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Abstract

Characterizing Redundancy in Populations of Neurons

by

Jiening Zhan

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael Gastpar, Chair

Populations of neurons often respond in a redundant fashion to stimuli. One such redun-

dancy is that multiple neurons react to similar stimulus features, and another is that neurons

excite or inhibit each other. Using information theoretic principles, redundancy measures

are defined and analyzed for a series of theoretical models in this thesis. Furthermore, the

redundancy measures are applied to measurement data from populations of neurons in the

auditory system of Zebra Finch Song Birds. The data suggests that the amount of redun-

dancy varies from one population to another. This thesis attempts to understand and to

distinguish between neural populations based on their relative amounts of redundancies.

Finally, a coarse approach to characterizing redundancy is developed via considering the

mutual information between the stimulus and the responses of one, two, three etc. neurons

in the considered population. This coarse characterization is analyzed for several theoretical

models. The results show that a rapid increase in information with the number of neurons

in the population suggests high redundancy between neurons while a slow increase implies

low redundancy.
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Chapter 1

Neuroscience and Redundancy: An

Introduction

1.1 Redundancy in Population Coding

When presented with a sensory stimuli, a neuron’s response is in the form of an action

potential, often called a ’spike’. The representation of information in the neuron’s spik-

ing response, known as neural coding, has been (and continues to be) an area of intense

investigation in theoretical neuroscience [3], [10]. However, although a single neuron has

perceptible influence on the animal’s behavior, it is ultimately large groups of neurons that

have significant impact on behavior [6], [7]. One interesting question that arises is the mys-

tery behind population coding - the manner in which groups of neurons interact to represent

information about the sensory stimuli. Schneidman et. al [9] suggests that ensembles of

neurons can encode information in either a synergistic, redundant, or independent fashion.

That is, an ensemble of neurons can encode more, less, or same information than the sum

of each individual neuron in the ensemble.

The idea of population coding can be elucidated by abstracting the neural system and

considering a mathematical model representation as shown in figure 1.1. The model sug-

gest that at a given time t, S(t) represents the stimulus presented to the M neurons in the

1



S(t)

R1(t)

R2(t)

b

b

b

RM (t)

Figure 1.1. Abstraction of the Neural System.

population and Ri(t) represents the response of ith neuron. Basic insight and past litera-

ture suggests that there exists an inherent degree of redundancy in the M neural reponses

R1(t), R2(t), ..., RM (t). The fundamental question that arises is how to define and character-

ize this redundancy. More generally, given a population of neurons, how is the redundancy

of the population measured? The answer to this question will enable the characterization of

a neural region based on its redundancy and the distinction of different neural regions based

on their respective redundancies. This will give insight into the general representation and

transmission of information in the brain.

1.2 Notation and Basic Definitions

The first part of this section introduces the notation used in this thesis. The second part

provides definitions and properties of elementary probabilitistic and information theoretic

measures.

1.2.1 Notation

• S: stimulus

2



• M : number of neurons in the population

• Ri: response of neuron i (for i ∈ 1, ...,M )

• Wi: noise in response i

• R: population response (R1, ..., RM )

1.2.2 Basic Definitions

Definition 1. The sample space Ω of an experiment or random trial is the set of all possible

outcomes

Example 1. For a coin toss, the two possible outcomes of the experiment are heads and

tails. Letting H denote heads and T denote tails, it follows that the sample space Ω = {H,T}

Definition 2. A random variable X is a real valued function defined over a sample space

Ω.

In mathematics, X : Ω → R. There are two types of random variables: discrete and

continuous. The discrete random variables takes on countable number of possible values,

while a continuous random variable takes on uncountable number of possible values.

Definition 3. For a discrete random variable X, the associated probability distribution p(x)

is a function that gives the probability that X takes on the value x.

Definition 4. For a continuous random variable X, the probability density function f(x)

is defined to be such that given any interval [a, b], the probability that X takes a value on

[a, b] is given by

P (a ≤ X ≤ b) =

∫ b

a
f(x)dx (1.1)

Definition 5. The expectation E [X] of a random variable X is defined as

E [X] =
∑

x

xp(x) (1.2)
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for X discrete, and

E [X] =

∫ ∞

−∞
xf(x)dx (1.3)

for X continuous.

Definition 6. The Covariance Cov(X) of a random variable X is defined as

Cov (X) = E
[

X2
]

− E2 [X] (1.4)

Note that Cov(X) ≥ 0.

Definition 7. A bernoulli random variable X with parameter p takes values in {0, 1} with

P (X = 1) = p and P (X = 0) = 1 − p. X ∼ B(p) can be written to describe X.

Definition 8. A gaussian random variable X can be defined by two paramters: mean and

covariance. If X is gaussian with mean µ and covariance σ2, then X has density

f(x) =
1

σ
√

2π
e

(

−(x−µ)2

2σ2

)

(1.5)

for each x ∈ R. X ∼ N (µ, σ2) can be written to describe X.

Definition 9. The entropy H(X) of a discrete random variable X with probability distri-

bution p(x) is defined as

H(X) = −
∑

x

p(x) log p(x) (1.6)

while the entropy h(X) for a continuous random variable X with probability density f(x) is

defined as

h(X) = −
∫ ∞

−∞
f(x) log f(x)dx (1.7)

Definition 10. For X ∼ N (µ, σ2), the entropy h(X) is given by

h(X) =
1

2
log 2πeσ2 (1.8)

Definition 11. The joint entropy H(X1,X2, ...,XM ) of a set of discrete random variables

X1,X2, ...,XM with joint distribution p(x1, x2, ..., xM ) is defined as

H(X1,X2, ...,XM ) = −
∑

x1,...,xM

p(x1, x2, ..., xM ) log p(x1, x2, ..., xM ) (1.9)

4



The joint entropy h(X1,X2, ...,XM ) of a set of continuous random variables X1,X2, ...,XM

with joint density f(x1, x2, ..., xM ) is defined as

h(X1,X2, ...,XM ) = −
∫

f(x1, x2, ..., xM ) log f(x1, x2, ..., xM )dx1, dx2, ...dxM (1.10)

Definition 12. The conditional entropy H(X1|X2) of discrete random variables X1,X2

with joint distribution p(x1, x2) is defined as

H(X1|X2) = −
∑

x1,x2

p(x1, x2) log p(x1|x2) (1.11)

The joint entropy h(X1,X2) of a set of continuous random variables X1,X2 with joint

density f(x1, x2) is defined as

h(X1|X2) = −
∫

f(x1, x2, ..., xM ) log f(x1|x2)dx1, dx2 (1.12)

Theorem 1. For any random variables X,Y ,

H(X,Y ) = H(X) + H(Y |X) (1.13)

Theorem 2. Given random variables X1,X2, ...,XM , the chain rule of entropy states that

H(X1,X2, ...,XM ) =
M
∑

i=1

H(Xi|Xi−1) (1.14)

Definition 13. The mutual information I(X;Y ) between random variables X,Y is given

by

I(X;Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
(1.15)

for X,Y discrete, and

I(X;Y ) =
∑

x,y

f(x, y) log
f(x, y)

f(x)f(y)
(1.16)

for X,Y continuous.

From the above definitions, it can be seen that I(X;Y ) = I(Y ;X) and I(X;Y ) =

H(Y ) − H(Y |X). Similar properties hold for the continuous version.

Theorem 3. Given random variables X,X1,X2, ...,XM , the chain rule of mutual informa-

tion states that

I(X;X1;X2; ...;XM ) =

M
∑

i=1

I(X;Xi|Xi−1) (1.17)
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Definition 14. The joint mutual information of a set of random variables X1, ...,XM is

defined as

I(X1;X2, ...;XM ) =
M
∑

i=1

H(Xi) − H(X1,X2, ...,XM ) (1.18)

Similar definition holds for continuous version.

Definition 15. The KL divergence D(p(x)||q(x)) between probability distributions p(x) and

q(x) is defined as

D(p(x)||q(x)) =
∑

x

p(x) log
p(x)

q(x)
(1.19)

1.3 Measures of Redundancy

In the sixties, Glovazky [1] explored the concept of redundancy in a set of patterns,

which is any group of geometrical configurations which obey a set of conditions. In his

work, any of the given patterns can be divided into a finite number of cells. Therefore, each

pattern can be identified based on the contents of all its cells. However, depending on the

given pattern set, a pattern may be identified without exploring the contents of all its cells

since the information of certain cells may be redundant. In his paper, Glovazky devised

a method by which the cells that are redundant with respect to the given identification

process can be determined.

