
Compromising PCA-based Anomaly Detectors for
Network-Wide Traffic

Benjamin I. P. Rubinstein
Blaine Nelson
Ling Huang
Anthony D. Joseph
Shing-hon Lau
Nina Taft
Doug Tygar

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-73

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-73.html

May 29, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We would like to thank Marco Barreno for his valuable suggestions. This
work was supported in part by TRUST, which receives support from the
National Science Foundation (NSF award #CCF-0424422), the Air Force
Office of Scientific Research (AFOSR #FA9550-06-1-0244), Cisco, British
Telecom, ESCHER, Hewlett-Packard, IBM, iCAST, Intel, Microsoft, ORNL,
Pirelli, Qualcomm, Sun, Symantec, Telecom Italia, and United
Technologies; in part by California state Microelectronics Innovation and
Computer Research Opportunities grants (MICRO ID#06-148, #07-012)
and Siemens; and in part by the DETERlab, which receives support from
the Department of Homeland Security Advanced Research Projects
Agency (HSARPA award #022412) and AFOSR (#FA9550-07-1-0501).

Compromising PCA-based Anomaly Detectors for

Network-Wide Traffic

Benjamin I. P. Rubinstein1 Blaine Nelson1 Ling Huang2

Anthony D. Joseph1,2 Shing-hon Lau1 Nina Taft2

J. D. Tygar1

1Computer Science Division, University of California, Berkeley
2Intel Research, Berkeley

May 29, 2008

Abstract

The use of machine learning techniques to improve network design is gaining
popularity. When these techniques are applied to security problems, a funda-
mental problem arises; namely that they are susceptible to adversaries who
poison the learning phase of such techniques. In this paper we focus on PCA-
based anomaly detectors used to identify anomalies in backbone networks via
a comprehensive view of the network’s traffic. We present four data poisoning
schemes and evaluate their effectiveness on increasing an attacker’s chance of
evading detection. Because machine learning techniques often require retrain-
ing when used on data that is evolving, this also opens the door for attackers
to employ stealthy poisoning methods that perturb the PCA detector slowly
and covertly over time. We demonstrate that some of these PCA-based attacks
can increase the adversary’s chance of success sixfold under relatively moder-
ate attacks, and comment on possible directions for combating these types of
attacks.

1 Introduction

Statistical Machine Learning (SML) techniques are increasingly being used as tools
for analyzing and improving network design and performance. In particular, SML
plays an important role in dynamic network anomography [6], the problem of infer-
ring network-level Origin-Destination (OD) flow anomalies from aggregate network
measurements. Network anomography techniques centrally collect aggregate net-
work measurements and employ various SML techniques [2, 5, 6] to diagnose network
traffic anomalies. One popular technique, [2], is based on Principal Components
Analysis (PCA).

We are interested in understanding the vulnerabilities associated with using
SML-based techniques, specifically how adversaries can subvert the decision-making
process. Recently, many researchers have explored attacks against several learning
systems—in [1], we summarize this research and describe it with a central frame-
work. In the case of network anomography, we ask the question—can an adversary

1

generate anomalous OD traffic flow patterns that mislead network anomography
techniques into missing the anomalous traffic flows?

In this paper, we show that the answer is “yes” for anomography techniques
based on PCA [2]. We present four data poisoning schemes that increase the vari-
ance of network traffic along the links of a target flow during the training phase of
this algorithm. After poisoning PCA’s learning phase, the adversary subsequently
launches a large-scale denial of service attack that evades detection. We evalu-
ate the effectiveness of these data poisoning schemes from the attacker’s point of
view—their goal is to increase the false negative rates of the detector so that when
an attack is launched the chance of evading detection is higher. In the language of
our taxonomy of attacks on machine learning systems [1], our focus is on Causative
Targeted Integrity attacks on PCA-based anomalous OD flow detectors. The term
Causative refers to the manipulation of the training data, while the term Integrity
indicates a goal of degrading performance (by increasing false negatives).

We find that simple data poisoning attacks can indeed compromise a PCA-
based detector. In some cases, the false negative rates can be increased sixfold as
compared to an unpoisoned PCA detector. A key vulnerability of SML techniques
is that they often need to be retrained to capture evolving trends in the underlying
data. In previous usage scenarios [2, 5], the PCA detector is retrained regularly
(e.g., weekly). This opens the door for attackers to carry out the poisoning activity
in a stealthy fashion—slowly, yet increasingly, over longer periods of time in what
we call a Boiling Frog attack. If the principal components of PCA are gradually
perturbed, the attacker decreases the chance that the poisoning activity itself is
detected. For one method of poisoning, a week’s average link traffic volume, along
the target OD flow, must be increased by 18% in order to affect an increase of the
false negative rate from 4% to 50%. Under the Boiling Frog attack the same result
can be achieved with a modest 5% volume increase from week-to-week over a 3 week
period.

