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Abstract

In this paper we apply the “potential function method” introduced by the authors in [1] and [2]
to prove a new outer bound on the capacity region of the deterministic-code arbitrarily varying general
broadcast channel. Specializing by removing the variability of the channel, our outer bound gives another
proof of the recent result of Liang, Kramer and Shamai, which is the currently best upper bound on the

capacity region of the traditional broadcast channel [3].

I. INTRODUCTION

Broadcast channels form basic building blocks of many wireless system models. A broadcast channel
is a single-input, multi-output system whose goal is to model reliable communication of sets of messages
from a transmitter to different sets of receivers. In some practical scenarios the channel parameters
may be unknown, imprecise, or subject to variations from one symbol transmission to the next one. An
arbitrarily varying channel (AVC) models such a discrete memoryless channel. It is assumed that the
channel parameters admit no statistical description and any code over this channel must have guaranteed
performance under the worst possible choice of the channel parameters.

We consider only two-receiver arbitrarily varying general broadcast channels in this paper. A two-
receiver broadcast channel is characterized by the conditional distrilaftjon|z) where X is the input
to the channel an@ and Z are the outputs of the channel at the two receivers. In a general broadcast
channel, the transmitter has a common message and two private messages for the two receivers. Roughly

speaking, the capacity region of the general broadcast channel is the set of all (tRplé®,, R2) for
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which there exists a strategy for the transmitter to s&dcommon bits per channel use to both the
receivers,R; private bits per channel use to receidérand Rs private bits per channel use to receiver
Z.

An arbitrarily varying general broadcast channel is characterized by the conditional distrifutiefnc, s)
where X is the input of the transmitter to the channgljs the state parameter of the channel (that can
vary in an arbitrary way throughout the communication) &hdind Z are the outputs of the channel
at the two receivers. Roughly speaking, the capacity region of an arbitrarily varying general broadcast
channel is the set of all tripleSRy, R1, R2) for which there exists a strategy for the transmitter to send
Ry common bits per channel use to both the receiv&ys private bits per channel use to receivér
and R, private bits per channel use to receiVérno matter how the state of the channel varies over
time. The transmitted messages should be recoverable by the receivers with high probability. Depending
on the model, either an average probability of error, or a maximal probability of error constraint at the
receivers is imposed. Furthermore, sometimes it is assumed that there are common private random bits
shared between the transmitter and the receivers. Depending on the choice of model, different notions of
capacity can be defined. In this paper we assume that no shared common randomness is provided to the
transmitter and the receivers (deterministic-code arbitrarily varying general broadcast channels), and that
the receivers are required to find the intended messages under an average probability of error constraint
(see section 2 for a formal definition).

The capacity region of a broadcast channel is not known when the channel parameters are fixed except
in certain special cases; less is known when the channel parameters vary arbitrarily. The best known
inner bound for the two receiver general broadcast channel is due to Marton [4]. The best outer bound
is due to Liang, Kramer and Shamai [3]; it is not however known whether this bound strictly improves
on the earlier outer bound of Nair and ElI Gamal [5]. For arbitrarily varying general broadcast channels
(AVGBCQC), the best known inner bound, as far as we are aware, belongs to Jahn [6]. For the family of
degraded message Setklof and Bross found a new inner bound on the capacity region of the AVGBC
under state and input constraints. We are not aware of any previous work discussing any interesting outer
bounds on the capacity region of an AVGBC [7].

In this paper, we consider the capacity region of the AVC general broadcast channels when no shared
common randomness is provided to the transmitter and the receivers. The capacity region is defined as the

average probability of error over messages; rate-tuples in the region need to be achievable uniformly over

We do not consider the degraded message set restriction here; for a definition see [7]
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the channel parameters (which can vary symbol by symbol). We apply the “potential function method”
introduced by the authors in [1] and [2] to prove a new outer bound on the capacity region of AVC
general broadcast channels.

A sketch of the “potential function method” is as follows: we consider the set of all joint distributions on
products of four finite sets which represent, roughly speaking, the knowledge of the two receivers and the
transmitter, and the history of broadcast channel parameter choices at some stage of the communication.
We then identify properties of a function on such distributions which would need to be satisfied in one
step of the communication for it to give rise to an outer bound. For details, see the statement of theorem
1 or see [1] and [2].