Glovazky’s concept of redundancy in patterns influences the idea of redundancy in

population coding. Consider a neural ensemble with M neurons with population response

R1, ..., RM to sensory stimulus S. Assume the neurons encode information in a redundant

fashion. For a given N ≤ M , let R1, ..., RN be a subset of R1, ..., RM . The encoding in the

neural system could be performed such that most of the information about the stimulus can

be determined from R1, ..., RN . Therefore, Ri for all i > N does not give much additional

information not already present in R1, ..., RN . Thus, the responses Ri for all i > N are

redundant.

In regards to population coding specifically, a few redundancy measures have been found

in literature. Chechik et. al [4] defined a redundancy measure based on the joint mutual

6



information of the population response. Given M neurons that output responses R1, ..., RM

when being exposed to stimulus S, the population redundancy r is defined as

Definition 16.

r =
I(R1;R2; ...;RM )
∑M

i=1 I(S;Ri)
(1.20)

A neural population in which the information in each response is completely different

from the information in any other response is termed independent. Conversely, a neural

population in which the information in each response is the same as every other response is

called fully dependent. Intuitively, an independent population should have redundancy zero

while a fully dependent population should have redundancy one. Therefore, a well defined

redundancy measure should lie within the [0, 1] interval. Following are properties for the

redundancy measure r from definition 16 and conditions for it to lie within the desire [0, 1]

interval.

Property 1. r ≥ 0 with equality iff R1, ..., RM independent

Proof. Using the chain rule of entropy and the fact that conditioning reduces entropy, it

follows that

H(R1, ..., RM ) =

M
∑

i=1

H(Ri|Ri−1, ..., R1) (1.21)

≤
M
∑

i=1

H(Ri) (1.22)

Equality is achieved in the above iff R1, ..., RM are independent. This implies that r ≥ 0

with equality iff R1, ..., RM are independent.

From definition 16, it can be inferred that correlation between the responses R1, ..., RM

increases the joint information I(R1;R2; ...;RM ) and thus causes redundancy in the popu-

lation. This aligns with the basic intuition that redundancy is the repetition of information.

Property 2. Given an unordered population response R, if there exists an ordering of R

such that R1, R2, ..., RM satisfies
∑M

i=1 I(Ri;S) ≥∑M
i=2 I(Ri;R

i−1), then r ≤ 1.

7



Proof. The result is simply seen by the definition of mutual information

M
∑

i=2

I(Ri;R
i−1) =

M
∑

i=2

H(Ri) − H(Ri|Ri−1) (1.23)

=

M
∑

i=1

H(Ri) − H(R1, R2, ..., RM ) (1.24)

Property 2 gives a condition for the population redundancy r to be within the [0, 1], the

desired interval.

Another definition of redundancy in population coding comes from Reich et. al [8].

Their measure, given below, is based on the interaction between pairwise neurons.

∆12 =
I(R1;S) + I(R2;S) − I(R1, R2;S)

min I(R1;S), I(R2;S)
(1.25)

This measure of redundancy depends on the difference between the information the

pairwise neurons contain about the stimulus I(S;R1, R2) and the sum of the information

each individual neuron contains about the stimulus I(S;R1) + I(S;R2). An extension of

this redundancy measure to multiple neurons can be made. Let the extended redundancy

measure be denoted by r′. It is given as

Definition 17.

r′ =

∑M
i=1 I(S;Ri) − I(S;R1, R2, ..., RM )

∑M
i=1 I(S;Ri)

(1.26)

From this measure, it is seen that characterization of population redundancy can be

accomplished by solely considering the quantity I(S;R1, ..., RM ). Note that
∑M

i=1 I(S;Ri)

acts merely as a normalizing term that ensure r′ ≤ 1. Calculating I(S;R1, R2, ..., RM ) is

an elusive task that involves estimating the probability distribution p(R1, ...RM |S). How-

ever, neural data is limited, and a decent estimation of p(R1, ...RM |S) requires an excess

amount of data. Therefore, methods are needed to overcome this elusive task. This thesis

proposes two such methods: a direct method and a redundancy scaling method. In the

first method, a direct measure of redundancy is obtained using an estimation of the joint

8



entropy H(R1, R2, ...RM ). In the second approach, based on a model of the neural system,

a scaling redundancy measure is obtained.

Property 3. If R1, R2, ..., RM are conditionally independent given S, then r = r′.

Proof. The denominators of r and r′ are the same. Using the definition of mutual informa-

tion, the numerator of r′ can be rewritten as

M
∑

i=1

(H(Ri) − H(Ri|S)) − H(R1, ..., RM ) + H(R1, ..., RM |S) (1.27)

Using the fact that R1, R2, ..., RM are conditionally independent given S, it follows that

H(R1, ..., RM |S) =

M
∑

i=1

H(Ri|S) (1.28)

Using the above, the numerator of r′ can be simplified to

M
∑

i=1

H(Ri) − H(R1, ..., RM ) (1.29)

this is precisely the numerator of r.

9



Chapter 2

Redundancy of Simple Models

The population redundancy r from definition 16 is shown to be always greater than

zero. However, conditions given in property 2 must be satisfied in order for r to be less

than one. In this chapter, the behavior of r is analyzed for a series of simple models. Since

the entropy of gaussian random variables can be calculated easily, most of the examples

considered model the stimulus and response as gaussians. These examples shows that for

certain models, the redundancy r lies within [0, 1], the desired interval. However, for other

models, r does not have such a nice behavior.

2.1 Conditionally Independent Gaussian Model

The first example models the stimulus as a gaussian random variable, and the responses

as conditionally independent gaussian random variables given the stimulus. Hence, the

noise in each response is independent. In actual experiments, single unit recording is used to

obtain the action potentials of neurons. Since the neural responses are measured separately,

it is reasonable to assume that the noise in each response is independent.

Definition. The stimulus S ∼ N (0, σ2). The noise Wi are independent and identically dis-

tributed (i.i.d) N (0, σ2
w). Also, the Wi are independent of S. Each response Ri = S + Wi.

10



S

W1

W2

WM

b

b

b

R1

R2

RM

Figure 2.1. Conditionally Independent Gaussian Model.

Therefore, the population response R1, R2, ..., RM are gaussian random variables condition-

ally independent given S. Figure 2.1 illustrates this example.

Let σ2
r denote Cov(Ri). For all i, Cov(Ri) = Cov(S + Wi) = σ2 + σ2

w. It follows that

the entropy H(Ri) for each response is given as

H(Ri) =
1

2
log 2πeσ2

r (2.1)

=
1

2
log 2πe(σ2

s + σ2
w)

Let Kr denote the covariance matrix of of the random vector R. Since Kr is a circulant

matrix, |Kr| can be easily evaluated and found to be (Mσ2
s + σ2

w)(σw2)M−1. From this, the

joint entropy H(R1, ..., RM ) can be found to be

H(R1, ..., RM ) =
1

2
log(2πe)M |Kr| (2.2)

=
M

2
log 2πe +

1

2
(Mσ2

s + σ2
w) +

M − 1

2
log σ2

w

Since S and Ri are gaussian random variables, the mutual information between the

stimulus and each response can be found to be

I(S;Ri) =
1

2
log(1 +

σ2
s

σ2
r

) (2.3)

11



Using the measures above, the population redundancy r (from definition 16 of previous

section) is given as

r = 1 −
log(1 + Mσ2

s

σ2
w

)

M log(1 + σ2
s

σ2
w
)

(2.4)

Property 4. For the conditionally independent gaussian model, for M ∈ N,

(i) 0 ≤ r ≤ 1

(ii) limM→∞ r = 1

(iii) r is concave in M .

Proof. (i) For any model, from property 1 of introduction, it is known that r ≥ 0. The

lower bound is obvious from equation 2.4.

(ii) From equation 2.4, it is shown that for large M ,

r ∼ 1 − log M

M
(2.5)

Therefore, as M → ∞, r → 1.

(iii) see 2.A

Figure 2.2 plots r as a function of M . It confirms that r is concave in M and that r → 1

as M → 1.

2.2 General Conditionally Independent Model

This section generalizes conditionally independent gaussian model by removing the con-

straint that the stimulus and response are gaussian random variables. For this generalized

model, although the redundancy r cannot be calculated precisely, interesting properties

about r are presented.
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Figure 2.2. redundancy vs. number of neurons for conditionally independent gaussian
model

Definition. The function f : R
2 → R. The stimulus S is a random variable. The noise

Wi are independent random variables and independent of S. Each response Ri = f (S,Wi).