2 Background

The data that many network anomography detection techniques mine to uncover
anomalies is that of the network-wide traffic matrix. This data describes the traffic
demand between all pairs of routers, or PoPs, in a backbone network. ISPs gather
traffic volume time series for each origin-destination flow. Before describing our
poisoning attacks, we first define traffic matrices, present our notation, and then
summarize the PCA subspace anomaly detection method of [2].

2.1 Traffic Matrices and Volume Anomalies

Network link traffic represents the superposition of OD flows. Consider a network
with N links and F OD flows and we measure traffic on this network over T time
intervals. The relationship between link traffic and OD flow traffic is concisely
captured in the routing matrix A. This matrix is a N × F indicator matrix such
that Aij = 1 if OD flow j passes over link i, and is zero otherwise. If X is the T ×F
traffic matrix (TM) containing the time-series of all OD flows, and if Y is the T ×N
link TM containing the time-series of all links, then Y = XA>. We denote the tth

2

row of Y as y(t) = Yt,• (the vector of N link traffic measurements at time t), and
the original traffic along a source link, S by yS(t).

We focus on the problem of detecting OD flow volume anomalies across a top-
tier network, by observing only link traffic volumes. Anomalous flow volumes are
unusual traffic load levels in a network that are caused by anomalies such as Denial
of Service (DoS) attacks, Distributed DoS attacks, flash crowds, device failures,
misconfigurations, and so on. DoS attacks serve as the canonical example attack in
the sequel.

2.2 Subspace Method for Anomaly Detection

We briefly summarize the PCA-based anomaly detector introduced in [2], where the
authors observed that due to the high level of traffic aggregation on ISP backbone
links, OD flow volume anomalies often go unnoticed by being “buried” within nor-
mal traffic patterns. They also observe that although the measured data has high
dimensionality N , normal traffic patterns actually lie in a subspace of low dimen-
sion K � N . Inferring this normal traffic subspace using PCA (which finds the
principal traffic components) makes it easier to identify volume anomalies in the
remaining abnormal subspace. Since PCA reveals that the OD flow traffic matrices
of ISP backbones have low intrinsic dimensionality, and link and end-to-end traffic
demands are linearly related, the ensemble of all link traffic in a network also ex-
hibits low dimensionality—for the Abilene backbone network, most data variance
can be captured by the first K = 4 principal components.

PCA is a dimensionality reduction method that chooses K orthogonal principal
components to form a K-dimensional subspace capturing maximal variance in the
data. After adjusting Y to have zero mean columns, the kth principal component
is computed as

vk = argmax
w:‖w‖=1

∥∥∥∥∥Y
(

I−
k−1∑
i=1

viv>i

)
w

∥∥∥∥∥ . (1)

The resulting K-dimensional subspace spanned by the first K principal components
V = [v1,v2, . . . ,vK] is called the normal traffic subspace Sn. The remaining (N −
K)-dimensional subspace constitutes the abnormal traffic subspace Sa.

Volume anomalies can be detected by decomposing the link traffic into y(t) =
yn(t) + ya(t) where yn(t) is the modeled normal traffic and ya(t) is the residual
traffic, corresponding to projecting y(t) onto Sn and Sa, respectively. A volume
anomaly at time t typically results in a large change to ya(t), which can be detected
by thresholding the squared prediction error ‖ya(t)‖2 against Qβ, the Q-statistic at
the 1− β confidence level.

3 Attacks on PCA

Consider the scenario of a smart adversary who knows an ISP uses a PCA-based
anomaly detector. The adversary will poison the training data so that the detector
learns a distorted set of principal components. As a result, when the attacker later
launches an attack, the PCA-based detector will fail to detect it.

3

3.1 The Threat Model

In our threat model, the adversary’s goal is to launch a successful Denial of Service
(DoS) attack on a sink point-of-presence (PoP) node B from a source PoP node D.
Fig. 1 illustrates a simple PoP-to-PoP topology. Each PoP has ingress links over
which it receives client traffic. This client traffic is eventually delivered to destination
clients via egress links that leave the sink PoP. For the clients depicted in the figure,
the traffic flows from PoP source node D to PoP sink node B. We refer to the first
inter-PoP link in the path of the origin-destination flow OD, inside the ISP, as the
source link.

Figure 1: Links used for data poisoning

We make some assumptions about our adversary. First, we assume the attack
injects additional traffic, chaff, along the OD flow they intend to attack. The adver-
sary can inject additional traffic at node D directed to sink PoP B along the source
link. Such a poisoning scheme is possible if the adversary gains control of the core
router inside PoP D to which the inter-PoP link is attached. Second, we assume the
adversary has access to the real-time link traffic volumes along the source link. Some
of our attacks make use of this information so the adversary can insert reasonable
amounts of additional traffic not dissimilar from the baseline traffic.

The adversary does not have control over existing traffic; i.e., they cannot delay
or discard traffic passing through D. Similarly, the adversary cannot submit false
SNMP reports to PCA. Such approaches to poisoning are infeasible because the
inconsistencies in SNMP reporting from neighboring PoPs could expose the com-
promised router. We do not assume that the attacker knows anything about traffic
volumes for links not incident to D or network flow-level volumes, or even knowledge
of future traffic levels.

