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Abstract

Machine Learning in the Presence of an Adversary: Attacking and Defending

the SpamBayes Spam Filter

by

Udam Saini

Master of Science in Computer Science

University of California at Berkeley

Professor Anthony D. Joseph, Research Advisor

Machine learning techniques are often used for decision making in security

critical applications such as intrusion detection and spam filtering. However, much of

the security analysis surrounding learning algorithms is theoretical. This thesis provides

a practical evaluation of the algorithms used by SpamBayes, a statistical spam filter, to

determine its ability to correctly distinguish spam email for normal email when learning

in the presence of an adversary.

This thesis presents both attacks against SpamBayes and defenses against these

attacks. The attacks are able to subvert the spam filter by both causing a high per-

centage of false positives and false negatives. With only a 100 attack emails, out of an

initial training corpus of 10,000, the spam filter’s performance is sufficiently degraded

to either cause a denial of service attack or successfully allow spam emails to bypass

the filter. The defenses shown in this thesis are able to work against the attacks devel-

oped against SpamBayes and are sufficiently generic to be easily extended into other

statistical machine learning algorithms.
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Chapter 1

Introduction

Statistical machine learning algorithms are used in many areas of computing

in order to make intelligent decisions on the classification of data. These algorithms

learn on a set of data, either in an online or offline manner, to produce a set of rules

and patterns it can base future data classifications.

These algorithms are used to adapt the application to the changing flow of data

around it by constantly training or retraining on new information. Since the algorithm

is constantly adapting itself to new information, the application does not have to be

changed or rewritten to accommodate a shifting computing environment. This property

also makes the application more malleable to its use.

Often, security sensitive tasks, such as network intrusion/extrusion detection,

financial fraud detection, virus and worm detection, and spam filtering use statistical

machine learning algorithms to improve data classification [5, 12, 13, 17, 18, 23]. The

key strength of machine learning is its adaptability; however, this strength becomes a

weakness when an adversary manipulates the learner’s environment. With the continual

growth of malicious activity and electronic crime, the increasingly widespread adoption

of learning makes assessing the vulnerability of machine learning systems an essential

security task.

In this thesis, I look at SpamBayes1 (spambayes.sourceforge.net) [22], a statisti-

cal spam filter that uses a naive Bayes learning algorithm. Many other spam filters, such

as SpamAssassin (spamassassin.apache.org) and BogoFilter (bogofilter.sourceforge.net),

use a similar Bayesian classifier. The primary difference amongst these learners is in

the email tokenization process.
1a popular spam filter with over 700,000 downloads
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Figure 1: Attacks discussed in this thesis have two main goals. Either the attacker

attempts to cause SpamBayes to misclassify ham emails as spam or causes SpamBayes

to misclassify spam emails as ham emails.

This thesis focuses on SpamBayes as it uses a pure machine learning algorithm

for spam filtering, and it has received prior attention in the academic community [16].

Since other spam filters use a similar method for classifying spam, the attacks and

defenses presented may readily apply to other spam filters as well. It is also important

to note that other spam filters, such as SpamAssassin, may only use the learner as part

of its filtering system.

I demonstrate the effectiveness of subverting the learning process of spam filters

by presenting two attacks against SpamBayes. A key difference, in the method of attack,

is that the adversary sends malicious emails that alter the trained model of the spam

filter rather than simply attempting to bypass the filter. As illustrated in Figure 1,

the adversary can either send attack email such that future legitimate email (or ham)

becomes classified incorrectly or future spam email from the adversary is placed into

the user’s inbox.

In the first attack, the adversary can either target a specific important email to

be misclassified or all legitimate email. In the first variation of the attack, the adversary

may not want a competitor’s email to be sent to their customer. In the latter variation,

the adversary may be a spammer who wishes to frustrate the user until the user turns off

his spam filter due to many normal legitimate email being filtered into the spam folder.

Once the spam filter is turned off, all spam email will be seen in the user’s inbox. In the

second attack, the adversary sends email that appears to be legitimate to the user, and

thus is trained as a non-spam email, but contains important header information that is

specific to the adversary. After the training phase, the adversary can later send spam
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email that contains this header information, so that the spam email is misclassified.

Two different and orthogonal defenses are presented to prevent email classifi-

cation error due to adversarial attacks on the training process. Although these defenses

are preliminary in nature, initial experimental evidence shows that the defenses are suc-

cessful in preventing some of these attacks from succeeding. The Reject On Negative

Impact (RONI) defense tests the impact each email has on the trained model, and if

this impact is largely negative, the email is removed from the training set. Orthogonal

to this defense is the dynamic threshold defense, which dynamically alters SpamBayes’

classification thresholds based on the shifting data rather than maintaining fixed thresh-

olds.

My experimental results indicate that both of the attacks presented are ex-

tremely effective in misclassifying emails. These attacks, and their variations, work well

even when only 1% of the training data is poisoned with the adversary’s attack emails.

The defenses are currently only effective in preventing the success of these attack emails

when the attacks affect features present in current emails. For instance, these defenses

are not very effective when the malicious emails only influence features present in future

emails the spam filter has not yet seen.

In the chapters that follow, I first discuss other related work regarding learning

in the presence of an adversary (Chapter 2). Chapter 3 provides a discussion on the

algorithms used in SpamBayes and the training model assumed throughout the thesis.

Chapter 4 presents the framework used for the attacks along with a discussion of the at-

tacker’s capabilities in carrying these attacks through against the spam filter. Chapter 5

motivates and explains two orthogonal defense strategies. Next, Chapter 6 illustrates

the success of the attacks and defenses, followed by a discussion of these results and

future research directions (Chapter 7).
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Chapter 2

Related Work

There are several papers that analyze the security of different machine learning

techniques. This section presents several related pieces of work in this area. Many works

in the literature focus on exploiting the application after the learning phase. Fogla and

Lee are able to fool intrusion detection systems through the use of a polymorphic blending

attack [7], an attack that encrypts malicious traffic so as to appear identical to normal

traffic. Wittel and Wu along with Lowd and Meek demonstrate a good words attack

that adds words that are indicative of non-spam to spam emails [15, 24]. This makes

spam email appear closer to non-spam email, especially if a large number of good words

are added to the email to counteract the spam words.

In a more theoretical perspective, Lowd and Meek look at spam classifiers

and try to reverse engineer the classification system [14]. They try to determine the

adversary’s cost of the attacks and try to seek the minimal cost message that bypasses

the spam filter. Kearns and Li bound the classification error the adversary can cause,

in the probably approximately correct learning framework, with control over a fraction

of the training set [10].

Newsome, Karp, and Song explore attacks against the learning component of

polymorphic virus detectors [19]. These attacks involve adding extra unnecessary infor-

mation to the malicious data, a red herring attack. They focus primarily on conjunction

learners, exploiting specific weaknesses against this type of learner. Also, suggested in

the paper, is the correlated outlier attack, which causes a naive-Bayes-like learner to

train on additional spurious features of an attack instance as being malicious. This will

lead to the filter blocking innocuous traffic that have traces of the spurious features

causing a Denial of Service.
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Chung and Mok present another Denial of Service attack against the Auto-

graph worm signature generation system [2]. Autograph works by detecting infected

nodes by behavioral scanning patterns, and then infers additional behavioral rules by

monitoring the traffic patterns of the infected nodes. In the attack, a node convinces

Autograph it is malicious by scanning the entire network, and then later sends traffic

that mimics other legitimate traffic, which will effectively cause normal traffic to be

blocked.
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Chapter 3

Spambayes

SpamBayes classifies using token scores based on a simple model of spam status

proposed by Robinson [20], based on ideas by Graham [9], together with Fisher’s method

for combining independent significance tests [6]. This method is similarly used by other

statistical spam filters such as the ones found in SpamAssassin and BogoFilter.

