 22%, have
chunkmap. greater impact than denied lock requests, whose percent-

uniform : Each operation selects the block(s) to modi
uniformly at random from the entire chunkmap.
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Figure 4: Throughput (left), and the percentage of rejected 1/0 request
(right) under the skewed(5/95) workload. Figure 5: Throughput under the uniform
workload in a network partition scenario.

age goes up to 38% (not shown). We also experimented ¢ pome no. of clients
varying the skewness of the workload and found that when 4 ] 8 | 18 | 32

the skewness decreases slightly (esgewed(10/90) the strong(1) | 79(2) | 145(3) | 208(13)| 190(7)

number of 1/O rejections (and, accordingly, the perfor- weak-own| 72(4) | 123(7)| 175(8) | 203(17)

marllce dlfference) drops ta a neglighble level. Table 1: Transaction throughput with the uniform work-

. Finally, Figure 5 sh.ows how .strong and weak |°C‘§6ad, varying the number of clients.

ing protocols behave in a partitioned network scenario,

where each client can communicate with only one lo¢lot demonstrate a measurable difference in throughput be-
manager replica out of three. A strongly-consistent lockause the rate of contention (and, accordingly, trangactio
ing protocol demands a well-connected primary compaborts) is relatively low. The trends of denied lock re-
nent containing at least a majority of manager replicagjuests and rejected 1/0 requests for this experiment are
a condition that our partitioned scenario fails to satisfgimilar to the ones observed for the simple distributed
As a result, no client can make progress with traditionethunkmap.

strong locking and the overall application throughput is

zero. In contrast, under Minuet's weak lockinggak- 6 Discussion

partition(3)), clients can still make good progress. This ] )

experiment demonstrates the availability benefits that d0rthiS section, we discuss and address several concerns
approach gains over a traditional DLM design by looseR€rtaining to the practical feasibility of our approach and
ing the consistency of locking state. the implications of Minuet’s programming model.

5.3 Distributed transactional update Practical feasibility In this report, we explore_a novel
approach to concurrency control for SAN environments

The distributed transactional update application modifigat rests on the basic idea of extending network-attached
multiple blocks, typically residing on different disks,an storage devices with a small amount of guard logic that
single atomic transaction. As in previous experiments, Wwaables them to detect and filter out inconsistent 1/O re-
set the application block size to 4 KB. quests. Fundamentally, this requires extending disk hard-
Table 1 shows the throughput undstrong(1) and ware with the guard functionality and modifying existing
weak-ownmodes of locking, varying the number oblock-level I/O protocols to carry a certain amount of ad-
clients under theiniformworkload. The two schemes ddlitional state (referred to @spsulesn our design), which
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may raise several concerns about the practical feasibikitynsistent locking state drastically constrains the rarige
of our approach. feasible recovery actions in such scenarios. Commonly, if
On the one hand, we acknowledge that our approaeimode experiences loss of connectivity to the DLM ser-
assumes the presence of functionality that does not ®gice, the only meaningful recovery action is inducing a
ist in traditional disk hardware and, consequently, faceButdown (e.g., by panicking the kernel) with the expec-
a non-trivial barrier to deployment. On the other hanthtion that the DLM will eventually detect the failure and
we observe that the proposed set of changes is very ingeglaim the locks, thus permitting the rest of the system to
mental in its nature and does not require extending storagake progress.
devices with application-specific functionality. The gllar While such a strategy is certainly applicable in our
logic presented in Algorithm 1 is amenable to efficiemhodel (and hence, existing applications can be deployed
implementation in hardware, requiring only several tabl@thout modification), this technique would not observe
lookups and comparison operations. the availability benefits enabled by our approach. With
As we tried to demonstrate in this report, the benefitdinuet, a node that finds itself partitioned from the rest
of implementing such an extension can be substantial.dfthe cluster need notimmediately give up all of its locks
addition to lifting the safety and liveness limitations thaand instead, can execute a more granular recovery action.
have traditionally characterized applications and middIEor example, the affected node can switch to optimistic
ware in shared-disk environments, our approach estabnacurrency and continue accessing its resources with-
lishes a new degree of freedom in the design spaceoot attempting to coordinate its session ID selection with
SAN concurrency protocols, enabling a choice betwethre rest of the cluster and this would allow the partitioned
optimism and strict coordination. node to continue making progress in the absence of con-

Different programming model Another concern is that flicting access.