We assume that the PCA detector is trained on initial traffic matrix data, and
then the principal components (PCs) learned are subsequently used for anomaly
detection. Each week the detector relearns the PCs; thus, the PCs used in any week
m are those learned during week m − 1. Hence in all but one attack scenario, we
assume that the adversary inserts chaff along the target OD flow throughout the
one week training period.

4

3.2 Chaff Selection

We now describe several simple methods to insert chaff into the target OD flow
from source PoP D to sink B. The common theme throughout these methods is to
increase the traffic variance along the target OD flow so that the normal subspace
learned by PCA better aligns with the target flow. This makes the residual of the
target anomaly small, reducing detection likelihood. Note that in the case of chaff
that is statistically independent to the non-attack traffic, the increase to variance
due to data poisoning is the variance of the chaff process. For the poisoning attack
to be feasible, the adversary must minimize the overall amount of chaff added to the
target links. A large increase to traffic volumes would make chaff insertion process
itself detectable by naive methods.

With these constraints on the adversary in mind, we consider several poisoning
strategies. In each, the adversary adds an extra volume of ct chaff traffic to the
target flow time series, possibly dependent on yS(t). Each strategy has an attack
parameter θ, which impacts the intensity of the attack. We next describe and
analyze several strategies for choosing ct.

Half Normal Chaff. In the Half Normal poisoning method, at time t the attacker
selects ct = |nt| where nt ∼ N (0, θ2) is a random variable, generated from a zero-
mean Gaussian distribution with standard deviation θ. The method’s name derives
from the distribution of the c’s—the Half Normal distribution. Here θ > 0 is an
attack parameter. In this scheme, chaff is added in each time interval, and the chaff
is independent of the link traffic yS(t). The c’s have mean

√
2/πθ ≈ 0.80θ and

variance (1− 2/π)θ2 ≈ 0.36θ2.

Scaled Bernoulli Chaff. In the Bernoulli poisoning method, the adversary injects
chaff at time t of size ct = θbt, where θ > 0 is the attack parameter, and the bt’s
are Bernoulli random variables taking on values in {0, 1} with equal probability.
Thus the adversary only adds a constant amount of chaff at select time intervals.
Note that, of all mean θ/2 distributions with support in [0, θ], the distribution with
maximum variance assigns all of its mass to points {0} and {θ} evenly, as in this
poisoning method. The Bernoulli chaff has a relatively low variance of 0.25θ2 and
mean of 0.5θ.

The Add-Constant-If-Big Method. In the Add-Constant-If-Big poisoning method,
the adversary injects a constant volume ct = θ > 0 of chaff at each point in time
when the natural traffic yS(t) exceeds a threshold α. We restrict our attention to
α equal to the mean of the week’s link traffic {yS(t)}Tt=1 assuming the mean is rela-
tively stationary and known by the attacker. Thus θ is again the attack parameter.
The intuition behind this scheme is to increase variance by adding chaff only when
the flow’s volume is already high.

The Add-More-If-Bigger Method. Finally, the Add-More-If-Bigger poisoning
method avoids the large sudden increases (by θ) of link traffic volumes produced by
the previous method. It adds ct = (yS(t)−α)θ, where α is a threshold as above and
θ is an attack parameter. This method adds more chaff to larger deviations from
the threshold, again assuming that the adversary has knowledge of the stationary
traffic mean in order to choose the threshold.

These four data poisoning schemes represent different styles of attacks (e.g.,
add traffic in every time slot, or only during some time intervals) and different

5

dependencies on the underlying regular traffic (the Half Normal and Bernoulli are
traffic independent whereas Add-Constant-If-Big and Add-More-If-Bigger are traffic
dependent).

3.3 Boiling Frog Attacks

In the above attacks, the poisoning occurs during a single week. We next consider a
long-term attack in which the adversary slowly, but increasingly, poisons the prin-
cipal components over several weeks. This attack is covert in that small amounts
of chaff, in gradually increasing quantities, are used for poisoning. We call this the
Boiling Frog poisoning method after the folk tale that one can boil a frog by slowly
increasing the water temperature over time.

Any of our four poisoning schemes presented above can be used here. The key
idea is to start by setting the attack parameter, θ, to a small value, and then to
increase it slowly over time. Before a Boiling Frog attack begins, the PCA-based
anomaly detector is trained on non-adversarial data—a week of data untouched by
the poisoning scheme. In week 1 of the attack, the target flow is injected with
chaff generated with parameter θ1. At the week’s end, PCA is retrained on that
week’s data. We assume here that any anomalies detected by PCA during that
week are excluded as training data. This process continues with θt used for week t.
Even though PCA is retrained from scratch each week, the training data includes
events not caught by the previous detector. Each successive week will contain more
malicious training data. This process continues until the week of the DoS attack,
when the adversary stops injecting chaff.

