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Abstract

Evaluating the Security of Machine Learning Algorithms

by

Marco Antonio Barreno

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor J. D. Tygar, Chair

Two far-reaching trends in computing have grown in significance in recent years.

First, statistical machine learning has entered the mainstream as a broadly useful tool

set for building applications. Second, the need to protect systems against malicious

adversaries continues to increase across computing applications. The growing inter-

section of these trends compels us to investigate how well machine learning performs

under adversarial conditions. When a learning algorithm succeeds in adversarial con-

ditions, it is an algorithm for secure learning. The crucial task is to evaluate the

resilience of learning systems and determine whether they satisfy requirements for

secure learning. In this thesis, we show that the space of attacks against machine

learning has a structure that we can use to build secure learning systems.

This thesis makes three high-level contributions. First, we develop a framework



2

for analyzing attacks against machine learning systems. We present a taxonomy that

describes the space of attacks against learning systems, and we model such attacks

as a cost-sensitive game between the attacker and the defender. We survey attacks

in the literature and describe them in terms of our taxonomy. Second, we develop

two concrete attacks against a popular machine learning spam filter and present ex-

perimental results confirming their effectiveness. These attacks demonstrate that

real systems using machine learning are vulnerable to compromise. Third, we ex-

plore defenses against attacks with both a high-level discussion of defenses within

our taxonomy and a multi-level defense against attacks in the domain of virus detec-

tion. Using both global and local information, our virus defense successfully captures

many viruses designed to evade detection. Our framework, exploration of attacks, and

discussion of defenses provides a strong foundation for constructing secure learning

systems.

Professor J. D. Tygar
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Thesis

Two far-reaching trends in computing have grown in significance in recent years.

First, statistical machine learning has entered the mainstream as a broadly use-

ful tool set for building applications. As a technique for building adaptive systems,

machine learning enjoys several advantages over hand-crafted rules and other ap-

proaches: it can infer hidden patterns in data, it can adapt quickly to new signals

and behaviors, and it can provide statistical soundness.

Second, the need to protect systems against malicious adversaries continues to in-

crease across computing applications. Rising levels of hostile behavior have plagued

application domains such as email, web search, and electronic commerce. Malicious

activity has more recently become a problem for file sharing, instant messaging, mo-
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bile phone applications, and other areas. Miscreants and criminals are becoming more

organized in their attacks, and the need to secure applications against attackers is

confronting all areas of computing.

The growing intersection of these trends compels us to investigate how well ma-

chine learning performs under adversarial conditions. Machine learning is useful be-

cause it can adapt to changing conditions, but attackers can influence those conditions

to mislead the learner. Machine learning is powerful because it can extract complex

hidden patterns from data, but attackers can obscure true patterns and inject their

own. Machine learning selects the statistically best hypothesis, but attackers can

reverse engineer the learner to find outliers and misclassifications.

When a learning algorithm succeeds in adversarial conditions, it is an algorithm

for secure learning. The crucial task is to evaluate the resilience of learning systems

and determine whether they satisfy requirements for secure learning.

We provide the foundation for this task. In this thesis, we show that the space

of attacks against machine learning has a structure that we can use to build secure

learning systems.

1.2 Contributions

Our task of making learning systems secure against attack comprises several steps.

The first step is to discover what types of attack are possible, enumerating them and

analyzing how they relate to each other. The second step is to understand the effects
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of attacks and evaluate how dangerous they can be. The final step is to construct

general approaches to protecting systems against such attacks.

This thesis provides the foundation for a comprehensive understanding of attacks

against machine learning systems and strategies for defending against them. We ad-

dress what attacks are possible by developing a taxonomy of attacks against machine

learning systems, showing how it describes attacks in the literature and others. We

explore the danger attacks pose by constructing successful attacks against the popu-

lar machine learning spam filter SpamBayes and measuring their effects. We begin to

construct general approaches to protecting systems by examining each class within

the taxonomy of attacks and discussing what defenses might be appropriate, and by

developing a technique that combines specific and general information to detect new

email viruses. Since spam filtering and virus/intrusion detection are two common

and typical domains for using machine learning in an adversarial environment, these

in-depth studies provide insight that is useful in general.

The importance of information for attackers and defenders is a pervasive theme

throughout this work. In Chapter 3, we explore how the amount of information

available to an attacker affects the success of attacks and even determines what attacks

are possible. Information about the word distribution or exact contents of emails

allows an attacker to construct more successful attacks on an email spam filter. In

Chapter 4, we examine two different levels of information in email virus detection:

global (cross-user) and local (user-specific). We investigate combining the two types
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of information with a Latent Dirichlet Allocation (LDA) model to generalize quickly

while also learning each user’s specific behavior patterns. Finally, we discuss several

open problems related to information in Chapter 5.

This thesis makes the following specific contributions:

• A framework for analyzing attacks against machine learning systems.

We propose a taxonomy of attacks against machine learning systems that cat-

egorizes attacks based on key distinguishing characteristics. In particular, we

show that there are at least three interesting dimensions to potential attacks

against learning systems: (1) they may be Causative in their influence over the

training process, or they may be Exploratory and take place post-training; (2)

they may be attacks on Integrity aimed at false negatives (allowing hostile input

into a system) or they may be attacks on Availability aimed at false positives

(preventing benign input from entering a system); and (3) they may be Targeted

at a particular input or they may be Indiscriminate in which inputs fail. Each

of these dimensions operates independently, so we have at least eight distinct

classes of attacks on machine learning systems.

We model learning in an adversarial environment as a cost-sensitive game be-

tween an attacker and a defender ; the taxonomy determines both the structure

of the game and the type of cost model. We present the taxonomy and learning

game in Section 2.2.
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• A survey of attacks in the literature within the framework.

In recent years, many researchers have explored attacks against machine learn-

ing systems and defenses to make those learners more secure. In Section 2.3,

we survey the literature and describe attacks in terms of our taxonomy, finding

connections between different approaches. We highlight which types of attack

have received substantial attention in the research community and which areas

have not been as fully explored.

• A discussion of potential defensive techniques organized by our framework.

The purpose of this work is to build a foundation for secure learning. In Sec-

tion 2.4 we discuss general approaches for defending against attacks in each area

of the attack space defined by our taxonomy. Several defensive techniques have

appeared in the literature, and we present these techniques alongside new ideas

for making learning systems secure against attack. We propose defense ideas

and highlight promising areas for further research.

• Two novel attacks against a machine learning spam filter.

We develop two novel attacks against the SpamBayes statistical spam filter.

Using the taxonomy to identify regions of attacks space that have not received

much prior attention, we explore attacks that manipulate training data to cause

certain forms of denial of service. We describe our dictionary attack and focused

attack in Section 3.3.
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• Experiments demonstrating the effectiveness of our attacks.

We present experimental results in Section 3.4 confirming that these attacks

present a serious concern for statistical spam filters. A dictionary attack can

make a spam filter unusable by controlling just 1% of the messages in the

training set. A focused attack can successfully prevent victims from receiving

specific email messages 90% of the time.

These attacks demonstrate the vulnerability of real learning systems, and they

serve as an example of how our framework can guide and analyze attacks.

• A multi-level defense against email virus attacks.

The use of high-level (global) information vs. focused (local) information is in

some sense the defender’s analog of Indiscriminate or Targeted attack motive.

In Section 4.2, we adapt the LDA model to the domain of virus detection in

a population of email users, making use of both global (cross-user) and local

(user-specific) information to defend against attacks.

• Experiments evaluating the success of our defense.

We present experimental results evaluating our virus defense in Section 4.3, us-

ing traces generated by real viruses. Our experiments show that a combination

of global and local information can be beneficial when detecting viruses.

In Chapter 2 we present our framework for attacks against machine learning and

show how it organizes attacks in the literature and suggests defensive strategies.
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In Chapter 3 we pursue two attacks against the SpamBayes statistical spam filter,

demonstrating their effectiveness with strong experimental results. We explore a

defensive technique that combines high-level and low-level information to identify

email virus attacks in Chapter 4. Finally, in Chapter 5 we discuss open problems in

this field and give some concluding thoughts.
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Chapter 2

A Framework for Secure Learning

In this chapter, we introduce our framework for analyzing attacks on machine

learning systems.1 We introduce the learning problem in an adversarial setting and

we detail the threat model. We present our taxonomy, which categorizes attacks

against machine learning systems along three axes, and we show that attacks on

learning systems have a clean game structure. We review attacks in the literature in

the context of our taxonomy, and we discuss defensive strategies.

2.1 Notation and setup

We focus on binary classification for security applications, in which a defender

attempts to separate instances of input (data points), some or all of which come

1Material in this chapter has been previously published in the papers “Can machine learning be
secure?” [Barreno et al., 2006b] and “The security of machine learning” [Barreno et al., 2008].
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from a malicious attacker, into harmful and benign classes. This setting covers many

interesting security applications, such as host and network intrusion detection, virus

and worm detection, and spam filtering. In detecting malicious activity, the positive

class (label 1) indicates malicious intrusion instances while the negative class (label

0) indicates benign normal instances. A classification error is a false positive (FP) if

a normal instance is classified as positive (malicious) and a false negative (FN) if an

intrusion instance is classified as negative (benign).

In the supervised classification problem, the learner trains on a training set of N

instances, X = {(x, y)|x ∈ X , y ∈ Y}N , given an instance space X and the label

space Y = {0, 1}, and we evaluate its performance on an evaluation set E for which

the labels are unknown until after classification. Given some hypothesis class Ω, the

goal is to learn a classification hypothesis (classifier) f ∗ ∈ Ω to minimize errors when

predicting labels for new data, or if our model includes a cost function over errors, to

minimize the total cost of errors. The cost function C assigns a numeric cost to each

combination of data instance, true label, and classifier label. The defender chooses

a learning algorithm, or procedure, D for selecting hypotheses. The classifier may

periodically interleave training steps with the evaluation, retraining on some or all of

the accumulated old and new data. In adversarial environments, the attacker controls

some of the data, which may be used for training.

We show the training setup and flow of information in Figure 2.1.

The procedure can be any method of selecting a hypothesis; in statistical machine
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X D

fE +/−

Train

Classify

− − √

+ +

Figure 2.1: The basic training and classification setup. The learning algorithm D

trains on training data X and produces classifier f . The classifier provides classifi-
cations for the evaluation data E: it accepts normal points (−) and rejects intrusion
points (+). When the learner retrains, it merges E into X and produces a new
classifier f to classify future evaluation data.

learning, the most common type of procedure is (regularized) empirical risk mini-

mization. This procedure is an optimization problem where the objective function

has an empirical risk term and a regularization term. Since true cost is often not

representable precisely and efficiently, we calculate risk as the expected loss given

by a loss function ℓ that approximates true cost; the regularization term ρ captures

some notion of hypothesis complexity to prevent overfitting the training data. This

procedure finds the hypothesis minimizing:

f ∗ = argmin
f∈Ω

∑

(x,y)∈X

ℓ(y, f(x)) + λρ(f) (2.1)

Many learning methods make a stationarity assumption: training data and eval-

uation data are drawn from the same distribution. This assumption allows us to

minimize the risk on the training set as a surrogate for risk on the evaluation data,

since evaluation data are not known at training time. However, real-world sources
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of data often are not stationary and, even worse, attackers can easily violate the

stationarity assumption with some control of either training or evaluation instances.

Analyzing and strengthening learning methods in the face of a broken stationarity

assumption is the crux of the secure learning problem.

We model attacks on machine learning systems as a game between two players,

the attacker and the defender. The game consists of a series of moves, or steps. Each

move encapsulates a choice by one of the players: the attacker alters or selects data;

the defender chooses a training procedure for selecting the classification hypothesis.

A summary of the notation we use in this thesis, along with a glossary of terms,

appears after the text.

2.2 Framework

2.2.1 Security analysis

Our framework proceeds from careful security analysis of the machine learning set-

ting. Properly analyzing the security of a system requires identifying security goals

and a threat model. Security is concerned with protecting assets from attackers. A

security goal is a requirement that, if violated, results in the partial or total com-

promise of an asset. A threat model is a profile of attackers, describing motivation

and capabilities. Here we analyze the security goals and threat model for machine

learning systems.
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We assume the use of a classifier for a security goal. For example, a virus detection

system has the goal of preventing virus infection, and an intrusion detection system

has the goal of preventing malicious intrusion. A virus infection or a successful

intrusion has high cost relative to other outcomes. In this section we describe security

goals and a threat model that are specific to machine learning systems.

Security goals

In a security context the classifier’s purpose is to classify malicious events and

prevent them from interfering with system operations. We split this general learning

goal into two goals:

• Integrity goal: To prevent attackers from reaching system assets.

• Availability goal: To prevent attackers from interfering with normal operation.

There is a clear connection between false negatives and violation of the integrity goal:

malicious instances that pass through the classifier can wreak havoc. Likewise, false

positives tend to violate the availability goal because the learner itself denies benign

instances.

Threat model

The threat model for machine learning comprises the attacker’s goals/incentives

and capabilities.
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Attacker goal/incentives. In general the attacker wants to access system assets

(with false negatives) or deny normal operation (usually with false positives). For

example, a virus author wants viruses to pass through the filter and take control of

the protected system (a false negative). On the other hand, an unscrupulous merchant

may want sales traffic to a competitor’s web store to be blocked as intrusions (false

positives).

