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Abstract
Clustered applications in storage area networks (SANs),
widely adopted in enterprise datacenters, have tradition-
ally relied on distributed locking protocols to coordinate
concurrent access to shared storage devices. In this report,
we examine the semantics of traditional lock services for
SAN environments and ask whether they are sufficient to
guarantee data safety at the application level. We argue
that a traditional lock service design that enforces strict
mutual exclusionand aglobally-consistent view of locking
stateis neither strictly necessary nor sufficient for ensur-
ing application-level correctness in the presence of asyn-
chrony and failures. We also argue that in some cases,
strongly-consistent locking imposes an additional and un-
necessary constraint on application availability. Armed
with these observations, we develop a set of novel concur-
rency control and recovery protocols for clustered SAN
applications that achieve safety and liveness in the face of
arbitrary asynchrony, process failures, and network par-
titions. Finally, we present and evaluate Minuet, a new
synchronization primitive based on these protocols that
can serve as a foundational building block for safe and
highly available SAN applications.

1 Introduction
In recent years, storage area networks (SANs) have been
gaining widespread adoption in enterprise datacenters and
are proving effective in supporting a range of applications
across a broad spectrum of industries. Some of the com-
mon applications include online transaction processing in
finance and e-commerce, digital media production, busi-
ness data analytics, and high-performance scientific com-
puting. A number of hardware and software vendors, in-
cluding companies such as EMC, HP, IBM, and NetApp,
offer SAN-oriented products and services to their cus-
tomers.

In a SAN storage architecture, a pool of storage de-
vices, typically disk arrays or specialized storage appli-
ances, are exposed to a group of server nodes for shared
access over a switched network. To applications running
on these nodes, shared disks appear as locally-attached
devices while in actuality, application’s I/O requests are
sent over the network to the corresponding target device
using a specialized network protocol such as FibreChan-
nel or iSCSI.

For parallel clustered applications that demand high-
speed concurrent access to large volumes of data, SAN
offers an attractive architecture for a scalable storage
backend. In such environments, a clustered middle-
ware service is commonly deployed on application nodes
to provide a higher-level primitive such as a filesystem
(GFS [1], OCFS [2], PanFS [3], GPFS [4], Lustre [5],
Xsan [6]) or a relational database (Oracle RAC [7]) on
top of raw disk blocks.

One of the primary design challenges in clustered SAN
environments is ensuring safe and efficient coordination
of access to application state and metadata that resides
on shared storage. The traditional approach to concur-
rency control in shared-disk clusters involves the use of a
synchronization module called adistributed lock manager
(DLM). To obtain exclusive access to a particular shared
resource on disk (e.g., a file, a record, or a piece of appli-
cation metadata) a process must first acquire a lock on the
respective resource. The DLM service provides the guar-
antee of mutual exclusion, ensuring that no two processes
in the system are concurrent holders of conflicting locks.

In abstract terms, providing such guarantees requires
enforcing a globally-consistent view of locking state and
one could argue that a traditional DLM design views such
consistency asan end in itself rather than a means to
achieving application-level correctness.

In this paper, we take a closer look at the seman-
tics of a traditional lock service for SAN clusters and
ask whether the assurances of full mutual exclusion and
strongly-consistent locking are, in fact, a prerequisite for
correct application behavior. Our main hypothesis is that
the standard semantics of mutual exclusion provided by a
DLM are neither sufficient nor strictly necessary to guar-
antee safe coordination of access to shared state on disk
in the presence of failures and asynchrony.

We propose and evaluate a new technique for disk
access coordination in SAN environments. We aug-
ment target disk devices with a tiny piece of application-
independent logic, called aguard, that rejects inconsistent
I/O requests and enables us to provide a property called
session serializability. We argue that while this correct-
ness condition is more permissive than strict mutual ex-
clusion, it is just as useful from the practical standpoint
and corresponds to application developers’ expectations.
The guard logic can be used to make existing SAN proto-
cols safe in the presence of asynchrony and process fail-
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ures.
In addition, the guarantee of session serializability al-

lows us to develop novel concurrency control and recov-
ery protocols, which operate safely while offering the fol-
lowing benefits over traditional mechanisms that rely on a
strongly-consistent DLM:

1. Improved availability with replicated lock managers,
ensuring progress with less than a majority of repli-
cas.

2. Reduced failure recovery times.

3. Control over the tradeoff between strong coordina-
tion and optimistic concurrency.

Finally, we describe the implementation of Minuet, a
novel synchronization primitive for SAN environments
based on the presented protocols. This system assumes
the presence of guard logic at storage devices and pro-
vides applications with locking and transaction recov-
ery facilities, while ensuring data safety and liveness in
the face of arbitrary asynchrony, node failures, and net-
work partition scenarios. Our evaluation shows that ap-
plications built atop Minuet compare favorably to those
that rely on a conventional strongly-consistent DLM de-
sign, offering improved availability and competitive per-
formance. We hope to demonstrate that Minuet is a useful
general-purpose building block for clustered SAN appli-
cations and infrastructure components such as filesystems
and databases.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the relevant background on SAN and
provide several examples of safety problems. In Sec-
tion 3, we present our main contribution, the design of
a novel safe and highly available synchronization mecha-
nism. Section 4 describes our prototype implementation
of Minuet and several sample client applications. We eval-
uate our system in Section 5 and and discuss practical as-
pects of our approach in Section 6. Finally, we provide
an overview of related work in Section 7 and conclude in
Section 8.

2 Background
2.1 Storage area networks (SANs)
Storage area networks are becoming increasingly popu-
lar in enterprise datacenters and are commonly adopted to
support the storage needs of data-intensive clustered ap-
plications that require high-speed parallel access to shared
persistent state. In the SAN (orshared disk) model, per-
sistent storage devices, typically disk drive arrays or spe-
cialized hardware appliances, are attached to a dedicated
storage networkand appear to members of the application
cluster as locally-attached disks. The goal is to provide
fully-decentralized access to shared application state and

in principle, any application node can access and issue
Read/Write requests on any piece of data without routing
these requests to a dedicated server. While in the shared-
disk model, all I/O requests on a particular data object
are centrally serialized, the crucial distinction from the
shared-nothingparadigm is that the point of serialization
is a hardware disk controller that exposes a well-defined
application-independent interface on raw physical blocks
and is oblivious to application semantics and data layout
considerations.

Generally speaking, the shared-disk paradigm can be
seen as advantageous from the standpoint of availability
because it offers better redundancy and decouples proces-
sor failures from loss of persistent state. Incoming ap-
plication requests can be routed to any available node in
the application cluster and in the event of a node failure,
subsequent requests can be redirected to the next avail-
able processor with minimal interruption of service and no
long-term impact on data availability. In contrast, a server
failure in the shared-nothing model may render some por-
tions of the dataset temporarily or permanently unavail-
able.

One of primary challenges in designing SAN-oriented
clustered applications and middleware is ensuring safe
and efficient coordination of access to data that resides on
shared disks and preserving correct ordering of concur-
rent requests from multiple processes. Commonly, a soft-
ware module called adistributed lock manager(DLM) is
employed to provide such coordination. A typical DLM
service exposes a generalized notion of aresource- an
abstract application-level entity to which access must be
controlled and the goal is to guarantee that no two pro-
cesses simultaneously possess conflicting locks on the
same resource - a form ofgroup mutual exclusion[8]. In
its simplest form, the shared-exclusive locking protocol
allows a group of readers and writers to coordinate their
disk requests to a piece of shared data that represents some
resourceR, ensuring that every process sees a consistent
image ofR. The protocol requires a process to acquire
a shared lock before issuing aReadrequest to disk and,
similarly,Write requests must be delivered under the pro-
tection of an exclusive lock.

2.2 Safety and liveness limitations in SAN
environments

In principle, a DLM service provides sufficient mecha-
nism to ensure safe access to application state on disk,
provided that every client process obeys the basic locking
protocol and submits its I/O requests only when holding
an appropriate lock. In practice, however, guaranteeing
safe ordering of I/O requests at shared disks tends to be
more difficult than the above discussion might suggest due
to process failuresandeffects of asynchrony.

Ensuring progress in the face of process failures
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requires employing mechanisms such as leases and
heartbeat-based failure detection. Upon suspicion of fail-
ure, the lock manager must reclaim locks previously held
by the suspected process and make them available to other
clients, but inconsistent failure observations can resultin
prematurely-reclaimed locks and ultimately threaten data
safety. Next, we provide several concrete examples that
demonstrate how data corruption can arise in a failure-
prone shared disk cluster.

Scenario 1: Consider a space allocation mechanism
that employs a bitmap to keep track of free space on disk.
An application process that needs to allocate a free dat-
ablock must read a portion of the bitmap from disk, find
a zero-valued bit representing a free block, flip its value,
and write the updated segment back to disk. This sim-
ple read-modify-write operation is performed under pro-
tection of an exclusive lock to ensure that no concurrent
allocation attempts would select the same bit. Suppose a
client processc1 is holding a lock on a particular bitmap
fragment and has chosen to flip the bit at positionx in
blockB. c1 is asserting its liveness status to the lock man-
ager via a heartbeat mechanism, but suppose that because
of a transient network problem betweenc1 and the rest of
the cluster, some of its heartbeats fail to reach the recipient
in a timely manner, thereby triggering a failure suspicion
event. The lock manager reacts by reclaiming the exclu-
sive lock and granting it toc2, which proceeds to reading
B from disk. c1’s update may not have reached the disk
by the timec2’s Readoperation arrives and as a result,
both nodes might select bitx, which would result in two
conflicting allocations of the respective datablock. Note
that in this scenario, both clients obey the basic locking
protocol and the loss of data integrity could be linked to
the impossibility of reliable failure detection in an asyn-
chronous distributed setting [9].