SpamBayes tokenizes the header and body of each email before constructing

token spam scores. Robinson then assumes that the presence or absence of possible

tokens independently affects an email’s spam status. For each possible token w, the raw

token spam score

PS(w) =
NHNS(w)

NHNS(w) +NSNH(w)
(3.1)

is computed from the training set counts NS , NH , NS(w), NH(w)—the number of spam

emails, ham emails, spam emails including w and ham emails including w.

Robinson smooths PS(w) through a convex combination with a prior belief x,

weighting the quantities by N(W ) (the number of training emails with w) and s (chosen

for strength of prior), respectively:

f(w) =
s

s+N(w)
x+

N(w)
s+N(w)

PS(w) . (3.2)

Robinson combines the smoothed token scores with two applications of Fisher’s

method into a message score

I =
1 +H − S

2
∈ [0, 1] , (3.3)

where H = 1− χ2
2n

(
−2

∑
w∈E′

log f(w)

)
(3.4)

and χ2
k (·) denotes the cumulative distribution function of the chi-square with k degrees

of freedom. S is defined like H, with f(w) replaced by 1−f(w). SpamBayes sums up to



7

150 of the tokens having scores furthest from 0.5 that are outside the interval [0.4, 0.6]

(the set E’ in (3.4)). SpamBayes predicts by thresholding against two user-tunable

thresholds θ0, θ1, with defaults θ0 = 0.15 and θ1 = 0.9:

ŷsb(E) =


Spam , I > θ1

Unsure , θ1 ≥ I > θ0

Ham , otherwise

.

The inclusion of an unsure category prevents us from purely using misclassi-

fication rates (false positives and false negatives) for evaluation. I must also consider

spam-as-unsure and ham-as-unsure emails. As described below, I treat unsure classifi-

cations as errors on ham emails, though not as serious as spam classifications.

3.1 Email Training

In this section, I describe the typical SpamBayes usage scenarios that I assume

in designing my attacks. SpamBayes automatically produces a classifier from labeled

examples that it then uses to label future emails. An email can be given the labels spam

(bad, unsolicited email), ham (good, legitimate email), or unsure (SpamBayes is not

confident one way or the other). The classifier is constructed from a labeled training

set of emails of ham and spam.

Email clients use these labels in different ways—some clients filter email labeled

as spam and unsure into “Spam-High” and “Spam-Low” folders, respectively, while

other clients only filter email labeled as spam into a separate folder. Since the typical

user reads most or all email in their inbox and rarely (if ever) looks at the spam/spam-

high folder, the unsure labels can be problematic. If unsure messages are filtered into a

separate folder, users must periodically read the messages in that folder to avoid missing

important emails. If instead unsure messages are not filtered, then the user faces those

messages when checking the email in their inbox. Too much unsure email is almost as

troublesome as too many false positives (ham labeled as spam) or false negatives (spam

labeled as ham). In the extreme, if everything is labeled unsure then the user obtains

no time savings at all from the filter.

It can be considered that there is some probability p that the user checks an

email in their “Spam-Low” folder, which is greater than the probability a user looks at

their “Spam-High” folder, but less than the probability a user checks the emails in their

inbox. Thus, with probability 1-p the user does not see a ham email that gets classified



8

as unsure, and with probability p the user does see a spam email that is classified as

unsure. Thus, an unsure classification cannot be considered a success for SpamBayes for

either ham emails or spam emails, but neither of these are as detrimental as pure false

positives and false negatives since the “Spam-Low” folder is looked at only infrequently.

In my scenarios, an organization uses SpamBayes to filter multiple users’ in-

coming email1 and trains on everyone’s received email. SpamBayes may also be used

as a personal email filter, in which case the presented attacks and defenses are likely to

be equally effective.

To keep up with changing trends in the statistical characteristics of both legit-

imate and spam email, I assume that the organization retrains SpamBayes periodically

(e.g., weekly). While the training set could be constructed in several different ways,

for simplicity, we assume a self training procedure where the filter is retrained on all

received ham and spam email, which has been labeled by the previous version of the

classifier (potentially with some human-provided corrections of the classifier’s mistakes).

Other practical methods for creating the training set include: manually inspecting and

hand labeling a randomly selected fraction of email; retraining only on the mistakes

made by the previous version of the classifier, using correct labels provided by a human.

1I use the terms user and victim interchangeably to refer to either an organization or individual
member; the meaning will be clear from context.
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Chapter 4

Attacks

4.1 Framework

To better understand potential attacks, I first analyze the security goals of

the spam filter, and the threat model. The security within a system is established to

prevent a security goal from being violated while a threat model describes the adversary

in detail, explaining the adversary’s capabilities. For spam filtering, there are usually

multiple security goals.

In this section, I analyze the security goals and threat model for SpamBayes

in the context of a general taxonomy for learning systems developed by Barreno et al

[1]. A spam filter’s goal is to prevent most, if not all, spam email from reaching the

user’s inbox. Another goal is to keep all legitimate email from being filtered away into

the spam folder. If either one of these goals are violated, the security of the system can

be said to be compromised.

There is a clear connection between false negatives and violation of the integrity

goal: spam email reaches the user’s inbox. Likewise, false positives tend to violate the

availability goal because the learner itself denies legitimate email by placing it in the

spam folder.

In my threat model, the attacker has knowledge of the algorithms used by

SpamBayes. The adversary, in some cases, may have knowledge of some of the future

emails that will be received by the spam filter (e.g. specific words that will appear even-

tually) after the learner has finished its training. Another important attacker capability

is the ability to generate email that will be used in the training set when the learner

retrains.
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I limit the attacker from having arbitrary control over the training set. If the

adversary has total control of the data learned by the system, it would be difficult for

the system to learn anything useful, and would be nearly impossible to defend against.

Thus, as a reasonable limit for my attacks, I prevent the adversary from having more

than 10% control of the training data.

Barreno et al developed a taxonomy with three axes that categorizes attacks

against learning systems:

Influence

• Causative attacks affect the learning phase by sending malicious email, which

ends up being used in the training set.

• Exploratory attacks exploit errors in email classifications, but do not affect

training.

Security violation

• Integrity attacks compromise the system via false negatives.

• Availability attacks cause denial of service, usually via false positives.

Specificity

• Targeted attacks focus on a particular email.

• Indiscriminate attacks encompass a wide range of emails.

The first axis describes the capabilities of the attacker: whether (a) the at-

tacker has the ability to influence the training data that is used by the spam filter

(a causative attack) or (b) the attacker does not influence the learned model, but can

send new instances to the classifier and possibly observe its decisions on these carefully

crafted instances (an exploratory attack). In one sense, causative attacks are more fun-

damentally learning attacks than exploratory attacks are: while many types of systems

perform poorly on cleverly modified instances, only systems that learn from data can

be led by an attacker to form incorrect models or choose poor hypotheses. On the

other hand, the hypotheses produced by learning algorithms have certain regularities

and structures that an attacker may be able to exploit in an exploratory attack, so it is

certainly worthwhile to consider them carefully alongside causative attacks.

The second axis indicates the type of security violation the attacker causes:

(a) to create false negatives, in which spam email slip through the filter (an integrity
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violation); or (b) to create a denial of service, usually by inducing false positives, in

which ham email are incorrectly filtered (an availability violation).

