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Abstract

L2 Cache to Off-chip Memory Networks for Chip Multiprocessors

by

Carrell D Killebrew

Master of Science in Computer Science

University of California at Berkeley

Professor Krste Asanovic, Research Advisor

Manycores are at the heart of the oncoming sea change in computing. Placing

many simple cores on a single die is predicted to be the answer to the power and ILP

walls that the dominant design trends of the past couple decades have hit. Manycores

will make new workloads possible; workloads that place a greatly increased strain on

off-chip memory bandwidth. Some of these have working sets that simply cannot fit

inside a conventional cache. Most of these have bandwidth requirements that scale

superlinearly with the number of cores; as cores are added, the per-core traffic also

increases. Providing sufficient off-chip bandwidth is the engineering challenge that must

be overcome to allow the full potential of manycores to be harnessed.

In recent years, manycores have seen an increasing asymmetry between the

number of cores and the number of memory access points on a single die. This asymme-

try causes problems for the popular mesh topology, prompting a study using a topology

that better connects many cores to few memory access points.

In this thesis, I examine several modern multicore chips, identifying design

trends in the off-chip memory interconnect. I analyze a modern manycore chip, Tilera’s

Tile64, identifying weaknesses in its L2 to DRAM network (L2DN). As an alternative,

I present a network based on a tapered fat tree (TFT) topology. I then evaluate the

latency and power efficiency of the TFT topology on a cycle-accurate simulator intended

to model the Tile64 multiprocessor, comparing it to the mesh network that the Tile64

actually uses. I replace the original mesh network used for off-chip memory access with

two TFT networks (one for memory requests, one for memory responses) and run four

synthetic benchmarks modeled after those in the PARSEC suite.
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Because several connections in the TFT network require global wires, I also

model the multi-cycle latencies using a wire-delay model. The simulator keeps track of

activity factors in each of the routers, which I combine with the Orion power models

to determine the switching power of the routers. I determined that for applications

with large amounts of sharing and little off-chip traffic, the TFT topology offers no

significant advantage over the mesh. However, the benchmarks that exhibited large

amounts of off-chip traffic completed a workload up to 33.6% faster on the TFT than

the same workload on the mesh. The TFT topology also has better energy efficiency

in all cases. At the cost of extra design complexity, the results suggest that the TFT

topology offers better latency, throughput, and energy-efficiency overall than the mesh

for memory-intensive applications running on manycore processors.

The primary contributions of this thesis are:

• The discussion of the manycore bandwidth challenge and its effects upon a modern

day manycore chip, the Tile64.

• A concrete proposal to partially alleviate the effects in the context of the Tile64.

• A thorough performance and power analysis of the proposed solution.



iii

Contents

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Manycore Bandwidth Challenge . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and Motivation 4
2.1 Tile64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Tapered Fat Trees for L2DN 9
3.1 Tapered Fat-Tree (TFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Routing Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Tapered Fat-Tree on TILE64 . . . . . . . . . . . . . . . . . . . . 10

4 Evaluation Models 13
4.1 Wire Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Technology Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2 Wire Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.3 Multi-Cycle Wire Delay . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Power Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 Router Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Interconnect Power . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Simulation Environment 20
5.1 Description of Simulator Operation . . . . . . . . . . . . . . . . . . . . . 20
5.2 Benchmark Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Results 24
6.1 Benchmark Completion Time . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Related Work 30

8 Conclusion 32



iv

List of Figures

1 Tile64 memory controller connections [16] . . . . . . . . . . . . . . . . . 6

2 Tapered Fat-Tree topology . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Tapered Fat-Tree mapped onto TILE64. The connections only represent

logical connectivity. A possible physical layout is shown in Figure 5. . . 11

4 First-order repeater model . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Physical layout of TFT on TILE64 . . . . . . . . . . . . . . . . . . . . . 17
6 Input-buffered on-chip router with matrix arbiter. . . . . . . . . . . . . 18

7 Two physically separate networks, for requests and replies . . . . . . . . 21
8 Protocol for TFT memory traffic . . . . . . . . . . . . . . . . . . . . . . 22

9 Completion times of benchmarks normalized to the completion time with
the Mesh topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

10 Average latency of packets for the blackscholes and x264 benchmarks. . 25
11 Average latency of packets for the canneal and streamcluster benchmarks. 26
12 Power dissipated within the routers of the network. . . . . . . . . . . . . 27
13 Total power dissipated in routers and interconnect. . . . . . . . . . . . . 28
14 Relative energy dissipated in routers and interconnect. . . . . . . . . . . 28



v

List of Tables

1 Multicore Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Model Characteristics and Constants . . . . . . . . . . . . . . . . . . . . 15
3 Interconnect Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Multi-Cycle Wire Delays (tcycle = 1.33 ns) . . . . . . . . . . . . . . . . . 16

5 PARSEC Applications Simulation Parameters . . . . . . . . . . . . . . . 20
6 Simulation Packet Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Throughput of Selected MDN Routers . . . . . . . . . . . . . . . . . . . 26



1

Chapter 1

Introduction

Manycore processors, single silicon dies with many simple cores, have gained

increasing attention as the computing industry has hit the combined power and ILP

wall [11]. Manycores present new engineering challenges and opportunies due to their

unique new architecture. The proximity of cores makes interprocessor communication

much cheaper, but providing enough memory bandwidth for all these cores to function

becomes a more serious problem.