Scenario 2: Consider two clients,c1 andc2, that are
concurrently accessing a data structureS residing on a
shared diskD in a contiguous array of blocks numbered
[0-9]. Supposec1 is updatingSunder the protection of an
exclusive lock andc2 wants to prefetch the contents ofS
into a local memory buffer and is waiting for a shared lock
on S. c1 submitsWrite(target= D,o f f set= 3, length=
5) but crashes before hearing a response and the lock man-
agercorrectlydetects the failure and reacts by reclaiming
the exclusive lock onSand granting it in shared mode to
c2. That client proceeds to reading the object and submits
Read(target= D,o f f set= 0, length= 5), which returns
old data. Next,c1’s delayedWrite request hits the disk
and overwrites data at offsets[3− 7], after whichc2 is-
suesRead(target= D,o f f set= 5, length= 5). Note that
although each individual I/O request is processed as an
atomic operation by the storage device,c2 in the above
scenario would observe and potentially act upon a partial
Write from c1, which may be viewed as a violation of ap-

plication safety.
Scenario 3: Commonly, clustered applications and

middleware services need to enforce transactional seman-
tics on updates to application state and metadata. In
a shared-disk clustered environment, distributed transac-
tions have traditionally been supported via the use of
two-phase locking in conjunction with a distributed write-
ahead logging (WAL) protocol and we refer the reader to
D-ARIES [10] for a detailed exposition of transaction re-
covery in the context of a shared-disk parallel RDBMS. In
the abstract, the system maintains a snapshot of applica-
tion state along with a set of per-client append-only logs
(also on shared disks) that record Redo and/or Undo infor-
mation for all updates performed by the respective client
and the commit status of every transaction. During failure
recovery, the system must examine the suspected client’s
log and restore consistency by rolling back all uncom-
mitted updates and replaying all updates associated with
committed transactions that may not have been synced to
the snapshot prior to the failure. An essential underlying
assumption in a WAL-based recovery scheme is that once
a failure suspicion event is delivered and the decision to
initiate log recovery is made, no additionalWrite requests
from the suspected process will hit the snapshot or the log
and data corruption may occur if this assumption is vio-
lated.

Ensuring application safety in a shared-disk environ-
ment has traditionally required introducing a set of syn-
chrony assumptions, such as bounded clock drift rates and
message propagation delays, that permit construction of
reliable heartbeat-driven failure detectors and effectively
transform an error-prone asynchronous environment into
a partially synchronous one. Fundamentally, these as-
sumptions are probabilistic at best and since application
data integrity is predicated on the validity of these as-
sumptions, failure timeouts are typically tuned to a very
conservative value in order to minimize the probability of
safety violation. Such (necessarily) pessimistic method of
tuning timeouts may have a profoundly negative impact
on failure recovery times - one of the common criticisms
of SAN-oriented applications.

Another limitation commonly exhibited by DLM-
supported SAN applications isliveness. The lock man-
ager represents an additional point of failure and while
various fault tolerance techniques can be applied to im-
prove its availability, the very nature of the semantics en-
forced by the DLM places a fundamental constraint on
the overall system availability. For instance, multiple lock
manager replicas can be deployed in a cluster, but mutual
exclusion can be guaranteed only if clients’ requests are
presented to them in the same order, which necessitates
mechanisms such as state machine replication [11] and
Paxos [12] for request ordering agreement. Alternatively,
a single lock manager instance may be elected dynami-
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cally [13–15] from a group of candidates and in this case,
ensuring mutual exclusion requires global agreement on
lock manager’s identity. In both cases, reaching agree-
ment fundamentally requires access to an active primary
component - typically a majority of nodes. As as a result,
a large-scale node failure or a network partition that ren-
ders the primary component unavailable or unreachable
may bring about a cluster-wide outage and complete loss
of service.

To summarize, today’s SAN applications and middle-
ware face significant limitations along the dimensions
of safety and liveness. At present, several hardware-
assisted techniques, such as out-of-band power manage-
ment (STOMITH1) [16,17], SAN fabric fencing [18], and
SCSI persistent reserve [19], can be employed to mitigate
some of these issues. These mechanisms help reduce the
likelihood of data corruption under typical failure scenar-
ios, but do not provide the desired assurances of safety in
the general case and, as we would argue, do not address
the underlying problem. We conjecture that the under-
lying problem is a case ofcapability mismatchbetween
"intelligent" application clients that possess full knowl-
edge of application’s data structures, physical disk layout,
and consistency semantics on the one hand and relatively
"dumb" storage devices on the other. The safety problems
illustrated above can be attributed to disk controller’s in-
ability to identify and appropriately react to the various
application-level events such aslock release, failure sus-
picion, andfailure recovery action.

We suggest that despite this intelligence gap, the safety
and liveness limitations exhibited by SAN applications to-
day are not an inevitable property of the shared-disk ar-
chitecture. Our main goal is demonstrating the feasibil-
ity of a shared disk application that ensures data safety
and progress in the face of arbitrary asynchrony, network
partitions, and node failures. We approach this task by
reexamining the notion of concurrency control and the in-
tended purpose of a DLM in a shared-disk cluster.

2.3 Our model of distributed computation

We represent computation in a shared-disk cluster using
the following abstract model: We consider a fully asyn-
chronous distributed environment, in which processes run
at different speeds and communicate via message pass-
ing over an asynchronous network. We assume a reliable
FIFO channel for pairwise communication, but a message
may take arbitrarily long to reach its destination. A set
of network-attached disk devices provides persistent stor-
age for application state and clients access this state by
sendingReadandWrite requests to respective disk tar-
gets. Each disk device stores some number oflogical re-
sources, which represent application-level entities and are

1"Shoot The Other Machine In The Head"

uniquely identified by aresourceID. Each resource re-
sides on precisely one storage device, denoted itsowner.

Application processes assume the existence of a DLM
service and rely on it to coordinate concurrent access to
the set of shared resources. The DLM provides shared-
exclusive locking via the following two operations:

U pgradeLock(resourceID, f romMode, toMode)

DowngradeLock(resourceID, f romMode, toMode).

The three allowable lock modes areNoLock, Shared, and
Excl and we assume that clients’ interactions with the
DLM are well-formed in the following sense:

When holding a lock inNoLockmode, a client may re-
quest an upgrade toSharedor Excl modes.

When holding a lock inSharedmode, a client may re-
quest an upgrade toExcl or a downgrade toNoLock.

When holding a lock inExcl mode, a client may request
a downgrade toSharedor NoLockmodes.

A Sharedlock on resourceR conflicts with everyExcl
lock on R and anExcl lock conflicts with everyShared
andExcl lock on the same resource. In addition, if a lock
is granted to some processc1 and a conflicting lock is
requested by another processc2, the DLM service may
issue aRevokeLock(resourceID, toMode) notification to
c1, which can be considered a hint thatc1’s current lock
ownership on the respective resource is blocking another
client’s progress.

Any process (including components of the DLM ser-
vice) may fail by crashing, but we do not consider target
device failures in this report, since those can be handled
using traditional techniques such as hardware-level redun-
dancy [20] or application-level replication [21].

3 Design
3.1 Approach overview
At a high level, our approach reexamines the correctness
criteria that a cluster DLM service must provide to appli-
cations. Traditionally, DLMs tend to treat shared applica-
tion resources as purely abstract entities and achieve co-
ordination by enforcing thegroup mutual exclusionprop-
erty: no two client processes may simultaneously hold
conflicting locks on the same shared resource. We note,
however, that the mutual exclusion property as stated
above is provably unattainable in an asynchronous sys-
tem that is subject to even a single crash failure - a con-
sequence of the impossibility of consensus [22] in such
an environment. Furthermore, a hypothetical lock service
that does offer such guarantees would not by itself suffice
to guarantee data safety in such a setting, as Scenario 2 in
the previous section suggests.
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Rather than restricting access to a critical section of ap-
plication code, our approach views the access coordina-
tion problem in terms of I/O request ordering guarantees
that the storage system must provide to application pro-
cesses. We refer to this alternative notion of correctness
using the termsession serializability, which we now spec-
ify formally. We begin by defining the notion of asession
to a particular shared resource on disk:

Definition 1. If a client processc issues a request
UpgradeLock(R,..., Shared) to the lock service
for some shared resourceR and receives a positive ac-
knowledgment, we say thatc establishes aShared session
to R. An existingShared session is terminated whenc is-
sues a requestDowngradeLock(R,..., NoLock).
Analogously, by calling UpgradeLock(R,...,
Excl) a process establishes anExclusive session toR
that can subsequently be terminated by downgrading to
Shared or NoLock.

For a given pointt in the execution history, we de-
fine S(t,c,R) to be the set ofc’s active sessions to
R at timet, determined solely by the sequence of prior
UpgradeLock andDowngradeLock requests submit-
ted to the DLM service. S(t,c,R) may contain a
Shared or an Exclusive session toR, or both, or none.

We say that aShared session toR conflicts with every
Exclusive session to the same resource and anExclusive
session conflicts with every other session on the same re-
source.

Definition 2. If an I/O requestr on a shared resourceR
is issued by a client processc at timet, we say thatr is
submittedas part of some sessions to R if s∈ S(t,c,R).
For a given sessions to some resourceR, we additionally
defineRequests(s) to be the set of all I/O requests on
R submitted by the client as part ofs.

Definition 3. A given execution historyH is session se-
rializable with respect to a shared resourceR if the se-
quence of I/O request messages M= 〈r1, r2, ...〉 observed
and processed byR’s owner satisfies:

∀r i , r j ∈M such that{r i , r j} ⊂ Requests(s) for some s:

6 ∃rk ∈M such that i< k < j and rk ∈ Requests(s∗)

for some s∗ that belongs to another client and conflicts
with s.