The third axis refers to how specific the attacker’s intention is: whether (a)

the attack is highly targeted to degrade the classifier’s performance on one particular

email or (b) the attack aims to cause the classifier to fail in an indiscriminate fashion

on a broad class of messages. Each axis, and especially this one, is actually a spectrum

of choices.

In this thesis, I discuss attacks that would fall under the causative availability

and causative integrity attacks.

• Causative Availability attacks attack the learning component of the system and

attempt to cause innocuous data to be flagged as malicious and filtered away.

• Causative Integrity attacks attack the learning component of the system and at-

tempt to cause malicious data to be deemed innocent and let through.

For spam messages, causative availability attacks manipulate the spam filter’s train-

ing data to increase the number of false positive, that is the number of ham emails

incorrectly classified as spam. The causative integrity attacks increase the number of

false negatives, that is the number of spam emails incorrectly classified as ham through

training data manipulation.

The attacks discussed in this thesis fall under both indiscriminate and targeted

attacks. Specifically, one of the causative availability attacks presented is a targeted

attack as the adversary targets a specific ham message to be classified as spam. In

a variation of this attack, the adversary targets all ham messages to be misclassified,

which can be considered an indiscriminate attack. In another indiscriminate attack, the

adversary causes all spam emails sent by the adversary to be classified as ham. This

attack is not completely indiscriminate as the adversary does not attempt to cause the

misclassification of spam emails that are sent by other spammers.

4.2 Attacks Overview

An adversary who is trying to cause their to be spam seen, has two primary

long-term goals when trying to subvert the spam filter: (1) to get spam messages suc-

cessfully through the spam filter or (2) to cause enough ham messages to be misclassified

such that the user turns off the spam filter. Thus, it is the job of the spam filter to

successfully classify both ham and spam messages properly when being bombarded by
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Figure 2: Once the user grows frustrated enough with the inaccuracy of the spamfilter,

the user will turn it off causing all email to reach the user’s inbox.

attack emails. Otherwise the adversary can take advantage of either type of email

misclassification. Both false positives and false negatives must be minimized.

Much of the previous literature in this area focuses on adversarial attacks

with short-term goals that try to send spam successfully through the spam filter. These

attacks are against a trained filter, and do not attempt to poison the learning process. At

best, the adversary will be able to successfully cause all spam email to be misclassified.

Usually, however, only a subset of spams will bypass the filter.

An attack that causes availability problems for the user by misclassifying le-

gitimate emails can potentially be more dangerous than the style of attacks discussed

above. These attacks will eventually force the user to turn off the spam filter, as shown

in Figure 2, which completely eliminates any effectiveness the spam filter may have had.

Any and all spam will be seen by the user. It is likely that spammers will turn more of

their resources towards this goal, if they haven’t already, as this type of attack causes

more spam messages (all of them) to reach the user’s inbox.

Attacks discussed in this thesis have a delayed effect as the adversary has more

of a long term goal. This is due to the causative nature of these attacks: that is, these

attacks are attacking the learning component of the filter. These attacks attempt to

interfere with the training data, which causes the filter to learn on malicious information.

Only after the attack emails have been trained on by the filter, which may take some

time depending on the method for emails to enter the training set, can the attack become

effective.

I assume that the attacker can send emails that the victim will use for training,

but place the following significant restriction: attackers may specify arbitrary email

bodies but not any arbitrary component of the header. Certain header fields cannot be

controlled by the attacker, and I prevent the adversary from manipulating particular
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Figure 3: The adversary sends email to the user, which gets collected along with normal

email, and is used as training data. This trained data is then learned on by SpamBayes.

header fields. Given this restriction, I examine the effect of allowing the attacker to

control an arbitrarily large portion of the training data—an assumption that is realistic

for many uses of SpamBayes. In my experiments, however, I only model instances where

the attacker may have control of up to ten percent of the training set.

An attacker normally is able to send mail that is only labeled as spam by the

user. However, it is possible for attackers to send mail that is likely to be labeled as a

ham if the content of the message is similar to other legitimate messages a user might

receive in his or her inbox. For instance, an attacker could send mail with text from a

newspaper article or an RSS feed, which may look very similar to other messages the

user would receive. It is also possible for these cleverly crafted emails to be mislabeled

by the spam filter if the filter is used to label raw data since much of the text would be

similar to normal English text found in standard email.

Two very different attacks are discussed in this thesis: the focused attack and

the pseudospam attack. These attacks are both causative attacks, but the focused attack

attempts to subvert the availability of a particular email message while the pseudospam

attack violates the filter’s integrity by causing the filter to allow the adversary’s spam

messages through into the inbox. The focused attack can be considered a targeted attack

while the pseudospam attack falls in between the spectrum of targeted and indiscrimi-

nate.

In the focused attack, the adversary is only targeting a single specific ham email

of particular importance to the adversary (and likely also to the user). The adversary’s

goal is to prevent the user from seeing this message by causing the spam filter to classify

this particular message as spam. With this scenario, the adversary does not care how
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any of the user’s other messages may be classified and would not mind if the spam filter

actually becomes more effective overall as long as this message is misclassified.

In the pseudospam attack, the attacker wants the spam filter to misclassify his

spam emails so that the spams are visible to the user. Ham messages as well as other

spam messages may still be correctly classified by the spam-filter and the attack can

still be successful as long as the adversary’s spam emails are classified as ham. A wide

range of spam emails can still be sent by the attacker, but certain information that the

adversary controls will cause his spam emails, regardless of the content type, to reach

the user’s inbox.

It is interesting to note that the adversary’s goals are not completely against

the end goals of the user. This is due to the adversary having specific goals that only

target a few emails instead of a larger set of the emails the user receives. The user wants

all emails to be classified properly, but the adversary only needs a small subset of these

to be misclassified to be successful due to the targeted nature of these attacks.

4.3 Focused Attack Details

My first attack, the focused attack, assumes knowledge of a specific legitimate

email the attacker wants to be incorrectly blocked by the victim’s spam filter. This is

a causative targeted availability attack. In the focused attack, the attacker sends attack

email to the victim that contain words likely to occur in the target email.

For example, consider a malicious contractor wishing to prevent the victim

from receiving email messages with competing bids. The attacker sends spam emails

to the victim with words such as “bids,” “contract,” “terms,” and “deadline” along

with some more specific words such as the name of the competing company. The bid

message may even follow a common template of the competitor, making the attack

easier. Figure 4 illustrates an example where the adversary inserts words into an email

that may be used in a future email from Google to Yahoo.

The idea is to send attack emails that contain many words likely to occur in the

targeted email. When the victim trains SpamBayes with these attack emails marked as

spam, the words in the attack emails will have higher spam score. The future legitimate

email is more likely to be marked as spam, because it is likely to contain spurious words

from the attack email. However, the attacker needs to be careful in guessing the correct

words as having a large proportion of words in the attack emails that are not in the

actual targeted email will cause the email to have a lower spam score. This is due to
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Figure 4: In the focused attack, the adversary sends email containing words that are

likely to appear in an email from Google, who wishes to buy-out Yahoo. In this example,

the words are jumbled and spam words, such as Viagra, are added to make it appear

more like spam.

the fact, that words not included in the attack emails, which end up in the targeted

email, become more indicative of ham in the SpamBayes learning model.

The attacker may have varying levels of knowledge about the targeted email.

In the extreme case, the attacker might know the exact content of the targeted email,

and so include all of its words. More realistically, the attacker only guesses a fraction of

the email’s content. In this case, the attack email might also include additional words

drawn from a general distribution over email text.

