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Abstract

In this paper we apply the “potential function method” introduced by the authors in [1] and [2]

to prove a new outer bound on the capacity region of the deterministic-code arbitrarily varying general

broadcast channel. Specializing by removing the variability of the channel, our outer bound gives another

proof of the recent result of Liang, Kramer and Shamai, which is the currently best upper bound on the

capacity region of the traditional broadcast channel [3].

I. I NTRODUCTION

Broadcast channels form basic building blocks of many wireless system models. A broadcast channel

is a single-input, multi-output system whose goal is to model reliable communication of sets of messages

from a transmitter to different sets of receivers. In some practical scenarios the channel parameters

may be unknown, imprecise, or subject to variations from one symbol transmission to the next one. An

arbitrarily varying channel (AVC) models such a discrete memoryless channel. It is assumed that the

channel parameters admit no statistical description and any code over this channel must have guaranteed

performance under the worst possible choice of the channel parameters.

We consider only two-receiver arbitrarily varying general broadcast channels in this paper. A two-

receiver broadcast channel is characterized by the conditional distributionq(y, z|x) whereX is the input

to the channel andY andZ are the outputs of the channel at the two receivers. In a general broadcast

channel, the transmitter has a common message and two private messages for the two receivers. Roughly

speaking, the capacity region of the general broadcast channel is the set of all triples(R0, R1, R2) for
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which there exists a strategy for the transmitter to sendR0 common bits per channel use to both the

receivers,R1 private bits per channel use to receiverY andR2 private bits per channel use to receiver

Z.

An arbitrarily varying general broadcast channel is characterized by the conditional distributionq(y, z|x, s)

whereX is the input of the transmitter to the channel,S is the state parameter of the channel (that can

vary in an arbitrary way throughout the communication) andY and Z are the outputs of the channel

at the two receivers. Roughly speaking, the capacity region of an arbitrarily varying general broadcast

channel is the set of all triples(R0, R1, R2) for which there exists a strategy for the transmitter to send

R0 common bits per channel use to both the receivers,R1 private bits per channel use to receiverY

and R2 private bits per channel use to receiverZ no matter how the state of the channel varies over

time. The transmitted messages should be recoverable by the receivers with high probability. Depending

on the model, either an average probability of error, or a maximal probability of error constraint at the

receivers is imposed. Furthermore, sometimes it is assumed that there are common private random bits

shared between the transmitter and the receivers. Depending on the choice of model, different notions of

capacity can be defined. In this paper we assume that no shared common randomness is provided to the

transmitter and the receivers (deterministic-code arbitrarily varying general broadcast channels), and that

the receivers are required to find the intended messages under an average probability of error constraint

(see section 2 for a formal definition).

The capacity region of a broadcast channel is not known when the channel parameters are fixed except

in certain special cases; less is known when the channel parameters vary arbitrarily. The best known

inner bound for the two receiver general broadcast channel is due to Marton [4]. The best outer bound

is due to Liang, Kramer and Shamai [3]; it is not however known whether this bound strictly improves

on the earlier outer bound of Nair and El Gamal [5]. For arbitrarily varying general broadcast channels

(AVGBC), the best known inner bound, as far as we are aware, belongs to Jahn [6]. For the family of

degraded message sets1, Hof and Bross found a new inner bound on the capacity region of the AVGBC

under state and input constraints. We are not aware of any previous work discussing any interesting outer

bounds on the capacity region of an AVGBC [7].

In this paper, we consider the capacity region of the AVC general broadcast channels when no shared

common randomness is provided to the transmitter and the receivers. The capacity region is defined as the

average probability of error over messages; rate-tuples in the region need to be achievable uniformly over

1We do not consider the degraded message set restriction here; for a definition see [7]
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the channel parameters (which can vary symbol by symbol). We apply the “potential function method”

introduced by the authors in [1] and [2] to prove a new outer bound on the capacity region of AVC

general broadcast channels.

A sketch of the “potential function method” is as follows: we consider the set of all joint distributions on

products of four finite sets which represent, roughly speaking, the knowledge of the two receivers and the

transmitter, and the history of broadcast channel parameter choices at some stage of the communication.

We then identify properties of a function on such distributions which would need to be satisfied in one

step of the communication for it to give rise to an outer bound. For details, see the statement of theorem

1 or see [1] and [2].

The outline of this paper is as follows. In section II, we introduce the basic notations and definitions

used in this paper. Section III contains the main results of this paper followed by section IV which gives

formal proofs for the results. The appendix completes the proof of theorem 2 of section IV.

II. D EFINITIONS AND NOTATION

Throughout this paper we assume that each random variable takes values in a finite set.R+ denotes

the set{x ∈ R : x ≥ 0}.
We represent an AVC broadcast channel by the conditional distributionq(y, z|x, s) meaning thatX is

talking, S is the state of the channel, andY andZ are listening. We assume thatX, S, Y andZ take

values from discrete setsψX , ψS , ψY and ψZ respectively. For any natural numbern, (ψX)n, (ψS)n,

(ψY )n and (ψZ)n denote then-th product sets ofψX , ψS , ψY andψZ .