Informally, the above invariant specifies thatR’s owner
disk must observe prefixes of all sessions toR in strictly
serial order, ensuring that no two requests in a session are
interleaved by a conflicting request from another client.
To illustrate this definition, consider a pair of concurrent
request sequences from two clients shown in Figure 1. In
this example,c1 first performs twoReadoperations onX
under the protection of aSharedlock, then upgrades to

C1 

Shared 
session 

C2 

X 

Excl 
session 

 
UpgradeLock(X, NoLock, Shared)  
R1.2(X) 
UpgradeLock(X, Shared, Excl) 
W1.2(X) 
W2.2(X)  
DowngradeLock(X, Excl, NoLock) 

Excl 
session 

Shared 
session 

 
UpgradeLock(X, NoLock, Shared)  
R1.1(X) 
R2.1(X) 
UpgradeLock(X, Shared, Excl) 
W1.1(X) 
W2.1(X)  
DowngradeLock(X, Excl, Shared) 
R3.1(X) 
R4.1(X) 
DowngradeLock(X, Shared, NoLock) 

Figure 1: Concurrent request streams to a shared resource
X from two application clients, c1 and c2. Ri. j denotes the
i-th Read operation from client j and,Wi. j represents aWrite
operation, accordingly.

an Excl lock and performs twoWrites and lastly, down-
grades toSharedand performs two moreReads. Clientc2

acquires aSharedlock onX and submits aReadrequest,
followed by an upgrade toExcl and twoWrite requests.
In this scenario, the following two sequences of request
observations atX would be consistent with session serial-
izability:

S1 =〈R1.1, R2.1, W1.1, W2.1, R3.1, R4.1, R1.2, W1.2, W2.2〉

S2 =〈R1.1, R2.1, W1.1, R1.2, W1.2, W2.2〉

An execution history that causesX to observe
〈R1.1, R1.2, R2.1, W1.1, W1.2〉 is not session serializ-
able because it interleavesW1.1, an exclusive session
request fromc1, with two shared session requests from
c2: R1.2 andW1.2.

Note that session serializability is more permissive than
strict mutual exclusion and in particular, permits execu-
tion histories in which two clients simultaneously hold
conflicting locks on the same shared resource. At the
same time, one could argue that these semantics meaning-
fully capture the essence of shared-disk locking, by which
we mean that the request ordering guarantees in our model
are precisely those that applications developers have come
to expect from a traditional DLM service in such en-
vironments. Returning to the example of Figure 1, a
conventional locking scheme that grants clients’ requests
in the order〈c1(Shared),c1(Excl),c2(Shared),c2(Excl)〉
would causeX to observeS1, while S2 would correspond
to the following scenario:

1. Sharedlock onX is granted toc1.

2. c1 executesR1.1 andR2.1.

3. Excl lock onX is granted toc1.

4. c1 executesW1.1
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5. c1 crashes and itsSharedand Excl locks are re-
claimed.

6. Sharedlock onX is granted toc2.

7. c2 executesR1.2.

8. Excl lock onX is granted toc2.

9. c2 executesW1.2 andW2.2.

Minuet focuses on ensuring safe ordering of I/O re-
quests at storage devices consistent with session serial-
izability and explicitly avoids enforcing global agreement
on the state of locks and group membership views. As a
result, our design does not necessitate the use of a com-
plex and expensive agreement protocol and does not im-
pose the associated limitations on availability.

The basic idea behind our approach is to augment the
shared disk device with a small amount of application-
independent logic, which we call aguard, that enforces
the session serializability invariant on the stream of in-
coming I/O requests. Minuet associates asession identi-
fier (SID) with every lock instance granted to a client and
we modify the disk I/O protocol stack at the client side
to annotate all outgoing I/O requests with client’s current
SID for the respective resource. Below, we refer to this
annotation as arequest capsule.

The guard logic at target disk devices evaluates incom-
ing I/O requests based on the attachedSID and, for each
request, determines whether its acceptance would violate
session serializability. All such requests are dropped from
the input stream and the originating client is notified via
a special error codeEBADSESSION. From an applica-
tion developer’s point of view, session rejection appears
as a failed I/O request and an exception event notification
from the lock service indicating that a particular lock is
no longer valid. This may require the application to take
a corrective action, such as discarding the respective ob-
ject from local cache buffers, rolling back any associated
changes and, possibly, retrying the previous operation af-
ter reacquiring the lock under anotherSID.

The guard logic situated at I/O target devices addresses
the safety problems due to delayed messages and incon-
sistent failure observations that plague asynchronous dis-
tributed environments and enforcing safety at the target
device allows us to simplify the core functionality of the
DLM module. In Minuet, the primary purpose of the lock
service is ensuring a consistent and efficient assignment
of session identifiers to clients in a manner that minimizes
the aggregate rate of session rejection in the cluster.

Decoupling correctness from performance in this man-
ner enables substantial flexibility in the choice of mecha-
nism used to control the assignment of session identifiers.
At one extreme is a purely optimistic technique, whereby

 

R1 
R2 

App. 

R1 state at client 
 

maxTs, maxTx 
clientSID 
curSessType 

maxTs, maxTx 
curMode 
holderList 
waiterList 

1. UpgradeLock 

2. UpgradeGranted 

R1 state at manager 
 

R1 

LockMgr 

Client 

R1 

LockSvc 
Client 

targSID 
targCSID 

Disk 

3. ReadIO 

4. OK 

Response 
capsule 

Request 
capsule 

Guard logic 

R1 state at target disk 
 

Figure 2: Protocol messages and per-resource state at ap-
plication clients, lock managers, and shared disks.

every client selects itsSIDs via an independent local de-
cision, without attempting to coordinate with the remain-
der of the cluster and this might be an entirely reasonable
strategy for applications and workloads characterized by
a consistently low rate of data contention. A traditional
DLM service that serializes all session requests at a cen-
tral lock server can be viewed as a design point at the
other extreme. Minuet tries to position itself in the contin-
uum between these extremes in order to allow application
developers to trade off lock service availability, synchro-
nization overhead, and I/O performance under heteroge-
neous data access patterns.

Next, we describe the protocol machinery for enforc-
ing session serializability on a single shared resource and
then demonstrate how more complex and useful applica-
tion semantics, such as distributed transactions, can be
supported using session serializability as a foundational
building block. Lastly, we address the issue of fault tol-
erance and present a quorum-based algorithm for loosely-
consistent replication of lock management state.

3.2 Enforcing session serializability

We use a simple timestamp-based mechanism to enforce
session serializability semantics on an individual shared
resource. A client’s session to a given resourceR is iden-
tified by a value pair〈Ts,Tx〉 specifying ashared and
an exclusivetimestamp, respectively. To acquire a lock
on R, a client firstproposesa session timestamp to the
lock manager. These proposal are globally unique - no
two clients propose an identical pair of values and no
client proposes the same value pair twice. Our current
design accomplishes this via the following timestamp for-
mat: 〈T.cliID .incNum〉, wherecliID uniquely identifies a
client process andincNumis client’s incarnation number
- a monotonic counter used to ensure uniqueness across
crashes.

The basic locking protocol proceeds as follows: each
client c maintains an estimate of the largest session
timestamp previously granted to any client, which we
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denote MaxTs(c,R) and MaxTx(c,R). To acquire a
Sharedlock on R, client proposes a new session times-
tamp 〈ProposedTs,ProposedTx〉, where ProposedTx =
MaxTx(c,R) andProposedTs is the smallest unique times-
tamp greater thanMaxTs(c,R).

Client then sends anU pgradeLockrequest to the lock
manager, specifying the desired mode (Shared) and the
proposed timestamp pair. The lock manager accepts
and enqueues this request if no request with a larger
ProposedTx value has previously been accepted. Other-
wise, the manager denies the request and responds imme-
diately withU pgradeDenied, which specifies the largest
timestamp values previously observed by the manager.
In the latter case, the client updates its local estimates
MaxTs(c,R) andMaxTx(c,R) and submits a new proposal.
After accepting and enqueuingc’s request, the lock man-
ager eventually grants it and responds with aLockGranted
message. Upon receipt of this message, the client sets
cliSID(R) = 〈ProposedTs,ProposedTx〉 andsType(R) =
Shared.

Acquisition of anExclusivelock (which includes up-
grading fromSharedto Excl) proceeds analogously ex-
cept that clients increment theTx value in the proposed
session ID and the lock manager checks bothProposedTs
and ProposedTx when determining whether to enqueue
or deny the request. After receiving aLockGrantedre-
sponse, the requesting client sets the session type (sType)
to Excl.

When issuing aRead or a Write request to a disk
targetD, the application specifies the ID of the shared
resource affected by the request. Before transmit-
ting the request toD, we augment it with arequest
capsule that encodes client’s session identifier for the
specified resource in a tuple of the following form:
〈resourceID,sType,cliSID,curCSID,nextCSID〉. (The
last two parameters specifycommit session identifiers- an
additional piece of state used for supporting transactional
updates and we describe its purpose in Section 3.3.1).

For every shared resourceR owned by a target disk
deviceD, the device maintains thetarget session identi-
fier (targSID(R)). Upon receipt of an I/O request from a
client, D examines the request capsule and looks up the
targSIDentry for the specified resource ID, evaluates the
request capsule against the current entry, processes the I/O
request, and sends a response as shown in Algorithm 1.
Figure 2 illustrates the basic message exchange between
a client, a lock manager, and a storage device for a simple
read operation under aSharedlock, as well as locking-
related state maintained at each component.

If client receivesEBADSESSIONin response to its
I/O request, Minuet examines the response capsule and
notifies the application process that its lock on the re-
spective resource is no longer valid. Specifically, a lock
held previously inExcl mode is downgraded toShared

if targSID.Ts > cliSID.Ts and aShared lock is further
downgraded toNoLock if targSID.Tx > cliSID.Tx. The
client also updatesMaxTs(c,R) andMaxTs(c,R) to reflect
the most recent timestamp values specified in the response
capsule and informs the lock manager that aforced down-
gradehas taken place.