Minuet introduces an alternative programming model, ex-OUr xperience with developing and deploying sample
posing application developers to several additional ei@plications (Section 4.4) on top of Minuet suggests that
ception cases that do not typically arise under strongf)h-e avallablll'Fy benefits ena}bled by the use of flpe—gralned
consistent locking. When a traditional DLM servicéSCOVeTY actions are certglnly worth the_extra implemen-
grants a lock to an application process, the lock is dation effort, which we belleve_to k_Je relatlve_zly_/ _smal_l. The
sumed to be valid and hence, the process may proceelfggsactional chunkmap application was initially imple-
accessing the respective shared resource without worryfignted on top of conventional locking using 460 lines of
about conflicting access from other processes. In contrasc0de and extending the implementation to operate on
Minuet gives out locks in a more permissive manner, b of Minuet required adding 43 .Ilnes of code to handle
provides machinery for detecting and resolving inconsfs?'c€dDowngradendXactSvcFailureevents.
tent access at the storage device. As a result, applicatiBihsrage and bandwidth overhead In our prototype im-
that rely on Minuet for concurrency control must be prglementation, target storage devices maintain 16 bytes of
grammed under the assumption that any 1/0O request tpaa-resource metadatéa(gSID andtargCSID. For a
remote disk may fail wittEBADSE SSIONlue to incon- traditional middleware component such as a database or
sistent locking state and take an appropriate corrective adilesystem, a resource would typically correspond to a
tion (e.g., reacquire the lock and restart the operation).single fixed-length block containing application data or
We observe that while 1/0 request rejection does not aoetadata and taking a clustered filesystem as an exam-
cur under strongly-consistent locking, the protocols emle, blocksizes in the range 128KB - 1MB are considered
ployed by traditional DLMs for ensuring system-wideommon [25]. Assuming 128KB application blocksize,
consistency of locking state inevitably expose applicaur design incurs a storage overhead 6f106.
tion developers to analogous exception cases. For exanPerhaps more alarmingly, the table of per-resource
ple, a network connectivity problem causing some appliretadata, indexed byesourcel) must be stored in
cation node to lose connectivity with the primary comrandom-access memory for efficient lookup on the data
ponent (e.g., a majority of lock managers) would typpath. We envision the use of flash memory or battery-
cally cause that node to observe a DLM-related exceptibacked RAM for this purpose and observe that today,
event. More specifically, the application process wouldgh-performance disk systems make extensive use of
be informed that the lock service is unreachable and, M¢RAM for asynchronous write caching [26, 27].
a result, some (or all) of the locally-held locks may no A request capsule carrying the tuple
longer be valid - these are precisely the semantics of tfiesourcelDsTypeSID, curCSID nextCSID adds
Forced Downgradeotification in our design. Thus, both29 bytes of overhead to eadkead and Write request
models demand exception-handling and recovery logic &ent over the SAN. While non-trivial for very small 1/0
dealing with a forced revocation of a lock. requests, we consider this overhead to be manageable
In practice, the necessity of maintaining globallyander most workloads, especially since parallel applica-
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tions are often configured with a large 1/0 request sit@ strongly-consistent locking, whereby each lock is ac-
to achieve efficiency. During the verification phase afuired with a coordination factor of 1. However, the avail-
a transaction, the application node sends mulistinct ability improvements enabled by our approach would not
Verifyrequests, each carrying a 29-byte capsule, wherapply in such scenarios. Unlike our system, Chubby pro-
is the total number of resources touched by the respectiwges a hierarchical resource namespace and the ability to
transaction. store small pieces of data, in effect offering a filesystem-
like abstraction, but these features are largely orthagona

Cache _coherence semanticsAnother concern 1S t_hat to,our core approach and can be retrofitted onto the current
locking is commonly used as a mechanism for distributed

cache coherence and that the loosely-consistent parad] esign if needed. Chubbylsck sequencemechanism
. y . P aquws servers to detect and discard inconsistent client re
we explore here cannot easily support $tréct coherence

semantics. where Readrequest must alwavs return théquests submitted under the protection of an outdated lock
' q y and our timestamp-basegssionlDgeneralizes this idea
results of the most receW rite.

