
Cyber Physical Systems: Design Challenges

Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-8

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html

January 23, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work is supported by the National Science Foundation (CNS-0647591
and CNS-0720841).

Cyber Physical Systems: Design Challenges

Edward A. Lee ∗

Center for Hybrid and Embedded Software Systems, EECS
University of California, Berkeley

Berkeley, CA 94720, USA
eal@eecs.berkeley.edu

Abstract

Cyber-Physical Systems (CPS) are integrations of com-
putation and physical processes. Embedded computers and
networks monitor and control the physical processes, usu-
ally with feedback loops where physical processes affect
computations and vice versa. The economic and soci-
etal potential of such systems is vastly greater than what
has been realized, and major investments are being made
worldwide to develop the technology. There are consider-
able challenges, particularly because the physical compo-
nents of such systems introduce safety and reliability re-
quirements qualitatively different from those in general-
purpose computing. Moreover, physical components are
qualitatively different from object-oriented software com-
ponents. Standard abstractions based on method calls and
threads do not work. This paper examines the challenges in
designing such systems, and in particular raises the ques-
tion of whether today’s computing and networking tech-
nologies provide an adequate foundation for CPS. It con-
cludes that it will not be sufficient to improve design pro-
cesses, raise the level of abstraction, or verify (formally or
otherwise) designs that are built on today’s abstractions.
To realize the full potential of CPS, we will have to re-
build computing and networking abstractions. These ab-
stractions will have to embrace physical dynamics and com-
putation in a unified way.

1 Introduction

Cyber-Physical Systems (CPS) are integrations of com-
putation with physical processes. Embedded computers and
networks monitor and control the physical processes, usu-
ally with feedback loops where physical processes affect

∗This work is supported by the National Science Foundation (CNS-
0647591 and CNS-0720841).

computations and vice versa. In the physical world, the pas-
sage of time is inexorable and concurrency is intrinsic. Nei-
ther of these properties is present in today’s computing and
networking abstractions.

Applications of CPS arguably have the potential to dwarf
the 20-th century IT revolution. They include high confi-
dence medical devices and systems, assisted living, traffic
control and safety, advanced automotive systems, process
control, energy conservation, environmental control, avion-
ics, instrumentation, critical infrastructure control (electric
power, water resources, and communications systems for
example), distributed robotics (telepresence, telemedicine),
defense systems, manufacturing, and smart structures. It is
easy to envision new capabilities, such as distributed micro
power generation coupled into the power grid, where tim-
ing precision and security issues loom large. Transportation
systems could benefit considerably from better embedded
intelligence in automobiles, which could improve safety
and efficiency. Networked autonomous vehicles could dra-
matically enhance the effectiveness of our military and
could offer substantially more effective disaster recovery
techniques. Networked building control systems (such as
HVAC and lighting) could significantly improve energy effi-
ciency and demand variability, reducing our dependence on
fossil fuels and our greenhouse gas emissions. In communi-
cations, cognitive radio could benefit enormously from dis-
tributed consensus about available bandwidth and from dis-
tributed control technologies. Financial networks could be
dramatically changed by precision timing. Large scale ser-
vices systems leveraging RFID and other technologies for
tracking of goods and services could acquire the nature of
distributed real-time control systems. Distributed real-time
games that integrate sensors and actuators could change the
(relatively passive) nature of on-line social interactions.

The positive economic impact of any one of these ap-
plications areas would be enormous. Today’s computing
and networking technologies, however, may have properties
that unnecessarily impede progress towards these applica-

tions. For example, the lack of temporal semantics and ade-
quate concurrency models in computing, and today’s “best
effort” networking technologies make predictable and reli-
able real-time performance difficult, at best. Software com-
ponent technologies, including object-oriented design and
service-oriented architectures, are built on abstractions that
match software much better than physical systems. Many of
these applications may not be achievable without substan-
tial changes in the core abstractions.

2 Requirements for CPS

Embedded systems have always been held to a higher
reliability and predictability standard than general-purpose
computing. Consumers do not expect their TV to crash and
reboot. They have come to count on highly reliable cars,
where in fact the use of computer controller has dramati-
cally improved both the reliability and efficiency of the cars.
In the transition to CPS, this expectation of reliability will
only increase. In fact, without improved reliability and pre-
dictability, CPS will not be deployed into such applications
as traffic control, automotive safety, and health care.