Definition 1.Given the conditional distributionq(y, z|x, s), positive realε and natural numbersn,M0,M1,M2,

a (n,M0, M1,M2, ε) code is the set of the following three mappings:

f : {1, 2, 3, ...,M0} × {1, 2, 3, ..., M1} × {1, 2, 3, ..., M2} −→ (ψX)n

ϑ : (ψY )n −→ {1, 2, 3, ..., M0} × {1, 2, 3, ...,M1}

λ : (ψZ)n −→ {1, 2, 3, ..., M0} × {1, 2, 3, ...,M2}

such that for anysn ∈ (ψS)n, the following “average probabilities of error” condition is satisfied:

Assume thatL0, L1 andL2 are random variables uniformly taking values from the sets{1, 2, 3, ...,M0},
{1, 2, 3, ..., M1} and{1, 2, 3, ...,M2}. Assume thatXn = f(L0, L1, L2). Random variablesSn, Y n and

Zn are defined according to the following constraint:

p(yn, zn, xn, sn, l0, l1, l2) = p(l0, l1, l2, xn).p(sn)
n∏

i=1

q(yi, zi|xi, si).
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We then have the following constraints:

eϑ(sn) =
1

M0M1M2

M0∑

i=1

M1∑

j=1

M2∑

k=1

∑

yn:ϑ(yn)6=(i,j)

q(yn|f(i, j, k), sn) ≤ ε

eλ(sn) =
1

M0M1M2

M0∑

i=1

M1∑

j=1

M2∑

k=1

∑

zn:λ(zn)6=(i,k)

q(zn|f(i, j, k), sn) ≤ ε

Definition 2.Given the conditional distributionq(y, z|x, s), the capacity region of the deterministic-code

AVC general broadcast channel,CBC(q(y, z|x, s)), is a subset of triples of non-negative real numbers

defined as follows: A triple(R0, R1, R2) belongs to the capacity region of the AVC general broadcast

channel if for every positiveε andδ and sufficiently largen, a (n,M0, M1,M2, ε) code exists for which

1
n log M0 ≥ R0 − δ, 1

n log M1 ≥ R1 − δ and 1
n log M2 ≥ R2 − δ.

Definition 3.For any natural numberc and any two sets of pointsK and L in Rc
+, let K ⊕ L refer

to their convolution:K ⊕ L = {v1 + v2 : v1 ∈ K, v2 ∈ L}. For any natural numbern, let n ⊗ K be

the addition ofn K ’s: K ⊕K ⊕ ...⊕K (n times). We also defineKn as the set formed by shrinkingK

through scaling each point of it by a factor1
n : K

n = { 1
nv : v ∈ K}

Remark.n⊗K
n falls inside the convex hull ofK.

Definition 4.For any two points−→v 1 and−→v 2 in Rc
+, we say−→v 1 ≥ −→v 2 if and only if each coordinate

of −→v 1 is greater than or equal to the corresponding coordinate of−→v 2. For a setA ∈ Rc
+, the down-set

∆(A) is defined as:∆(A) = {−→v ∈ Rc
+ : −→v ≤ −→w for some−→w ∈ A}.

Definition 5.

For every givenp(x, s, y, z), we define:Υp(x,s,y,z) = the set ofp(w0, w1, w2, u, v, x, s, y, z) satisfying:





p(w0, w1, w2, u, v, x) satisfies: p(w0, w1, w2, u, v, x) =

p(w0)p(w1)p(w2)p(u, v|w0w1w2)p(x|w0, w1, w2, u, v);

X is a deterministic function of(W0,W1,W2, U, V );

X has the marginal distribution corresponding top(x, s, y, z);

The following Markov chain holds: UV W0W1W2X −X −XSY Z;

XSY Z here have joint distributionp(x, s, y, z)

Definition 6. Given p(y, z|x, s) and p(x), we use the notationCR(p(x)p(y, z|x, s)) to denote a set

whose form is motivated by Jahn’s inner bound on the AVC general broadcast channelp(y, z|x, s) [6]
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defined below (see Theorem 2 of [6]).

CR(p(x)p(y, z|x, s)) = All non-negative triples of(R0, R1, R2) for which there exists

p(w0, w1, w2, x) ∈ Ω with marginal the givenp(x) and such that:




R0 ≤ infp(s) I(W0;Y )

R1 ≤ infp(s) I(W1;Y |W0)

R0 ≤ infp(s) I(W0;Z)

R2 ≤ infp(s) I(W2;Z|W0)

R1 ≤ infp(s) I(W1;Y )

R2 ≤ infp(s) I(W2;Z)

R0 + R1 ≤ infp(s) I(W0W1; Y )

R0 + R2 ≤ infp(s) I(W0W2; Z)

R0 + R1 + R2 ≤ infp(s) I(W1; Y |W0W2) + I(W0W2;Z)

R0 + R1 + R2 ≤ infp(s) I(W2; Z|W0W1) + I(W0W1;Y )

