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Abstract

Robust and adaptive communication under uncertain interference

by

Anand Dilip Sarwate

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

and the Designated Emphasis

in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Michael Gastpar, Chair

In the future, wireless communication systems will play an increasingly integral

role in society. Cutting-edge application areas such as cognitive radio, ad-hoc net-

works, and sensor networks are changing the way we think about wireless services.

The demand for ubiquitous communication and computing requires flexible commu-

nication protocols that can operate in a range of conditions. This thesis adopts

and extends a mathematical model for these communication systems that accounts

for uncertainty and time variation in link qualities. The arbitrarily varying channel

(AVC) is an information theoretic channel model that has a time varying state with

no statistical description. We assume the state is chosen by an adversarial jammer,

reflecting the demand that our constructions work for all state sequences. In this

thesis we show how resources such as secret keys, feedback, and side-information can

help communication under this kind of uncertainty.

In order to put our results in context we provide a detailed taxonomy of the known

results on AVCs in a unified setting. We then prove new results on list decoding

1



with constrained states, a relaxation of the main problem in which the receiver may

output a short list of possible messages. In particular, we show constant list sizes can

achieve capacity under an average-error criterion and that a list size L can achieve

within O(1/L) from the capacity under a maximal-error criterion, complementing the

known results for unconstrained state sequences.

If the encoder and decoder share a secret key, they can use a randomized code

to make their communication more robust. An important practical consideration in

using joint randomization for communication schemes is the tradeoff between key size

and error probability. Inspired by ad-hoc networks, we propose a new AVC model

called the AVC with “nosy noise,” in which the jammer can observe the transmitted

codeword non-causally. We show that a key size of O(logn) bits is sufficient to

achieve capacity for codes of blocklength n in this model as well as in the case for the

standard AVC. If a secure feedback channel is available, the key can be shared via

feedback. Limited feedback can also be used to adapt the rate to the actual channel

state sequence. We develop an AVC framework for rateless coding and show schemes

that achieve rates arbitrarily close to the empirical mutual information.

Finally, we address the Gaussian version of the AVC, where we show that a key size

of O(logn) bits is again sufficient to achieve capacity. This result allows us to find an

achievable rate region for degraded broadcast channels. In the case where randomized

coding is infeasible, we show how a known interference signal at the transmitter can

enlarge the capacity region. This result has applications to watermarking and a model

for spectrum-sharing communication systems.
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Chapter 1

Introduction

1.1 Interference in new communication systems

As we move forward into the 21st century, communication technologies will play an

ever increasing in commercial and social interactions. New applications from personal

multimedia systems in “smart homes” to sensor networks monitoring oceanic condi-

tions to municipal WiFi access require protocols for reliably transmitting data and

control information. The demand for these new complex and interactive technolo-

gies requires theoretical models that can shed light on performance limits, illustrate

tradeoffs between different design parameters, and provide guidelines for developing

strategies to efficiently use the communication resources.

The dominant paradigm for organizing wireless communication services is cen-

tralization. This centralization comes in two forms. In cellular systems, the system

designer can plan physical deployments to ensure good coverage and limit inter-cell

interference. The FCC also uses a centralized planning system to allocate spectrum
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Chapter 1. Introduction

by requiring service providers to limit the amount of energy that leaks out of their

allocated frequency band. Although centralized planning makes the design of wireless

technologies easier, some claim that it has also led to an inefficient use of the radio

spectrum resources.

Because of the consumer demand for data-rich ubiquitous connectivity, research

on new communication systems has turned to decentralized architectures. One vision

of the future includes wireless devices that make local peer-to-peer connections and

seamlessly hand-off transmission to internet-enabled access points if the user walks out

of range. Devices should also be able to adapt their protocols based on local spectrum

availability in order to take advantage of unused resources. This emphasis on local

spectrum reuse and adaptation represents a shift away from current centralized service

planning.

The work in this thesis is inspired in part by engineering challenges that may

arise in the design of communication technologies for three emerging applications for

decentralized communication protocols: sensor networks, wireless ad-hoc networks,

and “cognitive radio.” These applications involve communication in environments

that are difficult to model, which in turn requires the communication protocols to

be robust to modeling errors. This difficulty may stem from the cost of measuring

channel characteristics, the behavior of other users, or the interaction of heterogeneous

systems using the same resources.

1.1.1 Sensor networks

The term “sensor network” is a convenient label for systems that consist of distributed

components, each containing some sort of communication interface, deployed in an

environment that is to be sensed and/or controlled. Applications for these networks

range from environmental monitoring [105] to distributed target tracking [34,118] to

2



Chapter 1. Introduction

ubiquitous computing or pervasive networking [60] environments. A historical survey

can be found in Chong and Kumar [37].

Sensor networks are often envisioned as consisting of a large number of cheap

low-power “motes” equipped with sensors to detect a spatially varying quantity such

as temperature or electromagnetic field strength and a wireless radio to permit com-

munication between sensors or between sensors and a central processor. In these

applications, a premium is put on energy efficiency, since the motes have limited bat-

tery power and cannot afford to be wasteful. Although this power-limited view is

popular in theoretical studies, sensor networks have also been proposed for industrial

monitoring, where the motes may be wired for data and power.