It follows that the population response R1, R2, ..., RM are identically distributed random

variables which are conditionally independent given S. Figure 2.3 illustrates this model.

Property 5. Let rM denote the population redundancy of M neurons. Let δM = rM+1−rM

be the difference in redundancy when an additional neuron is added to the population. For

the general conditional independent model, for M ∈ N

(i) rM is increasing in M

(ii) limM→∞ δM = 0

(iii) rM ≤ 1 for all M

Proof. (i) The goal is to show that δM ≥ 0. By definition, it follows that

13



S

f(S,Wi)

f(S,W2)
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W1

W2

WM
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R2

RM

Figure 2.3. General Conditional Independent Model.

δM =

∑M+1
i=1 H(Ri) − H(R1, ..., RM+1)

∑M+1
i=1 I(S;Ri)

−
∑M

i=1 H(Ri) − H(R1, ..., RM )
∑M

i=1 I(S;Ri)
(2.6)

For this model, it can be shown that

M
∑

i=1

H(Ri|Ri−1, ..., R1) − MH(RM+1|RM , ..., R1) ≥ 0 (2.7)

Therefore, it follows that δM ≥ 0.

(ii)

δM =

∑M
i=1 H(Ri|Ri−1, ..., R1) − H(RM+1|RM , ..., R1)

M(M + 1)I(S;Ri)
(2.8)

≤
∑M

i=1 H(Ri|Ri−1, ..., R1)

M(M + 1)I(S;Ri)
(2.9)

≤
∑M

i=1 H(Ri)

M(M + 1)I(S;Ri)

=
MH(Ri)

M(M + 1)I(S;Ri)

The second inequality follows from the fact that condition

14



lim
M→∞

δM ≤ lim
M→∞

MH(Ri)

M(M + 1)I(S;Ri)
(2.10)

≤ 0 (2.11)

(iii) By definition,

r =

∑M
i=1 H(Ri) − H(R1, ..., RM )

∑M
i=1 I(S;Ri)

(2.12)

(2.13)

The fact that condition

H(R1, ..., RM ) ≤ H(R1, ..., RM |S). (2.14)

Therefore,

r ≤
∑M

i=1 H(Ri) − H(R1, ..., RM |S)
∑M

i=1 I(S;Ri)
(2.15)

(2.16)

The chain rule of mutual information combined with the fact that conditioning reduces

entropy implies that

H(R1, ..., RM |S) =

M
∑

i

H(Ri|S) (2.17)

Using this simplification,

r ≤
∑M

i=1 H(Ri) −
∑M

i H(Ri|S)
∑M

i=1 I(S;Ri)
(2.18)

= 1 (2.19)

2.3 Multiple Clusters Gaussian Model

In the previous two examples, the stimulus is modeled by a single variable. However,

in actual settings, the stimulus is often multidimensional, and different responses encode
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distinct facets of the stimulus. For example, the spectrogram (spatio-temporal represen-

tation) of an audio wave stimulus is multidimensional. Neurons from different regions of

the auditory system may be sensitive to different spatio-temporal aspects of the stimulus.

This model captures the population behavior to multidimensional stimulus by modeling the

stimulus as a random vector and by separating the responses into clusters that react to

different aspects of the stimulus.

Notation:

• n: number of neural clusters

• S: vector stimulus (S1, ..., Sn)

• Mi: number of neurons in cluster i

• W
(i)
j : noise associated with neuron j in cluster i

• R
(i)
j : response of neuron j in cluster i

• W(i): noise for cluster i
(

W
(i)
1 ,W

(i)
2 , ...,W

(i)
Mi

)

• R(i): response of cluster i
(

R
(i)
1 , R

(i)
2 , ..., R

(i)
Mi

)

Definition. In a neural population with n clusters, for each i ∈ {1, ..., n}, cluster i contains

Mi neurons. The total number of neurons M = M1 + M2 + .... + Mn. The stimulus

S = (S1, S2, ..., Sn) where Si are i.i.d N (0, σ2
s ). The noise W

(i)
j are i.i.d ∼ N (0, σ2) and

independent of S. For each cluster i, let the responses R
(i)
j = Si + W

(i)
j . Therefore, for

each cluster, the responses are gaussian random variables conditionally independent given

S. In addition, the responses of different clusters are independent. Figure 2.4 illustrates

this model.

Since all the responses R
(i)
j are gaussian with variance σ2

s +σ2, the entropy of a response

is defined as

H(R
(i)
j ) =

1

2
log(2πe)(σ2

s + σ2) (2.20)
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Figure 2.4. Multiple Clusters Gaussian Model.
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Since the the responses of the n clusters R(1),R(2), ...,R(n) are independent, the joint

entropy is given by

H(R(1), ...,R(n)) =
n
∑

i=1

H(R(n)) (2.21)

=
M

2
log(2πe) +

M − n

2
log σ2 +

n
∑

i=1

1

2
log(Miσ

2
s + σ2)

The mutual information between a S and R
(i)
j is given by

I(S;R
(i)
j ) =

1

2
log(1 +

σ2
s

σ2
) (2.22)

Using the above three measures, the population redundancy r can be found

r = 1 −
∑n

i=1 log(Miσ
2
s

σ2 + 1)

M log(1 + σ2
s

σ2 )
(2.23)

Property 6. For the Multiple Clusters Model,

(i) 0 ≤ r ≤ 1

(ii) limM→∞ r = 1

Proof. (i) By construction, the responses are conditionally independent given the stimulus.

Therefore, the proof is same as that for the conditionally independent gaussian model.

(ii) For large M, the behavior of r becomes

r ∼ 1 − n log M

M
(2.24)

Therefore, r → 1 as M → ∞.

From the properties of r, it can be seen that the redundancy of multiple clusters gaussian

model behaves similar to the conditionally independent gaussian model.
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2.4 Gauss Markov Model

In all the models considered so far, the responses are conditionally independent given

the stimulus. The population redundancy r was seen to behave nicely and be bounded by

one for all the models. This example examines the redundancy when the responses remain

dependent given the stimulus by modeling the responses as a gauss-markov process.

Definition. The stimulus S ∼ N (0, 1). 0 ≤ α ≤ 1. The noise Wi are i.i.d N (0, 1 − α2).

The response of the first neuron R1 = S +W1. For neuron i where i ≥ 2, the response Ri =

αRi−1 +Wi. From construction, the responses R1, R2, ..., RM form a gauss markov process.

In addition, R1, R2, ..., RM are identically distributed (but not independent) N (0, 1). Figure

2.5 provides an illustration.

Since for all i, Ri ∼ N (0, 1). The entropy of of a single response is given as

H(Ri) =
1

2
log(2πe) (2.25)

Using the chain rule of entropy, the joint entropy of R1, R2, ..., RM can be rewritten as

19



H(R1, ..., RM ) =
M
∑

i=1

H(Ri|Ri−1, ..., R1) (2.26)

(2.27)

Since R1, R2, ..., RM form a markov process, Ri is conditionally independent of

Ri−2, ..., R1 given Ri−1. Therefore,

M
∑

i=1

H(Ri|Ri−1, ..., R1) =

M
∑

i=1

H(Ri|Ri−1) (2.28)

Since by construction Ri = Ri−1+Wi for all i > 1, it follows that H(Ri|Ri−1) = H(Wi).

Also, since Wi are i.i.d ∼ N (0, 1 − α2). It follows that

M
∑

i=1

H(Ri|Ri−1) = H(R1) + (M − 1)H(Wi) (2.29)

=
1

2
log πe + (M − 1)

1

2
log πe(1 − α2) (2.30)

The mutual information between S and Ri is defined as

I(S;Ri) = H(Ri) − H(Ri|S) (2.31)

Using recursion, Ri can be rewritten as

Ri = αiS +

i−1
∑

j=0

αjWi−j (2.32)

Substituting equation 2.32 into 2.31, the mutual information becomes

I(S;Ri) = H(Ri) − H(αiS +

i−1
∑

j=0

αjWi−j|S) (2.33)

= H(Ri) − H(

i−1
∑

j=0

αjWi−j|S)
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Using the fact that Wi are i.i.d N (0, 1 − α2) and independent of S,

I(S;Ri) = H(Ri) − H(
i−1
∑

j=0

αjWi−j) (2.34)

= −1

2
log(1 − α2i)

Using the above information theory quantities, the population redundancy r is found

to be

r =
M
2 log 2πe − 1

2 log 2πe + (M − 1)1
2 log 2πe(1 − α2)

∑M
i=1

1
2 log( 1

1−α2i )
(2.35)

Property 7. For the gauss markov model, limM→∞ r = ∞

Proof. It can be shown that
∑∞

i=1 log( 1
1−βi ) converges. Therefore, for large M ,

r ∼ M (2.36)

Figure 2.6 confirms the result that for large M , r scales linearly with M . Unlike the

conditionally independent model, the population redundancy r for the gauss markov model

is not restricted lie within the [0, 1] interval. In fact, r can be unbounded. The gauss

markov model portrays an instance when the redundancy measure from definition 16 fails

to lie within [0, 1], the desired interval.