R0 + R1 + R2 ≤ infp(s) I(W0; Y ) + I(W1; Y |W0W2) + I(W2; Z|W0)

R0 + R1 + R2 ≤ infp(s) I(W0; Z) + I(W2; Z|W0W1) + I(W1; Y |W0)

(1)

whereW0,W1,W2, X, S, Y, Z have joint distributionp(w0, w1, w2, x).p(y, z|x, s)p(s) for arbitraryp(s);

andΩ is defined as follows:

Ω = the set ofp(w0, w1, w2, x) satisfying:





p(w0, w1, w2, x) satisfies: p(w0, w1, w2, x) =

p(w0)p(w1)p(w2)p(x|w0, w1, w2);

X is a deterministic function of(W0,W1,W2);

To compare this with the inner bound of Jahn (Theorem 2 of [6]), replaceU c with W0, Uy with W1

andU z with W2 (whereU c, Uy andU z are defined in [6]). Other differences are the following:

• We requireUy, Uz andU c to be independent of each other

• The constraints onR0 were strengthened by replacingI(Y Uy; U c) with I(Y ; U c), andI(ZU z; U c)

with I(Z; U c).

• Some extra inequalities were added (inequalities 5-12).

Finally and most importantlyCR(p(x)p(y, z|x, s)) is allowed to be nonempty even in cases where Jahn’s

inner bound is not applicable (cf. Remark IIB2 of [6]), i.e. when no common rate can be sent. This
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suggests that our bound can be improved further.

Definition 7.The mapΠ : 2R
12
+ 7→ 2R

3
+ , from subsets ofR12

+ to subsets ofR3
+ is defined as follows:

For anyA ⊆ R12
+ ,

Π(A) =
⋃

(t0,t1,t2,...,t10,t11)∈A

all non-negative triples of(R0, R1, R2) such that:





R0 ≤ min(t0, t1)

R1 ≤ t2

R2 ≤ t3

R0 + R1 ≤ min(t4, t5)

R0 + R2 ≤ min(t6, t7)

R0 + R1 + R2 ≤ min(t8, t9, t10, t11)

Π will be called the projection map.

III. STATEMENT OF THE RESULTS

In this section, the main claims of the paper are formally presented as Theorems 1 through 2.

Theorem 1.Let ϕj(p(y, z, x, s)) (j = 0, 1, 2, ...) be a function from the set of all probability distribu-

tions defined on a product of four finite sets to subsets ofR12
+ . For any conditional distributionq(y, z|x, s),

let φ(q(y, z|x, s)) =
⋃

q(x)

⋂
q(s) ∆

(
ϕ1(q(s).q(x).q(y, z|x, s))

)
(see definition 4). The region

Π(convex hull ofφ(q(y, z|x, s)))

is an outer bound onCBC(q(y, z|x, s)), the AVC general broadcast channel capacity region, ifϕj (j =

0, 1, 2, ...) satisfy the following properties:

Take some arbitraryj, p(y, z|x, s) and p(x). Then: (please see definition 3 and 4 for definition of

notations used)

1) Wheneverp(Y ZY ′Z ′|XX ′SS′) = p(Y Z|XS).p(Y ′Z ′|X ′S′), H(X ′|X) = 0 andp(y′, z′|x′, s′) =

q(y′, z′|x′, s′):
⋂

p(ss′)

∆
(
ϕj+1(p(yzy′z′|xx′ss′)p(xx′)p(ss′))

) ⊆
( ⋂

p(s)

∆
(
ϕj(p(yz|sx)p(s)p(x))

))⊕φ(q(y, z|x, s));

2) WheneverH(Y ′|Y ) = 0 andH(Z ′|Z) = 0:

⋂

p(s)

∆
(
ϕj(p(y′z′|sx)p(s)p(x))

) ⊆
⋂

p(s)

∆
(
ϕj(p(yz|sx)p(s)p(x))

)
;
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3) Wheneverp(y, z, x, s) = 1[y = z = 0]p(s)p(x):

ϕj(p(y, z, x, s)) = {(0 0 0 0 0 0 0 0 0 0 0 0)T }

4) For any(R0, R1, R2) ∈ CR(p(x)p(y, z|x, s)):

(R0, R0, R1, R2, R0 + R1, R0 + R1, R0 + R2, R0 + R2, R0 + R1 + R2,

R0 + R1 + R2, R0 + R1 + R2, R0 + R1 + R2) ∈
⋂

p(s) ∆
(
ϕj(p(yz|sx)p(s)p(x))

)
.