Algorithm 1 Guard logic at a SAN target device
(reqCapsdenotes the request capsule sent by a client
along with the respective I/O request).

resourceID← reqCaps.resourceID
〈targSID, targCSID〉 ← LookupState(resourceID)
if (targSID 6= NIL) then

decision← REJECT
if (targCSID= reqCaps.curCSID) then

if (reqCaps.sType= Shared) then
if (reqCaps.cliSID.Tx ≥ targSID.Tx) then

decision← ACCEPT
end if

else{Exclusive session}
if ((reqCaps.cliSID.Ts ≥ targSID.Ts) ∧
(reqCaps.cliSID.Tx ≥ targSID.Tx)) then

decision← ACCEPT
end if

end if
end if

else{Entry not found}
decision← ACCEPT

end if
if (decision= ACCEPT) then

targSID.Ts←MAX(targSID.Ts, reqCaps.cliSID.Ts)
targSID.Tx←MAX(targSID.Tx, reqCaps.cliSID.Tx)
targCSID← capsule.nextCSID
U pdateState(resourceID,〈targSID, targCSID〉)
rc← ProcessIORequest()
respCaps← NIL

else
rc← EBADSESSION
respCaps← 〈resourceID, targSID, targCSID〉

end if
Send〈rc, respCaps〉 to client

Claim 1. For every shared resource R, the locking proto-
col and capsule evaluation mechanism described above
guarantees session serializability. (The proof can be
found in Appendix A).

3.3 Supporting transactional semantics

3.3.1 Overview

Transactions, defined by Gray [23] as transformations of
state having the properties of atomicity (all or nothing),
durability (effects survive failures) and consistency (a cor-
rect transformation), are widely regarded as a useful pro-
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gramming primitive. In distributed shared-disk applica-
tions, transactional semantics are typically supported bya
two-phase locking protocol for isolation and a write-ahead
logging facility (in some cases referred to asjournaling)
to achieve update atomicity and durability. Commonly,
in order to commit a transaction, an application process
appends to the log a sequence of Redo records that con-
cisely describe the set of modifications performed by the
transaction, after which a specialCommitrecord is force-
appended to the log. Prior to releasing a lock on a dirty
resourceR, its holder must sync all committed updates
to the snapshot ofR, so as to ensure that the next reader
observes the effects of every committed transaction. If a
client process fails while holding locks on a non-empty
subset of resources, the system enters a recovery phase,
during which a (potentially distributed) recovery process
examines the faulty client’s portion of the log, determines
the set of transactions with operations that need to be re-
played or rolled back, and performs the corresponding
operations in order to restore the set of affected resource
snapshots to a consistent state.

At a high level, our approach tries to borrow from
state-of-the art mechanisms for transaction support to the
largest extent possible, while introducing several exten-
sions to address their liveness and safety limitations in
an asynchronous setting. Since the primary focus of our
work is feasibility rather than performance optimization,
our current design provides only a subset of features typ-
ically found in a state-of-the-art transaction service such
as D-ARIES [10]. Below, we present a design that imple-
ments redo-only logging to support the "no force no steal"
buffer policy2 and currently, our design permits only one
active transaction at a time - after starting a transaction,a
client must commit or abort before starting the next trans-
action. Finally, we assume unbounded log space for each
client. These restrictions allow us to focus the discussion
on the novel aspects of our approach and we believe that
additional optimizations, such as support for Undo log-
ging, can be retrofitted onto the scheme presented here
in a relatively straightforward manner. Below is a list of
principles and requirements that guided our design:

(1) Eliminate reliance on strongly-consistent lock-
ing. Rather than requiring all clients to coordinate concur-
rent activity through a strongly-consistent DLM service,
the session serializability logic we added to the storage
devices provides a limited form of transaction coordina-
tion and allows us to relax the degree of consistency re-
quired from the DLM. Before committing (or completing
a read-only transaction), we require clients to verify that
all locks acquired at the start of the transaction are still

2No forcemeans that committing a transaction does not require flush-
ing all updates to the snapshot - it suffices to write a commit record to
the log.No stealimplies that dirty data buffers containing updates from
uncommittedtransactions cannot be flushed to stable storage.

valid - we call this step theverification phase. During this
phase, client issues I/O requests to all storage devices that
hold resources touched by the transaction and proceeds to
committing only if it collects a positive response for every
resource, indicating that its sessions are still valid. This
mechanism allows us to identify and resolve cases of con-
flicting access from multiple clients due to inconsistent
locking state and can be seen as a variant of optimistic
concurrency control - a well-known technique in database
design [24].

(2) Avoid enforcing a globally-consistent view of
process group membership. Rather than relying on a
group membership service to detect client failures and ini-
tiating recovery proactively in response to perceived fail-
ures, our design explores alazy or on-demandapproach
to transaction recovery that tries to postpone the recov-
ery action until the affected data is needed, which permits
the system to function without global agreement on group
membership. As we demonstrate below, keeping a small
amount of additional per-resource state at a storage device
allows us to detect cases when an incoming I/O request
would touch a potentially inconsistent piece of data (e.g.,
missing some updates from a committed transaction). All
such requests are rejected by the storage device with the
EBADSESSIONresponse code. Upon receiving this re-
sponse, an application process may choose to reacquire
its lock on the respective resource which, under normal
conditions, would cause its current holder (ch) to observe
a RevokeLockrequest, sync updates to the snapshot, and
eventually downgrade the lock. Alternatively, upon sus-
picion thatch has crashed, the process may initiate a re-
covery action and attempt to bring the snapshot back to
a consistent state by reapplying missing updates from the
log. Crucially, the choice betweencoordinatingandiniti-
ating failure recoveryis a local decision and the integrity
of application state on disk is not dependent upon correct-
ness of the failure observation.

(3) Avoid introducing assumptions of synchrony
typically required for log-based recovery in a shared-
disk setting. The session serializability disk extension
proposed in Section 3.2 enables a target disk to detect
and reject I/O requests that conflict with log recovery and
would otherwise result in violation of safety. For instance,
a delayedWrite command from a faulty clientc that car-
ries an update to some resourceR would get rejected by
R’s owner device if another client has already openedc’s
log and started reapplying missing updates to the image
of Runder a session with a larger timestamp.

3.3.2 Basic transaction protocol

Our current design uses a set of per-client logs on shared
disks to record transaction redo information. These logs
appear to clients as regular lockable resources that can be
read and written to, while the underlying storage device
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is assumed to provide session serializability guarantees
in cases of concurrent access from multiple clients. The
physical location (i.e., disk identifier and starting offset)
of a client’s log is easily computable from the client pro-
cess identifier (cliID ).

To support distributed transactions, we extend the
basic session serializability machinery introduced in
Section 3.2 with an additional piece of state, which
we call a commit session identifier (CSID), of the
form 〈cliID ,xactID〉. For each shared resourceR, its
owner device maintains thetargCSID(R) value alongside
targSID(R). Conceptually, the value oftargCSID(R) at a
particular point in the execution history identifies the most
recent transaction that may have updatedR and commit-
ted without syncing the corresponding changes to disk. If
targCSID(R) = NIL, the image on disk is guaranteed to
be consistent with the set of committed transactions and
can thus be safely accessed. Conversely,targCSID6= NIL
indicates thatR’s current state on disk might be missing
some updates from a committed transaction and therefore
cannot be assumed valid. In this case, thecliID portion
of targCSID can be used to locate the log of the client
responsible for these modifications, identify the commit
status of relevant transactions, and restore consistency of
R by reapplying the missing updates from the log. This
is the basis of the lazy recovery mechanism, which we
describe more fully in Section 3.3.4.

Algorithm 2 illustrates transaction execution in high-
level pseudocode. Unless specified otherwise, every I/O
request to a remote disk affecting a resourceR carries the
following state in its request capsule:

〈resourceID, sType, SID, curCSID, nextCSID〉

=〈R, R.sType, R.cliSID,

〈cliID ,R.xactID〉, 〈cliID ,R.xactID〉〉

During initialization, a client processc acquires an ex-
clusive lock on its own log resource (denotedc.Log) and
reads its content from disk, thereby establishing an exclu-
sive session to the log. To begin a new transactionT, c
increments the active transaction identifieractiveXactID,
a monotonically increasing counter, and appends aBe-
ginXactrecord to its log. Next, in the Read phase of the
transaction,c acquiresSharedlocks on all resources in
the ReadSetof T and reads the corresponding data from
disk into local buffers3. In the update phasethat fol-
lows, client performs the desired set of update operations
on resources in itsWriteSet(at this stage without forc-
ing locally-buffered data to disk) and appends the cor-
responding set ofU pdaterecords to its log. Each such
record describes a single write I/O operation that modi-
fies a contiguous region of data on disk and is of the form

3Of course, locks and memory buffers holding cached copies of
shared resources can be retained across transactions for efficiency.

〈R,D(R),o f f set, len,data〉, whereR is the resource being
updated andD(R) is the disk on whichR resides.

Next, transaction proceeds to theverification phase,
during which the client confirms the validity of its ses-
sions for all resources touched by the transaction (and
hence, the accuracy of cached data). Algorithm 3 specifies
theVerifySessionfunction in high-level pseudocode. For
every resource in theReadSet, the client contacts its target
device and verifies that its current session ID is still valid
and that no conflicting transaction has attempted to com-
mit4. For elements of theWriteSet, in addition to verify-
ing that the exclusive session identifier is valid, the client
also prepares them for committing the active transaction
by specifying 〈cliID ,activeXactXID〉 in the nextCSID
field of the request capsule. As shown in Algorithm 1,
if the request successfully passes verification at the target
device, thetargCSID value is set to thenextCSIDfield
of the request capsule. As a result, a subsequent attempt
by another process to access someWriteSetelementR
would fail and observe a non-NIL targCSIDvalue in the
response capsule and that process would either wait for
the local process to flush the corresponding updates to the
image ofRor initiate a recovery action and updateR from
local client’s log.