4 Experiments

4.1 Traffic Data

We use OD flow data collected from the Abilene network to simulate attacks on PCA-
based anomaly detection. Abilene is the Internet2 backbone. Data was collected
over an almost contiguous 6 month period from March 1, 2004 through September
10, 2004 [6]. Each week of data consists of 2016 measurements across all network OD
flows binned into 5 minute intervals. At the time of collection the network consisted
of 12 PoPs and 15 inter-PoP links. All 144 possible OD flows are represented, and
54 virtual links are present in the data corresponding to two directions for each
inter-PoP link and an ingress and egress link for each PoP.

4.2 Validation

We evaluate our data poisoning schemes on PCA-based anomaly detectors. We
replicate the method of Lakhina et al. [2] for adding synthetic anomlies. We use
week-long training sets, as such a time scale is sufficiently large to capture weekday
and weekend diurnal trends [4]. We detect synthetic attacks on a 5 minute interval.
Starting with the OD flow traffic matrix X for the test week, we generate a positive
example (an anomalous OD flow) by setting flow f ’s volume at time t, Xt,f , to be
a large value known to correspond to an anomalous flow. After multiplying by the
routing matrix A, the link volume measurement at time t is anomalous. Negative

6

examples (benign OD flows) are generated similarly by setting the flow volume to
a small value known to correspond to normal levels of flow traffic. These large and
small values are defined, as in [2], to be 1.5 and 0.625 times a cutoff of 8×107. When
validating PCA’s performance on an attack, with a positive example of anomalous
flow f , we first poison the training data along the same flow f .

Our performance metric for measuring the success of the poisoning strategies is
through their impact on the PCA-based detector’s false negative rates (FNRs). The
FNR is the ratio of the number of successful evasions to the total number of attacks
(i.e., the attacker’s success rate is PCA’s FNR rate). We simulate a DoS attack
along every flow at every time. We average FNRs over all 144 possible anomalous
flows and anomaly times. When reporting the effect of an attack on traffic volumes,
we first average over links within each flow then over flows and times. Furthermore
we generally report average volumes relative to the pre-attack average volumes. We
report validations of the Bernoulli and Half Normal randomized attacks averaged
over 50 independent repetitions.

4.3 Week-Long and Boiling Frog Attacks

We evaluated the effectiveness of our attacker strategies. We chose weeks 20 and 21
from the Abilene dataset to simulate the Week-Long attacks. The PCA algorithm
was trained on the week 20 TM poisoned by the attacker; we then injected attacks
during week 21 to see for how often the attacker can evade detection. We selected
these particular weeks because PCA achieved the lowest FNRs on these during the
testing.

To test the Boiling Frog attack we simulated TM data, inspired by methods
used in [2]. Our simulations presented multiple weeks of stationary data to the
adversary. While such data is unrealistic in practice, it presents an easy case on
which PCA should succeed. Anomaly detection under non-stationary conditions is
difficult due to the learner’s inability to distinguish between drift in benign data, and
adversarial poisoning. Demonstrated flaws of PCA in the stationary case constitute
strong results about PCA for anomaly detection in practice. We decided to validate
the Boiling Frog attack on a synthesized multi-week dataset, because the 6 month
Abilene dataset of [6] proved to be too non-stationary for PCA to operate well from
one week to the next. It is unclear whether the non-stationarity observed in this
dataset is prevalent in general.

We synthesized a multi-week set of OD flow traffic matrices, with stationarity
on the inter-week level, based on week 20 of the Abilene dataset. We used a three
step generative procedure to model each OD flow separately. First the underlying
diurnal trends of the OD flow f time series is modeling by a sinusoidal approxi-
mation. Then the times at which the flow is experiencing an anomaly are modeled
by a Binomial arrival process with inter-arrival times distributed according to the
Geometric distribution. Finally Gaussian white noise is added to the base sinusoidal
model during times of benign OD flow traffic; and Exponential traffic is added to
the base model during times of anomalous traffic. We next describe the process of
fitting this generative model to the week 20 Abilene data.

In step 1, we capture the underlying diurnal trends via Fourier basis functions.
We use sinusoids of periods of 7, 5 and 3 days, and 24, 12, 6, 3 and 1.5 hours, as
well as a constant function [2]. For each OD flow, we find the Fourier coefficients

7

from the flow’s projection onto this basis. We next remove the portion of the traffic
modeled by this Fourier forecaster and model the remaining residual traffic via two
processes. One is a noise process, modeled by a zero-mean Gaussian, intended
to capture short-term benign traffic variance. The second process models volume
anomalies as being exponentially distributed.