The attacker may have a short-term goal, such as to find a single false negative,

or the attacker may have a long-term goal, such as to consistently find false negatives

into the future.

We assume that the attacker and defender each have a cost function that assigns

a cost to each labeling for any given instance. Cost can be positive or negative; a

negative cost is a benefit. It is usually the case that low cost for the attacker parallels

high cost for the defender and vice-versa; the attacker and defender would not be

adversaries if their goals aligned. An important special case is a zero-sum game, in

which the sum of the attacker’s cost and the defender’s cost is zero (or any other

fixed value) for each possible outcome. Zero-sum games are particularly amenable

to analysis, and they can be good approximations for true cost functions (which are

rarely exactly zero-sum). In this thesis, we generally assume that games are zero-sum.

We take the defender’s point of view, so “high-cost” means high positive cost for the

defender.
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Attacker capabilities. We assume that the attacker has knowledge of the training

algorithm, and in many cases partial or complete information about the training set,

such as its distribution. The attacker may be able to modify or generate data used

in training; we consider cases in which the attacker can and cannot control some of

the learner’s training data.

In general we assume the attacker can generate arbitrary instances; however, many

specific problems impose reasonable restrictions on the attacker’s ability to generate

instances. For example, when the learner trains on data from the attacker, sometimes

it is safe to assume that the attacker cannot choose the label for training. As another

example, an attacker may have complete control over data packets being sent from

the attack source, but routers in transit may add to or alter the packets as well as

affect their timing and arrival order.

When the attacker controls training data, an important limitation to consider is

what fraction of the training data the attacker can control and to what extent. If the

attacker has arbitrary control over 100% of the training data, it is difficult to see how

the learner can learn anything useful; however, even in such cases there are learning

strategies that can make the attacker’s task more difficult (see Section 2.4.2). We

primarily examine intermediate cases and explore how much influence is required for

the attacker to defeat the learning procedure.
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2.2.2 Taxonomy

We present a taxonomy categorizing attacks on learning systems along three axes:

Influence

• Causative attacks influence learning with control over training data.

• Exploratory attacks exploit misclassifications but do not affect training.

Security violation

• Integrity attacks compromise assets via false negatives.

• Availability attacks cause denial of service, usually via false positives.

Specificity

• Targeted attacks focus on a particular instance.

• Indiscriminate attacks encompass a wide class of instances.

The first axis describes the capability of the attacker: whether (a) the attacker

has the ability to influence the training data that is used to construct the classifier

(a Causative attack) or (b) the attacker does not influence the learned classifier, but

can send new instances to the classifier and possibly observe its decisions on these

carefully crafted instances (an Exploratory attack). In one sense, Causative attacks

are more fundamentally learning attacks than Exploratory attacks are: while many

types of systems perform poorly on cleverly modified instances, only systems that
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learn from data can be misled by an attacker to form incorrect models, choosing poor

hypotheses. On the other hand, the hypotheses produced by learning algorithms

have certain regularities and structures that an attacker may be able to exploit in an

Exploratory attack, so it is certainly worthwhile to consider them carefully alongside

Causative attacks.

The second axis indicates the type of security violation the attacker causes: (a) to

create false negatives, in which harmful instances slip through the filter (an Integrity

violation); or (b) to create a denial of service, usually by inducing false positives, in

which benign instances are incorrectly filtered (an Availability violation).

The third axis refers to how specific the attacker’s intention is: whether (a) the

attack is highly Targeted to degrade the classifier’s performance on one particular

instance or (b) the attack aims to cause the classifier to fail in an Indiscriminate

fashion on a broad class of instances. Each axis, especially this one, is actually a

spectrum of choices.

The Influence axis of the taxonomy determines the structure of the game and

the move sequence. The Specificity and Security violation axes of the taxonomy

determine the general shape of the cost function: an Integrity attack benefits the

attacker on false negatives, and therefore focuses high cost (to the defender) on false

negatives, and an Availability attack focuses high cost on false positives; a Targeted

attack focuses high cost only on a small class of instances, while an Indiscriminate

attack spreads high cost over a broad range of instances.
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2.2.3 Examples

Here we give four hypothetical attack scenarios, each with two variants, against

a machine learning intrusion detection system (IDS). Table 2.1 shows where these

examples fit within the taxonomy. This section gives the reader an intuition for

how the taxonomy organizes attacks against machine learning systems; Section 2.3

presents a similar table categorizing attacks published in the literature.

Causative Integrity attack: The intrusion foretold

In a Causative Integrity attack, the attacker uses control over training to cause

intrusions to slip past the classifier as false negatives.

Example: an attacker wants the defender’s IDS not to block a novel virus. The

defender trains periodically on network traffic, so the attacker sends non-intrusion

traffic that is carefully chosen to look like the virus and mis-train the learner so that

it fails to block it.

This example might be Targeted if the attacker already has a particular virus

executable to send and needs to cause the learner to miss that particular instance.

It might be Indiscriminate, on the other hand, if the attacker has a certain payload

but could use any of a large number of existing exploit mechanisms to transmit the

payload, in which case the attack need only fool the learner on any one of the usable

executables.
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Integrity Availability

Causative:

Targeted
The intrusion foretold : mis-train a
particular intrusion

The rogue IDS : mis-train IDS to
block certain traffic

Indiscriminate
The intrusion foretold : mis-train
any of several intrusions

The rogue IDS : mis-train IDS to
broadly block traffic

Exploratory :

Targeted The shifty intruder : obfuscate a
chosen intrusion

The mistaken identity : censor a
particular host

Indiscriminate The shifty intruder : obfuscate any
intrusion

The mistaken identity : interfere
with traffic generally

Table 2.1: Our taxonomy of attacks against machine learning systems, with examples
from Section 2.2.3.
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Causative Availability attack: The rogue IDS

In a Causative Availability attack, the attacker uses control over training instances

to interfere with operation of the system, such as by blocking legitimate traffic.

Example: an attacker wants traffic to be blocked so the destination doesn’t receive

it. The attacker generates attack traffic similar to benign traffic when the defender

is collecting training data to train the IDS. When the learner re-trains on the attack

data, the IDS will start to filter away benign instances as if they were intrusions.

This attack could be Targeted at a particular protocol or destination. On the

other hand, it might be Indiscriminate and attempt to block a significant portion of

all legitimate traffic.

Exploratory Integrity attack: The shifty intruder

In an Exploratory Integrity attack, the attacker crafts intrusions so as to evade

the classifier without direct influence over the classifier itself.

Example: an attacker modifies and obfuscates intrusions, such as by changing

network headers and reordering or encrypting contents. If successful, these modifi-

cations prevent the IDS from recognizing the altered intrusions as malicious, so it

allows them into the system.

In the Targeted version of this attack, the attacker has a particular intrusion to get

past the filter. In the Indiscriminate version, the attacker has no particular preference

and can search for any intrusion that succeeds, such as by modifying a large number
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of different exploits to see which modifications evade the filter.

Exploratory Availability attack: The mistaken identity

In an Exploratory Availability attack, the attacker interferes with normal opera-

tion without influence over training.

Example: an attacker sends intrusions appearing to originate from an innocent

machine. The IDS, which has learned to recognize intrusions, blocks that machine.

In the Targeted version, the attacker has a particular machine to target. In the

Indiscriminate version, the attacker may select any convenient machine or may switch

IP addresses among many machines to induce greater disruption.

2.2.4 The adversarial learning game

This section models attacks on learning systems as games where moves represent

strategic choices. The choices and computations in a move depend on information

from previous moves (when a game is repeated, this includes previous iterations).

Exploratory game

We first present the game for Exploratory attacks:

1. Defender Choose procedure D for selecting hypothesis

2. Attacker Choose procedure AE for selecting distribution

3. Evaluation:
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• Reveal distribution PT

• Sample dataset X from PT

• Compute f ← D(X)

• Compute PE ← AE(X, f)

• Sample dataset E from PE

• Assess total cost:
∑

(x,y)∈E

C (x, f(x), y)

The defender’s move is to choose a learning algorithm (procedure) D for creating

hypotheses from datasets. For example, the defender may choose a support vector

machine (SVM) with a particular kernel, loss, regularization, and cross-validation

plan.

The attacker’s move is then to choose a procedure AE to produce a distribution

on which to evaluate the hypothesis that D generates. (The degree of control the

attacker has in generating the dataset is setting-specific.)

After the defender and attacker have both made their choices, the game is eval-

uated. A training dataset X is drawn from some fixed and possibly unknown distri-

bution PT, and training produces f = D(X). The attacker’s procedure AE produces

distribution PE, which may be based on X and f , and an evaluation dataset E is

drawn from PE. Finally, the attacker and defender incur cost based on the perfor-

mance of f evaluated on E.
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In many cases, the procedure AE can query the classifier, treating it as an oracle

that provides labels for query instances. Attacks that use this technique are probing

attacks. Probing can reveal information about the classifier. On the other hand, with

sufficient prior knowledge about the training data and algorithm, the attacker may

be able to find high-cost instances without probing.

Causative game

The game for Causative attacks is similar:

1. Defender Choose procedure D for selecting hypothesis

2. Attacker Choose procedures AT and AE for selecting distributions

3. Evaluation:

• Compute PT ← AT

• Sample dataset X from PT

• Compute f ← D(X)

• Compute PE ← AE(X, f)

• Sample dataset E from PE

• Assess total cost:
∑

(x,y)∈E

C (x, f(x), y)

This game is very similar to the Exploratory game, but the attacker can choose AT

to affect the training data X. The attacker may have various types of influence over
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the data, ranging from arbitrary control over some fraction of instances to a small

biasing influence on some aspect of data production; details depend on the setting.

Control over training data opens up new strategies to the attacker. Cost is based

on the interaction of f and E. In the Exploratory game the attacker chooses E while

the defender controls f ; in the Causative game the attacker also influences f . With

this influence, the attacker can proactively cause the learner to produce bad classifiers.

Iteration

We have described these games as one-shot games, in which players minimize cost

when each move happens only once. We can also consider an iterated game, in which

the game repeats several times and players minimize total accumulated cost. In this

setting, we assume players have access to all information from previous iterations of

the game. One-shot games naturally fit with short-term attacker goals, while iterated

games can more easily accommodate attackers with long-term goals.

2.3 Attacks: Categorizing related work

This section surveys examples of learning in adversarial environments from the

literature. Our taxonomy provides a basis for evaluating the resilience of the systems

described, analyzing the attacks against them in preparation for constructing defenses.

We organize attacks in the literature according to our taxonomy in this section and

display them in Table 2.2.
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Integrity Availability

Causative:

Targeted
Kearns and Li [1993], Newsome,
Karp, and Song [2006]

Kearns and Li [1993], Newsome
et al. [2006], Chung and Mok
[2007], Nelson et al. [2008]

Indiscriminate
Kearns and Li [1993], Newsome
et al. [2006]

Kearns and Li [1993], Newsome
et al. [2006], Chung and Mok
[2007], Nelson et al. [2008]

Exploratory :

Targeted

Tan, Killourhy, and Maxion
[2002], Lowd and Meek [2005a],
Wittel and Wu [2004], Lowd and
Meek [2005b], Karlberger, Bayler,
Kruegel, and Kirda [2007]

Moore, Shannon, Brown, Voelker,
and Savage [2006]

Indiscriminate
Fogla and Lee [2006], Lowd and
Meek [2005a], Wittel and Wu
[2004], Karlberger et al. [2007]

Moore et al. [2006]

Table 2.2: Related work in the taxonomy.
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2.3.1 Causative Integrity attacks

Contamination in PAC learning. Kearns and Li [1993] extend Valiant’s probably

approximately correct (PAC) learning framework [Valiant, 1984, 1985] to prove bounds

for maliciously chosen errors in the training data. In PAC learning, an algorithm

succeeds if it can, with probability at least 1− δ, learn a hypothesis that has at most

probability ǫ of making an incorrect prediction on an example drawn from the same

distribution. Kearns and Li examine the case where an attacker has arbitrary control

over some fraction of the training examples. They prove that in general the attacker

can prevent the learner from succeeding if the fraction is at least ǫ/(1 + ǫ), and for

some classes of learners they show this bound is tight.

This work provides an interesting and useful bound on the ability to succeed at

PAC-learning. The analysis broadly concerns both Integrity and Availability attacks

as well as both Targeted and Indiscriminate. However, not all learning systems fall

into the PAC-learning model.

Red herring attack. Newsome, Karp, and Song [2006] present Causative Integrity

and Causative Availability attacks against Polygraph [Newsome, Karp, and Song,

2005], a polymorphic virus detector that learns virus signatures using both a con-

junction learner and a naive-Bayes-like learner. Their red herring attacks against

conjunction learners exploit certain weaknesses not present in other learning algo-

rithms (these are Causative Integrity attacks, both Targeted and Indiscriminate).
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2.3.2 Causative Availability attacks

Correlated outlier attack. Newsome et al. [2006] also suggest a correlated outlier

attack, which attacks a naive-Bayes-like learner by adding spurious features to positive

training instances, causing the filter to block benign traffic with those features (an

Availability attack).

Allergy attack. Chung and Mok [2006, 2007] present Causative Availability at-

tacks against the Autograph worm signature generation system [Kim and Karp, 2004].