Note that the extra round of communication added by
the verification phase is the penalty our approach pays for
the absence of strict coordination provided by a strongly-
consistent DLM. Following successful verification, the
transaction enters thecommit phase, in which the client
appends aCommitXactrecord to its log and forces the log
tail to disk.

The basic protocol outlined above provides transaction
isolation, identifying cases of conflicting access during
the verification phase. However, recall that under our
weakly-consistent model of locking and session serializ-
ability semantics, any disk I/O operation (including access
to a client’s log) may fail withEBADSESSIONdue to a
conflicting access from another client. This leads to sev-
eral additional exception cases at various stages of trans-
action execution, which are shown in Algorithm 2 (num-
bers 1 through 5) and are briefly discussed below.

Case (1):Client loses a session to its log while trying to
read it during initialization and receivesEBADSESSION
and a forced downgrade toNoLock. In this case, the client
simply reacquires the lock on its log resource under an-
other SID and retries, repeating the process if necessary.

Case (2): During the Read phase, an attempt
to read some resourceR from disk is rejected with
EBADSESSIONand a forced downgrade toNoLock.
Client recovers by aborting and restarting the current
transaction. Note that if the response capsule supplied by

4Our current design implements Verify I/O requests as zero-length
Reads and Writes, whose sole purpose is to transport a capsuleto the
target device for verification.
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the target disk indicatestargCSID 6= NIL, the image of
R on disk may be missing some committed updates and
if the client process specified bytargCSID.cliID is sus-
pected to be faulty, the local client may choose to initiate
log recovery and restoreR to a consistent state, using the
protocol presented in Section 3.3.4.

Cases (3) and (4):A verify request is rejected with
EBADSESSIONand a forced downgrade toSharedLock
or NoLock. We treat this scenario analogously to case (2):
client aborts the transaction and performs recovery on the
set of resources that failed session verification and whose
response capsules specify a non-NIL targCSIDvalue.

Case (5):Transaction passes the verification phase and
successfully updatestargCSID on all resources in the
WriteSet, but forcing aXactCommitrecord fails due to
loss of session to the log. In this scenario, the active trans-
action cannot be committed since another client may have
chosen to initiate log recovery for the local client, read its
log, and abort this transaction. The local client aborts the
active transaction and may restart it after reestablishingan
exclusive session to its log.

3.3.3 Syncing updates to disk

Since our current design provides redo-only logging, a
dirty memory buffer holding a modified copy of some re-
sourceR may be flushed to disk only if every prior trans-
action that modifiedR has been successfully committed.
Typically, a client process would write back its buffered
copy ofR to disk upon receiving a lock revocation request
onR from the DLM service.

To sync a modified copy of resourceR, a client simply
writes out the local buffer to the target device, issuing a
sequence of one or more diskWrite requests and specify-
ing the following parameters in the request capsule:

〈resourceID, sType, SID, curCSID, nextCSID〉

=〈R, Excl, R.cliSID, 〈cliID ,R.xactID〉, (1)

〈cliID ,R.xactID〉〉

The last request in the sequence specifiesnextCSID=
NIL and, upon receiving and processing this request, the
target device resets itstargCSIDto NIL, which effectively
marks the disk image ofR as "clean" for the next reader.
After completing this step, anU pdateSyncedrecord of
the form〈R,R.xactID〉 is appended to the log, indicating
that the image ofRon disk has been updated to reflect the
effects of all transactions up toR.xactID. A committed
transactionT can be purged from the log, and the corre-
sponding space reclaimed, if for every elementR in T ’s
WriteSet, anU pdateSyncedrecord〈R,R.xactID〉 satisfy-
ing R.xactID≥ T.xactIDhas been added to the log.

If the sync operation fails to complete due to loss of
session withR, the client simply invalidates the cached
buffer and no additional actions need to be taken.

Algorithm 2 Basic transaction protocol
Start the transaction service:
(One-time initialization)

UpgradeLock(c.Log, NoLock, Excl)
ReadFromDisk(c.Log) (1)
curXactID← largestXID found in the log

Begin Transaction:
curXactID← curXactID+1
LogAppendRec(〈 BeginXact,curXactID〉)

Read Phase:
for all resourcesR in ReadSetdo

UpgradeLock(R, NoLock, Shared)
ReadFromDisk(R) (into local buffer) (2)

end for
Update Phase:

for all resourcesR in WriteSetdo
UpgradeLock(R, NoLock, Excl)
for all update operationsU onRdo

Apply U to local copy ofR
LogAppendRec(〈Update,U〉)
ReadSet← (ReadSet−{R})

end for
end for

Verification Phase:
Re jectSet← /0
for all resourcesR in ReadSetdo

rc←VerifySession(R, Read) (3)
if (rc = EBADSESSION) then

Re jectSet← Re jectSet∪{R}
end if

end for
for all resourcesR in WriteSetdo

rc← VerifySession(R, Write) (4)
if (rc = EBADSESSION) then

Re jectSet← Re jectSet∪{R}
end if

end for
Completion Phase:

if (Re jectSet= /0) then
if (WriteSet6= /0) then

LogAppendRec(〈CommitXact〉)
ForceTailToDisk(c.Log) (5)
for all resourcesR in WriteSetdo

R.xactID← activeXactID
end for
return COMMITTED

else{Read-only transaction}
return COMPLETED

end if
else

return ABORTED
end if
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Algorithm 3 Function Veri f ySession(R,mode)

curCSID← 〈cliID ,R.xactID〉
if (mode= Read) then

nextCSID← 〈cliID ,R.xactID〉
reqCaps←〈R,R.sType,R.cliSID,curCSID,nextCSID〉
rc ← ReadFromDisk(R, reqCaps) {Zero-length
read}

else
nextCSID← 〈cliID ,activeXactID〉
capsule←〈R,R.sType,R.cliSID,curCSID,nextCSID〉
rc←WriteToDisk(R, reqCaps) {Zero-length write}

end if
returnrc

3.3.4 Lazy transaction recovery

If an I/O request from a clientc to a shared resourceR fails
with EBADSESSIONand if a non-NIL targCSIDvalue
is specified in the response capsule then the image ofR
on disk may be missing some committed updates. In this
case,targCSID.cliID identifies the client process respon-
sible for these updates andtargCSID.xactIDspecifies the
most recent transaction in the respective client’s log that
may have updatedR. If c suspects that client to be faulty,
it may initiate a recovery action that brings the disk image
of Rup to date and proceeds as follows:

The recovery process acquires an exclusive lock on
targCSID.cliID .Log and reads its content from disk.
It searches the log for the most recentU pdateSynced
record for resourceR and setsMaxSyncedXactIDto
the xactID field of that record. Next, the client iden-
tifies the set of committed transactions withXactID≥
MaxSyncedXactIDthat include one or moreU pdate
records for resourceR and aggregates these updates into
a redo operation list. After acquiring an exclusive lock
on R and obtaining the corresponding session identifier
(R.cliSID), the client reapplies the sequence of operations
in the redo list by issuing corresponding write requests to
the target disk. The following set of parameters is speci-
fied in the request capsule:

〈resourceID,sType,SID,curCSID,nextCSID〉

=〈R,Excl,R.cliSID, targCSID, targCSID〉

The last request in the sequence specifiesnextCSID=
NIL, which causes the target device to resettargCSID
to NIL, thereby indicating to the next reader that
the disk image ofR has been brought up to date.
As the last step, the recovery process force-appends
U pdateSynced〈R, targCSID.xactID〉 to faulty client’s
log5.

5Note that as an optimization, in addition to recovering the state of
resourceR that initially triggered the recovery action, we can attemptto
repair the missing updates for all resources touched by the faulty client
from the log, but this is not strictly necessary. In principle, any resource

Due to loosely-consistent locking, the recovery process
may experience loss of its exclusive sessions to the log or
the actual resource being repaired. This may happen, for
instance, if a remote client initiates a concurrent recovery
action onR and succeeds in reapplying some or all of the
missing updates, thus breaking local client’s sessions. In
both cases, it is safe to simply abort the recovery operation
and reattempt the application-level action.

3.4 Lock manager replication

The manager component of a cluster lock service can
be replicated for fault tolerance and typically, strongly-
consistent replication is needed to provide the desired co-
ordination semantics. In our model, the DLM service is
not required to guarantee full mutual exclusion; instead,
the goal is to provide some limited form of coordination
that enables efficient access to data and minimizes the rate
of I/O rejection for a given application workload. This en-
ables a simpler and generally more available replication
design that allows clients to retain progress in the face of
extensive node and connectivity failures. For instance, our
design does not require connectivity to a majority of man-
ager processes - a lock can be acquired as long as at least
one of the manager instances is reachable6.

To support manager replication, we extend the ba-
sic locking protocol presented in Section 3.2 as follows:
When acquiring or upgrading a lock, client selects a sub-
set of managers, which we call itsrequest quorum, and
sends anU pgradeLockrequest with the corresponding
timestamp proposal to all members of this set. The lock
is considered granted (and the application is notified)
once anU pgradeGrantedresponse is collected from all
quorum members. If any of the members respond with
U pgradeDenieddue to an outdated timestamp in the re-
quest, the client downgrades the lock on all members that
have previously responded withU pgradeGranted, then
updates itsMaxTs andMaxTx values, and resubmits the
upgrade request with a new timestamp proposal. For effi-
ciency, we allowU pgradeLockrequests to specify anim-
plicit downgradefor an earlier timestamp, which permits
us to combine these two requests into a single message.

