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Abstract

Improving Distributed Application Reliability with End-to-End Datapath Tracing

by

George Manning Porter

Doctor of Philosophy in Computer Sciences

University of California, Berkeley

Professor Randy H. Katz, Chair

Modern Internet applications are both powerful and highly interactive, but creating and

operating them requires new approaches to the software development, deployment, and

debugging processes. Applications like Google Maps, Facebook, and Map/Reduce must

run continuously, handle millions of concurrent requests, and scale by taking advantage of

the massive amounts of parallelism available in large-scale Internet datacenters. When a

failure occurs, discovering the exact set of machines and resources responsible, as well as

the location among those resources where the failure occurred, is a daunting task. The lack

of visibility into these distributed systems prevents their reliable operation.

To improve distributed system visibility, we have developed an integrated tracing

framework called X-Trace. A user or operator invokes X-Trace when initiating an applica-

tion task (e.g., a web request), by inserting X-Trace metadata with a task identifier in the

resulting request. This metadata is then propagated down to lower layers through protocol
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Chapter 1

Introduction

“The major difference between a thing that might go wrong and a thing that
cannot possibly go wrong is that when a thing that cannot possibly go wrong
goes wrong it usually turns out to be impossible to get at or repair”

— Douglas Adams, Mostly Harmless, pg. 103.

1.1 Motivation

On June 21, 1947, the Manchester Small Scale Experimental Machine, or SSEM,

was brought online (shown in Figure 1.1). Built at the University of Manchester by Tom

Kilburn and F. C. Williams, its first task was to calculate the highest factor of a given

number. Unlike the computers that came before it, such as the ENIAC[39], this task was

not programmed into the SSEM using patch cables and rewiring its internal connections,

which often took days to complete. Rather, the instructions needed to complete the task

were stored in memory, just like data. The SSEM was the first stored program computer,

and Killburn’s Factor Routine was the first computer program.

The move from patch cables to stored programs meant that the computer could be
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Figure 1.1: The Manchester Small-Scale Experimental Machine (SSEM) or “Baby”, Uni-
versity of Manchester, June 21, 1948. [Courtesy of The University of Manchester]
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programmed directly from an attached keyboard, which allowed for rapid reconfiguration.

It was the birth of software. Yet even this simple program, when it was first ran, resulted in

unexpected behavior. F. C. Williams later remarked:

“A program was laboriously inserted and the start switch pressed. Immedi-
ately the spots on the display tube entered a mad dance. In early trials it was a
dance of death leading to no useful result, and what was even worse, without
yielding any clue as to what was wrong[133].”

The SSEM could process seven instructions, had only 32 memory locations, and

its entire state, including the program, all variables, and instruction pointer, was observable

by examining an attached display tube. The program Williams and Kilburn wrote fit on

a single page (shown in Figure 1.2). Yet the lack of visibility into the system’s execution

prevented Williams and Kilburn from correctly implementing their program, causing them

to resort to trial and error until the program worked as expected. Their approach eventually

worked, and was successfully able to calculate the highest factor of 218 in just 52 minutes.

But already, the lack of necessary tools to understand the software they were creating was

an ominous sign for dependable and reliable software.

Over the next sixty years, computers grew powerful, taking advantage of gener-

ation after generation of innovations, from transistors to integrated circuits to multi-core

processors. One particularly cost-effective way to build a powerful computer is to cluster

many commodity computers together. This approach is embodied by Google’s Oregon dat-

acenter, shown in Figure 1.3. It spans multiple building full of thousands of racks, each

outfitted with dozens of individual computers. Dissipating the enormous amount of heat

generated by these racks are four-story tall water chilling plans. The entire facility is pow-

ered by its own power substation, which draws its energy from the Columbia River. This
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Figure 1.2: The “Kilburn Highest Factor Routine”, which was the first program executed
on the SSEM on June 21, 1948. [Courtesy of The University of Manchester]
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dramatic demonstration of their size and scale provides for programs that are not simple

computational problems like Kilburn’s factor routine, but rather are globally spanning in-

teractive applications like YouTube, Google Maps, and Google Search. Instead of 1024 bits

of memory like in the SSEM, these applications operate over petabytes of data. Yet just as

computers have become more powerful, that very complexity has exacerbated the lack of

visibility. In order to continue this pace of innovation and expansion, we need better tools

that provide visibility into complex software systems.

Figure 1.3: Overhead view of Google’s Oregon Datacenter. [Courtesy of the Google Earth
Mapping Service]

We now describe these new challenges to application visibility in detail. We

then present X-Trace, which is our approach to addressing this problem. We continue

by outlining the contributions of this work, and finally outline the structure of the rest of
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dissertation.

1.2 New challenges

Modern Internet applications are characterized by:

1. Unprecedented size and scale. At Google, applications are assigned individual com-

putational building blocks called “cells”. Each cell consists of approximately 4,000

nodes, storage systems, and networking equipment[75].

2. A “web services” composition model, in which software components are loosely

coupled together with open communications protocols. These couplings are estab-

lished dynamically during runtime, complicating the process of capacity provisioning

and planning.

3. New failure modes. The versatility of providing software “services” by loosely cou-

pled components spread over the network results in unexpected behavior when fail-

ures occur. Because of the layers of abstraction the software service is built on top

of, small failures at lower layers can disrupt the high-level service. For example, a

misconfigured firewall can result in authentication failures for users connecting to the

network. We explore this particular example in Chapter 4.

4. Layers of virtualization. This could include virtual disks located in storage area

networks, or the entire datacenter could be virtualized. Several vendors, including

Amazon and Sun Microsystems, are offering this “hardware as a service” on a pay-

per-use basis.
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The presence of applications like Google Search show that their implementation

is feasible. However, the lack of pervasive, cross-cutting visibility into their operation

results in bugs, reductions in performance, unacceptable variance in response time, and

hindrance to growth. Without better tools to gain visibility into their systems, software

developers and network operators will not be able to continue to grow their systems to meet

the demands of their users.

1.3 Approach and summary of contributions

The goal of this work is to provide software developers and network operators

with the tools they need to gain visibility into their software. The primary vehicle for this

visibility is X-Trace, a cross-layer, multi-system tracing tool. X-Trace is a tracing method-

ology, programming convention, and software artifact. On top of the X-Trace foundation,

we built TraceOn, a trace processing system that provides increased scalability for man-

aging large-scale traces. We now describe this system, first by outlining our conceptual

contributions, then by describing the software artifacts that arose from this project, and

lastly by describing the real-world deployments in which we evaluated X-Trace.

We begin by outlining our conceptual contributions, which are:

1. X-Trace methodology: The foundation of our work is X-Trace. X-Trace is a set of

software libraries and tools that developers make use of to collect end-to-end traces of

the execution behavior of their systems. X-Trace works at a different layers, including

the network, transport, middleware, and application. The X-Trace libraries modify

protocol messages to include tracing information as well, meaning that traces can
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span different devices.

2. Use in diagnosing real-world faults: During the development of X-Trace, we have

embedded it into a variety of real-world applications, from a small web-based photo

sharing site to an Enterprise-capable network authentication system. These deploy-

ments not only validated our design, but also provided valuable experience that we

used to evolve our design to its current form. In fact, the design of X-Trace has

undergone a variety of changes, each based on experienced gained deploying it in

real-world systems. This process of iterative design has sharpened X-Trace’s Appli-

cation Programmer Interface (API), making the final product more powerful, while

remaining easy to use.

3. Approach to analyzing traces at large scales: Because of the ease of X-Trace’s

adoption, it has been included in increasingly large distributed systems, such as

Hadoop Map/Reduce. This has resulted in ever increasing trace datasets. We have

had to scale our trace analysis tools to accommodate the increase in trace complexity,

which has resulted in TraceOn, a large-scale trace processor.

We have realized these conceptual contributions in a variety of software artifacts,

which include:

1. X-Trace library: The X-Trace library is linked into the software that is to be traced.

Programs written in C, C++, and the Java languages are currently supported. As the

software executes, trace data is generated and stored locally on each node.

2. X-Trace backend (Research edition): The purpose of the X-Trace backend is to
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collect the trace data generated at each instrumented node. Additionally, the backend

contains trace analysis tools for processing the traces after they are collected. The

“Research edition” of the backend is deployed entirely as a stand-alone server, is

written in Java, and is suitable for an individual or small group of researchers to get

started quickly with X-Trace. The Research Edition does not require any support

from the network administrators or operators.

3. X-Trace backend (Enterprise edition): Like the Research Edition, the X-Trace En-

terprise Edition backend collects trace data and contains trace analysis tools. It differs

from the Research Edition in that it is built around infrastructure services to perform

its trace collection operation. While this requires support and setup by the network

administrators, it is ideal for environments where X-Trace is a supported feature of

the network, freeing software developers from managing the X-Trace backend. This

allows a large number of software developers to share a centralized X-Trace infras-

tructure.

4. TraceOn Server: At its core, the X-Trace backend stores traces. The set of analysis

tools included with it reconstruct those traces in memory, creating graphs of the ex-

ecution that are presented to the user through a web interface. For very large traces,

that in-memory reconstruction is no longer adequate, since the memory requirements

quickly overcome most systems. TraceOn is a stand-alone server that interfaces to

the X-Trace backend and includes an alternative analysis engine based on external

data structures and pre-processing to avoid this memory requirement. As a result,

large traces can be analyzed on standard server platforms, or even laptop computers.



10

We have demonstrated the effectiveness of our ideas coupled with their realization

in software by deploying several real-world applications in both testbeds and datacenter

environments. These deployments include:

1. HTTP proxy: This was the first evaluation of X-Trace, and proved the viability of

encoding metadata in high-level protocols, in this case HTTP.

2. 2-tier web service: This web application displays user-submitted photographs. Our

deployment of X-Trace in this system evaluated the HTTP layer (through the Apache

web server), as well as the database layer (through Postgres).

3. I3/Chord overlay network: Stressing X-Trace’s cross-layer capability, the I3 and

Chord instrumentation demonstrated its usefulness in a deeply multi-layered overlay

network.

4. 802.1X network authentication protocol: The 802.1X network authentication pro-

tocol is rapidly growing in importance as enterprise and campus networks need to bet-

ter control access to their systems. This deployment demonstrated X-Trace’s ability

to bridge different protocols, written by different vendors, and controlled by different

administrative domains.

5. National Science Foundation grant award search engine: X-Trace was designed

to work in environments requiring a high degree of scale. In this deployment, we built

a web search service hosted in a virtual datacenter, run by Amazon. The process of

initializing this dataset resulted in a very large trace (with approximately 1.3 million

events), providing a compelling evaluation of X-Trace’s scaling properties.
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Now that we have presented an overview of the X-Trace system, its conceptual

contributions, software components, and our experience deploying it in real-world environ-

ments, we now present the structure of the rest of this dissertation.

1.4 Structure of the dissertation

In Chapter 2, we present the related work that this work is built on. The de-

sign of X-Trace cuts across network protocol design, active networking, quality of service,

black-box analysis approaches, programming language design, and networking and oper-

ating systems research. In Chapter 3, we present the X-Trace framework. We begin by

outlining the design decisions that led us to its current instantiation. We then describe its

implementation, including modifications to software, protocols, and the construction of the

backend. We then evaluate this implementation in the context of three deployed scenarios.

In Chapter 4, we present a use case of X-Trace in an Enterprise network environ-

ment, focusing on the 802.1X network authentication protocol. By analyzing the possible

set of failures affecting 802.1X, we build a decision table that maps traces produced by X-

Trace of unsuccessful authentications to a set of candidate root causes of failure. We then

discuss how this approach of network failure detection from application layer traces can

be applied to environments with limited network visibility, such as virtual datacenters and

large enterprise organizations.

In Chapter 5, we present TraceOn, a trace analysis framework. TraceOn provides

two primary benefits to users of X-Trace. First, it raises the level of abstraction at which

developers write queries against X-Trace trace data, leading to easier-to-use interfaces for
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the user. Second, it processes trace data in a more scalable way, making use of custom

external data structures that operate efficiently by taking advantage of the semantics and

structure of X-Trace graphs. We conclude the dissertation in Chapter 6. Lastly, we include

two appendices of X-Trace specifications and user documentation.

Before we delve into X-Trace, we first present the work that inspired our design,

and which we build upon.
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Chapter 2

Background and Related Work

In this chapter, we present the background upon which this dissertation is built.

We start our discussion with methods of collecting information about the network, and net-

worked applications. These methods are aimed at capturing more holistic information than

the fine-grained traces collected by X-Trace. We then describe work on facilitating state

exchange. X-Trace relies on communicating state across network protocols, and relies on

a variety of underlying state transportation mechanisms. We then compare X-Trace to re-

lated tracing projects. We further outline the growth of middleware systems, which are key

building blocks to Internet-based applications. In the work of this dissertation, we make use

of X-Trace instrumented middleware layers to inject trace instrumentation into applications

without requiring extensive modifications by the developer. Next, we describe various uses

for trace data, including its application to machine learning. Lastly, we describe related

work on protecting services under load, and improving the user experience. In the next

three chapters, we present X-Trace, a use case demonstrating its usefulness in enterprise-
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capable applications, and finally an approach to improving the scalability of trace analysis

techniques.

2.1 Network measurement and traffic classification

In this section, we describe related work in the area of network measurement and

traffic classification. X-Trace tracks the execution of distributed applications as well as

lower-layer network protocols. It could be used to identify and differentiate traffic flows,

and as such, shares much in common with network measurement tools as well as traffic

identification and classification systems. In this section, we describe these connections.

2.1.1 Network-wide measurements

A number of tools focus on monitoring network status, aggregating data from

many devices and layers. X-Trace differs from these tools in that it traces, across devices

and layers, the actual paths taken by data messages, rather than trying to get snapshots of

the network infrastructure as a whole. Analyzing holistic information about the network

is an integral part of running and troubleshooting networks. One such fundamental tool

is traceroute, which traces IP network paths. A very common tool for capturing and

displaying features of the traffic is TCP-dump[122]. This tool operates on endhosts, and its

visibility is restricted to links that are adjacent to it.

Network operators must monitor hundreds or thousands of endhosts, routers, and

network devices to discover and recover from faults. The distributed nature of network

monitoring, and the large amount of data available poses certain challenges. One of the
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most common protocols for extracting state from network devices is the Simple Network

Management Protocol, SNMP[107, 108]. SNMP supports the remote examination of statis-

tics collected in network devices. These statistics include traffic flow rates, exceptional

event counters, and in some cases, protocol-specific counters. This information is stored in

Management Information Base records, or MIBs[85]. MIBs vary from device to device, but

typically include per-port and per-interface counters, records or traffic flow rates, counters

of exceptional events, and other aggregate information.

The SNMP protocol is used to collect this MIB data. Commercial products that

make use of SNMP include HP’s OpenView[93]. Although SNMP can be used to instru-

ment endhosts, it is less commonly used for that purpose. A tool designed to distribute

systems-level metrics throughout a network for management purposes is Ganglia[50]. Ganglia-

enabled hosts periodically announce systems metrics via XML messages on a shared, mul-

ticast channel. Commercial tools such as IPMonitor[63] can identify when network devices

have failed or are unreachable. Cisco’s NetFlow[90] system goes a step further and stores

state on each flow transiting the router. Flow start time, packet size distributions, and flow

rate data can be accessed via NetFlow. In practice, MIBs are queried remotely from man-

agement applications, while NetFlow data is transferred for analysis offline.

The need for exchanging state across the network was captured in the proposal

of a Knowledge Plane (KP)[34]. The KP would serve as an information layer, orthogonal

to traditional network layers. The KP would be distributed both geographically as well

as administratively, and by querying it, network operators and end users would be able to

pinpoint network faults and correct them.
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2.1.2 Traffic classification

Routers forward traffic to its ultimate destination based on network-level ad-

dresses and fields encoded into the packet. This process is called packet classification.

Typically in the Internet, routers extract a 32-bit IPv4 destination address, look it up in a

table using a “longest prefix” matching rule, and finally the packet is sent out the appropri-

ate network link. A variety of algorithms can be utilized, including linear search and binary

search. Given a particular link speed, it is important to classify packets within a certain

deadline time to maintain full link capacity. One such technique, proposed by Waldvogel,

et al.[128], makes use of the Trie data structure, which allows binary search over a set of

hash tables. As the authors show, an inexpensive hardware implementation of their scheme

can forward hundreds of gigabits of data per second.

Traffic patterns and networked applications have become more sophisticated, and

network operators often wish to specify complex forwarding policies for their networks.

These policies specify forwarding behavior based on the origins of packets, the type of pro-

tocol the packet carries, and other features of the packet that require extracting more than

just the destination address. This process is called “multi-field”, or “multi-match” classifi-

cation. An approach based on tuple space search[113] takes advantage of the fixed-length

of most network fields. By reducing the space of match criteria to a smaller space of tuples,

linear search for classification can be performed much faster. Gupta and McKeown define

a multi-stage classification algorithm called Recursive Flow Classification (RFC)[56]. This

algorithm consists of multiple phases of parallel memory lookups. The result is that nearly

30 million packets can be examined per second.
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Cohen and Lund[72] analyze packet classification in the context of decision tree

classifiers based on data taken from Tier-1 ISPs. Their proposal benefits from observed

traffic characteristics, namely a Zipf-distribution of triggered rules based on typical rule-

sets. There are commercial, multi-layer packet classification network devices available.

Packeteer has a product called PacketSeeker[94] that can identify over 450 different proto-

cols based on features extracted from all layers of the flows.

2.1.3 Feature extraction for security

The techniques described above typically assume that the fields used during clas-

sification are properly set. Given the rise in network attacks, automated worms, and viruses,

network operators need to classify packets in which fields might intentionally contain false

or misleading data. For example, an attacker might try to hide their identity by mis-setting

the source address in packets they send. Firewalls are devices that test packets for con-

formity with network policies. Those packets not conforming are dropped. Probably the

most common network firewall is CheckPoint[27]. Checkpoint specifies a set of rules and

classification policies designed to prevent attackers from reaching critical network services.

Cisco’s PIX platform[33] has similar goals. In addition to router-based firewalls, endhosts

often restrict network traffic based on classification rules. A common endhost-based system

is Netfilter (IP Tables)[89]. The Snort system[109] consists of hundreds of rules that iden-

tify malicious traffic based on features from the network-level as well as the application-

level.

In addition to attacking hosts, malicious attackers can make use of protocol ambi-

guities to gain information about the software running on endhosts. This information can be
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used to tailor an attack. Protocol Scrubbing[130] is the act of sanitizing protocol exchanges

such that ambiguities in the protocol are removed. Traffic that has been scrubbed thus gives

no information to the attacker about the endhost–all traffic looks the same. Scrubbing in-

volves extracting fields from traffic at a variety of levels and replacing those fields with

semantically equivalent, but standardized, values.

2.1.4 Traffic matrix estimation

A common distributed network measurement that is of interest to network oper-

ators is the traffic matrix. A traffic matrix is a snapshot of the rate of flow on each of the

major links in the network. Because of the high speed of traffic, as well as the distributed

nature of the observation points, obtaining the traffic matrix is non-trivial. Direct measure-

ments of each link necessary for exact results are considered too prohibitive to be feasible.

A survey of existing techniques in estimating the traffic matrix is presented in [86]. The

authors of [110] propose a model of origin-destination pairs based on observing disruptions

to traffic caused by intentional link weight adjustments. Gunnar, et al.[55] compare the

performance of a variety of traffic matrix estimation algorithms by utilizing data collected

from a commercial ISP. In [96], the authors propose a distributed scheme that relies on

the stability of traffic matrix observations that lets the observation points run periodically,

rather than all the time. Lastly, in [142], the authors propose inferring the traffic matrix

based on commonly available link-load data that is collected in each router.
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2.1.5 Peer-to-peer traffic detection

Peer-to-peer (P2P) applications defy typical communications patterns in that end-

host clients both source and sink data for other endhosts. Unlike client-server applications,

which are amenable to firewall and proxy protection, client-to-client traffic is harder to de-

tect, much less control. Servers tend to be centralized and easily protected, whereas clients

tend to be distributed. Typically used for sharing content, many network operators prefer

to restrict or eliminate P2P traffic. P2P software is designed to avoid restriction, and thus

classification is non-trivial. A variety of P2P analysis tools have been proposed. Ennis, et

al.[43] describe open-source approaches to detecting P2P traffic. The authors of [106] make

use of application signatures, rather than network-level features such as TCP ports. Their

approach was successful at detecting certain P2P applications. An alternative approach

studied in [71] disregards the payload, and takes advantage of two heuristics based on the

transport layer–the use of both TCP and UDP on the same port number, and the number of

connected peers from a host.

P2P applications will become more sophisticated at hiding their identities, the

deeper and more complex the classification will be necessary to detect them. For this task

to succeed, deeper and more complex packet feature selection will also be needed.

2.1.6 Application-aware network devices

Based on the ability to perform multi-match classification, several network de-

vices are now processing traffic based on features from all levels of the packet, including

the application. One such device, the Nortel Alteon web switch[4], includes specialized
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hardware that is able to process web traffic. It can apply load-balancing and encryption

policies to web traffic using web URLs and cookies. This enables web service operators

to give priority to certain type of requests, or to partition their servers to handle different

content. Sun’s N2000[121] switch operates in a manner similar to the Alteon. F5 Net-

work’s Big-IP blade switch[44] performs web load balancing between servers in the IBM

BladeCenter platform. F5 has also published the programmatic interface[45] to its device

to facilitate its integration with other network components. Cisco has a line of storage

switches[32] that classify the network-based storage protocol iSCSI. In a similar manner

to the web switches above, Cisco’s product allows operators to impose policy on storage,

rather than web, traffic.

2.1.7 Network Processors

An enabling technology to multi-match packet classification is the availability

of high-speed network processors. The most widely available such processor is Intel’s

IXP line[64, 65]. This processor features multiple micro-computing engines that enable

highly parallel processing of network traffic. Network processors have been used to build

firewalls[124]. Software-based routers, which are endhosts that forward and optionally pro-

cess network traffic, have been built around network processors[111]. Network processors

have been used to accelerate the classification of application-level protocols in [87].
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2.2 State Exchange

X-Trace transmits tracing metadata along the datapath so that distributed compu-

tations can be connected together into a single execution graph. This need for state exchange

is not unique to X-Trace, and in this section, we describe other tools, and techniques, used

to achieve this goal.

2.2.1 Packet annotations

Extensions to the Internet architecture have been proposed that add to, or enhance,

typical packet forwarding. Often these enhancements require state about the connection,

and that state is coupled with each individual packet. We call this state an annotation.

Space for packet annotations is included in the Internet Protocol version 4[98]. IPv4 in-

cludes support for up to 40 bytes of “options”. This option space is divided into one or

more variable length entries each consisting of a type, and possibly length and data fields.

IPv6[40] generalizes the use of options to include two distinct sets of headers: hop-by-hop

headers and end-to-end headers. Hop-by-hop headers are intended for intermediate routers,

and thus are the only ones that affect the core of the network.

Another way to bind annotations to a packet without modifying its contents is

to tunnel the packet along with the annotation in a larger packet. The tunnel endpoint

must decapsulate the packet, recover the annotation, and send the packet to the original

destination. A common tunneling protocol is Generic Routing Encapsulation (GRE)[58].

A major drawback to tunneling is that the semantics of the protocol are violated and the

destination address in the packet is changed. This means that tunneled packets may travel on
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different network paths than untunneled packets. Often, TCP packets are encapsulated into

UDP packets, which interferes with congestion control. Additionally, the communicating

parties must include tunnel entry and exit points into their communication, which results in

additional possible points of failure.

2.2.2 Internet extensions utilizing packet annotations

A variety of Internet extensions and enhancements have utilized packet annota-

tions. XCP[74] addresses TCP instability and inefficiency that arises in networks with high

bandwidth-delay products. It does this by applying control theory to provide both efficiency

and fairness by taking more information into account than TCP does. XCP extends the in-

formation that each packet conveys by adding the sender’s TCP congestion window and

round-trip time estimate, as well as a third field that intermediate routers modify to affect

the sender’s congestion window to an XCP header stored in each packet. This data allows

routers to regulate the flow of multiple senders using them. Quickstart[67] proposes that the

sender annotate SYN packets it sends out with its desired sending rate. As routers along the

network path see this SYN packet, they might adjust this rate downward if they are unable

to support a new connection at the desired speed. When the packet reaches the destination,

the initial rate field annotation determines the TCP parameters for the connection.