The physical world, however, is not entirely predictable.
Cyber physical systems will not be operating in a controlled
environment, and must be robust to unexpected conditions
and adaptable to subsystem failures.

An engineer faces an intrinsic tension; designing pre-
dictable and reliable components makes it easier to assem-
ble these components into predictable and reliable systems.
But no component is perfectly reliable, and the physical
environment will manage to foil predictability by present-
ing unexpected conditions. Given components that are pre-
dictable and reliable, how much can a designer depend on
that predictability and reliability when designing the sys-
tem? How does she avoid brittle designs, where small de-
viations from expected operating conditions cause catas-
trophic failures?

This is not a new problem in engineering. Digital circuit
designers have come to rely on astonishingly predictable
and reliable circuits. Circuit designers have learned to har-
ness intrinsically stochastic processes (the motions of elec-
trons) to deliver a precision and reliability that is unprece-
dented in the history of human innovation. They can deliver
circuits that will perform a logical function essentially per-
fectly, on time, billions of times per second, for years. All
this is built on a highly random substrate. Should system
designers rely on this predictability and reliability?

In fact, every digital system we use today relies on this
to some degree. There is considerable debate in the cir-
cuit design community about whether this reliance is in
fact impeding progress in circuit technology. Circuits with
extremely small feature sizes are more vulnerable to the
randomness of the underlying substrate, and if system de-

signers would rely less on the predictability and reliability
of digital circuits, then we could progress more rapidly to
smaller feature sizes.

No major semiconductor foundry has yet taken the
plunge and designed a circuit fabrication process that deliv-
ers logic gates that work as specified 80% of the time. Such
gates are deemed to have failed completely, and a process
that delivers such gates routinely has a rather poor yield.

But system designers do, sometimes, design systems that
are robust to such failures. The purpose is to improve yield,
not to improve reliability of the end product. A gate that
fails 20% of the time is a failed gate, and a successful sys-
tem has to route around it, using gates that have not failed to
replace its functionality. The gates that have not failed will
work essentially 100% of the time. The question, therefore,
becomes not whether to design robust systems, but rather at
what level to build in robustness. Should we design systems
that work with gates that perform as specified 80% of the
time? Or should we design systems that reconfigure around
gates that fail 20% of the time, and then assume that gates
that don’t fail in yield testing will work essentially 100% of
the time?

I believe that the value of being able to count on gates
that have passed the yield test to work essentially 100% of
the time is enormous. Such solidity at any level of abstrac-
tion in system design is enormously valuable. But it does
not eliminate the need for robustness at the higher levels of
abstraction. Designers of memory systems, despite the high
reliability and predictability of the components, still put in
checksums and error-correcting codes. If you have a billion
components (one gigabit RAM, for example) operating a
billion times per second, then even nearly perfect reliability
will deliver errors upon occasion.

The principle that we need to follow is simple. Compo-
nents at any level of abstraction should be made predictable
and reliable if this is technologically feasible. If it is not
technologically feasible, then the next level of abstraction
above these components must compensate with robustness.

Successful designs today follow this principle. It is (still)
technically feasible to make predictable and reliable gates.
So we design systems that count on this. It is harder to make
wireless links predictable and reliable. So we compensate
one level up, using robust coding and adaptive protocols.

The obvious question is whether it is technically feasi-
ble to make software systems predictable and reliable. At
the foundations of computer architecture and programming
languages, software is essentially perfectly predictable and
reliable, if we limit the term “software” to refer to what is
expressed in simple programming languages. Given an im-
perative programming language with no concurrency, like
C, designers can count on a computer to perform exactly
what is specified with essentially 100% reliability.

The problem arises when we scale up from simple

2

programs to software systems, and particularly to cyber-
physical systems. The fact is that even the simplest C pro-
gram is not predictable and reliable in the context of CPS
because the program does not express aspects of the behav-
ior that are essential to the system. It may execute perfectly,
exactly matching its semantics, and still fail to deliver the
behavior needed by the system. For example, it could miss
timing deadlines. Since timing is not in the semantics of
C, whether a program misses deadlines is in fact irrelevant
to determining whether it has executed correctly. But it is
very relevant to determining whether the system has per-
formed correctly. A component that is perfectly predictable
and reliable turns out not to be predictable and reliable in
the dimensions that matter. This is a failure of abstraction.