Step 2 selects which of the two noise processes is used at each time interval. We
look at the total residuals (after filtering out the Fourier trends) and note the small-
est (negative) residual value. Let −m denote this value. We assume that residuals
in the interval [−m,m] correspond to benign traffic, and that residuals exceeding m
correspond to traffic anomalies. We separate benign variation and anomalies in this
way since these effects behave quite differently. (This is an approximation, but it
works reasonably well for most OD flows.) Negative residual traffic reflects benign
variance, and since we assume that benign residuals have a zero-mean distribution,
it follows that such residuals should lie within the interval [−m,m]. Upon classi-
fying residual traffic as benign or anomalous, we model anomaly arrival times as
a Bernoulli arrival process. Under this model the inter-anomaly arrival times be-
come geometrically distributed. Since we consider only spatial PCA methods, the
placement of anomalies is of secondary importance.

For the final step, the parameters for the two residual traffic volume and the
inter-anomaly arrival processes are inferred from the classified residual traffic using
the Maximum Likelihood estimates of the Gaussian’s variance and exponential and
geometric rates respectively.

We include goodness-of-fit results for four OD flows: flow 144 which maximizes
mean and variance among all 144 flows; flow 113 which has one of the smallest means
and variances among all 144 flows; and flows 15 and 75 which have median mean
and variance, respectively, among all 144 flows. After manual inspection on all flows
we believe these flows to be representative elephant, mouse and two mid-level flows,
respectively. Figs. 2–17 include evaluations of the fit of the Gaussian, Exponential
and Geometric distributions to the three processes via quantile-quantile plots. In
general the Gaussian and Exponential Q-Q plots for the traffic volume processes are
close to linear illustrating good fits. The Q-Q plots for the Geometric inter-anomaly
arrival times, in Figs. 14–17 show more variable results. For each of the four flows,
we also plot the time series for a week of both the Abilene data and our simulated
model. We believe that this model is reasonable and sufficient for our purposes of
evaluating the Boiling Frog attack.

In our simulations, all link volumes are constrained to respect the link capacities
in the Abilene network—10gbps for all but one link that operates at one fourth of
this rate. Chaff that would cause traffic to exceed the link capacities are capped.

5 Results

We evaluate the effectiveness of our four data poisoning schemes. During the testing
week, the attacker launches a DoS attack in each 5 minute time window. Although
our poisoning schemes focus on adding variance, the mean of the OD flow being
poisoned shifts as well, shifting the means of all links over which the OD flow
traverses. The x-axis in Fig. 18 indicates the relative increase in the mean rate of
the affected links for the Week-Long attacks. We average over all experiments (i.e.,

8

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−3 −2 −1 0 1 2 3

−
3e

+
07

−
1e

+
07

1e
+

07
2e

+
07

3e
+

07

Normal Q−Q Plot on `normal' Residuals in Flow 144

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 2: The normal Q-Q plot of flow
144’s traffic with normal residuals.

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●●

●●●

●

●
●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●
●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3−
4e

+
06

−
2e

+
06

0e
+

00
2e

+
06

4e
+

06

Normal Q−Q Plot on `normal' Residuals in Flow 75

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3: The normal Q-Q plot of flow
75’s traffic with normal residuals.

●●●●●●●●
●●●●●

●●●●●
●●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●
●●●●

●●●
●●●
●●●
●●●●

●●
●●
●●
●●
●●
●●●●●

●●
●●

●●
● ●●

●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

0e
+

00
1e

+
07

2e
+

07
3e

+
07

4e
+

07
5e

+
07

6e
+

07

Exponential Q−Q Plot on `anomalous' Residuals in Flow 144

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4: The exponential Q-Q plot
of flow 144’s traffic with anomalous
residuals.

●●
●●

●●
●●●

●●
●●
●●
●
●
●
●

●
●
●
●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

Exponential Q−Q Plot on `anomalous' Residuals in Flow 75

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 5: The exponential Q-Q plot of
flow 75’s traffic with anomalous resid-
uals.

0 1 2 3 4 5 6 7

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Comparing Actual and Synthetic Data − Flow 144

Time (days)

V
ol

um
e

(1
00

 b
yt

es
)

synthetic actual

Figure 6: Simulated flow 144 time se-
ries (gray) vs. actual (black).

0 1 2 3 4 5 6 7

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

Comparing Actual and Synthetic Data − Flow 75

Time (days)

V
ol

um
e

(1
00

 b
yt

es
)

synthetic actual

Figure 7: Simulated flow 75 time se-
ries (gray) vs. actual (black).

9

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●●
●●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●

●
●
●

●●●

●●●
●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●
●●

●

●

●●●
●●

●
●

●

●

●

●
●

●

●●

●

●

●●
●

●●

●
●
●

●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●
●

●●●●

●

●

●

●

●
●

●●●

●
●

●

●

●
●

●
●

●
●●

●

●

●
●

●

●
●●

●

●

●
●

●●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●●
●

●

●

●
●

●●

●
●

●
●

●●

●
●

●●

●

●

●●

●

●

●

●

●●●
●

●

●
●●
●●

●
●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●
●

●
●

●●

●●
●

●●
●

●

●

●
●

●
●●

●

●

●
●

●
●●
●

●●●
●

●

●

●●●

●
●

●
●

●
●

●
●
●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●●●

●

●●●●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●

●●
●●

●

●

●●
●

●

●
●

●
●●

●

●

●

●

●
●

●
●●

●●
●●●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●●●

●●

●

●
●●●●●

●●
●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●

●●
●

●
●

●

●

●

●

●
●●●

●
●

●

●

●●
●

●

●

●●●

●
●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●
●●

●

●●

●
●●

●
●●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●
●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●●