As manycores have evolved from single core architectures, we can observe the

evolution of the network used to connect cores to both off-chip and on-chip memory. All

designs have a private L1 cache, but the L2 cache, which is shared when there are a few

cores, becomes more private as cores are added. In chips with less cores, interprocessor

communication usually occurs through a shared memory model, while those with more

cores sometimes add explicit interprocessor networks for message passing.

Besides offering a possible solution to the problems that have stymied the

uniprocessors of the past, manycores will make interesting new workloads feasible. Ap-

plications such data mining and advanced video encoding will place an increased strain

on the memory system. Some of these workloads demonstrate an increasing per-core

performance as more cores are added to a chip[13]. This translates into an exponential

growth in memory bandwidth demand. Clearly this exponential growth has significant

implications for future manycores.

In this thesis I examine several modern multicore chips, analyzing design trends

in the L2 to DRAM network (L2DN). I will summarize the results of the PARSEC

benchmark suite as they apply to L2DNs. I look at a modern 64-core chip, the Tile64,

and use the results of the PARSEC suite to motivate a redesign of the Tile64’s L2DN.
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I provide a comparison of my proposal and the Tile64’s current solution using detailed

power analysis and simulation results.

1.1 Manycore Bandwidth Challenge

The SPLASH2 benchmarks [2] have been the standard parallel benchmarking

suite for many years now, but they are now somewhat dated. Some of the algorithms

it uses are now inferior to newer methods for solving the same problems. Additionally,

the benchmarks it contains are aimed at HPC and graphical simulations. manycores

will be used by a much more diverse set of users with a correspondingly wider array of

applications. Thus, I use the PARSEC benchmarking suite and the characterization of

the applications developed in [13] as the basis for my analysis.

These new applications will have a large appetite for memory bandwidth.

There are 12 different applications in the PARSEC suite, and of these 12, all but three

have a working set size larger than 8 MB. This is much larger than most current on-chip

caches, distributed or otherwise. Even if on-chip caches were to grow, these working

set sizes grow along with the data set the algorithm is working on. Applications such

as data mining become more useful as the data set is increased, so I expect data set

sizes to grow with time. As a result, I anticipate that the working set of at least eight

of these applications will exceed future on-chip cache sizes, creating a distinct need for

off-chip memory bandwidth.

The amount of off-chip memory bandwidth for half of the applications increases

with the number of cores. This means that as cores are added, the bandwidth demand

increases because of the core added, as well as because the cores already on the chip

increase their individual demands. This results in a superlinearly increasing demand for

off-chip bandwidth.

The PARSEC applications do not exhibit the same demand for interprocessor

communication that they do for off-chip bandwidth. Four of the 12 exhibit an insignif-

icant amount of sharing. Of those with true sharing, the data sets are so large that

shared accesses between different processors are temporally spaced far apart. The effect

is that by the time the second processor makes a shared access, the data has already

been moved off-chip because of a capacity conflict. Two of the applications are paral-

lelized in such a way that data is passed between different computational stages of the

algorithm, allowing efficient data sharing. If cores were added, this on-chip traffic would

scale proportionally, but so would the interprocessor network as well, presumably. None
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of the applications demonstrate an increasing usage of shared (or private) cache space

as the number of processors scales.

The result of this will be a divergence of the requirements of the interprocessor

communication network and the L2DN. Interprocessor communication networks beyond

simple buses are usually chosen such that network bandwidth scales as processors are

added. This will be sufficient to handle the traffic due to shared memory access and

message passing, as this traffic volume grows linearly along with the number of cores.

The off-chip memory bandwidth, on the other hand, will increase superlinearly as cores

are added. Working set sizes will only get larger as the utility of many of these appli-

cations increases as the data set grows (and the working set grows with the data set).

The additional cores will increase the efficiency of the cores already present, resulting

in the superlinear demand for off-chip memory bandwidth. The off-chip bandwidth re-

quirements may outstrip those of the on-chip communication network. As the PARSEC

authors put it, ”since many PARSEC workloads have high bandwidth requirements and

working sets which exceed conventional caches by far, off-chip bandwidth will be [many-

cores’] most severe limitation of performance. Substantial architectural improvements

are necessary to allow emerging workloads to take full advantage of larger CMPs. [13]”
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Chapter 2

Background and Motivation

On-chip caches have evolved as cores have been added to the chip, and this has

had a direct effect on the off-chip memory interconnect. Table 1 contains a summary

of the following architectural descriptions. The Intel Core2 Duo has two cores on a

die, which access a shared L2 cache and off-chip memory controller. AMD’s Barcelona

possesses four cores, each with a private L2 cache. A crossbar connects the cores to a

shared L3 cache, which interfaces with the two memory controllers. Intel’s Nehalem is

similar to the Barcelona, except that there are eight cores. Sun’s Niagara uses a full

crossbar to connect eight cores to a four-way banked, shared L2 [15]. Sun’s Rock uses

a hierarchecal scheme, with the 16 cores divided into four clusters[14]. A cluster shares

one instruction cache and two data caches, along with a crossbar that provides access

to the central crossbar. This central crossbar connects to a four-way banked, shared L2.