If the attacker does not have any knowledge about the target email, the adver-

sary can instead send emails, that when trained by SpamBayes, will cause any legitimate

email to be classified as spam. In the optimal case, the adversary can simply send every

possible token in the attack emails. An approximation to this technique is to simply

send an entire English dictionary or the entire set of unique words taken from public

newsgroups, such as USENET. The latter method would be a bit more effective as this

would contain common misspellings or slang not present in dictionaries.

This variation of the attack can also be used by spammers. The spammer can

send these dictionary emails, which will cause ham emails to be filtered into the spam

folder. With enough misclassifications (say, ten percent or more), the user may grow

frustrated and turn off the spam filter. Once the spam filter is turned off, any spammer

can freely send email with any spam content, and the user will see it in his inbox.

To generate the attack emails, I create the contents of the attack email by

randomly guessing a fraction p in .1, .3, .5, .9, and 1.0 of the words in the targeted email.
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Figure 5: After the attack emails are processed by SpamBayes, the actual email from

Google becomes classified as spam, which is sent to the spam folder instead of reaching

Yahoo’s inbox.

To ensure that a fair selection of words are successfully chosen by the attacker, an exact

fraction of the words are selected in the attack emails. The words guessed incorrectly

by the adversary are drawn from a random selection of words from a USENET corpus

[21]. The header contents of these emails are drawn from from normal spam headers

that would be found in spam messages in order to correctly simulate that the email is

coming from a malicious adversary.

For the more indiscriminate version of the attack, I send entire dictionaries

based off of the English dictionary [8] or USENET postings in each of the attack emails.

The generated dictionary emails contain spam headers similar to other spam messages

to simulate the email being sent from a spammer. These emails are repeatedly sent by

the adversary in order to cause all tokens present in the emails to be high indicators of

spam.

Some care is taken to creating these headers and combining this with the

body contents of the email. The content-type and other Multipurpose Internet Mail

Extensions (MIME) headers from the spam messages are modified or removed so that

the main content of the email will be parsed correctly by the spam filter. SpamBayes

looks carefully at these MIME header types, and uses these to help determine the

message format. If these headers are not maintained correctly, it is likely that the body

contents of the email will be ignored or likely parsed incorrectly causing SpamBayes to

learn unintended information. The corpus used for ham and spam email have the dates

and several other header fields modified so that there are no obvious artifacts that can

be used to easily distinguish between ham and spam email.

The modified header fields are also values that the attacker can modify before
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Header Field Modified? Description
Received No Generated by domains, and cannot be

changed by the adversary
To No Specifies the recipient of the email message
Content-Type Yes Changes the interpretation of the message

body by SpamBayes
Content-Transfer-Encoding yes Changes the decoding of the message body

Table 1: The modified column specifies whether a standard spam header from the corpus

was modified. Only header fields that an adversary can change, and would have an affect

on the interpretation of the message body were modified. Other MIME headers were

also modified, such as the other Content-* fields, but SpamBayes only looks at Content-

Type and Content-Transfer-Encoding fields to determine how to parse the body.

sending the email to the user. Thus, I am not giving an unfair advantage to the attacker,

and in doing so, I ensure the emails are parsed properly.

4.4 Pseudospam Details

In contrast to the previous attack, the pseudospam attack attempts to misclas-

sify spam emails that the attacker sends to the user. To achieve this, the attacker sends

mail that gets trained as ham instead of as spam.

To cause a human to misclassify a training email as ham, the adversary sends

messages that look similar to normal email, such as newspaper articles, journals, or

other ham emails drawn from the adversary’s own inbox. However, some of the header

information contained in these emails will be similar to future spam emails the adversary

sends. Not all header tokens will be the same, but there will be enough similarities that

a large portion of the tokens in the headers become high indicators of ham.

With enough of these pseudospam emails added to the ham portion of the

training set, the probabilities of the words contained in the spam header become much

more likely to indicate ham according to the SpamBayes classifier. Since the spam

message is not affected, the adversary can successfully send different types of spam

messages in the body of an email to the user. The only necessary constant is that

the spam headers are relatively similar to the headers present in the earlier attack

emails. Figure 6 demonstrates the adversary’s goal with the pseudospam attack.

To generate an attack email, I first randomly select a single ham and spam

email from the corpus. Next, I combine the ham email with the header from the spam
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Figure 6: After training on the malicious emails in the pseudospam attack, the adversary

will be able to send any spam email to the user, which will pass through the filter and

successfully reach the user’s inbox.

email. This is done so that the attack email has contents that are similar to other

legitimate email messages. The header fields that may modify the interpretation of the

body, such as those described in the focused attack above, are taken from the ham email

instead. This is still within limits of the adversary’s capabilities as all of these headers

are all generated before the email is sent to the user over the Internet.

The spam email chosen in each of the attack emails is the same, so that the

header fields are nearly the same except for the header changes described above. This

is done to give more ham weight to the header tokens the adversary will eventually use

in the spam emails that are sent to the user’s inbox.

To prevent the attacker from having an unfair advantage, I limit the header

fields that the adversary has control over. Received header fields for instance are not

controlled by the attacker, so these are never kept the same between different emails.

Instead, these header fields (along with others that an adversary cannot control under

normal circumstances) are drawn randomly from the set of spam emails in the corpus.

To simulate the set of spam emails that an adversary generates to send to the

user to try to bypass their spam filter, I randomly select a set of different spam emails

from the corpus, and combine the headers in these email with the headers used in the

attack emails described above. The header fields that were modified were the same as

those in the focused attack, as described in Table 1.
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Chapter 5

Defenses

5.1 Defense Strategies

The adversary may at any time send emails similar to the attacks listed above

to maliciously alter the model learned by SpamBayes. It is important to look at de-

fense strategies that mitigate or completely reduce the effect these maliciously designed

emails have on the learning process. For exploratory-based attacks, the classification

algorithm is often being attacked and for causative-based attacks, the learning algo-

rithm is under attack. However, this does not necessarily mean that in order to defend

against exploratory or causative based attacks, we should look at only improving the

classification or learning algorithm respectively. Often these two components are closely

tied together as it is with SpamBayes. It is useful to create more robust algorithms or

additional heuristics for both the learning and classification process to defend against

either type of attack.

The attacks in this thesis are all causative in nature, but the Reject On Neg-

ative Impact (RONI) defense and dynamic threshold defenses presented here attempt

to make SpamBayes more robust through additional heuristics rather than modifying

the learning and classification algorithms. Emails gathered for the training process are

also used to approximate what future ham and spam emails will look like. This is not

unreasonable if the training set is modified or updated weekly or monthly as ham and

spam emails do not significantly change that quickly.

In the RONI defense, the trained model is altered so that attack emails are

filtered out of the training process. Figure 7 illustrates the process used to filter these

attack emails. The idea is to determine whether an email has a negative impact when

trained upon, and if so, remove this email from the learning process. The emails gathered
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for the training set are partitioned into mutually exclusive sets that will be used to both

train and test every new email to estimate the impact it will have on future emails.

With the dynamic threshold defense, the thresholds used by SpamBayes are

changed dynamically according to the scores of emails as shown in Figures 8 and 9.

Instead of using fixed thresholds to determine whether an email is classified as ham,

unsure, or spam, a heuristic function chooses dynamic thresholds that maximize the

true positives and true negatives, while minimizing the false positive and false negatives.

Attack emails that shift all or some scores of emails will have a reduced effect since this

defense will shift the thresholds accordingly. Since there is a large range that is classified

as unsure under the fixed thresholds, this defense will be effective even for large shifts

in email scores.