Autograph operates in two phases. First, it identifies infected nodes based on behav-

ioral patterns, in particular scanning behavior. Second, it observes traffic from the

identified nodes and infers blocking rules based on observed patterns. Chung and Mok

describe an attack that targets traffic to a particular resource. In the first phase, an

attack node convinces Autograph that it is infected by scanning the network. In

the second phase, the attack node sends crafted packets mimicking targeted traffic,

causing Autograph to learn rules that block legitimate access and create a denial of

service.

Attacking SpamBayes. We have developed Causative Availability attacks (both

Targeted and Indiscriminate) against the SpamBayes statistical spam classifier [Nel-

son et al., 2008]. Our dictionary attack and focused attack can render SpamBayes

unusable or prevent the victim from receiving a particular email message with only a

small amount of influence on training. We present this work in Chapter 3.
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2.3.3 Exploratory Integrity attacks

Some Exploratory Integrity attacks mimic statistical properties of the normal traf-

fic to camouflage intrusions. In the Exploratory game, the attacker’s move produces

instances E that statistically resemble normal traffic in the training data X as mea-

sured by the learning procedure D.

Polymorphic blending attack. Polymorphic blending attacks encrypt attack traf-

fic in such a way that it appears statistically identical to normal traffic. Fogla and Lee

[2006] present a framework for reasoning about and generating polymorphic blending

attack instances to evade intrusion detection systems.

Attacking stide. Tan, Killourhy, and Maxion [2002] describe a mimicry attack

against the stide anomaly-based intrusion detection system (IDS). They modify

exploits of the passwd and traceroute programs to accomplish the same end results

using different sequences of system calls: the shortest subsequence in attack traffic

that does not appear in normal traffic is longer than the IDS window size, so the

attacker evades detection.

Good word attacks. Several authors demonstrate Exploratory Integrity attacks

using similar principles against spam filters. Lowd and Meek [2005a] and Wittel

and Wu [2004] develop attacks against statistical spam filters that add good words,

or words the filter considers indicative of non-spam, to spam emails. Karlberger,
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Bayler, Kruegel, and Kirda [2007] study the effect of replacing strong spam words

with synonyms. These modification can make spam emails appear innocuous to the

filter, especially if the words are chosen to be ones that appear often in non-spam

email and rarely in spam email.

Reverse engineering classifiers. In another paper, Lowd and Meek [2005b] ap-

proach the Exploratory Integrity attack problem from a different angle: they give an

algorithm for an attacker to reverse engineer a classifier. The attacker seeks the high-

est cost (lowest cost for the attacker) instance that the classifier labels negative. This

work is interesting in its use of a cost function over instances for the attacker rather

than simple positive/negative classification. We explore this work in more detail in

Section 2.4.1.

2.3.4 Exploratory Availability attacks

Exploratory Availability attacks against non-learning systems abound in the lit-

erature: almost any denial of service (DoS) attack falls into this category, such as

those described by Moore, Shannon, Brown, Voelker, and Savage [2006].

However, Exploratory Availability attacks against the learning components of sys-

tems are not common. We describe one possibility in Section 2.2.3: if a learning IDS

has trained on intrusion traffic and has the policy of blocking hosts that originate in-

trusions, an attacker could send intrusions that appear to originate from a legitimate
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host, causing the IDS to block that host. Another possibility is to take advantage of

a computationally expensive learning component: for example, spam filters that use

image processing to detect advertisements in graphical attachments can take signifi-

cantly more time than text-based filtering [Dredze, Gevaryahu, and Elias-Bachrach,

2007; Wang, Josephson, Lv, Charikar, and Li, 2007]. An attacker could exploit such

overhead by sending many emails with images, causing the expensive processing to

delay and perhaps even block messages.

2.4 Defenses: Applying our framework

We discuss several defense strategies against broad classes of attacks. The game

between attacker and defender and the taxonomy that we introduce in Section 2.3

provides a foundation on which to construct defenses. We address Exploratory and

Causative attacks separately, and we also discuss the broader setting of an iterated

game. In all cases, we must expect a trade-off: changing the algorithms to make

them more robust against (worst-case) attacks will often make them less effective on

average.

2.4.1 Defending against Exploratory attacks

Exploratory attacks do not corrupt the training data but attempt to find vulner-

abilities in the learned hypothesis. The attacker attempts to construct a distribution
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that concentrates probability mass on high-cost instances; in other words, the attacker

tries to find an evaluation distribution on which the learner predicts poorly (violating

stationarity). This section examines defender strategies that make it difficult for the

attacker to construct such a distribution.

In the Exploratory game, the defender makes a move before observing contami-

nated data. The defender can impede the attacker’s ability to reverse engineer the

classifier by limiting access to information about the training procedure and data.

With less information, the attacker has difficulty producing a distribution unfavor-

able to the defender. Nonetheless, even with incomplete information, the attacker

may be able to construct an unfavorable evaluation distribution using a combination

of prior knowledge and probing.

Defenses against attacks without probing

Part of our security analysis involves identifying aspects of the system that should

be kept secret. In securing a learner, we attempt to limit information to make it

difficult for an attacker to conduct an attack.

Training data. Keeping training data secret from the attacker limits the attacker’s

ability to reconstruct internal states of the classifier. There is a tension between

collecting training data that fairly represents the real world instances and keeping all

aspects of that data secret. In most situations, it is difficult to use completely secret

training data, though the attacker may have only partial information about it.
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Feature selection. We can make classifiers hard to reverse engineer through feature

selection. Feature selection is the process of choosing a feature map that maps raw

measurements into a new feature space on which a hypothesis is selected. Keeping

secret which features are selected in learning, or choosing a secret mapping to a

different feature space entirely, may hinder an attacker in finding high-cost instances.

Globerson and Roweis [2006] present a defense for the Exploratory attack of feature

deletion on the evaluation data: features present in the training data, and perhaps

highly predictive of an instance’s class, are removed from the evaluation data by the

attacker. For example, words present in training emails may not occur in evaluation

messages, and network packets in training data may contain values for optional fields

that are missing from future traffic. Globerson and Roweis formulate a modified

support vector machine classifier robust against deletion of high-value features.

Obfuscation of spam-indicating words (an attack on the feature set) is a com-

mon Targeted Exploratory Integrity attack. Sculley, Wachman, and Brodley [2006]

use inexact string matching to defeat obfuscations of words in spam emails. They

use features based on character subsequences that are robust to character addition,

deletion, and substitution.

Hypothesis space/learning procedures. A complex hypothesis space may make

it difficult for the attacker to infer precise information about the learned hypothesis.

However, hypothesis complexity must be balanced with capacity to generalize, such

as through regularization.



32

Wang, Parekh, and Stolfo [2006] present Anagram, an anomaly detection system

using n-gram models of bytes to detect intrusions. They incorporate two techniques

to defeat Exploratory attacks that mimic normal traffic (mimicry attacks): (1) they

use high-order n-grams (with n typically between 3 and 7), which capture differences

in intrusion traffic even when that traffic has been crafted to mimic normal traffic on

the single-byte level; and (2) they randomize feature selection by randomly choosing

several (possibly overlapping) subsequences of bytes in the packet and testing them

separately, so the attack will fail unless the attacker ensures that not only the whole

packet, but also any subsequence, mimics normal traffic.

Dalvi, Domingos, Mausam, Sanghai, and Verma [2004] develop a cost-sensitive

game-theoretic classification defense to counter Exploratory Integrity attacks. In

their model, the attacker can alter instance features but incurs a known cost for each

change. The defender can measure each feature at a different known cost. Each has a

known cost function over classification/true label pairs (not zero-sum). The classifier

is a cost-sensitive naive Bayes learner that classifies instances to minimize its expected

cost, while the attacker modifies features to minimize its own expected cost. Their

defense constructs an adversary-aware classifier by altering the likelihood function of

the learner to anticipate the attacker’s changes. They adjust the likelihood that an

instance is malicious by considering that the observed instance may be the result of

an attacker’s optimal transformation of another instance. This defense relies on two

assumptions: (1) the defender’s strategy is a step ahead of the attacker’s strategy,
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and (2) the attacker plays optimally against the original cost-sensitive classifier. It

is worth noting that while their approach defends against optimal attacks, it doesn’t

account for non-optimal attacks. For example, if the attacker doesn’t modify any data,

the adversary-aware classifier misclassifies some instances that the original classifier

correctly classifies.

Defenses against probing attacks

The ability to query a classifier gives an attacker additional attack options.

Analysis of reverse engineering. Lowd and Meek [2005b] observe that the at-

tacker need not model the classifier explicitly, but only find lowest-attacker-cost in-

stances as in the Dalvi et al. setting. They formalize a notion of reverse engineering

as the adversarial classifier reverse engineering (ACRE) problem. Given an attacker

cost function, they analyze the complexity of finding a lowest-attacker-cost instance

that the classifier labels as negative. They assume no general knowledge of training

data, though the attacker does know the feature space and also must have one positive

example and one negative example. A classifier is ACRE-learnable if there exists a

polynomial-query algorithm that finds a lowest-attacker-cost negative instance. They

show that linear classifiers are ACRE-learnable with linear attacker cost functions

and some other minor restrictions.

The ACRE-learning problem provides a means of qualifying how difficult it is to

use queries to reverse engineer a classifier from a particular hypothesis class using a
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particular feature space. We now suggest defense techniques that can increase the

difficulty of reverse engineering a learner.

Randomization. A randomized hypothesis may decrease the value of feedback to

an attacker. Instead of choosing a hypothesis f : X → {0, 1}, we generalize to

hypotheses that predict a real value on [0, 1]. This generalized hypothesis returns a

probability of classifying x as 1. By randomizing, the expected performance of the

hypothesis may decrease on regular data drawn from a non-adversarial distribution,

but it also may decrease the value of the queries for the attacker. Randomization

in this fashion does not reduce the information available in principle to the attacker,

but merely requires more work from the attacker for the information.

However, if an attacker does reverse engineer the decision boundary and (for

example) discovers a region of intrusions where an IDS does not alarm, then if the

decision is randomized the IDS will occasionally alarm on attack points and the

attacker cannot avoid detection indefinitely. In these circumstances, the learner trades

some average-case classification performance for assurance that attacks have limited

duration before they are discovered.

Limiting/misleading feedback. Another potential defense is to limit the feed-

back given to an attacker. For example, common techniques in the spam domain

include eliminating bounce emails, remote image loading, and other potential feed-

back channels. It is impossible to remove all feedback channels; however, limiting
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feedback increases work for the attacker. In some settings, it may be possible to

mislead the attacker by sending fraudulent feedback.

Actively misleading the attacker with feedback suggests an interesting battle of

information between attacker and defender. In some scenarios the defender may be

able to give the attacker no information via feedback, and in others the defender may

even be able to give feedback that causes the attacker to come to incorrect conclusions.

2.4.2 Defending against Causative attacks

In Causative attacks, the attacker has a degree of control over not only the evalua-

tion distribution but also the training distribution. Therefore the learning procedures

we consider must be resilient against contaminated training data, as well as to the

considerations discussed in the previous section. We consider two main approaches.

Robustness

The field of Robust Statistics explores procedures that limit the impact of a small

fraction of deviant (adversarial) training data. In the setting of Robust Statistics, it

is assumed that the bulk of the data is generated from a known model, but a small

fraction of the data is selected adversarially. A number of tools exist for assessing

robustness: qualitative robustness, the breakdown point of a procedure (how much data

the attacker needs for arbitrary control), and the influence function of a procedure
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(to measure the impact of contamination on the procedure). These tools can be

used to design procedures that are robust against adversarial contamination of the

training data. For a full treatment, see the books by Huber [1981], Hampel, Ronchetti,

Rousseeuw, and Stahel [1986], and Maronna, Martin, and Yohai [2006].

Recent research has highlighted the importance of robust procedures in security

and learning tasks. Wagner [2004] observes that common sensor net aggregation

procedures, such as computing a mean, are not robust to adversarial point contam-

ination, and he identifies the median and trimmed average as robust replacements.

Christmann and Steinwart [2004] study robustness for learning methods that can be

expressed as regularized convex risk minimization on a Hilbert space. Their results

suggest that the use of loss functions with certain common properties (such as logistic

loss), along with regularization, can lead to robust procedures in the sense of bounded

influence. Such procedures seem to have desirable properties for secure learning.

Online prediction with experts

When the attacker has full control of the training data, the situation is more dire.

If f minimizes risk on the training set, the attacker could choose AT and AE to make

the evaluation risk approach its maximum. However, a slight change to the defender’s

objective yields an interesting variant of the iterated Causative.

Consider the case where the attacker has complete control over training data but

the defender receives the advice of M experts who provide predictions. For example,
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the defender may have M different classifiers, each of which is designed to be robust in

a different way. Each classifier is an expert in this model. We construct a composite

classifier that predicts based on the advice of the experts. We make no assumptions

about how the experts perform, but we evaluate our learner’s performance relative to

the best expert in hindsight. The intuition behind this strategy is that the attacker

must design attacks that are successful not only against a single expert, but uniformly

against the set of experts. The composite learner can perform almost as well as the

best one without knowing ahead of time which expert is best.

The learner forms a prediction from the M expert predictions and adapts the

hypothesis based on their performance during K repetitions. At each step k of the

game, the defender receives a prediction g
(k)
m from each expert; this may be based

on the data but we make no assumptions about its behavior. More formally, the kth

round of the expert-based prediction game is:

1. Defender Update function h(k) : YM → Y

2. Attacker Choose distribution P
(k)

3. Evaluation:

• Sample an instance (x(k), y(k)) ∼ P
(k)

• Compute expert advice {g(k)
m }Mm=1

• Predict ŷ(k) = h(k)
(

g
(k)
1 , . . . , g

(k)
M

)

.