IP traceback is an enhancement of the standard network forwarding model that

allows autonomous systems (ASes) to locate the source of packet floods during denial-of-

service (DoS) attacks. Conceptually, routers along an Internet path keep enough state to

reconstruct the set of links to a DoS source. To facilitate this, support at the network-level

has been proposed in [104] to mark packets with identifiers that represent sampled network
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path edge pairs. These edge pairs, which consist of two router IP addresses and a distance

measurement, make their way to the victim network. With sufficient such edge pairs, the

victim can reconstruct the correct ordering of links to the source of the attack. SCORE is

a scalable network architecture that allows one to provide per-flow services such isolation

and QoS without requiring routers to maintain per-flow state [115]. The main idea is to

have packets carry this state, instead of routers maintaining it. By using this technique,

called dynamic packet state (DPS), it is possible to provide a variety of services such as

approximating per-flow fair queuing [119], guaranteed services [115], and per-flow load

balancing [114].

2.3 Tracing

The most direct related work to X-Trace are other distributed trace tools. In this

section, we describe those efforts.

Splunk [112] reverse-engineers end-to-end datapaths by mining application logs,

allowing for certain path-oriented observation. While our approach for datapath tracing is

more invasive, it is also more deterministic. The authors of [37] evaluate several algorithms

that operate on end-to-end bandwidth measurements collected from active network traces

to detect problems. Their analysis is especially focused on comparing different algorithms

to analyze data with seasonal variations.

Hussain et al. [62] present a system for performing high-speed network traces

at a large scale. The purpose of their work is to collect the data, process it according to

anonymization policies, and make it available for multiple users. This work focuses on
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traffic in the network, and not on capturing causal connections between requests at different

layers. Kompella et al. [76] present a service for collecting “cross-layer information”. The

focus of this work is on collecting control path state at different layers. Using the informa-

tion their system collects, one could identify how failures at one layer impact other layers.

X-trace differs from this work in that we require widening the APIs at each layer, and focus

on the datapath, rather than the control path.

The Application Response Measurement (ARM) [10] project annotates transac-

tional protocols in corporate enterprises with identifiers. Devices in this system record

start and end times for transactions, which can be reconciled offline. ARM targets the ap-

plication layer, and its focus is to diagnose performance problems in nested transactions.

Aguilera et al., in [3], find anomalous behavior in distributed systems by treating each com-

ponent as a black box, and inferring the operation paths by only looking at message traces.

They present heuristics to recover the path given the timing relations among messages. A

follow-up work, Pip [99] is an infrastructure for comparing actual and expected behavior of

distributed systems by reasoning about paths through the application. They record paths by

propagating path identifiers between components, and can specify recognizers for paths that

deal with system communication structure, timing, resource consumption. Pip is targeted

at a single distributed application, under the same AD, and does not capture cross-layer

correlations. X-Trace is complementary to Pip in this sense. We believe that some of Pip’s

analysis can be performed on X-Trace’s task trees.

Pinpoint [29] detects faults in large, distributed systems. The authors modified

J2EE middleware to capture the paths that component-based Java systems took through
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that middleware. They can mine collections of these paths to infer which components are

responsible for causing faults. Our work focuses on recovering the task trees associated

with multi-layer protocols, rather than the analysis of those recovered paths.

Magpie [13] is a toolchain that works with events generated by operating system,

middleware, and application instrumentation, correlates them, and produces representations

of paths through a system by inferring causal relations from a total ordering of events. Like

X-Trace, they correlate lower level events with a higher level task, but their focus is mostly

on a single system or in distributed systems that are tightly coupled and instrumented in a

compatible way.

Causeway [25] offers support for propagating metadata in distributed applications

in a mostly automated way. The focus is not on cross-layer tracing, and metadata is only

encoded on the IP path. Each message can only have one metadata associated with it. In

X-Trace, each layer may be carrying X-Trace metadata meaningful at that specific layer.

Causeway could be used as a mechanism for transferring X-Trace metadata at the IP layer.

Liblog [51] is designed to find faults in a single distributed application. Each

node of the application is modified to locally log all system calls. By aggregating these logs

together, the entire system state can be reconstructed. Network messages are modified to

include Lamport Clocks so that the message exchange can be synchronized. While it does

not require changes in the application, it is not clear that higher level causal relations can

be correctly inferred from the combined log.



26

2.4 Middleware

One “sweet spot” for introducing tracing into distributed systems is through in-

strumented middleware. Middleware systems bridge distributed pieces of code together,

provide for an easy-to-use layer of abstraction that programmers can rely on, and allow

legacy programs to interface to newer code. In this section, we describe these systems, and

provide context for our work in adding X-Trace support to middleware systems.

2.4.1 Middleware architectures

Recent large Internet sites such as Amazon.com[5] and eBay.com[42] have adopted

a three-tier approach to designing their sites. Three-tier systems are built out of middleware

components. The tiers generally fall into web/presentation, business logic and applica-

tion, and persistent storage and database. Three-tier systems allow for so-called “horizontal

scaling”, meaning that the system can grow through the replication of components in one

of the three tiers. Examples of middleware layers include Sun’s J2EE system[66] and BEA

Logic’s WebLogic[14]. Several open source web middleware systems have also been de-

veloped, such as JONAS[69] and JBoss[68] which typically couple Java-based middleware

with the open-source web server Apache[9].

Our previous work in modeling web-services has been based on the Java-based

RUBiS system[103], a publicly available workload generator patterned on eBay. The au-

thors of RUBiS have analyzed the performance of it under a variety of conditions, and have

showed that the mixture of requests–the workload–plays a large role in determining sys-

tem bottlenecks[7, 23, 24]. Schmidt[105] shows that middleware-based systems have been
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used for real-time and embedded applications, not just e-commerce and enterprise business.

For interactive users of web services, Bhatti et al.[15] have shown that users’ perception of

web quality is non-linear. Namely, after a roughly eight second delay threshold, most users

perceive that the system is non-operational.

2.4.2 Performance analysis of middleware systems

As middleware systems become more complex, the effects of requests given to

them become difficult to statically analyze. Several efforts, both in the literature and in in-

dustrial best practices, have attempted to measure or predict the effect of individual requests

on the various tiers of middleware systems. The SLIC project at HP Labs[35] attempts to

identify which components are responsible for web service performance violations by fine-

grained monitoring and instrumentation[141, 36]. They have shown that in practice, these

SLO (Service level objective) violations can only be predicted by utilizing multiple systems

metrics; it is not enough to find correlations between request features and a single metric

such as CPU load.

The Performance Management project at IBM has explored using control theory

and statistical monitoring to detect and adapt to unexpected traffic surges[82, 41]. In the

Magpie project[13], request effects were uncovered by utilizing detailed instrumentation

data taken from multiple layers of the system: device drivers, O/S calls, and middleware

layers. Given such data, they build a causal model of the effect of requests given observa-

tions of the system.
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2.5 Machine learning

The amount of trace data generated by X-Trace is sometimes very large. For long-

running or complex applications, trace graphs with millions of nodes are not uncommon. In

these cases, direct examination of the graphs is not feasible, and so more sophisticated tech-

niques must be employed. In this section, we describe a relatively new branch of Statistics,

Machine Learning, that can be brought to bear on analyzing trace data.

2.5.1 For network routing

Typically, network paths are chosen based on the metric of shortest path (in terms

of the number of hops). An area of research called “Q-Routing” (similar to Q-Learning)

uses reinforcement learning theory to choose network paths. The idea is that under high

loads, static shortest path routing is suboptimal. The original paper on the subject by

Boyan and Littman[19] proposes that each node maintain for each destination the estimate

of packet latency via each neighbor. Given that this is load-sensitive routing, precautions

have to be taken to ensure that oscillations do not occur. Boyan and Littman’s work was

extended[31, 79] to address the situation where network load decreases, and optimal paths

must be chosen again. In the original Q-Routing work, longer paths were sometimes pre-

ferred over shorter paths since the Q-quantity that route selection is based on prefers stable,

but slower paths verses more unstable, but sometimes faster ones. Chen and Druschel

present a survey and case study of reinforcement learning in [28].
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2.5.2 For application identification

In [88], Moore and Zuev address the problem of classifying traffic into application

classes, such as Web, peer-to-peer, and FTP. The authors’ approach is to utilize a naı̈ve

Bayesian classifier. That classifier was trained with manually labeled data. The features

of the protocol that were relevant were header fields in the IP and TCP protocols, packet

inter-arrival rate, payload size, and the effective bandwidth of the flow. After training, their

Bayesian classifier was approximately 20% effective. They then applied a feature reduction

technique called Fast Correlation-based Filtering (FCBF)[139]. This technique makes use

of a quantity called the symmetric uncertainty to identify features that should be used in

the model (the features chosen by the algorithm are not highly correlated with each other).

The symmetric uncertainty between two variables is the quotient of the information gain

and the product of the entropies of the two variables. After utilizing FCBF, their Bayesian

classifier’s accuracy jumped to over 90%. Lastly, they got rid of the Gaussian assumption

of their model and instead made use of kernel functions. This increased accuracy a couple

of percent.

2.5.3 For service failure detection

In [30], the authors study the interconnection of middleware components. By

observing sufficient inter-middleware connections, they are able to apply statistical analysis

to uncover errors by noting deviations from typical component communication patterns.

Their approach relies on instrumenting the interfaces between Java components, which does

not require a priori semantic knowledge of the application itself. Bodik et al.[18] make use
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of machine learning to detect service failures in an e-commerce site. Their approach is

based on detecting when page hit distributions deviate from what is expected. They detect

this change via a χ2 test, and couple that statistic with a visualization tool that operators can

use to increase their confidence in the automated failure detection system.

2.6 Protecting services under load

While the bulk of this work studies the use of X-Trace to improve the reliability

of individual software applications, it could also be used to protect the network as a whole.

We first describe work on providing network quality of service, then describe other attempts

to regulate and control network resources. The observation capabilities of X-Trace could

be used to improve these techniques.

2.6.1 Network quality-of-service (QoS)

A considerable amount of research has investigated the problem of providing

quality of service to network flows. Circuit-switched networks typically have a circuit-

setup phase that reserves resources along the data path in advance (e.g., the telephone net-

work). In packet-based data networks, this approach not directly applicable since each data

packet is forwarded individually. Attempts at binding packets to certain paths have been

made, including using label-switching protocols[101]. Two primary directions at provid-

ing network QoS include integrated services[20] and differentiated services[16]. Integrated

services provide for fine-grained guarantees to be made to flows that are setup with the

RSVP[21] protocol. Resources are reserved in advance, and each router on the path must
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support integrated services. Contrasted with that is Diffserv, which provides for courser-

grained prioritization of flows. In Diffserv, devices on the edges of the network aggregate

possible many flows into a small number of categories. These categories are scheduled and

buffered differently in the network, and the advantage of Diffserv is that the core of the

network does not need to keep state on a per-flow granularity, since many flows are already

aggregated into smaller Diffserv classes.

In SCORE, the amount of state that was previously needed in the core of the

network is instead carried with the packets that require that state. In this way, routers in the

network do not have to store state to provide QoS[115]. The ability for packets to carry QoS

state is called Dynamic packet state[119, 114]. State is added in the edges of the network

as packets enter the core, it is used in the core to provide fair queuing, guaranteed services,

and per-flow load-balancing, and then it is removed before leaving the network.

2.6.2 Classical control theory (CCT)

Classical control theory has been used successfully in a variety of industries, in-

cluding aviation, automobiles, manufacturing, and robotics. In CCT, a system is kept in

equilibrium by adjusting some type of input signal to the system based on a model of how

the system works. As the system moves out of equilibrium, the input signal is modified

based on the system model. CCT has been applied to Internet systems as well. In [2], the

authors apply CCT to a web server to provide for overload protection and service differ-

entiation. Similarly, [41] focuses on differentiating service through the metric of constant

factor differences in response time as seen by clients of the Apache web server.

CCT has also been applied to operating systems and three-tier systems. These ap-
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proaches have tended to treat requests to the system as homogeneous (each request affecting

the system in the same way). The SWIFT system[52, 53] is a systematic approach to in-

troducing input/output interfaces to operating system components, which matches well with

the well defined interfaces between middleware components. The ControlWare system[140]

is a toolkit for automatically mapping QoS requirements into simple control loops in three-

tier systems. The models these approaches have built as the central part of their controllers

have not assumed, for example, the request differentiation work described in 2.4.2.

2.6.3 Denial-of-service (DoS) protection

DoS attacks are caused when an attacker, or group of attackers, issue a large

number of requests to a service with the intent to deny access to legitimate users. DoS

attacks are often easy to implement, since in the Internet, any host can usually send packets

to any other host. When an attacker makes use of a large number of machines (often without

the their owners’ knowledge), then the attack becomes a distributed DoS attack (DDoS).

DDoS attacks both increase the amount of attack traffic as well as hide the attacker’s true

identity through obscurity. Attempts at preventing such attacks have focused on a variety of

avenues. In a technique called IP traceback[104], routers annotate packets with information

about the paths those packets have taken. The victim can make use of that information

to identify the source networks of the attack. The authors of SIFF[136] propose to add

capabilities to packets which are granted by recipients. These capabilities are carried in

each packet, and can be easily validated by core and edge routers. The advantage of the

SIFF approach is that DDoS attacks can be prevented through the network–not just in the

recipient’s edge network.
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Work on protecting web services and e-commerce sites is outlined in [73] and

[22]. Router-mechanisms based on max-min fairness guarantees and other router-centric

defenses are presented in [137] and [135]. An intriguing vulnerability is that of the “shrew”

flows[80]. Typically, DoS attacks can be detected by looking for spikes, or surges, of

traffic. Shrew flows make intelligent use of the dynamics of TCP to prevent applications

from receiving adequate throughput. Because shrew flows do not themselves use a large

amount of bandwidth on average, they are difficult to detect.

2.6.4 Application failure detection

The authors of [12] propose including monitoring components into a distributed

web service. They outline two mechanisms: using the Xlinkit library, or linking directly

into the web service. They look for service timeouts, “external errors”, which are errors in

the specific service instance, as well as violations of the BPEL spec.
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Chapter 3

X-Trace: A framework for collecting

end-to-end datapath traces

In this Chapter, we describe X-Trace, a cross-layer, multi-application trace tool.

Software developers modify their software to include X-Trace instrumentation points by

using a provided software library which implements the X-Trace interface. Once instru-

mented, X-Trace enabled software will generate trace data that is used to reconstruct the

execution behavior after the fact. We begin this Chapter by motivating the types of appli-

cations that would benefit from X-Trace. We then describe its design and resulting imple-

mentation. In the next Chapter, we evaluate this implementation in a variety of real-world

scenarios.
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3.1 Motivating scenario: Wikipedia

Improving visibility into application behavior exposes otherwise difficult to de-

tect bugs, underlying system failures, and generally unexpected application behavior. This

should not be surprising, since software developers have come to rely on traditional soft-

ware debuggers to debug their software. Applications are becoming more distributed and

interconnected. This development leads to so-called “software-as-a-service” systems. The

need to debug these compositions is critical to their reliability and made more complex

because of their multi-system and dynamic nature.

Let us consider a concrete example of such a system: the Wikipedia on-line

encyclopedia[132]. Imagine that a student in San Francisco updates the Wikipedia entry for

their favorite baseball team. They tell their friend in Washington, D.C. about the change,

but when their friend looks at the page, they see the old information. What conditions might

lead to this failure? How can operators, developers, and users detect and correct this prob-

lem? In this Chapter, we introduce X-Trace, an end-to-end tracing framework designed to

provide visibility into large-scale distributed systems such as Wikipedia.

As Figure 3.1 shows, Wikipedia is organized around a multi-tiered architecture of

web load balancers, caches, application servers, and databases. The particular path through

these components taken by one user might involve different components than another user.

Since there is currently no way for the two users of Wikipedia to communicate the exact

set of components they interacted with, it is not possible to narrow down the set of possible

components that led to the observed failure highlighted above. One typical approach to

addressing this problem is the use of per-component logs. Each component in the system
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Figure 3.1: The structure of the Wikipedia open-source encyclopedia.

stores logs that are mined after the failure is detected. Given the huge scale that modern

datacenters operate within, there is no common mechanism to determine which logs to

examine out of the numerous possible logs deployed. There is also no direct way to correlate

entries across multiple logs. It may not be possible for administrators to reproduce the

problem, since their requests would most likely take a different path through the system.

Thus, they will not be able to identify the defective component that led to the failure.

Various enterprise and datacenter diagnostic tools exist, but many of them are lim-

ited to a particular protocol. For instance, traceroute is useful for locating IP connectivity

problems, but can not reveal proxy or DNS failures. Similarly, there are numerous alarm

and monitoring suites for HTTP, but they cannot diagnose routing problems. While these

tools are undoubtedly useful, they are also typically unable to diagnose subtle interactions

between protocols or provide a comprehensive view of the system’s behavior.

To this end, we have developed an integrated tracing framework called X-Trace.

A user or operator invokes X-Trace when initiating an application task (e.g., a web request),
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by inserting X-Trace metadata with a task identifier in the resulting request. This metadata

is then propagated down to lower layers through protocol interfaces, which may need to be

modified to carry X-Trace metadata, and also along all recursive requests that result from

the original task. This is what makes X-Trace comprehensive; it tags all network operations

resulting from a particular task with the same task identifier. We call the set of network

operations connected with an initial task the resulting task graph.

Constructing the task graph requires understanding the causal paths in network

protocols. While in general this may be difficult, in most of the situations we have consid-

ered so far this is relatively straightforward: for example, a recursive DNS query is clearly

causally linked to the incoming request. X-Trace requires that network protocols be modi-

fied to propagate the X-Trace metadata into all actions causally related to the original task.

This involves both understanding calls to lower-level protocols (e.g., HTTP invoking TCP)

and initiating forwarded or recursive requests.

X-Trace-enabled devices log the relevant information connected with each tagged

network operation, which can then be reported back. The trace information associated with

a task graph gives the user or operator a comprehensive view of what network operations

were executed as part of a task. This would include information about low-level IP packet

transmissions, high-level protocol actions such as DNS queries, and actions from devices

usually invisible to network troubleshooting, such as transparent caches as long as they are

X-Trace enabled. To illustrate, Figure 3.2 shows an example of the task graph involved in a

simple HTTP request through a proxy, showing the causal relations between operations in

the HTTP, TCP, and IP layers. X-Trace task graphs are runtime traces of a task execution,
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Figure 3.2: A proxied HTTP request and the logical causal relations among network ele-
ments visited.

and so long as individual components are integrated into the framework, there is no need

for prior configuration of their dependencies. This is especially useful in systems that are

large, dynamic, or administered by independent parties.

Diagnosing problems often requires tracing a task across different administrative

domains, which we will call ADs. ADs may not wish to reveal internal information to each

other, or to end users. Accordingly, X-Trace incorporates a clean separation between the

client (user or operator) that invokes X-Trace, and the recipient of the trace information. For

instance, when an end user notices a problem and invokes X-Trace, the trace information

from her home network is delivered to her locally, the trace information from her ISP is

delivered to the ISP support center, and the trace information from the web site she was

accessing is sent to the web site operator. Each of these parties can then deal with the

information as they see fit; sharing it with others, keeping it private, or even not collecting

it at all. The fact that X-Trace gives them a common identifier for the task enables them to

cooperate effectively if they so choose.

Realistically, we know all layers in the stack and different ADs will not deploy

X-Trace-enabled protocols and devices simultaneously. However, individual protocols, ap-
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plications, or ADs can benefit immediately from X-Trace if they support it. If a particular

protocol or application gets instrumented alone, one gets horizontal slices of the task graph,

which are useful for developers and users. If an AD alone deploys it on multiple layers

within its network, it gets to internally visualize the portion of the task graph that happened

inside of its domain. In addition, there is a “network effect” for adoption: as more protocols

and networks integrate into the framework, X-Trace offers a common framework for their

sharing of this information, increasing the value for all parties.

There has been much prior work on the study of application behavior, network

monitoring, and request tracking. We discuss this related work in detail in Chapter 2, and

only note here that the main differentiating aspect of X-Trace is its focus on tracing multiple

applications, at different network layers, and across administrative boundaries. In the next

chapter, we highlight these features in the context of three specific examples. However,

X-Trace is applicable to a wide variety of other protocols, such as SIP, RPC, and email.

While we feel that X-Trace provides a valuable service, it certainly has significant

limitations. They are discussed in detail at the end of this chapter, but we note them briefly

here. First, implementing X-Trace requires modifications to clients, servers, and network

devices; protocols that can not already do so must be altered to carry X-Trace metadata,

and their implementations must log the relevant trace information. While these changes are

conceptually simple, in practice retrofitting X-Trace into existing applications is a process

of varying difficulty; our experiences in this regard ranged from trivial to quite challenging.

Second, when X-Trace is only partially deployed, the ability to trace those parts of the

network is impaired, sometimes entirely. Third, lost trace reports can limit reconstruction
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of the request graph and can lead to false positives in diagnosing faults (i.e., the lack of

trace data may be interpreted as a failure).

Because X-Trace only records paths that were taken, it is not a tool to assert global

invariants about all possible paths. There are many problems for which X-Trace will not

determine the cause, but will rather show the effect. While not an introspective debugger,

it will point out the components involved in the operation, guiding the use of other tools to

verify the cause. Examples of these cases are state corruptions that would cause a router to

misroute packets, or an overloaded CPU that would cause a message to be dropped.

Despite these challenges, our experience with X-Trace has been very promising,

shedding light on software correctness and performance bugs, as well as uncovering failures

in networking and systems components. We now describe the overall design of X-Trace,

followed by a detailed discussion of its implementation as an open-source software artifact.

In the next chapter, we present three different real-world applications of X-Trace, highlight-

ing its usefulness in these cases. We then close with a discussion of issues that arise during

tracing.

3.2 Design

Now that we have motivated the need for pervasive and cross-layer tracing, we

present X-Trace. We begin by outlining its design, and present an overview of its com-

ponents. In the next section (Implementation), we will discuss how our X-Trace software

artifact realizes our design, and how we are able to efficiently and reasonably add trace

support to large-scale applications. But first, let us consider the principles that guided our



41

design.

3.2.1 Design principles

The purpose of X-Trace is to reconstruct a graph that captures key events making

up a distributed system, and the causal connections between those events. In accomplishing

this, our design follows these principles:

1. The trace request should be sent in-band, rather than in a separate probe message.

The first principle highlights our desire to probe what happens on the actual dat-

apath we want to diagnose. Out-of-band probes might not end up following the same path

as the original datapath. It follows that we need to add metadata to the same datapath that

we want to trace. In X-Trace this metadata contains an identifier common to all operations

in a task, which is added to messages and propagated by devices along the entire path.

2. The collected trace results should be sent out-of-band, decoupled from the original

datapath.

This principle relates to gathering of trace information. If we appended trace

information to the metadata encoded in the datapath, then we might lose this information

in the event of network failure. Also, this would increase the overhead of messages. Ob-

taining trace data during periods of failure is especially critical to the debugging process.

It follows that we need an out-of-band, orthogonal mechanism to record and collect trace

data. Additionally, by decoupling trace reporting from the datapath, we lessen the impact

of X-Trace on the datapath’s latency, as well as provide more flexible options for collecting

the generated data (e.g., sampling).
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3. The entity that requests tracing is decoupled from the entity that receives the trace

results.

As we discuss in the section on reporting, separating the user who inserts the

X-Trace metadata in the datapath from the destination of the trace reports generated by

components along the path allows for flexible disclosure policies of the trace information

for each administrative domain (AD). Each AD keeps control of the information, while the

common task identifier allows them to cooperate in exchanging information and solving

problems if necessary.

X-Trace places the minimal necessary mechanism within the network, while still

providing enough information to reconstruct the path. The data itself is not kept in the net-

work path, but rather reported to specific places determined by the ADs. X-Trace metadata

contains enough information for the ADs to communicate that trace information back to the

user, if it so chooses.

3.2.2 System architecture

In this section, we describe architecture of X-Trace, which consists of the various

supporting software needed to properly generate, collect, and process X-Trace traces. We

based the design of X-Trace on the preceding principles, and the resulting architecture is

shown in Figure 3.3. It is based on three conceptual pieces: an instrumented datapath, an

offline reporting infrastructure, and a graph analysis engine.

The instrumented datapath is made up of X-Trace enabled hosts, servers, and

network devices. These devices insert tracing metadata into protocol messages, and use
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Figure 3.3: An overview of X-Trace, including the instrumented datapath, reporting infras-
tructure, and post-processing components.

that metadata to generate trace reports. A report is a text-based log entry that contains the

X-Trace metadata, systems information such as the originating hostname and timestamp,

as well as programmer-included annotations. The reporting infrastructure is a distributed

collection system that periodically transfers reports from the hosts that generated them to a

centralized backend server. Lastly, the backend server hosts the trace analysis component

that developers, users, and operators use to identify failures, performance faults, anomalies,

and other analytical actions on the trace data.

Before we describe the design of each of these components, we first present the

concept of a task graph, which is the data structure that represents the execution of a dis-

tributed application. This is the data structure that we designed X-Trace to recover from

distributed applications.
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Figure 3.4: An X-Trace Task Graph representing an HTTP client connecting to a web server
through a web proxy. This task demonstrates the multi-layer capability of X-Trace, touching
on the TCP and IP layers. Each vertex in the graph represents an event in the transaction,
and each edge captures a causal connection between events. Every event shares the same
task identifier (not shown), yet has its own unique operation id, shown as the letters ‘a’
through ‘n’. The boxed item represents an X-Trace report issued by the proxy.