One advantage of producing cheap motes is that the same hardware should be

usable for many different applications. The cornucopia of sensor network applications

encompasses a wide range of channel conditions. A good communication protocol for

such networks should be insensitive to these variations or be able to adapt to them.

In particular, it may not be possible to characterize the interference from external

sources prior to deployment.

In this thesis, we look at the benefits of using randomization on communication

over channels with unknown but power-limited interference. Randomization requires

the communicating parties to share a secure key, and we develop tradeoffs between

the key size and the achievable probability of error. We can extend these results

to a “streaming” construction that can allow rate-adaptation in the face of varying

channel characteristics.

1.1.2 Ad-hoc networks

In an ad-hoc wireless network, several devices form a network to facilitate the trans-

mission of data. Ad-hoc wireless networks are similar to sensor networks in many

3



Chapter 1. Introduction

ε ε ε ε

ε ε ε ε

!!! !!!

Alice

Spike

Bob

Figure 1.1: An ad-hoc network with a compromised user. Alice and Bob wish to exchange
data. Although links between users following the protocol can be modeled by channels
that randomly erase packets, a malicious user, Spike, may substitute fake traffic.

respects, and indeed the underlying physical modeling of the communication chan-

nels is often the same. Research on ad-hoc networks also addresses issues such as

networking [121] and mobility [71].

Data transmitted between two users may be forwarded by third parties in the net-

work, so one potential concern is data security and integrity. Although cryptographic

protocols at the application layer may guarantee (under suitable complexity assump-

tions) that packets cannot be decrypted by intermediate users, the packets may still

be corrupted by a third party that has, for example, downloaded a computer virus

(see Figure 1.1). One class of problems that we study can apply to error control

coding for this kind of adversarial tampering, which in general can be more harmful

than the random-error model. Again, randomization will be a key component in our

strategies. Because cryptographic keys may be used at the application layer, one way

to interpret our results is a quantification of the tradeoff between extra overhead (in

terms of the key rate) and data integrity (in terms of error probability).
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1.1.3 Cognitive radio

Another hot application area in modern communication engineering is cognitive ra-

dio [114, 115], which refers to wireless systems that utilize sensing to adapt their

behavior in order to coexist with other systems. Measurements of spectrum utiliza-

tion indicate that there is a wide variation, geographically and temporally, in usage

patterns [158,63]. Cognitive radios have been proposed as a solution for opportunisti-

cally communicating on unused spectrum. The spectrum is licensed to primary users

who share the band with secondary or “cognitive” users. The secondary systems

must follow certain etiquette rules, such as remaining silent when the primary system

is transmitting. A cognitive system with a wideband spectrum sensor could theo-

retically perform dynamic spectrum management across several bands to scavenge

sufficient resources for its communication needs.

With the Federal Communication Commission’s recent decision to allow spectrum

reuse in the 700 MHz band [64], these systems are moving ever closer to reality and

have raised a number of interesting theoretical questions from limits of sensing [148] to

allocation mechanisms [83] to information theoretic models [50,90,69] for interacting

systems. In this thesis we will look at a channel model which does not make many

assumptions on the time-dynamics of an interfering signal. Within this model there

are several interesting problems highlighting the benefits of randomization, feedback,

and knowledge of the primary signal on the capacity of cognitive radio systems.

1.1.4 Towards a mathematical model

Claude Shannon’s landmark 1948 paper provided a mathematical foundation for the

study of communication systems via probability theory [135]. Information theory

studies communication by positing a statistical relationship between the received and

transmitted signals. The simplest model for this relationship is a discrete memoryless
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channel V (y|x), which is a conditional probability distribution for the output y con-

ditioned on the input x. This model and its properties are discussed extensively in

basic texts on information theory [41, 44], and have been used over the last 60 years

to derive important insights into real communication channels.

Strategies for communication over discrete memoryless channels (DMCs) involve

communicating over blocks of many channel inputs. As the blocklength n becomes

very large, large-deviations results in probability theory can be used to approximate

the input-output relationship of the channel. Loosely speaking, at large blocklengths

the channel’s behavior is nearly deterministic, so coding schemes can use the large-

deviations approximation.

The DMC model does not capture time variation in the channel – the transition

probabilities V (y|x) are fixed for all time. This model can be extended to include

dynamics that can be described by finite state machines, Markov chains, linear time-

invariant filters, or other transformations. These extended models have led to signifi-

cant improvements for many widely used communication systems. However, in order

to realize these gains, the dynamics of the channel must be modeled in advance.

For applications such as ad-hoc networks, sensor networks, and cognitive radio,

the channel dynamics may not be known in advance and hence we cannot design com-

munication protocols that are optimized for the particular communication channel.

As discussed earlier, robustness and adaptivity are two important goals for commu-

nication in these applications. In order to look at these issues we must adopt a

fundamentally nonstationary channel model. In the next section we will describe the

arbitrarily varying channel, which is one approach to introducing uncertainty in the

channel dynamics without making statistical assumptions.

6
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1.2 Arbitrarily varying channels

The arbitrarily varying channel (AVC) is an information-theoretic model for commu-

nication channels with an unknown state. It is a simple extension to the discrete

memoryless channel proposed by Shannon [135]. The analysis is worst-case, in that

the state is assumed to be chosen by a malicious adversary, or jammer, whose objec-

tive is to minimize the maximum reliable rate of communication. In this section we

will introduce the basic model and its variants.