• Assess cost C
(

x(k), ŷ(k), y(k)
)
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This game has a slightly different structure from the games we present in Sec-

tion 2.2.4—here the defender chooses one strategy at the beginning of the game and

then in each iteration updates the function h(k) according to that strategy. The

attacker, however, may select a new strategy at each iteration.

The setting of online expert-based prediction allows us to split risk minimization

into two subproblems: (1) minimizing the loss of each expert and (2) minimizing the

average regret—the difference between the loss of our composite learner and the loss

of the best overall expert in hindsight. The other defenses we have discussed approach

the first problem. Online game theory addresses the second problem: the defender

chooses a strategy for updating h(k) to minimize regret based only on the experts’s

past performance. For certain variants of the game, composite predictors exist with

regret o(K)—the average regret approaches 0 as K increases. A full description of

this setting and several results appear in Cesa-Bianchi and Lugosi [2006].

2.5 Summary

In this chapter we have presented a framework for articulating a comprehensive

view of different classes of attacks on machine learning systems in terms of three

independent dimensions. We have analyzed the security goals and threat model for

machine learning, explored the attacker’s capabilities, and developed the notion of

a learning game between attacker and defender. Guided by our framework and the

learning game, we identify where relevant prior research fits into the framework.



39

Specifically, we explore the effects of different types of attacks on the systems and

their defenses against these attacks.

We believe that our framework opens a number of new research directions. In

particular, from the framework, we can generalize to the idea that many of the classes

of attacks are dependent upon knowledge that the attacker has gained about the

internal states of the learner. Thus, one potentially interesting avenue for future

exploration is the idea of securing learning systems by measuring and bounding the

amount of information leaked from a learning system to an attacker.

In the following chapters we examine in depth how this framework can guide

attacks against and defenses of real systems.



40

Chapter 3

Developing Causative Attacks:

Attacking SpamBayes

3.1 Introduction

This chapter demonstrates how attackers can exploit machine learning to subvert

the SpamBayes statistical spam filter.1 Our Causative Availability attack strategies

exhibit two key differences from previous work: traditional attacks modify spam

emails to evade a spam filter, whereas our attacks interfere with the training process

of the learning algorithm and modify the filter itself ; and rather than focusing only

on placing spam emails in the victim’s inbox, we subvert the spam filter to remove

legitimate emails from the inbox.

1Material in this chapter has been previously published in the paper “Exploiting machine learning
to subvert your spam filter” [Nelson et al., 2008].
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We consider attackers with one of two goals: expose the victim to an advertisement

or prevent the victim from seeing a legitimate message. Potential revenue gain for

a spammer drives the first goal, while the second goal is motivated, for example, by

an organization competing for a contract that wants to prevent competing bids from

reaching their intended recipient.

An attacker may have detailed knowledge of a specific email the victim is likely to

receive in the future, or the attacker may know particular words or general information

about the victim’s word distribution. In many cases, the attacker may know nothing

beyond which language the emails are likely to use.

When an attacker wants the victim to see spam emails, a broad dictionary at-

tack can render the spam filter unusable, causing the victim to disable the filter

(Section 3.3.1). With more information about the email distribution, the attacker

can select a smaller dictionary of high-value features that are still effective. When

an attacker wants to prevent a victim from seeing particular emails and has some

information about those emails, the attacker can target them with a focused attack

(Section 3.3.2).

Our attacks target the learning algorithm underlying several spam filters, includ-

ing SpamBayes (spambayes.sourceforge.net), BogoFilter (bogofilter.sourceforge.net),

and the machine learning component of SpamAssassin (spamassassin.apache.org)—

the primary difference between the learning elements of these three filters is in their

tokenization methods. Of these, we choose SpamBayes because it uses a pure ma-
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chine learning method, it is familiar to the academic community [Meyer and Whate-

ley, 2004], and it is popular with over 700,000 downloads. Although we specifically

attack SpamBayes, the widespread use of its statistical learning algorithm suggests

that other filters may also be vulnerable to similar attacks. However, some filters,

such as SpamAssassin, use the learner only as one component of a broader filtering

strategy.

Our experimental results confirm that this class of attacks presents a serious con-

cern for statistical spam filters. A dictionary attack can make a spam filter unusable

when controlling just 1% of the messages in the training set, and a well-informed

focused attack can remove the target email from the victim’s inbox 90% of the time.

3.2 Background

3.2.1 Training model

SpamBayes produces a classifier from labeled examples to label future emails. The

labels are spam (bad, unsolicited email), ham (good, legitimate email), and unsure

(SpamBayes isn’t confident one way or the other). The classifier learns from a labeled

training set of ham and spam emails.

Email clients use these labels in different ways—some clients filter email labeled

as spam and unsure into “Spam-High” and “Spam-Low” folders, respectively, while

other clients only filter email labeled as spam into a separate folder. Since the typical
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user reads most or all email in their inbox and rarely (if ever) looks at spam folders,

the unsure labels can be problematic. If unsure messages are filtered into a separate

folder, users may periodically read the messages in that folder to avoid missing im-

portant email. If instead unsure messages are not filtered, then the user faces those

messages when checking the email in their inbox. Too much unsure email is almost

as troublesome as too many false positives (ham labeled as spam) or false negatives

(spam labeled as ham). In the extreme, if everything is labeled unsure then the user

obtains no time savings at all from the filter.

In our scenarios, an organization uses SpamBayes to filter incoming email for

multiple users2 and trains on everyone’s received email. SpamBayes may also be used

as a personal email filter, in which case the presented attacks are likely to be equally

effective.

To keep up with changing trends in the statistical characteristics of both legitimate

and spam email, we assume that the organization retrains SpamBayes periodically

(e.g., weekly). Our attacks are not limited to any particular retraining process; they

only require that the attacker can introduce attack data into the training set somehow

(the contamination assumption).

2We use the terms user and victim interchangeably for either organization or individual; the
meaning will be clear from context.
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3.2.2 The contamination assumption

We assume that the attacker can send emails that the victim will use for training—

the contamination assumption—but incorporate two significant restrictions: attackers

may specify arbitrary email bodies but not headers, and attack emails are always

trained as spam and not ham. We examine the implications of the contamination

assumption in the remainder of this chapter.

A real attacker has many opportunities to contaminate the training set. Consider

the following alternatives. If the victim periodically retrains on all email, any email

the attacker sends will be used for training. If the victim trains on only manually

labeled email, the attack emails will still be included as spam because they genuinely

are spam. Even if the victim retrains only on mistakes made by the filter, it may

not be difficult to design emails that perform our attacks and are misclassified by the

victim’s current filter.

We do not consider the possibility that a user might inspect training data to

remove attack emails. It seems unrealistic that any but the most sophisticated user

would have any idea whether a particular spam email might damage the performance

of the filter. If the user has heuristics for detecting the attack emails we describe

later, our attacks could easily be adjusted to evade simple heuristics such as email

size or word distributions. We avoid pursuing this arms race here.

Our focus on attack emails trained as spam should be viewed as a restriction and

not a necessary condition for the success of the attacks—the ability to use attack



45

emails trained as ham could enable additional attacks that place spam in a user’s

inbox.

3.2.3 SpamBayes learning method

SpamBayes classifies using token scores based on a simple model of spam status

proposed by Robinson [Meyer and Whateley, 2004; Robinson, 2003], based on ideas by

Graham [Graham, 2002] together with Fisher’s method for combining independent

significance tests [Fisher, 1948]. Intuitively, SpamBayes learns how strongly each

word indicates ham or spam by counting in how many of each type of email that

word appears. When classifying a new email, SpamBayes looks at all of its words

and uses a statistical test to decide whether they indicate one label or the other with

sufficient confidence; if not, SpamBayes returns unsure.

SpamBayes tokenizes the header and body of each email before constructing token

spam scores. Robinson’s method assumes that each token’s presence or absence in

an email affects that email’s spam status independently from other tokens. For each

token w, SpamBayes computes the raw token score

PR(w) =
NHNS(w)

NHNS(w) + NSNH(w)
(3.1)

from the counts NS, NH , NS(w), and NH(w)—the number of spam emails, ham

emails, spam emails that include w and ham emails that include w.

Robinson smooths PR(w) through a convex combination with a prior belief b,

weighting the quantities by N(w) (the number of training emails with w) and s
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(chosen for strength of prior), respectively. This leads to the token score

PS(w) =
s

s + N(w)
b +

N(w)

s + N(w)
PR(w) . (3.2)

For a new message x, Robinson uses Fisher’s method to combine the spam scores

of the most significant tokens into a message score, or spam score. SpamBayes uses

at most 150 tokens from x with scores furthest from 0.5 and outside the interval

[0.4, 0.6]. We call this set ν(x). The message score is

I(x) =
1 + H(x)− S(x)

2
∈ [0, 1] , (3.3)

H(x) = 1− χ2
2n



−2
∑

w∈ν(x)

log PS(w)



 , (3.4)

where χ2
2n(·) denotes the cumulative distribution function of the chi-square distribu-

tion with 2n degrees of freedom. S(x) is defined like H(x) but with PS(w) replaced by

1− PS(w). SpamBayes predicts by thresholding against two user-tunable thresholds

θ0 and θ1, with defaults θ0 = 0.15 and θ1 = 0.9: SpamBayes predicts ham, unsure, or

spam if I falls into the interval [0, θ0], (θ0, θ1], or (θ1, 1], respectively.

The inclusion of an unsure category in addition to spam and ham prevents us from

purely using ham-as-spam and spam-as-ham misclassification rates (false positives

and false negatives, respectively) for evaluation. We must also consider spam-as-

unsure and ham-as-unsure emails. Because of the practical effects on the user’s time

and effort mentioned in Section 3.2.1, ham-as-unsure misclassifications are nearly as

bad for the user as ham-as-spam.
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3.3 Attacks

Our focus is on Causative Availability attacks, which manipulate the filter’s train-

ing data to increase false positives. We consider both Indiscriminate and Targeted

attacks. In Indiscriminate attacks, enough false positives force the victim to disable

the spam filter, or at least frequently search through spam/unsure folders to find

legitimate messages that were filtered away. In either case, the victim is forced to

view more spam. In Targeted attacks, the attacker does not disable the filter but sur-

reptitiously prevents the victim from receiving certain types of email. For example, a

company may wish to prevent its competitors from receiving email about a bidding

process in which they are all competing.

3.3.1 Dictionary attacks

Our first attack is an Indiscriminate attack—the attacker wants to cause a large

number of false positives so that the user loses confidence in the filter and must

manually sort through spam and ham emails. The idea is to send attack emails

that contain many words likely to occur in legitimate email. When the victim trains

SpamBayes with these attack emails marked as spam, the words in the attack emails

will have higher spam score. Future legitimate email is more likely to be marked as

spam if it contains words from the attack email.

When the attacker lacks specific knowledge about the victim’s email, one simple

attack is to include an entire dictionary of the English language. This technique is the
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Figure 3.1: Dictionary attack against SpamBayes. The attacker sends dictionary at-
tack messages that the victim trains on, causing the learned classifier f to incorrectly
reject many benign emails, resulting in Indiscriminate false positives.

basic dictionary attack. See Figure 3.1 for a visual representation. A further refine-

ment uses a word source with a distribution closer to the victim’s email distribution.

For example, a large pool of Usenet newsgroup postings may have colloquialisms, mis-

spellings, and other “words” not found in a dictionary; furthermore, using the most

frequent words in such a corpus may allow the attacker to send smaller emails without

losing much effectiveness. For more details on the datasets we use, see Section 3.4.1.

3.3.2 Focused attack

Our second attack is a Targeted attack—the attacker has some knowledge of a

specific legitimate email to target for filtering. If the attacker has exact knowledge of

the target email, placing all of its tokens in attack emails produces an optimal attack.

Realistically, the attacker has partial knowledge about the target email and can guess

only some of its tokens to include in attack emails. We model this knowledge by
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Figure 3.2: Focused attack against SpamBayes. The attacker sends attack messages
containing words from a specific target message. When SpamBayes trains on them,
the resulting classifier f learns to reject the target message (a Targeted false positive).

letting the attacker probabilistically guess tokens from the target email to include.

When SpamBayes trains on this attack email, the spam scores of the targeted tokens

increase, so the target message is more likely to be filtered as spam. This is the focused

attack (see Figure 3.2). For example, consider a malicious contractor wishing to

prevent the victim from receiving messages with competing bids. The attacker sends

spam emails to the victim with words such as the names of competing companies,

their products, and their employees. The bid messages may even follow a common

template, making the attack easier to craft.

The attacker may have different levels of knowledge about the target email. In the

extreme case, the attacker might know the exact content of the target email and use

all of its words. More realistically, the attacker only guesses a fraction of the email’s

content. In either case, the attack email may include additional words as well.

The focused attack is more concise than the dictionary attack because the attacker
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has detailed knowledge of the target and no reason to affect other messages.