The outline of this paper is as follows. In section Il, we introduce the basic notations and definitions
used in this paper. Section Ill contains the main results of this paper followed by section IV which gives

formal proofs for the results. The appendix completes the proof of theorem 2 of section IV.

II. DEFINITIONS AND NOTATION

Throughout this paper we assume that each random variable takes values in a fifite denotes
the set{x € R : z > 0}.

We represent an AVC broadcast channel by the conditional distribytigr:|x, s) meaning thatX is
talking, S is the state of the channel, andand Z are listening. We assume that, S, Y and Z take
values from discrete setgx, vs, ¥y andi, respectively. For any natural number (v x)", (¢s)",
(vy)™ and (7)™ denote then-th product sets ofix, g, ¥y andvyy.

Definition 1.Given the conditional distributioq(y, z|z, s), positive reak and natural numbers, My, M7, Mo,

a (n, My, My, M, €) code is the set of the following three mappings:
Fo{1,2,3,..., Mo} x {1,2,3,..., M1} x {1,2,3,..., Mo} — (¢x)"
9 (Yy)" — {1,2,3,..., Mo} x {1,2,3,..., M1}
A (Yg) — {1,2,3,..., Mo} x {1,2,3, ..., My}

such that for any™ € (v5)", the following “average probabilities of error” condition is satisfied:
Assume that.y, L, and L, are random variables uniformly taking values from the §&étg, 3, ..., My},
{1,2,3,..., M1} and{1,2,3,..., M }. Assume thatX™ = f(Lg, L1, L2). Random variable$™, Y and

Z™ are defined according to the following constraint:

n

py", 2" 2", 8" 1o, 11, o) = p(lo, I, la, 2™).p(s™) [ [ a(wi, zili, 54).
i=1
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We then have the following constraints:

Mo M1 Mg

O AT 30 D) DI SN VAT AOND L

i=1 j=1 k=1 y"0(y")#£(i.j)

M() M1 M2

N 70 30 D) DI SN NP AOND L

i=1 j=1 k=1 z7:\(2")%(5,k)

Definition 2.Given the conditional distributioq(y, z|x, s), the capacity region of the deterministic-code
AVC general broadcast channé€lz-(q(y, z|z, s)), is a subset of triples of non-negative real numbers
defined as follows: A triplg Ry, R, R2) belongs to the capacity region of the AVC general broadcast
channel if for every positive andd and sufficiently large:, a (n, My, M1, M, €) code exists for which
Llog My > Ry — 6, 2log My > Ry — 6 and L log My > R, — 6.

Definition 3. For any natural number and any two sets of point” and L in R¢, let K @ L refer
to their convolution:K @ L = {v; + v2 : v1 € K,vy € L}. For any natural numbet, let n @ K be
the addition ofn K's: K ® K @ ... ® K (n times). We also definég as the set formed by shrinking’
through scaling each point of it by a factgr £ = {1v:v e K}

Remark.% falls inside the convex hull of.

Definition 4.For any two pointsv’; and v’» in RS, we sayv'; > @' if and only if each coordinate
of v is greater than or equal to the corresponding coordinate of For a setd € R, the down-set
A(A) is defined asA(A4) = {v € R, : ¥ < W for somew € A}.

Definition 5.

For every giverp(z, s,y, z), we defineX . ;. .) = the set ofp(wo, w1, w2, u,v, 7, s,y, z) satisfying:

p(wo, w1, we, u, v, ) satisfies: p(wo, w1, wa, u, v, ) =

p(wo)p(w1)p(w2)p(u, v|wow wa)p(z|wo, w1, w2, u, v);

X is a deterministic function of Wy, Wy, Wy, U, V);

X has the marginal distribution correspondingpta;, s, v, 2);
The following Markov chain holds: UVIW W1 WX — X — XSY Z;

X SY Z here have joint distributiop(x, s, y, 2)

Definition 6. Given p(y, z|x,s) and p(z), we use the notatiold'r(p(x)p(y, z|z,s)) to denote a set

whose form is motivated by Jahn’s inner bound on the AVC general broadcast chépnglz, s) [6]
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defined below (see Theorem 2 of [6]).