3.2.3 Task graph

The key data structure in X-Trace is the task graph, and in this section, we de-

scribe its design. In X-Trace, a distributed system is made up of events defined by the soft-

ware developer using the X-Trace API. A task graph is a graph data structure that records

these events, as well as the causal connections between them. Figure 3.4 shows the task

graph of an HTTP client issuing a request to a web server via a proxy. It demonstrates the

multi-layer capability of X-Trace (touching on the TCP and IP layers). Each vertex in the

graph represents an event in the transaction, and each edge captures a causal connection

between events. Every event shares the same task identifier (not shown), yet has its own

unique operation id, shown as the letters ‘a’ through ‘n’. The boxed item represents an

X-Trace report issued by the proxy. This report includes the task id, the operation id corre-

sponding to that event, and a list of the operation ids that caused this event. In the figure,

the report issued by the proxy was caused by the HTTP client that issued the HTTP request,
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as well as by the underlying TCP layer that delivered the packets containing that request.

Thus, the report indicates that events ‘a’ (the proxy) and ‘f’ (the TCP layer) caused event

‘g’ (the proxy).

3.2.4 X-Trace metadata

We now describe the design of the X-Trace metadata, which accompanies the

execution of the application through the datapath. The metadata contains a task identifier,

which must be unique among all of the reports accessed by an X-Trace user. In addition to

the task identifier, the metadata also contains an operation id, also referred to as an event

id. The operation id is unique within the context of a task id. Each event in the distributed

system corresponds to an X-Trace report, and has its own unique operation id. Both the task

and operation ids are unsigned integer types. Lastly, the metadata may optionally contain

one or more options. An option is simply extended information that allows the metadata

format to change and grow over time.

Tasks may be 4, 8, 12, or 20 bytes long, and operation ids may be either 4 or 8

bytes long. This means that within one enterprise, up to 2160 unique tasks may coexist, and

that each task can consist of 264 distinct events.

3.2.5 Metadata propagation through network protocols

Since X-Trace spans multiple applications, tracing metadata must be communi-

cated between disparate software components. In this section, we describe the design of this

capability. X-Trace metadata is carried by the extension, option, or annotation fields within

each network protocol. Such fields include IP options, LDAP (Lightweight Directory Ac-
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Figure 3.5: Radius packet format extended with X-Trace metadata.

cess Protocol) controls, and HTTP headers. Any protocol that allows for extension fields

can work with X-Trace. The metadata is replicated across layers, ensuring that devices on

the path can access it without having to violate layering. An example of X-Trace metadata

included with an HTTP request is:

GET / HTTP/1.1
Host: www.cs.berkeley.edu
User-Agent: Mozilla/5.0
X-Trace: 01AABBCCDD01020304
Connection: close

In textual protocols, X-Trace metadata is encoded as a hexadecimal string. Here it

is included as the “X-Trace” HTTP request header. A suitably X-Trace enabled web server

would include the (modified) metadata along with the response, as shown here:

HTTP/1.1 200 OK
Server: IBM_HTTP_Server
Content-Type: text/html; charset=ISO-8859-1
Content-Language: en-US
Cache-Control: no-cache
Expires: Tue, 25 Mar 2008 20:49:54 GMT
Date: Tue, 25 Mar 2008 20:49:54 GMT
Content-Length: 18985
Connection: close
X-Trace: 01AABBCCDD3F78CAA0

Lastly, X-Trace metadata may also be included in binary protocols as well, as

shown in the RADIUS (Remote Authentication Dial In User Service) protocol header (Fig-
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ure 3.5).

3.2.6 Metadata propagation through applications
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X-Trace: [T,g2] 

Figure 3.6: The two aspects of metadata propagation: across protocols, and through the
application’s runtime environment.

Devices and network elements on the path are responsible for propagating the

X-Trace metadata along the path. Propagation ensures that X-Trace metadata stays with

the datapath, as well as captures the causal relations between events in the application.

Figure 3.4 shows in full detail the contents and the propagation of X-Trace metadata in

part of the task graph from the HTTP example figure in the introduction to this chapter

(Figure 3.2). In particular, the successive values of the task id and operation id fields must

be passed along the datapath to recover the graph for this TaskID.

Figure 3.6 depicts the two primary requirements of application propagation: prop-

agating through the software runtime, and propagating across the input/output of the pro-

gram. Metadata is initially inserted into the network by the client. For legacy clients,
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external devices in the network can add them. Network operators can also insert X-Trace

metadata for operations traversing their AD. In the HTTP task graph (Figure 3.4), all of the

vertical arrows represent cross-layer propagation.

As shown in the figure, the HTTP request pictured left contains metadata with

Task ID ‘T’ and operation id ‘a’. The first step to propagation is copying this data from the

lower layer (TCP) and the adjacent layer (HTTP) into the application’s address space. A

new event is generated (labeled “Receive request”), and assigned a unique identifier, ‘g1’.

This identifier must be kept by the software runtime until the next event is generated, in this

case “Forward request”. This is so that the report corresponding to the “Forward request”

event can indicate that it was caused by the preceding event. On the output side, the HTTP

proxy has to copy the metadata into the newly generated transport connection, as well as

the new HTTP request to the origin server. Likewise, the TCP process in the proxy has

to copy this metadata down to the new IP path. Note that we do not make any a priori

assumptions as to the number or ordering of layers in a protocol exchange: propagation

works recursively, with each layer only naturally interacting with the layer immediately

below. Metadata is placed into each layer of the application to support tracing, so that

network devices do not have to access part of the packet outside of their layer. Since the

X-Trace metadata is embedded into the messages at each layer, propagation happens at the

same time as the messages are sent. In particular, if messages are stored for later forwarding,

as is the case with email messages [38], the causal relations will still be preserved and

recorded properly.

Multi-threaded applications are handled automatically by the X-Trace API. Con-
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Figure 3.7: Propagation through a multi-threaded system. X-Trace metadata is stored in
per-thread storage.

sider the HTTP proxy shown in Figure 3.7. In this case, the “last” operation id must be

maintained on a per-thread basis. This is naturally performed by using per-thread variables

in the case of the Java language.

3.2.7 X-Trace reports and report collection

X-Trace reports are the data structure that capture X-Trace trace data. In this

section, we describe how these reports are generated, what information they contain, and

how these reports are collected to a logically centralized place. When a node sees X-Trace

metadata in a message at its particular layer, it generates a report, which is later used to

reconstruct the datapath. This report generation operation is separate from propagating

X-Trace metadata, and is specific to the graph reconstruction aspect of our application.

Reports contain a local timestamp, the TaskID they refer to, the report’s unique operation

id, and any operation ids that caused this report to be generated, as well as programmer-

inserted annotations. Data is stored in reports in the form of key-value pairs. Devices only

report information accessible at their own network layer. For example, an HTTP cache may

report on the URI and cookie of the request, and the action taken upon receiving the request.
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Figure 3.8: Multiple X-Trace enabled applications send reports to a per-node reporting
daemon, or proxy. This proxy is responsible for storing the reports and forwarding them to
the backend.

It can also add systems information such as the server load at the time. IP routers, on the

other hand, report information contained in the IP headers of packets, such as source and

destination addresses, and can add other relevant performance information such as current

queue lengths.

The reports generated by devices within one AD are kept under the control of that

AD, in local per-host storage. If multiple X-Trace enabled applications reside on the same

host, they issue their reports to a local reporting daemon, which handles their storage and

eventual transmission elsewhere in the network, as shown in Figure 3.8.

Periodically, reports must be transmitted to a central processing server that will

complete the graph reconstruction process. This centralized approach ensures that reports

generated in different parts of the network are visible from the analysis component of X-
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hosts visualization software, as well as report query processing applications that developers
and network operators use to identify failures.

Trace. The collection of reports can be organized as a push, pull, or a variation of push

and pull. In the push model, each node in the system asynchronously sends reports to the

backend server when they are generated. This minimizes the latency between the time trace

data is generated and when it can be analyzed (see Figure 3.9). In the pull model, the trace

data is buffered indefinitely on each of the instrumented nodes. Periodically, the backend

will poll each node to collect the stored trace data. This increases the time until reports

can be analyzed, but provides for finer-grained control of network overhead and prevents

the backend from becoming overloaded. Lastly, a variation of the push and pull models

would consist of periodic polling, with the ability for instrumented nodes to asynchronously

transmit reports (e.g., in the event that the system is about to fail or leave the network). The
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Figure 3.10: An example of wide-area reporting. The client embeds X-Trace metadata with
a message, setting the report destination to R. Different ISPs collect reports locally, and
send pointers to R so that the client can later request the detailed reports.

current X-Trace software artifact is based on the push model.

Deploying the reporting infrastructure required by X-Trace requires a level of

expertise and on-going support that not all can provide. We imagine the emergence of

an ecosystem of reporting service providers. These providers would maintain a reporting

infrastructure, and could even provide visualization and diagnosis capabilities. ISPs could

provide this service as a benefit for their users.

The X-Trace metadata has an optional Destination field. If present, this field

signals that a user located at that destination is interested in receiving the trace data as well.

This user might be the client, or it could be any delegated report server. This indirection

is useful for users behind NATs, since they are not addressable from the Internet. The AD

uses its policy to respond to this request. The simplest policy is for each device to just
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send reports directly to the indicated destination, which would collect them and reconstruct

the task graph. This may not be desirable, though, because AD’s in general will want to

control who has access to the data. One possible mechanism uses indirection, and works

as follows. The AD still collects all reports locally in a private database. It then sends a

special report to the user, containing a pointer to the report data. The pointer could be the

URL of a page containing the trace data. This gives each AD control of the visibility of

the trace information, by requiring users authenticate themselves when they fetch the data.

The AD can make use of this authentication information when choosing the level of detail

of the report information returned to the user. Note that all the information needed to get a

report to a user is kept in the X-Trace metadata, meaning that nodes in the network do not

need to keep any per-flow state to issue reports.

Figure 3.10 shows a sender S who sets the destination for reports as being the

report server R. ADs A and B send pointer reports to R, and either the client or R itself

fetches these reports later. A special case is when the user of X-Trace is in the same AD as

the devices generating reports, such as network operators performing internal troubleshoot-

ing. X-Trace metadata gets added at the AD ingress points. The network operators go

directly to the local report databases, and there is no need to use the destination field in the

metadata.

Graph Reconstruction

In this section, we describe the process of X-Trace graph reconstruction, which is

the process of combining multiple distributed X-Trace reports together into a data structure

that captures the execution behavior of a distributed application. Task graph reconstruction
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is an offline process performed by the user that reconstructs the request path of the data

connection. After the user collects reports from the reporting infrastructure, they examine

them to reconstitute the datapath graph. Each of the reports is represented by a node in the

task graph, identified by its unique operation id. A subset of the nodes, possibly empty, will

have “edge” headers that represent causal edges in the graph. Each of these edge headers is

represented by an edge in the graph. After reconstructing the graph, the client can examine

the nodes and paths that the request took. For transitory errors, this graph serves as a

permanent record of the conditions that existed at the time of the connection. Additionally,

any performance data included by the devices in the reports can be used to correlate failures

in the datapath with devices that may be under-performing due to overload.

The reconstructed graph is the end product of the tracing process, and can be

stored, associated with trouble ticket systems, or used by operators as a record of individual

failure events for reliability engineering programs.

3.3 Implementation

Now that we have presented the design of X-Trace, we discuss its implementa-

tion. We first discuss the representation of the X-Trace metadata, then how we extended

protocols to support X-Trace, the propagation libraries and API, the format of reports, the

reporting libraries and collection infrastructure, how we carry out inter-AD reporting, and

finally how graphs are rebuilt from individual reports.
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3.3.1 X-Trace metadata

The complete specification of the X-Trace metadata is presented in Appendix B,

however we now present a brief overview of its format.

Flags: The flags field contains bits that specify the metadata version number, whether any

options are present, the size of the operation id field (either 4 or 8 bytes), and the length of

the task id field (4, 8, 12, or 20 bytes).

TaskID: Our design supports 4, 8, 12, or 20 byte unsigned integer fields to represent the

TaskID. The TaskID must be unique within 1) a window of time, and 2) a reporting domain.

The window of time must be long enough so that no two tasks that overlap in time share the

same ID.

Operation ID: The operation id field is a unique unsigned integer number within the

context of a given task, and can be either 4 or 8 bytes long. We implement the unique()

function as a random number generator.

Options: (Optional) To accommodate future extensions to the X-Trace identifier format,

we include an options mechanism. The Options block, if present, consists of one or more

individual options. Each consists of a type, a length, and then a variable length payload.

3.3.2 Protocol extensions

To support X-Trace, a layer or application must embed X-Trace metadata in the

messages it exchanges with peers. The difficulty of this for existing protocols depends on
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their specification. For example, it is simple for HTTP, because its specification [46] allows

for extension headers, and dictates that unknown extensions be forwarded unmodified to

next hops by proxies. Other protocols like SIP [102], e-mail [38], IP, TCP, and I3 [117]

share this characteristic. For protocols without an extension mechanism, one has to resort

to either changing the protocol or overloading some existing functionality. In the imple-

mentation of Chord that comes with I3 we had to create a new type of message. Table 3.11

gives details on adding metadata to these and some other protocols.

3.3.3 Propagation libraries

Applications must support two aspects of X-Trace identifier propagation: (a) car-

rying X-Trace metadata between incoming and outgoing messages, and (b) manipulating

the metadata by updating operation ids to correctly record the causal relations. We imple-

mented support in C/C++ and Java for easily manipulating X-Trace metadata, including

performing the propagation operations, such that few lines of code need to be added to

perform (b), once (a) is in place.

In our experience, we found that capturing the causal connections within the ap-

plication presented the highest variability in difficulty, as it requires understanding how

received messages relate to outgoing messages, and may require following long chains of

calls within the implementation. If the implementation associates a context data structure

with the processing of a message, it may be easy to add X-Trace metadata to the data type,

which gets carried with the processing flow automatically. Apache and I3 fall into this cat-

egory. In applications where a thread or process only handles one message at a time, it is

possible to add the X-Trace metadata as a thread or process global variable. In event-based
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Figure 3.11: Support for adding metadata to some protocols. We have implementations for
the protocols in italics.
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systems, like libasync, it is necessary to associate the metadata with each callback. In more

general cases, when messages for processing go through queues or shared memory, it is nec-

essary to associate metadata with these structures as well. Other implementation structures

require more work, as in the case of Chord: we had to create a parallel path of functions

with an extra X-Trace metadata parameter following the call path from receiving the mes-

sage until sending it. Instrumenting concurrency libraries and runtime environments may

ease or automate this propagation [29, 99, 25]. We have already added X-Trace support for

libasync [83], Facebook Thrift [123], and Hadoop [57].

The following program snippet shows a typical example of the calls that are

needed for full identifier propagation in the forwarding function of an application. In this

example, trace metadata is injected into the datapath with the startTrace() function. Each

logEvent() function adds a new event to the datapath, propagating the metadata through the

application using per-thread state.

public static void main(String[] args) {
XTraceContext.startTrace("Document_Loader", "phase 1");
...
XTraceContext.logEvent("S3", "store/start");
S3.store(document);
XTraceContext.logEvent("S3", "store/end");

}

The following is an example of the “Process” abstraction of the X-Trace prop-

agation API. With it, developers specify the beginning of a semantic process using the

startProcess() function. Successful completion of the operation is signaled via the endPro-

cess() function. In the event of an exceptional condition, the Java exception raised is sent to

the reporting infrastructure using failProcess().
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Private void storeDocument(String doc, String id) {
XTraceProcess p =

XTraceContext.startProcess("S3", "store/start");
try {

AmazonS3.put(id, doc);
XTraceContext.endProcess(p);

} catch (Exception e) {
XTraceContext.failProcess(p, e);

}
}

3.3.4 Reports

A report is a UTF-8 [138] encoded message consisting of a header section fol-

lowed by a body section. The first line of the header identifies the layer issuing the report.

The rest of the headers are specified as key-value pairs, according to RFC 822 [38]. The

body of the report is free-form, and the content is set by the device issuing the report and

other operator policy.

3.3.5 Reporting libraries and agents

Included with X-Trace is a reference implementation of a client library that can

be linked into applications for issuing reports. This library is very thin, and simply relays

reports to a locally running proxy.

The reporting proxy listens for reports on three different channels: a UDP socket,

a TCP socket, and Facebook’s Thrift RPC interface. One thread per channel listens for these

reports, and places them on a shared queue. Another thread pulls reports off this queue, and

sends them to the appropriate handler module. These handler modules, which run in sep-

arate threads, can forward the report to another report server, in the case of the reporting
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proxy. Alternatively, in the case of the X-Trace backend server, the handler forwards re-

ports to a report store, which commits them to local storage on the server. Metadata about

available reports, tasks, and other bookkeeping information is kept in a local, embedded

database.

We also implemented a packet sniffing application that can send reports on be-

half of services and applications that cannot be modified to include the X-Trace library.

This application snoops network traffic using the libpcap library, sending reports for any

protocols that it supports. Currently, this application supports the IP and TCP protocols.

Network switches can make use of port mirroring to mirror traffic to this agent.

The remaining task is to enable network elements – devices, protocol stacks, and

applications – to issue reports of interesting events. For hardware devices like routers and

appliances, one needs to modify the software running on the control processor. However,

using the feature of port mirroring in switches, a network administrator can insert nodes

that would report on traffic seen without slowing down the data path. The routers would

still have to do the propagation, but not bother to call reporting functions. For software

implementations, it is straightforward to integrate the reporting library, which is a variation

of adding a logging subsystem to the application.

3.3.6 Report collection

An X-Trace proxy runs on each host in the system, and it is responsible for col-

lecting reports from local applications. These reports are then forwarded to the backend,

which stores them and makes them available for queries. In the current software artifact,

there are two distinct implementations of this general design: one targeted for well-managed
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Figure 3.12: X-Trace reporting proxy architecture.

enterprise environments, and another targeted for “stand-alone” operation suitable for an in-

dividual user of X-Trace. In the former case, reports are collected and processed by central

software infrastructure maintained by the network administrator. This leads to a highly scal-

able design requiring minimal setup by the user. In the second case, the user is responsible

for running all of the components of X-Trace on their own server. However, they can setup

and use X-Trace without administrator involvement.

Figure 3.13 shows the design of the enterprise-enabled reporting infrastructure.

Sun’s Message Queue, a Java Message Service provider, is responsible for communicating

reports from the proxies to the backend. Commands can also be sent from the backend to

the proxy with the message queue. Once reports arrive to the backend, they are committed

to a Postgres SQL database. To visualize or query for these reports, users interact with an

Apache-based web interface, which uses SQL to pull the reports from the database.
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Figure 3.13: An X-Trace backend designed for enterprise applications. Reports arrive via
the message queue (pictured top-left), and configuration is centralized in the LDAP direc-
tory (pictured top-right).

There are various parameters and configuration state that the clients must have to

send reports to the backend. Rather than storing this state in the clients, it is stored in the

backend, and made available to the clients via an LDAP interface. Thus, the clients must

simply be programmed with the address of the backend, and upon initialization, they query

the LDAP component to get their configuration state. This reduces the amount of state on

end-hosts, and centralizes administration of the system to the backend server.

In contrast, the “stand-alone” backend is a single Java program that receives,

stores, and serves out X-Trace reports. The visualization and query interface is provided

by a Jetty embedded webserver. Rather than using a Postgres database to store reports, the

stand-alone server stores the reports on disk in standard text files.
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3.3.7 Inter-AS reporting

We have implemented a special case of Inter-AS reporting in the web hosting

scenario described in the next chapter. The front end webservers included two HTTP head-

ers in the response sent back to the client. The first contains a URL for collecting trace

information about the request. The second is the X-Trace task identifier associated with

the network operation. This is included to simplify handling at the client, as well as for

environments in which the X-Trace metadata was added by the front-end webservers. We

wrote a Firefox[47] extension that reads these HTTP headers, and provides the user with

a visual indicator that the page they are visiting is “X-Trace enabled”, as well as a button

they can click to fetch the trace data from the provided URL, in the case of an error. This

button is identified with the text “I’m feeling unlucky.”

3.3.8 In-core graph reconstruction

Our initial implementation of the task graph reconstruction is quite simple, and

can serve as the foundation for other, more complex, visualizations. We initially start by

processing each report in the trace, adding child pointers to each node. Recall that X-Trace

reports indicate causal edges in them, which are equivalent to parent pointers. To build the

graph, we have to use these parents pointers to also generate the appropriate child pointers.

Once the parent and child pointers are initialized, we output each node in the graph along

with its child and parent pointers in the “dot” file format used by GraphViz. We then

visualize the graph using a GraphViz viewer tool.
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Requests / sec Mean latency
Baseline 764 1.309 ms

With X-Trace 647 1.544 ms

Table 3.1: Performance of an X-Trace enabled Apache website with a Postgres-backed
reporting infrastructure

3.3.9 Performance

We tested the performance of the metadata propagation and the reporting aspects

of our reference implementation of X-Trace. For the propagation, we measured the latency

report generation. This operation is blocking, and if implemented in a router, would have

to be performed on a per-packet basis on the forwarding path.

Our X-trace implementation generation was able to generate approximately 33,000

reports per second. Given that contemporary high-performance webservers handle about

10,000 requests per second, we feel confident that for most applications, reporting will not

be the bottleneck. In fact, optimized libraries could be much faster. As shown in Chapter 6,

we are also gaining experience with large-scale graphs consisting of millions of events.

To test the performance of the reporting infrastructure, we used the Apache web

benchmarking tool, ab, against two otherwise identical Apache websites: one with report-

ing turned on and one without. The report store in this test was a separate Postgres database.

Of the 10,000 requests we issued to the site, none of the reports were dropped by the re-

porting infrastructure. The regular server sustained 764 requests/sec, with a mean latency

of 1.309 ms. The X-Trace enabled server sustained 647 requests/sec, with mean latency of

1.544 ms, which shows a 15% decrease in total system throughput. Table 3.1 outlines these

results, which show that reporting decreased the total system throughput by 15%.

In this chapter, we have described the design and implementation of X-Trace. In
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the next chapter, we will present three evaluations of X-Trace, including deployments and

micro-benchmarks. Then, we will discuss several issues that arise when integrating X-Trace

into new and existing protocols and applications.
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Chapter 4

X-Trace: Evaluation

In this chapter, we describe several scenarios where X-Trace could be used to help

identify faults. We discuss three examples in detail–a simple web request and accompany-

ing recursive DNS queries, a web hosting site, and an overlay network. We deployed these

examples within one AD, and thus do not make use of the wide-area reporting mechanism.

We follow these examples with a description of other scenarios.

4.1 Web request and recursive DNS queries

4.1.1 Overview

The first scenario that we consider is that of requesting a web page from a server.

Figure 4.1 shows the graph corresponding to a simple web request. The user starts by

typing a URL into her browser, in this case http://www.cs.berkeley.xtrace/index.html. The

browser’s host first looks up the provided hostname using a nearby DNS resolver, which

returns the IP address of that host (10.0.132.232). If the resolver does not have the requested
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Figure 4.1: The complete HTTP and recursive DNS graph recovered by the X-Trace tool
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address in its cache, it will recursively contact other DNS servers until a match is found. It

can then issue the HTTP request to the resolved IP address.

Tracing each of these “subtasks” is a challenge: HTTP requests could be for-

warded through proxies or caches, masking their ultimate destination. DNS requests are

recursive in nature, are cached at intermediate servers, and span different administrative

domains. This can easily lead to misconfigurations and inconsistent views.

4.1.2 X-Trace support

We added support for X-Trace to the DNS protocol by using the EDNS0 [125]

extension mechanism. This backwards-compatible mechanism allows metadata to be asso-

ciated with DNS messages, and is increasingly supported in the wide area. We modified

a DNS client library, an authoritative DNS server, as well as a recursive DNS resolver to

support X-Trace metadata propagation and reporting.

We deployed this software in our local testbed, and created a parallel top-level

domain (.xtrace). Figure 4.1 shows the final graph. In this example, the task has two

subtasks, resolving the name, and fetching the page. A Java-based web browser issues

the query to the DNS client library, which encapsulates the X-Trace metadata in an EDNS0

field of the query. This query is forwarded to the resolver on 10.0.62.222, which recursively

looks up the address in other, authoritative nameservers, propagating the metadata at each

step. Lastly, each of our authoritative nameservers issues reports when they receive queries

with X-Trace/EDNS0 records in them. When the name resolution is complete, the browser

issues an X-Trace enabled HTTP query.
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Figure 4.2: Architecture of the web hosting scenario

4.1.3 Fault isolation

An X-Trace enabled DNS might uncover several faults that are difficult to diag-

nose today. At each step of the recursive resolution described above, servers cache entries

to reduce load on the top-level servers. A misconfigured or buggy nameserver might cache

these entries longer than it should. If a server’s IP address changes, these out-of-date servers

might return erroneous results. A trace like that in Figure 4.1 would pinpoint the server re-

sponsible for the faulty data.