Discussion:The domain ofϕj in Theorem 1 is the set ofall probability distributions onall products of

four finite sets. Givenp(y, z|x, s) andp(x), for eachj ≥ 1, the quantity
⋂

p(s) ∆
(
ϕj(p(y, z|x, s)p(x)p(s))

)

can be intuitively understood as representing the set of 12-tuples(R0, R0, R1, R2, R0+R1, R0+R1, R0+

R2, R0 +R2, R0 +R1 +R2, R0 +R1 +R2, R0 +R1 +R2, R0 +R1 +R2) where(R0, R1, R2) belongs to

an outer bound on the capacity region of a broadcast channel with descriptionp(y, z|x, s) and specified

input distributionp(x); the new AVC channelp(y, z|x, s) should be effectively created on the firstj

uses of the original broadcast channelq(y, z|x, s). With this rough picture in mind, condition 1 can be

understood as saying that having already insisted on working with aj-channel usep(y, z|x, s), one more

use of the channel can at most buy us the broadcast capacity on a per use basis. Condition 2 says that

further insistence on working with a distribution that results from information reduction by the receivers

cannot increase the per channel use broadcast region. Condition 3 specifies the region whenY andZ are

constant. The right hand side of condition 4 is just a convenient expression that is easily seen to be an

inner bound on the corresponding constrained broadcast rate; other such expressions would have worked

as well. •
Theorem 2.Given any AVC-Broadcast channelq(y, z|x, s), the following region forms an outer bound

on the capacity region of the broadcast channel:

ζ(q(y, z|x, s)) =

⋃

p(x)

⋂

p(s)

⋃

p(w0,w1,w2,u,v,x,s,y,z)∈Υp(s)p(x)q(y,z|x,s)
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



R0 ≥ 0, R1 ≥ 0, R2 ≥ 0;

R0 ≤ min{I(W0;Y |U), I(W0, Z|V )};
R1 ≤ I(W1;Y |U));

R2 ≤ I(W2;Z|V ));

R0 + R1 ≤ min(I(W0W1;Y |U), I(W1;Y |W0UV ) + I(W0U ;Z|V ));

R0 + R2 ≤ min(I(W0W2;Z|V ), I(W2;Z|W0UV ) + I(W0V ;Y |U));

R0 + R1 + R2 ≤ I(W1; Y |W0W2UV ) + I(W0W2U ; Z|V );

R0 + R1 + R2 ≤ I(W2; Z|W0W1UV ) + I(W0W1V ; Y |U);

R0 + R1 + R2 ≤ I(W0UV ; Y ) + I(W1;Y |W0W2UV ) + I(W2; Z|W0UV );

R0 + R1 + R2 ≤ I(W0UV ; Z) + I(W2;Z|W0W1UV ) + I(W1; Y |W0UV ).

Remark: If q(y, z|x, s) = q(y, z|x), the above outer bound reduces to that of Liang, Kramer and

Shamai [3]. Please note that we have removed the constraint in [3] onW0, W1 andW2 being uniform.

The Liang, Kramer and Shamai region with or without this constraint is the same. This is because given

any (W0,W1,W2, U, V, X, S, Y, Z) with joint distribution

p(w0)p(w1)p(w2)p(u, v|w0, w1, w2)p(x|u, v, w0, w1, w2)p(s)q(y, z|x, s)

whereH(X|U, V,W0,W1, W2) = 0, one can find(W̃0, W̃1, W̃2, Ũ , Ṽ , X̃, S̃, Ỹ , Z̃) with joint distribu-

tion p(w̃0)p(w̃1)p(w̃2)p(ũ, ṽ|w̃0, w̃1, w̃2)p(x̃|ũ, ṽ, w̃0, w̃1, w̃2)p(s̃)q(ỹ, z̃|x̃, s̃) whereW̃0, W̃1 andW̃2 are

uniform andH(X̃|Ũ , Ṽ , W̃0, W̃1, W̃2) = 0 such that there areW ′
0, W ′

1 and W ′
2 with H(W ′

0|W̃0) =

H(W ′
1|W̃1) = H(W ′

2|W̃2) = 0 and (W ′
0,W

′
1,W

′
2, Ũ , Ṽ , X̃, S̃, Ỹ , Z̃) being arbitrarily close to

(W0,W1,W2, U, V, X, S, Y, Z) in total variation. To do this, takẽW0, W̃1 and W̃2 independent and

uniform on large finite sets. CreateW ′
0, W ′

1 and W ′
2 respectively with a joint distribution close to

p(w0, w1, w2) in total variation. Then use the same channelsp(u, v|w0, w1, w2), p(x|u, v, w0, w1, w2)

as in the original joint distribution to creatẽU, Ṽ , X̃, S̃, Ỹ and Z̃.

IV. PROOFS OFTHEOREMS1-2

Proof of Theorems 1:Take a triple(t0, t1, t2) inside the broadcast channel rate region for the channel

q(y, z|x, s). Take some positiveε and δ, and consider a(n,M0,M1,M2, ε) code such that1n log M0 ≥
t0 − δ, 1

n log M1 ≥ t1 − δ and 1
n log M2 ≥ t2 − δ.