. . . to support shared-exclusive locking. We also develop this
We make the following observations: First, our stuq;(oij PP g P

. X ion further and observe that once we have the ability
focuses on addressing the issues of concurrency conro

i 7 ful h distributed , h h etect and reject out-of-order requests at the destina-
In a 1ully asynchronouslistributed setting, where the NO%ion, very little is gained by enforcing strong consistency

tion of “most recent” may not be Well-defme_d. SquOSSn replicated lock management state and specifically, the
however, that there exists an external physical clock th of an agreement protocol (e.g., Paxos [12]) may be an
allows us to order applicationReadandW rite requests i =

to the cache and |€X(H) denote such ordering of requests Concurrency control and transaction mechanisms have

for a given gxeputmn historid. We npte that in an asyn- een extensively studied in databases. ARIES [33] is a
chropous d|str|buted'system with failures, even a stroNgly e _of-the-art transaction recovery algorithm for a-cen
consistent DLM service cannot guarantee strict cohereq&ﬂized database, supporting fine-granularity locking an

consistent \_Nitm(H): _Furthermore, we conjecturg th_abartial rollbacks of transactions, while D-ARIES [10] ex-
no mechanism providing such guarantees can exist "N8Rds this work to be usable in distributed shared-disk

error-prone asynchronous system for the same reason bases. Implementing these mechanisms on top of

strlcr: m“‘“"?" exclusion cannot be attained non-triviaily 'Minuet's locking and I/O facilities would ensure that they

such a setting. retain their safety properties in the face of arbitrary asyn
chrony. Minuet’'s basic transaction service presented in

7 Related Work Section 3.3 incorporates elements of write-ahead logging,

Concurrency control has been extensively studied in t@estamp ordering, and two-phase commit, all of which
operating systems, distributed systems, and database c@i@-standard and well-known techniques in database de-
munities. VMS [28] was among the first widely-availabl&ign. Finally, database researchers have explored hybrid
operating systems to provide application developers wiRProaches to concurrency control [34] that enable trade-
the abstraction of a general-purpose distributed lock m&¥fs between optimism and strict coordination and our
ager. Since then, DLMs have been widely adopted foerk enables similar tradeoffs for applications deployed
various purposes and today, they are viewed as a ug@ SAN enVironment, where data resides on app|icati0n-
ful general-purpose building block for distributed applgnostic block storage devices.
cations and middleware. .

Clustered filesystems (GFS [1], OCFS [2], Pans 4 COnclusion and Future Work
GPFS [4], Lustre [5], Xsan [6]) and relational databasés this report, we investigate a novel approach to concur-
(Oracle RAC [7]) rely on a distributed lock manager to caency control and transaction recovery in storage area net-
ordinate parallel access to application data, metadath, aorks. Today, clustered SAN applications coordinate ac-
logs residing on shared disks. OpenDLM [29] is a widelyess to shared state on disk using strongly-consistent lock
adopted general-purpose DLM implementation for Linuing protocols, but they are subject to safety and liveness
currently used by GFS [1] and other clustered filesystemsoblems in the presence of asynchrony and failures. We

In web service data centers, distributed locking sexrgue that strict mutual exclusion is neither necessary nor
vices such as Chubby [30] and Zookeeper [31] have akldfficient for application-level correctness and that ¢her
become popular. These services are intended primaghg several advantages to loosening the consistency re-
for coarse-grainedsynchronization - a typical use casguirements found in traditional locking protocols.
might be to elect a master among a set of Bigtable [32]We augment SAN target devices with a small amount of
servers. Although the intended use of Minuet is to providiegic called a guard, which enables us to provide a prop-
fine-grainedsynchronization in a shared-disk cluster, owarty called session serializability and a relaxed model of
system can also support such use cases by transitionouking. These, in turn, provide a foundational building
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block for more complex and useful application semantics

such as distributed transactions.