5.2 RONI

5.2.1 Overview

The RONI defense attempts to detect emails that may cause harm if trained

on. It does not specifically seek to block any particular attack email, but rather will

detect any email, whether it is maliciously designed to alter the trained model or not,

that has a harmful effect on the learning process. Essentially, the purpose of this defense

is to remove emails from the training set if they will have a harmful affect on classifying

future emails as ham or spam.

To determine the effect on future emails, parts of the training data itself can be

used to test the effects a particular email has on the classification of emails in general.

To determine the effect on a single email, one would like to train on all the subsets of

the training data with and without the email and test on the remaining portions of the

training data to accurately determine the effect of the query email. This should be done

for every email in the training set. To determine if the query email affects learning, the

RONI defense compares the accuracy of email classification for each of the subsets with

and without the email.

There are several statistics one can use to determine the impact an email has

on classification when it is trained on. The difference in false positive and false negative

rates before and after training on a particular email is an important statistic to consider.

Also, since there is an unsure label in SpamBayes, it is important to also look at the

change in true positive and true negative rates, since these are not simply the inverses of

the false positive and false negative rates respectively. However, this information does
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not give the full picture of the positive or negative effect of the given email since test

emails may cause small changes in score that do not change the actual classification as

spam, ham, or unsure. Thus, it is necessary to look at the raw SpamBayes score for each

email in the test set. Since I am looking at the negative effect of email classification,

two other statistics I look at to determine the impact of a given email are:

Ih =
∑

testhamemails

max
(
0, I ′ − I

)
(5.1)

Is =
∑

testspamemails

min
(
0, I ′ − I

)
(5.2)

where I‘ and I are the scores after and before the test email is added to the training

set respectively. Ih represents the sum of ham email scores that have shifted towards

spam and Is represents the sum of spam email scores that have shifted towards ham.

The total negative impact for a particular email is the sum of the Ih and Is values.

5.2.2 RONI Implementation Methods

For the RONI defense, a complete analysis would look at each of the subsets

for training and testing because the training data itself may have other attack emails

that may influence the effect the query email has on the test emails. For example, an

adversary could insert malicious emails that only have a small incremental effect on the

training set when other similar emails are present. However, if these emails are not

present, the effect of such emails will stand out among the rest and can be detected by

this type of defense.

However, time constraints make testing every possible subset for every email

in the training set infeasible as this would take far too long to complete. As long as

the training and test sets that are chosen from the overall training set are clean1 (no

attack emails), it is only necessary to pick one such set to train and test data on. Then,

for every email, the defense checks the results of classification after adding the email to

the trained model. If this email has a ”significant” negative impact on the results, the

defense removes the email from the training set.

In an online training setting, this testing is much easier to perform, as the

defense can assume it starts with clean data, which can be split up into training and
1By the term clean, I do not mean free from spam email, but rather free from email that may

adversely affect the spam filter when used in the training process
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Figure 7: In the RONI defense, for every email that is tested, the defense selects a

sample train and test set from the training data. The defense trains SpamBayes, with

and without the test email, and compares the classification scores to determine if the

given test email has a large negative impact. If so, it is discarded from the actual

training set. This process is repeated for every email that needs to be tested.

test sets. Next, for every new email that comes in, I can apply the RONI test to

check the results of classification on the test set when adding the new email. If this

email significantly effects the training results, the defense can simply classify the newly

arrived email, but not train on it. To achieve an initial clean dataset, it is feasible for a

human to give a small (100 or less messages) training set that is hand-picked to ensure

that the emails are standard and non-suspicious.

However, this does not work well if there is a large initial set of data that

one would like to use for training a spam filter. I do not assume an online training

model, and I thus need to either find a clean training set from the large initial pool of

data, which may contain attack emails ,or mitigate the impact of attack emails from

the subset used in training. It is difficult to ensure that the emails chosen for training
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and testing in the RONI defense are not malicious without having a user sort through

each email, so I propose a method that attempts to mitigate the impact of attack emails

within the training and test sets.

One method of achieving clean sets of data for the RONI defense is to use a

two-pass system that can be extended iteratively. For every query email in the dataset,

the defense trains on a random subset that does not contain the query email along with

a random test set. If the query email has even a small negative impact, it is marked and

not used for future training and test sets. This procedure is for every query email, and

on the second pass-through, the training and test sets should have relatively clean data

since potentially malicious emails were caught earlier. On the second-pass, the defense

can be less selective about marking emails as potentially malicious as it should have a

cleaner set of data. This process can be repeated iteratively several times until one is

confident all the attack emails are found.

Another method, although less ideal, uses only a single-pass to determine the

attack emails in the dataset. To approximate a clean training set on the first pass

through, the defense uses a very small training set and a larger test set for each query

email. Using a small training set limits the number of attack emails that can alter the

effects when testing the query email. However, this will not work well when the dataset

consists of a large proportion of attack emails.

Orthogonal to the methods proposed above, one can use clustering algorithms

to identify similar emails. Only emails at the center of each cluster would need to

be used as query emails. This can significantly speed up the RONI defense, since

only a select few candidate emails would be used as query emails instead of each email

belonging to the large initial dataset. Similarity amongst emails can be computed based

on the dot product of tokens that emails share in common with one another. Principle

component analysis (PCA) can be used to identify emails that are similar to each other

after projection onto a small number of dimensions.

5.3 Dynamic Thresholding

Distribution-based attacks increase the spam score of ham email, but they also

tend to increase the spam score of spam. Although the focused attack, only attempts

to target a specific email, it still has some lasting impact on normal email messages

by shifting their scores slightly towards spam, since other normal messages may share

similar features or words as the target email. The pseudospam attack will likely have
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Figure 8: With no attack emails, the standard fixed thresholds performs reasonably

well in distinguishing ham and spam emails. Dynamic Thresholds, if there is a clear

separation between ham and spam emails, should still be able to distinguish between

emails with smaller score differences.

similar tokens in header fields as other spam messages, shifting the score of generic spam

email towards ham.

Thus with new θ0, θ1 thresholds (Equation 3.5), it may still be possible to

accurately distinguish between these kinds of messages after an attack. Based on this

hypothesis, I propose a dynamic threshold defense, which dynamically adjusts θ0, θ1.

With an adaptive threshold scheme, attacks that simply shift all scores will not be

effective since rankings are invariant to such shifts. However, more complicated attacks

that shift and mix the scores of ham and spam emails so they are closer together are

more effective against this type of defense. Thus, this defense is most useful with more

naive attacks, and its main purpose is to choose thresholds in a more principled manner

than the current SpamBayes implementation.

SpamBayes threshold values, θ0 and θ1, are arbitrarily fixed based on normal

ham and spam email scores that a user may see in his inbox. This defense attempts to

choose thresholds more intelligently by looking at the actual set of email classification

scores for a trained model. As it does not attempt to actually remove the attack emails

from the training set, this defense can be used in conjunction with the RONI defense.

To determine the dynamic values of θ0 and θ1, I split the full training set in

half. One half is used to train a SpamBayes filter F , and the other half is used as a

validation set V . The training set is split into halves in order to maximize the amount

of data SpamBayes can learn on, while also having an ample testing set to accurately
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Figure 9: In the presence of an attack that shifts all scores towards spam, dynamic

thresholds are still able to distinguish between some ham and spam emails provided

there is some small separation between the two classes of emails.

determine the distribution of ham and spam email scores. It can be argued that for

large training sets, it may be more effective to train on most of the emails leaving only

a few thousand emails into the validation set V .