2.5 Two Layers Mixture Model

Unlike the conditionally independent gaussian model, the gauss markov model does not

give a nice behavior of redundancy. This model combines the conditionally independent

gaussian model and the gauss markov model by separating the responses into two layers.

The first layer has a conditionally independent gaussian structure while the second layer

has a gauss markov structure. This model is consistent with the intuition that actual neural

systems contains multiple layers that perform joint processing of information.
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Figure 2.6. Redundancy vs. No. Neurons for Gauss Markov Model

Notation

• Mi: number of neurons in cluster i

• W i
j : noise associated with neuron j in cluster i

• Ri
j : response of neuron j in cluster i

• Wi: noise for cluster i
(

W i
1,W

i
2, ...,W

i
Mi

)

• Ri: response of cluster i
(

Ri
1, R

i
2, ..., RMi

)

• A: M1 × M2 matrix with each row having the same number of non zeros elements

• k: sparsity of each row of A

Definition. The sparsity of a vector X is the number of non zero elements in X.

Definition. The neural population contains two layers with size M1 × M2 respectively.

The total number of neurons M = M1 + M2. The stimulus S ∼ N (0, α2) for α ≤ 1.
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The noises of the first layer W 1
1 , ...,W 1

M1
are i.i.d N (0, 1 − α2). Each response of the first

layer R1
i = Si + W 1

i . It follows that the responses of the first layer are gaussian random

variables conditionally independent given S. The noises in the second layer W 2
1 , ...,W 2

M2

are i.i.d N (0, 1 − α2) and independent of noises of the first layer W1. Consider A to be

a M1 × M2 matrix with each row having the same sparsity k. That is, each row of A has

k non zero elements. Each non zero element Aij = 1
k . The responses of the second layer,

R2 = AR1 + W2. Thus, each response R2
i is formed by linearly combining k responses

from the first layer and corrupting with noise. Figure 2.7 gives an illustration.

As given in model definition, each neuron in layer one R
(1)
i can be represented as

R
(1)
i = Si + W

(1)
i (2.37)

and each neuron in layer two R
(2)
i can be represented as

R
(2)
i =

M1
∑

j=1

AijRj + Zi (2.38)

= S

M1
∑

j=1

Aij +

M1
∑

j=1

AijWj + Zi
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The covariances of R
(1)
i and R

(2)
i are

Cov[R
(1)
i ] = 1 (2.39)

Cov[R
(2)
j ] = 1 +

(1 − α2)

k
(2.40)

The individual entropies of R
(1)
i and R

(2)
i can be evaluated

H(R
(1)
i ) =

1

2
log 2πe (2.41)

H(R
(2)
i ) =

1

2
log 2πe(1 +

1 − α2

k
) (2.42)

The joint entropy of the population response R
(1)
1 , ..., R

(1)
M1

, R
(2)
1 , ..., R

(2)
M2

is found to be

H(R1, ..., RM1 , R
(2)
1 , ..., R

(2)
M2

) = H(R1, ..., RM1) + H(R
(2)
1 , ..., R

(2)
M2

|R1, ..., RM1) (2.43)

=
1

2
log(2πe)M1(M1α

2 + (1 − α2))(1 − α2)M1−1 (2.44)

+
M2

2
log 2πe(1 − α2) (2.45)

=
M1 + M2

2
log(2πe) +

M1 + M2

2
log(1 − α2)

+
1

2
log(M1α

2 + (1 − α2)) − 1

2
log(1 − α2) (2.46)

The signal-to-noise ratio of responses in layer one SNR1 and layer two SNR2 are

respectively

SNR1 =
α2

1 − α2
(2.47)

SNR2 =
α2(
∑M1

j=1 Aij)
2

(1 − α2)
∑M1

j=1 A2
ij + (1 − α2)

(2.48)

=
α2

1
k (1 − α2) + (1 − α2)

(2.49)

Therefore, the mutual information between S and a single response in layer one R
(1)
i is

I(S;R
(1)
i ) =

1

2
log(1 +

α2

1 − α2
) (2.50)

and the mutual information between S and a single response in layer two R
(2)
i is

I(S;R
(2)
i ) =

1

2
log(1 +

α2

1−α2

k + 1 − α2
) (2.51)
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Using the measure evaluated above, the population redundancy r is found to be

r =
M2
2 log(1 + (1−α2)

k ) + M1+M2
2 log( 1

1−α2 ) − 1
2 log(M1α

2 + (1 − α2)) − 1
2 log( 1

1−α2 )
M1
2 log(1 + SNR1) + M2

2 log(1 + SNR2)

(2.52)

=
M2
2 log(1 + (1−α2)

k ) + M1+M2
2 log( 1

1−α2 ) − 1
2 log(M1α

2 + (1 − α2)) − 1
2 log( 1

1−α2 )

M1
2 log(1 + α2

1−α2 ) + M2
2

1
2 log(1 + α2

1−α2

k
+1−α2

)

(2.53)

Property 8. For the two layer mixture model, for k ∼ M1, M1,M2 ∼ M ,

limM→∞r = 1 (2.54)

Proof. Since k ∼ M1 and M1 ∼ M ,

lim
M→∞

SNR2 =
α2

1 − α2
(2.55)

Substituting this into 2.52 and simplifying it can be seen that

r ∼
M2
2 log(1 + (1−α2)

k ) + M
2 log( 1

1−α2 )
M
2 log( 1

1−α2 )
(2.56)

Since k ∼ M1, it follows that

r → 1 (2.57)

Figures 2.9 and 2.8 show plots of r versus M for the case where M1 = M2 = 1
2M . The

figures show that for M ≤ 30, r ≥ 1, and for M ≥ 30, r ≤ 1. It appears that for small values

of M , the mixture model behaves like the gauss markov model (discussed in section 2.4),

and for large values of M , the mixture model behaves like the conditionally independent

gaussian model (discussed in section 2.1).

2.A Proof Details

This section presents some of the details of proofs in this chapter.
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2.5.1 Conditionally Independent Gaussian Model

I. Redundancy Measure Evaluation

r =
M
2 log 2πe(σ2

s + σ2
w) − (M

2 log 2πe + 1
2(Mσ2

s + σ2
w) + M−1

2 log σ2
w)

M
2 log(1 + σ2

s

σ2
w
)

(2.58)

=
M
2 log(σ2

s + σ2
w) − 1

2 log(Mσ2
s + σ2

w) − M−1
2 log σ2

w

M
2 log(1 + σ2

s

σ2
w
)

(2.59)

=

M
2 log(1 + σ2

s

σ2
w
) − 1

2 log(1 + Mσ2
s

σ2
w

)

M
2 log(1 + σ2

s

σ2
w
)

= 1 −
log(1 + Mσ2

s

σ2
w

)

M log(1 + σ2
s

σ2
w
)

2.5.2 General Conditional Independent Model

I. δM Evaluation

δM =
(M + 1)H(Ri) − H(R1, ..., RM+1)

(M + 1)I(S;Ri)
− MH(Ri) − H(R1, ..., RM )

MI(S;Ri)
(2.60)

=
(M + 1)H(Ri) − H(R1, ..., RM ) − H(RM+1|R1, ..., RM )

(M + 1)I(S;Ri)
− MH(Ri) − H(R1, ..., RM )

MI(S;Ri)

(2.61)

=
H(R1, ..., RM )

I(S;Ri)
(

1

M
− 1

M + 1
) − H(RM+1|RM , ..., R1)

(M + 1)I(S;Ri)

=
H(R1, ..., RM ) − MH(RM+1|RM , ..., R1)

M(M + 1)I(S;Ri)
(2.62)