Faults could occur in the HTTP portion of the task as well. We describe the

application of X-Trace to web traffic in the following section.
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4.2 A web hosting site

4.2.1 Overview

The second scenario that we consider is a web hosting service that allows users to

post and share photographs (see Figure 4.2). We deployed an open-source photo application

in our network on an IBM Bladecenter. The front-end webserver host Apache and PHP.

The photos, metadata, and comments are stored in a Postgres database. Also included are a

cache and load-balancer. The photo site has attracted approximately 200 visitors a day for

a period of two months.

For this site to support X-Trace, we implemented a reporting module for Apache,

and one for Postgres. To support legacy web clients, we implemented an “X-Trace headers”

module that inserted X-Trace headers into requests from the legacy clients.

X-Trace can be invoked by either end users or by the operator. End users can

invoke X-Trace in two ways: by using an X-Trace-enabled web browser, or an X-Trace-

equipped web page. We implemented an X-Trace toolbar for the Firefox web browser

that puts X-Trace metadata in requests. We also implemented a Javascript/PHP library

that added a feature to selected webpages in the site that let the user report problems via an

HTML form. These reports were internally coupled with the X-Trace metadata of the user’s

request, enabling the network operator to match their complaint with a trace of their session.

This is a powerful mechanism to detect semantic faults that would appear normal from the

web site’s perspective, such as stale pages or logic errors in a well formed response. This is

not necessary for all faults, since many requests might generate anomalous task graphs that

can be analyzed with methods such as Pinpoint [29].
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4.2.2 Tracing a request through the scenario

The client application (i.e., Firefox with our X-Trace extension) creates a new X-

Trace metadata and initializes its task and operation id fields. It issues an annotated request

to the front-end cache. This cache issues a report based on fields in the request and the

X-Trace metadata. It forwards it on, possibly to other middleboxes such as load balancers

that might also be on the path. When the Apache process on the front-end tier receives the

request, it issues a report that includes the URL, status code, and time of the request.

The PHP-based photo software creates SQL statements to retrieve images and

metadata from the backend database. We modified this code to retrieve and propagate the

X-Trace metadata from the array of HTTP headers. The new metadata is propagated to

the database by enclosing it in a SQL comment (i.e., /* X-Trace:013A2E... */). The

query is sent to the database, which looks for embedded X-Trace metadata. It issues a

report containing the query. When the webserver sends the response back to the client, it

adds two headers to the response: one has the X-Trace metadata (in case it was generated

by the webserver), and the other has a URL that the client can access to examine the trace

of the request.

If any additional requests are generated because of that response (e.g., for im-

ages), the Firefox extension will use the same TaskID. For clients that do not support X-

Trace, then each request, including images, will be considered independent.
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4.2.3 Using X-Trace

In this section we introduce several faults into the photo hosting site. These are

based on our first-hand experience with the deployed system.

The first fault we consider is that of a malfunctioning PHP script on the front-

end web servers. From the user’s point of view, this could either be a fault in the PHP

script, or a fault in the database. Examining Figure 4.3 shows immediately that the fault

is the former–there are no reports from the database, pinpointing the problem to the PHP

script. Figure 4.3 shows a square node that represents a problem report issued by the user,

using the PHP/Javascript web problem reporting tool. In addition to triggering an alarm

for the operator, the report node indicates which page caused the problem, in this case,

/faults/query.php, located on web1.

Next, based on the Wikipedia example, we implemented a web cache that inad-

vertently returns stale images from its cache. Diagnosis in this case is simple. The request

trace will include nodes up to and including the cache, but will not include the origin server.

The last fault we consider in this scenario is that of a malfunctioning web load

balancer, which sends traffic to a server that does not contain the appropriate content. When

users request pages from the site, they will sometimes get the pages they wanted, while other

times they will get 404 File Not Found errors. In both cases, the load balancer issues

a report with the request URL. Successful requests also include reports from the working

web server and backend database, while unsuccessful requests only include a report from

the web server.
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Figure 4.3: An HTTP request fault, annotated with user input
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Chord Ring

I3 Overlay Network

IP Network

Sender

Middlebox

Receiver

Figure 4.4: X-Trace on an I3 overlay scenario. A client and a server communicate over
I3. Shown are the Chord network on top of which the I3 servers communicate, and the
underlying IP network.

4.3 An overlay network

The third scenario we look at in some detail is an overlay network. Overlay

networks are routing infrastructures that create communication paths by stitching together

more than one end-to-end path on top of the underlying IP network. Overlays have been

built to provide multicast [61], reliability [8], SIP support [102], and data storage [118]

services. It is difficult to understand the behavior and diagnose faults in these systems,

as there are no tools or common frameworks to allow tracing of data connections through

them.

In our example, we use the I3 overlay network [116]. For our purposes, it suf-

fices to say that I3 provides a clean way to implement service composition, by interposing

middleboxes on the communication path. The implementation of I3 we used runs on top of
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the Chord DHT [118], which provides efficient routing to flat identifiers and is an overlay

network on its own.

We added X-Trace metadata to the I3 and Chord protocols, code to perform the

propagation operations, as well as calls to the X-Trace reporting library. The scenario

topology is shown in Figure 4.4, and consists, at the highest layer, of a very simple protocol

involving a sender, a receiver, and a middlebox interposed in the path by the sender. This

situation is analogous to having a Web proxy in an HTTP request path, or a video transcoder.

We used a toy protocol we called SNP – Simple Number Protocol – that is simply sending

a number to the other party. The middlebox adds 10000 to any number it receives and

forwards the request on, but it could also be, say, an HTTP proxy or a video transcoder.

SNP also carries X-Trace metadata in its header. Each segment of the path in the SNP layer

corresponds to a complete I3 path. Each I3 path, in turn, is formed by a combination of IP

and Chord paths. Finally, each Chord path is formed by a combination of IP paths.

4.3.1 Tracing a message through the scenario

In Figure 4.5(a) we show the reconstructed graph of operations given by X-Trace

in a sample run of the scenario. This graph was generated from X-Trace reports by the

visualization tool we developed. We deployed an I3 network consisting of 3 machines, each

of which was also Chord node. The SNP client, receiver, and middlebox are on separate

machines. We omit the IP report messages: all IP paths are one hop, since the machines

were all on a switched LAN.

The SNP client sends a message to the the SNP receiver (see Figure 4.5), and it

interposes the SNP middlebox on the path. The following is a detailed look at the transmis-
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SNP Client

00000000.3CDD5536
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SNP Middlebox
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I3 Server

10.0.62.222
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.down

SNP Receiver

1BBCF8DD.E78090F9

.next

I3 Server

10.0.62.222

1BBCF8DD.8B18C00D

.down

I3 Server

10.0.62.229

8B18C00D.29705F29

.next

I3 Client Lib

10.0.62.230

29705F29.0B709044

.next

Chord

10.0.62.222
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.down

I3 Server

10.0.62.223

9012FF3D.23DB72B3

.next

Chord

10.0.62.223
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.next

I3 Client Lib

10.0.62.225
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.next

Chord

10.0.62.229
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.next
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.down

(a) Graph for normal operation

SNP Client SNP Middlebox

I3 Server I3 Server I3 Server

Chord

I3 Server

Chord

I3 Client Lib

ChordChordChord

(b) Fault 1: The receiver host fails

SNP Client

I3 Server

Chord

I3 Server

Chord

I3 Client Lib

(c) Fault 2: Middlebox process crash

SNP Client

I3 Server

Chord

I3 Server

Chord

(d) Fault 3: The middlebox

host fails

Figure 4.5: (a)X-Trace graph corresponding to the i3 example scenario with a sender, a
receiver, and a sender-imposed middlebox. (b), (c) and (d) correspond respectively to faults:
a receiver crash, a middlebox process crash, and a crash of the entire middlebox machine.
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sion of a message in this scenario.

The SNP client creates a message, chooses a TaskID and operation id, and in-

cludes X-Trace metadata in the SNP header. It chooses the I3 identifier stack (IDmiddlebox,

IDserver) as the destination (an identifier stack is simply a source-routed path in I3). The

client copies the metadata into the I3 layer. Two more propagation operations copy it into

the Chord and IP layers. The message is sent to the first I3 server, in this case at address

10.0.62.222. That server receives the message, and as it goes up the network stack, each

layer generates and sends a report. The I3 server routes a message to the middlebox’s I3

identifier, stored in the server 10.0.62.223. The I3 layer has a mapping between IDmiddlebox

and the IP address 10.0.62.225. This message is delivered over IP to the I3 Client Library

on that node, and then to the SNP Middlebox process.

The middlebox receives the message and processes it, sending a report from each

of its layers. It removes its I3 address from the identifier stack, leaving only the address of

the server, IDserver. Like the client, it propagates the identifier to the Chord and IP layers.

The next Chord node in the path, 10.0.62.223, receives the message. It sends a report, and

then since there is no I3 layer, it simply forwards the message on. This process continues

for the next I3 server, and finally the message is received by the receiver. At the receiver,

we see a report from the I3 client library, and from the SNP application.

4.3.2 Using X-Trace

In Figures 4.5(b), (c), and (d) we injected different types of faults and show how

the resulting X-Trace graph detected them. We failed different components of the system

that prevented the receiver from receiving the message. Normally it would be difficult or
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impossible for the sender to differentiate between these faults. We chose these particu-

lar faults since they exhibit the same symptoms to the user, however they have different

causes. These faults cover different parts of the datapath space, including node failures and

application process failures.

Fault 1: The receiver host fails In Figure 4.5(b) we simulated a crash in the

receiver. I3 expires the pointer to the receiver machine after a timeout, and the result is that

the message gets to the last I3 server before the receiver, but there is no report from either

the SNP Receiver or I3 Client library at the receiver machine.

Fault 2: The middlebox process fails In Figure 4.5(c) we simulated a bug in

the middlebox that made it crash upon receiving a specific payload and prevented it from

forwarding the message. We see here that there is a report from the I3 Client library in the

third I3 report node, but no report from the SNP middlebox or from any part of the graph

after that. This indicates that the node was functioning at the time the message arrived.

However, the lack of a report from the middlebox, coupled with no reports thereafter, points

to the middlebox as the failure.

Fault 3: The middlebox host fails Finally, in Figure 4.5(d), we completely

crashed the middlebox process. I3 expired the pointer to the machine, and we see the

message stop at the last I3 server before the middlebox. The lack of any reports from the

middlebox node, as well as no reports after the graph indicate that the entire node has failed.
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4.4 Additional X-Trace Uses

Here we describe, in much briefer form, other scenarios where X-Trace could be

used. This list is not meant to be exhaustive, merely illustrative.

4.4.1 Tunnels: IPv6 and VPNs

A tunnel is a network mechanism in which one data connection is sent in the

payload of another connection. Two common uses are IPv6 and Virtual Private Networks

(VPNs). In the first case, the lack of universal deployment of the IPv6 protocol can be

overcome by bridging IPv6-enabled parts of the network with tunnels residing over IPv4.

In the second case, enterprise networks can communicate with different parts of the network

over secure, encrypted channels. Typically, it is not possible to trace a data path while it is in

a tunnel. However, with X-Trace, the tunnel can be considered simply an additional layer.

By propagating metadata across layers, the tunnel itself will contain the X-Trace identifier

needed to send trace data about the tunnel to the sender. This helps diagnose faults in the

tunnel, which are nontrivial to isolate otherwise.

4.4.2 ISP Connectivity Troubleshooting

For consumers connecting to the Internet via an ISP, diagnosing connectivity

problems can be quite challenging. ISP technical support staff members have to spend

time trying to determine the location of faults that prevent the user from successfully con-

necting. Complicating this process is the myriad of protocols necessary to bring the user

online: DHCP, PPPoE, DNS, firewalls, NATs, and higher layer applications such as E-mail
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and web caches.

By including X-Trace software in the client, as well as X-Trace support in the

equipment at the premises, the ISP can determine the extent to which the user’s traffic

entered the ISP. This can help quickly identify the location of the problem, and thus reduce

support costs.

4.4.3 Link layer tracing

An enterprise network might want to trace the link layer, especially if there are

highly lossy links such as a wireless access network. The effect of faults in these networks

can have a profound effect on higher layer protocols, especially TCP [11]. Retrofitting

X-Trace into Ethernet is not possible, due to its lack of extensibility. However, X-Trace

metadata can be stored in a shim layer above Ethernet, but below other protocols. Since

all of the hosts on a LAN make use of the same LAN protocol, it would be possible to

deploy X-Trace enabled network devices within one enterprise without requiring higher

level changes.

4.4.4 Development

Tracing tasks is needed at one point or another in the development of distributed

applications and protocols for debugging and verification. As with standard logging subsys-

tems, developers can integrate X-Trace into their applications. It is actually being used by

the team developing the Data-oriented Network Architecture (DONA) [26], a content-based

routing scheme for the Internet.
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4.5 Discussion

While X-Trace has many uses, it also has limitations. We discuss those here, as

well as other relevant tracing issues.

4.5.1 Report loss

If the reporting infrastructure loses any reports, the effect to the graph will be the

deletion of nodes and edges represented by that report. The loss of reports makes the graph

reconstruction operation harder, leading to a corrupted graph. Depending on the severity

and the specific report involved, report loss can make it impossible to reconstruct causal

connections. However, even without being able to reconstruct these connections, the ability

to group network operations by a common identifier remains quite useful. In scenarios with

lost reports, rather than trying to reconstruct the task graph, a better choice might be to

order the reports temporally. Then, the operator can get a picture of the linear progression

of events related to a given request.

4.5.2 Managing report traffic

The structure and complexity of an application’s task graphs have a strong bearing

on the amount of report traffic generated by X-Trace nodes. We mention three mechanisms

that can limit the volume of this traffic. Several mechanisms have been put into place to

limit the volume of this traffic, while maintaining its usefulness. Sampling can limit the

number of requests that are tagged with X-Trace metadata to a rate specified by policy. A

low sampling rate is ideal for “always-on” tracing used to get a picture of the behavior of
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the network. Differently from independent sampling at each node, using X-Trace, each

“sample” is a complete task graph. Since X-Trace reports are delivered out-of-band, they

can be batched and compressed before transmission. Within our network we have observed

a 10x compression factor for X-Trace generated reports. Finally, scoping can be used to

limit report generation to certain network layers, devices, or parts of the network. Layers

such as IP generate many reports per request, since reports are generated on a per-packet

basis. By limiting the scope of reports to those layers above IP, a smaller volume of reports

is generated. Of course, if a fault is suspected at the network layer, the scope of reports

could be widened to include IP packets of interest, from a client or subnet experiencing the

observed problem. Currently, support for scoping is statically configured into the reporting

infrastructure.

4.5.3 Partial deployment

Thus far, our discussion has focused on a comprehensive deployment of X-Trace

throughout the network. However, even when X-Trace is partially deployed within one

particular application or network layer, it still provides useful tracing benefits. For example,

by integrating X-Trace into the I3 and Chord overlay networks, users of those systems

can track the mapping of I3 messages to Chord nodes. Alternatively, the developer of a

middleware system could use X-Trace to follow requests from one node to another. In this

spirit, researchers developing the DONA [26] project are making use of X-Trace to aid in

the development of their new routing protocol.

Specific ADs can deploy X-Trace within their networks without requiring any

cooperation or support from other ADs. For example, a service provider could deploy X-
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Trace at strategic points within their datacenter. This provides the service provider with

the task graph within their network. We see the adoption of X-Trace following this partial

deployment strategy.

4.5.4 Security Considerations

It is important to discuss the potential for attacking the X-Trace infrastructure, as

well as using that infrastructure to attack others.

First, one could mount an attack against an infrastructure that implements X-

Trace by sending an inordinate amount of traffic with X-Trace metadata requesting reports.

We argue that propagating metadata on its own is unlikely to become a bottleneck in this

situation. Generating reports, however, could become a significant source of load. A simple

defense is for each device to rate-limit the generation of reports. Still, malicious clients

could get more than their fair share of the reporting bandwidth. If this becomes a problem,

and filtering specific sources of reports becomes an issue, providers might start requiring

capabilities in the options part of X-Trace metadata to issue reports.

Another possible attack with the reporting infrastructure is for a malicious user

to send packets with X-Trace metadata, with the destination for reports set as another user.

In the worst case, many network devices and hosts would send reports towards the attacked

user. While this attack is possible, it will not have an exponential growth effect on the

attacker’s power, as legitimate reporting nodes will not place X-Trace metadata into X-

Trace reports. Most important, however, is that we do not expect a large traffic of wide-area

reports: we expect ADs to generate very few wire-area reports with pointers to detailed,

independent stores for local reports within each AD. Lastly, this problem is more prevalent
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when the destination for reports are IP addresses. Using wire-area destinations like I3 or

OpenDHT leverages these systems’ denial of service prevention features. X-Trace keeps

control of report generation rate and visibility with each report provider, which allows for

defense mechanisms to be put in place.

4.6 Conclusions

Internet applications are becoming increasingly distributed and complex, taking

advantage of new protocol layers and middlebox functionality. Current network diagnos-

tic tools only focus on one particular protocol layer, and the insights they provide on the

application cannot be shared between the user, service, and network operators. We pro-

pose X-Trace, a cross-layer, cross-application tracing framework designed to reconstruct

the user’s task graph. This framework enables X-Trace enabled nodes to encode causal

connections necessary for rebuilding this graph. The trace data generated by X-Trace is

published to a reporting infrastructure, ensuring that different parties can access it in a way

that respects the visibility requirements of network and service operators.

We deployed and evaluated X-Trace in two concrete scenarios: a web hosting site

and an overlay network. We found that with X-Trace, we were able to quickly identify the

location of six injected faults. These faults were chosen because they are difficult to detect

using current diagnostic tools.

The data generated by X-Trace instrumented systems can serve as the basis for

more sophisticated analysis than the simple visualization and fault detection shown here.

Using this data for new and existing algorithms [29, 99] is the object of our ongoing work.
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Given that the provider of reports ultimately controls how much data is generated, we are

also investigating strategies to push filters on what to report as close to the sources of data

as possible. For example, an AD could push a filter to all of its reporting daemons to not

send reports on the IP layer.

In the next Chapter, we present the 802.1X network authentication framework,

which is an example of a large, distributed enterprise application that has been retrofitted

with X-Trace. By making use of the graphs collected from its execution, we are able to

identify failures in underlying network components, leading to a more robust and reliable

application.
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Chapter 5

Exposing network service failures

with application-level datapath

traces

Software developers use tracing and logging to detect failures in their applica-

tions. However, application failures are not always the result of logic or programming

mistakes. Failures in the underlying network infrastructure and contention for network

resources also affects applications. In the previous chapter, we described X-Trace, a dis-

tributed application tracing framework. With X-Trace, we gain insight into the series of

events making up the execution behavior of instrumented applications. In this chapter, we

will apply X-Trace to a the well-known distributed network authentication protocol IEEE

802.1X [1]. In addition to detecting failures in this system, we will use the traces gathered

from X-Trace to infer failures in its network environment. In the next chapter, we will ex-
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142.68.116.156 [24/May/2007:10:46:30 -0700]
"GET /apps/ HTTP/1.1" 404 203

142.68.116.156 [24/May/2007:10:46:31 -0700]
"POST / HTTP/1.0" 200 2243

142.68.116.156 [24/May/2007:10:46:31 -0700]
"GET /ar/ HTTP/1.1" 404 201

142.68.116.156 [24/May/2007:10:46:31 -0700]
"GET /archive/ HTTP/1.1" 404 206

Figure 5.1: Sample log entries from the Apache webserver. Each entry contains the client IP
address, date and time, request string, and status information about the response, including
the time taken to serve the content.

plore how to leverage trace data to reason about the performance of applications deployed

in virtual datacenter environments. These environments are characterized by highly vari-

able performance, and so we consider the implications for instrumenting applications and

designing a trace collection system that for that environment.

5.1 Motivation

Software developers and network operators rely heavily on application-generated

log files to debug Web 2.0 applications, since those logs give hints about the conditions

under which it was operating. These log files consist of individual log lines, each contain-

ing portions of the system state that are captured via programmer-inserted instrumentation

points. An example log file from the Apache webserver is shown in Figure 5.1. Examples

of such state include information about user requests, the values of program variables, the

existence and cause of exceptional conditions, and the success or failure of invocations into

required application components. A single user interaction with a Web 2.0 service might re-

sult in thousands of log messages generated by dozens of software components, distributed
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across multiple machines. Debugging begins by examining these logs after an error is dis-

covered. The examination begins at the initial point of contact with the user, through the set

of invocations from that point to the various components the application relies on, until an

erroneous condition is discovered, or the trace diverges from what the operator intends and

expects. In addition to bugs present in the application itself, failures in Web 2.0 systems

can be the result of failures in the underlying network and required network services. Errors

in configuration specifications, as well as unexpected configuration interactions can lead to

unexpected traffic patterns, which could in turn lead to failures.

Before we describe our approach, we will define some terms. The network is the

set of host network interfaces, network cables, switches and routers, and devices that reside

on the datapath, yet are not typically addressed by end hosts. Such devices include firewalls,

proxies, and network address translation (NAT) systems. Examples of network failures in-

clude link failures and packet loss, malfunctioning middleboxes, unexpected traffic surges

that impact application traces, and failures in switching and routing protocols that result in

a loss of connectivity between two end hosts. We define a network service to be a software

component that is used by, but not part of, an application. Network services provide either

data, or processing, or both to an application, are typically provided by the network opera-

tors, and are usually shared between multiple applications. Examples include the Domain

Name System (DNS) and the Lightweight Directory Access Protocol (LDAP). Since Web

2.0 applications are distributed across the network and rely on network services, failures

in those underlying components now directly affect the application’s correctness. It is not

enough to look for bugs just in the application’s code. Failures in the application might also
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be the result of network and network service conditions.

5.2 Approach

We argue that while application log files are primarily designed to detect failures

in the application itself, we can also use them to infer failures in the underlying network

and network services. In this chapter, we will enhance application log files with X-Trace

trace data, and use the resulting dataset to infer underlying failures in the application’s

network environment. Since there is already a wealth of network monitoring tools available,

one might wonder why one would want to use application-layer traces to infer lower-layer

failures. There are several motivations for doing so:

1. The administrative division of responsibility often means that the application devel-

oper and the network infrastructure team are two separate entities. Thus an applica-

tion developer might not have access to the underlying network hardware.

2. Failures observed in the network might only be detectable from the point of view

of the application. For example, modifying a firewall rule may block an application

from reaching one of its required components. The network operator has no reason

to know that dependency exists, since the software is highly dynamic, and thus they

would not have realized that the firewall configuration change poses a problem. As

we will show in the evaluation section, this specific problem has shown up in the

networks of customer deployments.

3. With the increasingly virtualized datacenter environments provided by such compa-
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nies as VMWare [126] and Amazon [6], access to the “true” underlying network may

be hidden from the application and application developer by design, making the man-

agement of co-located applications simpler, as well as decoupling network resources

from the applications. This might be done to better handle traffic demands or to mask

failures. These layers of virtualization pose a challenge for determining the status

of the network itself, due to the virtualization layer. Furthermore, one part of the

application might be unable to reach a required network service due to failures in

the virtualization layer. For example, an “invisible” load balancer introduced by the

virtualization layer may not properly load balance the traffic. These types of errors

are very difficult to detect.

In this chapter, we will present a methodology for detecting network and network

service failures from higher-level application traces. We use as a case study the IEEE

802.1X network authentication service, which is a representative example of a complex

distributed application that authenticates end user devices such as laptops and desktops

and authorizes their access to the network. 802.1X is built out of heterogeneous network

protocols and relies on network services, in particular LDAP. Its function is critical to end-

users, since their connectivity to the network depends on its proper function. It is also

becoming widely deployed in enterprise and campus networks. To evaluate our approach,

we will test our inference scheme on a deployed 802.1X system injected with a variety

of network and network service failures. These failures were suggested to us by support

technicians at a wireless LAN authentication network appliance vendor. They identified

various real-world faults that have occurred “in the wild” in customer networks. We have
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used their experience to generate a failure taxonomy that defines the set of failures that we

evaluate against.

While our approach shows promise, its efficacy relies on a set of underlying as-

sumptions:

1. Underlying failures are only exposed if the application trace and logs capture infor-

mation relevant to the failure. The more detailed those sources of data, the more

failures we can detect. We will show both failures observed by direct examination of

the trace, as well as failures inferred from the trace.