The problem gets worse as software systems get more
complex. If we step outside C and use operating system
primitives to perform I/O or to set up concurrent threads,
we immediately move from essentially perfect predictabil-
ity and reliability to wildly nondeterministic behavior that
must be carefully reigned in by the software designer [19].
Semaphores, mutual exclusion locks, transactions, and pri-
orities are some of the tools that software designers have
developed to attempt to compensate for this loss of pre-
dictability and reliability.

But the question we must ask is whether this loss of pre-
dictability and reliability is really necessary. I believe it
is not. If we find a way to deliver predictable and reli-
able software (that is predictable and reliable with respect
to properties that matter, such as timing), then we do not
eliminate the need to design robust systems, but we dramat-
ically change the nature of the challenge. We must follow
the principle of making systems predictable and reliable if
this is technically feasible, and give up only when there is
convincing evidence that this is not possible or cost effec-
tive. There is no such evidence for software. Moreover, we
have an enormous asset: the substrate on which we build
software systems (digital circuits) is essentially perfectly
predictable and reliable with respect to properties we care
about (timing and functionality).

Let us examine further the failure of abstraction. Fig-
ure 1 illustrates schematically some of the abstraction layers
on which we depend when designing embedded systems. In
this three-dimensional Venn diagram, each box represents a
set. E.g., at the bottom, we have the set of all microproces-
sors. An element of this set, e.g., the Intel P4-M 1.6GHz, is
a particular microprocessor. Above that is the set of all x86
programs, each of which can run on that processor. This set
is defined precisely (unlike the previous set, which is diffi-
cult to define) by the x86 instruction set architecture (ISA).
Any program coded in that instruction set is a member of
the set, such as a particular implementation of a Java vir-
tual machine. Associated with that member is another set,
the set of all JVM bytecode programs. Each of these pro-

silicon chips

microprocessors

ASICchips

FPGAs

programs
VHDL programs

synthesizable
VHDL programs

C++ programs

SystemC
 programs

Java programs

Java byte code programs

FPGA configurations

standard
 cell
 designs

x86 programs
JVM

executables

P4-M 1.6GHz

executes

ja
va

c

C programs

performance
 models Linux processesPosix

 threads

actor-oriented
 models

task-level models

Figure 1. Abstraction layers in computing

grams is (typically) synthesized by a compiler from a Java
program, which is a member of the set of all syntactically
valid Java programs. Again, this set is defined precisely by
Java syntax.

Each of these sets provides an abstraction layer that is
intended to isolate a designer (the person or program that
selects elements of the set) from the details below. Many of
the best innovations in computing have come from careful
and innovative construction and definition of these sets.

However, in the current state of embedded software,
nearly every abstraction has failed. The instruction-set ar-
chitecture, meant to hide hardware implementation details
from the software, has failed because the user of the ISA
cares about timing properties the ISA does not guarantee.
The programming language, which hides details of the ISA
from the program logic, has failed because no widely used
programming language expresses timing properties. Timing
is merely an accident of the implementation. A real-time
operating system hides details of the program from their
concurrent orchestration, yet this fails because the timing
may affect the result. The RTOS provides no guarantees.
The network hides details of electrical or optical signaling
from systems, but many standard networks provide no tim-
ing guarantees and fail to provide an appropriate abstrac-
tion. A system designer is stuck with a system design (not
just implementation) in silicon and wires.

All embedded systems designers face versions of this
problem. Aircraft manufacturers have to stockpile the elec-
tronic parts needed for the entire production line of an air-
craft model to avoid having to recertify the software if the

3

hardware changes. “Upgrading” a microprocessor in an en-
gine control unit for a car requires thorough re-testing of the
system. Even “bug fixes” in the software or hardware can
be extremely risky, since they can change timing behavior.

The design of an abstraction layer involves many
choices, and computer scientists have chosen to hide timing
properties from all higher abstractions. Wirth [31] says “It
is prudent to extend the conceptual framework of sequential
programming as little as possible and, in particular, to avoid
the notion of execution time.” In an embedded system,
however, computations interact directly with the physical
world, where time cannot be abstracted away. Even general-
purpose computing suffers from these choices. Since timing
is neither specified in programs nor enforced by execution
platforms, a program’s timing properties are not repeatable.
Concurrent software often has timing-dependent behavior
in which small changes in timing have big consequences.