=

∑M
i=1 H(Ri|Ri−1, ..., R1) − MH(RM+1|RM , ..., R1)

M(M + 1)I(S;Ri)

II. Proof for Property 5(i)

Since R1, R2, ..., RM , RM+1 are identically distributed,

H(Ri|Ri−1, ..., R1) = H(RM+1|Ri−1, ..., R1) (2.63)
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Since conditiong reduces entropy, for all i ≤ M + 1,

H(RM+1|RM , ..., R1) ≤ H(RM+1|Ri−1, ..., R1) (2.64)

Combining equations 2.63 and 2.64, and substituting into equation 2.6, it can be found

that
M
∑

i=1

H(Ri|Ri−1, ..., R1) − MH(RM+1|RM , ..., R1) ≥ 0 (2.65)

2.5.3 multiple clusters gaussian model

I. Redundancy Measure Evaluation

r =
M
2 log(2πe)(σ2

s + σ2) − M
2 log(2πe) − M−n

2 log σ2 −∑n
i=1

1
2 log(Miσ

2
s + σ2)

M
2 log(1 + σ2

s

σ2 )
(2.66)

=
M
2 log(1 + σ2

s

σ2 ) + n
2 log σ2 − 1

2

∑n
i=1 log(Miσ

2
i + σ2)

M
2 log(1 + σ2

s

σ2 )
(2.67)

= 1 −
∑n

i=1 log(Miσ2
s

σ2 + 1)

M log(1 + σ2
s

σ2 )

II. Proof for Property 6

Let β = α2. The goal is to show the convergence of the term
∑∞

i=1 log( 1
1−βi ). Using the

fact that log x ≤ x − 1, it follows that

∞
∑

i=1

log

(

1

1 − βi

)

≤
∞
∑

i=1

(

1

1 − βi
− 1

)

(2.68)

=
∞
∑

i=1

βi

1 − βi
(2.69)

The series
∑∞

i=1
βi

1−βi converges. To see this, use the ratio test (insert reference)
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lim
n→∞

∣

∣

∣

∣

∣

∣

βn+1

1−βn+1

βn

1−βn

∣

∣

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

β − βn+1

1 − βn+1

∣

∣

∣

∣

(2.70)

= β (2.71)

≤ 1 (2.72)

Since the term
∑∞

i=1 log
(

1
1−βi

)

converges, for large M ,

r ∼ M (2.73)
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Chapter 3

Joint Entropy Approximation

For most of the simple models presented in the previous chapter, precise calculation of

the joint entropy of the population response H(R1, R2, ..., RM ) is be feasible. However, in

neural systems, an accurate estimate of the joint distribution of the population response

p(R1, R2, ..., RM ) is necessary in order to calculate the joint entropy. However, for large

M , p(R1, R2, ..., RM ) is a high dimensional probability distribution. Therefore, an accurate

estimate is infeasible due to limited neural data. Therefore, methods are needed to approxi-

mate the joint entropy. In this chapter, a few different approximations for the joint entropy

of the population response are presented. In addition, the performance of the approxima-

tions are analyzed for the conditionally independent gaussian model defined in section 2.1

and the gauss markov model defined in section 2.4. These approximations contain only

pairwise entropies H(Ri, Rj) and single entropies H(Ri). These low dimensional entropies

can be calculated more accurately since only pairwise distributions p(Ri, Rj) and single

distributions p(Ri) are needed.
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3.1 Approximation 1

Definition. The first approximation of the joint entropy of the population response Ĥ1(R)

is defined as

Ĥ1(R) =
2

M − 1

M
∑

i>j

H(Ri, Rj) −
M
∑

i=1

H(Ri) (3.1)

Property 9. The first approximation Ĥ1(R) is perfect if R1, R2, ..., RM are independent.

Proof. If R1, R2, ..., RM are independent, then for all i, j,

H(Ri, Rj) = H(Ri) + H(Rj) (3.2)

Making this substitution in the definition of Ĥ1(R) and simplifying, it follows that

Ĥ1(R) =

M
∑

i=1

H(Ri) (3.3)

Property 10. For M ≥ 3, for all joint distributions p(R), Ĥ1(R) ≥ 0.

Proof. Since, for all i, j, H(Ri, Rj) ≥ max {H(Ri),H(Rj)}, it follows that

2

M − 1

M
∑

i>j

H(Ri, Rj) ≥
M
∑

i=1

H(Ri) (3.4)

For the conditionally independent gaussian model defined in section 2.1, the estimated

joint entropy Ĥ1(R) evaluates to

Ĥ1(R) =
M

2
log(2πe) +

M

2
log

(

2σ2 + σ2
w

σ2 + σ2
w

)

+
M

2
log(σ2

w) (3.5)

The estimated joint entropy will be compared to the actual joint entropy of the condi-

tionally independent gaussian model. The performance of the approximation will be judged

based on the error-ratio.

31



0 100 200 300 400 500
0.95

1

1.05

1.1

1.15

1.2

1.25

Number of Neurons

E
rr

o
r−

R
a

tio

Error−Ratio vs. Number of Neurons

 

 

varS = 1/2, varW = 1/2
varS = 1, varW = 1/2
varS = 1/2, varW = 1

Figure 3.1. Error-ratio vs. M for conditionally independent gaussian model for approxima-
tion 1

Definition 18. Given random variables R1, R2, ..., RM , the error-ratio Er of an joint en-

tropy approximation Ĥ(R1, R2, ..., RM ) is defined to be

Er =
Ĥ(R1, R2, ..., RM )

H(R1, R2, ..., RM )
(3.6)

Note that if the estimator is perfect, then Er = 1.

Figure 3.1 plots Er vs. M for different values of σ2
s and σ2

w. The result shows that

estimator performs well since Er approaches a value slightly above one as for large M .

Figure 3.2 plots Er vs. σ2
w for fixed M and σ2

s . The figure shows that Ĥ1 is a good

estimator since Er approaches a value slightly above one for large M .

Figure 3.3 plots Er vs. σ2
s for fixed M and σ2

w. Like the previous two figures, this figures

shows that Ĥ1 performs well since Er approaches a value slightly above one for large M .

Let Kr denote the covariance matrix of R. For the gauss markov model defined in

section 2.4, the estimated joint entropy Ĥ1(R) evaluates to

Ĥ1(R) =
2

M − 1

M−1
∑

i=1

i
1

2
log(2πe)2(1 − α2(M−i)) − M

2
log(2πe) (3.7)
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=
M

2
log(2πe) +

1

M − 1

M−1
∑

i=1

i log(1 − α2(M−i)) (3.8)

Figure 3.4 plots Er vs. M for different values of α. This figures shows that Ĥ1 is a good

estimator since Er approaches a value slightly above one for large M .
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Figure 3.4. Error-ratio vs M for gauss markov model for approximation 1

Figure 3.5 plots Er vs. α for fixed M . This figures shows that Ĥ1 is a good estimator

for small values of α.

3.2 Approximation 2

Definition. The second approximation of the joint entropy Ĥ2(R) of the population re-

sponse is defined as

Ĥ2(R) =
M
∑

i=1

H(Ri) −
∑

i>j

I(Ri;Rj) (3.9)

Property 11. Ĥ2(R) = H(R) if R1, R2, ..., RM are independent

Proof. if R1, R2, ..., RM are independent, then for all i, j, I(Ri, Rj) = 0. Therefore,

Ĥ2(R) =

M
∑

i=1

H(Ri) (3.10)
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Figure 3.5. Error-ratio vs. α for gauss markov model for approximation 1

The following example shows that for certain distributions of R1, R2, ..., RM , Ĥ2(R) can

be negative. Therefore, it is not a good estimator for those distributions.

Example 2. Let R1 = R2 = ... = RM . The the estimated joint entropy becomes

Ĥ2(R) = MH(R1) −
M(M − 1)

2
H(R) (3.11)

Therefore, Ĥ2(R) < 0 for M > 3.

For the conditionally independent gaussian model, Ĥ2(R) evaluates to

Ĥ2(R) =
M

2
log(2πe) +

M

2
log(σ2 + σ2

w) − M(M − 1)

2
log

(

σ2 + σ2
w

√

σ2
w(2σ2 + σ2

w)

)

(3.12)

Figure 3.6 plots of Er vs. M . Since the plots show that Ĥ2(R) underestimates and

can be negative, it is not a good approximation for the conditionally independent gaussian

model.