Using F , the defense obtains a score for each email in V . From this information,

it is possible to pick threshold values that more accurately separate future ham and spam

emails. I define a utility function for choosing threshold t:

g(t) = NS,<(t) (NS,<(t) +NH,>(t))−1 (5.3)

where NS,< is the number of spam messages with scores less than t, and NH,> is the

number of ham messages with scores greater than t. I select θ0 so that g(θ0) is 0.05

or 0.10, and I select θ1 so that g(θ1) is 0.95 or 0.90, respectively. These are chosen

based on experimental evidence, as these threshold values tend to give the best results

in classifying ham and spam email.
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Chapter 6

Experiments

6.1 Experimental Framework

In this section, I show the experimental results from the attacks and defenses

presented in Chapters 4 and 5. Both of the attacks are highly successful in subverting

the SpamBayes spam filter while only controlling a small portion (10% or less) of the

training set. The defenses presented show promise against some variations of the attacks,

while having difficulty in preventing misclassifications by SpamBayes on specific targeted

emails that do not have much in common with other email the filter normally sees.

For my experiments, I use the Text Retrieval Conference (TREC) 2005 spam

conference corpus [3], which is based on the Enron dataset [11]. This corpus contains

92,189 emails of which 52,790 are spam and 39,399 are ham emails. I use this corpus as

it has a large number of emails, comes from a real-world source, and the added spam

does not have obvious artifacts that can make it easily differentiable from ham. Also, I

use a large USENET corpus in some of my attacks, which is used as a distribution of

words that may be commonly found in emails.

To validate my results, I use K-fold cross-validation with K = 10. Cross-

validation is a technique used to prevent against type III errors, or errors when testing

hypothesis suggested by the data. This technique involves partitioning the training set

into K subsets. K − 1 subsets are used for the training process and the lone remaining

subset is used as the test set. This is repeated K times such that each subset is used in

both the training and testing process. These K repetitions are then averaged to produce

a single estimation of the correct result.

The experiments are run on the DETER [4] Testbed. I use several machines or

nodes from the testbed, ranging from 2GHZ single core to 3.0GHZ dual core machines,
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Parameter Focused At-
tack

PseudoSpam
Attack

RONI De-
fense

Threshold
Defense

Training set size 2,000, 10,000, 2,000, 10,000 2,000, 10,000 2,000, 10,000
Test set size 200, 1,000 200, 1,000 N/A 200, 1,000
Spam prevalence 0.50, 0.75, 0.90 0.50, 0.75, 0.90 0.50 0.50, 0.75, 0.90
Attack fraction 0.001,0.005,0.01,

0.02,0.05,0.10
0.001,0.005,0.01,
0.02,0.05,0.10

0.10 0.001,0.005,0.01,
0.02,0.05,0.10

Folds of validation 10 10 N/A 10
Target Emails 20 N/A N/A N/A

Table 2: Parameters used in the experiments

to run each of my experiments across a wide range of parameters as shown in Table 2.

Most of the attacks and defenses were run using a 2,000 and 10,000 email training set

and I present the results when using the 10,000 email training sets in my experiments.

The size of the training set and percentage of spam in the training set have a negligible

impact on the results.

6.2 Attacks

6.2.1 Focused

For the focused attack, I setup the experiment by first randomly selecting a

set of target emails from the TREC corpus. The target emails chosen are ensured to

contain at least 100 words in the message body. I then create the set of training data

for SpamBayes by randomly selecting a large corpus of ham and spam email along with

a set of attack spam email, which is generated by the method illustrated in Section 4.3.

Finally, I collect the results across each of the 10 folds of cross-validation. Based on

my results, the focused attack did not appear to have any significant impact on normal

ham and spam emails.

In Figure 10, I examine the impact of the focused attack, while varying the

knowledge of the attacker. In this figure, the adversary has control of 10% of the

training set for each of the attack variations and the initial inbox size contains 10,000

emails. All of the targeted emails were initially classified as ham before any of the

attack emails were added. When the adversary only has knowledge of approximately

10% of the targeted email’s tokens, the attack is very rarely successful in misclassifying

the email as spam, but over half the time the email is misclassified as unsure. However,

when the adversary is able to guess only 30% of the email, every email is misclassified



28

0.1 0.3 0.5 0.9 1

0
20

40
60

80
10

0

Probability of guessing target tokens

P
er

ce
nt

ag
e 

of
 a

tta
ck

 s
uc

ce
ss

HAM
UNSURE
SPAM

Figure 10: Effect of the focused attack as a function of the percentage of target tokens

known by the attacker. Each bar depicts the fraction of target emails classified as spam,

ham, and unsure after the attack. The initial inbox contains 10,000 emails (50% spam).

by SpamBayes. If the attacker knows a significant portion of the email (90%), I show

that all the time the email is classified as spam. Thus, even when the adversary only

has modest knowledge of the email’s contents, many targeted emails will no longer be

classified as ham.

Next, I examine the effect of increasing the number of attack emails as shown

in Figure 11. In this attack, the initial inbox contains 10,000 emails, 50% of which are

spam, and the attacker is able to guess 50% of the email’s content. The x-axis is the

number of messages in the attack and the y-axis is the percent of messages misclassified.

From this, it is clear that the adversary only needs to poison a very minimal number of

emails, in relation to the size of the training set, for the attack to be effective. I suspect

that this is due to the distribution of words in emails, as word selection in the English

language follows a Zipf distribution [25]. Thus, many words in the attack email are not

seen in other email, even with a large training set, so the words in the targeted email

become more indicative of spam with only a few attack emails.
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Figure 11: Effect of the focused attack as a function of the number of attack emails with

a fixed percentage (p=0.5) of tokens guessed by the attacker. The dashed line shows the

percentage of target ham messages classified as spam after the attack, and the solid line

the percentage of targets that are unsure after the attack. The initial inbox contains

10,000 emails (50% spam).

Looking at the token distribution in the targeted emails before and after the

attack provides further insight into the success of the attack. In Figure 12, the three

graphs represent three targeted emails: (from left to right) ham misclassified as spam,

ham misclassified as unsure, and ham classified correctly as ham. The blue ©’s are

tokens that were not guessed correctly by the attacker and the red x’s are tokens chosen

correctly by the attacker. The line y = x separates tokens that increase due to the

attack (above the line) and tokens that decrease due to the attack (below the line).

These graphs indicate that tokens chosen by the attacker have a significant

increase in spam score as indicated by a large number of red x’s in the upper right

corner, while tokens not chosen only decrease slightly as these tokens remain closer to

the y = x line. Since the increase in score is more significant for included tokens than

the decrease in score for excluded tokens, the attack has substantial impact even when

the attacker has a low probability of guessing tokens as seen in Figure 10. Further, the

before/after histograms in Figure 12 provide a direct indicator of the attack’s success.

If the adversary has no knowledge of the email, it is best for the attacker to

include words that may come from any email. In Figure 13, I look at the success of
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Figure 12: Effect of the focused attack on three representative emails— one graph for

each target email. Each point is a token in the email. The x-axis is the token spam

score in Equation (3.2) before the attack (0 means ham and 1 means spam). The y-axis

is the spam score after the attack. The red x’s are tokens that were included in the

attack and the blue ©’s are tokens that were not in the attack. The histograms show

the distribution of spam scores before the attack (at bottom) and after the attack (at

right). Only ten percent of the tokens are successfully chosen by the adversary.
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Figure 13: Three attacks on initial training set of 10,000 messages (50% spam). I plot

percent of ham classified as spam (dashed lines) and as spam or unsure (solid lines)

against the attack as percent of the training set. I show the optimal attack (black 4),

the USENET dictionary (blue �), and the Aspell dictionary (green ©). Each attack

renders the filter unusable with as little as 1% control (101 messages).

the attack on general ham email when the attacker chooses words that are optimal (all

words from the set of ham test email), the most commonly used 90,000 words from

the USENET corpus, or the 90,000 word Aspell English dictionary. The figure shows

that with 10% control of the training set, each of the attack variants cause over 50%

misclassification of ham email. Also, with as little as 101 email messages, the adversary

can cause enough misclassifications to frustrate the user into turning off the spam filter.