First let us establish some notation conventions for the rest of this work. An

appendix of notation with references to definitions is given in Appendix A. We will

generally use calligraphic type for sets, and use the shorthand [M ] = {1, 2, . . . ,M}
for integers M . For a set X , the set P(X ) is the set of all probability distributions

on X and Pn(X ) is the set of all probability distributions of composition n. We

will write P(Y|X ) for all conditional distributions on Y conditioned on X . For

random variables (X, Y ) with joint distribution PXY we will write PX and PY for the

marginal distributions and PX|Y for the conditional distribution of X given Y . For a

distribution P and conditional distribution V (y|x), the distribution PV or P × V is

the joint distribution P (x)V (y|x).
Given a sequence x = (x1, x2, . . . , xn) ∈ X n, let N(x|x) = |{i : xi = x}|, the

number of times x appears in x . We denote the type of x by

Tx =
1

n
(N(x1|x), N(x2|x), . . . , N(x|X ||x)) . (1.1)

The set of all length-n sequences of a fixed type P will be denoted by

Tn(P ) = {x ∈ X n : Tx = P} . (1.2)

We will use H(X) and I (X ∧ Y ) to denote the entropy of a random variable X
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and the mutual information between two random variables X and Y . Suppose X and

Y take values in X and Y , respectively, and have joint distribution PXY (x, y) with

marginal distributions PX and PY . Then

H(X) =
∑

x∈X
PX(x) log

1

PX(x)
(1.3)

I (X ∧ Y ) =
∑

x∈X

∑

y∈Y
PXY (x, y) log

PXY (x, y)

PX(x)PY (y)
. (1.4)

If PY |X is the distribution in P(Y|X ) of Y conditioned on X, the conditional entropy

H(Y |X) is

H(Y |X) = H(Y ) − I (X ∧ Y )

=
∑

x∈X

∑

y∈Y
PXY (x, y) log

1

PY |X(y|x) . (1.5)

We will also write entropies as functions of distributions, so H(PX) = H(X) and

H(PY |X |PX) = H(Y |X). For two distributions P and Q in P(X ) the Kullback-

Leibler divergence D (P ‖ Q) is defined by

D (P ‖ Q) =
∑

x∈X
P (x) log

P (x)

Q(x)
. (1.6)

Properties of these functions can be found in standard information theory references

[41, 44].

Let dmax (P,Q) be the maximum deviation (ℓ∞ distance) between two probability

distributions P and Q:

dmax (P,Q) = max
x∈X

|P (x) −Q(x)| . (1.7)
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The set T ǫP is the ǫ-typical set around P :

T ǫP = {x : dmax (P, Tx) < ǫ} . (1.8)

The set T ǫV (x) is the (V, ǫ)-shell around x:

T ǫV (x) =

{

y : dmax

(

Ty,
∑

x

Tx(x)V (y|x)
)

< ǫ

}

. (1.9)

1.2.1 Basic definitions

We will model our time-varying channel by an arbitrarily varying channel (shown

in Figure 1.2), which is a set W = {W (·|·, s) : s ∈ S} of channels from an input

alphabet X to an output alphabet Y parameterized by a state s ∈ S. Unless otherwise

specified, we will assume the sets X , Y and S are finite. If x = (x1, x2, . . . , xn),

y = (y1, y2, . . . , yn) and s = (s1, s2, . . . , sn) are length n vectors, the probability of

observing the output y given the input x and state s over the AVC W is given by:

W (y|x, s) =

n∏

i=1

W (yi|xi, si) . (1.10)

The interpretation of (1.10) is that the channel state can change arbitrarily from time

to time. We will think of this as an adversarial model in which the state is controlled

by a jammer who wishes to stymie the communication between the encoder and

decoder. As we will see, the capabilities of this adversary can be captured in the

error criterion.

One extension of this model is to introduce constraints on the input and state se-

quences [45]. Let g : X → R
+ and l : S → R

+ be cost functions on the input and state

sets . For discrete channels we will assume maxx∈X g(x) = γ∗ <∞ and maxs∈S l(s) =

λ∗ < ∞. The cost of vectors x = (x1, x2, . . . , xn) and s = (s1, s2, . . . , sn) is the sum

9



Chapter 1. Introduction

W (y|x, s)x y
s

Figure 1.2: An arbitrarily varying channel.

of the cost on the elements:

g(x) =

n∑

i=1

g(xi) (1.11)

l(s) =
n∑

i=1

l(si) . (1.12)

Without loss of generality we will assume minx g(x) = 0 and mins l(s) = 0. In point-

to-point fixed blocklength channel coding problems, we will put constraint Γ and Λ

on the average costs, so that

g(x) ≤ nΓ a.s. (1.13)

l(s) ≤ nΛ a.s. . (1.14)

We will also assume Γ > 0 and Λ > 0. If Γ ≥ γ∗ we say the input is unconstrained,

and if Λ ≥ λ∗ we say the state is unconstrained. We will define the set

Sn(Λ) = {s : l(s) ≤ nΛ} (1.15)

to be the set of sequences with average cost less than or equal to Λ.