●
●

●

●●●
●

●●

●

●
●

●

●
●

●

●

●

●●

●●

●
●

●

●

●
●●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●
●●

●

●●
●

●
●●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●●●●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●●●

●●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●●
●●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●
●

●

●●●
●

●
●
●

●

●

●

●

●●

●●●●

●●

●

●

●

●

●
●●

●
●

●

●●
●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●

●●●●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●●
●

●●
●

●
●

●

●●

●●●

●●●
●

●●

●

●

●
●

●

●●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●●

●
●●

●
●

●
●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

−3 −2 −1 0 1 2 3

−
4e

+
06

−
2e

+
06

0e
+

00
2e

+
06

4e
+

06

Normal Q−Q Plot on `normal' Residuals in Flow 15

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 8: The normal Q-Q plot of flow
15’s traffic with normal residuals.

●●●●●

●●

●●●
●●

●●
●

●

●●

●

●

●

●

●●

●

●

●●

●

●●●
●

●

●●●

●

●●●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●

●
●

●●●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●●●●●

●

●●●
●

●

●●

●

●●●●●

●

●●

●

●●●
●●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●
●

●
●

●

●

●

●

●●●●●●●●

●

●●

●

●●●●●●●
●●

●●

●

●●●●●●

●●

●●

●

●

●

●●●●●
●●●●●●●●

●

●

●●●

●●●

●

●

●●●●

●●

●

●●

●

●

●●●
●
●●
●●

●

●●●●
●●●●

●
●

●

●

●

●
●

●●●●

●

●●

●

●●●
●

●

●

●

●
●●●

●●●●

●

●●

●●●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●●●
●●●●

●●

●●●

●

●

●

●●●●

●

●●

●●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●●●●
●

●
●

●●●●

●●

●●●

●●●●

●●●●

●●●●

●

●

●●●
●●●●

●

●

●

●●●

●

●

●●●●

●●●

●

●

●●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●●●

●

●

●●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●

●
●

●

●

●

●

●●

●

●●●

●●●●

●

●

●●

●

●

●

●

●●

●

●●●

●●

●●●●

●

●●●●

●

●●

●

●

●

●●●●

●●

●

●●●●●●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●●●
●●●

●●

●

●

●●●●●●

●

●

●

●

●●

●

●

●●●●●●●

●

●

●

●

●●●●

●

●●●●
●

●
●●●●●●●●●●

●●●●

●

●●

●

●●●●
●●●●●●●●

●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●●

●

●

●

●

●●●

●

●●●●●
●●

●

●

●●

●●

●

●●●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●

●●

●●●
●●

●

●●●●●

●

●●●●●●●●
●●●

●

●●●●●
●

●
●

●

●●●●●●●●
●●

●

●●●●●●●●●
●●●

●

●●
●

●

●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●●●
●

●

●

●

●●
●●

●

●●●

●●

●

●

●●●●●●●●
●●●

●●●●●●●●●

●

●●●

●

●

●

●●

●●

●●●●

●

●

●
●

●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●

●

●

●●●●●●

●●

●●●●●●

●

●

●

●●

●

●●
●

●

●●●●●●●

●

●●●

●

●●

●●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●●

●●

●●

●

●●

●

●

●

●

●
●

●●●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●●●

●
●

●●●●●●●

●

●
●

●●●●●

●

●●
●

●●

●●●●●●●

●

●

●●●●
●●●

●●●●●

●

●

●

●●●●●●●●●

●●

●●●

●

●

●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●●●●

●

●

●●●●●●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●●

●●
●●●●●●

●●

●●

●●●●●●●●

●●

●●

●

●

●

●

●●●●●●●●

●

●●

●

●●●●

●

●●●
●

●
●

●

●

●

●●●●●●●●●

●●

●●●●●●●●●
●●●●●●●●●●

●

●

●

●●●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

−3 −2 −1 0 1 2 3

−
50

00
0

0
50

00
0

Normal Q−Q Plot on `normal' Residuals in Flow 113

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 9: The normal Q-Q plot of flow
113’s traffic with normal residuals.

●●
●●

●●●●
● ●●

●●
● ●●●

●●●
● ●●

●●●●
●
●
●
●

●
●
●
●

●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00 1e+06 2e+06 3e+06 4e+06

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

Exponential Q−Q Plot on `anomalous' Residuals in Flow 15

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 10: The exponential Q-Q plot
of flow 15’s traffic with anomalous
residuals.