Incoming revocation requests from quorum members
that have responded withU pgradeGrantedare buffered
until the client hears back from the entire quorum. Even-
tually, if the upgrade is granted by all members, the ap-
plication process is notified and any pending revocation
requests are also delivered at that time.

To illustrate, consider a basic scenario with two clients
(c1 andc2) and two manager processes (m1 andm2) and

can be recovered in an analogous lazy manner after a rejected access
attempt.

6In an extreme case, that instance can be the local DLM client itself,
which would simply grant its own proposals without coordinating with
other clients.
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suppose these clients make concurrent attempts to acquire
an exclusive lock on some resourceR. Suppose the times-
tamp proposals are〈0,1〉 and〈0,2〉 for c1 andc2, respec-
tively, and suppose their upgrade requests reach the two
managers in opposite orders.m1 first observes the request
from c1 and grants the lock immediately and later, upon
receivingc2’s request with a higher timestamp, accepts it
and placesc2 on the queue of waiters.m2 first observes
the U pgradeLockmessage fromc2 and grants the lock
immediately and whenc1’s request arrives, this manager
denies it becausec2’s proposal with a higher timestamp
has been observed. Upon receivingU pgradeDeniedfrom
m2, c1 selects a new timestamp proposal, say〈0,3〉, and
sends another upgrade request to both managers, addition-
ally specifying an implicit downgrade on〈0,1〉. Whenm1

receives this message, it honors the downgrade request,
grants the lock to the next waiter -c2, and placesc1 on
the queue of waiters because its timestamp proposal now
supercedesc2’s. Likewise, m2 acceptsc1’s request and
enqueues it. At this point,c2 has been granted locks by
both managers and can proceed to issuing I/O requests on
R under session ID〈0,2〉. Whenc2 completes its opera-
tion onR, it sends a downgrade request to both managers.
They both grant the lock toc1 - the next waiter, which then
proceeds to accessingRunderSID 〈0,3〉 and thus, proper
serialization is achieved.

The basic scheme suggested above is by no means
the only feasible replication mechanism for a loosely-
consistent lock service and a number of obvious optimiza-
tions can be considered. For example, lock managers can
coordinate among themselves and disseminate changes to
the list of holders and waiters in a lazy manner and in or-
der to reduce the frequency ofU pgradeDeniedresponses,
clients can gossip about the maximum known timestamp
for each resource. We hope to explore and evaluate some
of these optimizations in future work.

4 Implementation
We have implemented a proof-of-concept prototype of
Minuet based on the design presented in the preceding
section along with several sample parallel applications.
The prototype has been implemented on the Linux plat-
form in C and the implementation consists of a client
DLM library, a lock manager process (7630 LoC), a stor-
age process that emulates a SAN target device (630 LoC),
and sample applications (920 LoC).

4.1 Client-side lock service library
The client-side component of Minuet is implemented as
a statically-linked library and offers C language bindings
for client applications. It is based on an asynchronous
event notification mechanism and provides a basic locking
service, an I/O interface to remote disks, and a transaction
service. The core elements of the application interface are

illustrated in Algorithm 4.

Algorithm 4 Minuet client library API
Basic lock service:
UpgradeLock(resID, upgradeMode, coordFactor)
DowngradeLock(resID, downgradeMode)
Shared disk I/O:
DiskRead(diskID, resID, offset, length, dataBuf)
DiskWrite(diskID, resID, offset, length, dataBuf)
Transaction service:
BeginXact()
AddUpdate(resID, diskID, offset, length, data)
AbortCurXact()
CommitCurXact(readset, writeset)
MarkResourceSynced(resID, xactID)

When issuing anU pgradeLockrequest for some re-
sourceR, an application optionally specifies thecoordina-
tion factor(C), which determines the size of the lock man-
ager quorumQ, i.e., the number of manager processes that
must agree to grant the requested lock onR. Currently,
the quorum size is computed as follows:Q = ⌈CM

2 + 1⌉,
whereM is the total number of lock manager replicas.

This parameter allows application developers to tune
the degree of locking consistency provided by the DLM,
enabling a choice between optimism and strict coordina-
tion and a tradeoff between availability and synchroniza-
tion overhead. A small quorum size works well for low-
contention resources; it helps keep the lock message over-
head low and permits clients to make progress in a parti-
tioned network, but exposes application clients to I/O re-
jection and forced downgrades in the event of conflicting
access. Conversely, a large quorum reduces the probabil-
ity of rejection, but requires connectivity to a larger num-
ber of manager replicas. If every application process spec-
ifies a coordination factor of 1 (i.e., a majority quorum)
for every lock acquisition request, our system would ef-
fectively behave as a traditional strongly-consistent DLM.
When the upgrade request is granted by a quorum, an
U pgradeGrantednotification is posted to the application
event queue.

The client-side DLM module maintains a heartbeat ses-
sion with each manager process (currently implemented
via TCP keepalive) and a local estimate of its liveness.
If a client succeeds in acquiring a lock on some resource
R from a quorum of lock managers and the last remaining
manager in that quorum crashes, aSessionExposednotifi-
cation is posted to the application event queue. This event
informs the application that all records of its lock (and
the corresponding session) onRmay have been lost and a
subsequent attempt by another client to establish a session
on R may be granted immediately and thereby cause loss
of session at the local client. In order to prevent this, the
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application can issue anotherU pgradeLockrequest and
attempt to reacquire the lock under the sameSID from an-
other quorum. This mechanism helps reduce the amount
of I/O rejection occurring as result of a manager failure
and is particularly useful for protecting long-running ses-
sions (e.g., fetching a large data structure from disk into
local memory) that are costly to redo.

FunctionsDiskReadand DiskWrite provide an inter-
face for submitting I/O requests to remote disks. We
need to intercept these requests in the client library in or-
der to augment them with resource session identifiers, as
described in Section 3.2. For each I/O request, the re-
source being accessed is specified by the application as a
function argument. The DLM client retrieves the corre-
sponding session state and piggybacks it onto the request
in the form of a capsule. When a response is received,
an ioCompletionnotification is posted to the application
event queue. I/O requests rejected by the target disk return
status codeEBADSESSIONand for all such requests, the
DLM client additionally posts aForcedDowngradenoti-
fication to inform the application that its lock on the re-
spective resource has been downgraded to some weaker
mode.

The transaction module implements the design of Sec-
tion 3.3. Internally, it implements a log abstraction on
top of raw disk and uses the basic lock service to ensure
session serializable access to the log. Its application inter-
face includes functions for initiating a transaction, log-
ging an update, aborting, committing, and syncing up-
dated resources to disk. The commit function requires the
application to specify theReadSetandWriteSetof the
current transaction, which are examined during the ver-
ification phase. If verification fails due to loss of ses-
sions, a corresponding set ofForcedDowngradenotifi-
cations is sent to the application. In addition, a commit
operation may fail if the client loses its exclusive session
to the log, in which case the application is notified via a
XactSvcFailureevent.

4.2 Lock manager process

Minuet’s lock manager process is responsible for grant-
ing and revoking locks using the timestamp mecha-
nism (Section 3.2) and several manager instances can
be deployed in a cluster for fault tolerance. For each
lockable resourceR in the system, the manager main-
tains the current lock mode, a list of current hold-
ers, a queue of blocked upgrade requests, and the
largest proposed timestamp values observed forR so far
(〈MaxProposedTs(R),MaxProposedTx(R)〉). When an
U pgradeLockrequest onR arrives from some clientc,
the manager evaluates its proposed timestamps and either
accepts it and addsc to the queue of waiters or responds
with U pgradeDenied. When a new request incompatible
with the current mode appears on the waiter queue, the

manager attempts to revoke the lock from current hold-
ers by sending them aRevokeLockmessage, which in
turn causes the application on these nodes to observe a
RevokeLockevent. A heartbeat mechanism is used to de-
tect client failures and after a failure suspicion, the man-
ager reclaims all of the locks previously held by suspected
client and makes them available to the next waiter.

4.3 Storage process
Our current implementation emulates the functionality of
a guard-augmented disk target via a user-level process that
runs on a dedicated node, communicates with clients over
a TCP socket, and writes data to a local disk partition or
a file in a local filesystem. While this may not be an ideal
representation of a SAN-attached disk, we were careful
to preserve the semantics of a "dumb" storage device that
supports onlyReadsandWriteson raw data blocks. Our
metadata (targSID and targCSID) requires 16 bytes of
memory per resource and the storage process currently
maintains it in RAM using a hash table.

4.4 Sample applications
Distributed chunkmap Our first application imple-
ments a read-modify-write operation on a distributed data
structure comprised of a set of fixed-length data chunks. It
mimics atomic updates to a distributed chunkmap - a com-
mon scenario in clustered middleware such as filesystems
and databases. The chunkmap may represent a bitmap of
free space blocks (e.g., Scenario 1 in Section 2), an array
of i-node structures, or an array of directory entry slots in
a directory file. In each operation, the application process
selects a random 4-KByte chunk, reads it from shared disk
into a local buffer, modifies a randomly-selected region
within the chunk, and writes it back to disk. Locking is
used to ensure update atomicity: prior to reading the block
from disk, the application process acquires an exclusive
lock from Minuet on the respective block and releases it
after writing the modified version to disk. In our evalua-
tion, we measure the aggregate operation throughput from
multiple clients under strong and loosely-consistent lock-
ing under varying levels of block contention.

Distributed transactional update To demonstrate the
feasibility of serializable transactions (Section 3.3) in
Minuet, we extend the basic chunkmap application de-
scribed above with multi-block atomic update operations.
In each iteration, the application process selects up to
five distinct data blocks, acquires the respective locks,
reads and updates their content, and attempts to commit
these updates to disk in a single atomic action. This ap-
plication exercises Minuet’s write-ahead logging module
and transaction API routines (BeginXact, AddU pdate,
CommitCurXact, andMarkResourceSynced). If a trans-
action aborts due to loss of session to a datablock or the
client’s log, the application reacquires the lock on the
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respective resource and retries the transaction (without
backoff) until it commits successfully.