For the Gauss Markov Model, Ĥ2(R) evaluates to be
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Figure 3.6. Error-ratio vs. M for conditionally independent gaussian model for approxima-
tion 2

Ĥ2(R) =
M

2
log(2πe) +

1

2

M−1
∑

i=1

i log(1 − α2(M−i)) (3.13)

Figure 3.7 consists of plots of Er vs. M for different values of α. Since Er is close to

one, Ĥ2(R) performs well in estimating the entropy of a gauss markov process with α ≤ 0.5.

Figure 3.8 plots Er vs. α for fixed M. the graph shows that for α ≤ 0.7, Ĥ2(R) is a

good entropy estimator of the gauss markov process.

3.3 Approximation 3

Definition. The third approximation of the joint entropy Ĥ3(R) of the population response

is defined as

Ĥ3(R) =

M
∑

i>j

H(Ri, Rj) − (M − 2)

M
∑

i=1

H(Ri) (3.14)

Property 12. If R1, R2, ..., RM are independent, then Ĥ3(R) = H(R).
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Proof. If R1, R2, ..., RM , then for all i, j , H(Ri, Rj) = H(Ri) + H(Rj). Therefore,

Ĥ3(R) = (M − 1)

M
∑

i=1

H(Ri) − (M − 2)

M
∑

i=1

H(Ri) (3.15)

=

M
∑

i=1

H(Ri)

Similar to Ĥ2(R), Ĥ3(R) can be negative. Specifically, for model given in example 2,

Ĥ3(R) < 0 for M > 3.

For the conditionally independent gaussian model,Ĥ3(R) evaluates to be

Ĥ3(R) =
M(M − 1)

4
log((2πe)2(2σ2 + σ2

w)σ2
w) − M(M − 2)

2
log(2πe(σ2 + σ2

w)) (3.16)

Figure 3.9 plots Er vs. M . It shows that Ĥ3(R) underestimates and can be negative.

Therefore, for the conditionally independent gaussian model, Ĥ3(R) is a poor estimator of

entropy.
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Figure 3.9. Error-ratio vs. M for conditionally independent gaussian model for approxima-
tion 3

For the gauss markov model, Ĥ3(R) evaluates to be
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Ĥ3(R) =
M

2
log(2πe) +

M − 1

2
log(1 − α2) (3.17)

Figure 3.10 shows the plot of Er vs. M . Ĥ3(R) is seen to underestimate the joint

entropy. Therefore, Ĥ3(R) is also a poor entropy estimator for the gauss markov model.

3.4 Summary and Conclusion

In this chapter, three different approximations were analyzed and compared based on

the error-ratio (from definition 18). The approximations were tested on the conditionally

independent gaussian model and the gauss markov model. The results show that approx-

imation one performs well on both models, approximation two performs well only on the

gauss markov model, and approximation three performs poorly on both models. Therefore,

it seems that approximation one is a reasonable estimator for the joint entropy.
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Chapter 4

Application to Zebra Finch Data

Chechik et. al [4] determined the redundancy in the auditory pathway of cats by ap-

plying the redundancy measure r in definition 16 to pairwise neurons. Using data recorded

from inferior colliculus (IC), auditory thalamus (MGB), and primary auditory cortex (A1),

they found that information about the stimulus identity was slightly reduced in A1 and

in MGB neurons in comparison to IC neurons. Therefore, there is a reduction of redun-

dancy in the ascending auditory pathway of cats since neural responses in higher regions

have more correlation. Similar to their analysis, in this chapter, we apply the redundancy

measure r from definition 16 to measurement data from the auditory system of Zebra Finch

Song Birds. However, instead of applying the redundancy measure to pairwise neurons,

we apply it to populations of neurons. Data recorded from the midbrain nucleus, mesen-

cephalicus lateralis dorsalis (Mld) and the primary forebrain region, Field L are used in

the analysis. In the Zebra Finch auditory system, Mld receives information from multiple

lower brainstem auditory nuclei and provides information to the auditory thalamus. Field

L, the avian thalamo-recipient, transmits information to the song nuclei, which responds

with high selectivity to the sound of the birds own song. The goal of this chapter is to

characterize and to distinguish between these two different regions based on their relative

amounts of redundancies.

The stimuli used for the experiments are conspecific songs. Experiments show that these
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songs elicit responses from the Zebra Finch Birds. Figure 4.1 shows the spectrogram (time

frequency plot) of a conspecific stimulus. The presence of the harmonic stacks at specific

times shows that there exists time and frequency correlation in the stimulus.
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Figure 4.1. spectrogram of conspecific stimulus

The neural responses come from single unit recordings. Figure 4.2 gives a single trial

of the response of a neuron to the conspecific stimulus in Figure 4.1. The low number of

spikes confirms that there is limited neural data.

Figure 4.3 shows plots of redundancy r vs. number of neurons M for Mld and field L.

For each given M , the redundancy r is obtained from averaging fifteen different repeats. A

window size of 30 ms was used (see appendix).

Another information measurement of interest is the average information each neuron

in the population transmits about the stimulus. This information measurement provides a

means to verify the redundancy of a population.

Definition 19. Given stimulus S, and population response R1, R2, ..., RM , the transmission
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Figure 4.3. redundancy (r) vs. no. neurons (M) for Mld and field L
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value (T) of the given region is defined as

T =

∑M
i=1 I(S;Ri) − I(R1;R2; ...;RM )

M
(4.1)

In a redundant population, the joint information I(R1;R2; ...;RM ) is high due to strong

correlation between the responses R1, R2, ..., RM . From definition 19, high joint information

between the population response causes the average information transmitted about the

stimulus by each neuron in the population to be low. This aligns with the intuition that in

a redundant population, neurons often contain the same information about the stimulus.

Figure 4.4 contains plots of transmission values vs. number of neurons for Mld and Field

L.
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Figure 4.4. Transmission Values (T) vs. no. neurons (M) for Mld and field L

4.1 Discussion

The main goal of this chapter is to use information measures to distinguish between

neural regions in the auditory system of song birds. Using data from Mld and Field L, the
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simulations show that the two different information measures can be used to characterize

the neural regions. Figure 4.3 shows that the first information measure, redundancy, is

different for the two neural regions. Field L has a redundancy of approximately 15 percent

and Mld has a redundancy of approximately 8 percent, half of that of Field L. Similarly, the

second information quantity considered in this thesis, the transmission value, also nicely

identifies the two brain regions. Figure 4.4 shows that Field L transmits roughly 6.5 bits

per neuron while Mld transmits roughly 4 bits per neuron.

Interpreting the results in Figures 4.3 and 4.4 is slightly more difficult. One hypothesis

suggests that redundancy should decrease in higher processing regions of the brain, result-

ing in more efficient representation and coding of information. This hypothesis has been

confirmed in a recent literature [4], in which the reduction of redundancy in the ascending

auditory pathway of cats was discovered.

However, simulation results in this chapter suggests the converse of the previous hy-

pothesis to be true. Figure 4.3 shows that Field L is more redundant than Mld. Therefore,

redundancy increases in the higher neural region of the auditory system. This result may

be caused by a number of reasons. First, we could be systematically oversampling from one

corner of Field L with similar receptive fields. Therefore, the neurons are all sensitive to the

same type of stimulus and there is high correlation between the responses. Second, our noise

and signal models may not be correct. Third, Mld and Field L may have different coding

strategies. The following hypothesis based on information theory explains this reason in

more detail.

From an information theory point of view, redundancy in a given neural region is de-

termined by the region’s coding constraints, which facilitate computation. For example,

given a neural region with M neurons and no coding constraints, it follows that a neuron’s

response to the stimulus is independent of the response of other neurons. Hence, 2M dif-

ferent representations are possible. On the contrary, consider a region of M ’grandmother

cells’ where only one neuron can spike in response to the stimulus. With this strict coding

constraint, only M representations are possible. In addition, the population is redundant

since all except one neuron remain silent. From these two examples, it can be seen that
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information theory suggests another hypothesis of information processing in neural systems.

This hypothesis implies that different regions have different coding constraints, leading to

different redundancies. Therefore, higher regions may not code less redundantly as a result

of tighter coding constraints.

4.A Methods

To calculate the redundancy r for a population of neurons, it is necessary to find

1. H(R1, R2, ..., RM )

2. H(Ri) for all i ∈ {1, 2, ...,M}

3. I(S;Ri) for all i ∈ {1, 2, ...,M}

Approximation Ĥ1 is to to calculate (1). Therefore, for all i, j, the following distributions

have to be estimated from data,

1. p(Ri)

2. p(Ri, Rj) for all i, j ∈ {1, 2, ...,M}.