We have designed, implemented, and evaluated M[P‘if']
uet, a DLM-like synchronization primitive for SAN ap-

plications based on the techniques and protocols we

sented. Our evaluation suggests that distributed applica-
tions built atop Minuet enjoy good performance and avail-

ability, while guaranteeing safety.

(16]

We are currently working on expanding the set of sam-
ple applications to include a distributed B-tree and the e7
' . . 1
remains substantial work to be done in terms of under-
standing and evaluating the performance and availabil-

ity tradeoffs enabled by our approach. The results

ACM symposium on Principles of distributed computing
pages 163—-174, New York, NY, USA, 1985. ACM.

Gary L. Peterson. An O(nlog n) unidirectional algorithm
for the circular extrema problemACM Trans. Program.
Lang. Syst.4(4):758-762, 1982.

D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-
finding in circular configurations of processoGommun.
ACM, 23(11):627-628, 1980.

Remote system management using the Dell remote access
card.http://ww. del | . conf content/t opi cs/

gl obal . aspx/ power/ en/ ps2q02_bel I .

HP remote insight lights-out edition 1l (QuickSpecs).
http://h18013. wwl. hp. cont pr oduct s/

qui ckspecs/ 11377_di v/ 11377_di v. pdf.

] Brocade 5300 switchht t p: / / www. br ocade. cont

present in this report focus primarily on comparing the
traditional strongly-consistent locking technique with a
purely optimistic method enabled by Minuet, but thege9]
may be viewed as two opposites extremes of a contin-
uum that invites further exploration. Finally, we plan to
conduct a direct quantitative comparison between Minué®!
and a state-of-the art conventional lock service such as
OpenDLM [29] and measure the differences in applica-

tion availability and performance.
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A Proof of Claim 1

Proof. Suppose that the claim is false, which would mean
that there exists an execution histaty in which session
serializability on some shared resouRRés violated. By

the definition,R's owner device, which we denof2(R),
would observe in this history a sequence of 1/O requests
on R of the form (...r¥,...,rg",....r5,...), wherer? andr§

are a part of sessigsifrom some client andry” is a part

of sessiors* from c* that conflicts withs.

We first consider the case whesés Sharedsession,
which means thas* must be arExclusivesession and
let SID = (Ts, Tx) and SID* = (T, T,") denote the cor-
responding session identifiers. The capsule evaluation
logic at D(R) would accept request§?,...ri", ... r5) in
that order only ifT,” > Ty and Tx > T, which implies
Tx = T. Furthermore, since" is an Exclusivesession,
we havelS > Ts and by uniqueness of session proposals,
TS is strictly greater thads. However, T, = Ty, which
means thafl,’ was reflected irc’'s maximum timestamp
estimate (i.e.MaxT(c,R) = Ty) at the time ofc’s ses-
sion proposal. This means thtamust have previously (a)
Made an unsuccessful attempt to acquire a lock with an
exclusive timestamf, smaller thanT; and received an
U pgradeDeniedesponse from the lock manager. (b) Re-
ceived anEBADSE SSIONesponse to an earlier /O re-
quest orR with an outdated timestamfy because the de-
vice has already accepted a request fdwith T, > T,.

In both cases; would update itdMaxTs andMaxTy es-
timates to reflect the values chosendiyand therefore,
when ¢ proposes a session identifier for requestwe
haveMaxTs(c,R) > Tg'. When establishing 8haredses-
sion, the protocol requires to propose a shared times-
tamp greater than its currehtaxTs, which means thats
is strictly greater thaily® - a contradiction.

An analogous argument, which we omit for brevity,
demonstrates that §is anExclusivesession then no two
requests frons are interleaved ab(R) by a conflicting
request frons". O
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