5 Evaluation
In the previous sections, we have shown how Minuet pro-
vides safety by adding guard logic to SAN target devices.
In this section, we evaluate the performance and availabil-
ity of the sample applications built atop Minuet and pro-
vide comparison with traditional strongly-consistent lock-
ing.

5.1 Experimental setup
We ran our experiments in an emulated SAN environment
with 16 identical machines in our local cluster. Each node
is a dual 3GHz Xeon machine equipped with 2 GByte
RAM, two 7200 RPM IDE disks, and a Gigabit Ether-
net NIC. The machines were interconnected via a Giga-
bit switch. We allocated five machines for storage servers
and these nodes collectively provided 5 GB of logical disk
space, equally striped across the servers. Three additional
machines were assigned to serve as dedicated lock man-
agers, each running a single instance of the Minuet man-
ager process. Client instances were equally split across
the remaining seven machines and they saturated neither
RAM nor CPU. Note, however, that when evaluating the
zero-degree locking consistency (i.e., theweak-ownsce-
nario described below), a lock manager process shared a
machine with a matched client process.

In our experiments, we evaluated the performance of
our applications under the following three scenarios:

strong(x): A strongly-consistent locking protocol that
requires a client get permission from a majority (x)
of lock manager processes.

weak-own: An extreme form of weakly-consistent lock-
ing, where each client acts as its own lock manager
and does not attempt to coordinate with other clients.

weak-partition(x) : Simulates a failure scenario, in
which the network is partitioned intox distinct seg-
ments. Within a segment, Minuet provides strongly-
consistent coordination through a single lock man-
ager, but no coordination between segments takes
place.

We measured the performance as the total number of
application operations per second, varying the number of
clients (i.e., offered load). We also considered two forms
of workload, namely:

uniform : Each operation selects the block(s) to modify
uniformly at random from the entire chunkmap.

skewed(x/y): y% of operations touchx% of the
chunkmap.

We ran each experiment for 10 minutes and repeated it
8 times to compute the mean and standard deviation.

5.2 Distributed chunkmap

The distributed chunkmap application performs read-
modify-write operations on an array of data blocks and
relies on Minuet locking to ensure update atomicity. We
configured the block size to 4 KByte and varied the num-
ber of client instances to evaluate the zero-consistency
locking and the strong-consistency locking with different
number of lock manager replicas.

Figure 3 shows the operation throughput, the denied
lock requests at lock managers due to conflicting ac-
cess, and the rejected I/O requests at SAN target devices
with theuniformworkload. Since there are a large num-
ber of blocks in the storage servers, these results repre-
sent a low-contention scenario. We observe that there
is little performance difference betweenstrong(x) and
weak-ownup to 16 clients, but in a high load case (32
clients) strong(x) shows considerably lower throughput
thanweak-own. This is because clients compete with each
other to acquire locking state in lock manager processes
and their requests are denied as shown in Figure 3 (cen-
ter). On the contrary,weak-owndoes not incur locking
overhead and scales throughput linearly, although a small
fraction of clients’ I/O requests is rejected at the disk (Fig-
ure 3 (right)). This result suggests that our approach is
also beneficial in improving application throughput in sce-
narios where the overall load is high, but contention for a
single resource is relatively rare.

We conclude that the current practice of enforcing full
mutual exclusion via strongly-consistent locking is clearly
a overkill when it comes to such a sparse access pattern.
Furthermore, if multiple lock manager replicas are de-
ployed for fault tolerance, strong locking pays the addi-
tional penalty of keeping the replicas consistent. On the
other hand, the optimistic method of concurrency control
enabled by Minuet can progress without the heavy lock-
ing overhead, while ensuring update atomicity in the rare
cases of conflicting access. Although I/O requests are sus-
ceptible to rejection at the storage device, the rejection
penalty does not appear to have a measurable effect on
the overall application throughput.

The rate of I/O rejection could become more signif-
icant when a system has resource hotspots (e.g., index
blocks in a database), but weakly-consistent locking can
still provide a reasonable performance in such scenarios,
since traditional strong locking would also face explosive
synchronization overhead. Figure 4 shows the through-
put and the rate of I/O rejection under a high- contention
(skewed(5/95)workload). In this experiment,strong(1)
displays higher throughput thanweak-own, since rejected
I/O requests, whose percentage goes up to 22%, have
greater impact than denied lock requests, whose percent-
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Figure 3: Throughput (left), the percentage of denied lock requests (center), and the percentage of rejected I/O requests
(right) under the uniform workload.
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Figure 4: Throughput (left), and the percentage of rejected I/O requests
(right) under the skewed(5/95) workload.
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Figure 5: Throughput under the uniform
workload in a network partition scenario.

age goes up to 38% (not shown). We also experimented
varying the skewness of the workload and found that when
the skewness decreases slightly (e.g.,skewed(10/90)), the
number of I/O rejections (and, accordingly, the perfor-
mance difference) drops to a neglighble level.

Finally, Figure 5 shows how strong and weak lock-
ing protocols behave in a partitioned network scenario,
where each client can communicate with only one lock
manager replica out of three. A strongly-consistent lock-
ing protocol demands a well-connected primary compo-
nent containing at least a majority of manager replicas -
a condition that our partitioned scenario fails to satisfy.
As a result, no client can make progress with traditional
strong locking and the overall application throughput is
zero. In contrast, under Minuet’s weak locking (weak-
partition(3)), clients can still make good progress. This
experiment demonstrates the availability benefits that our
approach gains over a traditional DLM design by loosen-
ing the consistency of locking state.

5.3 Distributed transactional update

The distributed transactional update application modifies
multiple blocks, typically residing on different disks, ina
single atomic transaction. As in previous experiments, we
set the application block size to 4 KB.

Table 1 shows the throughput understrong(1) and
weak-ownmodes of locking, varying the number of
clients under theuniformworkload. The two schemes do

scheme
no. of clients

4 8 16 32

strong(1) 79(2) 145(3) 208(13) 190(7)
weak-own 72(4) 123(7) 175(8) 203(17)

Table 1: Transaction throughput with the uniform work-
load, varying the number of clients.

not demonstrate a measurable difference in throughput be-
cause the rate of contention (and, accordingly, transaction
aborts) is relatively low. The trends of denied lock re-
quests and rejected I/O requests for this experiment are
similar to the ones observed for the simple distributed
chunkmap.

6 Discussion
In this section, we discuss and address several concerns
pertaining to the practical feasibility of our approach and
the implications of Minuet’s programming model.

Practical feasibility In this report, we explore a novel
approach to concurrency control for SAN environments
that rests on the basic idea of extending network-attached
storage devices with a small amount of guard logic that
enables them to detect and filter out inconsistent I/O re-
quests. Fundamentally, this requires extending disk hard-
ware with the guard functionality and modifying existing
block-level I/O protocols to carry a certain amount of ad-
ditional state (referred to ascapsulesin our design), which

15



may raise several concerns about the practical feasibility
of our approach.

On the one hand, we acknowledge that our approach
assumes the presence of functionality that does not ex-
ist in traditional disk hardware and, consequently, faces
a non-trivial barrier to deployment. On the other hand,
we observe that the proposed set of changes is very incre-
mental in its nature and does not require extending storage
devices with application-specific functionality. The guard
logic presented in Algorithm 1 is amenable to efficient
implementation in hardware, requiring only several table
lookups and comparison operations.

As we tried to demonstrate in this report, the benefits
of implementing such an extension can be substantial. In
addition to lifting the safety and liveness limitations that
have traditionally characterized applications and middle-
ware in shared-disk environments, our approach estab-
lishes a new degree of freedom in the design space of
SAN concurrency protocols, enabling a choice between
optimism and strict coordination.

Different programming model Another concern is that
Minuet introduces an alternative programming model, ex-
posing application developers to several additional ex-
ception cases that do not typically arise under strongly-
consistent locking. When a traditional DLM service
grants a lock to an application process, the lock is as-
sumed to be valid and hence, the process may proceed to
accessing the respective shared resource without worrying
about conflicting access from other processes. In contrast,
Minuet gives out locks in a more permissive manner, but
provides machinery for detecting and resolving inconsis-
tent access at the storage device. As a result, applications
that rely on Minuet for concurrency control must be pro-
grammed under the assumption that any I/O request to a
remote disk may fail withEBADSESSIONdue to incon-
sistent locking state and take an appropriate corrective ac-
tion (e.g., reacquire the lock and restart the operation).

We observe that while I/O request rejection does not oc-
cur under strongly-consistent locking, the protocols em-
ployed by traditional DLMs for ensuring system-wide
consistency of locking state inevitably expose applica-
tion developers to analogous exception cases. For exam-
ple, a network connectivity problem causing some appli-
cation node to lose connectivity with the primary com-
ponent (e.g., a majority of lock managers) would typi-
cally cause that node to observe a DLM-related exception
event. More specifically, the application process would
be informed that the lock service is unreachable and, as
a result, some (or all) of the locally-held locks may no
longer be valid - these are precisely the semantics of the
ForcedDowngradenotification in our design. Thus, both
models demand exception-handling and recovery logic for
dealing with a forced revocation of a lock.

In practice, the necessity of maintaining globally-

consistent locking state drastically constrains the rangeof
feasible recovery actions in such scenarios. Commonly, if
a node experiences loss of connectivity to the DLM ser-
vice, the only meaningful recovery action is inducing a
shutdown (e.g., by panicking the kernel) with the expec-
tation that the DLM will eventually detect the failure and
reclaim the locks, thus permitting the rest of the system to
make progress.