Designers have traditionally covered these failures by
finding worst case execution time (WCET) bounds and us-
ing real-time operating systems (RTOS’s) with predictable
scheduling policies. But these require substantial margins
for reliability, and ultimately reliability is (weakly) deter-
mined by bench testing of the complete implementation.
Moreover, WCET has become an increasingly problem-
atic fiction as processor architectures develop ever more
elaborate techniques for dealing stochastically with deep
pipelines, memory hierarchy, and parallelism. Modern pro-
cessor architectures render WCET virtually unknowable;
even simple problems demand heroic efforts. In practice,
reliable WCET numbers come with many caveats that are
increasingly rare in software. The processor ISA has failed
to provide an adequate abstraction.

Timing behavior in RTOSs is coarse and becomes in-
creasingly uncontrollable as the complexity of the sys-
tem increases, e.g., by adding inter-process communication.
Locks, priority inversion, interrupts and similar issues break
the formalisms, forcing designers to rely on bench testing,
which rarely identifies subtle timing bugs. Worse, these
techniques produce brittle systems in which small changes
can cause big failures.

While there are no true guarantees in life, we should
not blithely discard predictability that is achievable. Syn-
chronous digital hardware—the technology on which com-
puters are built— delivers astonishingly precise timing
behavior with reliability that is unprecedented in any
other human-engineered mechanism. Software abstrac-
tions, however, discard several orders of magnitude of pre-
cision. Compare the nanosecond-scale precision with which
hardware can raise an interrupt request to the millisecond-
level precision with which software threads respond. We
don’t have to do it this way.

3 Background

Integration of physical processes and computing, of
course, is not new. The term “embedded systems” has
been used for some time to describe engineered systems
that combine physical processes with computing. Success-
ful applications include communication systems, aircraft
control systems, automotive electronics, home appliances,
weapons systems, games and toys, for example. However,
most such embedded systems are closed “boxes” that do not
expose the computing capability to the outside. The radi-
cal transformation that we envision comes from networking
these devices. Such networking poses considerable techni-
cal challenges.

For example, prevailing practice in embedded software
relies on bench testing for concurrency and timing proper-
ties. This has worked reasonably well, because programs
are small, and because software gets encased in a box with
no outside connectivity that can alter the behavior. How-
ever, the applications we envision demand that embedded
systems be feature-rich and networked, so bench testing
and encasing become inadequate. In a networked environ-
ment, it becomes impossible to test the software under all
possible conditions. Moreover, general-purpose networking
techniques themselves make program behavior much more
unpredictable. A major technical challenge is to achieve
predictable timing in the face of such openness.

Historically, embedded systems were largely an indus-
trial problem, one of using small computers to enhance the
performance or functionality of a product. In this earlier
context, embedded software differed from other software
only in its resource limitations (small memory, small data
word sizes, and relatively slow clocks). In this view, the
“embedded software problem” is an optimization problem.
Solutions emphasize efficiency; engineers write software at
a very low level (in assembly code or C), avoid operating
systems with a rich suite of services, and use specialized
computer architectures such as programmable DSPs and
network processors that provide hardware support for com-
mon operations. These solutions have defined the practice
of embedded software design and development for the last
30 years or so. In an analysis that remains as valid today
as 19 years ago, Stankovic [26] laments the resulting mis-
conceptions that real-time computing “is equivalent to fast
computing” or “is performance engineering” (most embed-
ded computing is real-time computing).

But the resource limitations of 30 years ago are surely
not resource limitations today. Indeed, the technical chal-
lenges have centered more on predictability and robustness
than on efficiency. Safety-critical embedded systems, such
as avionics control systems for passenger aircraft, are forced
into an extreme form of the “encased box” mentality. For
example, in order to assure a 50 year production cycle for

4

a fly-by-wire aircraft, an aircraft manufacturer is forced to
purchase, all at once, a 50 year supply of the microproces-
sors that will run the embedded software. To ensure that val-
idated real-time performance is maintained, these micropro-
cessors must all be manufactured on the same production
line from the same masks. The systems will be unable to
benefit from the next 50 years of technology improvements
without redoing the (extremely expensive) validation and
certification of the software. Evidently, efficiency is nearly
irrelevant compared to predictability, and predictability is
difficult to achieve without freezing the design at the phys-
ical level. Clearly, something is wrong with the software
abstractions being used.