Example 1.1 – Bag of BSCs

Consider an AVC with X = {0, 1}, Y = {0, 1}, and S = {s1, s2, . . . , s|S|} with

10
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sj ∈ [0, 1]. For s ∈ S, let the corresponding channel from X to Y be given by

W (y|x, s) =




1 − s s

s 1 − s



 . (1.16)

That is, the channel model is that of a binary symmetric channel (BSC) with time-

varying crossover probability. A cost function l(·) on the state and a state constraint

Λ can restrict the allowable mixtures of these channels.

Example 1.2 – Modulo additive

Consider an AVC with X = {0, 1, . . . , p}, Y = {0, 1, . . . , p}, and S = {0, 1, . . . , p},
where

W (y|x, s) =




0 Ip−s

Is 0



 , (1.17)

where Ik is the k × k identity matrix. This corresponds to a channel of the form

Y = X ⊕ S, where the addition is performed modulo p. The simplest case is when

p = 2. In this case, we will let l(s) = s, so that a cost constraint Λ becomes a bound

on the empirical number of 1’s in the state sequence.

Example 1.3 – Real additive channel

Consider an AVC with X = {0, 1}, Y = {0, 1, 2}, and S = {0, 1} and the following

channel matrices

W (y|x, 0) =




1 0 0

0 1 0



 , W (y|x, 1) =




0 1 0

0 0 1



 . (1.18)

This corresponds to a channel of the form Y = X+S, where the addition is performed

over the real numbers. To introduce constraints into this model, we can again let

l(s) = s to bound the empirical number of 1’s in the state sequence. We can also use
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Enc W (y|x, s) Dec
i x(i) y î

Jam

s

Figure 1.3: An arbitrarily varying channel with deterministic encoding.

an input cost function g(x) = x with constraint Γ to bound the weight of the input

sequence.

In the AVC literature, the form of the capacity formula is generally determined by

two factors: the allowable coding strategies and the error criterion. In a randomized

code, the encoder and decoder share a source of common randomness with which

they may randomize their coding strategy, whereas a deterministic code uses a fixed

mapping from messages to codewords. The state sequence may depend on different

quantities – the message, the transmitted codeword, or both. Furthermore, we may

relax the definition of correct decoding to allow the decoder to output a list of can-

didate codewords. All of these changes affect the way in which we define the error

criterion.

A (n,N) deterministic code C for the AVC W with input constraint Γ is a pair

of maps (φ, ψ) with

φ : [N ] → X n (1.19)

ψ : Yn → [N ] , (1.20)

and for all i ∈ [N ] we have g(φ(i)) ≤ nΓ. The rate of the code is n−1 logN . The

deterministic encoder for the AVC is shown in Figure 1.3. The decoding region for

message i is Di = {y : ψ(y) = i} . We can also write a deterministic code C as a set

of pairs {(x(i), Di) : i ∈ [N ]} with the encoder φ and decoder ψ defined implicitly.
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Enc W (y|x, s) Dec
i x(i) y î

Jam

s

k ∈ {1, 2, . . . , K}

Figure 1.4: An arbitrarily varying channel with randomized encoding. The encoder and
decoder share a secret key in [K] that is unknown to the jammer.

In stating later results we will also write {x(i) : i ∈ [N ]} or {xi : i ∈ [N ]} for the set

of codewords in a code.

The error for message i and state sequence s ∈ Sn(Λ) is given by

ε(i, s) = 1 −W (Di|x(i), s) . (1.21)

The maximal and average error for a (n,N) deterministic code over an AVC

W with cost constraint Λ are given by

ε = max
i

max
s∈Sn(Λ)

ε(i, s) (1.22)

ε = max
s∈Sn(Λ)

1

N

n∑

i=1

ε(i, s) . (1.23)

A (n,N) randomized code C for the AVC W with input constraint Γ is random

variable taking on values in the set of deterministic codes. It is written as a pair of

random maps (Φ,Ψ) where each realization is an (n,N) deterministic code satisfying

the constraint Γ. If (Φ,Ψ) almost surely takes values in a set of K codes, then we

call this an (n,N,K) randomized code. The key size of a randomized code (Φ,Ψ)

is the entropy of the code H(C). Note that the realization of the code is shared by
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Enc W (y|x, s) Dec
i x(i) y î

Jam

s

k ∈ {1, 2, . . . , K}

Figure 1.5: The nosy noise error model – the jammer knows both the message i and the
codeword φk(i).

the encoder and decoder, so the key is known by both parties.

In the case where C is uniformly distributed on a set of K codes, the key size is

simply logK. For K = exp(nRK) we can define the key rate to be RK . We can

also think of an (n,N,K) randomized code as a family of codes {(φk, ψk) : k ∈ [K]}
indexed by a set of K keys, as shown in Figure 1.4. The rate of the code is R =

n−1 logN . The decoding region for message i under key k is Di,k = {y : ψk(y) = i}.
In the case where the bound on K is not explicit or unspecified, we write the random

decoding region for message i as Di = {y : Ψ(y) = i}.
The power of randomized codes comes from modifying the definition of the error

probability. Rather than demanding that the decoder error be small for every message

and every key value, we instead require it to be small for every message averaged over

key values. Randomization allows several different codewords to represent the same

message. For maximal error, there are two cases to consider, depending on whether

or not the state can depend on the actual codeword. For deterministic codes this

distinction does not come up, since taking the maximum of ε(i, s) over all messages

i is the same as taking the maximum over codewords x(i).