These processors do not have an explicit interprocessor communication net-

work, instead relying on coherence of the shared caches to share data and synchronize.

In all cases, there is a shared L2, or shared L3 if the cores have private L2’s. This L3

accesses the memory upon a miss. Thus, the interprocessor communication network is

also the processor to off-chip memory interconnect.

IBM’s Cell processor is unique in both its cache structure (or lack thereof)

and its interconnection network. The Power Processing Element (PPE) is a standard

Power core with a cache hierarchy, while the 8 Synergistic Processing Elements (SPEs)

possess no caches, only a 256 KB local store each. These local stores are accessed

using DMA transfer initiated by the PPE or any of the SPEs. Only the owning SPE

has direct access to its local store. The PPE, SPEs, and memory controller are all

connected to four rings. The rings are divided into two pairs of unidirectional links,

each pair traveling in the opposite direction from the other. The rings serve as both
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Table 1: Multicore Survey
Name Cores L2 Interconnect Off-chip Bandwidth
Intel Core2 Duo 2 (per die) Shared Crossbar 10.7 GB/s
AMD Barcelona 4 Private Crossbar 10.7 GB/s
Intel Nehalem 1-8 Private Crossbar 31.9 GB/s
Sun Niagara 8 Shared Crossbar 25.6 GB.s
IBM Cell 8 Local Store 4 Parallel Rings 25.6 GB/s
Sun Rock 16 Shared Hierarchical Crossbar 54.4 GB/s
Tilera Tile64 64 Private Mesh 25.6 GB/s

the interprocessor network and the off-chip memory network. A key difference is that

there is no shared cache structure between the processors and the memory controller,

as a result of the streaming model the Cell has adopted.

2.1 Tile64

Tilera’s Tile64 is a CMP with 64 cores[16]. I have chosen to study it, as it has

the most cores of any modern commercial manycore and has enough cores to make the

scaling properties of the networks start to become evident. The 64 cores are connected

in an 8x8 mesh network. Mesh networks are popular because they are simple, have

an efficient two-dimensional VLSI layout, and support tiling, which makes design and

verification easier as well. Each tile contains a processor, the routers that support the

networks, and an L2 cache.

The Tile64 has five physically separate 32 bit mesh networks that connect the

processors. The mesh networks use dimension ordered routing (DOR) and credit based

flit-level flow control. The routers require two cycles to route flits which are turning,

and one cycle for flits continuing in the same direction. Interrouter links take one cycle

to traverse. Each router input has three flits of buffering, the minimum required to

support full throughput on the interrouter links.

Each mesh serves a different purpose, the two that I am concerned with are

the Tile Dynamic Network (TDN) and Memory Dynamic Network (MDN). The TDN

delivers interprocessor cache-to-cache transfer requests. The actual bulk data transfer

returns over the MDN to prevent protocol deadlock. An alternative would be to provide

another virtual channel on the TDN to avoid deadlock, but this would require buffer

space beyond the minimum used for full throughput flow control. The designers of the

Tile64 specifically stated that they were attempting to minimize the chip area consumed
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Figure 1: Tile64 memory controller connections [16]
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by the networks, so they chose to multiplex the MDN. As demonstrated later by the

simulation, this results in an under-utilized TDN and an over-utilized MDN.

All loads and stores that are destined for off-chip memory use the MDN. Pro-

tocol deadlock is prevented because each DRAM reserves enough buffer space to buffer

a certain number of requests from each core. The cores, in turn, do not have more

than this predetermined number of outstanding requests to any single DRAM. If the

responses traveled a different physical or logical network, this precaution would not be

necessary. Removing the limit on outstanding requests would improve throughput and

save on buffer space at the DRAM, at the expense of the extra routers for a new physical

network, or buffer space and complexity for a new logical network.

The connection between the memory controllers and the tiles (Figure 1) is

interesting because of the mismatch between the number of memory controllers (4)

and tiles (64). There are two memory controllers on the north side of the chip, and

two on the south side. Each is connected to the three innermost adjacent tiles. Tiles

route to the closest of the three access points (see Figure 1). The memory controller

uses round-robin arbitration choose from among the three input tiles. Under a uniform

traffic distribution, the three access points each see a different amount of traffic. The

innermost of the three sees five times as much traffic as the middle one, and 2.5 times

as much as the outer access point. This results in global unfairness because the five

columns of tiles that use the innermost access point will see less throughput than the

other columns of tiles.