The lack of timing in computing abstractions has been
exploited heavily in such computer science disciplines as
architecture, programming languages, operating systems,
and networking. In architecture, for example, although syn-
chronous digital logic delivers precise timing determinacy,
advances have made it difficult or impossible to estimate or
predict the execution time of software. Modern processor
architectures use memory hierarchy (caches), dynamic dis-
patch, and speculative execution to improve average case
performance of software, at the expense of predictability.
These techniques make it nearly impossible to tell how long
it will take to execute a particular piece of code.1 To deal
with these architectural problems, embedded software de-
signers may choose alternative processor architectures such
as programmable DSPs not only for efficiency reasons, but
also for predictability of timing.

Even less timing-sensitive applications have been af-
fected. Anecdotal information from computer-based instru-
mentation, for example, indicates that the real-time per-
formance delivered by today’s PCs is about the same as
was delivered by PCs in the mid-1980’s. Twenty years
of Moore’s law have not improved things in this dimen-
sion. This is not entirely due to hardware architecture tech-
niques, of course. Operating systems, programming lan-
guages, user interfaces, and networking technologies have
become more elaborate. All have been built on an abstrac-
tion of software where time is irrelevant. No widely used
programming language includes temporal properties in its
semantics, and “correct” execution of a program has noth-
ing to do with time. Benchmarks emphasize average-case
performance, and timing predictability is irrelevant.

The prevailing view of real-time appears to have been
established well before embedded computing was common
[31]. “Computation” is accomplished by a terminating se-
quence of state transformations. This core abstraction un-
derlies the design of nearly all computers, programming

1A glib response is that execution time in a Turing-complete language
is undecidable anyway, so it’s not worth even trying to predict execution
time. This is nonsense. No cyber-physical system that depends on timeli-
ness can be deployed without timing assurances. If Turing completeness
interferes with this, then Turing completeness must be sacrificed.

languages, and operating systems in use today. But unfor-
tunately, this core abstraction may not fit CPS very well.

The most interesting and revolutionary cyber-physical
systems will be networked. The most widely used net-
working techniques today introduce a great deal of tim-
ing variability and stochastic behavior. Today, embedded
systems are often forced to use less widely accepted net-
working technologies (such as CAN busses in manufactur-
ing systems and FlexRay in automotive applications), and
typically must limit the geographic extent of these networks
to a confined local area. What aspects of those networking
technologies should or could be important in larger scale
networks? Which are compatible with global networking
techniques?

To be specific, recent advances in time synchronization
across networks promise networked platforms that share a
common notion of time to a known precision [16]. How
would that change how distributed cyber-physical applica-
tions are developed? What are the implications for secu-
rity? Can we mitigate security risks created by the possi-
bility of disrupting the shared notion of time? Can security
techniques effectively exploit a shared notion of time to im-
prove robustness? In particular, although distributed denial
of service attacks have proved surprisingly difficult to con-
tend with in general purpose IT networks, could they be
controlled in time synchronized networks?

Operating systems technology is also groaning under the
weight of the requirements of embedded systems. RTOS’s
are still essentially best-effort technologies. To specify real-
time properties of a program, the designer has to step out-
side the programming abstractions, making operating sys-
tem calls to set priorities or to set up timer interrupts. Are
RTOS’s merely a temporary patch for inadequate comput-
ing foundations? What would replace them? Is the concep-
tual boundary between the operating system and the pro-
gramming language (a boundary established in the 1960’s)
still the right one? It would be truly amazing if it were.

Cyber-physical systems by nature will be concurrent.
Physical processes are intrinsically concurrent, and their
coupling with computing requires, at a minimum, concur-
rent composition of the computing processes with the phys-
ical ones. Even today, embedded systems must react to mul-
tiple real-time streams of sensor stimuli and control multi-
ple actuators concurrently. Regrettably, the mechanisms of
interaction with sensor and actuator hardware, built for ex-
ample on the concept of interrupts, are not well represented
in programming languages. They have been deemed to be
the domain of operating systems, not of software design.
Instead, the concurrent interactions with hardware are ex-
posed to programmers through the abstraction of threads.

Threads, however, are a notoriously problematic [19,
32]. This fact is often blamed on humans rather than on
the abstraction. Sutter and Larus [27] observe that “hu-

5

mans are quickly overwhelmed by concurrency and find it
much more difficult to reason about concurrent than sequen-
tial code. Even careful people miss possible interleavings
among even simple collections of partially ordered oper-
ations.” The problem will get far worse with extensively
networked cyber-physical systems.