3.3.3 Optimal attack function

The dictionary and focused attacks can be seen as two instances of a common

attack in which the attacker has different amounts of knowledge about the victim’s

email. Without loss of generality, suppose the attacker generates only a single attack

message a. The victim adds it to the training set, trains, and classifies a new message

x. Both a and x are indicator vectors, where the ith component is true if word i

appears in the email. The attacker also has some (perhaps limited) knowledge of the

next email the victim will receive. This knowledge can be represented as a distribution

p—the vector of probabilities that each word appears in the next message.

The goal of the attacker is to choose an attack email a that maximizes the expected

spam score:

max
a

Ex∼p [Ia(x)] .

In other words, the goal of the attack is to maximize the expectation of Ia (Equa-

tion (3.3) with the attack message a in the spam training set) of the next legitimate

email x drawn from distribution p. In order to describe the optimal attack under

this criterion, we make two observations. First, the token scores of distinct words

do not interact; that is, adding a word w to the attack does not change the score

PS(u) of some different word u 6= w. Second, it can be shown that I is monotonically

non-decreasing in each PS(w). Therefore the best way to increase Ia is to include



51

additional words in the attack message.

Now let us consider specific choices for the next email’s distribution p. First, if

the attacker has little knowledge about the words in target emails, we model this

by setting p to be uniform over all vectors x representing emails. We can optimize

the expected message score by including all possible words in the attack email. This

optimal attack is infeasible in practice but can be simulated: one approximation

includes all words in the victim’s primary language, such as an English dictionary.

Using a dictionary in this way yields the dictionary attack.

Second, if the attacker has specific knowledge of a target email, we can represent

this by setting pi to 1 if and only if the ith word is in the target email. The optimal

attack still maximizes the expected message score, but a more compact attack that

is also optimal is to include all of the words in the target email. This approach is the

focused attack.

The attacker’s knowledge usually falls between these extremes. For example, the

attacker may use information about the distribution of words in English text to make

the attack more efficient, such as characteristic vocabulary or jargon typical of emails

the victim receives. Either of these results in a distribution p over words in the

victim’s email. Using this distribution, it should be possible to derive an optimal

constrained attack, which would be an interesting line of future work.
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3.4 Experiments

3.4.1 Experimental method

In our experiments we use the Text Retrieval Conference (TREC) 2005 spam

corpus [Cormack and Lynam, 2005], which contains 92,189 emails (52,790 spam and

39,399 ham). The TREC corpus is based on the Enron email corpus [Klimt and Yang,

2004], which consists of emails subpoenaed as evidence in the Enron trial and made

public, as well as additional spam email data. This corpus has several strengths: it

comes from a real-world source, it has a large number of emails, and its creators took

care that the added spam does not have obvious artifacts to differentiate it.

We use two sources of dictionary words. First, we use the GNU aspell English

dictionary version 6.0-0, containing 98,568 words. Second, we use the 90,000 most

common words from a subset of Usenet English postings [Shaoul and Westbury, 2007].

The overlap between these two dictionaries is approximately 61,000 words.

We restrict the attacker to have limited control over the headers of attack emails.

We implement this assumption by using the entire header from a different randomly

selected spam email from TREC for each attack email, taking care to ensure that

the content-type and other Multipurpose Internet Mail Extensions (MIME) headers

correctly reflect the attack message body.

We measure the effect of each attack by randomly choosing a 10,000-message

inbox that is 50% ham and 50% spam and comparing classification performance of the
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Parameter Dictionary Attack Focused Attack
Training set size 2,000, 10,000 2,000, 10,000
Spam prevalence 0.50, 0.75, 0.90 0.50, 0.75, 0.90
Attack fraction 0.001, 0.005, 0.01,

0.02, 0.05, 0.10
0.001, 0.005, 0.01,

0.02, 0.05, 0.10
Validation folds 10 10
Test set size 1,000 N/A
Target Emails N/A 20

Table 3.1: Parameters for our SpamBayes attack experiments.

control and compromised filters using ten-fold cross-validation. In cross-validation,

we partition the data into ten subsets and perform ten train-test epochs. During

the ith epoch, the ith subset is set aside as a test set and the remaining nine subsets

are used for training. Each email from our original 10,000-message dataset serves

independently as both training and test data.

In the following sections, we show the effect of our attacks on test sets of held-out

messages. Because our attacks are designed to cause ham to be misclassified, we only

show their effect on ham messages; their effect on spam is marginal. Our graphs do

not include error bars since we observed that the variation on our tests was small.

See Table 3.1 for our experimental parameters. We found the size of the training set

and spam prevalence in the training set to have minimal impact on the results, so we

present only the results of 10,000-message training sets at 50% spam prevalence.
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3.4.2 Dictionary attack results

We examine dictionary attacks as a function of the percent of attack messages

in the training set. Figure 3.3 shows the misclassification rates of three dictionary

attack variants averaging over ten-fold cross-validation. The optimal attack quickly

causes the filter to label all ham emails as spam. The Usenet dictionary attack causes

significantly more ham emails to be misclassified than the aspell dictionary attack,

since it contains common misspellings and slang terms that are not present in the

aspell dictionary (the overlap between the aspell and Usenet dictionaries is around

61,000 words). These variations of the attack require relatively few attack emails to

significantly degrade SpamBayes’s accuracy. By 101 attack emails (1% of 10,000),

the accuracy falls significantly for each attack variation; at this point most users will

gain no advantage from continued use of the filter.

To be fair, although the attack emails make up a small percentage of the number

of messages in a contaminated inbox, they make up a large percentage of the number

of tokens. For example, at 204 attack emails (2% of the messages), the Usenet attack

includes approximately 6.4 times as many tokens as the original dataset and the

aspell attack includes 7 times. An attack with fewer tokens likely would be harder

to detect; however, the number of messages is a more visible feature. It is of significant

interest that so few attack messages can degrade a widely-deployed filtering algorithm

to such a degree.
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Figure 3.3: Three dictionary attacks on initial training set of 10,000 messages (50%
spam). We plot percent of ham classified as spam (dashed lines) and as spam or
unsure (solid lines) against the attack as percent of the training set. We show the
optimal attack (black △), the Usenet dictionary attack (blue �), and the aspell

dictionary attack (green ©). All render the filter unusable with as little as 1% control
(101 messages).
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Figure 3.4: Effect of the focused attack as a function of the fraction of target tokens
known. Each bar depicts the fraction of target emails classified as spam, ham, and
unsure after the attack. The initial inbox contains 10,000 emails (50% spam).
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Figure 3.5: Effect of the focused attack as a function of the number of attack emails
with a fixed fraction (pw=0.5) of tokens that the attacker knows. The dashed line
shows the percentage of target ham messages misclassified as spam after the attack,
and the solid line the percentage of targets that are misclassified as unsure or spam

after the attack. The initial inbox contains 10,000 emails (50% spam).
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3.4.3 Focused attack results

For the focused attack, we randomly select 20 ham emails from the TREC corpus

to serve as the target emails before creating the 10,000-message inbox. During each

fold of cross-validation, we perform 20 focused attacks, one for each email, so our

results average over 200 different runs.

In Figure 3.4, we examine the effectiveness of the attack when the attacker has

increasing knowledge of the target email by simulating the process of the attacker

guessing tokens from the target email. For this figure, there are 300 attack emails—

16% of the original number of training emails. We assume that the attacker knows a

certain fraction pw of tokens in the target email, with pw ∈ {0.1, 0.3, 0.5, 0.9}—the x-

axis of Figure 3.4. The y-axis shows the proportion of the 20 targets classified as ham,

unsure and spam. As expected, the attack is increasingly effective as pw increases. If

the attacker knows 50% of the tokens in the target, classification changes on all of

the target emails with a 75% rate of classifying as spam.

In Figure 3.5, we examine the attack’s effect on misclassifications of the target

emails as the number of attack messages increases. In this figure, we fix the fraction

of tokens known at 0.5. The x-axis is the number of messages in the attack given as

percent of the training set, and the y-axis is the percent of messages misclassified.

With 100 attack emails and an initial mailbox size of 5,000 (2%), the target email is

misclassified nearly 100% of the time.

We gain more insight by examining the attack’s effect on three representative
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(c) Correctly classified ham

Figure 3.6: Effect of the focused attack on three representative target emails; red ×’s
are attacked tokens and blue ©’s are other tokens. See the text for a full explanation.
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emails (see Figure 3.6). Each of the panels in the figure represents a single target

email from each of three attack results: ham misclassified as spam (Figure 3.6a),

ham misclassified as unsure (Figure 3.6b), and ham correctly classified as ham (Fig-

ure 3.6c). Each point is a token in the email. The x-axis is the token spam score

(from Equation (3.2)) before the attack, and the y-axis is the token score after the

attack (0 means ham and 1 means spam). The red ×’s are tokens included in the

attack (known by the attacker) and the blue ©’s are tokens not in the attack. The

histograms show the distribution of token scores before the attack (at bottom) and

after the attack (at right).

Any point above the line y = x increased due to the attack and any point below

is a decrease. For these experiments the attacker knows 10% of the email’s tokens. In

these graphs we see that tokens included in the attack typically increase significantly

while those not included decrease slightly. Since the increase in score is more signifi-

cant for included tokens than the decrease in score for excluded tokens, the attack has

substantial impact even when the attacker has a low probability of guessing tokens,

as seen in Figure 3.4. Furthermore, the before/after histograms in Figure 3.6 provide

a direct indication of the attack’s success.

3.5 Summary

In this chapter, we show that an adversary can effectively disable the SpamBayes

spam filter with relatively little system state information and relatively limited control
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over training data. Our Usenet dictionary attack causes misclassification of 36% of

ham messages with only 1% control over the training messages, rendering SpamBayes

unusable. Our focused attack changes the classification of the target message 60% of

the time with only a 30% chance of guessing each of the target’s tokens.

The attacks we present in this chapter are similar to the correlated outlier attacks

suggested by Newsome, Karp, and Song [2006]. They speculate briefly about applying

such an attack to spam filters; however, several of their assumptions about the learner

are not appropriate for learners such as SpamBayes. For example, they assume that

the learner uses only features indicative of the positive class. Furthermore, although

they present insightful analysis, they do not evaluate the correlated outlier attack

against a real system. Our attacks use similar ideas, but we develop and test them

on a real system. We also explore the value of information to an attacker with our

Usenet dictionary attack and focused attack.

Our attacks should also work against other spam filtering systems based on similar

learning algorithms, such as BogoFilter and the Bayesian component of SpamAssassin

although their effect may vary (and SpamAssassin uses more components than just

the learning algorithm, so the overall effect of our attacks may be small). Similar

techniques may also be effective against other learning systems, such as those used

for worm or intrusion detection.
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Chapter 4

Exploratory Attack Defense: LDA

for Virus Detection

4.1 Introduction

In this chapter, we examine defensive strategies against an Exploratory Integrity

attack that combine high-level global information with low-level local information.1

The attack we consider is an email virus attack with traces from nine real viruses

that use various strategies to evade detection. The attacker wants to infect end-user

machines; we study an organizational setting where the administrator needs to detect

which users have infected machines so they can be quarantined and cleaned. Because

we are attempting to detect user-level compromise, we expect user-specific features to

1Material in this chapter has been previously published in the paper “User model transfer for
email virus detection” [Barreno et al., 2006a].
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be useful in distinguishing normal users from compromised ones. As an organization

with many users, however, the defender also has substantial information about global

behaviors and patterns. Here we explore a technique for leveraging both these types

of information to detect virus-infected users.

The motivation for using machine learning for virus detection is clear. Most

successful viruses and worms spread via email [Sophos Corporation, 2005]. Tradi-

tional network- and host-based virus scanners rely on manually crafted signatures

and heuristics and have difficulty detecting novel viruses.2 This creates a window

of vulnerability each time a virus is released. For example, anti-virus vendors took

over seven hours on average to generate a virus signature for the MyDoom.BB out-

break [Seltzer, 2005]. We list the response times in Table 4.1 to highlight their wide

range.

In contrast, machine learning techniques automatically model behavioral features

of normal (or abnormal) email traffic, allowing them to detect unknown attacks by

recognizing subtle deviations from normal activity. Most existing machine learning

approaches to virus detection use either global or per-user models.

Global models generalize across all users (or network events, etc.) to take advan-

tage of the full scope of data available. They often benefit from plentiful training data

but their accuracy may be limited by variations between users. Network intrusion

detection systems usually build global models, in particular for anomaly detection [Es-

2We do not distinguish between email-based worms and viruses.
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Vendor Time (hh:mm)
ClamAV 0:00
Sophos 0:58
Trend Micro 2:03
Fortinet 2:16
F-Prot 2:41
McAfee 2:50
eTrust-CA 3:28
Symantec 4:04
Command 4:42
Virusbuster 4:56
Trend Micro 5:10
Quickheal 6:09
eTrust-VET 7:29
AntiVir 8:07
Ikarus 8:27
Dr. Web 9:01
Proland 9:17
Panda 9:39
RAV 9:41
BitDefender 9:54
Norman 10:18
Dr. Web 10:52
AVG 12:03
Kaspersky 14:16
F-Secure 16:44
Avast 17:21

Table 4.1: Response times of anti-virus vendors in hours to the MyDoom.BB virus,
February 16–17, 2005. Times are given starting from the first response. (The exact
time of the outbreak is unknown.) Some vendors are repeated because their first
response incorrectly identified the virus and the second corrects the identification.
This table is derived from information given by Seltzer [2005].
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kin, Arnold, Prerau, Portnoy, and Stolfo, 2002; Lazarevic, Ertöz, Kumar, Ozgur, and

Srivastava, 2003]. These systems build a model of typical user or network behavior

and flag activity that falls outside the learned model.