The alternative, though, is much worse. The mesh employs DOR, with routing

in the X direction followed by the Y direction. If tiles were to spread their traffic over

the three access points instead of going to the closest, when the response returned from

DRAM and entered the mesh, it would immediately travel in the X direction until it

reached the appropriate column. Consider an example where two packets arrive, one

at the middle and inner access points. Both are destined for a tile somewhere to the

east, so they must take turns exiting the inner router’s eastern ouput port. Add in

the outer access point, and this results in horrible throughput for packets entering the

mesh. Changing the routing to Y dimension followed by X would not solve anything,

only cause the problem to occur as packets reached the edge and started traveling in the

X dimension towards an access point. The problem is a result of the routing algorithm

and the topology mismatch (four memory controllers talking to 64 cores on a mesh).

The four memory controllers support a total bandwidth of 256 bits/cycle, and

the MDN has a bisection bandwidth of 1024 bits/cycle. As the MDN is shared by
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requests returning from memory as well as intertile bulk data transfers, this seeming

’overprovisioning’ of the mesh is required to support full throughput from off-chip mem-

ory.
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Chapter 3

Tapered Fat Trees for L2DN

I propose to replace the Tile64’s mesh MDN with two tapered fat trees (TFTs).

TFTs used as processor to processor interconnection networks have low chip area usage

and power dissipation [4]. They are also superior to meshes in good workload comple-

tion times, giving good efficiency in terms of area-delay and energy-delay. Replacing the

mesh MDN with TFTs means that traffic that previously used the MDN for interpro-

cessor communication (loads from remote L2 caches) now must transit the TDN. This

provides better load balancing between the two networks, another factor in improving

the performance of the whole system, at the cost of adding buffer space and increasing

router complexity to implement virtual channels.

3.1 Tapered Fat-Tree (TFT)

The topology shown in Figure 2 also has benefits because the top four routers

map to the four memory controllers. Because all traffic on the MDN is either traveling

from a processor/L2 cache to a memory controller, or visa versa, there are never any U-

turns in the network. There are no packets that travel up to a middle level router, then

turn around and go back down. This reduces routing complexity, eliminates crossbar

connections, and as a result, lowers power consumption and area consumed. Hop count

is also reduced, lowering packet latency and reducing router energy because each packet

visits fewer routers. Splitting the network up into separate physical networks, one

in each direction does not increase router area (it lowers it because of the simplified

crossbars) [4].

All of these benefits come at a cost, however. Wires no longer travel to the

nearest neighbor, meaning wires must now cross over each other. This means using
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Figure 2: Tapered Fat-Tree topology

upper metal layers. Depending upon the specifics of the layout, it could require another

metal layer to be added. Interrouter links are now too long to traverse in a single cycle,

and so repeaters must be inserted, taking up additional area, and possibly increasing

place and route complexity.

3.1.1 Topology

Figure 2 illustrates the tapered-fat tree (TFT) topology. Each of the bottom

level routers (circles) connects to four processor/L2 nodes. Each router of the top level

connects directly to a single memory controller.

3.1.2 Routing Function

The routing function is very simple. Packets leave their source and travel

to the bottom level of routers. One of the two possible intermediate level routers is

chosen based on the address of the request (addresses are interleaved across the two

intermediate routers). Packets then move on to the router that connects to the desired

memory controller. Routing on the way back down is just as simple, with one of the

two possible middle level routers being chosen randomly. This routing simplicity also

has latency advantages because the routing function takes less time in hardware.

3.1.3 Tapered Fat-Tree on TILE64

Unlike the original mesh network which has a very regular placement of routers

and wires, place-and-route for a non-mesh network is fairly difficult. As a starting

point, I use the router placements suggested in [4] for the TFT. Figure 3 illustrates the
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Figure 3: Tapered Fat-Tree mapped onto TILE64. The connections only represent
logical connectivity. A possible physical layout is shown in Figure 5.
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placement of the TFT routers and their logical connectivity mapped onto the TILE64.

Due to the asymmetry, density, and lengths of the wire connections, the inter-router

connections add significant power and delay. I discuss these issues in Section 4.
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Chapter 4

Evaluation Models

4.1 Wire Model

1The propagation delay of a signal across a wire is proportional to RwireCwire.

Because both Rwire and Cwire grow linearly with the length of the wire, the delay

across a wire increases quadratically with wire length. By inserting a chain of repeaters

(inverters) along the wire, designers can make the delay grow only linear with wire

length. To achieve the minimal delay, the repeaters must be sized and placed along the

wire such that the fanouts the repeaters drive form a geometric series.

Achieving minimal wire delay is a very difficult problem to solve, not only

mathematically, but also in terms of physical design. For a given wire length, designers

must first determine the number of repeaters that achieves the best tradeoff in terms

of power, area, and delay. Then, they must size and place the repeaters such that the

fanouts form a geometric series. Since most semiconductor companies use standard cells,

the optimal buffer sizes are likely not part of the standard cell library, so the closest ones
1The work in this chapter was done in collaboration with Allen Lee for a CS258 class project. All

mistakes are my own.

Figure 4: First-order repeater model
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must be chosen. Even after choosing the standard cell inverters and determining the

optimal placements, it may not be possible to place them at the ideal spots. Globally

repeated wires require many via cuts from the upper layer down to the substrate, and

the repeaters may be too large to fit into the substrate if the chip area is heavily utilized.