2. Traces and logs show only the effects of underlying failures, not the causes. Since

trace data reflects the application’s datapath, it is able to capture deviations from

known “good” behavior. While a valuable diagnostic tool, this differs from diag-

noses obtained by directly measuring the underlying cause of failure. As a concrete

example, an application trace might show that all traffic transiting a web load bal-

ancer is sent to only a single host. Direct underlying measurements might show that

the cause of this behavior is an incorrectly configured web load balancer.

3. The latency between an instance of a failure and its detection is a function of the

trace and log collection infrastructure. There is an inherent tradeoff between systems

that detect failures in real time, but require a large amount of overhead to do so,

and systems that have a lower impact on their network surroundings, but rely on

techniques like buffering and compression, both of which increase the latency to

failure detection.
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4. Our approach relies on modifying applications to add tracing instrumentation, as well

as installing trace collection software on each instrumented host in the system.

5.3 Case Study: IEEE 802.1X

We choose to examine 802.1X because of its increasing importance in enterprise

environments. However, due to its structure and composition, tracing 802.1X is challeng-

ing. This challenge arises from the need to modify different binary protocols to carry meta-

data, as well as different software modifications to propagate this metadata through the

802.1X components, which are provided by different vendors.

In the remainder of this chapter, we will show how to leverage those traces to

also detect and diagnose failures in the network surrounding the 802.1X distributed appli-

cation application-layer traces to infer underlying failures is the second We now examine

the motivations, and challenges, of adding trace support to 802.1X.

5.3.1 Improving 802.1X observability: Motivations and challenges

We now apply our approach to the IEEE 802.1X [1] network authentication sys-

tem, an authentication protocol used by edge network devices to authenticate end-users.

Although not a traditional application, 802.1X is a distributed system consisting of mul-

tiple tiers of software and hardware. As more and more critical business applications are

made available on-line, controlling access to network resources ensures that these applica-

tions remain secure. In health care and financial networks, network access must be logged

and auditable, providing a trail that leads back to registered network users. Thus, because
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of its central importance to network administration, monitoring and tracing 802.1X is an

important goal for network operators. Improved observability into 802.1X enables:

1. Detecting flash traffic and denial-of-service attacks on the authentication infrastruc-

ture

2. Detecting and diagnosing errors that prevent users from properly authenticating. For

example, failures in the network might prevent client requests from being properly

handled.

3. Improving the placement and provisioning of authentication components in the net-

work. As we will show in Section 5.3.2, 802.1X components must be properly pro-

visioned to handle expected, and sometimes unexpected, user loads.

Despite the importance of improving the observability of 802.1X, the addition of

trace support must overcome a set of challenges. First, the authentication infrastructure is

distributed for scalability and reliability purposes, and there is no single point for collecting

end-to-end traces of individual requests. Second, 802.1X is a framework that marries multi-

ple different protocols together, and as such, there is not an easy way to trace the composed

path. Since that path is made up of multiple underlying IP paths, tools like “traceroute”

are not usable for this purpose. Third, different 802.1X components are often in different

administrative domains. For example, the network devices enforcing access control are

typically part of the core infrastructure, whereas the databases and directories that contain

user information are part of the application space. Tracing across different administrative

domains can lead to problems of data privacy and access control. Fourth, single-vendor



94

solutions are unlikely to work in this area, since the components of 802.1X are typically

made by different vendors. Lastly, any trace collection infrastructure and protocol modifi-

cations to support tracing must be backwards compatible. However, as our network grows,

we would like to be able to take advantage of any trace functionality that is introduced.

5.3.2 802.1X operation

The complexity of an 802.1X deployment is not only driven by technical require-

ments, but also by business needs. In a typical deployment, a successful authentication

request involves the cooperation of at least four independent systems:

• Client: a device that requests network access. Common examples include laptops,

PDAs, and shared desktops.

• Authenticator: a device that provides network access; it also denies access to a

network at the data link layer before authentication is complete or if authentication

fails. Most 802.1X authenticators are wireless access points, wired Ethernet switches,

or VPN concentrators.

• Authentication server: a server responsible for deciding if the client should be al-

lowed on the secured network. It receives credentials from the client via the authenti-

cator and collects other information about the client from identity stores as described

below. It then uses authentication and identity information to make a decision, which

is returned to the authenticator. Note that the decision and the enforcement of that

decision are implemented on independent systems to avoid maintaining an organiza-

tion’s access policy on every authenticator in a potentially large and diverse network.
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Figure 5.2: Message Sequence Chart (MSC) describing the structure of the 802.1X
protocol.
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Figure 5.3: The format of a modified RADIUS packet, which includes an X-Trace VSA.

In 802.1X, the authentication server is a Remote Authentication Dial In User Service

(RADIUS) [100] server. RADIUS was historically used by modem dial-in banks to

centralize authentication data. The RADIUS protocol uses UDP as an underlying

transport. Figure 5.3 outlines the RADIUS protocol data unit.

• Identity store: a service that provides further information about the identity of an

organization’s users or devices. The identity information can take the form of cre-

dentials, group membership, or user attributes. Most identity stores used in 802.1X

are LDAP [127] directories, but Kerberos, token servers, NIS, and various databases

are also occasionally used.

To further complicate matters, both the authentication servers and identity stores

are often implemented as redundant pairs because of the critical uptime requirements for

network access. Also, multiple types of identity stores can be used to make a single access

decision: for example, one store may contain user attributes while another may contain

credentials.

To better understand the network path of a typical 802.1X authentication system,

and thereby what a typical trace of 802.1X will look like, it is instructive to step through a

simple access request:
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1. After the Client and Authenticator establish a physical connection, they begin a con-

versation using the Extensible Authentication Protocol (EAP) [17]. This conversation

occurs directly over the link layer because the two systems are directly connected and

the client has not yet been provisioned on the network to which it is requesting access.

2. The Authenticator forwards the EAP conversation to the Authentication Server

over RADIUS. The actual method of authentication contained inside the EAP tun-

nel is unimportant to the Authenticator: it continues to forward EAP messages be-

tween the Client and the Authentication Server until the server makes a decision.

Common EAP authentication algorithms include shared key, one-time password, and

mutual authentication using SSL certificates. [Event A]

3. The Authentication Server sends a request for credential validation to an Identity

Store. In the common case of shared key authentication, a it will simply perform an

LDAP bind. [Event B]

4. The Identity Store receives the request from the Authentication Server. [Event C]

5. The Identity Store responds to the Authentication Server with a success or failure

result. [Event D]

(Steps 3 and 4 may be repeated if the server must collect further user data from

identity stores.)

6. The Authentication Server makes a decision and sends it in the form of a RADIUS

accept or reject packet to the Authenticator. [Event E]

7. The Authenticator receives the success or failure response. [Event F]
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8. The Authenticator returns an EAP success or failure packet to the Client. In the

case of success, the Authenticator begins to forward non-802.1X traffic between the

Client and the secured network. [Not shown]

Our reliance on in-datapath tracing also allows us to trace the exact conditions

that the end-to-end request underwent. The alternative, separate trace requests, transits a

different end-to-end path, or measures different network phenomenon. Additionally, using

datapath tracing provides us with a very fine-grained trace, rather than a more aggregate

or summary view. However, our approach is not without its drawbacks. Datapath tracing

requires the insertion of trace metadata into protocol messages. Additionally, the software

must be modified to propagate this metadata along the path. Lastly, a certain volume of

generated traces must be collected and aggregated together for analysis. Fortunately, we

were able to overcome these challenges with minimal changes to the software running on

each machine. Additionally, the trace metadata encoding we use is backwards compatible

to legacy devices, reducing the barrier to introduction in production networks. In the discus-

sion at the end of this chapter, we present several recommendations to protocol designers

on designing more observable and traceable distributed, composed protocols.

5.4 Design

So far we have described the 802.1X network authentication protocol–a complex,

distributed application running within an enterprise network. This application relies on a

variety of underlying network services, including network switches, RADIUS servers, and

LDAP identity providers. We seek to identity failures within 802.1X components them-
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selves, as well as failures due to the dynamics of the surrounding network environment.

These dynamics result from underlying failures, misconfigurations, and co-located appli-

cations, which share the same components as 802.1X itself. We now turn our attention to

extending 802.1X to gather instrumentation data about its execution behavior. Our primary

tool in this effort is path-based tracing, which we now discuss after defining the problem

that we want it to solve.

5.4.1 Problem statement

Using an application trace of an 802.1X deployment, detect the presence of, and

likely cause of, faults in underlying network and network services.

5.4.2 Approach

Our approach is based on an observe-analyze-act approach. We first instrument

the application to provide data on its distributed execution behavior. We then analyze this

data, inferring the root causes of observed failures. Lastly, we act by notifying the operator

of our findings. This approach consists of the following discrete steps:

1. Collect application traces using X-Trace

2. Determine when a fault is occurring

3. Localize the fault

4. Determine the root cause, if possible

5. Report problem and root cause (if known) to network operator
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We now consider each of these steps in detail.

5.4.3 Collecting application traces using X-Trace

Our general approach to collecting application traces from distributed systems

is outlined in the X-Trace Chapter and previous work [48]. In this effort, we deployed

X-Trace in a testbed environment, and not in Identity Engine’s product. However, their

product has several features that facilitates integration with X-Trace. First, the product logs

each 802.1X event in local storage using Syslog [84]. These logs are periodically (typically

once an hour) collected and stored on a central server. By logging X-Trace reports to syslog,

no additional daemon processes need to run on the node to handle reports, and the generated

reports could easily be extracted at the central server. Second, their product includes a set

of interfaces and operators control panels for managing and updating configuration state.

X-Trace configuration could piggyback on that interface, obviating the need for a two-way

control plane between the X-Trace backend and X-Trace itself. Lastly, the user interface

tools provided by Identity Engines would be a natural site for visualizing X-Trace graphs

and trace data.

5.4.4 Fault occurrence detection

In a large production network, determining when faults occur is non-trivial. In

general, we can leverage three sources of information for indications of network service

faults. First, we can use application-specific semantics to understand which parts of the

datapath trace are faults. For example, failing over from one service to another might indi-

cate a fault in the service. Second, we can look for patterns in well-known protocols as a
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signal of error. For TCP, packet retransmissions indicate a network error. In HTTP, there are

certain well-known error codes, e.g., “404” and “500”, that indicate missing documents or

server-side errors. Lastly, we can make use of user-initiated trouble tickets and complaints

to determine erroneous conditions.

5.4.5 Fault localization

The task of fault localization is important, since we wish to present a coherent set

of information to the network operators. Thus, if a single node in the distributed service

were to cause faults in the process of servicing multiple clients, we would prefer to inform

the operator about a service failure rather than issue multiple alerts. Fault localization is a

very difficult problem in general, and many attempts have been made in specific contexts.

In this work, we assume that each end-to-end authentication operation suffers from at most

one fault at a time. If this assumption does not hold, then our system diagnoses the first fault

temporally along the datapath. This is a common assumption in distributed system design.

Once that is fixed, and operations resumed, then it detects the next subsequent fault. This is

due to the nature of our diagnosis, which is based on application traces, which only tell us

information about components the application interacts with.

5.4.6 Individual root cause determination

Once we have detected a fault, we try to determine its root cause. Depending

on the root cause, this involves analyzing the structure of a particular X-Trace trace or

analyzing a set of multiple traces. For well-known protocols, we look for error conditions

based on knowledge of the protocol semantics. To identify graph structures that indicate
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faults in the network service itself, we must know more about how those errors appear in

the trace.

5.4.7 Reporting faults to the operator

Lastly, we alert the operator with our findings. This alert is not delivered in real-

time, but rather is delivered to the operator within minutes of its presence. The information

that we provide includes the presence of the fault, localized to a particular part of the net-

work, as well as any root causes that we were able to determine. Since our analysis is based

on X-Trace graphs, we also return a handle to that graph to the operator. This provides

a detailed history of the execution behavior of the misbehaving application, and a refer-

ence to this graph can accompany any bug reports that are issued by the network operators.

This ability to refer to an execution graph by its handle provides a powerful mechanism for

communicating the circumstances contributing to the failure.

5.5 Implementation

In this section, we describe how we captured our approach in a deployed network

authentication system. We begin by describing how we were able to add X-Trace support

to the 802.1X protocol.

5.5.1 Integrating X-Trace into 802.1X

Application tracing fits neatly on top of the 802.1X architecture: the X-Trace task

represents a single authentication request. We chose not to include X-Trace metadata in the
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EAP protocol, which spans the network between client and authenticator, since we did not

want to modify end-system devices. EAP is very extensible, and so including additional

metadata is straightforward. One intriguing possibility is including the X-Trace metadata

info only on the return response from the authenticator to the end-system. For those clients

that support X-Trace, they would be able to provide network operators with the trace ID of

any improperly rejected access attempts, speeding up the process of failure diagnosis. In

this work, we did not implement this response trace token functionality.

The two protocols that we modified are RADIUS and LDAP. RADIUS packets

consist of a small set of operations, followed by a variable number of attributes. We encoded

the metadata in a standardized, but unused, Vendor-specific Attribute (VSA). Depending on

the size of unique X-Trace task ID used, this custom VSA is between 11 and 30 bytes long.

For LDAP commands, we included the X-Trace metadata in an LDAP Control. This control

was not marked as “critical”, meaning that legacy LDAP servers can safely ignore the trace

request. We used a custom Object Identifier (OID) taken from the OID space allocated

to the X-Trace project (1.3.6.1.4.1.4995.1000.2). Therefore, the X-Trace task begins and

ends with the authenticator. An example trace of an authentication request produced by

X-Trace is shown in Figure 5.4. This figure was generated by the X-Trace tool using the

GraphViz[54] library.

We limited our instrumentation to the set of components provided as part of the

Identity Engines network appliance product. This reflects a realistic environment in which

a vendor has complete control over a subset of devices in the network, but no access to the

others. From the vantage point of such a vendor, they can only observe traffic transiting
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their own components, and so must infer the behavior of the rest of the network.

Fault Occurrence Detection

When authorized clients attach to the network and invoke the 802.1X protocol

against an authenticator, one of several outcomes are possible: 1) The client is correctly

authorized or properly denied, 2) The client is authorized, but after an excessive time delay,

3) The client is improperly rejected, or 4) The client times out after waiting for the authenti-

cator, which does not return a response. Client timeout issues can be detected by polling the

authenticator (for example, via SNMP). The problem we face is detecting faults elsewhere

in the end-to-end 802.1X datapath.

We determined the presence of faults primarily by using authenticator and authen-

tication server timeouts. We needed to use both timeouts since RADIUS servers typically

have a “fail-safe” policy that rejects clients when they timeout waiting for the decision

points to return a response. In this case, the authenticator receives a rejection, and does not

generate a timeout. Additionally, we used timing information to determine when compo-

nents of the service were running too slowly, such as overloaded LDAP services. Lastly, we

determined faults by looking for X-Trace datapath graphs that did not match the six-event

structure exhibited by successful traces.

Fault Localization

In our system, we use a simple approach to fault localization that leverages the

typically hierarchical geographic distribution of enforcements, decision, and data points

throughout the network. We group faults both by time and by network location. We start by
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Figure 5.4: X-Trace graph of a typical 802.1X authentication operation. The authenticator is
represented by the “JRadius” nodes, the authentication server by the “OpenRadius” nodes,
and the identity store by the “Sun LDAP” nodes. Each server appears twice: once on the
forward path (the three nodes on the left side of the graph), and once on the reverse path
(the three nodes on the right side). The solid lines represent the path the messages took,
while the dotted line represents the delay at that component.
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Figure 5.5: Root cause determination.

choosing a time window, T , of approximately five minutes. If there is only one authenticator

or RADIUS fault during T , we report that fault as an independent event. If there are multiple

authenticator faults during time T , then we group those faults that share the same RADIUS

server and root cause. Likewise, we group multiple RADIUS servers that occur during T if

they share the same LDAP server and root cause.

Individual Root Cause Determination

Figure 5.5 represents the set of root causes to those that we can detect (or, we

indicate that we “don’t know” the root cause). We now consider each step in our approach

in turn.

1. Misconfigured Timeouts We infer that a device has a misconfigured timeout when

it times out before it would have otherwise received information needed to properly make

an authentication determination. With X-Trace, misconfigured timeouts can be detected by

looking for an authenticator that times out at time T1, only to have a RADIUS server issue a
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report at T2 > T1. Likewise, a RADIUS server with a misconfigured timeout is detected by

looking for an LDAP server that issues reports shortly after the RADIUS server times out.

2. Authenticator to RADIUS Packet Loss Since the RADIUS protocol resides on UDP,

packet loss between the authenticator and the RADIUS server results in the loss of the entire

RADIUS request. This type of packet loss can be detected by looking for X-Trace paths

in which there is an authenticator report but no corresponding RADIUS report. To detect

loss on the reverse path, we look for X-Trace paths in which the RADIUS server sends

a response to the authenticator at time T1, only to have the authenticator time out at time

T2 > T1 + δ, where δ is greater than the one-way latency between the RADIUS server and

the authenticator.

3. RADIUS Overload Delay in the RADIUS server can result from background tasks that

induce resource contention (for example, of a disk), resulting in a degradation of service

quality. I/O contention is not related to a specific service path, but it impacts paths that

transit that RADIUS server. Regardless of the underlying cause, an overloaded RADIUS

server would be expected to reject RADIUS requests during overload. This can be achieved

by managing the length and contents of an incoming work queue. When the server is

overloaded, using any internal metric that might be server-specific, it would find RADIUS

requests in its queue and remove them. By additionally issuing an X-Trace report whenever

a RADIUS request is evicted from the incoming work queue, we can provide a deterministic

signal that a failure in the 802.1X service path is due to overload at the RADIUS server.

Determining if a RADIUS server is overloaded requires looking for an “overload” report
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along the path.

4. Poor RADIUS to LDAP Connectivity For traffic using TCP, packet loss manifests

itself as a decrease in throughput between the RADIUS server and LDAP server, as well

as an increase in the variability and burstiness of that throughput [81, 78]. In general,

background flash traffic, packet loss, switch failures, and network device firmware bugs

can result in increases in end-to-end latency variance resulting in connection degradation.

TCP was designed to accommodate increases in variance, however datacenters are tightly

controlled and provisioned environments, and thus large variation in TCP performance are

engineered to be uncommon. Factors such as lost packets which affect this performance

should be minimized in datacenter environments. The heuristic of considering sudden in-

creases in the variance of query latency as signals of packet loss is simple, but overly course.

We do not add X-Trace instrumentation to the transport layer, and so are unable to defini-

tively pinpoint TCP performance degradation due to packet loss. This limitation of X-Trace

is discussed in Section 5.6.5.

5. LDAP Overload The performance of LDAP under load is a factor of the number

of queries and bind operations it receives per unit time, the mixture of query types, and

the quantity and organization of its data store, among other factors [129]. Thus, as the

load on the LDAP server increases, we would expect that the latency of LDAP operations

would increase as well. However, unlike some other network services such as HTTP, with

user-perceived timing requirements, in this application LDAP must respond within a fixed

amount of time. Thus, we apply a threshold test to the observed LDAP query latency,
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determining an error condition whenever the query latency exceeds a predetermined value,

in our case, 100 ms. In our experience, any deployment with latency greater than this

value is exhibiting an error condition. Refining this threshold test to a more versatile way

of differentiating between the “normal” increase in latency and “abnormal” increases in

latency due to faults is the subject of the next chapter.

6. Firewall Interference Network operators often put LDAP servers, which are consid-

ered “application” layer technology, in a different part of the network than the core network

infrastructure. Thus, it is sometimes the case that LDAP requests from RADIUS servers

have to transit a firewall before they reach the identity store. Network operators frequently

update firewall rules as the network grows, new applications are deployed, and as outside

connectivity changes. It is possible that a change to the firewall configuration can inadver-

tently interrupt the connectivity between the RADIUS server and the LDAP server. Since

the RADIUS server cannot access the identity data it needs, users are unable to gain access

to the network. Since X-Trace can optionally extend to the network layer, it is possible to

directly detect loss due to firewalls.

Analysis: Identifying Root Causes

Following our observe-analyze-act approach, we have shown how to use X-Trace

to collect graphs representing individual authentication execution histories. We now de-

scribe how to analyze these graphs. The data structure we use is a decision table, shown in

Figure 5.6. The top portion of the table defines an exhaustive set of conditions that occur in

a given graph. The bottom portion of the graph encapsulates root cause diagnoses.
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We begin by computing a vector v based on the presence of nodes in the X-Trace

graph. The authenticator start and end nodes are labeled A and A’, the RADIUS server start

and end nodes are labeled B and B’, and the LDAP server start and end nodes are C and C’.

RADIUS overload reports are identified as B”. If timeouts are present in the graph, they are

also captured in vector v. To use the decision table, we match v with its matching column

in the top half of the table. We identify the set of diagnoses based on any “X” values in the

lower half of the table. Note that a given set of conditions can lead to multiple diagnoses,

in which case we notify the operator of multiple possible root causes.

Reporting Faults to the Operator

Currently in our system, reports of faults are simply determined statically from

the X-Trace datapath traces using our X-Trace tools. There are many industrial tools for

detecting and managing failures, and the output of our X-Trace analysis could be integrated

into these systems to give network operators visibility into the failures in their network.

5.6 Evaluation

Now that we have covered the approach of our use case, and outlined the imple-

mentation of this approach in a deployed 802.1X software system, we now describe our

evaluation of this system. We begin by presenting our plan for evaluation.
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C
on

di
tio

ns

A present 0 1 1 1 1 1 1 1 1 1 1 1
B present 0 0 0 1 1 1 1 1 1 1 1 1
C present 0 0 0 0 0 0 1 1 1 1 1 0
C’ present 0 0 0 0 0 0 1 1 1 1 1 1
B’ present 0 0 0 0 1 1 1 1 1 1 1 0
A’ present 0 1 1 1 1 1 1 1 1 1 1 1
A . . . A’ timeout 0 1 0 1 0 0 1 0 0 0
B . . . B’ timeout 0 0 1 0 0 1 0 1
C . . . C’ timeout 0 0 0 1 0
B” present 0 0 0 0 0 0 0 0 0 0 0 1

D
ia

gn
os

is

Success X X X
PHY failure X
Client to Auth. pkt loss X
General client failure X X
Misconfigured auth. X X
Auth. to Radius pkt loss * X
Radius crash * X
Misconfigured Radius server X X X
Radius to LDAP pkt loss * X
Misconfig. Auth. timeout * X
Misconfig. Radius timeout * X
LDAP Overload * X
Radius Overload * X
Firewall Interference * X X X

Figure 5.6: We analyze individual X-Trace graphs using this decision table. The top portion
of the table defines an exhaustive set of conditions that occur in a given graph. The bottom
portion of the graph encapsulates root cause diagnoses. As an example, given a graph G,
we compute a vector of boolean values based on each of the conditions listed (e.g., “B
present”). We find the column matching this vector, and identify the set of diagnoses based
on the “X” values in that column. Note that a given set of conditions can lead to multiple
diagnoses, in which case we notify the operator of multiple possible root causes.
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5.6.1 Evaluation plan

We evaluate our approach by setting up a complete network authentication envi-

ronment within the DETER testbed [131]. This configurable platform allowed us to deploy

our modified software in a controlled setting without any background traffic or contention

for network resources. We could bring links up and down and modify link delay or loss

rates. We utilize widely available, open-source software components for each tier of the

802.1X setup, modified to support X-Trace. Within this environment, clients are emulated

by dedicated RADIUS load generators. We chose this evaluation approach since within the

testbed, we were able to recreate each of the conditions experienced in customer deploy-

ments through fault injection, since DETER provides fine-grained control of network and

server resources. The advantage of this approach is two-fold. First, we were able to create

individual root causes on demand, and second, we were able to cover the entire set of con-

ditions that we wished to test. In fact, although failures in the infrastructure have significant

effects, they are typically rare events.

5.6.2 Experimental setup

We deployed the X-Trace framework API [134] into three open-source 802.1X

components: the JRadius load generator tool [70], a RADIUS client written in Java that we

used to emulate the authenticators, OpenRadius [91], a modular RADIUS server, and the

Sun Directory Server 5.2 [120], which is an LDAP server we used as the identity store. We

modified JRadius to include X-Trace metadata in an unused but standardized Cisco VSA.

We modified OpenRadius to pass this metadata to the LDAP service via an LDAP control
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in an X-Trace OID. To support X-Trace in the LDAP server, we wrote pre-operation and

post-operation plug-ins that were loaded at run-time.

To explore overload in RADIUS servers, we modified the OpenRadius software

to include multiple work queues. This allowed us to configure OpenRadius to selectively

drop excessive work from those queues to emulate the effect of overload due to disk I/O

contention. In our implementation, the choice to drop requests was statically determined

by our code, rather than from resource contention or true overload. Similarly to emulate

LDAP overload and the resulting increase in LDAP query latency, we modified the LDAP

pre-operation plug-in to delay requests by a configurable amount, which enabled a direct

injection of latency, rather than creating conditions that indirectly resulted in increased

query latency.