Yet humans are actually quite adept at reasoning about
concurrent systems. The physical world is highly concur-
rent, and our very survival depends on our ability to reason
about concurrent physical dynamics. The problem is that
we have chosen concurrent abstractions for software that do
not even vaguely resemble the concurrency of the physical
world. We have become so used to these computational ab-
stractions that we have lost track of the fact that they are
not immutable. Could it be that the difficulty of concurrent
programming is a consequence of the abstractions, and that
if we were are willing to let go of those abstractions, then
the problem would be fixable?

For the next generation of cyber-physical systems, it is
arguable that we must build concurrent models of computa-
tion that are far more deterministic, predictable, and under-
standable. Threads take the opposite approach. They make
programs absurdly nondeterministic, and rely on program-
ming style to constrain that nondeterminism to achieve de-
terministic aims. Can a more deterministic approach be rec-
onciled with the intrinsic need for nondeterminism in many
embedded applications? How should cyber-physical sys-
tems contend with the inherent unpredictability of the (net-
worked) physical world?

4 Solutions

These problems are not entirely new, of course, and
many creative researchers have made contributions. Ad-
vances in formal verification, emulation and simulation
techniques, certification methods, software engineering
processes, design patterns, and software component tech-
nologies all help considerably. We would be lost without
these improvements. But I believe that to realize its full po-
tential, CPS systems will require fundamentally new tech-
nologies. It is possible that these will emerge as incremental
improvements on existing technologies, but given the lack
of timing in the core abstractions of computing, this seems
improbable. Any complete solution will need to fix this
lack.

Nonetheless, incremental improvements can have a con-
siderable impact. For example, concurrent programming
can be done in much better ways than threads. For example,
Split-C [10] and Cilk [8] are C-like languages supporting
multithreading with constructs that are easier to understand
and control than raw threads. A related approach combines
language extensions with constraints that limit expressive-
ness of established languages in order to get more consistent

and predictable behavior. For example, the Guava language
[5] constrains Java so that unsynchronized objects cannot be
accessed from multiple threads. It further makes explicit the
distinction between locks that ensure the integrity of read
data (read locks) and locks that enable safe modification
of the data (write locks). SHIM also provides more con-
trollable thread interactions [29]. These language changes
prune away considerable nondeterminacy without sacrific-
ing much performance, but they still have deadlock risk, and
again, none of them confronts the lack of temporal seman-
tics.

As stated above, I believe that the best approach has to be
predictable where it is technically feasible. Predictable con-
current computation is possible, but it requires approaching
the problem differently. Instead of starting with a highly
nondeterministic mechanism like threads, and relying on
the programmer to prune that nondeterminacy, we should
start with deterministic, composable mechanisms, and in-
troduce nondeterminism only where needed.

One approach that is very much a bottom-up approach is
to modify computer architectures to deliver precision tim-
ing [12]. This can allow for deterministic orchestration
of concurrent actions. But it leaves open the question of
how the software will be designed, given that programming
languages and methodologies have so thoroughly banished
time from the domain of discourse.

Achieving timing precision is easy if we are willing to
forgo performance; the engineering challenge is to deliver
both precision and performance. While we cannot aban-
don structures such as caches and pipelines and 40 years of
progress in programming languages, compilers, operating
systems, and networking, many will have to be re-thought.
Fortunately, throughout the abstraction stack, there is much
work on which to build. ISAs can be extended with instruc-
tions that deliver precise timing with low overhead [15].
Scratchpad memories can be used in place of caches [3].
Deep interleaved pipelines can be efficient and deliver pre-
dictable timing [20]. Memory management pause times
can be bounded [4]. Programming languages can be ex-
tended with timed semantics [13]. Appropriately chosen
concurrency models can be tamed with static analysis [6].
Software components can be made intrinsically concurrent
and timed [21]. Networks can provide high-precision time
synchronization [16]. Schedulability analysis can provide
admission control, delivering run-time adaptability without
timing imprecision [7].