For these reasons, I use the first-order repeated wire delay model described in

[4][18] and illustrated in Figure 4. Namely,

1. Repeaters are identically sized and evenly spaced.

2. The effects of inductance are not modeled.

I assume that each repeater has a PMOS/NMOS ratio of 2 and has twice the drive

strength of a minimum-sized inverter.

The delay across a single repeater stage (Ts) is calculated as:

K0 = Rd(1 + β)(Cd + Cg) (4.1)

K1 =
Rd

wd
Cw + wdRw(1 + β)Cg (4.2)

K2 =
1
2
RwCw (4.3)

Ts = 0.69(K0 +K1ls +K2l
2
s) (4.4)

Here, Rd is the equivalent resistance of the repeater, β is the PMOS/NMOS ratio, Cd

is the diffusion capacitance, Cg is the gate capacitance, wd is the width of the repeater,

Cw is the capacitance per millimeter, Rw is the resistance per millimeter, and ls is the

length of the segment. The total wire delay across n stages (Tw) is:

Tw = nTs (4.5)

4.1.1 Technology Model

Because the router power models are based on the 100nm process, I obtained

and derived physical parameters for the wires corresponding to this technology node

from the 2003 ITRS Roadmap [3]. I discuss the router power models in more detail in

Section 4.2. Tables 2 and 3 present the relevant parameters.

4.1.2 Wire Layout

Figure 5 illustrates the physical layout of the wires for the routers at each level.

I approximate the length of each wire as the Manhattan distance between the endpoints.
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Table 2: Model Characteristics and Constants
Parameter Symbol Value Units
Supply Voltage VDD 1.0 [V]
Clock Frequency f 750 [MHz]
Tilera Tile Width Wt 2.6025 [mm]
Gate Capacitance Cg 1.95E-16 [F/µm]
Diffusion Capacitance Cd 1.77E-15 [F/µm]
Resistivity of Copper ρCu 1.72E-8 [Ω-m]
Repeater Eq. Resistance Rd 1138.4 [Ω-µm]
NMOS Leakage Current Ioff,N 10 [nA/µm]
PMOS Leakage Current Ioff,P 10 [nA/µm]
PMOS/NMOS Ratio β 2

Table 3: Interconnect Characteristics
Parameter M1 Int. Global Units
Pitch 240 320 475 [nm]
Width 120 160 320 [nm]
Thickness 75 94 113 [nm]
A/R 1.6 1.7 2.1
Rw 1.91E3 1.14E3 4.75E2 [Ω/mm]
Cw 2.00E-13 1.85E-13 1.31E-13 [F/mm]

I assume that Level 3 routers use low level metal wires, Level 2 routers use intermediate

wires, Level 1 routers use global wires, and repeaters are placed every 0.5mm.

Because Tilera has not revealed the die size of the Tile64, I must estimate its

dimensions. One source [22] postulated that the die size is approximately four times

that of the quad-core Intel Core 2 Extreme QX6850, but this approximation results in

such a large area that the yield would be virtually zero. Instead of using this estimate, I

compare the transistor count of the Tile64 to the transistor count of NVIDIA’s G80 chip,

which was fabricated with the same process. The G80 GPU has 681 million transistors

with a die size of 480mm2 (21.9mm × 21.9mm) [1]. Because the Tilera has 615 million

transistors [12], I approximate the Tile64 die area as

615M transistors
681M transistors

∗ 480mm2 = 433.48mm2

This area corresponds to dimensions of 20.82mm × 20.82mm. At eight cores to a side,

the width of one core (Wt) is thus 2.6mm. Due to the variability in size of transistors,

this is a very rough estimate.



16

Table 4: Multi-Cycle Wire Delays (tcycle = 1.33 ns)
Router Level Paths Length n Tw(ns) Cycles
Level 1 P1-P4 Wt 5 1.22 1
Level 2 P1-P2 Wt 5 1.06 1

P3-P4 3·Wt 15 3.18 3
Level 3 P1-P2 3·Wt 15 2.17 2

P3 5·Wt 26 3.61 3
P4-P6 7·Wt 36 5.06 4
P7 9·Wt 46 6.50 5
P8 11·Wt 57 7.95 6

4.1.3 Multi-Cycle Wire Delay

As Figure 5 shows, the tapered fat-tree topology requires connectivity between

points that are located at nearly opposite sides of the chip. Using the wire delay model

described earlier in this section, I determined that these long paths require multiple

cycles. Table 4 summarizes the results of my analysis.

4.2 Power Model

Because power is becoming the limiting constraint in modern multiprocessors,

I model power dissipation in the network simulations to compare the energy efficiency of

the different topologies. I consider the static and dynamic power dissipated both within

the routers and in the inter-router interconnect. The intra-router energy measurements

are based on the Orion energy models [24] using the 100nm technology node.

I assume a clock frequency of 750MHz and supply voltage of 1.0V, the same

parameters used by the actual TILE64 [12].

Although the actual TILE64 multiprocessor uses the 90nm process, I was not

able to obtain accurate power models for the routers at this technology node. However,

because I am only interested in comparing the relative energy efficiency of the topologies,

applying the same model to the different schemes is sufficient for comparison purposes.