Let L0, L1, andL2 denote the three messages that the encoder is transmitting to the two receivers;

this would imply thatH(Li) = 1
n log Mi for i = 0, 1, 2. Define the random variableX as X =

(L0, L1, L2). Also, let X ′
1, X ′

2, ..., X ′
n represent the inputs by the encoder at the broadcast channel,
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i.e. (X ′
1, X

′
2, ..., X

′
n) = f(X). Clearly H(X ′

i|X) = 0. We also let the random variablesS1, S2, ..., Sn

denote the adversary’s input to the broadcast channel. WhenX ′
i ’s and Si’s are inserted at the input of

the broadcast channel theY -party receivesY ′
1 , Y ′

2 , ..., Y ′
n and theZ-party receivesZ ′1, Z ′2, ..., Z ′n. Let

Y = (Y ′
1 , Y

′
2 , ..., Y

′
n), Z = (Z ′1, Z

′
2, ..., Z

′
n) andS = (S1, S2, ..., Sn). The decoding rule ensures that for

any realization ofS1, S2, ..., Sn, the Y -party and theZ-party are able to compute

(L′0, L
′
1) = ϑ(Y ′

1 , Y
′
2 , ..., Y

′
n)

(L̂0, L̂2) = λ(Z ′1, Z
′
2, ..., Z

′
n)

such thatp((L0, L1) = (L′0, L
′
1)) ≥ 1− ε andp((L0, L2) = (L̂0, L̂2)) ≥ 1− ε.

Lastly, let random variableS0 be independent of all random variables mentioned above. We define

random variablesY ′
0 andZ ′0 asp(y′0, z

′
0|x, s0) = 1[y′0 = z′0 = 0].

Using the properties ofϕj(.), we have:

n⊗ φ(q(y, z|x, s))

=i n⊗ φ(q(y, z|x, s))⊕
⋂

p(s0)

∆
(
ϕ0

(
p(y′0, z

′
0|x, s0)p(x)p(s0)

))

⊇ii [(n− 1)⊗ φ(q(y, z|x, s))]⊕
⋂

p(s0,s1)

∆
(
ϕ1

(
p(y′0y

′
1, z

′
0z
′
1|x, s0s1)p(x)p(s0s1)

))

⊇iii [(n− 2)⊗ φ(q(y, z|x, s))]⊕
⋂

p(s0,s1,s2)

∆
(
ϕ2

(
p(y′0y

′
1y
′
2, z

′
0z
′
1z
′
2|x, s0s1s2)p(x)p(s0s1s2)

))

...

⊇
⋂

p(s0,s1,s2,...,sn)

∆
(
ϕn

(
p(y′0y

′
1y
′
2...y

′
n, z′0z

′
1z
′
2...z

′
n|x, s0s1s2...sn)p(x)p(s0s1s2...sn)

))

⊇iv
⋂

p(s0,s1,s2,...,sn)

∆
(
ϕn

(
p(L′0L

′
1, L̂0L̂2|x, s0s1s2...sn)p(x)p(s0s1s2...sn)

))

where ini we have used property 3;

in ii we have used property 1 because

p(y′0y
′
1z
′
0z
′
1|xs0s1) = p(y′0y

′
1z
′
0z
′
1|xx′1s0s1) = p(y′0z

′
0|xs0).p(y′1z

′
1|x′1s1)

and furthermorep(y′1z
′
1|x′1s1) = q(y′1z

′
1|x′1s1);

in iii we have used property 1 because

p(y′0y
′
1y
′
2z
′
0z
′
1z
′
2|xs0s1s2) = p(y′0y

′
1y
′
2z
′
0z
′
1z
′
2|xx′1x

′
2s0s1s2) = p(y′0y

′
1z
′
0z
′
1|xx′1s0s1).p(y′2z

′
2|x′2s2)
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and furthermorep(y′2z
′
2|x′2s2) = q(y′2z

′
2|x′2s2);

in iv, we have used property number 2 becauseH(L′0L
′
1|Y ′

0Y
′
1Y

′
2 ...Y

′
n) = 0 andH(L̂0L̂2|Z ′0Z ′1Z ′2...Z ′n) =

0.

We therefore have:

⋂

p(s0,s1,s2,...,sn)

∆
(
ϕn

(
p(L′0L

′
1, L̂0L̂2|L0L1L2, s0s1s2...sn)p(L0L1L2)p(s0s1s2...sn)

)) ⊆

n⊗ φ(q(y, z|x, s))

Now, we would like to use property 4 and definition 6 on the conditional distribution with parameters

W1 = L1, W2 = L2, W0 = L0. Both equations(L0, L1) = (L′0, L
′
1) and (L0, L2) = (L̂0, L̂2) are valid

with probability at least1− ε for every choice ofs0s1s2...sn. The Fano inequality implies that

(
H(L0)−O(nε),H(L1)−O(nε),H(L2)−O(nε)

) ∈ CR(p(L0L1L2)p(L′0L
′
1, L̂0L̂2|L0L1L2, s0s1...sn)).

Therefore

(
H(L0)−O(nε),

H(L0)−O(nε),

H(L1)−O(nε),

H(L2)−O(nε),

H(L0) + H(L1)−O(nε),

H(L0) + H(L1)−O(nε),

H(L0) + H(L2)−O(nε),

H(L0) + H(L2)−O(nε),

H(L0) + H(L1) + H(L2)−O(nε),

H(L0) + H(L1) + H(L2)−O(nε),

H(L0) + H(L1) + H(L2)−O(nε),

H(L0) + H(L1) + H(L2)−O(nε)
)
∈
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⋂

p(s0,s1,s2,...,sn)

∆
(
ϕn(p(L′0L

′
1, L̂0L̂2|x, s0s1s2...sn)p(x)p(s0s1s2...sn))

) ⊆

n⊗ φ(q(y, z|x, s))

We will be done by lettingε → 0 and noting thatn⊗φ(q(y,z|x,s))
n falls inside the convex hull of

φ(q(y, z|x, s)).