The standard maximal error for a (n,N) randomized code over an AVC W

14
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with cost constraint Λ is given by

ε = max
i

max
s∈Sn(Λ)

E [1 −W (Di|Φ(i), s)] , (1.24)

where the expectation is over the randomized code (Φ,Ψ). Here the variables Di and

Φ(i) correspond to the same realization of the key. The nosy maximal error for a

(n,N) randomized code over an AVC W with cost constraint Λ is given by

ε̂ = max
i

max
J :Xn→Sn(Λ)

E [1 −W (Di|Φ(i), J(Φ(i)))] , (1.25)

where the expectation is over the randomized code (Φ,Ψ). Again, the variables Di,

Φ(i), and J(Φ(i)) correspond to the same realization of the key. We call an AVC

under the nosy maximal error criterion an AVC with nosy noise. We will not

consider an average error criterion for randomized codes. Figure 1.5 shows the channel

model under the nosy noise assumption. In the AVC with nosy noise, the jammer’s

strategies take the form of mappings J : X n → Sn(Λ) from the codeword vectors to

state sequences. This is a more pessimistic assumption on the jammer’s capabilities,

since it assumes that it has noncausal access to the transmitted codeword. Under

randomized coding we will show that from a capacity standpoint all that matters is

whether the jammer has access to the current input symbol.

A rate R is called achievable if for every ǫ > 0 there exists a sequence of (n,N)

codes of rate Rn ≥ R − δ satisfying the input constraints whose probability of error

is at most ǫ. Whether R is achievable will depend on the error criterion (maximal,

average, nosy) and allowable codes (deterministic, randomized). For a fixed error

criterion and type of coding, the supremum of achievable rates is the capacity of the

arbitrarily varying channel.

We will write capacities using the letter C. The subscript will indicate the type
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of coding allowed : d for deterministic, r for randomized. A bar will indicate the

average error criterion, a hat the nosy noise criterion, and no accent will indicate

maximal error. Constraints will be given in parentheses, with the absence of a con-

straint indicating the unconstrained case. Thus Cd(Γ,Λ) is the deterministic coding

capacity under average error with input constraint Γ and cost constraint Λ, Cr is the

randomized coding capacity under maximal error with no constraints, and Ĉr(Λ) is

the randomized coding capacity with nosy noise and state constraints.

1.2.2 Information quantities

For a fixed input distribution P (x) on X and channel V (y|x), we will also use the

notation I (P, V ) to denote the mutual information between the input and output of

the channel:

I (P, V ) =
∑

x,y

V (y|x)P (x) log
V (y|x)P (x)

P (x)
∑

x′ V (y|x′)P (x′)
. (1.26)

We define the following sets:

I(Γ) =

{

P ∈ P(X ) :
∑

s

P (x)g(x) ≤ Γ

}

(1.27)

Q(Λ) =

{

Q ∈ P(S) :
∑

s

Q(s)l(s) ≤ Λ

}

(1.28)

U(P,Λ) =

{

U ∈ P(S|X ) :
∑

s,x

U(s|x)P (x)l(s) ≤ Λ

}

. (1.29)

For an AVC W = {W (y|x, s) : s ∈ S} with state constraint Λ we define two sets of
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Enc W (y|x, s)i x(i) y

x(j) U(s|x)
s

d
=

Enc W (y|x, s)j x(j) y

x(i) U(s|x)
s

Figure 1.6: A symmetrizable channel. The jammer can simulate a codeword of the user
to yield the same output distribution

channels:

Wstd(Λ) =

{

V (y|x) : V (y|x) =
∑

s

W (y|x, s)Q(s), Q(s) ∈ Q(Λ)

}

(1.30)

Wdep(P,Λ) =

{

V (y|x) : V (y|x) =
∑

s

W (y|x, s)U(s|x), U(s|x) ∈ U(P,Λ)

}

.

(1.31)

We will suppress the explicit dependence on Λ. The set in (1.30) is called the convex

closure of W, and the set in (1.31) is the row-convex closure of W. In earlier works

Wdep(P,Λ) is sometimes written as W .

A central idea in the study of AVCs under average error is that of symmetriz-

ability. We call a channel V (y|x1, x2, . . . , xm) from Xm to Y symmetric if for any

permutation π on [m],

V (y|x1, x2, . . . , xm) = V (y|xπ(1), xπ(2), . . . , xπ(m)) ∀(x1, x2, . . . , xm, y) . (1.32)

An AVC W is symmetrizable under the input distribution P and cost constraint Λ

if there exists a distribution U(s|x) ∈ U(P,Λ) such that

V (y|x, x′) =
∑

s∈S
W (y|x, s)U(s|x′) (1.33)
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is symmetric. That is,

∑

s∈S
W (y|x, s)U(s|x′) =

∑

s∈S
W (y|x′, s)U(s|x) ∀(x, x′, y) ∈ X × X × Y . (1.34)

The intuitive meaning of (1.34), as shown in Figure 1.6, is that the jammer can

simulate the transmitter by choosing a codeword x′ from the codebook C and passing

it through the channel U to get a state sequence s. The decoder will be unable to

tell if the transmitted codeword was x or x′ because the average channel in (1.34)

symmetric between its two inputs.

1.2.3 List decoding and feedback

The no-frills version of the AVC model is that of deterministic coding under max-

imal error. The capacity for this model is still an open question, in some cases is

equivalent to finding a zero-error capacity of a DMC [2]. The difficulty of finding

the deterministic capacity under maximal error has spawned several modifications of

the problem which we can think of as relaxations from the original coding problem.