4.2.1 Router Power

As a flit traverses a router, switching power (Prouter,dyn) is consumed at the

each of the functional units: the input buffer (Pbuf ), the matrix crossbar (Pxbar), and

the arbiter (Parb):

Prouter,dyn = Pbuf + Pxbar + Parb (4.6)
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Figure 5: Physical layout of TFT on TILE64
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Figure 6: Input-buffered on-chip router with matrix arbiter.

Each functional unit is made up of a set of atomic components, i.e., elements consisting of

one or more capacitors that have identical switching behavior. For an atomic component

x with switching capacitance Cx and activity factor α, the average switching power Px,sw

is calculated as:

Px,sw =
1
2
αCxV

2
DDf (4.7)

The activity factor α is calculated individually for each atomic component of each

functional unit from the load on the router. Here, load means the probability that a

flit arrives at a single input buffer. To determine the appropriate load for each router,

simulations keep track of the total flit activity at each of the routers.

As technology scales to deep submicron processes, subthreshold leakage power

becomes a significant component of overall power dissipation. To account for leakage

power in the simulations, I adopt the model detailed in [5]. The leakage power (Pleak)

is calculated as:

Pleak = IleakVDD (4.8)

Here, Ileak is the leakage current of the router buffers. Figure 6 illustrates the router

I modeled with the energy components labeled. More details about the breakdown of

the individual energy components can be found in [24]. The matrix arbiter used in

the power model is different from the round-robin arbiter actually implemented in the

simulation. I do not believe this would have any significant effect on the outcome of the

simulation though, because both types of arbiters exhibit strong fairness, meaning both

serve their requesters equally often dally:interconnection.
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4.2.2 Interconnect Power

Although the Orion models provide accurate power models within the routers,

they do not account for power dissipated in the inter-router interconnect. Because

the TFT requires many global connections, interconnect power consumption may be

significant. I calculate the static (Pw,stat) and dynamic (Pw,dyn) power dissipated driving

a wire segment (ls) based on the equations disclosed in [4]:

Pw,dyn = α(wd(Cg + Cd) + Cwls)fV 2
DD

Pw,stat =
1
2
wd(Ioff,N + βIoff,P )VDD

Pw = Pw,dyn + Pw,stat

Here, α is the activity factor on the wire obtained from the simulations.
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Chapter 5

Simulation Environment

I wrote a detailed cycle-accurate flit-level simulator, consisting of 6000 lines

of new code, implemented on top of an existing simulation framework developed by

Christopher Batten of MIT. The simulator provides completion times and activity fac-

tors for every router and link. These activity factors were then used to provide power

estimates. The Tile64 was modeled after the description in 2.1. The TFT networks

used the wire delays listed in Table 4.

5.1 Description of Simulator Operation

The simulator consists of a number of nodes that are the sources, sinks, or

memories, connected to the TDN and MDN networks. The sources and sinks represent

the processors’ L2 caches injecting cache requests onto the TDN and MDN. These

packets enter the TDN network if they are a fill request, or the MDN if they are a

writeback request (because I assume that all writebacks are going to off-chip memory,

as you would not write to another core’s L2). Packet sizes were as according to Table 6.

Fill requests always travel to a directory cache that is on-chip to discover the location

of the fill data. The network (MDN or TDN) over which a packet travels can be seen

in Figure 8. Figure 8 shows the network path in the system where the MDN is a TFT,

Table 5: PARSEC Applications Simulation Parameters
Bencmark Working Set Size Sharing Injection Rate % Shared Access % Fills
streamcluster small small 0.027 0.1 99
blackscholes small large 0.00014 19.0 33
canneal large small 0.023 0.1 66
x264 large large 0.0041 50.9 68
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Figure 7: Two physically separate networks, for requests and replies

the only difference when the MDN is a mesh (the Tile64 system) is that fill responses

from remote nodes are sent via the MDN instead of the TDN. The separate request

and response networks connecting the source nodes to the memories can be visualized

in Figure 7.

The packet is broken up into flits (all of which are 32 bits wide on both the

MDN and TDN), which get buffered at the input buffer to the router that connects

the source to the network. The router examines the destination field of the first flit

to decide which output port to request arbitration for. The per-output arbiters use

round-robin arbitration to decide which flit gets the grant for this cycle; a hold line is

invoked until the tail flit of a packet passes to prevent flits from different packets from

getting interleaved.

Once the router has perfomed switch allocation, the winning flits are then

placed into a pipeline that simulates the intra-router delay. Flits that leave the router

on this cycle are moved into the inter-router links, which delay their inputs based on

the actual link length between the routers that it connects.

The flit makes its way through the network as described, until it arrives at the

directory cache (inside a sink) or a memory, where the flits of a packet are reassembled.

Directory caches transform fill queries into fill requests if the query is a hit at the

directory cache, or they forward the query to an off-chip directory if it is a miss. Fill

requests are forwarded to the appropriate destination, be it an on-chip remote node, or

an off-chip memory. Fill requests received at an on-chip remote node are turned into

fill responses and sent back to the original requesting source.