3. p(S;Ri) for all i ∈ {1, 2, ...,M}

Notation

• S: stimulus (in spectrogram form)

• f × n: dimensions of stimulus

• w: window size

• Si: stimulus block from time w(i − 1) to wi

• Ri: response i

• T : total number of response trials to stimulus S
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Figure 4.6. Division of Concatenated Response into Blocks.

• R
(j)
i : trial j of response i

• R̂i: concatenated response i, (R
(1)
i , R

(2)
i , ..., R

(k)
i )

• k: number of blocks n
w

1. Estimating p(Ri)

For neuron i, the concatenated response R̂i is formed by joining the T response trials

into one long row vector as shown in figure 4.5. The concatenated response R̂i is separated

into block of length w: R̂i(1 : w), R̂i(w : 2w),...,R̂i(w(k− 1) : wk). This process is shown in

figure 4.6. The number of spikes in each block is used to form the probability distribution

p(Ri).

2. Estimating p(Ri, Rj)

For neurons i, j, the concatenated responses R̂i and R̂i are separated into blocks of length

w: R̂i(1 : w), R̂i(w : 2w),...,R̂i(w(k − 1) : wk) and R̂j(1 : w), R̂j(w : 2w),...,R̂j(T (w − 1) :

Tw). The spike counts in each corresponding pair of blocks R̂i(w(c−1) : wc), R̂j(w(c−1) :

wc) are used to determine the probability distribution p(Ri, Rj).
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3. Estimating p(S,Ri)

The stimulus is separated into blocks of length w: S1, S2,...,ST . Similarly, the response

Ri is separated into blocks of length w: Ri(1 : w), Ri(w : 2w),..., Ri(w(k − 1) : wk). The

stimulus blocks S1, S2, ..., Sk are assumed to be i.i.d. Therefore, for each c ∈ {1, 2, ..., k}, the

response block Ri(w(c − 1) : wc) corresponds to stimulus block Sc. The number of spikes

in each trial of the response block Ri(w(c − 1) : wc) is used to determine the probability

distribution p(Rc|Sc). That is, the number of spikes in each R
(1)
i (w(c− 1) : wc), R

(2)
i (w(c−

1) : wc),...,R
(T )
i (w(c− 1) : wc) is used to determine p(Rc|Sc). Finally, by assuming that the

stimulus is uniformly distributed over {S1, S2, ..., Sk}, the distribution p(S,Ri) given as

p(S,Ri) =

k
∑

c=1

p(Rc|Sc)
1

k
(4.2)

4. Window Size

In estimating the mutual information between stimulus and response I(S;Ri), it is

assumed that the stimulus is divided into i.i.d blocks of window size w. Another method of

estimating mutual information is by modeling the spiking neurons as gamma processes [2].

We assumed that the gamma approach gives a good estimate of mutual information. Figure

4.7 compares the mutual information calculated assuming i.i.d stimulus blocks with mutual

information calculated assuming gamma model for different window sizes. It can be seen

that for window sizes of 30 and 50 ms, the two mutual informations correspond closely.

Therefore, a window size of 30 ms was chosen in estimating the quantities I(S;Ri), H(Ri)

and H(R1, R2, ..., RM ).
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Figure 4.7. Comparison of Mutual Information
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Chapter 5

An Alternative Approach to

Redundancy

Definition 17 (from chapter 1) implies that population redundancy can be charac-

terized by the mutual information between the stimulus and the population response

I(S;R1, R2, ..., RM ). However, an accurate estimate of the high dimensional probability

distribution p(S,R1, R2, ..., RM ) is necessary to obtain a precise calculation of the mutual

information. This is difficult in the presence of limited neural data. The goal of this chapter

is to present a coarse characterization of population redundancy via describing the scaling

behavior of I(S;R1, R2, ..., RM ) in M .

5.1 Simple Examples

In this section, the mutual information between stimulus and population response

I(S;R1, ..., RM ) will be characterized as a function of M for a series of simple examples.

5.1.1 Gaussian Stimulus through Gaussian Channel

First, the conditionally independent gaussian model from section 2.1 is analyzed. Since

the neural responses come from single unit recordings, they can be assumed to be condi-
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tionally independent given the stimulus. The mutual information between stimulus and

population response evaluates to

I(S;R1, R2, ..., RM ) =
1

2
log(1 + M

σ2

σ2
w

) (5.1)

Therefore, for large M , it follows that

I(S;R1, RM , ..., RM ) ∼ log M (5.2)

Since d log M
dM → 0, for M large, an additional neuron provides negligible new information

about the stimulus. This is consistent with the intuition that there is an inherent degree

of redundancy in the responses R1, ..., RM since they are jointly dependent through the

stimulus. In addition, the information in the stimulus is limited in the first place since

H(S) is bounded. Therefore, when the population is large, additional neurons will not

increase the information in the population response.

5.1.2 Binary Stimulus through Binary Symmetric Channel

This second model assumes that the stimulus and the responses are binary. This example

captures the spiking nature of the responses.

Definition 20. Let S ∼ B(1
2). Let W1,W2, ...,WM be i.i.d B(ǫ) for 0 < ǫ < 1. Each

response Ri = S ⊕ Wi where ⊕ is the modulo two sum. Therefore, Ri is the result of S

passed through a binary symmetric channel with cross over probability ǫ as shown in figure

5.1. It follows that R1, R2, ..., RM are bernoulli random variables conditionally independent

given S.

Definition 21. Let R1, R2, ..., RM be bernoulli random variables. The majority vote Λ(R)

where R = R1, R2, ..., RM is defined as

Λ(R) = 1(

M
∑

i=1

Ri ≥
M

2
) (5.3)
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Figure 5.1. Binary Symmetric Channel.

It can be shown that Λ(R) is a sufficient statistic of R. Therefore, S and R are condi-

tionally independent given Λ(R).

By the chain rule of mutual information, I(S;R,Λ(R)) can be simplied to be

I(S;R,Λ(R)) = I(S; Λ(R)) + I(S;R|Λ(R)) (5.4)

= I(S; Λ(R)) (5.5)

Similarly, from the conditional independence of S and R given Λ(R), it follows that

I(S;R,Λ(R)) = I(S;R) + I(S; Λ(R)|R) (5.6)

= I(S;R) (5.7)

Therefore,

I(S;R) = I(S; Λ(R)) (5.8)

Definition 22. For this bernoulli example, the maximum likelihood estimate Ŝ of stimulus

S given responses R1, R2, ..., RM is

Ŝ = arg max
s∈{0,1}

p(R1, R2, ..., RM |s) (5.9)

and the probability of error Pe associated with this estimate is defined to be

Pe = p(Ŝ 6= S) (5.10)

51



It can be shown that the maximum likelihood test simplifies to

Ŝ = Λ(R) (5.11)

and Λ(R) ∼ B(1
2). Therefore, it follows that

I(S;R) = H(Λ(R)) − H(Λ(R)|S) (5.12)

= 1 − H(Pe) (5.13)

≤ 1 − Pe (5.14)

For large M , H(Pe) ≈ Pe. Hence, the bound in the last step becomes tight.

The Chernoff Bound [5] states that the error exponent is given by the KL divergence

between the stimulus distribution and the noise distribution. That is,

log Pe = D(
1

2
||ǫ) (5.15)

Therefore, the mutual information I(S;R) can be approximated by

I(S;R) ≈ 1 − 2MD( 1
2
||ǫ) (5.16)

As the number of neurons increase, the mutual information between stimulus and pop-

ulation response approaches one bit exponentially fast. This is intuitive since H(S) = 1.

Thus, the maximum information in the stimulus is one bit. This characterization of in-

formation states that for large populations, an additional neuron will give negligible new

information about the stimulus.

5.1.3 Bernoulli Stimulus with Choosing Probability

In both of the previous examples, the responses R1, R2, ..., RM are identically dis-

tributed. That is, p(R1) = p(R2) = ... = p(RM ). Furthermore, for every neuron, the

probability distribution of its response conditioned on the stimulus P (Ri|S) is the same

as other neurons in the population. In actual neural systems, different neurons may be
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sensitive to different realizations of the stimulus . Therefore, these models may have lim-

ited impact in characterizing encoding of neural systems. In this section, a model in which

different neurons react to different realizations of the stimulus is presented.