Local models treat each user’s behavior independently, as is common in personal

spam detection systems [Meyer and Whateley, 2004; Robinson, 2003]. Separate per-

user models can be more accurate in the long run but suffer from a lack of training

data when a new user enters the system.

Some existing approaches also combine global and per-user information in their

models. The Email Mining Toolkit uses several machine learning methods, including

naive Bayes classification and social network analysis, on both global and per-user

levels to detect email-borne viruses. Using a back-and-forth search heuristic, it finds

agreements between the models to classify sequences of malicious emails [Stolfo, Her-

shkop, Hu, Li, Nimeskern, and Wang, 2006].

Another combined system, APE, uses both a global model and per-user models

in real-time to provide dynamic containment of worms and viruses. It uses a global

model to flag suspicious messages, which are then classified by per-user models [Mar-

tin, Sewani, Nelson, Chen, and Joseph, 2005; Martin, 2005].

Our approach uses Latent Dirichlet Allocation (LDA), a probabilistic model that

combines global and per-user information, gracefully transitioning between them as

more user data becomes available [Blei, Ng, and Jordan, 2003].
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Single Window
CharsInSubject NumToAddrInWindow
LinksInEmail MeanCharInSubject
AvgWordLength MeanWordsInBody
WordsInBody VarCharInSubject
WordsInSubject VarWordsInBody

Table 4.2: The “single” column features are derived from one email, while the “win-
dow” column is computed from the five most recent emails.

4.2 Using LDA for email

4.2.1 Features for email

We represent emails using the features in Table 4.2. Those in the “Single” column

are computed from a single email, while those in the “Window” column are computed

based on a sliding window. All features are modeled with the Gaussian distribution

except for LinksInEmail, for which we use the Binomial distribution. We do not use

message headers, attachment information, or language-based features, such as word

frequency. Instead we focus on simple properties of the email text and user sending

patterns. Our feature set is based on a previous study of feature selection for email

anti-virus systems [Martin et al., 2005].

The dataset version we use for these experiments does not contain attachment

information [Shetty and Adibi]. Attachment features are useful but are not silver

bullets, since not all viruses require attachments to propagate. For example, the

BubbleBoy virus spreads via a script embedded in an email. When the email is

viewed by a vulnerable mail client, it infects the system.
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Some features we initially considered, such as “Number of From addresses from

one sender in a window,” trivially classify large portions of the data. However, in

all these cases the feature in question could easily be spoofed by a virus to avoid

detection. We omit such features, so our results are somewhat pessimistic.

4.2.2 Latent Dirichlet allocation

Our system is based on the premise that different users exhibit many of the

same canonical behaviors when sending email, but in different proportions. Like-

wise, viruses all spread from host to host in some manner, so even new viruses will

have some behaviors in common with known viruses. We use the Latent Dirich-

let Allocation (LDA) model [Blei et al., 2003] to combine user-specific training with

behavioral information learned from the full population of users and known viruses.

LDA is a probabilistic model that represents items (in our context, emails) in

terms of topics that group items by shared characteristics. We represent an email as

a vector of features. Due to our choice of features, a topic corresponds to a type of user

behavior or style of email (e.g., we have observed a topic that contains primarily long

forwarded emails and another that has short bodies and empty or one-word subject

lines). A topic groups emails that share characteristics described by our feature set.

A user is represented as a multinomial distribution over topics. In other words, LDA

extracts common behaviors and represents each user as a mixture of those behaviors.

The remainder of this section describes mixture models and LDA in the context
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of email virus detection. Figure 4.1 shows graphical model representations [Jordan,

2004] of the joint probability distributions of these models.

4.2.3 Variables and notation

Let T be the number of topics (chosen as a model parameter) and F be the number

of features. In Figure 4.1, x is a vector of F components, z and α are scalar values,

φ is a vector of T components, and β is a T × F matrix of parameters. U is the

number of users, and E is the number of emails sent per user.3 Variables inside the

rectangular plates are replicated, so each model depicts a total of E ×U variables x,

and so on; we do not distinguish these notationally.

4.2.4 Mixture models

A mixture model is a statistical tool for modeling datasets containing multiple

subpopulations, each with a simple distribution (such as the Gaussian distribution).

Mixture models can be used for global or local modeling. In Figure 4.1a we show

an example of a global mixture model (GMM) for email. A corpus of messages is

represented by a single mixture model, in which each topic is a subpopulation. Each

email x is assigned a topic z, which selects the parameters of the email’s feature dis-

tributions. There is a global distribution φ over topics and a global set of parameters

β for feature distributions. There is no differentiation between users in this model.

3For convenience our discussion assumes that each user sends the same number of emails, but
this assumption is not important and is in fact not true for our experimental data.
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Another approach is to use a separate per-user mixture model (PMM) for each

user, as shown in Figure 4.1b. Here again each topic is a subpopulation, but now

each user has their own feature parameters β and topic distribution φ. There is no

sharing of information across users in this model.

4.2.5 LDA: Modeling email users

The graphical model representation of LDA appears in Figure 4.1c. Like both

mixture models, each email x belongs to a particular topic z that determines the

distributions for the features of x. Like the global model, LDA has one shared β for

all users; like the local model, each user has a separate φ.

The LDA model can be described as a generative process, with a global prior α

on topics from which a multinomial parameter φ is drawn for each user. When a

user sends an email, the email’s topic z is drawn from φ, and then an email x is

produced according to the corresponding distribution from β. Each row of β contains

the parameters of one topic’s distribution.

Exact inference in LDA is intractable. For our implementation we use a varia-

tional approach with surrogate parameters for approximate inference and parameter

estimation, as in the original LDA paper [Blei et al., 2003].
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(a) Global Mixture Model
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(b) Per-User Mixture Model

α

β

φ xz

E

U

(c) LDA Model

Figure 4.1: Mixture models in the graphical model formalism [Jordan, 2004]. Each
node is a random variable in the model and the graph represents their joint probability
distribution; rectangles indicate replication. Each model represents U users each
sending E emails; an email x has topic z, drawn from distribution φ, with feature
parameters β. In LDA, α is a prior over distributions. In each model there is one
topic z per email; the most significant difference between models is whether φ and β

are unique for each user (inside the U rectangle) or shared globally (outside).
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Extending LDA for features

In the original presentation of LDA, β holds parameters of multinomial distribu-

tions. In a population of users modeled as collections of emails, however, a multino-

mial is not rich enough to represent an email.4

We extend LDA to model each email x as a vector of features. The distribution of

an email is a fully factored naive Bayes model: given the topic, the features (which can

have different distributions) are independent. Other models for the joint distribution

of an email’s features could also be used in place of naive Bayes.

Shared global behaviors

Information passes between users via the global parameters α and β. The prior

distribution on user parameters φ is Dirichlet with parameter α, and estimating α

from training data yields a prior from which to draw φ parameters for new users. To

understand how LDA balances between the prior and empirical data, assume that the

email topics z are known. Then for each user we can count emails from each topic,

and the posterior distribution of φ is Dirichlet with parameter α + t, where t is a

T -length vector that counts emails from each topic [Bickel and Doksum, 2001]. As

the number of emails increases, the expectation of φ smoothly transitions from the

prior to the empirical distribution. Although topics are not actually observed, this

provides intuition into how empirical data eventually outweighs the Dirichlet prior.

4Note that a document in the original LDA paper corresponds to one of our users, while one of
their words corresponds to one of our email messages.
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4.2.6 Classification

We use a generative approach for classification. We train two models; one learns

normal behavior while the other learns virus behavior. The normal model computes

topic distributions for a set of normal email users, while the virus model computes

topic distributions for a set of known viruses; both models encompass the behavior

of several users (whether normal users or viruses). To classify an email, we compute

the likelihood that the email would be generated under each model and choose the

class with the higher likelihood. The likelihood depends on which user sent the email

because each user has a different topic distribution φ. For the normal model, we use

the true sender’s φ to compute likelihood; for the virus model, we estimate which virus

is most likely to generate the email and use φ for that virus to compute likelihood.

4.3 Experiments

We perform experiments to compare LDA’s ability to learn a new user’s behavior

with models that use only global or local information. The learners we compare

against are a global mixture model (GMM) and per-user mixture model (PMM) as

described in Section 4.2.4, as well as a linear support vector machine (SVM). We use

the SVM-Light software [Joachims, 1999].
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4.3.1 Datasets

These experiments use a version of the Enron email corpus provided in the form

of a database [Cohen; Shetty and Adibi] and emails generated by real-world viruses.

We use existing email traces generated by the Bagle.a, Bagle.f, Bagle.g, BubbleBoy,

MyDoom.b, MyDoom.m, MyDoom.u, Netsky.d, and Sobig.f viruses [Martin, 2005].

Each virus infects a virtual machine and the emails it sends are recorded. The virtual

machines are seeded with an actual user’s address book so the viruses can exhibit

realistic sending behaviors. Two viruses are particularly interesting: BubbleBoy does

not need an attachment to propagate and uses Outlook rather than its own SMTP

engine, and MyDoom.m uses highly polymorphic message bodies and subject lines.

4.3.2 Experimental procedure

Our primary experiment compares performance on the nine viruses in our dataset

for varying numbers of training users and model topics. For each experiment, we

select a training set of the appropriate number of users and a test set of one user. We

choose the users uniformly at random without replacement, except that we require

the test user to have sent at least 100 emails.5 For each virus, we simulate an infection

by injecting 100 emails from that virus’ trace into the test user’s email stream.

LDA and the mixture models classify generatively by choosing the best fit between

normal and virus models, while the SVM is discriminative and produces a classifica-

5This excludes 40 of the 151 Enron employees in the dataset.
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tion without modeling the classes themselves. The normal user models are trained

on the randomly selected user training set and the virus models are trained on the

traces from the eight other viruses; the SVM’s training set includes both sets with

appropriate labels. We use default settings for SVM-Light.

We train the models and then hold out the first 50 emails from the test user and

(for LDA and the per-user mixture model) update the user-specific parameters based

on up to 50 held-out emails. We then test on the 51st onward. This allows us to

measure the performance of the algorithms against the number of emails seen from a

new user. Each setting is run five times with different training and test sets for each

number of held out emails from 1 to 50.6

We assume that our system has access to every email sent from a network of end-

user machines and is able to accurately determine which user or machine sent each

message. Some viruses attempt to bypass an organization’s outgoing email servers

(e.g., by including their own SMTP engines), however, transparent SMTP redirection

or stateful packet inspection by a firewall can be used to enforce our assumption.

4.3.3 Results

We show graphs of the learners’ performance on five viruses in Figure 4.2 and

final numbers for all nine viruses in Table 4.3. In this setting, a false positive (FP)

is a normal email misclassified as a virus and a false negative (FN) is a virus email

6We train on the most recent emails in the held-out set to avoid the introduction of gaps in a
user’s stream of messages.
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(a) Bagle.a false positives.
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(b) Bagle.a false negatives.
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(c) Bagle.f false negatives.
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(d) BubbleBoy false negatives.
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(e) MyDoom.m false negatives.
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(f) Sobig.f false negatives.

Figure 4.2: In these graphs, the horizontal axis gives the number of training emails
seen from the test user. False positive rates (normal emails classified as virus) for all
algorithms are nearly identical for the nine viruses; we show Bagle.a in (a). The false
negatives (virus emails classified as non-virus) show more interesting behavior. We
show graphs for five different viruses in (b) through (f).
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misclassified as normal. The FP graphs for all nine viruses show very similar trends

and provide little information that is not available in Table 4.3, so we only show

one FP graph. Behavior on FNs is more varied, and we show the five most interest-

ing viruses. Bagle.g, MyDoom.u, and Netsky.d have FN graphs nearly identical to

Bagle.a. MyDoom.b has a graph similar to Bagle.f, but for MyDoom.b, LDA and

GMM do 6–7% better and the SVM does much worse at 89% FNs.

The graphs in Figure 4.2 are averaged over five runs each of three and ten topics

for LDA, the GMM, and the PMM. LDA and the GMM both have around 7% fewer

FPs but 4% more FNs with ten topics, and the PMM has 10% fewer FPs and 5%

more FNs with ten topics.

The SVM consistently has the lowest false positive rate. Although LDA generally

improves by a few percent with more per-user data, the FP rates of GMM and LDA

are nearly identical. The interesting part of Figure 4.2a is the PMM curve: it begins

with a near-100% FP rate as it overfits to the first few emails (classifying everything

as a virus), but with more data it improves and approaches the GMM and LDA.

The false negative rates are more interesting, as we see varying performance across

viruses. The SVM has the highest FN rates in all graphs, while the GMM and LDA

again have similar performance. The PMM starts off with very low FNs due to

overfitting the user model, but as it generalizes it starts to misclassify virus emails.