5.6.3 Results

Root Cause Test 1: Miscalibrated Timeout Value Figure 5.7 shows the result of a client

timeout resulting from excessive delay in the LDAP component of the path that was arti-

ficially injected via an LDAP delay plug-in. At time t = 3.012, the OpenRadius server

completes its operation and returns a result to the client. However at t = 2.034, the client

signified a timeout and instituted its default policy that is to reject the client.

Root Cause Test 2: Authenticator-Side Packet Loss If a packet is lost on the forward

path, the RADIUS server does not receive it, so only the client knows that the request

was issued. Thus, we see in the trace a set of timeouts issued by the client, without any

other datapath elements. Figure 5.8 shows the result of packet loss on the reverse path, in
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Figure 5.7: Root cause test 1: Miscalibrated Timeout Values. At t = 2.034 the client times
out, only to have the data it needed arrive at time t = 3.012. Note that the timestamps on dif-
ferent machines are out of sync with each other. In this work, all latency measurements are
considered from the point of view of a single machine, and we never compare timestamps
across different machines.
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Figure 5.8: Root cause test 2: Authenticator-Side Packet Loss (Reverse path). Packets are
lost on the reverse path, meaning that the entire datapath is transited, excepting for the final
link between the RADIUS server and the authenticator. Since the authenticator does not
receive this response, it retries, and eventually times out.
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Label: PREOP
JRadius
ts: 0.596

Label: TIMEOUT
JRadius
ts: 5.606

5.010s

Label: TIMEOUT
JRadius

ts: 10.610

10.014s

Label: TIMEOUT
JRadius

ts: 15.67315.077s

Label: PREOP
OpenRadius-0

ts: 0.000

Label: PREOP
OpenRadius-0

ts: 5.002

4.406s

Label: PREOP
OpenRadius-0

ts: 10.066

9.470s

Label: OVERLOAD_DROP
OpenRadius-0

ts: 0.000

Label: OVERLOAD_DROP
OpenRadius-0

ts: 5.002

Label: OVERLOAD_DROP
OpenRadius-0

ts: 10.066

Figure 5.9: Root cause test 3: Detecting RADIUS server overload. Since the modified RA-
DIUS server signals overload via X-Trace reports, we can deterministically detect overload
by looking for “OVERLOAD DROP” events.

which the client successfully invokes processing later in the path but is unable to receive

the final response. Thus, it times out and reissues the request. This figure shows three

complete protocol exchanges, but since the client did not receive the responses, it issued

three timeouts.

Root Cause Test 3: RADIUS Overload We modified the OpenRadius server so that in-

coming requests are sent to one of several work queues. In the event that the server becomes

overloaded, work from these queues is dropped. We modified this policy to examine the
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request for X-Trace metadata VSAs, issuing reports if present. The result is presented in

Figure 5.9.

Root Cause Test 4: Poor RADIUS to LDAP Connectivity Poor connectivity between

the RADIUS server and LDAP server is difficult to measure directly since the underlying

TCP channel masks packet drops and other failures from the application. In this work we

did not add X-Trace support to the transport protocol, and so we can only measure transport

performance indirectly through the authentication query behavior. In general, failures hin-

der TCP performance, and we can infer connectivity problems by examining the end-to-end

query latency. Since datacenter networks should have very low network latency variability,

we would expect sudden increases in query latency variance to indicate underlying failures.

This inability to peer below the application into the transport is a limitation of the X-Trace

system, and one that we discuss in the section on limitations at the end of this chapter.

Root Cause Test 5: LDAP Overload Lastly, we consider the effect of increased LDAP

latency, which is detected by measuring the time between reports from the LDAP pre-

operation and post-operation plugins. In this case, we applied a simple threshold of t = 0.1s

to detect excessively long LDAP latencies. The result is shown in Figure 5.10, in which

the edge between the LDAP pre-op and post-op plugins indicates a latency greater than

0.1s. When making these timing measurements, we only compare times within one server

machine. Despite time synchronization infrastructure, machines within datacenters exhibit

enough clock skew to prevent cross-machine time comparisons. In our work, we only

calculate latencies by comparing timestamps from a single network location.
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Figure 5.10: Root cause test 5: Slow LDAP performance. This can easily be detected by
examining the edge labeled ’0.152s’. Note that this latency measurement is accurate, since
the LDAP PREOP and POSTOP events occurred on the same machine, and so clock drift
is not a problem.
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Radius Client
Label: PREOP

OpenRadius-0.1.0
Label: PREOP

Radius Client
Label: POSTOP

Auth-Status: Reject

OpenRadius-0.1.0
Label: POSTOP

Firewall
Label: DROP

Figure 5.11: Root cause test 6: Firewall Interference. In this figure the firewall was not
instrumented with X-Trace, and so the firewall report was emulated.

Root Cause Test 6: Firewall Interference Testing for the presence of interstitial fire-

walls between 802.1X components is similar to identifying poor RADIUS to LDAP con-

nectivity, since in both cases we must either directly instrument the network layer to iden-

tify firewall interference, or infer that interference from the application layer. In the firewall

case, inferring the firewall from the application layer is more reasonable, since we can

extract logs from the firewall itself and correlate recorded packet drops with any partial

X-Trace paths. In the poor connectivity case, the routers and switches along the path did

not record packet drops, and the state of the TCP protocol was confined to the transport

processes in both ends of the connection.

Figure 5.11 illustrates a trace that includes a report from the firewall that a packet

drop was performed. In this experiment we were not able to add X-Trace support to the fire-

wall, and so we emulated the report that the firewall would have produced. While direct in-

strumentation of middleboxes with X-Trace would produce a similar trace, this experiment

demonstrates the utility of introducing trace elements extracted from other sources, in this

case from the firewall logs. We hope that as an open standard, X-Trace instrumentation will
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make its way into middleboxes and network devices, or even intrusion detection software

such as the open-source BRO system[97]. Already we have seen X-Trace’s adoption into

three different Remote Procedure Call (RPC) middleware layers: Facebook’s Thrift multi-

protocol middleware, the lib-async library, and the Hadoop-Map/Reduce RPC system. The

ease of introducing X-Trace into these packages gives us hope that some middleware appli-

ances will include X-Trace as well.

5.6.4 Feasibility

Web 2.0 datacenter applications are in a state of constant flux, and new middle-

ware platforms, languages (e.g., Ruby), and software components are being introduced to

large-scale distributed systems. For this reason, we consider these rapidly changing en-

vironments beneficial for introducing end-to-end application trace generation and collec-

tion to commercial systems. In the case of 802.1X, there is an industry consortium, the

OpenSEA Alliance [92], centered around standardizing cross-platform supplicants. Thus

we would like to influence this effort to include datapath trace functionality into that stan-

dard.

In general, adding the X-Trace framework to the software running in the network

and annotating protocol exchanges with X-Trace metadata incurs overhead in several ways.

First, the process of changing the software takes some time. To modify the open-source

RADIUS client, server, and LDAP servers took approximately two student-days in total.

Since then, we have improved the interface to X-Trace to make this process easier. Second,

imposing trace operations on the datapath increases the end-to-end latency, which decreases

total throughput. The additional processing required to propagate and log the trace data
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from the X-Trace API was minimal, amounting to about 30 microseconds per operation

(meaning each component could theoretically log about 30,000 events per thread per second

on a dual-core 3 GHz server. In terms of network overhead, each network message includes

between 9 and 30 bytes of overhead. However, given that 802.1X is a control-plane protocol

that is infrequently invoked (depending on the configuration, once every 10 to 60 minutes

per client), this additional overhead is minimal.

The most significant source of overhead was collecting the trace records from

each of the nodes. Collecting these records is an out-of-band operation, so we batched the

reports and applied compression to reduce the load placed on the network. Using the code

that we instrumented, we experienced a compression factor of approximately 19:1, meaning

that a typical 802.1X exchange involving a client, RADIUS server, and one LDAP server

would generate 30 bytes of trace data per node for each 802.1X authentication operation.

We can predict the amount of trace data that would be generated in a large-scale deployment

of X-Trace over 802.1X by utilizing the CRAWDAD dataset collected from Dartmouth [77].

Based on the period of highest demand during that publically available trace (350 clients

per access point per hour) [59], this would result in 10.5 KBytes of trace data per hour per

access point.

5.6.5 Limitations

The ability for X-Trace to indicate underlying network failures is only possible if

those failures manifest themselves in the traces. In this chapter, we have focused on infer-

ring underlying failures from application traces. As such, there are network phenomenon

that are difficult or impossible to detect (such as the effect of packet loss on TCP flows, or
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the presence of unmodified middleboxes). In the next chapter, we directly instrument the

network itself, and present a methodology for leveraging that data to identify performance

bottlenecks.

5.7 Conclusions

We have found that by examining end-to-end application traces from the 802.1X

protocol, we were able to detect and diagnose both correctness and performance faults in

underlying network components. This is a good alternative to more traditional network

monitoring approaches for environments where access to the network is limited, including

virtualized datacenters, as well as differing administrative boundaries between network op-

erators and application developers. We show that our approach is feasible, and are actively

working to extend the set of failures and their root causes that we can detect. In the next

chapter, we extend our analysis technique to identify performance failures in distributed

systems. We carry out this analysis both in dedicated server platforms, as well as shared

“virtual” datacenters which potentially exhibit higher performance variance than dedicated

environments. Reasoning about the expected performance of applications in these envi-

ronments is key to making effective use of them as an on-demand application deployment

resource.
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Chapter 6

TraceOn: Scalable trace graph

traversal

So far in this dissertation we have presented X-Trace, a cross-layer, cross applica-

tion trace tool. We have presented its design and implementation, and evaluated that design

in a variety of real-world scenarios. In this chapter, we present scalability improvements

to X-Trace to enable users to process large-scale traces with millions of elements in them.

We begin by motivating the need for such scalability, and then we describe the TraceOn

design and implementation. Lastly, we evaluate our design against a deployed application

in a virtual datacenter.

6.1 Motivation

Our experience has shown that tracing is a powerful way to gain visibility into

the actions and execution of distributed system. As systems grow increasingly large, this
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visibility is critical to building reliable and dependable software. By utilizing the output of

X-Trace, network operators and software developers can gain insight into the presence of,

and hopefully the cause of, unexpected behavior and erroneous conditions. As we apply

tracing to larger and larger problems, the size of the trace graph increases, leading to longer

processing time and larger resource requirements for processing those graphs. For smaller

traces, building the tree in memory for each ad-hoc query has sufficed. The current approach

of in-core trace reconstruction, based on the algorithm developed by Rodrigo Fonseca, has

been successful for these cases, but as our ability to peer into larger systems becomes more

common, we will need to scale to large traces. To analyze long-term data, or data from

complex operations, we need a more scalable solution.

The issue of scalability arises from two main sources. First, large traces can

result from big tasks, such as bulk database loads, web service initialization, or Hadoop

Map/Reduce jobs. Second, traces that are the result of many smaller tasks that are con-

ceptually part of the same operation (i.e., measuring S3 performance on EC2 over a two

week period) can grow very large as well. While partitioning graph reconstruction across

many nodes (e.g., with Map/Reduce) might be a viable alternative, in this work, we describe

an approach for single-system graph reconstruction. This single-system will likely benefit

multi-system approaches as well.

In addition to scalability limitations, the current approach to trace analysis is

carried out at the improper level of abstraction. Users wishing to write ad-hoc queries

against an X-Trace dataset must understand the format of reports, must extract components

of those reports to build graph vertices, and connect those vertices with edges. These graph
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reconstruction procedures must be written by each X-Trace user, which leads to bugs and

wasted effort. Graph reconstruction must be performed for each ad-hoc query, and so the

cost of that construction is not amortized across multiple queries.

To address these challenges, and to provide the X-Trace developer with a simpler,

easier to use, and more efficient interface to applying ad-hoc queries directly to the trace

graph, we present TraceOn. TraceOn is an API, runtime software system, and set of algo-

rithms that lets users access and analyze X-Trace graphs without having to refer to low level

Report constructs. The TraceOn API takes the form of an iterator into the graph that ad-

heres to two conditions. First, the iterator will visit either the next, or previous, event that is

causally related to the starting point. In the case of concurrent executions, the user will visit

one entire causal path before visiting the other branches of that concurrent region. Second,

the iterator will only traverse “real edges”, which represent direct causality. Indirect causal

edges, or “virtual” edges, may still be visited by the user, but the API and TraceOn runtime

are not optimized for those traversals. We will show that the real-edge iteration property is

appropriate for a wide variety of queries. TraceOn pre-processes traces so that iteration is

made as efficient as possible. As we will show in this chapter, appropriate preprocessing is

essential for supporting high-performance and scalable queries on the underlying data.

The main obstacle to accomplishing scalable trace processing on a single node is

the need to externalize, or move “out of the core”, the analysis algorithms. This process

involves making use of disk storage, in addition to physical memory, such that the inter-

mediate storage needed to carry out the algorithm does not exceed the amount of memory

allocated to the process, while at the same time minimizing I/O accesses to the disk, which
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is significantly slower than main memory. Balancing these tradeoffs requires careful atten-

tion to balancing the tradeoffs between the CPU, memory, the disk, and the amount of time

the algorithm takes.

The need to analyze and process very large graphs is not novel. Large web search

engines must process what are in effect graphs with billions of vertices. Algorithms that

process these graphs, such as PageRank[95], must be externalized due to their enormous

size. PageRank was designed for graphs much larger than those considered in this chapter.

The approach for PageRank-sized graphs have relied on very large clusters of computers

coupled with special programming paradigms such as Map/Reduce to handle the scalability.

These approaches, some of which are public, and some are industrial trade secrets, do not

satisfy our needs, since we require a system that a single user of X-Trace could use without

requiring a large computational cluster. In fact, since we only process graphs produced by

X-Trace, we can take advantage of their structure and our knowledge of the semantics of

the traces to customize and tailor our analysis algorithms to be more efficient and scalable

for the data they will process.

We evaluate the efficacy of our approach three ways. First, we show that the

API exported by TraceOn is expressive enough to capture a common use case of X-Trace,

namely identifying changes in the performance characteristics of a subset of the distributed

system over time. Second, we evaluate each phase of TraceOn using micro benchmarks

that determine their contribution to the entire end-to-end processing time. Third, we com-

pare our approach to in-memory approaches that have been used with success for smaller

datasets.
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Our evaluation is carried out in the context of a new distributed application that

we wrote and deployed in the Amazon Elastic Compute Cloud (EC2) virtual datacenter.

EC2 is a so-called “hardware as a service” system in which users can rent servers by the

hour, with pricing based on the capabilities of those servers. Using EC2 as a base, we built

an indexing and searching site for over 120,000 National Science Foundation (NSF) grants

awarded between 1990 and 2003. The NSF award database ran live on EC2 for seventeen

days, between April 6, 2008 and April 22, 2008, resulting in 58,750 X-Trace graphs totaling

12,053,884 unique events.

In this chapter, we first present the design of TraceOn, the algorithms used to

process trace graphs, and the external implementations of those algorithms. We also present

a paging and buffering memory manager we designed to efficiently externalize the stack

structure used to process the topological sorts needed by TraceOn. Then, in Section 6.5,

we present the design of the NSF award site, and then in Section 6.6, we evaluate the

TraceOn data flow along the three axes of expressibility, microbenchmarks, and comparison

to previous approaches. Lastly, we conclude by highlighting our experiences with TraceOn,

and present extensions to TraceOn that would improve its usefulness and ease of use.

To begin, in the next section we describe the high-level design of TraceOn.

6.2 Design

In the previous section, we outlined the need for the TraceOn system. TraceOn

must provide an easy-to-use API that users can use to traverse trace graphs without need-

ing to manipulate the low-level structure of individual reports. We begin this section by
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presenting the in-memory graph reconstruction algorithm. We then discuss the program-

ming model as experienced by the user. We then describe the operational model, which

puts TraceOn in perspective with the rest of the X-Trace infrastructure. This discussion

highlights how data is introduced to TraceOn, how that data is pre-processed to improve

efficiency, persisted to disk in optimized form, and finally how queries are executed against

the data. Lastly, the in-memory version of the X-Trace graph reconstruction procedure is

presented. In the next section, we describe how we externalize this procedure.

6.2.1 Graph reconstruction procedure

In this section, we present the algorithm used to reconstruct X-Trace task graphs

from individual reports. The foundation of TraceOn is this procedure, which recovers the

execution graph from the set of individual X-Trace Reports. Instances of this algorithm,

developed by Fonseca[49], have been implemented in Perl, Java, and Ruby. These imple-

mentations are in-core, relying exclusively on main memory for their storage requirements.

This algorithm takes as input the set of reports making up a unique task. The output is the

real-edge ordering of those reports It works as follows:

1. Load the set of reports making up task T into memory

2. Store these reports in a Dictionary data structure indexed on the report’s operation id

as the primary key

3. For each element e of the dictionary, identify the set of e’s parents by locating “Edge”

keys in e’s report.

4. For each parent of e, store the operation id of e in a child field.
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5. Identify the root of the tree, which is either identified by operation id 0 or is the only

report without any incoming “Edge” keys.

6. From the root, perform a depth first search, considering each node’s child edges in

arbitrary order. Keep track of the finishing time of each node in a dictionary data

structure, which is the time that each node is visited according to the depth first

search order.

7. Starting again at the root, perform a second depth first search. This time, consider

each node’s child edges in decreasing order of their finish times, according to the first

DFS.

8. Edges in the second DFS traversal are ordered according to the real-edge ordering,

whereas unvisited edges are virtual.

6.2.2 Programming model

The programming model as experienced by a TraceOn user has two main facets.

First, the user must initialize TraceOn by defining the scope of data to be processed. We call

this scope a dataset, and its definition an “input filter.” TraceOn operates in units of datasets,

and the input filter defines what data goes into those datasets. The most basic input filter is

simply a list of Task Ids. Another input filter is based on time, looking for any tasks active

during a provided time range. An interesting use case of the time-based input filter would

be analyzing all traces active during the past 10 minutes, or all traces active shortly before

a system crash or network event.

The second facet of the TraceOn programming model is the iterator it exports to
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each of its datasets. The user submits queries to TraceOn using this iterator. Query pro-

cessing is decoupled in time from initialization, and once the dataset is initialized, multiple

queries can be processed against that dataset. TraceOn’s iterator adheres to two properties:

the iterator property, and the real-edge property. The iterator property means that when it

is first created, it will point to the very first event in the system, that is, the event that is

not caused by any other events. Each subsequent access of the iterator causes it to refer to

the causally next event in the trace. The real-edge property means that edges in the trace

are visited in the direct causal ordering. Figure 6.1 shows the HTTP example trace from

Chapter 3. The highlighted edges are part of the real-edge path.

IP 
IP  

Router 
IP  

Router 
IP 

TCP 1 
Start 

TCP 1 
End 

IP 
IP  

Router 
IP 

TCP 2 
Start 

TCP 2 
End 

HTTP 
Proxy 

HTTP 
Server 

HTTP 
Client 

Figure 6.1: The “real edge” iterator visits edges along the direct causal route from source
to destination. In this HTTP example, the emphasized edges are part of the real edge path.

6.2.3 Operational model

During its operation, TraceOn must support the introduction and definition of

new datasets from input filters provided by the users. Additionally, it must export real-edge

iterators when queries are submitted against those datasets. When defining new datasets,

the reports needed for that definition are obtained directly from the X-Trace backend using
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its web service interface. Once the reports are downloaded into TraceOn, it pre-processes

them using what we call the TETRA algorithm, presented in the next section, resulting in an

optimized on-disk database. When a client connects to TraceOn to submit a query, a handle

to that on-disk database is accessed, and the iterator can return reports in the appropriate

order. TraceOn is implemented as a multi-threaded server, which allows it to process more

than one dataset at a time.

6.2.4 Graph reconstruction procedure

The foundation of TraceOn is the X-Trace graph reconstruction procedure, which

recovers the execution graph from the set of individual X-Trace Reports. Instances of this

algorithm, developed by Fonseca[49], have been implemented in Perl, Java, and Ruby.

These implementations are in-core, relying exclusively on main memory for their storage

requirements. This algorithm takes as input the set of reports making up a unique task. The

output is the real-edge ordering of those reports It works as follows:

1. Load the set of reports making up task T into memory

2. Store these reports in a Dictionary data structure indexed on the report’s operation id

as the primary key

3. For each element e of the dictionary, identify the set of e’s parents by locating “Edge”

keys in e’s report.

4. For each parent of e, store the operation id of e in a child field.

5. Identify the root of the tree, which is either identified by operation id 0 or is the only
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report without any incoming “Edge” keys.

6. From the root, perform a depth first search, considering each node’s child edges in

arbitrary order. Keep track of the finishing time of each node in a dictionary data

structure, which is the time that each node is visited according to the depth first

search order.

7. Starting again at the root, perform a second depth first search. This time, consider

each node’s child edges in decreasing order of their finish times, according to the first

DFS.

8. Edges in the second DFS traversal are ordered according to the real-edge ordering,

whereas unvisited edges are virtual.

6.3 TETRA: TraceOn External Trace Reconstruction Algorithm

We have introduced several motivations for abstracting queries from traces from

their underlying manifestation as individual reports. The API presented in the last sec-

tion represents a basic primitive that is useful in supporting sophisticated query processing

clients of TraceOn. In this section, we present the design of TETRA, or the TraceOn Ex-

ternal Trace Reconstruction Algorithm. The input to TETRA is the standard trace output

file generated by the X-Trace backend. TETRA processes this input file and generates a

pre-processed version of the trace that is persisted on disk in a layout optimized for our

exported API.

We will first present an overview of the flow of data through TETRA, and then
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present each stage of its operation in detail. In the next section, we discuss TETRA’s soft-

ware implementation, and after that, we evaluate it against several common query work-

loads.

6.3.1 Dataflow overview

Figure 6.2 outlines the flow of data through TETRA. Data enters the system

through one or more input trace files, which are generated by the X-Trace backend. The in-

put processing stage (Section 6.3.2) linearly scans the input file, extracting individual trace

reports. During this scan, three operations are performed for each report. First, an “offset

index” is built (Section 6.3.3) that keeps track of the location of each report within the input

file, indexed by its operation id. We do this to efficiently find the original reports and store

them in the database at the end of TETRA processing. Second, each report is examined

to determine if it is a “root” (Section 6.3.4). Roots are graph vertices that have no incom-

ing edges. Third, each incoming edge to each report is stored in an unsorted “child map”

(Section 6.3.5).

The child map, which is an adjacency list representation of the original graph, is

used to determine the set of causal children for each event in the trace. X-Trace reports

encode the set of causal parents of a given event, but not its causal children. To recon-

struct these children, we record the set of all parent edges in the trace, which are edges

connecting a report to one of its parents in the child map table. From this table, we build the

listChildren() function (Section 6.3.5). When provided with an event’s operation id,

listChildren() will use the child map to return a list of all causal children of that event.

This function serves as the primary input to the two topological sort operations, which we
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Figure 6.2: Dataflow description of the TETRA algorithm.
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now describe.

Two topological sort operations are performed on the graph by implementing two

depth first search, or DFS, operations (Sections 6.3.6 and 6.3.7). When the first depth first

search visits a node in the graph, it first visits all of its children in no particular order,

before finally visiting the node itself. The time that each node is visited is stored in Finish

Table 1. The second DFS operation likewise visits each node’s children before the node

itself. However, during the second DFS the children are visited in the reverse order of their

finishing times from the first DFS, as captured in Finish Table 1. This is the only difference

between DFS-1 and DFS-2. The order that nodes are visited during DFS-2 is stored in

Finish Table 2.

A database is created by laying out X-Trace reports on disk according to their

topological sort order, which is simply the reverse order of their finishing times, as captured

by Finish Table 2. To aid in finding the original reports, the offset index is used to avoid

repeated linear scans of the input file. This database can also encode a special header record

that includes metadata about the dataset. The end result is a disk-based, persisted database

in which graph nodes are laid out according to their eventual access order when evaluating

X-Trace queries. We now explore each phase of TETRA in detail. Then, in the next section,

we will describe its implementation in software.

6.3.2 Input processing

The first phase of TETRA is extracting X-Trace reports from the input files pro-

vided by the backend server. These files are standard text files, in which reports are stored

sequentially, separated by one or more empty lines. Each report is a variable length record
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of key-value pairs. To process the input file, the input processor must scan the file, ex-

tracting each report. For each extracted report, its X-Trace metadata and the list of parent

pointers must be recovered. Because the reports are not aligned within the file, we use a

regular expression, Rreport to find the start and end of each report. Within that region, we

use a regular expression Rmetadata to extract the metadata, and another Rparent to find each

parent pointer. Thus, the number of regular expression evaluations for a trace representing

the graph G = (E,V ) is:

Expression Num. Evaluations
Rreport O(|V |)
Rmetadata O(|V |)
Rparent O(|E|)

For the regular expression classes to work, the input file must be in the UTF-

16[60] character set, which is a precondition for TraceOn. Common system utilities can

easily convert text files into UTF-16.