These relaxations either enhance the allowable coding strategies or weaken the error

criterion.

Two relaxations that we have already seen are using randomized coding and the

average probability of error criterion. Chapter 2 addresses another relaxation in the

form of list decoding. In list decoding, we allow the decoder to output a list of

candidate messages and declare an error only if the true message is not on the list.

In this thesis we will only discuss deterministic list codes.

An (n,N, L) deterministic list code C for the AVC is a pair of maps (φ, ψ)

where the encoding function is φ : [N ] → X n and the decoding function is ψ : Yn →
[N ]L. The rate of the code is R = log(N/L). The codebook is the set of vectors
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{xi : 1 ≤ i ≤ N}, where xi = φ(i). The decoding region for message i is Di = {y :

i ∈ ψ(y)}. We can again specify a code by the pairs {(xi, Di) : i = 1, 2, . . . , N}, with

the encoder and decoder defined implicitly.

We have two notions of error probability, maximal and average. The maximal

error is given by

εL = max
s∈Sn(Λ)

max
i

(1 −W (Di|Xn = xi, s)) . (1.35)

The average probability of error is given by

εL = max
s∈Sn(Λ)

1

N

N∑

i=1

(1 −W (Di|xi, s)) . (1.36)

The definition of achievability and capacity for list codes are the same as for the

deterministic and randomized coding strategies above. We will denote the list-L

capacity for maximal error by CL and for average error by CL.

The concept of symmetrizability extends to lists. For an integer m let Usym(m)

be the set of channels U : Xm → S that symmetrize the AVC W:

Usym(m) =

{

U(s|xm) : V (y|x, x1, . . . , xm) =
∑

s

W (y|x, s)U(s|x1, x2, . . . , xm)

is symmetric

}

. (1.37)

We call an AVC m-symmetrizable if Usym(m) 6= ∅. The symmetrizability Lsym

of an unconstrained AVC is the largest integer such that W is Lsym-symmetrizable.

Another relaxation of the coding problem is to allow the encoder access to the

outputs of the channel via a noiseless feedback link. In this thesis we will not study

the noiseless feedback case, but the problem has been investigated by Ahlswede [5].

His feedback construction uses a concatenation of list codes. The decoder decodes the
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first code into a list of candidate codewords, and because of the feedback the encoder

can generate the same list. The encoder then uses another list code to disambiguate

this list, and the decoder list-decodes the disambiguation information. By iterating

this process the decoder can eventually decode the correct codeword.

1.2.4 Side information and correlated sources

We can also consider channel models in which the encoder or decoder is given side

information about the state sequence s that governs the channel. This model has been

used for memories [18] and localized error models [12]. The main difference is to allow

the encoder or decoder mapping to depend on s, so the encoder maps [N ]×Sn → X n

in the case where the encoder has full non-causal side information. The remaining

coding definitions are the same. Another interesting case is where the channel has

two state sequences, one known to the transmitter and the other generated by the

jammer. In the Gaussian AVC, the side information at the encoder can help enlarge

the capacity region, as we will show in Chapter 5.

1.3 Previous results on discrete AVCs

We will now summarize some of the previous results on AVCs in order to provide

some context for the results in later chapters. Lapidoth and Narayan wrote a survey

on models of channel uncertainty [104] which covers some of these results but in the

interest of completeness we will briefly describe the results and the relevant arguments.

Many of the capacity results are given by one of the following two quantities:

Cstd(Γ,Λ) = max
P∈I(Γ)

min
V ∈Wstd(Λ)

I (P, V ) (1.38)

Cdep(Γ,Λ) = max
P∈I(Γ)

min
V ∈Wdep(P,Λ)

I (P, V ) . (1.39)
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If Γ = γ∗ then the input constraint is vacuous and we will write Cstd(Λ) for Cstd(Γ,Λ)

and Cstd(Λ) for Cdep(Γ,Λ).

In information theory there is a distinction between information quantities such as

Cstd(Γ,Λ) and Cdep(Γ,Λ) that are defined in terms of mutual information expressions

and operational quantities such as the randomized coding capacity under maximal

error Cr(Γ,Λ). Previous researchers (see Theorems 1 and 2) have shown that

Cr(Γ,Λ) = Cstd(Γ,Λ) . (1.40)

In Theorem 14 in Chapter 3 we will show that the randomized coding capacity under

nosy noise Ĉr(Γ,Λ) is given by

Ĉr(Γ,Λ) = Cdep(Γ,Λ) . (1.41)

Because Wstd ⊆ Wdep, in general we have Cdep ≤ Cstd. In some cases equality can

hold, as in the following example.

Example 1.4 – Bit-flipping (mod-two adder)

Consider an AVC with input alphabet X = {0, 1}, state alphabet S = {0, 1} and

output alphabet Y = {0, 1}, with

y = x⊕ s , (1.42)

where ⊕ denotes addition modulo two. This is a “bit-flipping AVC” in which the

jammer can flip the input (s = 1). We choose l(s) = s so that the state constraint

Λ bounds the fraction of bits which can be flipped by the jammer. In this example

we will not impose a constraint on the input. For this AVC it can be shown [45,101]
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that

Cstd(Λ) = 1 − hb(Λ) (1.43)

Cdep(Λ) = 1 − hb(Λ) , (1.44)

where hb(t) = −t log t− (1− t) log(1− t) is the binary entropy function. In this case,

we have Cstd(Λ) = Cdep(Λ). Furthermore, the capacity under randomized coding and

maximal error Cr(Λ) = Cstd(Λ) and the capacity under randomized coding and nosy

noise is Ĉr(Λ) = Cdep(Λ).