Cr(p(x)p(y, z|x,s)) = All non-negative triples of Ry, Ry, R2) for which there exists

p(wo, w1, we, z) € Q with marginal the giverp(z) and such that:

Ro < inf,) I(Wo; V)
Ry <infpg I(W1; Y |Wo)
Ry < inf () I(Wo; Z)
Ry < infy(q) I(Wa; Z|Wo)
Ry < inf ) I(W7;Y)

Ry <inf, o [(W2; Z)

Ro + Ry <infp o I(WoW13Y)

Ro + Ry <infp, o I(WoW2; Z)

Ro + Ry + Ry <infy,) (W1 Y [WoWa) + I(WoWa; Z)

Ro+ Ry + Ry < inf,y) [(Wa; Z|WoWh) + I(WoW3; V)

Ro+ Ry + Ry < inf I(WO, Y) + (Wi Y [WoWa) + I(Wa: Z|Wo)
Ro + Ry + Ry < infy, ) [(Wo; Z) + I(Wa; Z|WoWh) + I(W1; Y [Wo)

(1)

whereWy, W1, Ws, X, S, Y, Z have joint distributionp(wg, w1, we, x).p(y, 2|z, s)p(s) for arbitraryp(s);
and( is defined as follows:

) = the set ofp(wg, wy, we, z) satisfying:

p(wo, w1, ws, x) satisfies:  p(wp, wy, wa,x) =
p(wo)p(w1)p(w2)p(z|wo, wi, w2);
X is a deterministic function of Wy, Wy, Ws);
To compare this with the inner bound of Jahn (Theorem 2 of [6]), repl&ceiith W, UY with 1,
andU* with Wy (whereU*¢, UY andU~ are defined in [6]). Other differences are the following:
« We requireU¥, U# andU* to be independent of each other
« The constraints oty were strengthened by replacidgy UY; U¢) with I(Y;U¢), andI(ZU*?;U°)
with 1(Z;U°).
« Some extra inequalities were added (inequalities 5-12).
Finally and most importantly'z(p(z)p(y, z|z, s)) is allowed to be nonempty even in cases where Jahn’s

inner bound is not applicable (cf. Remark 1IB2 of [6]), i.e. when no common rate can be sent. This

June 9, 2008 DRAFT



suggests that our bound can be improved further.
Definition 7. The mapll : 2%+ — 2%, from subsets oR!? to subsets oR? is defined as follows:
For anyA C R!2,
II(A) = U all non-negative triples of Ry, R1, R2) such that
(to,t1,t2ye.msti0,t11)EA
Ry < min(to, t1)
Ri <t
Ry <3
Ry + Ry < min(ty,ts5)
Ry + R2 < min(tg, t7)

Ry + Ry + Ry < min(tg, tg, ti0,t11)

IT will be called the projection map.

Ill. STATEMENT OF THE RESULTS

In this section, the main claims of the paper are formally presented as Theorems 1 through 2.
Theorem 1Let ;(p(y, z,2,s)) ( =0,1,2,...) be a function from the set of all probability distribu-

tions defined on a product of four finite sets to subsef&!8f For any conditional distribution(y, z|z, s),

let ¢(q(y, 2z, 5)) = Ugea) Nys) A(p1(q(s).q(z).q(y, 2|z, s))) (see definition 4). The region
II(convex hull of¢(q(y, z|z, s)))

is an outer bound ol'sc(q(y, 2|z, 5)), the AVC general broadcast channel capacity regiog,;i{j =
0,1,2,...) satisfy the following properties:

Take some arbitraryj, p(y, z|z,s) and p(z). Then: (please see definition 3 and 4 for definition of
notations used)