The memory changes requests into the appropriate response, placing it in a

pipeline to delay the response for 52 cycles (the memory latency). The response then

makes its way back to the source that originally issued the request. Queries that could

not be satisfied at the on-chip directory cache produce a fill request that is either satisfied
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Figure 8: Protocol for TFT memory traffic

at the off-chip memory, or sent on-chip to the remote node holding the data.

5.2 Benchmark Description

I performed synthetic benchmarks, whose parameters were based on a selected

set of the PARSEC benchmarks. I chose four that would provide a full range of small

and large working sets, and low and high amounts of sharing. This would give a full

range of stress on the L2DN, as well as the interprocessor interconnection network, and

also capture interactions between the two. See 5 for the full simulation parameters. Per

Table 6: Simulation Packet Sizes
Packet Type Size (bits)
Directory Fill Query 32
Fill Request 32
Fill Response 288
Store Request 288
Store Response 32



23

processor injection rate is the probability that a given processor would inject a request

into the network on a cycle. Percent shared accesses refers to what percent of requests

must go off-chip to be satisfied. Fills are the probability that a request is a cache line fill

(generated by a load or allocate on store), otherwise it is a writeback. I assumed that

any shared requests could be satisfied by a node on-chip. These numbers were calculated

by taking the off-chip memory traffic rate from the PARSEC benchmark, dividing by

the percent of unshared accesses to calculate total cache traffic. The relative ratios of

fills and writebacks were used to determine what type of traffic to generate. Note that I

did not implement a cache coherence protocol, or run the PARSEC benchmarks. I used

the characterizations of the applications’ traffic to motivate my synthetic benchmarks.

To simulate a real processor, each source is limited to a maximum of eight

outstanding requests at any given time. This number was chosen by examining the

number of outstanding requests that allowed each network to finish an average workload

in minimum time, while stalling sources that were not immediately able to inject their

traffic into the network.

At each cycle, the source uses the injection rate probability to decide whether

to generate a request. If it generates a request but it already has eight outstanding

requests, or if there is already another request by this source attempting to enter the

network, the source is stalled and does not do any ‘work’ during this cycle. Otherwise,

the source completes a unit of work each cycle. Benchmarks are completed when a

certain amount of work is done by the processors. Clearly, benchmarks will complete

faster if sources do not spend too much time stalling.
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Chapter 6

Results

6.1 Benchmark Completion Time

To compare the relative performance of the different topologies, I chose a work-

load for each benchmark and executed the same workload on each of the topologies. I

normalize the completion time of each benchmark to the time it takes to finish executing

when the MDN is comprised of the original mesh topology. The results are shown in

Figure 9. It should be noted that when I refer to mesh or tree topology, or mesh or tree

network, I am referring to the full simulation setup with a mesh TDN (always), and

either a mesh MDN or a tapered fat tree TDN. All energy, power, and completion time

numbers include the activity of both the TDN and MDN. This means the relative power

savings of the TFT to the mesh is actually greater than that shown here, but because

the TDN is also part of the system I am simulating, I thought it a fairer comparision if

I included the TDN’s energy consumption.

The simulations indicate that for programs with large amounts of sharing,

such as blackscholes and x264, the TFT offers little advantage over the original Mesh

network. These applications require only a small amount off-chip bandwidth, so most

of the memory traffic stays on the TDN, which is common to both networks I tested.

The fact that the TFT network has a slightly faster completion time is due to packets

spending less time in transit, as shown in Figure 10. As expected, the higher traffic

injection rate of x264 results in a small amount of queueing, of which there is almost

none in blackscholes.

For applications with small amounts of sharing, such as streamclrefuster

and canneal, most of the memory traffic goes off-chip. As demonstrated in Figure 11,

the packets are spending the majority of their time in queues, waiting to make forward
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Figure 9: Completion times of benchmarks normalized to the completion time with the
Mesh topology.

Figure 10: Average latency of packets for the blackscholes and x264 benchmarks.
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Figure 11: Average latency of packets for the canneal and streamcluster benchmarks.

Table 7: Throughput of Selected MDN Routers
Benchmark Router Topology Throughput (bits/cycle)
streamcluster memory controller, outgoing mesh 3.3

memory controller, incoming 29.0
top level, outgoing tree 4.0
top level, incoming 35.0

canneal memory controller, outgoing mesh 14.0
memory controller, incoming 27.0
top level, outgoing tree 18.7
top level, incoming 36.2

progress. At this point, the primary reason that the tree network completes faster is

not due to the lower latency of the tree network, it is due to the increased throughput,

shown in Table 7. In these benchmarks where congestion on the MDN becomes an issue,

the TFT topology speeds up the completion time by 33.6% for canneal and 20.6% for

streamcluster.

6.2 Power

The TFT topology shows a power savings for all of the benchmarks, as shown

in Figure 12. Interestingly, a majority of the power dissipation appears to be from

static leakage power because the routers on the MDN are fairly under-utilized. Even

for memory-intensive applications, the average load for routers in the Mesh network



27

Figure 12: Power dissipated within the routers of the network.

remain below 0.09. In the TFT network, the load for the routers was below 0.08 for

the routers going toward the memory controller. I observed larger activity factors for

the TFT routers returning from the memory controller (as much as 0.565 for the Level

1 routers in the canneal benchmark), but these routers have a small number of input

ports, so their dynamic power dissipation remains low.