Proof of Theorem 2.It can be observed thatζ(q(y, z|x, s)) can be written asΠ(φ(q(y, z|x, s))) where

φ(q(y, z|x, s)) =

⋃

p(x)

⋂

p(s)

⋃

p(w0,w1,w2,u,v,x,s,y,z)∈Υp(s)p(x)q(y,z|x,s)

∆
({(

I(W0; Y |U),

I(W0, Z|V ),

I(W1; Y |U)),

I(W2; Z|V )),

I(W0W1; Y |U),

I(W1;Y |W0UV ) + I(W0U ; Z|V )),

I(W0W2; Z|V ),

I(W2;Z|W0UV ) + I(W0V ; Y |U)),

I(W1;Y |W0W2UV ) + I(W0W2U ; Z|V ),

I(W2;Z|W0W1UV ) + I(W0W1V ; Y |U),

I(W0UV ; Y ) + I(W1; Y |W0W2UV ) + I(W2; Z|W0UV ),

I(W0UV ; Z) + I(W2; Z|W0W1UV ) + I(W1; Y |W0UV )
)})

In the appendix, we have shown thatφ(q(y, z|x, s)) takes values in convex sets. In order to use Theorem

1, we still need to defineϕj(p(y, z, x, s)) (j = 0, 1, 2, ...) consistently with the above definition of

φ(q(y, z|x, s)). This would be straightforward by taking, for any joint distributionp(y, z, x, s),

ϕj(p(y, z, x, s)) =
⋃

p(w0,w1,w2,u,v,x,s,y,z)∈Υp(y,z,x,s)
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∆
({(

I(W0; Y |U),

I(W0, Z|V ),

I(W1; Y |U)),

I(W2; Z|V )),

I(W0W1; Y |U),

I(W1;Y |W0UV ) + I(W0U ; Z|V )),

I(W0W2; Z|V ),

I(W2;Z|W0UV ) + I(W0V ; Y |U)),

I(W1;Y |W0W2UV ) + I(W0W2U ; Z|V ),

I(W2;Z|W0W1UV ) + I(W0W1V ; Y |U),

I(W0UV ; Y ) + I(W1; Y |W0W2UV ) + I(W2; Z|W0UV ),

I(W0UV ; Z) + I(W2; Z|W0W1UV ) + I(W1; Y |W0UV )
)})

Please note thatϕj(.) as defined above is a down-set, i.e.ϕj(.) = ∆(ϕj(.)).

Now, we will prove thatϕj(.) (j = 0, 1, 2, ...) satisfies the properties of Theorem 1.

Property number 1.Given p(y, z|x, s) and p(x), we need to show that ifp(Y ZY ′Z ′|XX ′SS′) =

p(Y Z|XS).p(Y ′Z ′|X ′S′), H(X ′|X) = 0 andp(y′, z′|x′, s′) = q(y′, z′|x′, s′), then

⋂

p(ss′)

∆
(
ϕj+1(p(yzy′z′|xx′ss′)p(xx′)p(ss′))

) ⊆
⋂

p(s)

∆
(
ϕj(p(y, z|x, s)p(s)p(x))

))⊕ φ(q(y, z|x, s)).

Since the distribution ofX is given andH(X ′|X) = 0, p(x′) would be fixed. Sinceφ(q(y, z|x, s)) =
⋃

q(x)

⋂
p(s′) ∆

(
ϕ1(p(s′).q(x′).q(y′, z′|x′, s′))) ⊇ ⋂

p(s′) ∆
(
ϕ1(p(s′).p(x′).q(y′, z′|x′, s′))), it would be

enough to prove that
⋂

p(ss′)

∆
(
ϕj+1(p(yzy′z′|xx′ss′)p(xx′)p(ss′))

) ⊆

( ⋂

p(s)

∆
(
ϕj(p(y, z|x, s)p(s)p(x))

))⊕ ( ⋂

p(s′)

∆
(
ϕ1(p(s′).p(x′).q(y′, z′|x′, s′)))).

In all of the three terms the expression begins by taking intersection over choices of the distribution

of the state variable. Take some arbitraryp(s) andp(s′) on the right hand side. In the above inequality
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we are taking infimum over all possible joint distributions ofSS′; if we restrict top(ss′) = p(s).p(s′)

the expression on the left hand side would increase. Therefore the above inequality would be valid if

one can show the following:

∆
(
ϕj+1

(
p(yzy′z′|xx′ss′)p(xx′)p(s)p(s′)

)) ⊆

∆
(
ϕj

(
p(y, z|x, s)p(s)p(x)

))⊕∆
(
ϕ1

(
p(s′).p(x′).q(y′, z′|x′, s′))).