The FN graph for MyDoom.m stands out, with terrible performance by all learn-

ers. MyDoom.m is a polymorphic virus that exhibits large variation in both subject
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False Negatives False Positives
LDA GMM PMM SVM LDA GMM PMM SVM

Bagle.a 2% 2% 2% 22% 18% 17% 22% 6%
Bagle.f 33% 28% 14% 38% 16% 15% 18% 5%
Bagle.g 2% 2% 3% 23% 20% 16% 18% 5%

BubbleBoy 3% 7% 21% 23% 16% 15% 21% 5%
MyDoom.b 26% 22% 9% 89% 14% 12% 12% 3%
MyDoom.m 81% 83% 74% 95% 11% 10% 11% 3%
MyDoom.u 3% 3% 2% 22% 16% 15% 23% 5%

Netsky.d 2% 2% 2% 22% 17% 16% 22% 5%
Sobig.f 2% 2% 4% 22% 18% 17% 22% 5%

Table 4.3: False positives/false negatives.

line and body, which makes it difficult to classify. Again the PMM initially classifies

everything as a virus, but its FNs increase quickly. No learner correctly classifies

more than 26% of MyDoom.m emails in the end.

Table 4.3 shows the FP and FN rates for our experiments. While we see high

variation in FN rates across viruses, the FP rates remain relatively constant. This is

not surprising: between any two experiments, the only difference relevant to a FP is

a substitution of one of eight training viruses. FNs, however, show more variability

because the email being classified is different.

Three related observations on our results merit investigation: the PMM does not

tend to perform as well as the GMM even after training on 50 user emails, LDA

does not show significant improvement over the 50 emails, and the GMM performs

almost equivalently to LDA. We expect to see better per-user performance for the

PMM and possibly LDA with more hold-out emails, since the PMM clearly improves

up to the 50th email. Dataset limitations, however, preclude using more. It is also
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possible that our feature set does not encode information that would allow the per-user

models to gain significant advantage over global models. We conjecture that a more

comprehensive feature set and feature selection algorithm, and perhaps increased

numbers of hold-out emails, would allow LDA to consistently outperform the GMM.

4.4 Summary

In this chapter, we present an LDA model that combines global and per-user

components for email virus detection. Our experimental results show that this system

immediately provides acceptable performance for new users even with our conservative

feature set and in the long run remains competitive with more specific per-user models.

These results also show that, despite room for improvement in per-user specialization,

LDA performs competitively with a simple support vector machine.

The combination of per-user and global models has the potential to react quickly to

global changes while providing superior long-term performance. This work describes

an approach that shows promise for increasing the ability of machine learning systems

to defend users from novel viruses.



79

Chapter 5

Conclusion

5.1 Open problems

The study of attacks on machine learning systems is a relatively new field of

inquiry. This thesis has provided a foundation for analyzing attacks and building

learning systems that are robust to them, but this work is only the beginning. Here

we outline promising directions for future research in this field.

5.1.1 Building defenses

In this thesis, we have presented our framework as a first step to making learning

secure against attack. We argue that categorizing and analyzing attacks within our

framework draws out commonalities that suggest general defenses. In Section 2.4 we

go through different areas of the taxonomy and examine potential defenses for each
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one. In Chapter 4 we investigate a learning algorithm that combines local and global

information to combat attacks on multiple levels.

A general framework for measuring the adversarial effort required to perform an

attack as well as the effectiveness of the defense would be of great value in designing

secure learning systems. The ACRE-learning framework of Lowd and Meek [2005b]

provides a computational analysis of the complexity of reverse engineering hypotheses

from certain classes using probing in an Exploratory attack. Both robust statistics

and online prediction with experts offer certain theoretical and quantitative tools that

might be useful to build a more general framework for evaluating and constructing

defenses across the space of attacks, as well as engineering specific defenses for attacks

against particular learning systems.

5.1.2 Information

Several questions about information are crucial to understanding the interactions

between attacker and defender for constructing secure learning systems.

Hiding information to prevent reverse engineering

We argue in Section 2.4 that the defender may be able to gain some advantage over

the attacker in reverse engineering attacks if certain information is hidden from the

attacker, such as the training data, feature set, and perhaps even hypothesis space.

It is almost certainly true that lack of such information would hinder an attacker to
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some degree, but this suggestion calls to mind questionable security through obscurity

strategies. But there is another paradigm for security resting in the secrecy of in-

formation: hiding a cryptographic secret key fully protects the security of encrypted

information in a good cryptosystem. The question we must answer is whether secure

learning has the property that hiding certain information will make the attacker’s

task prohibitively difficult, as in the case of the cryptographic key. Rivest [1991] has

noted the similarity between the learning problem and the cryptanalysis problem, and

our question is similar but not exactly the same: we want to equate the cryptanalysis

problem with the attacker’s task of reverse engineering the learner’s hypothesis to

find false negatives.

Measuring the value of information

Measuring the value of information would be a useful tool for many purposes in

building secure learning systems. There are several potential sources of quantitative

measurements of information value, for example:

1. In the focused attack against SpamBayes, we show that as the attacker knows

more of the target email, the probability of success goes up (Figure 3.4).

2. In the LDA experiments, we explore how the performance of learners improve

as they have more instances to train on.

3. Lowd and Meek [2005b] formalize reverse engineering as the ACRE-learning
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problem, a quantification of the complexity of reverse engineering classifiers in

terms of queries.

A means of incorporating one or more of these sources into a quantitative analysis

of security, such as considering them in the cost function, would be useful for security

analysis.

Secrecy as a primary concern

We observe that an attacker may try to gain information about the internal state

of a machine learning system not only to more effectively reverse engineer the system,

but also for the sake of the information itself. For example, sensitive medical infor-

mation may be encoded in the internal state of a hospital’s email spam filter that

has trained on emails from medical staff. The question of information secrecy may

be a matter not merely of attack resistance but also of personal information security,

business competitive secrecy, or even regulatory compliance.

Hiding attacks

So far we have discussed the attacker’s information about the defender, but an-

other consideration is the defender’s information about the attacker. The attacker

may have at least two good reasons for wanting to hide attack information from the

defender. First, the attacker may want to prevent the defender from discovering that

an attack is in progress. The attack may need time to be effective, or once it is
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effective the attacker may gain benefit in proportion to the time before the defender

notices and stops the attack. Second, the attacker may want to leave few forensic

traces that might point to the source of the attack, either to prevent apprehension

by law enforcement or to create uncertainty about where to look for the next attack.

One natural way to account for these considerations is to incorporate the divul-

gence of attacker information into the attacker’s cost function; however, representing

the cost of such information accurately may be difficult.

5.1.3 Specificity and scope of information

We have explored the use of global (cross-user) information versus local (user-

specific) information in the domain of email virus detection in Chapter 4. A natural

question is whether local information is more useful in combatting Targeted attacks

and global information is more useful against Indiscriminate attacks. If so, then

systems that successfully combine the two, such as the LDA system we present, will

be especially useful.

This question is important, for example, in an organization-wide installation of

a spam filter such as SpamBayes. One choice for training is to train a global model

on email messages received by all users in the organization. Another choice is to

train separate models for each user. The latter may be able to learn more precisely

what sort of email each user normally receives, but the former can take advantage

of more accumulated data from all the users. A Targeted attack aimed at one user
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may be difficult to prevent without specific familiarity with that user’s normal email

distribution; on the other hand, an Indiscriminate attack will not be shaped for

any particular user and the additional data from all users is likely to be useful.

At this point, such conclusions do not have conclusive support, but it would be

useful to determine whether there is significant advantage to global information, local

information, or a combination of the two, and how closely this correlates with the

Specificity of an attack.

5.2 Review of contributions

In this thesis, we have developed a framework for describing and analyzing attacks

against machine learning systems, we have demonstrated effective attacks against the

SpamBayes machine learning system, and we have proposed several defense ideas and

successfully implemented one defense in the context of email virus detection.

In Chapter 2, we present the framework, which comprises a three-axis taxonomy

and a cost-sensitive game. We survey attacks against machine learning systems in

the literature and categorize them within our taxonomy. The taxonomy brings out

interesting similarities among the attacks in the literature, as well as highlighting areas

of the attack space that have received less attention. Furthermore, the taxonomy’s

division of the attack space into classes leads naturally to developing defenses for each

class. We present ideas for defenses appropriate to each class of attack; we find that

the taxonomy organizes attacks into natural classes for proposing general defenses.
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In Chapter 3, we demonstrate effective attacks against the SpamBayes statistical

machine learning spam filter. We design and implement two Causative Availability

attacks, motivated in part by the taxonomy. With these two attacks we explore the

Specificity spectrum: one is Targeted and one is Indiscriminate. We show that

an adversary can effectively disable the SpamBayes spam filter with relatively little

system state information and relatively limited control over training data. Our Usenet

dictionary attack causes misclassification of 36% of ham messages with control over

only 1% of the training messages, rendering SpamBayes unusable. Our focused attack

changes the classification of the target message 60% of the time when it has only a

30% chance of guessing each of the target’s tokens. These experiments demonstrate

that SpamBayes is vulnerable to learning-based attacks, as well as providing a clear

example of how the taxonomy can aid the analysis of attacks.

In Chapter 4, we turn to Exploratory Integrity attacks in the form of email viruses.

The viruses use polymorphic engines for generating email text and other evasive

tactics designed to defeat classifiers. We present a learning technique, Latent Dirichlet

Allocation (LDA), to combat these attacks by combining local and global information

about user behavior. By combining information at different scales, LDA and similar

techniques have the potential to resist attacks across the Targeted/Indiscriminate

spectrum.

Our framework describes structure in the space of attacks on machine learning

systems and presents it in a format useful for analysis. The SpamBayes work uses the
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framework in the creation of attacks and shows that such attacks can be successful.

The LDA system and the analysis of defenses within the taxonomy build defensive

techniques using our framework as a base. This thesis shows that the space of attacks

against machine learning systems has a structure that facilitates analysis and provides

a foundation for building secure learning systems.
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Notation

Symbol Description Pages

a Attack data instance in X

50, 87

AE Procedure for selecting evaluation distribution: XN × Ω 7→ D

20–22, 36

AT Procedure for selecting training distribution: XN × Ω 7→ D

22, 36

α Prior over topic distributions

68, 69, 71

b Prior belief for token scores

45

β Feature distribution parameters (T × F matrix)

68, 69, 71

C Cost function: X × Y × Y 7→ R

9, 21, 22, 37
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Symbol Description Pages

χ2
2n Chi-square distribution function with 2n degrees of freedom

46

D Procedure for selecting hypothesis: (X × Y)N 7→ Ω

9, 20–22, 26, 47, 48

D Space of distributions over (X × Y)

87, 89

1− δ Probability of learning ǫ-good hypothesis (PAC-learning)

25, 99

E Number of emails

47, 48, 54, 58, 68, 69, 74

E Evaluation set in (X × Y)N

9, 21–23, 26, 47, 48

ǫ Probability of error (PAC-learning)

25, 87, 99

F Number of features

68, 87

f Hypothesis (classifier): X 7→ Y

9, 10, 21–23, 34, 36, 47, 48, 87

f ∗ Best hypothesis: X 7→ Y

9, 10
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Symbol Description Pages

g Expert prediction: g
(k)
m is prediction of mth expert in kth round

37, 87

H Ham score of an email

46

h Hypothesis combining experts: YM 7→ Y

37, 38

I Message score: I(x) is score of x

46, 50, 87

Ia Message score after adding a to training

50

K Number of repetitions of a game

37, 38, 87

k Index for game steps (up to K)

37, 38, 87

ℓ Loss function: Y × Y 7→ R
0+

9, 10

λ Trade-off between loss and regularization terms

10

M Number of experts

36, 37, 87
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Symbol Description Pages

m Index for experts (up to M)

37, 87

N Number of data points

9, 87, 89

NH Number of ham emails

45

NH(w) Number of ham emails in which token w appears

45

NS Number of spam emails

45

NS(w) Number of spam emails in which token w appears

45

N(w) Number of emails in which token w appears

45

ν(x) Set of tokens SpamBayes uses from message x

46

Ω Space of hypotheses f : X 7→ Y

9, 10, 87

P Evaluation and retraining distribution in D

20–22, 37, 87, 89
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Symbol Description Pages

p Message distribution (vector of token probabilities)

50, 51

PE Evaluation distribution in D

21, 22

pi Probability of the ith token appearing in a message

51

PR(w) Raw token score of w

45

PS(u) Smoothed token score of u

50

PS(w) Smoothed token score of w

45, 46, 50

PT Training distribution in D

20–22

pw Attacker’s probability of guessing each word in target message

54, 58

φ Distribution over topics

47, 48, 54, 58, 68, 69, 71, 74

R Space of real numbers

87, 89
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Symbol Description Pages

R
0+ Space of non-negative real numbers

87

ρ Regularization function: Ω 7→ R

9, 10

S Spam score of an email

46

s Strength of prior

45

T Number of topics

68, 71, 87, 89

t Vector of T email counts

71

θ0 SpamBayes ham/unsure threshold for determining message label

46

θ1 SpamBayes spam/unsure threshold for determining message label

46

U Number of users

47, 48, 54, 58, 68, 69, 74

u A second token (word)

50, 89
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Symbol Description Pages

w A token (word)

45, 46, 50, 87, 89

X Training set in (X × Y)N

9, 10, 21, 22, 26, 47, 48

x Data instance in X

9, 10, 21, 22, 34, 37, 46–48, 50, 51, 54, 58, 68, 69, 71, 74, 87

X Space of data instances

9, 34, 87, 89

y Data label in Y

9, 10, 21, 22, 37, 91

ŷ Predicted data label

37

Y Space of data labels; for classification Y = {0, 1}

9, 37, 87, 89, 91

z Topic

68, 69, 71
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Glossary

attack email

An email sent by the attacker as part of an attack

attacker

The person or agent whose goal is to compromise the assets of a system; also,

the second player in the adversarial game

Availability attack

Availability attacks cause denial of service, usually via false positives

Causative attack

Causative attacks influence learning with control over training data

classifier

A function that gives a class label to each instance
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contamination assumption