6.3.3 Offset index construction

For each report in the input processing phase, the Rreport regular expression iden-

tifies its starting and ending offset within the input file. We cache these offsets into an offset

index, so that we can easily extract specific reports from the input file during later phases

of TETRA. The index is simply a binary file of records of the form shown in Figure 6.3.

Before using this index, we first sort it, which is an O(N logN) running time operation.

After sorting, we can search for records in it in O(logN) time.
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0 1 2 3 4 5 6 7 8 9 10 11

Report Operation ID 1 Offset (in bytes)Report Operation ID 1 Offset (in bytes)

Report Operation ID 2 Offset (in bytes)

Report Operation ID 3 Offset (in bytes)

Figure 6.3: Field format for the offset index. Each record consists of an 8-byte operation id
followed by a 4-byte length representing the offset into the original input file.

6.3.4 Root extraction

TraceOn operates at the granularity of a Dataset, which might consist of multiple

individual traces, each with its own unique TaskID. Thus, a single dataset might consist of

a forest of individual trace graphs. To perform the depth first searches later in the TETRA

algorithm, we must start the roots of each of these graphs. During input trace processing,

we look for nodes that do not have any causal parent edges (i.e., those reports that fail to

match the Rparent regular expression). The roots are stored in a simple in-memory array.

6.3.5 Child map creation and listChildren()

Each X-Trace report, and thus each vertex in our trace graph, stores a list of its

causal parents. However, to perform the topological sort operation, we need each node’s

list of children. Inverting the parent pointers into child pointers requires building an inverse

index, which we call the child map. To build the child map, we store each parent pointer

sequentially in a file in the same order they appear in the input file. For a node N with M

parents, we construct M tuples of the form < OPIDP,OPIDN >, for each parent P of N.

For a trace graph G = (E,V ), the final child map will consist of |E| tuples, one for each

edge in the graph.

Once the graph is formed, we then sort it on the parent operation id column. For
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typical input an efficient comparison sort takes O(N logN) time. With the sorted child map,

we define a function listChildren() that, given a node’s operation id, returns the list of

operation ids corresponding to that node’s causal children. To find the children of a node

with operation id x, the function works as follows. First, we perform a binary search on the

sorted child map, looking for the first x in the first column, the parent’s operation id. If such

an entry is found, we then scan forward through the child map, looking for records with the

parent operation id of x. For all such records, we accumulate entries in the second column

that correspond to the children’s operation ids. When we have exhausted all entries with

parent ids of x, we return the accumulated list of children.

The listChildren() function is critical to both DFS searches, and its perfor-

mance must be high, since for a trace graph G = (E,V ), it is called O(2∗ |E|∗ |V |) times. Its

memory requirements are rather modest (O(|E|)), meaning that for a dataset with 2 million

events, approximately 2.4 million entries would be stored in the table. Since each entry is

16 bytes, that would require 36.6 MB of memory.

6.3.6 First topological sort and Finish Table 1

Recall that the trace graph consists of both real and virtual edges. Real edges

represent direct causal effects, while virtual edges represent indirect causal effects. The

in-memory graph reconstruction algorithm, presented earlier in this chapter, is a twist on

the standard topological sort procedure, which is extended to discriminate between these

two edge types. It does this by choosing a particular topological sort order of the vertices

in the graph (every directed, acyclic graph (DAG) has at least one topological sort, but may

have more).
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The first topological sort is shown in Figure 1.

This procedure begins by initializing the visitTime variable [line 2], which

holds a running tally of the virtual time used during the depth first search. This virtual

time will be used to keep track of when each node in the graph has been visited. Next, the

Finish Time data structure and stack is initialized [lines 3-8] with each of the roots in the

dataset. We assume that the roots are members of disjoint graphs. The rest of the procedure

[lines 9-33] is the main body of the traversal, in which the node on the top of the stack

is examined, and a subset of its children are pushed back onto the stack. When a node is

examined that has no unvisited children, then we “close” that node and record its finish time

in the finishTime table. The body of the procedure [lines 10-31] contain two main cases

unique to traversing X-Trace graphs.

The first case [line 11] handles nodes that have not yet been visited along a given

depth first search path. The node’s children are each examined only if they have not been

“closed” yet. This determination is made by consulting the Finish Table [line 14]. Those

nodes that are still open (i.e., not in the Finish Table) are pushed onto the stack for later

processing. If any open nodes are found [lines 19-21], then we set the node on the top of

the stack’s visitTime to the current visitTime. If not [lines 23-24], then we close the

node on the top of the stack, which inserts the node and the current visitTime into the

Finish Table.

The second case [lines 26-28] handles nodes that have not yet been visited, but are

not part of the current depth first search path (i.e., the algorithm is backtracking to an earlier

part of the graph). By setting the top of the stack’s visitTime to the current visitTime
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Algorithm 1 DFS-1 procedure
1: procedure DFS-1(RootList)

2: visitTime ← 0

3: S ← new ExternalStack()

4: FinishTime ← new FinishTime()

5: for all r ∈ RootList do ! Initialize the stack with the graph roots

6: S.push(<r, visitTime, null>)

7: visitTime ← visitTime + 1

8: end for

9: while S.size() > 0 do ! Main body of the DFS

10: <opid, start, finish>← S.top()

11: if start $= null ∧ finish = null then ! Unvisited node case

12: hasOpenChildren ← False

13: for all child ∈ finishTime.listChildren(opid) do

14: if finishTime.isOpen(child) then

15: S.push(<child, null, null>)

16: hasOpenChildren ← True

17: end if

18: end for
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Algorithm 2 DFS-1 procedure (continued)
19: if hasOpenChildren = True then

20: <topopid, start, finish>← S.pop()

21: S.push(<topopid, visitTime, null>)

22: else

23: finishTime.closeNode(opid, visitTime)

24: S.pop()

25: end if

26: else if start = null ∧ finish = null then ! Begin back tracking

27: S.pop()

28: S.push(<opid, visitTime, null>)

29: end if

30: visitTime ← visitTime + 1

31: end while

32: S.destroy()

33: end procedure
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value, that node becomes the root of the new depth first search path. Thus, subsequent

iterations of the algorithm will fall into the first case.

Lastly, once every node in the graph has been assigned a finish time and places

into the Finish Table, we destroy the stack [line 32], which reclaims its resources. The

end result is a Finish Table whose finishing times represent a topological sort of the graph.

However, each node’s children were examined in arbitrary order. The key to appropriately

assigning each edge with a “real” or “virtual” label is examining those children in decreas-

ing order of their finishing times from a previous topological sort. To do this, we use the

values in the Finish Table (which we now call “Finish Table 1”) to perform a second topo-

logical sort.

6.3.7 Second topological sort and Finish Table 2

The the second topological sort is responsible for assigning “real” and “virtual”

labels to each edge of the trace graph. Real edges are those that are visited in the second

DFS traversal. This second traversal is identical to the first one, described in the previous

section, with the following difference: the children of each node must be visited in the re-

verse order of their finishing times as recorded in Finish Table 1. For the second topological

sort, we use the same algorithm as the first sort, but we replace lines 12 and 13 with the

following code segment:

In this algorithm, the sort() function returns the list of children in increasing

order of their DFS-1 finishing times, so that when those children are pushed onto the stack,

they will be visited in decreasing order (since items on the stack are visited in a “Last-In,

First-Out” ordering).
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Algorithm 3 DFS-2. This snippet replaces lines 12-13 in DFS-1
hasOpenChildren ← False

children ← finishTime.listChildren(opid)

sortedChildren ← sort(children)

for all child ∈ sortedChildren do

(rest of code from previous section)

end for

6.3.8 Database initialization and layout

The final stage of pre-processing is to persist the original X-Trace reports onto the

disk in real-edge visit order. The reports are extracted from the source file, using the offset

index to quickly identify where in the source file a report is located. The order they are com-

mitted to the disk is given by the Finish Table 2, computed in the second topological sort

(DFS-2). For the current implementation of TraceOn, the reports are organized on disk in a

binary file of report records. Each report record is simply a tuple of the form <opid,report>,

where opid is a long-typed variable indicating the operation id of the given report, which is

stored in UTF-8 format. Therefore, the real-edge report iterator is implemented by access-

ing reports in the order in which they appear in the database file. The binary data file format

allows for future expansion, since metadata about the dataset is easily stored in header of

the database file.
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6.4 Implementation

Now that we have described the programming and operational models, as well

as the design of the TETRA graph reconstruction algorithm, we now describe these com-

ponents’ implementations as a Java software artifact. In this section, we highlight those

parts of the implementation that required special attention or care. The first component we

consider is the input processing stage.

Because of its possibly very large size, ranging from hundreds of megabytes to

several gigabytes, it is not always possible to load the input file into memory to perform

the regular expression processing. Thus, we made use of a streaming interface to the file,

making use of the operating system’s virtual memory subsystem. The input file is first

mapped into TraceOn’s address space with mmap(). In the Java language, this is done by the

ByteBuffer class. This byte buffer can then be passed to the set of Pattern and Matcher

classes that perform the regular expression matching. As the regular expressions work

through the file, the underlying operating system automatically buffers and pages segments

of the file into memory as needed. The memory used for this operation is allocated outside

of the Java Virtual Machine, and under the control of the host. As we discovered during

our implementation of the external stack datastructure, even a modest amount of buffering

drastically improves I/O performance in Java. Thus, the external memory requirements

used by the mmap() feature are minimal, meaning that even if several concurrent TraceOn

instances are running on the same machine, memory contention on the input processing

phase should be minimal.

Like the input file processing stage, the external stack data structure must sup-
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port on-demand paging and buffering to minimize the number of I/O operations required

for its operation. We implemented this data structure using the RandomAccessFile Java

construct. While this data structure allows for arbitrary access within a given file, those

accesses are not buffered. This results in substandard performance.

We wrapped our external stack data structure within an interface that conceptually

divides the file into multiple, fixed-length pages. Whenever a byte within a page is accessed,

a check is made as to whether that page is in the memory cache, or whether it is on disk.

Requests to in-memory pages are satisfied immediately. When a region of an on-disk page

is accessed, the page currently in memory is written back to the disk, and the requested

on-disk page is brought into memory. Unlike typical virtual memory systems that support

caches with multiple in-memory pages, our stack only allows for one page to be in memory

at a time. Since the stack is only ever accessed from the top, having more than one page in

memory is unnecessary for our application.

Lastly, we implemented the on-disk database by using the DataInput and DataOut-

put interfaces to a FileInputStream and FileOutputStream. As a result, we can directly read

and write both the long and String data types to the disk. This makes accessing adjacent

reports very simple and efficient.

Before we present an evaluation of our software implementation, we first describe

the application used to generate input data for TraceOn.
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6.5 Demonstration Application: an NSF award search engine

To evaluate our design, we deployed a web-based application into the Amazon

EC2 virtual data center environment. This application is a search engine for the National

Science Foundation’s grants awarded between 1990 and 2003, inclusive. During this time,

over 120,000 awards were given. Figure 6.4 shows the results of searching for awards

with the text “particle” in them. The search engine allows the user to search based on the

principle investigator, the title, the award number, the award amount, and in the example

shown in the figure, anywhere in the body of the award. This search screen shows the

title of each award, a unique document identifier, and a score, which represents how well

the document conforms to the search terms given. Once the user clicks on a particular

award, they are brought to the award grant display screen, shown in Figure 6.5. This screen

displays every field in the award abstract.

The design of this application is shown in Figure 6.6. It is based on the Lucene

open-source document search engine, and the source data is kept in Amazon’s Simple Stor-

age Service (S3). Interfacing to S3 is a set of Java server processes that export a Facebook

Thrift interface. Thrift is an RPC-based middleware system that lets different pieces of soft-

ware, possibly written in different languages, to interface with each other. Interfacing to the

Java version of Lucene is another set of servers, also outfitted with Thrift. The first tier of

the system is a Java servlet server which hosts the set of servlets responsible for processing

user queries.

We collect traces by instrumenting Facebook’s Thrift with X-Trace. By doing

this, we can determine the amount of time spent in each part of the indexing and search-
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Figure 6.4: The NSF Award search application results screen. Users can search based on the
P.I., the title, the award number, the award amount, and a free text search which matches
any field in the award. The right column indicates the score, or how well the document
matches the query.
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Figure 6.5: The NSF Award grant display screen. This screen shows the entire NSF award.
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Figure 6.6: An overview of the NSF award search engine, hosted in the Amazon EC2
virtual datacenter environment. The grant source data is stored in S3, and is accessed by
a horizontally scaled set of Thrift-enabled server processes, called ThriftS3. The index
servers (ThriftyCene) store their indices on local disks. Trying ThriftyS3 and ThriftyCene
together is the NSF Search Servlet, a Java-based servlet that powers the user interface.
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ing system. We also added instrumentation points around the S3 storage calls, giving us

insight into the performance of S3 over time. The NSF award database ran live on EC2

for seventeen days, between April 6, 2008 and April 22, 2008. During this time, two client

load generators, also located in EC2, requested documents from the index on average of

2.38 times per minute, resulting in 3,455 requests per day, or 58,749 requests during the

lifetime of the experiment. This demand resulted in 58,749 X-Trace task graphs. We also

traced the initialization of the award database, which resulted in a single task graph con-

taining 1,323,668 events. Combined, the initialization and experimental workload resulted

in 12,053,884 unique X-Trace events.

6.6 Evaluation

The previous sections have introduced the need for TraceOn, have presented its

programming and operational models, and its realization as a software artifact. We have

presented the NSF Award Search Engine, a realistic use case of a software service deployed

in the EC2 virtual datacenter environment. In this chapter, we evaluate TraceOn using data

from the EC2 deployment along three axes: expressiveness, per-component microbench-

marks, and in comparison to previously implemented, in-core implementations of the graph

reconstruction algorithm. In the following evaluations, we applied TraceOn to a 1.3+ mil-

lion event dataset representing the initialization of the NSF award search engine. We start

by analyzing the performance of the input file processor.
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6.6.1 Input file processing

One of the key limiting factors to TraceOn is its ability to read data out of the

input files provided to it. Since TraceOn acts like a pipeline of individual processing steps,

the input file processing performance dictates the ultimate scalability of the system as a

whole. Figure 6.7 shows the performance characteristics of the input processing.

Hex Offset ChildMap Reports / sec 

(Mean) 

Std. Dev. % 

efficiency 

! ! ! 32,376 8.01 100% 

" ! ! 30,276 10.58 93.5% 

" ! " 29,400 95.39 90.8% 

" " ! 21,209 7.02 65.5% 

" " " 20,715 60.32 64.0% 

Figure 6.7: The TETRA import file processing phase performance. Extracting the root
nodes, building the unsorted child map, and building the offset map into the original report
file results in a processing efficiency approximately 36% below optimal (at 20,715 reports
processed per second). To put that performance in context, the current X-Trace backend
server can handle approximately 30,000 reports per second.

Recall that processing the input file requires three separate operations: edge ex-

traction and root identification, offset index construction, and child map construction. In

Figure 6.7, we evaluate the overhead of each of these steps individually, which allows us

to evaluate their contribution to the overall system’s overhead. The first row of the figure

shows the report processing speed when none of the three required steps are performed.

This means that TraceOn is simply reading the file from start to finish. We see that in this

case, TraceOn was able to handle 32,376 reports per second. This experiment was per-

formed on a MacBook Pro laptop with a 5,400 RPM disk drive, 1.5 GB of memory, and

a 1.83 GHz Intel Core Duo processor. This performance result indicates the inherent I/O
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performance of the underlying system.

The second row in the figure shows the performance of the root identification and

edge extraction step. The net effect of this step is an approximately 7% drop in efficiency,

to 30,276 reports. Child map construction results in a further 3% reduction. Building the

offset index was the most expensive operation in this processing step, resulting in an almost

30% drop in efficiency. Putting together all three operations results in a system that can

handle 20,715 reports per second, at an efficiency of 64.0%.

6.6.2 TETRA external stack

Figure 6.8: The TETRA external stack performance. Using Java’s unmodified
RandomAccessFile for the stack takes about 15 seconds to handle 100,000 push() opera-
tions, followed by 100,000 pop() operations. Adding a small amount of buffering reduces
this time to about 12 seconds. Finally, adding a modest-sized, 16 KByte buffer reduces this
considerably, to about 500 ms. Increasing the buffer size beyond 16 KBytes does not result
in significant additional gain.

As we discussed previously, implementing the external stack as a paging, buffered

data structure greatly improves performance. In Figure 6.8, we see that compared to the
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baseline data structure, applying a 16 KByte buffer improves performance by approximately

30 times, from 15,000 milliseconds per 100,000 push/pop pairs to 500 ms. We take advan-

tage of this increase in performance to improve the throughput of the two depth first search

algorithms.

6.6.3 Depth first search graph iteration

Mean latency Std. Dev. Memory 

requirement 

Events/sec 

DFS-1 36.57 0.08 
92.86 MB 

36,194 

DFS-2 43.21 0.10 30,637 

Figure 6.9: TETRA graph reconstruction relies on two depth first search evaluations of the
graph. By making use of the paging and buffering external stack data structure, DFS-1 and
DFS-2 complete in 36.57, and 43.21 seconds, respectively. Their total memory footprint
is under 100 MB., meaning that multiple DFS operations can be executed concurrently if
multi-core environments are available.

The two topological sorts are implemented using depth first search algorithms.

These are in turn implemented directly using the external stack data structure. Figure 6.9

shows that the first DFS was completed in 36.57 seconds, or 36,194 reports per second. The

second DFS, which is based on the output of the first DFS, completed in 43.21 seconds. The

two DFS operations together used 92.86 MB of memory. This low memory requirement is

ideal for multi-core environments, since each core would be able to operate on a separate

dataset. On a system with 4 GB of memory, using datasets of the same size as our evalua-

tion, over 32 cores could be kept busy without exceeding the memory, taking into account

the operating system and JVM overheads.
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6.6.4 Database construction

The last pre-processing step we consider is the construction of the database,

whose performance characteristics are shown in Figure 6.10. Using the DataOutput based

I/O stream, we were able to stream out the X-Trace reports in DFS-2 finish time order in

43.68 seconds, which is 30,304 events per second. The on-disk layout was 281 MB in size.

Mean 

latency 

Std. Dev. On-disk 

size 

Events/sec 

BuildDatabase() 43.68 11.02 281 MB 30,304 

Figure 6.10: Once the TETRA topological sorts are complete, the reports must be stored
on-disk in real-edge visit order. This process took 43.68 seconds for the 1.3 million node
dataset, resulting in an on-disk size of 281 MB.

When we put each of the steps together, we are able to pre-process the 1.3 million

node dataset in 184.59 seconds, using less than 100 MB of memory at any one time.

6.6.5 Ad-hoc query evaluation

Once TraceOn has finished pre-processing a dataset, it is ready for query eval-

uation. Evaluating a query involves accessing the on-disk dataset, and visiting X-Trace

reports in the real-edge ordering, which happens to be the same as the on-disk ordering.

Figure 6.11 shows that for the large NSF award dataset, this takes about half a minute to

complete (36.08 seconds, or 36,688 reports per second). The memory requirements for this

iterator are minimal (less than 16 KBytes).

The result of the ad-hoc query is shown in Figure 6.12, which indicates the write

latency to S3 during the initialization of the NSF award search engine. We ran a different
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Experiment Mean 

latency 

Std. 

Dev. 

Memory 

requirements 

Events/sec 

Plot s3 put 

latency 
36.08 4.91 < 16 KB 36,688 

Figure 6.11: The TETRA pre-processing step allows for rapid query evaluation against the
optimized, on-disk trace layout. This query plots Amazon S3 put latency over time. Its
source data, a 1.3 million event trace, is processed in just 36.08 seconds, using a small
constant amount of memory. This enables the user to rapidly adjust and refine the offered
queries based on observing the output of previous queries.

query, a CDF plot of that distribution, in the same amount of time, shown in Figure 6.13.

This high level of responsiveness leads to a tool that is more user friendly, and allows for

rapidly changing the analysis of the underlying data. For researchers and network operators,

this rapid turnaround of queries opens up new possibilities for answering questions about

the state of their networks, applications, and datacenters.

6.6.6 Comparison to in-core approaches

There are three in-core implementations of the graph reconstruction algorithm

available to X-Trace developers. One is written in Perl, another in Java, and a third writ-

ten in Ruby. We have experience applying these to X-Trace graphs of approximately 1.2

million events. These alternative implementations use a considerable amount of memory–

approximately 9 GB–to capture the entire text of each report, as well as data structures

representing the graph structure. When executed on a typical server with 3 GB of memory

the algorithm had to rely on the operating system’s virtual memory system to page memory

to and from disk. This resulted in a condition called thrashing, and as a result the analysis

took over 11 hours. Running the same tool against the same graph on a larger server with 15
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Figure 6.12: S3 put latency during the NSF Award database initialization. This figure was
produced using the real-edge iterator programming interface exported by TraceOn.
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Figure 6.13: S3 put latency during the NSF Award database initialization, shown as a cu-
mulative distribution.
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GB of memory resulted in a significant drop in execution time, to approximately 5 minutes.

While a considerable improvement, the approach presented in this chapter is still a valuable

alternative, since machines with that much memory are not readily accessible to the aver-

age developer, and as graphs grow larger, even 15 GB of memory will not be enough, and

thrashing will eventually hinder their performance.

6.7 Discussion and future work

This chapter presents TraceOn, which is a software system and analysis method-

ology that shows promise in handling large trace datasets at scale. Based on our experience

using the tool, we can envision a variety of improvements that would benefit its users.

First, we would like to expand the set of input filter criterion used to define

datasets. In addition to providing a list of Task Ids, or a time range, it would be benefi-

cial to define a dataset based on keys and values in the reports themselves. For example,

one could define a dataset as any traces that transit a particular web server. Second, TraceOn

would benefit from the ability to fetch trace data from multiple backends. In this scenario,

a datacenter could have a variety of X-Trace backends operating autonomously. A single

instance of TraceOn could query those backends, fetching any data it needs to build the

appropriate dataset. A key use case of this would be to have a single X-Trace backend per

rack of computers, and to have a centrally located TraceOn server. This would minimize

the amount of trace data transiting rack-to-rack network connections.

A third extension to TraceOn would be additional language bindings for the real-

edge iterator exported by the system. Right now queries must be written in the Java lan-
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guage. The rise of dynamic scripting languages such as Ruby and Python mean that many

users might not be familiar with Java, but rather these newer languages. Providing an inter-

face to TraceOn would open it up to use by this class of users.

Finally, TraceOn could benefit from the ability to automatically extract semantic

information from reports, building various visualizations automatically. A specific example

of this would be to extract RPC calls from the trace data during pre-processing. Statistics

about those RPC calls could be collected and stored in the on-disk database. This would

mean that a variety of useful statistics about the dataset would be visible without the user

having to write any queries at all. These statistics would take the form of histograms,

distributions of the time spent in various parts of the RPC system, and a list of those tasks

that ran exceptionally slow, or exceptionally fast. For this extension to be feasible, a more

structured schema would be necessary for the reports. Formalizing and standardizing these

schemas is also ongoing work within the X-Trace project.

6.8 Conclusion

A key challenge to tracing large distributed systems is handling the processing of

traces at scale. To tackle this problem, we applied the insight gained from a large amount

of user experience among X-Trace collaborators at the University of California, Berkeley.

We distilled a common set of operations needed to support the types of ad-hoc queries that

we have used so far in our projects. First among these is the need to recover a particular

topological sort of each X-Trace graph, which discriminates between “real” and “virtual”

edges. This function is provided by TraceOn, a software artifact that encapsulates a set of
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classical algorithms, modified to be external, as to avoid excessive memory usage.

It pre-processes X-Trace graphs, storing them in a augmented Java language data

structures that make use of X-Trace graph locality to more efficiently tradeoff the needs of

physical memory and Disk I/O. Once the graph pre-processing is complete, we persist the

graphs in on-disk data structures that have been laid out according to their eventual query

access patterns. This layout is specific to the particular query interface that we export,

meaning that we restrict the way users can interact with the traces. In return, the perfor-

mance of those restricted queries is significantly improved over naive storage schemes. This

improved query time facilitates rapid evolution of those queries, allowing network opera-

tors and software developers to address performance and correctness problems within their

systems. By giving these groups the tools they need to better understand their systems, they

will be able to proactively and quickly improve the reliability and dependability of those

systems.
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Chapter 7

Future Work and Conclusions

The past sixty years have seen dramatic and fundamental changes in the field of

computing. Within a single lifetime, computer programs have grown from single-page cal-

culation routines to globe-spanning distributed systems supporting millions of concurrent

users. In terms of our creativity, and vision for what these systems can become, the field of

computing is still in its infancy. Yet our ability to engineer the next generation of computing

systems is in jeopardy. Unless we can gain better understanding of our creations, we will be

unable to guarantee that they faithfully carry out their specifications. The work presented

in this dissertation provides for a foundation into providing software developers, network

operators, and even end users with better visibility into the systems that they depend on.