Complementing bottom-up approaches are top-down so-
lutions that center on the concept of model-based design
[28]. In this approach, “programs” are replaced by “mod-
els” that represent system behaviors of interest. Software is
synthesized from the models. This approach opens a rich
semantic space that can easily embrace temporal dynamics
(see for example [33]), including even the continuous tem-

6

poral dynamics of the physical world.
But many challenges and opportunities remain in devel-

oping this relatively immature technology. Naive abstrac-
tions of time, such as the discrete-time models commonly
used to analyze control and signal processing systems, do
not reflect the true behavior of software and networks [23].
The concept of “logical execution time” [13] offers a more
promising abstraction, but ultimately still relies on being
able to get worst-case execution times for software compo-
nents. This top-down solution depends on a corresponding
bottom-up solution.

Some of the most intriguing aspects of model-based de-
sign center on explorations of rich possibilities for inter-
face specifications and composition. Reflecting behavioral
properties in interfaces, of course, has also proved useful
in general-purpose computing (see for example [22]). But
where we are concerned with properties that have not tra-
ditionally been expressed at all in computing, the ability to
develop and compose specialized “interface theories” [11]
is extremely promising. These theories can reflect causality
properties [34], which abstract temporal behavior, real-time
resource usage [30], timing constraints [14], protocols [17],
depletable resources [9], and many others [1].

A particularly attractive approach that may allow for
leveraging the considerable investment in software technol-
ogy is to develop coordination languages [24], which in-
troduce new semantics at the component interaction level
rather than at the programming language level. Manifold
[25] and Reo [2] are two examples, as are a number of other
“actor oriented” approaches [18].

5 Conclusion

To fully realize the potential of CPS, the core abstrac-
tions of computing need to be rethought. Incremental im-
provements will, of course, continue to help. But effective
orchestration of software and physical processes requires
semantic models that reflect properties of interest in both.

References

[1] L. d. Alfaro and T. A. Henzinger. Interface-based design.
In M. Broy, J. Gruenbauer, D. Harel, and C. Hoare, ed-
itors, Engineering Theories of Software-intensive Systems,
volume NATO Science Series: Mathematics, Physics, and
Chemistry, Vol. 195, pages 83–104. Springer, 2005.

[2] F. Arbab. Reo: A channel-based coordination model for
component composition. Mathematical Structures in Com-
puter Science, 14(3):329–366, 2004.

[3] O. Avissar, R. Barua, and D. Stewart. An optimal memory
allocation scheme for scratch-pad-based embedded systems.
Trans. on Embedded Computing Sys., 1(1):6–26, 2002.

[4] D. F. Bacon, P. Cheng, and V. Rajan. The Metronome: A
simpler approach to garbage collection in real-time systems.

In Workshop on Java Technologies for Real-Time and Em-
bedded Systems, pages 466–478, Catania, Sicily, November
2003.

[5] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect
of Java without data races. In ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, volume 35 of ACM SIGPLAN Notices, pages
382–400, 2000.

[6] G. Berry. The effectiveness of synchronous languages for
the development of safety-critical systems. White paper, Es-
terel Technologies, 2003.

[7] E. Bini and G. C. Buttazzo. Schedulability analysis of peri-
odic fixed priority systems. IEEE Transactions on Comput-
ers, 53(11):1462–1473, 2004.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiser-
son, K. H. Randall, and Y. Zhou. Cilk: an efficient multi-
threaded runtime system. In ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming (PPoPP),
ACM SIGPLAN Notices, pages 207 – 216, Santa Barbara,
California, August 1995.

[9] A. Chakrabarti, L. de Alfaro, and T. A. Henzinger. Resource
interfaces. In R. Alur and I. Lee, editors, EMSOFT, volume
LNCS 2855, pages 117–133, Philadelphia, PA, October 13-
15, 2003 2003. Springer.

[10] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishna-
murthy, S. Lumetta, T. v. Eicken, and K. Yelick. Parallel
programming in Split-C. In ACM/IEEE Conference on Su-
percomputing, pages 262 – 273, Portland, OR, November
1993. ACM Press.

[11] L. deAlfaro and T. A. Henzinger. Interface theories for
component-based design. In First International Workshop
on Embedded Software (EMSOFT), volume LNCS 2211,
pages 148–165, Lake Tahoe, CA, October, 2001 2001.
Springer-Verlag.

[12] S. A. Edwards and E. A. Lee. The case for the precision
timed (PRET) machine. In Design Automation Conference
(DAC), San Diego, CA, June 4-8 2007.