Notation:

• S: vector stimulus (S1, S2)

• S: set of all realizations of S

• P(S): power set of S

• Pc: choosing probability

• Fi: receptive field for neuron i

• Ri: response of neuron i

• R: population response (R1, R2, ..., RM )

Definition 23. A neuron’s receptive field is the feature in the stimulus which elicits a

response in the neuron.

Definition 24. The stimulus S = (S1, S2) where S1, S2 i.i.d ∼ B(1
2). The set of all real-

izations of the stimulus S = {(0, 0), (0, 1), (1, 0), (1, 1)}. The ’choosing probability’ Pc is a

probability distribution over the set of all realizations S. The receptive fields for the neurons

F1, F2, ..., FM are modeled as i.i.d random variables each with probability distribution Pc.

Therefore, for all i, for all s ∈ S, p(Fi = s) = Pc(s). Each response, Ri = 1 {Fi = S}.

Therefore, each response chooses a receptive field independently from other responses and

reacts if the stimulus corresponds with its chosen receptive field.

Unlike the previous models, a direct characterization of the mutual information between

stimulus and population response I(S;R) is difficult. Therefore, the expectation over the

choosing probability of the mutual information EPc [I(S;R)] is analyzed in order to give a

coarse characterization of the population redundancy.

Definition 25. For T ∈ P(S), AT is the event that F1, F2, ..., FM take values only in T .
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Example 3. Let T = {{0, 0} , {0, 1}}. AT is the event that for all i ∈ {1, ...,M}, Fi takes

the value {0, 0} or {0, 1}.

The expected mutual information can then be evaluated to be

EPc [I(S;R)] = EPc [H(R) − H(R|S)] (5.17)

= EPc [H(R)] (5.18)

(5.19)

For T ∈ P(S), let HT (R) be H(R) in the event AT . The expected mutual information

then becomes

EPc [I(S;R)] = EPc [H(R)] (5.20)

=
∑

T ∈P

(S)P (AT)HT(R) (5.21)

For each T ∈ P(S), HT (R) is evaluated to be

HT (R) =























H(1
4 ), |T | = 1

H(1
4 ) + 1

3H(1
3 ), |T | = 2

H(1
4 ) + 1

3H(1
3 ) + 1

2H(1
2), |T | = 3, |T | = 4

(5.22)

For T ∈ P(S), for |T | = i, let s1, s2, ..., si be the elements of T . For |T | = 1, the

probability of AT is evaluated to be

P (AT ) = PM
c (s1) (5.23)

For |T | = 2,

P (AT ) =
M−2
∑

i=1

M−i−1
∑

j=1

(

M

i

)(

M − i

j

)

P i
c(s1)P j

c (s2)PM−i−j
c (s3) (5.24)
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For |T | = 3,

P (AT ) =

M−2
∑

i=1

M−i−1
∑

j=1

(

M

i

)(

M − i

j

)

P i
c(s1)P j

c (s2)PM−i−j
c (s3) (5.25)

For |T | = 4,

P (AT ) =

M−2
∑

i=1

M−i−1
∑

j=1

M−i−j−1
∑

k=1

(

M

i

)(

M − i

j

)(

M − i − j

k

)

× (5.26)

P i
c(s1)P j

c (s2)PM−i−j
c (s3)PM−i−j−k

c (s4)

Figure 5.1.3 plots EPc [I(S;R)] vs. M for two different neural populations. In popu-

lation one, the responses have choosing probabilities denoted by P1 where all realizations

of the stimulus are equally likely. That is, P1(0, 0) = P1(0, 1) = P1(1, 0) = P1(1, 1) = 1
4 .

For population two, the responses have choosing probability P2 where one of the realization

have very high probability while the other three have very low probability. The choosing

probability is such that P2(1, 1) = 97
100 and P2(0, 0) = P2(0, 1) = P2(1, 0) = 1

100 . It can

be seen that for both populations, the information approaches the information in the stim-

ulus (two bits) exponentially fast. However, population one approaches at a much faster

rate than population two. This suggest that given M neurons, population one will give

more information than population two. Therefore, population two is more redundant. The

choosing probability P2 causes most of the neurons in population two to have the same

receptive field realization. Therefore, with high probability, additional neurons will not give

new information about the stimulus.

5.2 Information Upper Bound

The goal of this section is to present an upper bound of mutual information for a

generalized model. The main assumption is that a neuron’s response at time t is only

dependent on the stimulus from time t − w to t for some window size w. That is, given

stimulus S(t), neural response R(t) is only dependent on S(τ) for τ ∈ [t − w, t].

Notation
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• S: stimulus (in spectrogram form)

• S: set of all realizations of stimulus

• f × n: dimensions of S

• M : number of neurons

• Fi: receptive field of neuron i

• w: width of receptive field

• Xi: f × w block of stimulus from time w(i − 1) to wi

• Ri: response of neuron i (from time 1 to time n)

• Ri(a : b): Ri from time a to time b

• R: population response (R1, R2, ..., RM )

• R(a : b): population response from time a to time b (R1(a : b), R2(a : b), ..., RM (a : b))

• X : set consisting of all receptive field realizations, each of size f × w.
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• Pc: choosing probability (distributed over X )

• A: event that S can be reconstructed perfectly from responses R

Definition. X1, ...,X n
w

are i.i.d stimulus blocks. Note that S = (X1,X2, ...,X n
w
). The

receptive fields F1, F2, ..., FM are i.i.d random variables with distribution Pc. Therefore, for

all i, for all x ∈ X , p(Fi = x) = Pc(x). Let the function g : S × X → {0, 1}n. Each

response, Ri = g(S,Fi). Therefore, each response chooses a receptive field independently

from other responses and reacts according to the stimulus and its chosen receptive field.

The mutual Information between the stimulus and population response is evaluated to

be

I(S;R) = I(X1,X2, ....Xn/w;R) (5.27)

=

n/w
∑

i=1

I(Xi;R|Xi−1) (5.28)

=

n/w
∑

i=1

I(Xi;R,Xi−1) − I(Xi;Xi−1) (5.29)

Since Xi are i.i.d, I(Xi;Xi−1) = 0. Therefore,

I(S;R) =

n/w
∑

i=1

I(Xi;R,Xi−1) (5.30)

=

n/w
∑

i=1

I(Xi;R) + I(Xi;X
i−1|R) (5.31)

(5.32)

However, since the receptive fields are of width w, only the block R(w(i−1) : wi+w) of

the population stimulus gives information on Xi. From Xi−1, only Xi−1 affects R(w(i−1) :

wi + w). Therefore, Xi and Xi−2 are conditionally independent given R and Xi−1. The

mutual information then simplifies

I(S;R) =

n/w
∑

i=1

I(Xi;R) + I(Xi;Xi−1|R) (5.33)
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Recall that distribution Pc is the choosing probability, and A is the event that the

stimulus S can be reconstructed perfectly from population response R. Let IA(S;R) denote

I(S;R) when A occurs. The normalized expected mutual information evaluates to be

1

n
EPc [I(S;R)] =

1

n
P (A)IA(S;R) +

1

n
P (Ac)IAc(S;R) (5.34)

≤ P (A)

n
IA(S;R) (5.35)

Using 5.33, the expected mutual information becomes

1

n
EPc [I(S;R)] ≤ P (A)

n





n/w
∑

i=1

IA(Xi;R) + IA(Xi;Xi−1|R)





Since A is the event that the stimulus S can be reconstructed perfectly from population

response R, for all i, HA(Xi|R) = 0. Therefore, IA(Xi;Xi−1|R) = 0, and

1

n
EPc [I(S;R)] ≤ P (A)

n

n/w
∑

i=1

IA(Xi;R) (5.36)

≤ P (A)

n

n/w
∑

i=1

H(Xi) (5.37)

Since Xi are i.i.d

1

n
EPc [I(S;R)] ≤ P (A)

n

n

w
H(X) (5.38)

≤ P (A)

w
H(X)

Therefore, the expected mutual information between stimulus and response is upper

bounded by P (A)
w H(X). For fixed w and X, this bound depends on P (A), the probability

that all receptive fields are chosen by the neural population. Since P (A) is governed by the

choosing probability Pc, the mutual information can be characterized by Pc. For large M ,

58



this bound is tight since for all Pc, P (Ac) → 0 as M → ∞. Therefore, this model suggests

that if different neural regions have distinct choosing probabilities, then they can can be

distinguished by their respective redundancies.
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