Although for this bit-flipping example the two max-min expressions have the same

value, this is not the case for general AVCs. In the previous example the addition

was taken over the finite field F2. If we instead take the addition over the integers

the two quantities are different.

Example 1.5 – Real additive channel

Consider an AVC with input alphabet X = {0, 1}, state alphabet S = {0, 1} and

output alphabet Y = {0, 1, 2}, with

y = x+ s . (1.45)

We choose l(s) = s and g(x) = x so that the constraints Λ and Γ on the jammer and

encoder bound the weight of their inputs.

Let Q = (1 − q, q) be a distribution on S and consider the average channel V

under Q:

V =




1 − q q 0

0 1 − q q



 , (1.46)
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Figure 1.7: The max-min values Cstd(Γ,Λ) and Cdep(Γ,Λ) for the real adder channel in
Example 1.5 as a function of Λ for fixed values of Γ = 0.25 (upper plot) and Γ = 0.75
(lower plot). Within each plot the higher curve is Cstd(Γ,Λ) and the lower curve is
Cdep(Γ,Λ).

If the input distribution is P = (1 − p, p), the mutual information can be written as

I (X ∧ Y ) = H(X) −H(X|Y )

= hb(p) − ((1 − p)q + p(1 − q))hb

(
(1 − p)q

(1 − p)q + p(1 − q)

)

. (1.47)

For the unconstrained channel, Csiszár and Narayan [45] showed that the optimal p

and q are both equal to 1/2, which yields Cstd(Γ,Λ) = 1/2 for Γ ≥ 1/2 and Λ ≥ 1/2.

Unfortunately, for other values of the constraints it is more difficult to find a closed-

form expression for the capacity.
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Figure 1.8: The max-min values Cstd(Γ,Λ) and Cdep(Γ,Λ) for the real adder channel in
Example 1.5 as a function of Γ for fixed values of Λ = 0.25 (upper plot) and Λ = 0.75
(lower plot). Within each plot the higher curve is Cstd(Γ,Λ) and the lower curve is
Cdep(Γ,Λ).
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Deterministic Randomized List Feedback
Average Cstd or 0 Cstd Cstd or 0 Cstd

Maximal ≥ min (Cdep, D(P )) Cstd Cdep Cdep

Nosy ≥ min (Cdep, D(P )) Cdep Cdep

Table 1.1: Previously known capacity results for unconstrained arbitrarily varying channels.
The function D(P ) is defined in Section 1.3.2. For list decoding under average error the
capacity is for a constant list size. For list decoding under maximal error and nosy noise,
the capacity is achievable with growing list sizes. The randomized capacity under nosy
noise is proved in Theorem 14 of Chapter 3. The feedback capacities hold under some
additional assumptions.

We can compute the quantity Cdep(Γ,Λ) explicitly :

Cdep(Γ,Λ) =







hb
(

1−Λ
2

)
− 1+Λ

2
hb
(

2Λ
1+Λ

)
Γ ≥ 1−Λ

2

hb(Γ) − (Λ + Γ)hb
(

Λ
Λ+Γ

)
Γ < 1−Λ

2
.

(1.48)

The details are given in Section C.1.

Figures 1.7 shows the two capacities as a function of the cost constraint for differ-

ent values of the input constraint. Figure 1.8 shows the two quantities as a function

of the input constraint for different cost constraints. It is clear that for this example

Cdep(Γ,Λ) is smaller than Cstd(Γ,Λ).

From 1960 until 1988, nearly all of the results on the arbitrarily varying channel

were for the case of unconstrained states and inputs. In this thesis we will focus

on AVCs with constraints. The results for unconstrained AVCs are summarized in

Table 1.1. In the remainder of this section we will describe these results and the

corresponding results for constrained AVCs if they exist.
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1.3.1 Randomized coding and maximal error

The first result on arbitrarily varying channels was in the seminal paper by Blackwell,

Breiman, and Thomasian [28]. In their model, the jammer is allowed to choose

its state St at time t with knowledge of the inputs Xi and outputs Yi for times

i = 1, 2, . . . , t− 1. Communication over the AVC was modeled as a two person zero-

sum game between the jammer and the encoder/decoder. The first player chooses a

jamming strategy for selecting St, and the second player chooses a deterministic code.

The payoff is 1 to the jammer if a decoding error is made. Mixed strategies for the

second player correspond to randomized codes. Using mixed strategies the maximal

probability of error under randomized coding is the value of the game.

Theorem 1 (Randomized coding under maximal error for unconstrained AVCs [28]).

For an AVC W without constraints, the randomized coding capacity is given by

Cr = Cstd . (1.49)

Furthermore, Cr is the capacity when the state St at time t can depend on all inputs

Xi and outputs Yi for i = 1, 2, . . . , t− 1.

Although it may be possible to use a similar game-theoretic argument to show an

analogous result for constrained AVCs, the work of Csiszár and Narayan on discrete

constrained AVCs [45, 46, 47] uses more “traditional” combinatorial arguments [44].