[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto:
A time-triggered language for embedded programming. In
EMSOFT 2001, volume LNCS 2211, Tahoe City, CA, 2001.
Springer-Verlag.

[14] T. A. Henzinger and S. Matic. An interface algebra for real-
time components. In 12th Annual Real-Time and Embed-
ded Technology and Applications Symposium (RTAS). IEEE
Computer Society Press, 2006.

[15] N. J. H. Ip and S. A. Edwards. A processor extension
for cycle-accurate real-time software. In IFIP Interna-
tional Conference on Embedded and Ubiquitous Computing
(EUC), volume LNCS 4096, pages 449–458, Seoul, Korea,
August 2006. Springer.

[16] S. Johannessen. Time synchronization in a local area net-
work. IEEE Control Systems Magazine, pages 61–69, 2004.

[17] H. Kopetz and N. Suri. Compositional design of RT sys-
tems: A conceptual basis for specification of linking in-
terfaces. In 6th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2003),
pages 51–60, Hakodate, Hokkaido, Japan, 14-16 May 2003
2003. IEEE Computer Society.

7

[18] E. A. Lee. Model-driven development - from object-oriented
design to actor-oriented design. In Workshop on Software
Engineering for Embedded Systems: From Requirements to
Implementation (a.k.a. The Monterey Workshop), Chicago,
September 24 2003.

[19] E. A. Lee. The problem with threads. Computer, 39(5):33–
42, 2006.

[20] E. A. Lee and D. G. Messerschmitt. Pipeline interleaved
programmable dsps: Architecture. IEEE Trans. on Acous-
tics, Speech, and Signal Processing, ASSP-35(9), 1987.

[21] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-
oriented design of embedded hardware and software sys-
tems. Journal of Circuits, Systems, and Computers,
12(3):231–260, 2003.

[22] B. H. Liskov and J. M. Wing. A behavioral notion of sub-
typing. ACM Transactions on Programming Languages and
Systems, 16(6):1811–1841, 1994.

[23] T. Nghiem, G. J. Pappas, A. Girard, and R. Alur. Time-
triggered implementations of dynamic controllers. In EM-
SOFT, pages 2–11, Seoul, Korea, 2006. ACM Press.

[24] G. Papadopoulos and F. Arbab. Coordination models and
languages. In M. Zelkowitz, editor, Advances in Computers
- The Engineering of Large Systems, volume 46, pages 329–
400. Academic Press, 1998.

[25] G. A. Papadopoulos, A. Stavrou, and O. Papapetrou. An im-
plementation framework for software architectures based on
the coordination paradigm. Science of Computer Program-
ming, 60(1):27–67, 2006.

[26] J. A. Stankovic. Misconceptions about real-time computing:
a serious problem for next-generation systems. Computer,
21(10):10–19, 1988.

[27] H. Sutter and J. Larus. Software and the concurrency revo-
lution. ACM Queue, 3(7):54–62, 2005.

[28] J. Sztipanovits and G. Karsai. Model-integrated computing.
IEEE Computer, page 110112, 1997.

[29] O. Tardieu and S. A. Edwards. SHIM: Scheduling-
independent threads and exceptions in SHIM. In EMSOFT,
Seoul, Korea, October 22-24 2006. ACM Press.

[30] L. Thiele, E. Wandeler, and N. Stoimenov. Real-time inter-
faces for composing real-time systems. In EMSOFT, Seoul,
Korea, October 23-25 2006. ACM Press.

[31] N. Wirth. Toward a discipline of real-time programming.
Communications of the ACM, 20(8):577–583, 1977.

[32] N. Zeldovich, A. Yip, F. Dabek, R. T. Morris, D. Mazieres,
and F. Kaashoek. Multiprocessor support for event-driven
programs. In USENIX Annual Technical Conference, San
Antonio, Texas, USA, June 9-14 2003.

[33] Y. Zhao, E. A. Lee, and J. Liu. A programming model for
time-synchronized distributed real-time systems. In Real-
Time and Embedded Technology and Applications Sympo-
sium (RTAS), Bellevue, WA, USA, April 3-6 2007. IEEE.

[34] Y. Zhou and E. A. Lee. A causality interface for deadlock
analysis in dataflow. In ACM & IEEE Conference on Em-
bedded Software (EMSOFT), Seoul, South Korea, October
22-25 2006. ACM.

8