The assumption that an attacker can construct data that the learner will use

for training

cost function

A function that assigns a value to each correct or incorrect labeling for any

given instance; a negative cost is a benefit

cross-validation

A technique in which a dataset is split into several pieces, each of which serves

independently as training and validation data in different runs

defender

The person or agent whose goal is to protect a system from attacks; also, the

first player in the adversarial game

dictionary attack

An attack in which the attacker sends emails containing entire dictionaries,

making a spam filter unusable when it trains on them

empirical risk

The total empirical loss computed over a dataset, used as an approximation of

expected loss on the data distribution
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evaluation set

Data on which the classifier’s performance is evaluated

evaluation step

A step in which the current hypothesis is applied to evaluation data and the

parties involved incur cost based on the results

expert

A classifier we use in a combined prediction method but about which we make

no assumptions

Exploratory attack

Exploratory attacks exploit misclassifications but do not affect training

empirical risk minimization

A procedure in which the learner minimizes an objective that combines an

empirical risk term and a regularization term

false negative (FN)

A malicious instance misclassified as a negative

false positive (FP)

A benign instance misclassified as a positive
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feature deletion

When features present in the training data, and perhaps highly predictive of an

instance’s class, are removed from the evaluation data by the attacker.

focused attack

An attack in which the attacker sends emails containing tokens known to appear

in a particular target email, causing that email to be blocked by the spam filter

global information

Information collected across many users or otherwise encompassing a broad

scope

global mixture model

A model of events drawn from topics where there is no distinction among users

ham

Good, legitimate email

hypothesis

A function selected by a learner; in our setting, a classifier

Indiscriminate attack

Indiscriminate attacks encompass a wide class of instances
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instance

One unit of data; a data point

Integrity attack

Integrity attacks compromise assets via false negatives

iterated game

A game in which the sequence of moves is repeated over many iterations

LDA

Latent Dirichlet Allocation, a generative graphical model that represents events

as being generated from one of several topic distributions and automatically

infers topics

local information

Information collected specifically from one user or otherwise focusing on a nar-

row scope

loss function

A function that penalizes errors; the criterion for judging classifier performance

message score

A score between 0 and 1 with low scores indicating ham and high scores indi-

cating spam
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MIME

Multipurpose Internet Mail Extensions, a standard for supporting multi-part

message bodies, including non-text parts, in email messages

move

One play in the adversarial game, in which a player chooses a strategy

n-gram

A feature formed by taking n consecutive items, such as words or bytes

negative class

The benign class of data

one-shot game

A game in which each move occurs once

overfitting

Selecting a hypothesis that is over-specialized for the training data (a look-up

table for the training data is an extreme case of overfitting)

PAC-learning

Probably Approximately Correct learning–a learning formalism in which the

goal is to learn, with probability at least 1− δ, a hypothesis with probability at

most ǫ of making an incorrect prediction
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per-user mixture model

A model of events drawn from topics where each user has their own parameters

and users are not connected in any way

positive class

The malicious class of data

probing

Querying a classifier with instances and using the responses in an attack

procedure

A method, such as a learning algorithm, for selecting hypotheses given a dataset

regret

The difference between the loss of a composite learner and the loss of the best

overall expert in hindsight

regularization

A means of penalizing hypothesis complexity, used primarily to prevent overfit-

ting

robust statistics

A set of techniques that limit the impact of a small fraction of adversarial

training data deviating from a known model
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scanning

Randomly or systematically making connections across IP address space, often

used by worms to find new victim hosts

secure learning

Learning that succeeds in adversarial conditions

security goal

A requirement that, if violated, results in the partial or total compromise of an

asset

security through obscurity

The idea that keeping details of a system secret will keep it safe from attack,

usually eschewed by security experts

spam

Bad, unsolicited email

spam score

Synonym for message score or token score, depending on context

SpamBayes

A popular machine learning spam filter that assigns spam, ham, and unsure

labels to emails based on the words they contain
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stationarity

The assumption that training data and evaluation data are drawn from the

same distribution, or in general that the data distribution does not change over

time

step

Synonym for move

supervised classification

The learning setting in which a learner finds a hypothesis to classify instances,

training on data instances with class labels

support vector machine (SVM)

A classifier that learns to maximize the margin, or separation between the

classes, and is often highly effective

Targeted attack

Targeted attacks focus on a particular instance

threat model

A profile of attackers, describing motivation and capabilities

token score

Smoothed estimate of how much a token indicates that a message is spam
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topic

A collection of events (emails) drawn from the same distribution over features

training set

A dataset used for training

training step

A step in which a learning procedure is applied to training data to produce a

new hypothesis

TREC corpus

Email corpus based on the Enron email dataset, constructed for the 2005 Text

Retrieval Conference spam filtering competition

unsure

Label indicating filter is uncertain about classification

Usenet dictionary

A dictionary constructed from common tokens in a Usenet corpus rather than

a plain English dictionary

zero-sum game

A two-player game in which costs for the players add up to zero (or any other

fixed value) for each possible outcome
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Index

ACRE, 33, 80, 81

allergy attack, 26

Anagram, 32

APE, 65

aspell, 52

assets, 11–13

attack email, 47

attacker, 4, 9, 11–14, 20, 22, 30, 37

Autograph, 26

Availability attack, 4, 15, 16, 18–20,

24–26, 28, 40, 47, 85

BogoFilter, 41, 61

breakdown point, 35

Causative attack, 4, 15–19, 22–26, 29,

35, 36, 40, 47, 85

classifier, 9, 21, 22

contamination assumption, 44

control of training data, 14, 17, 19, 23,

25, 35–38

correlated outlier attack, 26

cost function, 9, 13, 16, 21, 22, 28, 32,

37

cross-validation, 53, 54

defender, 4, 8, 11, 20, 22, 30, 37

denial of service (DoS), 5, 16, 19, 26,

28

dictionary attack, 5, 6, 26, 41, 42, 47–

48, 51, 54–55, 85

Email Mining Toolkit, 65

empirical risk, 10

evaluation set, 9

evaluation step, 9

expert, 36–38

Exploratory attack, 4, 15, 16, 18–20,
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22–24, 27–32, 62, 80, 85

empirical risk minimization, 10

false negative, 81

false negative (FN), 4, 9, 12, 13, 16, 17,

46, 74, 77

false positive (FP), 4, 9, 12, 13, 16, 46,

47, 74, 77

feature deletion, 31

features, 26, 31–33, 59, 66–67, 71

focused attack, 5, 6, 26, 41, 42, 48–51,

56–60, 81, 85

game, 11, 16, 20–23

global information, 3, 6, 63, 70, 83–84

global mixture model, 68, 72, 75–78

good word attack, 27

ham, 42, 60

hypothesis, 9, 21, 22, 31–33

Indiscriminate attack, 4, 6, 15–20, 24–

26, 47, 48, 83–85

influence function, 35

instance, 8, 9, 11–17, 19, 22, 23, 26–28,

30–33, 37

Integrity attack, 4, 15–19, 24, 25, 27,

28, 31, 32, 62, 85

iterated game, 23, 36–38

LDA, 4, 6, 65, 67, 69–70, 72, 75–78, 81,

85

local information, 3, 6, 65, 70, 83–84

loss function, 10, 21, 36, 38

message score, 46, 50

MIME, 52

mimicry attack, 27, 32

move, 11, 16, 21

n-gram, 32

negative class, 9

one-shot game, 23

online game theory, 36–38

overfitting, 10, 76

PAC-learning, 25

per-user mixture model, 69, 72, 75–78
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Polygraph, 25

polymorphic blending attack, 27

positive class, 9

probing, 22, 33–35

procedure, 9, 10, 20, 22

qualitative robustness, 35

randomization, 32, 34

red herring attack, 25

regret, 38

regularization, 10, 31, 36

reverse engineering, 28, 33–34, 80–82

robust statistics, 35–36

scanning, 26

secure learning, 2, 11, 86

security goal, 11–12

security through obscurity, 81

sensor net aggregation, 36

spam, 42, 54, 60

spam score, 46

SpamAssassin, 41, 61

SpamBayes, 26, 40, 41, 43, 45–46, 61,

83, 84

stationarity, 10

step, 11

stide, 27

supervised classification, 9

support vector machine (SVM), 21, 31,

72, 73, 76

system calls, 27

Targeted attack, 4, 6, 15–20, 24–26, 31,

47–49, 83, 85

threat model, 11–14

token score, 46

topic, 67

training set, 9, 42

training step, 9

TREC corpus, 52, 58

unsure, 42, 60

Usenet dictionary, 48, 52, 54, 55, 61, 85

zero-sum game, 13



107

Bibliography

Marco Barreno, Blaine Nelson, Russell Sears, and Anthony D. Joseph. User model

transfer for email virus detection. In Proceedings of the First Workshop on Tackling

Computer Systems Problems with Machine Learning Techniques (SysML), June

2006a.

Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar.

Can machine learning be secure? In Proceedings of the ACM Symposium on In-

formAtion, Computer, and Communications Security (ASIACCS’06), pages 16–25,

March 2006b.

Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. The security

of machine learning. Technical Report UCB/EECS-2008-43, EECS Department,

University of California, Berkeley, April 2008. http://www.eecs.berkeley.edu

/Pubs/TechRpts/2008/EECS-2008-43.html.

Peter J. Bickel and Kjell A. Doksum. Mathematical Statistics: Basic Ideas and Se-

lected Topics, volume 1. Prentice-Hall, Inc., 2nd edition, 2001.



108

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation.

Journal of Machine Learning Research (JMLR), 3:993–1022, 2003. ISSN 1533-7928.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge

University Press, 2006.

Andreas Christmann and Ingo Steinwart. On robustness properties of convex risk

minimization methods for pattern recognition. Journal of Machine Learning Re-

search (JMLR), 5:1007–1034, 2004. ISSN 1533-7928.

Simon P. Chung and Aloysius K. Mok. Allergy attack against automatic signature

generation. In Recent Advances in Intrusion Detection (RAID), pages 61–80, 2006.

Simon P. Chung and Aloysius K. Mok. Advanced allergy attacks: Does a corpus

really help? In Recent Advances in Intrusion Detection (RAID), pages 236–255,

2007.

William W. Cohen. Enron email dataset. http://www.cs.cmu.edu/~enron/.

Gordon Cormack and Thomas Lynam. Spam corpus creation for TREC. In Proceed-

ings of the Second Conference on Email and Anti-Spam (CEAS), July 2005.

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. Ad-

versarial classification. In Proceedings of the Tenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 99–108, Seattle, WA,

2004. ACM Press.

http://www.cs.cmu.edu/~enron/


109

Mark Dredze, Reuven Gevaryahu, and Ari Elias-Bachrach. Learning fast classifiers for

image spam. In Proceedings of the Conference on Email and Anti-Spam (CEAS),

2007.

Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Salvatore J.

Stolfo. A geometric framework for unsupervised anomaly detection: Detecting

intrusions in unlabeled data. In D. Barbara and S. Jajodia, editors, Proceedings of

the Workshop on Data Mining for Security Applications. Kluwer, 2002.

Ronald A. Fisher. Question 14: Combining independent tests of significance. Amer-

ican Statistician, 2(5):30–30J, 1948.

Prahlad Fogla and Wenke Lee. Evading network anomaly detection systems: Formal

reasoning and practical techniques. In Proceedings of the ACM Conference on

Computer and Communications Security (CCS), pages 59–68, 2006.

Amir Globerson and Sam Roweis. Nightmare at test time: Robust learning by feature

deletion. In Proceedings of the 23rd International Conference on Machine Learning

(ICML), pages 353–360, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-2.

doi: http://doi.acm.org/10.1145/1143844.1143889.

Paul Graham. A plan for spam. http://www.paulgraham.com/spam.html, August

2002.

Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw, and Werner A. Stahel.



110

Robust Statistics: The Approach Based on Influence Functions. Probability and

Mathematical Statistics. John Wiley and Sons, 1986.

Peter J. Huber. Robust Statistics. Probability and Mathematical Statistics. John

Wiley and Sons, 1981.

Thorsten Joachims. Making large-scale SVM learning practical. In Bernhard

Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in

Kernel Methods — Support Vector Learning. MIT Press, 1999.

Michael I. Jordan. Graphical models. Statistical Science, 19(1):140–155, 2004.

Christoph Karlberger, Günther Bayler, Christopher Kruegel, and Engin Kirda. Ex-

ploiting redundancy in natural language to penetrate Bayesian spam filters. In

WOOT’07: Proceedings of the first conference on First USENIX Workshop On

Offensive Technologies, 2007.

Michael Kearns and Ming Li. Learning in the presence of malicious errors. SIAM

Journal on Computing, 22(4):807–837, 1993.

Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed worm

signature detection. In Proceedings of the 13th USENIX Security Symposium, Au-

gust 2004.

Bryan Klimt and Yiming Yang. Introducing the Enron corpus. In Proceedings of the

First Conference on Email and Anti-Spam (CEAS), July 2004.



111

Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Aysel Ozgur, and Jaideep Sri-

vastava. A comparative study of anomaly detection schemes in network intrusion
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