Although only a few messages are needed to corrupt the filter, the number of

tokens in each email are quite large since this attack attempts to cover all or many of the

possible tokens in any given ham email. Preliminary experiments show that reducing

the number of words from 90,000 to 10,000 words from the USENET corpus gives the

same results as the using the dictionary.

6.2.2 Pseudospam

I setup the experiment for the pseudospam attack by first randomly selecting

a spam header to be used as the base header for the attack. I then create the set of
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Figure 14: Effect of the pseudospam attack as a function of the number of attack emails.

The dashed line shows the percentage of the adversary’s messages classified as ham after

the attack, and the solid line the percentage that are unsure after the attack. The initial

inbox contains 10,000 emails (50% spam).

attack emails that look similar to ham emails (see Section 4.4). Next, I randomly select

a mutually exclusive set of training data from the TREC corpus. After SpamBayes

trains on the data along with the attack emails, I test the classifications against both a

set of spam email generated by the adversary along with normal ham and spam email.

Figure 14 demonstrates the effectiveness of the pseudospam attack as the ad-

versary gains control over a growing portion of the training set. The y-axis shows the

percentage of test spam email that is classified as ham, spam, or unsure. The solid blue

line is the percent of spam classified as ham or unsure spam while the dashed blue line

is the percent of spam classified as ham. From initially being able to correctly classify

over 90% of these spam emails, SpamBayes correctly labels less than 20% of spam after

only a couple hundred attack emails. This value quickly levels off at slightly fewer than

15%. The number of emails classified as ham also reaches and stays at 20% relatively

quickly. The reason the curve levels off is due to the contents of the spam messages still

having tokens with high spam indicators. Only the headers are being targeted in this

attack, which is sufficient for a large percentage of spam emails for the adversary to be

satisfied in getting some of his spam emails through to the user.
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Figure 15: Effect of the pseudospam attack, as a function of the number of attack emails.

The dashed line shows the percentage of the normal spam messages classified as ham

after the attack, and the solid line the percentage that are unsure after the attack.

Surprisingly, training the attack emails as ham causes an increase in misclassification

of normal spam messages. The initial inbox contains 10,000 emails (50% spam).

The attack has a minimal effect on normal ham and spam email classifications.

Since the headers that the adversary generates are being poisoned in order to be con-

sidered ham indicators, other spam email messages will still be correctly classified since

they would not have the same header fields as the adversary. Also, ham email messages

may have lower spam scores according to the SpamBayes classifier since these messages

may contain similar words as the attack emails generated by the adversary.

In the cases where the pseudospam attack emails are actually labeled as spam

in the training set, the SpamBayes classifier begins to classify generic spam email in-

correctly. Figure 15 indicates an increase in spams mislabeled as both unsure and ham

as the number of attack emails increases. Almost 15 percent of spam email is misclas-

sified. This effect is due to the attack emails not containing traditional spam words,

which causes normal indicators of spam to become slightly more indicative of ham (see

Section 4.3 for a description of why tokens become more indicative of ham when tokens

are not present in the training spam emails). This version of the attack does not cause

much of an impact on normal ham messages. The specific spam emails from the adver-
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Figure 16: The total negative impact is determined by adding the total increase in

ham email score along with the total decrease in spam email score. The standard error

is shown along with each bar in the graph. The attack email used in the standard

dictionary attack email. A clean set of email is used for training and testing. The

initial inbox contains 10,000 emails (50% spam).

sary are still misclassified, though at a much lower rate than if the attack emails were

trained as ham.

6.3 Defenses

6.3.1 RONI

In order to determine the effectiveness of the RONI defense, the RONI query

set, which is used to determine the negative (or positive) impact of adding a particular

email, consists of a sample of email from the entire 10,000 email training set. One

hundred ham and spam emails are randomly sampled into the query set along with one

of the attack emails. Since the attack emails are very similar, only one of them is placed

in this query set. The sampled training set contains 20 emails and the test set contains

100 emails, each of which is randomly chosen from the 10,000 email training set. This

procedure is repeated ten times, which is averaged for the results shown in the figures.

Figure 16 uses a sample training set of size 20 that does not contain any attack

emails. The attack email used is the standard dictionary email presented earlier. Most
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Figure 17: The total negative impact is determined by adding the total increase in

ham email score along with the total decrease in spam email score. The standard error

is shown along with each bar in the graph. The attack email used in the standard

dictionary attack email. A random sample of attack and non attack emails are used in

the training and test set. The initial inbox contains 10,000 emails (50% spam).

email trained as spam only shift ham email scores more towards spam, and do not

negatively impact spam email classification while the reverse is true for email trained

as ham. The positive impact of emails are not measured in this graph nor is it taken

into account by RONI. It is clear that the dictionary attack email has a large negative

impact that far exceeds any negative impact a standard email would have. In this

situation, there are many threshold values that can be chosen that would throw away

the dictionary email, and not train on this email in the training set.

Figure 17 more realistically uses a sample training set of size 20 that may

contain attack emails, as the training set is sampled from all emails in the 22,222 email

training set (of which 2,222 are attack emails). The attack email here still has the

largest negative impact over all other emails used in the query set, but the difference is

not as large. The RONI defense would still throw away the dictionary emails, since it

has the largest negative impact on classification, but certain heuristic thresholds may

also cause some normal email to be thrown away in the training set. Also, since the

attack emails are also present in the training set, the total negative impact for all email

decreases by over a factor of two, since the initial training set used in the RONI test is
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not free from emails that may have a large negative effect on email classification.

The RONI defense does not do well at all in picking out emails from the

focused attack or the pseudospam attack. Attack emails used for these attacks do not

indiscriminately affect email that is already present in the training set. In fact, the

attack emails used in these attacks affect only future email, and the RONI defense

only uses presently known email to determine the negative impact of training on a

particular email. Thus, the RONI defense is a heuristic method, which is effective

against indiscriminate attacks that undermine the availability or integrity of the spam

filter. Targeted based attacks will slip through this defense unless such attacks also have

a negative impact on normal email as well.

6.3.2 Thresholding

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Percent Control of Training Set

P
e
rc

e
n
t 
o
f 
T

e
s
t 
H

a
m

 M
is

c
la

s
s
if
e
d

 

 

No Defense

Threshold!.05

Threshold!.10

Figure 18: Effect of the threshold defense on the classification of ham messages with

the dictionary based attacks. I use a 10, 000 message inbox training set of which 50%

are spam. The solid lines represent ham messages classified as spam or unsure while the

dashed lines show the classification rate of ham messages as spam. Threshold-.05 has a

wider range for unsure messages than the Threshold-.10 variation.

To compare the results of the attacks against the dynamic threshold defense, we

run the attacks as presented before against standard SpamBayes along with the threshold

defense. The threshold defense is implemented on top of the SpamBayes training and

classification functions, adding the changes after calls are made into the filter.
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First, I examine the effect of choosing different thresholds against dictionary

based attacks. Figure 18 shows the results of the dictionary attack against SpamBayes

and two variations of the threshold defense. From this, it is clear that none of the ham

emails are classified as spam and only a modest amount, 10%, are classified as unsure.