●●●
●●●●●

●●●●
●●●
●●●
●●
●●
●●
●●
●●
●●●

●●
●●

● ●●●●
●●

●●●
●

●
●
●
●
●

●
●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

Exponential Q−Q Plot on `anomalous' Residuals in Flow 113

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 11: The exponential Q-Q plot
of flow 113’s traffic with anomalous
residuals.

0 1 2 3 4 5 6 7

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

Comparing Actual and Synthetic Data − Flow 15

Time (days)

V
ol

um
e

(1
00

 b
yt

es
)

synthetic actual

Figure 12: Simulated flow 15 time se-
ries (gray) vs. actual (black).

0 1 2 3 4 5 6 7

0e
+

00
2e

+
05

4e
+

05
6e

+
05

Comparing Actual and Synthetic Data − Flow 113

Time (days)

V
ol

um
e

(1
00

 b
yt

es
)

Figure 13: Simulated flow 113 time
series (gray) vs. actual (black).

10

●●●●●●●
●●●●●●●
●●●●●●

●●●●●●
●●● ●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●●●●●
●●●●●●

●●●●●
●●●
●●●

●●
●●

●●
●●
●●●

●●
●

●●
●●
●
● ●

●
●
●●

●
●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

Geometric Q−Q Plot on `anomalous' arrivals in Flow 144

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 14: The geometric Q-Q plot of
flow 144’s inter-arrival times.

●●
●●
●
●●
●●
●●
●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400

0
50

10
0

15
0

Geometric Q−Q Plot on `anomalous' arrivals in Flow 75

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 15: The geometric Q-Q plot of
flow 75’s inter-arrival times.

●●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400

0
20

40
60

80
10

0
12

0
14

0

Geometric Q−Q Plot on `anomalous' arrivals in Flow 15

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 16: The geometric Q-Q plot of
flow 15’s inter-arrival times.

●●●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●
●
●●
●
●
●
●
●
●
●
●●
●

●
●
●
●
●
●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

0
20

40
60

80
10

0
12

0

Geometric Q−Q Plot on `anomalous' arrivals in Flow 113

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 17: The geometric Q-Q plot of
flow 113’s inter-arrival times.

11

1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

Week−Long Attacks: FNR vs. Relative Link Traffic Increase

Relative mean link traffic volume after attack

A
ve

ra
ge

 te
st

 F
N

R

●

Half Normal
Scaled Bernoulli
Add−Constant−If−Big
Add−More−If−Bigger

●

Half Normal
Scaled Bernoulli
Add−Constant−If−Big
Add−More−If−Bigger●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

Half Normal
Scaled Bernoulli
Add−Constant−If−Big
Add−More−If−Bigger

●

Half Normal
Scaled Bernoulli
Add−Constant−If−Big
Add−More−If−Bigger

Figure 18: Week-Long attacks using the
chaff generation methods. Test FNRs
are plot against the relative increase to
the mean link volumes for the attacked
flow.

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity of PCA to Normal Subspace Dimension

Number of principal components

A
ve

ra
ge

 te
st

 F
N

 &
 T

N
 r

at
es

●

●

●

●
● ● ●

●

●

● ●

● ●

●
● ●

●

● ●
● ● ●

● ●

●
●

● ●
●

● ●
●

●

●

● ●

● ●

●

●

●Clean FNR Clean TNR Poisoned FNR

Figure 19: Effect of normal subspace di-
mension on FNRs under an Add-More-
If-Bigger attack increasing source link
traffic by 20%.

over all OD flows). The figure shows that of our four schemes, the Add-More-If-
Bigger scheme is most effective in that it raises the FNRs the most. For a 10%
average increase in the mean link rates, the attacker can raise the FNRs to roughly
23%. The baseline FNR of PCA without data poisoning is approximately 4%, so the
attacker success rate is nearly 6 times larger in this example. (Note that 23% may
not be viewed as a high likelihood of successful evasion.) This number represents an
average over attacks launched each 5 minute window, so the attacker could simply
retry multiple times.

Simply increasing the number of principal components used by the PCA algo-
rithm does not protect against these data poisoning schemes. In Fig. 19 we show
the FNRs for the “clean” (unpoisoned) PCA and the FNR for the detector poisoned
by the Add-More-If-Bigger method. We also plot the True Negative Rate (TNR)
showing the number of correctly identified benign events. We see that the poisoned
FNR is not monotonic in the number of principal components, so there is no easy
choice (as there was for unpoisoned PCA). Moreover the supposed minimum poi-
soned FNR (beyond the first few points) that occurs around 17 PCs could most
likely not be used as a universal choice. It is likely that different attacks will require
different numbers of PCs to find their optimal FNR. Furthermore, choosing a num-
ber of PCs such as 17 comes at a tremendous cost to the degradation of the TNRs.
The unpoisoned detector did not suffer this tradeoff (i.e., with 4 PCs, it achieved
a good balance between small FNR and high TNR). This illustrates that poisoning
attacks force the detector to make untenable tradeoffs between FNRs and TNRs.