Now, take an arbitrary point−→v insideϕj+1

(
p(yzy′z′|xx′ss′)p(xx′)p(s)p(s′)

)
. We would like to prove

that there exists−→v 1 ∈ ∆
(
ϕ1

(
p(s′).p(x′).q(y′, z′|x′, s′))) and−→v 2 ∈ ∆

(
ϕj

(
p(s)p(x)p(yz|xs)

))
such that

−→v 1 +−→v 2 ≥ −→v
There exists someU, V,W0,W1,W2 created fromXX ′ satisfyingUV W0W1W2−XX ′−SS′XX ′−

Y Y ′ZZ ′, and withW0, W1,W2 being independent of each other andX being a deterministic function

of (W0,W1,W2, U, V ) such that

−→v =
(

I(W0;Y Y ′|U),

I(W0, ZZ ′|V ),

I(W1;Y Y ′|U)),

I(W2; ZZ ′|V )),

I(W0W1; Y Y ′|U),

I(W1; Y Y ′|W0UV ) + I(W0U ; ZZ ′|V )),

I(W0W2; ZZ ′|V ),

I(W2; ZZ ′|W0UV ) + I(W0V ; Y Y ′|U)),

I(W1; Y Y ′|W0W2UV ) + I(W0W2U ;ZZ ′|V ),

I(W2; ZZ ′|W0W1UV ) + I(W0W1V ; Y Y ′|U),

I(W0UV ; Y Y ′) + I(W1; Y Y ′|W0W2UV ) + I(W2; ZZ ′|W0UV ),

I(W0UV ; ZZ ′) + I(W2; ZZ ′|W0W1UV ) + I(W1;Y Y ′|W0UV )
)

Let W ′
0 = W̃0 = W0, W ′

1 = W̃1 = W1, W ′
2 = W̃2 = W2, V ′ = V Y , U ′ = U , Ṽ = V Ũ = UZ ′. The

following properties hold:
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• The Markov chainU ′V ′W ′
0W

′
1W

′
2 −X ′ −X ′S′ − Y ′Z ′ holds.

• W ′
0,W

′
1,W

′
2 are independent of each other;X ′ is a deterministic function of(W ′

0,W
′
1,W

′
2, U

′, V ′)

• The Markov chainŨ Ṽ W̃0W̃1W̃2 −X −XS − Y Z holds.

• W̃0, W̃1, W̃2 are independent of each other;X is a deterministic function of(W̃0, W̃1, W̃2, Ũ , Ṽ )

We can define two points−→v 1 ∈ ∆
(
ϕ1(p(s′).p(x′).q(y′, z′|x′, s′))) and−→v 2 ∈ ∆

(
ϕj(p(yz|xs)p(s)p(x))

)

using the above auxiliary random variables. It can be easily seen that−→v 1+−→v 2 is coordinate by coordinate

greater than or equal to−→v . •
Property number 2.This is clear from the definition ofϕj .

Property number 3.This is clear from the definition ofϕj .

Property number 4.We need to show that for any(R0, R1, R2) ∈ CR(p(x)p(y, z|x, s)):

(R0, R0, R1, R2, R0 + R1, R0 + R1, R0 + R2, R0 + R2,

R0 + R1 + R2, R0 + R1 + R2, R0 + R1 + R2, R0 + R1 + R2) ∈
⋂

p(s)

∆
(
ϕj(p(yz|xs)p(s)p(x))

)
.

Take some arbitrary(R0, R1, R2) ∈ CR(p(x)p(y, z|x, s)). We know that there isp(w0, w1, w2, x) ∈ Ω

with marginalp(x) such that for everyp(s) when we have

(W0,W1,W2, X, S, Y, Z) ∼ p(w0, w1, w2, x).p(s).p(y, z|x, s) we have inequalities ( 1) with right hand

sidep(s). It is necessary and sufficient to prove that for anyp(s),

(R0, R0, R1, R2, R0 + R1, R0 + R1, R0 + R2, R0 + R2,

R0 + R1 + R2, R0 + R1 + R2, R0 + R1 + R2, R0 + R1 + R2) ∈ ∆
(
ϕj(p(yz|xs)p(s)p(x))

)
.

Let W ′
0 = W0, W ′

1 = W1, W ′
2 = W2, U ′ = ∅ andV ′ = ∅. It can be seen thatp(w′0, w

′
1, w

′
2, u

′, v′, x, s, y, z) ∈
Υp(yz|xs)p(s)p(x). This joint distribution inΥp(yz|xs)p(s)p(x) specifies a point inϕj(p(yz|xs)p(s)p(x))

which pointwise dominates the point{(R0, R0, R1, R2, R0 +R1, R0 +R1, R0 +R2, R0 +R2, , R0 +R1 +

R2, R0 + R1 + R2, R0 + R1 + R2, R0 + R1 + R2)} •
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VI. A PPENDIX

In this appendix we show thatφ(q(y, z|x, s)) is convex for eachq(y, z|x, s).