1) Whenevenp(Y ZY'Z'|X X'SS") = p(Y Z|X S).p(Y'Z'|X'S"), H(X'|X) = 0 andp(y/, 2'|a', s') =

q(y', 'z’ 8'):
() Alpjr1(plyzy 2 |wa’ss )p(xa')p(ss'))) C (ﬂ A(@y(p(yZ\Sw)p(S)p(x)))>®¢(Q(y,z36,8));
p(ss’) p(s)
2) WheneverH(Y'|Y)=0andH(Z'|Z) = 0:
ﬂ Alps(p(y'?|s2)p(s)p(@)) € ] Alws(plyzlsz)p(s)p(2));

p(s)
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3) Whenevernp(y, z,x,s) = 1ly = z = 0]p(s)p(x):

w;(p(y, 2,2,5) ={(000000000000)7}

4) For any(R07R17R2) € CR(p(fU)p(y,Z|fU,3))
(Ro, Ro, R1, Ra2, Ry + R1, Ry + Ri, Ry + Ro, Ry + R2, Ry + R1 + Ry,
Ro+ Ri+ Ry, Ro+ R+ Ro, Ro + Ry + Ra) € () A(pj(p(yzlsz)p(s)p(x))).

Discussion:The domain ofp; in Theorem 1 is the set @fll probability distributions orall products of
four finite sets. Givep(y, 2|z, s) andp(z), for eachj > 1, the quantity,,,) A (¢ (p(y; 2|z, s)p(x)p(s)))
can be intuitively understood as representing the set of 12-tGRlesR, R1, Re, Ro+ R1, Ry+ R1, Ro+
R, Ry+ R, Ry+ R1 + Ra, Ro+ R1 + Ra, Ro+ R1 + Ra, Ry + Ry + R2) where(Ry, R;, Rs) belongs to
an outer bound on the capacity region of a broadcast channel with descriptioniz, s) and specified
input distributionp(x); the new AVC channep(y, z|x, s) should be effectively created on the firgt
uses of the original broadcast changéy, z|z, s). With this rough picture in mind, condition 1 can be
understood as saying that having already insisted on working wijtotennel use(y, z|x, s), one more
use of the channel can at most buy us the broadcast capacity on a per use basis. Condition 2 says that
further insistence on working with a distribution that results from information reduction by the receivers
cannot increase the per channel use broadcast region. Condition 3 specifies the regidh avitkn are
constant. The right hand side of condition 4 is just a convenient expression that is easily seen to be an
inner bound on the corresponding constrained broadcast rate; other such expressions would have worked

as well. °

Theorem 2Given any AVC-Broadcast channgly, z|x, s), the following region forms an outer bound

on the capacity region of the broadcast channel:

C(QQ/? Z‘l'v 3)) =

U U

p(z) p(s) p(wo,w1,w2,u,0,%,58,Y,2) EY p(s)p(x)a(y,z|x.s)
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Ry>0,R1 >0,Ry > 0

Ry < min{I(Wo; Y|U), I(Wo, Z|V) };

Ry < I(Wi;Y|U));

Ry < I(Wy; Z|V));

Ry + Ry < min(I(WoWy; Y|U), I(Wy; Y[WoUV) + I(WoU; Z|V));

Ro + R < min(I(WoWs; Z|V), [(Wa: ZIWoUV) + I(WoV; Y|U)):

Ro + R1 + Ry < I(Wy; Y [WoWaUV) + [(WoWal; Z|V);

Ro + Ri + Ro < I(Wa; ZIWoWiUV) + I(WoWAV; Y|U);

Ro+ Ry + Ry < I(WoUV3Y) + I(Wy; Y [WoWUV) + I(Wo; Z|WoUV);
Ro+ Ry + Ro < I(WoUV; Z) + [(Wa; ZIWoWAU V) + I(Wy; Y|WoUV).

\
Remark:If ¢(y, z|z,s) = q(y, z|x), the above outer bound reduces to that of Liang, Kramer and

Shamai [3]. Please note that we have removed the constraint in [Bfgeri¥/; and W, being uniform.

The Liang, Kramer and Shamai region with or without this constraint is the same. This is because given

any (Wy, W1, W, U, V, X, S,Y, Z) with joint distribution

uniform and H(X|U,V, Wy, W1, Ws) = 0 such that there aré&/, W, and W, with H(Wj|Wy) =
(Wo, Wh,Wo,U,V, X, S,Y,Z) in total variation. To do this, také%,WN/l and W, independent and
uniform on large finite sets. Creatd ), W] and W, respectively with a joint distribution close to
p(wo, w1, ws) in total variation. Then use the same channgls, v|wg, w1, w2), p(x|u, v, wy, wr, ws)

as in the original joint distribution to creaté, Vv, X,S,Y and Z.