In the next section, we present a set of future work that would benefit X-Trace. We then

conclude by summarizing the main contributions of this dissertation.
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7.1 Future directions

X-Trace is the first realization of a tracing methodology that provides for cross-

layer, end-to-end tracing through the use of instrumented applications. Its realization in

software has allowed us to demonstrate its usefulness in a variety of real-world, deployed

applications. However, there are a future directions that would make it more powerful,

would provide for better visibility, and would make it easier to use. These future directions

are:

1. Additional language bindings: X-Trace can currently instrument Java, C, and C++

programs. The rise of dynamic scripting languages like Python and Ruby provide

web developers with easy-to-use platforms for developing new and powerful applica-

tions, and X-Trace should be ported to include these languages. Furthermore, in the

case of Ruby, the Ruby integrated development environment (IDE) is responsible for

generating much of the final code, based on various conventions in the source lan-

guage. We believe that the IDE could also generate X-Trace instrumentation during

this code generation process. Furthermore, since the IDE is generating code based on

various assumptions (e.g., where the database is located), these assumptions could be

recorded as assertions. After the fact, these assertions could be checked against the

generated X-Trace graphs, signaling the network operator in cases of mismatch.

2. Automated instrumentation: The Java language provides for load-time modifica-

tion of the underlying bytecodes. By writing an X-Trace module that uses these

interfaces, we believe that a set of basic X-Trace instrumentations could be applied to

code without the developer having to write any additional code. While not applica-
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ble for all software packages, there are a variety of well-known and commonly used

software packages which could be automatically instrumented this way.

3. Application-aware trace analysis: For common and popular applications such as

Hadoop Map/Reduce, the X-Trace backend could automatically generate a variety

of visualizations that would provide the software developer and network operator

with insight into the inner workings of that software. The backend would be able

to extract information about semantically meaningful software events, flagging those

that sufficiently deviate from expected behavior.

Now that we have discussed some initial directions for future work, we conclude

the dissertation by reviewing the primary contributions of this work.

7.2 Contributions of the dissertation

In this work, we have made three primary contributions, which are:

1. X-Trace system and methodology: X-Trace is a set of application programming in-

terfaces, libraries, and software infrastructure for instrumenting distributed systems,

collecting trace data from those systems, visualizing, and analyzing that data. Soft-

ware developers modify their software to include instrumentation points. During

program execution, the X-Trace library uses these instrumentation points to generate

trace data that is stored locally on each node. The X-Trace backend is responsible for

collecting the trace data together into a logically centralized place.

2. Use cases demonstrating the usefulness of X-Trace. We have integrated X-Trace
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into a variety of real-world applications, and deployed those applications into lo-

cal testbeds, wide-area distributed testbeds, and virtual datacenters. The experience

gained in these deployments not only validated our design decisions, but shaped those

decisions, providing for an incremental refinement of the X-Trace interfaces and in-

frastructure.

3. Support for analyzing traces at scale. Because X-Trace has been useful in di-

agnosing failures in deployed systems, it has been integrated into larger and larger

applications. The result has been traces that are too large to analyze with the origi-

nal X-Trace tools. To address this deficiency, we have designed new algorithms and

software encapsulating those algorithms to process traces with millions of events in

them. By utilizing external data structures and by careful management of buffers,

we are able to process X-Trace graphs from large systems on a single server, or even

a laptop. The result is a more usable tool for researchers, software developers, and

other X-Trace users.
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Introduction

Internet services are built out of distributed components (e.g., load balancer, web server, back-

end database), make use of sophisticated network mechanisms (e.g., VPNs, NATs, overlays, tun-

nels), and can span multiple administrative domains (e.g., the client's web proxy and the server's 

load balancer).  When these complex systems misbehave, it is often quite difficult to diagnose the 

source of the problem.

To this end, we have developed an integrated tracing framework called X-Trace.  A user or op-

erator invokes X-Trace when initiating an application task (e.g., a web request), by inserting X-

Trace metadata with a task identifier in the resulting request.  This metadata is then propagated 

down to lower layers through protocol interfaces, that may need to be modified to carry X-Trace 

metadata, and also along all recursive requests that result from the original task.  This is what 

makes X-Trace comprehensive; it tags all network operations resulting from a particular task 

with the same task identifier.  We call the set of network operations connected with an initial task 

the resulting task tree.

X-Trace-enabled devices log the relevant information connected with each tagged network op-

eration, which can then be reported back.  The trace information associated with a task tree gives 

the user or operator a comprehensive view of what network operations were executed as part of a 

task.  X-Trace task trees are runtime traces of a task execution, and so long as individual compo-

nents are integrated into the framework, there is no need for prior configuration of their de-

pendencies.

X-Trace includes tools to insert and examine the metadata stored in requests, as well as infra-

structure necessary to instrument services along the path, collect reports from those services, 

and store them in persistent storage.  From there, interested parties can collect the reports or 

make use of some basic visualization tools provided with the distribution.
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X-Trace Architecture

The components of the X-Trace system are distributed throughout the network, yet can be 

grouped roughly into two categories:

1. Front-end infrastructure, which runs on hosts in your datacenter.

2. Back-end infrastructure.  This infrastructure is hosted at UC Berkeley, however you can also 

run it in your datacenter.

A client’s request might transit a number of composed services (in this case services 1, 2, and 

3).  The client includes X-Trace metadata in their request, which is processed by each of the X-

Trace enabled services on the path.  These services use that metadata to generate reports, 

which are send to the back-end infrastructure.  The client, or another interested party, can 

query the back-end to collect the reports or to view visualizations of the datapath.

Service

1 Service
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3Request

X-Trace 
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Visualization
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In the figure above, the client’s request (which is annotated with X-Trace metadata)  is handled 

by a series of services.  For example, a client might contact an HTTP load balancer, which then 

forwards the request to an Apache process on a webserver.  That webserver might have to issue 

SQL requests to a Postgres database.  To trace the request as it transits through each of these 

services, each service must propagate X-Trace metadata to the next service, as well as issue re-

ports which can be used later to reconstruct the user’s task.

A task is a set of related requests, typically initiated by the user, necessary to 

carry out an operation.  The requests making up a task might span layers (i.e., IP, 

TCP, HTTP, SQL) and might span multiple services.

X-Trace service agents are linked into each of the services to carry out the propagation and re-

porting duties.  A reporting daemon collects the reports from the agents and sends them to the 

back-end.  Front-end agents communicate with the reporting daemon over a local UDP socket.

Service agents are linked into application code, and are responsible for propagat-

ing X-Trace metadata from one request to another, as well as generating reports 

that are sent to the reporting daemon. The reporting daemon is a user-level pro-

gram that runs in each host.  It collects reports from X-Trace service agents, and 

forwards them to the back-end infrastructure.

It is the responsibility of the back-end infrastructure to collect reports from the reporting dae-

mons that exist on hosts that are on the datapath.  These reports are used to generate visualiza-

tions of the task, or they can be collected directly by interested parties for use in other types of 

analysis.  The reporting daemons communicate with the back-end via the Java message service 

(JMS).

X-Trace front-end

The front end consists of X-Trace service agents that run in each service, as well as a single re-

porting daemon per host:

X-Trace • web: http://www.x-trace.net • Administration and Usage Guide ! 5



191

Reports are generated by X-Trace service agents, which are located in the Apache, Postgres, 

TCP, and IP modules shown above.  These reports are sent in a UDP message to the reporting 

daemon, which forwards them to the back-end.
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X-Trace Back-end

The X-Trace back-end, which runs as a hosted service at UC Berkeley, but can also be installed 

in your network, consists of several components.  These components include:

1. LDAP (Lightweight Directory Access Protocol).  This components serves as the store of 

configuration information for the entire X-Trace system.  By localizing configuration infor-

mation in this centralized service, the administrator only has to update a single place to ad-

just the service.  Also, the front-end clients to X-Trace require substantially less configura-

tion.  In fact, they only need a jndi.properties file, explained later in this document.  When 

clients want to connect to the message queue, or when the X-Trace back-end code wants to 

connect to the database, they get connections directory form the LDAP database.
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2. Message Queue.  The message queue is a JMS (Java Messaging Service) component that pro-

vides two-way communication channels between the front-end clients and the back-end.  

This JMS channel supports configurable reliability semantics, security (TLS), and other de-

livery features.  It is used to provide a two-way channel from the back-end to the front-ends 

for the X-Trace control plane, which is used to locate, control, and manage the front-end cli-

ents.  It is also used as a data-plane for the delivery of X-Trace reports from the front-ends to 

the back-end.

3. Postgresql Database.  X-Trace reports are stored in a this database.  Additionally, informa-

tion about each of the connected clients is stored as well, meaning that an administrator can 

query that database for information on clients that are connected or have recently been con-

nected to this back-end infrastructure.

4. Apache webserver.  The Apache webserver provides a bridge between the back-end infra-

structure and users who need to access to the trace data.  Currently two interfaces to this data 

are available: an XML/RPC interface for programatically accessing the trace data, and a cgi-

bin program that provides graphic visualizations of X-Trace tasks.

5. X-Trace Java code.  Custom-written Java code glues together these components and provides 

a unified trace collection service.
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Installation prerequisites

The X-Trace front-end infrastructure must be installed on each host that is going to issue reports 

(typically each host on a datapath in your datacenter).  An X-Trace installation consists of three 

different components:

1. Each network service (Apache, Postgres, IP, Chord, etc) must be linked with a service agent.  

There can be multiple of these service agents per host.

2. Exactly one reporting daemon must be installed on each host.

3. The X-Trace back-end software must be installed logically once for each datacenter or 

autonomous domain.  This back-end consists of multiple components that do not necessarily 

have to reside on the same server, however the distribution makes them available as a single 

virtual appliance image.

To install the X-Trace front-end reporting daemon, you need:

•The Java 1.5 runtime

•The ability to open and listen to a UDP port on the localhost interface.  This port is configur-

able.

To generate reports to send to the reporting daemon, X-Trace service agents must be installed 

into each of your applications.  The prerequisites for installing these agents depend on the spe-

cific application, and are outlined in the X-Trace Agent Reference Guide.

The X-Trace back-end is available in two forms: a VMware appliance, and as individual compo-

nents.

Installing the VMware appliance requires:

•The free VMware player, available from http://www.vmware.com/products/player/

•An available IP address for the appliance, obtainable via DHCP
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Installing the back-end from individual components is an advanced procedure that is not de-

scribed in this document.  E-mail the authors (info@x-trace.net) for more information on how to 

do this.
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Installation

Installing service agents

Installing service agents is described in the X-Trace Agent Reference Guide.

Installing the per-host reporting daemon

On each host that will generate reports, you need to install and run the front-end reporting 

daemon.  To install the daemon:

1. Download the X-Trace front-end distribution in either .tar.gz or .zip format.

2. Unzip (or un-tar) these files into a directory.  This directory will serve as the root of the 

front-end daemon:

1. (for .tar.gz distributions):

cd /usr/local

gzip -d xtrace_fe.tar.gz

tar -xvf xtrace_fe.tar

2. (for .zip distributions):

cd /usr/local

unzip xtrace_fe.zip

Installing the back-end (Overview)

Installation instructions for the back-end will be available in the next version, which will in-

clude the back-end code and infrastructure components.
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Post-installation configuration

The front-end reporting daemon configuration is located in the jndi.properties file, lo-

cated in XTRACE_HOME/conf.

To make use of the UC Berkeley-hosted X-Trace backend, this file should have the following en-

tries:

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

java.naming.provider.url=ldap://jndi.x-trace.net:389/ou=Public,dc=x-trace,dc=net

Since the service agents forward all reporting traffic to a local, well known port, they do not re-

quire post-installation configuration.
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Starting and stopping X-Trace

Assuming that you installed the daemon in the /usr/local/xtrace_fe directory, exe-

cute the following commands.  If you installed X-Trace elsewhere, then execute the scripts in the 

appropriate directory.

To start the X-Trace front-end reporting daemon:

$ /usr/local/xtrace_fe/start_fe.sh

To stop the daemon:

$ /usr/local/xtrace_fe/stop_fe.sh
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Accessing trace data

X-Trace trace data can be collected from the back-end via the HTTP protocol.  Other methods 

(i.e., XML/RPC) are planned, though currently unimplemented.

Via the HTTP protocol

If you are not using the UC Berkeley-hosted back-end, then you will need to substitute the host-

name of the node storing X-Trace reports in the example code below.

All X-Trace reports belonging to a given Task ID can be retrieved by requesting the following 

URL:

http://reports.x-trace.net:8080/RetrieveReports/RetrieveReports?taskid=XX

where XX is the task ID you want.  The format of the results are:

1. report 1

2. newline

3. report 2

4. newline

5. etc

Via the ReportRetriever command-line tool

There is a small command-line tool that will read reports from the back-end (assuming they are 

hosted at UC Berkeley.  If the back-end infrastructure is running in your network, this tool will 

need to be modified to reflect the hostname where your reports are stored.

The tool is called with a single argument which is the task ID, in string format:

$ java edu.berkeley.xtrace.util.ReportRetriever F3C60172

X-Trace • web: http://www.x-trace.net • Administration and Usage Guide ! 14
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License

Copyright (c) 2006, 2007, 2008 Regents of the University of California

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted 

provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions 

and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-

tions and the following disclaimer in the documentation and/or other materials provided with 

the distribution.

3. The name of the author may not be used to endorse or promote products derived from this 

software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED 

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO 

EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-

CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-

ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 

OF THE POSSIBILITY OF SUCH DAMAGE.

X-Trace • web: http://www.x-trace.net • Administration and Usage Guide ! 15
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Appendix B

X-Trace metadata specification

version 2.0
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X-Trace Specification Document: X-Trace Metadata Format

Authors: Rodrigo Fonseca, George Porter

Draft-Created: 18-Jul-2006

Last-Edited: 07-Apr-2008

Specification Version:

 2.1.1

Revision: svn 53

Note

This version of this specification document is 2.1.1, and it specifies the X-Trace metadata
version 1. The X-Trace metadata version is the version number that is encoded in the
metadata itself, and is independent of the version (2.1.1) of this document.

Summary

This document describes the X-Trace metadata format version 1, and how it is encoded in both binary and
textual form. It also describes the mandatory fields, and the format of optional fields. Separate documents
describe individual options, including how they are represented, propagated, and how they relate to X-Trace
reports.

1. Introduction

X-Trace [1] is a framework for tracing the execution of distributed systems. It provides a logging-like API
for the programmer, allowing the recording of events during the execution. X-Trace records the causal
relations among these events in a deterministic fashion, across threads, software layers, different machines,
and potentially different network layers and administrative domains. X-Trace groups events, which we also
call operations, to tasks. These are sets of causally related events with a definite start. Events in a task form
a directed acyclic graph (DAG). Each task is given a unique task identifier, and each event within a task is
given an identifier which is unique within the task.

X-Trace tracks the causal relation among events by propagating a constant-sized metadata along with the
execution, both in messages exchanged by the different components and within the components themselves.
The metadata contains the task identifier of the current task, and the last event recorded in the current
execution sequence. Each event is reported to a separate reporting infrastructure, and each report records the
identifier of the current event, as well as the identifier(s) of the event(s) that caused the current event. The
reports contain other information in the form of key/value pairs. The format of these reports is described in
the accompanying specification [2].

The X-Trace metadata has two mandatory components, and a set of optional ones, described in their own
specifications. The first mandatory component is a Task Identifier, or TaskId, which uniquely identifies a
task (in the context of a reporting infrastructure and during a finite window of time). The TaskId is the same
across all operations comprising a task, and serves the purpose of identifying all such operations as
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belonging to the task. The second component is called the Operation Identifier, or OpID, and should be
unique for each operation or event within the task. The OpID identifies the operation that generated the
metadata, and is used by the subsequent operation(s) to record the causal relationship between the two
operations by means of reporting.

There are also optional fields, which may or may not be present, and enhance the functionality of the X-
Trace framework. At the time of this writing, there are three types of options defined, but more can be
added in the future. They are the Destination option, for specifying where to send reports if not to a default
location; the ChainId option, to explicitly indicate concurrent chains of events; and the Severity option, that
indicates how important it is to record events related to a particular task.

This document specifies in detail the layout and meaning of the X-Trace Metadata how it is represented in
binary and textual form, and how it is propagated in the same and between adjacent layers. It does not
discuss reporting in detail, nor how to implement the propagation. It is also beyond the scope of this
document how different protocols include X-Trace Metadata associated to their respective protocol data
units.

2. X-Trace Metadata Binary Representation

The X-Trace Metadata (XTR-Md) is represented in a compact wire format by the following byte layout.
This layout is used when the XTR-Md is encoded in binary protocols, as is the case of the encodings of
XTR-Md in IP options and in TCP options. A hexadecimal textual representation of this binary layout is
also used when XTR-Md is encoded in text-based protocols, as is the case of HTTP and SIP, for example.

Flags: 1 byte

TaskId: 4, 8, 12, or 20 bytes

OpId: 4 or 8 bytes

Options Block (optional):

OptionsLen: 1 byte

Options: OptionsLen bytes

The only mandatory fields are flags, TaskId, and OpId. The other fields are optional.

2.1 Flags

There are 8 bits (1 byte) allocated for flags. The bits are presented here with 7 being the most significant bit
and 0 the least significant bit.

7 6 5 4 3 2 1 0

Version OpIdLen Options IdLen

Bit Name Description

0-
1

IdLen Encodes the length of the TaskId

2 Options Whether there are option fields present

3 OpIdLen If 0, OpIdLen = 4, if 1, OpIdLen = 8
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4-
7

Version Encodes the version of the X-Trace Metadata

Bits 0 and 1 encode the length of the TaskId as follows:

IdLen Mask Bytes for TaskId

1 0

0 0 0x00 4

0 1 0x01 8

1 0 0x02 12

1 1 0x03 20

Bits 4 through 7 encode the version of the metadata as an integer, with 4 being the least significant bit. The
value 15 (bits 4 through 7 set to 1) is reserved for future expansion of the version number, if necessary. The

current version id represented by this spec is 1. It is backwards compatible with version 0. The difference
between the two is that version 0 has bit 3 of the flags set to 0, and only allows OpIds of length 4.

Version Mask Version

7 6 5 4

0 0 0 0 0x00 0

0 0 0 1 0x10 1

0 0 1 0 0x20 2

...

1 1 1 1 0xF0 reserved

2.2 TaskId

The TaskId identifies a Task, or a higher level operation that generally corresponds to a user-initiated task.
It can be composed of several operations or events that span different software components, nodes, and
layers. As noted above, it can be 4, 8, 12, or 20 bytes long, with the length being selected by the IdLen bits
in the flags field. The TaskId MUST be the same across all operations comprinsing a task, or else the
operations will not be associated with the same task.

The set of TaskIds comprised of all 0's is reserved to mean INVALID TaskIds. An X-Trace Metadata with
an INVALID TaskId is invalid, and MUST not be propagated or generate reports.

2.3 OpId

The OpId field identifies each operation or event that is part of a task and needs to be distinguished from the
point of view of the X-Trace framework. It is a 4 or 8 bytes in length, depending on the setting of the flags
bit 3. The value is interpreted as an opaque string of bytes, not as a number, and needs to be unique unique
within the context of a task.

If the OpId length is 4 bytes, the version can be set to 0 or 1. The table below specifies how
implementations of versions 0 and 1 of the X-Trace metadata specification treat the different settings of the
OpId length field.
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Version OpIdLen OpId Version 0

Impl.

Version 1

Impl.

0 0 4 bytes ok ok

0 1 INVALID METADATA fail fail

1 0 4 bytes fail ok

1 1 8 bytes fail ok

If ChainsIds are being used as options to capture the concurrency structure of a task, then the OpId needs to
be unique only within the context of a ChainId.

2.4 Metadata Length

Given these three mandatory fields, the smallest well-formed X-Trace metadata is 9 bytes long, comprising
the flags field, a 4-byte TaskId, and a 4-byte OpId. As two examples, in hex representation, a well-formed
and valid X-Trace metadata can be 00 01020304 03030303 (with spaces added between the fields for
clarity). The smallest well-formed, invalid X-Trace metadata is 00 00000000 00000000. Note that if the
OpId length is set to 4, the settings of version to 0 or 1 are both valid.

The maximum size is 1 + 20 + 8 + 1 + 255 = 285 bytes, but so far we have seen very little use of options,
and no long options have been defined.

2.4 Optional / Extended fields

The option bit in the Flags field indicates the presence of optional or extension fields in the metadata.

2.4.1 Options Length

To make determining the size of the XTR-Md easier, there is a Length field that contains the length of all
options combined, in bytes. This length does not include the length field itself. Thus, for determining the
total length of an X-Trace metadata with options, one would add:

1 (flags) + (length of TaskId) + (length OpId) + 1 (OptionsLen byte) + OptionsLen.

If present, the options length field MUST NOT be set to 0. If there are no options, the O bit in the Flags
field MUST be set to 0.

2.3.1 Option Format

Following the Options Length field, there may be one or more options. Options have a Type field,
represented by one byte.

If the type is 0, it is a no-option type. The option of type 0 has a total length of 1 byte, and no body. Option
type 0 MAY be used for padding, when it is more efficient or not possible to include arbitrary-length byte
fields in protocols. It MUST only occur at the end of the options list. Implementations MUST NOT try to
parse options past the first type 0 option.

No-option option format
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Type: 1 byte (0)

If the option type is not 0, i.e., between 1 and 255, then the option is a normal option, and follows the option
format below:

Normal option format

Type: 1 byte (1-255)

Length: 1 byte (0-253)*

Payload: Length bytes

The length only includes the size of the payload. Because of the total length of all options being limited to
255 bytes, the maximum length of each option can be at most 253 bytes (because of the type and length
fields of the option itself. It there are more than one options, then the maximum length of each will be
correspondingly smaller.

3. X-Trace Metadata Text Representation

For text-based protocols (ASCII, Unicode), like HTTP, SIP, or email, for example, X-Trace Metadata is
represented as a the hexadecimal string of the successive bytes in the binary representation. The characters
A to F SHOULD be represented in CAPITAL LETTERS, but implementations SHOULD be tolerant to non-
capital letters. Each byte MUST be 0-padded and thus represented by two characters each.

4. Propagation

For the propagation of the X-Trace metadata, a node implementation will generate a unique OpId and
replace the OpId of the previous operation(s) that happened before the current one. The TaskId MUST
remain the same. So that the graph remains connected, every time a new OpId replaces a preceeding one,
this binding MUST be registered in a report.

How specific options are propagated will depend on the semantics of each option. How each option is
propagated is part of the option's specification. However, if an implementation doesn't know how to
propagate a specific option, it MUST copy the option to any new metadata it generates based on the current
one.

Figure 1 below shows an example of a simple HTTP transaction through a proxy that propagates X-Trace
Metadata across layers and operations of the task. In the figure, (a) represents an OpId, and <T,a> represents
metadata with TaskId T and OpId a.

   +--------+                                      +--------+
(a)| HTTP   |           <T,a>                   (b)|  HTTP  |    <T,b>
   | Client | ...................................> | Proxy  | ............>
   +--------+                                      +--------+
       |                                            ^     |
       | <T,a>                               <T,d>  |     |     <T,b>
       \/                                           |     \/  (e)
    +--------+         <T,c>             (d)+--------+   +--------+ <T,e>
 (c)|  TCP   |.............................>|  TCP   |   |  TCP   |........>
    +--------+                              +--------+   +--------+
        |                                       ^           |
        |                                       |           |  <T,e>
        \/  (f)                (g)              |  (h)      \/   (i)
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     +--------+  <T,f>   +--------+ <T,g>   +--------+    +--------+ <T,i>
     |  IP    | -------->|  IP    |-------->|  IP    |    |  IP    |------->
     +--------+          +--------+         +--------+    +--------+

                               Figure 1.
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Appendix: Change Log

Changes marked with a '*' mean changes that have implementation implications. Otherwise changes just
refer to the document (fixes and clarifications). The versioning reflects this: minor numbers will change
with at least one '*' change, e.g., from 1.2.x to 1.3.0.

2.1.1 - minor changes and fixes

2.1.0 - * upgraded the Metadata version to 1, backwards compatible with version 0.
This update introduces variable length OpId field (4 and 8 bytes).

2.0.0 - major revision of the X-Trace metadata format, simplifying the metadata contents and
propagation.

1.3.1 - added change log. fixed section numbering

1.3.0 - ! added a length byte to the destination field

1.2.1 - fixed typo in the mask for the task id length of 20 bytes: was 0x0C, should be 0xC0

1.2.0
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! added invalid XTR id
updated the description example to have 4-byte tree info operation ids
Added sentence to cover propagation operations on metadata with no tree info.
fixed typo and clarified IdLen flags
added reference to NSDI paper