Take two vectors−→a = (a0, a1, a2, ..., a11) and
−→
b = (b0, b1, b2, ..., b11) in this region. Since−→a is inside

φ(q(y, z|x, s)), distributionp(xa) exists such that for allp(sa) a distribution

p(uavaw0aw1aw2axa)p(sa)q(ya, za|xa, sa) ∈ Υp(xa)p(sa)q(ya,za|xa,sa)

exists for which the following inequalities are satisfied:

• a0 ≤ I(W0a; Ya|Ua)

• a1 ≤ I(W0a, Za|Va)

• a2 ≤ I(W1a; Ya|Ua))

• a3 ≤ I(W2a; Za|Va))

• a4 ≤ I(W0aW1a;Ya|Ua)

• a5 ≤ I(W1a; Ya|W0aUaVa) + I(W0aUa; Za|Va))

• a6 ≤ I(W0aW2a;Za|Va)

• a7 ≤ I(W2a; Za|W0aUaVa) + I(W0aVa;Ya|Ua))

• a8 ≤ I(W1a; Ya|W0aW2aUaVa) + I(W0aW2aUa; Za|Va)

• a9 ≤ I(W2a; Za|W0aW1aUaVa) + I(W0aW1aVa; Ya|Ua)

• a10 ≤ I(W0aUaVa; Ya) + I(W1a; Ya|W0aW2aUaVa) + I(W2a; Za|W0aUaVa)

• a11 ≤ I(W0aUaVa; Za) + I(W2a;Za|W0aW1aUaVa) + I(W1a;Ya|W0aUaVa)

A similar statement holds for(b0, b1, ..., b11) involving random variables(Ub, Vb,W0b,W1b,W2b, Xb, Sb, Yb, Zb).

Let p(x̃) = 0.5 ∗ p(xa) + 0.5 ∗ p(xb). Take an arbitraryp(s). We consider the caseSa ∼ p(s) and

Sb ∼ p(s).

Without loss of generality, one can assume that(Ua, Va,W0a,W1a,W2a, Xa, Sa, Ya, Za) is independent

of (Ub, Vb,W0b,W1b,W2b, Xb, Sb, Yb, Zb).

Take a binary and uniform random variableT on {0, 1} that is independent of all the above mentioned

random variables and let(U, V,W0,W1,W2, X, S, Y, Z) be equal to

(TUa, TVa, TW0aW0b,W1aW1b,W2aW2b, Xa, Sa, Ya, Za)

if T = 0,

and be equal to

(TUb, TVb, TW0aW0b,W1aW1b,W2aW2b, Xb, Sb, Yb, Zb)

if T = 1.
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X has the distributionp(x) we started with andS has the distributionp(s) we started with. Furthermore,

one can verify thatp(yz|xs) = q(yz|xs) and that random variables

(U, V,W0,W1,W2, X, S, Y, Z) have joint distributionp(u, v, w0, w1, w2, x)p(s)q(yz|xs)

belonging toΥp(s)p(x)q(yz|xs).

It can be verified that this choice of variables gives us a point inφ(q(y, z|x, s)) that pointwise dominates

1
2
−→a + 1

2

−→
b . The proof is complete when we note that our choice ofp(s) was arbitrary.

REFERENCES

[1] Amin A. Gohari and V. Anantharam, “Information-Theoretic Key Agreement of Multiple Terminals – Part I: Source Model,”

Preprint, Dec. 2007. Available at http://www.eecs.berkeley.edu/∼aminzade/SourceModel.pdf

[2] Amin A. Gohari and V. Anantharam, “Information-Theoretic Key Agreement of Multiple Terminals – Part II: Channel

Model,” Preprint, Dec. 2007. Available at http://www.eecs.berkeley.edu/∼aminzade/ChannelModel.pdf

[3] Y. Liang, G. Kramer, and S. Shamai (Shitz), “Capacity outer bounds for broadcast channels,” 2008 IEEE Inf. Theory

Workshop, Porto, Portugal, pp. 2-4, May 5-9, 2008.

[4] K Marton, “A coding theorem for the discrete memoryless broadcast channel,” IEEE Trans. Inform. Theory, 25(3): 306-311

(1979).

[5] C. Nair and A. A. El Gamal, “An outer bound to the capacity region of the broadcast channel,” IEEE Trans. Inform.

Theory, 53(1): 350-355 (2007).

[6] J. Jahn, “Coding of arbitrarily varying multiuser channels,” IEEE Trans. Inform. Theory, 27(2): 212-226 (1981).

[7] E. Hof, Shraga I. Bross: “On the Deterministic-Code Capacity of the Two-User Discrete Memoryless Arbitrarily Varying

General Broadcast Channel With Degraded Message Sets,” IEEE Trans. Inform. Theory 52(11): 5023-5044 (2006)

[8] Y. Liang, G. Kramer, “Rate Regions for Relay Broadcast Channels,” IEEE Transactions on Information Theory 53(10):

3517-3535 (2007)

[9] T. M. Cover and J. A. Thomas,Elements of Information Theory, John Wiley and Sons, 1991.

DRAFT June 9, 2008