IV. PROOFS OFTHEOREMS1-2

Proof of Theorems 1Take a triple(¢o, t1, t2) inside the broadcast channel rate region for the channel
q(y, z|x, s). Take some positive and d, and consider dn, My, My, M, ¢) code such that}; log My >
to — 9, %long >t —0 and%logMg >t — 9.

Let Ly, L1, and Ly, denote the three messages that the encoder is transmitting to the two receivers;
this would imply thatH(L;) = %logMi for i = 0,1,2. Define the random variabl& as X =

(Lo, L1, L2). Also, let X1, X/, ..., X] represent the inputs by the encoder at the broadcast channel,
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e. (X{,X5%,...,X}) = f(X). Clearly H(X!|X) = 0. We also let the random variablés, So, ..., S,
denote the adversary’s input to the broadcast channel. \fjsnand S;’s are inserted at the input of
the broadcast channel thé-party receives?, Y, ..., Y, and theZ-party receivesz], Zj, ..., Z),. Let
Y = (Y].Yy,....Y)), Z=(Z],Z),...Z],) and S = (51, Sa, ..., Sp). The decoding rule ensures that for

any realization oSy, Ss, ..., Sy, the Y-party and theZ-party are able to compute
(Lo, Ly) = 9(Y], Y3, ..., Yy)
(E(J? EZ) = )‘(Z£¢ Zé7 ) Z;z)

such thatp((Lo, L1) = (L}, L})) > 1 — e andp((Lo, Ly) = (Lo, L)) > 1 — €.
Lastly, let random variable&, be independent of all random variables mentioned above. We define
random variabledy and Z{, asp(y;, z|x, so) = 1y, = 2, = 0].

Using the properties ap;(.), we have:

n® ¢(q(y, 2|z, s))

='n.® ¢(q(y, 2[z,5)) & [ Aleo(pWo: 20l 50)p(x)p(s0)))
p(s0)

O (=1 @ dlalw. 2w @ () Aler (p(vhur %212, s0s1)p(x)p(s051)))
p(s0,51)

:_)m [(n _ 2) ® (b(CI(Z/a Z‘.I', 3>)] fast ﬂ A((PQ (p(yéyllyé,zézizé‘x, 808132)]9(33)}7(808182)))

p(80731752)

D ﬂ A(npn(p(yéyiyé...y;,zézizé...zum,303152...sn)p(a:)p(s()slsQ...sn)))

P(807511527~~7Sn)

oW ﬂ A(gon(p(L{]Lll,EOE2|:U,505152...sn)p(:n)p(soslsg...sn)))

p(50731752=---78n)
where ini we have used property 3;

in 7 we have used property 1 because

p(yoy1 2071 [s051) = p(Yoy1 2071 |xx sos1) = p(yozolzso).p(y) 21 |z s1)

and furthermoren(y] 21|z s1) = q(v} 21|12} s1);

in ii7 we have used property 1 because
oo oo ! o / ! ! /
P(Yoy1Y2202122|T508152) = P(Yoy1Ya2021 22|21 T9505152) = P(Yoy1 2021|227 5081)-P(Y225|T582)
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10

and furthermorep(yhz5|2hs2) = q(yhzh|xhs2);
in iv, we have used property number 2 becaligé/, L |Y]Y]Yy...Y,)) = 0 andH (Lo Ls| 2} Z, Z)... 7)) =
0.

We therefore have:

ﬂ A(gpn (p(L6 ,1, EOE2|LOL1L2, 808182...Sn)p(LoLng)p(Soslsg...Sn))) g

p(507517827"'75n)

n® ¢(q(y, 2|z, s))

Now, we would like to use property 4 and definition 6 on the conditional distribution with parameters
Wi = L1, Wy = Lo, Wy = Lo. Both equationg Lo, L) = (L}, L},) and (Lo, Ls) = (Lo, L2) are valid

with probability at leastl — € for every choice ofsysyss...s,. The Fano inequality implies that
(H(Lo) —O(ne), H(Ll) —O(TLE), H(Lg) —O(ne)) S CR(p(L()LlLQ)p(L6 ,1, EOEQ’LOLlLQ, 8081...Sn)).