We now evaluate the effectiveness of the Boiling Frog strategy. In Fig. 20 we
plot the FNRs against the poisoning duration for the PCA detector. We examine
four different poisoning schedules with growth rates g ∈ {1.01, 1.02, 1.05, 1.15}. The
goal of the schedule is to increase the average attacked links’ traffic by a factor of
g from week to week. Parameter θ is chosen to achieve this goal. We see that the
FNR dramatically increases for all four schedules as the poison duration increases.

12

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boiling Frog Attacks: FNR vs. Attack Duration

Attack duration (weeks)

A
ve

ra
ge

 te
st

 F
N

R

Growth rate 1.01
Growth rate 1.02
Growth rate 1.05
Growth rate 1.15

Figure 20: Boiling Frog attacks using
the Add-More-If-Bigger chaff method,
for four geometrically increasing sched-
ules.

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Boiling Frog Attacks: Rejection Rate vs. Attack Duration

Attack duration (weeks)

F
ra

ct
io

n
of

 tr
ai

ni
ng

 d
at

a
re

je
ct

ed

Rate 1.01 Rate 1.02 Rate 1.05 Rate 1.15

Figure 21: The training data rejection
rates for the Boiling Frog attacks shown
in Fig. 20.

With a 15% growth rate, the FNR is increased to more than 70% from 3.6% over 3
weeks of poisoning; even with g = 1.05 the FNR is increased to 50% over 3 weeks.
Thus Boiling Frog attacks are effective on even small volume growth rates.

Fig. 21 shows the proportion of training data rejected each week by PCA (rejec-
tion rate) for the Boiling Frog strategy. The three slower schedules enjoy a relatively
small constant rejection rate close to 5%. The 15% schedule begins with a relatively
high rejection rate, but after a month sufficient amounts of poisoned traffic mis-
train PCA after which point the rates drop to the level of the slower schedules. We
conclude that the Boiling Frog strategy with a moderate growth rate of 2–5%, can
significantly poison PCA, dramatically increasing its FNR while still going unnoticed
by the detector.

By comparing Figs. 18 and 20, observe that to get the FNR to 50%, an increase
in mean traffic of roughly 18% for the Week-Long attack is needed, whereas in the
Boiling Frog attack the same thing can be achieved with only a 5% average traffic
increase spread across 3 weeks.

6 Conclusions

In this paper we illustrated that network-wide PCA-based anomaly detectors can
be compromised by simple data poisoning strategies. Reasonably small amounts of
additional traffic can be injected to increase the attacker’s likelihood of successful
DoS attacks by a factor of 6 (depending upon the attack parameters and style).
Moreover, with stealthy poisoning strategies executed over longer time periods, an
attacker can increase the FN rates to over 50% with less data than poisoning schemes
carried out during a short time window. Due to demonstrated sensitivities of true
positive rates and attack efficacy to the number of principal components, we showed
that our poisoning attacks force the detector to make untenable tradeoffs between
FNRs and TNRs. In the future, we plan to study defensive techniques to combat

13

these attacks such as Robust PCA algorithms [3] that down-weigh outliers, thereby
reducing their impact.

Acknowledgments

We would like to thank Marco Barreno for his valuable comments and suggestions
on this research.

This work was supported in part by the Team for Research in Ubiquitous Se-
cure Technology (TRUST), which receives support from the National Science Foun-
dation (NSF award #CCF-0424422), the Air Force Office of Scientific Research
(AFOSR #FA9550-06-1-0244), Cisco, British Telecom, ESCHER, Hewlett-Packard,
IBM, iCAST, Intel, Microsoft, ORNL, Pirelli, Qualcomm, Sun, Symantec, Tele-
com Italia, and United Technologies; in part by California state Microelectronics
Innovation and Computer Research Opportunities grants (MICRO ID#06-148 and
#07-012) and Siemens; and in part by the cyber-DEfense Technology Experimental
Research laboratory (DETERlab), which receives support from the Department of
Homeland Security Advanced Research Projects Agency (HSARPA award #022412)
and AFOSR (#FA9550-07-1-0501). The opinions expressed in this paper are solely
those of the authors and do not necessarily reflect the opinions of any funding agency,
the State of California, or the U.S. government.

References

[1] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The security of machine
learning. Technical Report UCB/EECS-2008-43, EECS Department, University
of California, Berkeley, April 2008.

[2] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anoma-
lies. In Proc. SIGCOMM ’04, pages 219–230, 2004.

[3] Ricardo Maronna. Principal components and orthogonal regression based on
robust scales. Technometrics, 47(3):264–273, 2005.

[4] Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot. Sensi-
tivity of PCA for traffic anomaly detection. Proc. SIGMETRICS ’07, 35(1):109–
120, 2007.

[5] A. Soule, K. Salamatian, and N. Taft. Combining filtering and statistical meth-
ods for anomaly detection. In IMC’05, 2005.

[6] Yin Zhang, Zihui Ge, Albert Greenberg, and Matthew Roughan. Network
anomography. In Proc. IMC ’05, pages 1–14, NY, NY, USA, 2005.

14