These power measurements suggest that a majority of the power savings comes

from reducing static power dissipation. Because the original Mesh network used 64

routers in the MDN, and the TFT topology uses only 56 routers with fewer input ports

on average, the TFT appears to be a more energy-efficient topology.

The effects of the inter-router interconnect can be seen in Figure 13. The

tree network dissipates less power than the mesh network for all benchmarks except

for canneal. The reason for this is due to the higher operating throughput of the

tree network than the mesh network, especially for this specific workload. This higher

throughput is achieved due to the nature of the traffic distribution for the canneal:

33% are stores, compared to 1% stores for streamcluster. In streamcluster, the

large number of loads makes a bottleneck at the memories on the return path. The 288-

bit load responses that are returning on the MDN completely congest that part of the

network. canneal, on the other hand, balances traffic types better. As store requests

are nine times larger than load requests on the request network, and load responses

are nine times larger than store responses, traffic is distributed more evenly among the

request and response networks, allowing higher network utilization.
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Figure 13: Total power dissipated in routers and interconnect.

Figure 14: Relative energy dissipated in routers and interconnect.
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This higher power usage does not cause an increase in energy required to

complete the workload. To the contrary, the tree network uses less energy to finish all

of the benchmarks. The greater power usage in canneal was due solely to the fact

that the network was operating at a sufficiently higher throughput. It did more work

per cycle, enough to result in higher power requirements despite lower per unit of work

energy required. The total energy used to complete each workload is shown in Figure

14, which includes both intra-route energy and inter-router energy. The tree network

consistently uses between 70%-80% of the energy consumed by the mesh network.
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Chapter 7

Related Work

Interconnection networks have been studied for decades now, used in applica-

tions as diverse as a uniprocessor’s out-of-order scheduling to supercomputers composed

of hundreds of nodes. An excellent reference for all aspects of interconnection networks

is [10]. Interconnection networks designed specifically for parallel architectures are given

a thorough treatment in [6]. L2 to off-chip memory interconnects for CMPs have not

been specifically researched before due to the relatively recent introduction of CMPs.

Research into interconnection networks has largely concentrated on ‘many to many’

networks, as opposed to the ‘many to few’ design discussed in this thesis.

The mesh networks used by the Tile64 are instances of k-ary n-cubes, which

have been popular interconnection networks for years. Hypercubes were used for many

parallel computers before Dally pointed out the benefits of lower radix k-ary n-cubes

when under realistic constraints such as wiring and pin density [8]. Low dimensional

meshes have been very popular interconnects since. Fat trees were first introduced in

[20]. Generalized fat trees, of which the tapered fat tree used in the thesis is a variant

of, were described in detail in [23]. The tapered variant that I employ was analyzed in

terms of power, performance, and area usage in [4] and performed well, prompting me

to examine it for a special-purpose L2 to memory interconnect.

Virtual channel flow control, employed in the modified design to allow the

TDN to run without deadlock, was introduced in [7] and further developed [9]. It was

used extensively in [21] to allow packets to route adaptively over k-ary n-cubes. Virtual

channel flow control has been used in many supercomputer networks, such as the Cray

T3D [19] and SGI Spider[17].

The power modeling of routers is a topic of importance. In the context of

on-chip networks, routers microarchitecture is covered in [25]. The Orion power model
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used in this thesis was developed based on examining two commercial routers, the Alpha

21364 and InfiniBand routers [26].

Many different benchmarks for parallel workloads have been proposed over the

years, the most commonly used (until recently) were the SPLASH and SPLASH2 bench-

marks [2]. The authors of the PARSEC benchmark suite believe that the SPLASH2

benchmarks are now outdated and not representative of future CMP workloads [13]. The

increased demands of the PARSEC benchmarks will be a primary motivating factor for

re-examining the off-chip memory interconnect.
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Chapter 8

Conclusion

In this thesis, I proposed a detailed solution for providing an energy-efficient

topology for off-chip processor-memory interconnect to improve the performance of

memory-intensive parallel applications. I have demonstrated that the tapered fat-tree

topology improves performance by up to 33.6% for applications with high off-chip band-

width requirements without reducing the performance of those with mostly on-chip

memory traffic. This is primarily due to the increased throughput made possible by the

TFT topology, and secondarily because of the reduced latency. By reducing the num-

ber of total number of routers and simplifying the routers’ crossbars, I have also shown

that the TFT offers substantial energy savings in all of the benchmarks, regardless of

working set size or the amount of cache-line sharing. This energy savings translates into

lower power requirements for all of the benchmarks but the most intensive.

As the number of cores on a single chip continues to grow and the number of

memory access points scales less aggressively, I feel the study of similar ‘many to few’

topologies warrants additional attention. Although design and physical layout of non-

mesh networks is more difficult, and possibly requires more wires, the potential power

savings and performance improvements may soon outweigh the added design complexity.
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