Therefore

<H(L0) — O(ne),
H(Lo) — O(ne),
H(Ly) — O(ne),
H(Ly) — O(ne),
H(Lo) + H(L1) — O(ne),
H(Lo) + H(Ly) — O(ne),
H(Lo) + H(L3) — O(ne),
H(Lo) + H(L2) — O(ne),
H(Lo) + H(L1) + H(Ly) — O(ne),
H(Lo) + H(Ly) + H(Ly) — O(ne),
H(Lo) + H(Ly) + H(Ly) — O(ne),

H(Lo) —+ H(Ll) =+ H(LQ) — O(ne)) c
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11

ﬂ A(gpn(p(L’OL’l,Eoig\x,303132...sn)p(:ﬂ)p(s()slsQ...sn))) C

p(50a517327“'7sn)

n® ¢(q(y, 2|z, s))
We will be done by lettinge — 0 and noting that%y’z‘“)) falls inside the convex hull of

P(ay, zlz, s)).
Proof of Theorem 2It can be observed thatq(y, z|z, s)) can be written a$l(4(q(y, z|z, s))) where

¢(q(y, 2|z, s)) =

U

P(2) P(3) Plw0.ws wa,1.0.2,55.2) €T p(oyp(rrato,- .0
A({(rowvio)
I(Wo, Z|V),
I(Wy;Y|0)),
I(Wo; Z|V)),
I(WoW: Y|U),
IW; Y [WoUV) + I(WoU; Z|V)),
I(WoWo; Z|V),
I(Wa; ZIWoUV) + I(WoV; Y|U)),
I(W1 Y|[WoWoUV) + I(WoWaU; Z|V),
I(Wa; ZIWoWAUV) + I(WeWL VY |U),
I(WoUV;Y) + I(Wy; YIWoWaUV) + I(Was; Z|WoUV),

I(WoUV; Z) + I(Wa; ZIWoWAUV) + [(W3; Y [WoUV)) }>

In the appendix, we have shown thély(y, z|z, s)) takes values in convex sets. In order to use Theorem
1, we still need to definey;(p(y, z,z,s)) (j = 0,1,2,...) consistently with the above definition of
#(q(y, z|x, s)). This would be straightforward by taking, for any joint distributipfy, z, z, s),

i (p(y, 2,2, ) = U

P(woﬂﬂl7w27u7vyxvsvyzz)€Tp(y,2V%S)
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12

a({uonyio),
I(Wo, Z|V),
I(Wy; Y |U)),
I(Wa; Z|V)),
I(WoW1; Y|U),
I(Wi Y[WoUV) + I(WoU; Z|V)),
I(WoWo; Z|V),
I(Wo; ZIWoUV) + I(WoV; Y |U)),
I(W; Y |[WoWoUV) + I(WoWaU; Z|V),
[(Wa; ZIWoWAUV) + I(WoWAV; Y |U),
IWLUVLY) + I(W Y[WoWoUV) + I(Wa; Z|WoUV),
I(WoUV: Z) + I(Wy: ZIWoWAUV) + I(Wi; Y [WoUV)) })

Please note thap;(.) as defined above is a down-set, ig(.) = A(¢;(.)).

Now, we will prove thaty;(.) (j =0,1,2,...) satisfies the properties of Theorem 1.