While such a strategy is certainly applicable in our
model (and hence, existing applications can be deployed
without modification), this technique would not observe
the availability benefits enabled by our approach. With
Minuet, a node that finds itself partitioned from the rest
of the cluster need not immediately give up all of its locks
and instead, can execute a more granular recovery action.
For example, the affected node can switch to optimistic
concurrency and continue accessing its resources with-
out attempting to coordinate its session ID selection with
the rest of the cluster and this would allow the partitioned
node to continue making progress in the absence of con-
flicting access.

Our experience with developing and deploying sample
applications (Section 4.4) on top of Minuet suggests that
the availability benefits enabled by the use of fine-grained
recovery actions are certainly worth the extra implemen-
tation effort, which we believe to be relatively small. The
transactional chunkmap application was initially imple-
mented on top of conventional locking using 460 lines of
C code and extending the implementation to operate on
top of Minuet required adding 43 lines of code to handle
ForcedDowngradeandXactSvcFailureevents.

Storage and bandwidth overhead In our prototype im-
plementation, target storage devices maintain 16 bytes of
per-resource metadata (targSID and targCSID). For a
traditional middleware component such as a database or
a filesystem, a resource would typically correspond to a
single fixed-length block containing application data or
metadata and taking a clustered filesystem as an exam-
ple, blocksizes in the range 128KB - 1MB are considered
common [25]. Assuming 128KB application blocksize,
our design incurs a storage overhead of 0.01%.

Perhaps more alarmingly, the table of per-resource
metadata, indexed byresourceID, must be stored in
random-access memory for efficient lookup on the data
path. We envision the use of flash memory or battery-
backed RAM for this purpose and observe that today,
high-performance disk systems make extensive use of
NVRAM for asynchronous write caching [26,27].

A request capsule carrying the tuple
〈resourceID,sType,SID,curCSID,nextCSID〉 adds
29 bytes of overhead to eachRead and Write request
sent over the SAN. While non-trivial for very small I/O
requests, we consider this overhead to be manageable
under most workloads, especially since parallel applica-
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tions are often configured with a large I/O request size
to achieve efficiency. During the verification phase of
a transaction, the application node sends outn distinct
Veri f y requests, each carrying a 29-byte capsule, wheren
is the total number of resources touched by the respective
transaction.

Cache coherence semanticsAnother concern is that
locking is commonly used as a mechanism for distributed
cache coherence and that the loosely-consistent paradigm
we explore here cannot easily support thestrict coherence
semantics, where aReadrequest must always return the
results of the most recentWrite.

We make the following observations: First, our study
focuses on addressing the issues of concurrency control
in a fully asynchronousdistributed setting, where the no-
tion of “most recent” may not be well-defined. Suppose,
however, that there exists an external physical clock that
allows us to order application’sReadandWrite requests
to the cache and letC(H) denote such ordering of requests
for a given execution historyH. We note that in an asyn-
chronous distributed system with failures, even a strongly-
consistent DLM service cannot guarantee strict coherence
consistent withC(H). Furthermore, we conjecture that
no mechanism providing such guarantees can exist in an
error-prone asynchronous system for the same reason that
strict mutual exclusion cannot be attained non-trivially in
such a setting.

7 Related Work
Concurrency control has been extensively studied in the
operating systems, distributed systems, and database com-
munities. VMS [28] was among the first widely-available
operating systems to provide application developers with
the abstraction of a general-purpose distributed lock man-
ager. Since then, DLMs have been widely adopted for
various purposes and today, they are viewed as a use-
ful general-purpose building block for distributed appli-
cations and middleware.

Clustered filesystems (GFS [1], OCFS [2], PanFS [3],
GPFS [4], Lustre [5], Xsan [6]) and relational databases
(Oracle RAC [7]) rely on a distributed lock manager to co-
ordinate parallel access to application data, metadata, and
logs residing on shared disks. OpenDLM [29] is a widely-
adopted general-purpose DLM implementation for Linux,
currently used by GFS [1] and other clustered filesystems.

In web service data centers, distributed locking ser-
vices such as Chubby [30] and Zookeeper [31] have also
become popular. These services are intended primarily
for coarse-grainedsynchronization - a typical use case
might be to elect a master among a set of Bigtable [32]
servers. Although the intended use of Minuet is to provide
fine-grainedsynchronization in a shared-disk cluster, our
system can also support such use cases by transitioning

to strongly-consistent locking, whereby each lock is ac-
quired with a coordination factor of 1. However, the avail-
ability improvements enabled by our approach would not
apply in such scenarios. Unlike our system, Chubby pro-
vides a hierarchical resource namespace and the ability to
store small pieces of data, in effect offering a filesystem-
like abstraction, but these features are largely orthogonal
to our core approach and can be retrofitted onto the current
design if needed. Chubby’slock sequencermechanism
allows servers to detect and discard inconsistent client re-
quests submitted under the protection of an outdated lock
and our timestamp-basedsessionIDgeneralizes this idea
to support shared-exclusive locking. We also develop this
notion further and observe that once we have the ability
to detect and reject out-of-order requests at the destina-
tion, very little is gained by enforcing strong consistency
on replicated lock management state and specifically, the
use of an agreement protocol (e.g., Paxos [12]) may be an
overkill.

Concurrency control and transaction mechanisms have
been extensively studied in databases. ARIES [33] is a
state-of-the-art transaction recovery algorithm for a cen-
tralized database, supporting fine-granularity locking and
partial rollbacks of transactions, while D-ARIES [10] ex-
tends this work to be usable in distributed shared-disk
databases. Implementing these mechanisms on top of
Minuet’s locking and I/O facilities would ensure that they
retain their safety properties in the face of arbitrary asyn-
chrony. Minuet’s basic transaction service presented in
Section 3.3 incorporates elements of write-ahead logging,
timestamp ordering, and two-phase commit, all of which
are standard and well-known techniques in database de-
sign. Finally, database researchers have explored hybrid
approaches to concurrency control [34] that enable trade-
offs between optimism and strict coordination and our
work enables similar tradeoffs for applications deployed
in a SAN environment, where data resides on application-
agnostic block storage devices.

8 Conclusion and Future Work
In this report, we investigate a novel approach to concur-
rency control and transaction recovery in storage area net-
works. Today, clustered SAN applications coordinate ac-
cess to shared state on disk using strongly-consistent lock-
ing protocols, but they are subject to safety and liveness
problems in the presence of asynchrony and failures. We
argue that strict mutual exclusion is neither necessary nor
sufficient for application-level correctness and that there
are several advantages to loosening the consistency re-
quirements found in traditional locking protocols.

We augment SAN target devices with a small amount of
logic called a guard, which enables us to provide a prop-
erty called session serializability and a relaxed model of
locking. These, in turn, provide a foundational building
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block for more complex and useful application semantics
such as distributed transactions.

We have designed, implemented, and evaluated Min-
uet, a DLM-like synchronization primitive for SAN ap-
plications based on the techniques and protocols we pre-
sented. Our evaluation suggests that distributed applica-
tions built atop Minuet enjoy good performance and avail-
ability, while guaranteeing safety.

We are currently working on expanding the set of sam-
ple applications to include a distributed B-tree and there
remains substantial work to be done in terms of under-
standing and evaluating the performance and availabil-
ity tradeoffs enabled by our approach. The results we
present in this report focus primarily on comparing the
traditional strongly-consistent locking technique with a
purely optimistic method enabled by Minuet, but these
may be viewed as two opposites extremes of a contin-
uum that invites further exploration. Finally, we plan to
conduct a direct quantitative comparison between Minuet
and a state-of-the art conventional lock service such as
OpenDLM [29] and measure the differences in applica-
tion availability and performance.
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A Proof of Claim 1
Proof. Suppose that the claim is false, which would mean
that there exists an execution historyH, in which session
serializability on some shared resourceR is violated. By
the definition,R’s owner device, which we denoteD(R),
would observe in this history a sequence of I/O requests
on R of the form〈...rs

i , ..., r
s∗
k , ..., rs

j , ...〉, wherers
i and rs

j
are a part of sessions from some clientc andrs∗

k is a part
of sessions∗ from c∗ that conflicts withs.

We first consider the case wheres is Sharedsession,
which means thats∗ must be anExclusivesession and
let SID = 〈Ts,Tx〉 and SID∗ = 〈T∗s ,T∗x 〉 denote the cor-
responding session identifiers. The capsule evaluation
logic at D(R) would accept requests〈rs

i , ...r
s∗
k , ..., rs

j〉 in
that order only ifT∗x ≥ Tx and Tx ≥ T∗x , which implies
Tx = T∗x . Furthermore, sinces∗ is anExclusivesession,
we haveT∗s ≥ Ts and by uniqueness of session proposals,
T∗s is strictly greater thanTs. However,T∗x = Tx, which
means thatT∗x was reflected inc’s maximum timestamp
estimate (i.e.,MaxTx(c,R) = T∗x ) at the time ofc’s ses-
sion proposal. This means thatc must have previously (a)
Made an unsuccessful attempt to acquire a lock with an
exclusive timestampT ′x smaller thanT∗x and received an
U pgradeDeniedresponse from the lock manager. (b) Re-
ceived anEBADSESSIONresponse to an earlier I/O re-
quest onRwith an outdated timestampT ′x because the de-
vice has already accepted a request fromc∗ with T∗x > T ′x .

In both cases,c would update itsMaxTs andMaxTx es-
timates to reflect the values chosen byc∗ and therefore,
when c proposes a session identifier for requestrs

i , we
haveMaxTs(c,R)≥ T∗s . When establishing aSharedses-
sion, the protocol requiresc to propose a shared times-
tamp greater than its currentMaxTs, which means thatTs

is strictly greater thanT∗s - a contradiction.
An analogous argument, which we omit for brevity,

demonstrates that ifs is anExclusivesession then no two
requests froms are interleaved atD(R) by a conflicting
request froms∗.
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