When there are no attack emails, no ham messages are classified as spam, but there

are a few still classified as unsure. Experimenting with different heuristic functions for

picking the dynamic thresholds may yield better results when no adversarial data is

present.
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Figure 19: The dynamic thresholds are able to separate a larger portion of the adver-

sary’s spam emails. However, a large percentage of these emails are still classified as

unsure.

However, not shown, are the classification of spam emails, which are all clas-

sified as unsure as the attacker gains 10% control of the training set. When looking

at the raw email scores, this is due to SpamBayes classifying all spam email and 10%

of the ham email as being purely spam with a score of 1.0. Although the dynamic

thresholds do better than traditional SpamBayes classifications, these thresholds are

not successfully able to separate out all ham and spam email from each other. Since

the SpamBayes classifier can only give a max spam score of 1.0, many emails have no

separation in the email score. It is likely, that when combined with other defensive

measures, the dynamic thresholds will be more accurate in email classification since
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there will be a some separation between the ham and spam emails.
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Figure 20: The dynamic thresholds reduce the number of misclassifications. As the

attack increases, the number of misclassifications stay fairly flat instead of increasing.

For the more specific variations of the focused attack, the threshold defense has

no impact on the misclassification rate as the same number of emails are still incorrectly

classified by SpamBayes. Since the focused attack does not have an impact on normal

email, the threshold defense is not able to shift any of the thresholds in a meaningful

way to capture the effect of a future unknown email from being misclassified.

Figures 19 and 20 shows that the dynamic thresholds are able to reduce the

negative impact of the pseudospam attacks. However, both figures show that this defense

is far from perfect against these attacks as still a significant number of spam messages

are misclassified as unsure. In Figure 19, the number of misclassifications still increase

as the adversary gains control over a larger portion of the training set, whereas in

Figure 20 the number of misclassifications of spam email stays fairly flat as the attack

increases.

Overall, the dynamic threshold defense appears to mitigate some of the impact

of the attacks. However, it is not strong enough, in its present form, to completely

prevent indiscriminate attacks from affecting SpamBayes’ email classification. Attacks

that are more targeted in nature, especially those that do not share many features with

other emails found in the training set, are extremely difficult to prevent using this defense
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since it has no way of altering the thresholds based on the current data. This defense

is best used orthogonally with additional defenses that are more robust to attacks on

the learning component of SpamBayes, as changing the thresholds dynamically only

attempts to reduce the harm of an already compromised learner model.
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Chapter 7

Conclusion

7.1 Discussion

Using the framework established in Section 4.1, I have demonstrated the effec-

tiveness of causative attacks against SpamBayes that violated both the availability and

integrity of the spam filter. The adversary was given realistic control over the training

process of SpamBayes, by limiting the header fields the attacker can modify and the

amount of control over the training set. Also, the labels over the attack emails are

controlled by the user, and as such, can only be labeled as ham if the email looks like

a legitimate message while other messages are labeled as spam.

I show that the attacks are very successful against the learning algorithm used

by SpamBayes. The focused attack is able to cause the learner to classify many specific

messages as unsure when the adversary has little knowledge of the message and as spam

when the adversary has quite a bit of information regarding the message. A variation of

the focused attack, the dictionary attack, is able to cause over half of all ham messages to

be misclassified. In the pseudospam attack, the adversary is able to get 90% of his spam

messages labeled as either unsure or ham. In the unsuccessful case where the attack

emails are instead trained as spam, generic spam messages are increasingly successful in

reaching the user’s inbox.

My defenses show initial promise in being able to defend against the more in-

discriminate attacks. Although these defense mechanisms are far from perfect, the dy-

namic threshold defense is able to reduce the impact of the distribution and pseudospam

attacks. Also, the defenses can be implemented in combination with one another, im-

proving the SpamBayes classifier further. Another benefit to these defenses is that the
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underlying algorithm is unchanged, so improvements made to the learning or classifying

component of the filter would not hinder the defense strategies presented here.

Rejecting emails based on their negative impact can be applied to other ma-

chine learning algorithms. It should be possible to detect the effect of training on incre-

mentally new instances of data, in other classifiers other than spam filtering. Similarly,

the dynamic threshold defense can be applied to any other algorithm that uses thresh-

olds to determine the classification of the underlying data. These defense strategies

can be combined with each other as well as more defenses that change the underlying

machine learning algorithm.

An attacker can still circumvent around these attack strategies. If an adver-

sary’s goal is to change the classification of future messages only, the current defenses

can do little to circumvent this problem as shown in the experimental results. Also, by

using a large number of messages that very slowly change the email scores, the RONI

defense may not be as effective in detecting the negative impacts of the malicious mes-

sages. Ideally, the RONI defense would be able to holistically determine the effect of

adding larger sets of emails that have similar tokens that, when trained on, have a sig-

nificant impact on email classification. A cluster based approach for tokens in the RONI

defense may be able to determine which tokens are malicious. Another improvement to

this defense is to reject only the portions of each individual email that has the spurious

features that can cause email misclassifications. Training on the remaining information

present in the email, will still be helpful for the spam filter.

The dynamic threshold defense is only able to detect shifts in email scores

from changing the classifications of specific messages or only altering the overall email

scores of only ham or spam messages. As shown in my results, dynamically altering the

thresholds is useful in reducing the impact of many attacks. Due to the nature of this

strategy, this mechanism will not be able to completely reduce an adversary’s ability

to cause havoc through either availability or integrity attack strategies since the model

learned by the spam filter stays the same. Dynamic thresholds should always be used

in conjunction with other defenses as it is a more intelligent way to heuristically choose

cutoffs for labelling data.

7.2 Future Work: Next Steps

There are many directions that I would like to take this work in the future.

Attack and defense strategies can be improved and extended into areas other than spam
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filtering. Listed below is a list of areas I would like to explore in further research.

• The attacks presented here can be extended into a single general attack that is

effective when trained as either ham or spam. The pseudospam attack is effective

as it focuses on attack the headers whereas the focused attack focuses on the

message bodies. Combining these attacks could yield attack messages that subvert

the effectiveness of classifying both generic ham and spam email when trained as

spam while also allowing the adversary to craft specific spam messages to bypass

the filter if the attack messages are trained as ham.

• My attacks can also be further extended to circumvent the RONI and dynamic

threshold defenses completely. Also, I would like to extend my current defenses

and develop new defenses to more completely defend against the current and future

variations of the attacks.

• Combine the defenses presented here to determine their effectiveness when used

together. Also, create defenses that can be orthogonally implemented alongside

the current ones that improve the learning process of SpamBayes.

• Expand the RONI defense to work at a more defined feature level by clustering

tokens. The tests used in this defense can be used on the specific tokens in emails or

clusters of tokens to determine which tokens have a negative impact on classifying

email.

• Similarly, I also plan to examine the vulnerability of other classes of security-

sensitive learning systems, such as intrusion detection systems, and worm and

virus detection systems. I plan to extend the attacks presented here to these

systems by working along the attack framework presented by in Section 4.1.

• The defenses implemented here should be usable within other machine learning

systems; in particular, systems that use statistical machine learning algorithms

to both train and classify data. Systems that use a training and classifying pro-

cesses would be able to use variations of the RONI and dynamic threshold defenses

presented in this thesis. Extending these defenses would give us a better under-

standing of their viability in other machine learning systems.
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