Property number 1Given p(y, z|x,s) and p(z), we need to show that ib(YZY'Z'| X X'SS") =
p(YZ|XS)p(Y'Z'|X'S"), H(X'|X)=0andp(y/, 2|2/, s') = q(v/, 2'|2', s'), then

() Aejilp(yzy'?|wa’ss )p(za ﬂ A(ej(p(y, 21z, 5)p(s)p(2)))) @ d(a(y, 2|2, 5)).-

p(ss’)

Since the distribution of{ is given andH(X’]X) =0, p(z’) would be fixed. Sinc&(q(y, 2|z, s)) =
Uy Nogsy A(e1(0(s)-a(2").a(y', 212", 87)) 2 Ny Alpr(p(s)-p(a’).q(y', 2’2, s"))), it would be
enough to prove that

() Aejalp(yzy'?wa’ss )p(za’)p(ss'))) €
p(ss’)

() Alws(p(y, 2|z, s)p( @ ([ Alplp(s).p(x)qy, 22, 5)))).

p(s) p(s’)
In all of the three terms the expression begins by taking intersection over choices of the distribution

of the state variable. Take some arbitraxy) andp(s’) on the right hand side. In the above inequality
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we are taking infimum over all possible joint distributions $$’; if we restrict top(ss’) = p(s).p(s)
the expression on the left hand side would increase. Therefore the above inequality would be valid if

one can show the following:
A((pjﬂ(p(yzy’z'\xw’ss’)p(mm’)p(s)p(s'))) C

A(pj(p(y, 2zlz, s)p(s)p(x))) ® A(er (p(s)).p(2).q(y', 2|2, §))).

Now, take an arbitrary poirit’ inside ;1 (p(yzy'z'|za’ss’)p(zaz')p(s)p(s')). We would like to prove
that there exist&’y € A (g1 (p(s').p(a’).q(y, |2/, 5))) and 'y € A(p;(p(s)p(x)p(yz|zs))) such that
V14 Ve > T

There exists som#, V, Wy, W1, W5 created fromX X’ satisfyingUVWoW Wy — X X' — SS' X X' —
YY'ZZ', and withWy, Wy, W5 being independent of each other afdbeing a deterministic function
of (Wy, W1, W, U, V) such that

v = <I(WO;YY’]U),
IWy, Z2Z'|V),
I(WiYY'|U)),
Wy ZZ'V)),
I(WoWyi;YY'|IU),
IWyYY'|\WoUV) + I(WoU; ZZ'|V)),
I(WoWo; ZZ'|V),
I(Wa; ZZ'|\WoUV) + I(WoV; YY'|U)),
I(Wy Y |WoWoUV) + I(WoWoU; Z2Z'|V),
I(Wa; ZZ'|WoWAU V) + I(WoWAV; YY'|U),
I(WoUV; YY) + I(Wy, YY! [WoWaUV) + I(Wa; ZZ'|WoUV),
I(WoUV; 22') + I(Wa; ZZ'|WoWLUV) + I(Wh; YY’|W0UV)>

Let Wi =Wo=Wo, W =Wy =Wy, Wy=Wo=Wo, V' =VY, U =U,V=VU=UZ.The

following properties hold:
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o The Markov chainU’'V'WjWw W, — X' — X'S" —Y'Z’ holds.
o Wy, W{, Wj are independent of each othe¥! is a deterministic function of W, Wi, W;,U’, V")

e The Markov chainUVIWW,W Wy — X — XS — Y Z holds.

. WO,Wl, W2 are independent of each othé¥; is a deterministic function of Wy, Wy, Wo, U, V)

We can define two points’y € A(p1(p(s').p(2').q(y/, 7' |2, s'))) and 'y € A(p;j(p(yz|zs)p(s)p(z)))
using the above auxiliary random variables. It can be easily seevthatv’, is coordinate by coordinate

greater than or equal t@’. °
Property number 2This is clear from the definition ap;.
Property number 3This is clear from the definition ap;.

Property number 4We need to show that for anyRo, R1, R2) € Cr(p(x)p(y, 2|z, s)):
(Ro, Ro, Ry, Ra, Ro + R1, Ro + Ry, Ro + R2, Ro + R,

Ro+ Ri+ Ry, Ro+ Ri + R, Ro + Ba + Ro, Ro + Ba + Ro) € m A(pj(p(yz|zs)p(s)p(x)))-

Take some arbitraryRy, R1, R2) € Cr(p(x)p(y, 2|z, s)). We know that there ip(wo, w1, wa, z) € Q
with marginalp(z) such that for every(s) when we have
(Wo, W1, Wo, X, S Y, Z) ~ p(wy, w1, ws,x).p(s).p(y, z|x,s) we have inequalities ( 1) with right hand

sidep(s). It is necessary and sufficient to prove that for ay),
(Ro, Ro, R, Ra, Ro + R1, Ro + R, Ro + Ra, Ro + Ro,
Ry+ Ri+ Rs,Ryg+ Ri + Ro, Ry + Ry + Re, Ry + R1 + Rg) € A(ij (p(yz]xs)p(s)p(x))).

Let W) = Wy, W{ = Wy, Wi =W, U' = D andV’ = (. It can be seen thai(wy, v}, wh, v, v, z, s,y,2) €
Tp(yz|a:s)p(s)p(a:)' This jOInt distribution in Tp(yz\acs)p(s)p(a:) Specifies a point Inpj (p(yz|xs)p(s)p(x))
which pointwise dominates the pOi{1([R0, Ry, R1,Ra, Ro+ R1, Roy+ R1, R+ Ro, Ro+ Ro,, Ro+ R1 +
Ro, Ry + Ry + Ra, Ry + R1 + R2, Ry + R1 + R2)} o
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VI. APPENDIX

In this appendix we show that(q(y, z|z, s)) is convex for eacly(y, z|z, s).
Take two vectorsa’ = (ag, a1, az, ..., a11) and b = (bo, b1, ba, ..., by1) in this region. Sincéa’ is inside

¢(q(y, |z, s)), distributionp(z,) exists such that for alp(s,) a distribution

P(UaVaWoaW1aW2aTa)P(Sa)q(Yas ZalTar Sa) € Lp(aa)p(sa)a(yesze|zassa)

exists for which the following inequalities are satisfied:
o ag <1 WOa;Ya|Ua
e a1 <1 WOaa Za|Va

e ap <1 Wla;Ya‘Ua )

( )
( )
( )
o a3 < I(Waq; Za|Va))
o ag < I(WoaWia; Ya|Ua)

o a5 < I(Wia; Yo WoaUaVa) + I(WoaUas Za|Va))

o ag < I(WoaWaa; Za|Va)

o a7 < I(Wag; Zo|WoaUdVa) + 1(WoaVa; Ya |Ua))

o ag < I(Wha; Ya|WoaWaaUaVa) + I(WoaWaaUa; Za|Va)

o a9 < I(Waa; Za|WoaW1aUaVa) + L(Woa W14 Va; Ya|Ua)

o a10 < I(WoaUaVa; Ya) + I(Wha; Ya|WoaW2aUaVa) + 1(Waa; Za|WoaUaVa)

o an < I(WooUoVa; Za) + I(Waai Zo|[WoaW1aUaVa) + I(Wia; Ya| WoaUaVa)

A similar statement holds fdig, b1, .., b11) involving random variable&/J;, Vi, Wou, W1p, Wop, Xp, Sty Ys, Z)-

Let p(z) = 0.5 % p(zq) + 0.5 % p(xp). Take an arbitraryp(s). We consider the cas€, ~ p(s) and
Sy ~ p(s).

Without loss of generality, one can assume tat, V., Woa, Wia, Waa, Xa, Sa, Ya, Za) IS independent
of (Us, Vi, Wop, Wiy, Wap, Xip, Sp, Yy, Z).

Take a binary and uniform random variafffeon {0, 1} that is independent of all the above mentioned

random variables and €U, V, Wy, W, Wy, X, S,Y, Z) be equal to
(TUaa Tva7 TWO(ZWObv Wlawlba WQCLWQIM Xaa Stla Yaa Za)

if T'=0,
and be equal to
(TUy, TVy, TWooWor,, W1aWip, WooaWay, Xy, S, Vs, Zs)

if T'=1.
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X has the distributiop(z) we started with and' has the distributiop(s) we started with. Furthermore,

one can verify thap(yz|zs) = q(yz|zs) and that random variables

(U, V, Wy, W1, Wo, X, S, Y, Z) have joint distributionp(u, v, wg, w1, wa, )p(s)q(yz|zs)

belonging toT

s)p(x)q(yz|zs)-

It can be verified that this choice of variables gives us a poia{ify, z|z, s)) that pointwise dominates

%E’ + %7 The proof is complete when we note that our choice@f) was arbitrary.
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