Theorem 2 (Randomized coding under maximal error for constrained AVCs [45]).

For an AVC W with input and state cost functions Γ(·) and Λ(·) with constraints Γ

and Λ, the randomized coding capacity is given by

Cr(Γ,Λ) = Cstd(Γ,Λ) . (1.50)
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1.3.2 Deterministic coding and maximal error

If the encoder and decoder use a deterministic code, the error under nosy noise is

the same as the maximal error. Because maximizing over messages is the same as

maximizing over codewords, we can see:

ε̂ = max
i

max
J :Xn→Sn(Λ)

(1 −W (Di|φ(i), J(φ(i)))) (1.51)

= max
i

max
J :[N ]→Sn(Λ)

(1 −W (Di|φ(i), J(φ(i)))) (1.52)

= max
i,s∈Sn(Λ)

(1 −W (Di|φ(i), s)) (1.53)

= ε . (1.54)

Thus for deterministic codes under the maximal error criterion we may assume that

the jammer knows the codeword being transmitted. Therefore the deterministic cod-

ing capacity under nosy noise is the same as the deterministic coding capacity under

maximal error:

Ĉd = Cd . (1.55)

One strategy for the jammer against message i is to choose a channel U(s|x) ∈ U
and generate its input s by taking a codeword x(i) corresponding to message i and

passing it through the channel U . If the encoder transmits message i, then for this

choice of s the channel has the distribution of a DMC V (y|x) given by

V (y|x) =
∑

s

W (y|x, s)U(s|x) . (1.56)
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The quantity Cdep is a natural upper bound on the capacity under nosy noise Ĉd,

and by (1.55) it is also a bound on the capacity under maximal error Cd. In Chapter

3 we will show that the randomized coding capacity under nosy noise is given by

Ĉr = Cdep.

For AVCs with binary output alphabets Ahlswede and Wolfowitz [20] showed

that the capacity under maximal error and deterministic coding Cd is equal to Cdep.

Extensions of this result to other classes of AVCs were found by Ahlswede [2, 3] and

Kambo and Singh [91]. The best results to date are due to Csiszár and Körner

[43]. They define a relation x
W∼ x′ between x and x′ ∈ X if there are distributions

Q1, Q2 ∈ P(S) such that

∑

s∈S
W (y|x, s)Q1(s) =

∑

s∈S
W (y|x′, s)Q2(s) ∀y . (1.57)

Their result is an achievable rate using deterministic coding.

Theorem 3 (Deterministic coding under maximal error for unconstrained AVCs [43]).

For an unconstrained AVC W, the following bound holds on the deterministic coding

capacity under maximal error:

Cd ≥ min (Cdep, D(P )) , (1.58)

where

D =
{

F (x, x′) ∈ P(X × X ) : F
(

{X W∼ X ′}
)

= 1, X ∼ P, X ′ ∼ P
}

(1.59)

D(P ) = min
F∈D

I (X ∧ X ′) . (1.60)

One explanation for the difficulty in establishing the deterministic coding capacity

for general AVCs is that this problem has connections to a difficult open problems in
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information theory. Ahlswede showed that finding Cd for certain AVCs is equivalent

to finding the zero-error capacity [137] of a corresponding DMC [2]. Although Lovász

solved a special case of the zero-error capacity problem [106], finding the zero-error

capacity in general is still a major open problem in information theory [97].

The AVC given in Example 1.4 on page 21 was a channel with binary input, out-

put, and state, whose output is the modulo-two sum of the input and state. Designing

a deterministic code for maximal error in this channel with state constraint Λ is the

same as designing a binary code to correct all error patterns of Hamming weight less

than or equal to Λn. Some error-correcting codes in the coding theory literature are

also designed to correct error patterns of bounded Hamming weight.

1.3.3 Deterministic coding and average error

Randomization relaxes the stringent requirements of deterministic coding for max-

imal error by making the encoder and decoder more powerful. Another relaxation

is to change the error criterion from the maximum over all messages to the average.

That is, instead of demanding the error under a state sequence s be small for every

message m, we can require instead that the error be small for a vanishingly small

fraction of messages. Under this coding model, Ahlswede proved that the capacity

for unconstrained AVCs exhibits a dichotomy – the capacity is either 0 or equal to

the randomized coding capacity [6]. The symmetrizability condition from (1.34) was

shown to be sufficient to render the capacity 0 by Ericson [59] and necessary by

Csiszár and Narayan [46].

Symmetrizability is also a necessary and sufficient condition for the capacity to

be 0 in the constrained setting. For a given input distribution P , we first calculate
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the function

λ1(P ) = min
U∈Usym(1)

∑

s,x

l(s)U(s|x)P (x) . (1.61)

We call the channel symmetrizable under input distribution P with cost constraint

Λ if λ1(P ) < Λ.

Theorem 4 (Deterministic coding dichotomy [6, 46]). For an AVC W without con-

straints:

Cd =







0 if W is symmetrizable

Cstd otherwise
(1.62)

For an AVC with input constraint Γ and cost constraint Λ,

Cd(Γ,Λ) =







0 if maxP∈I(Γ) λ1(P ) < Λ

maxP∈I(Γ):λ1(P )≥Λ minV ∈Wstd(Λ) I (P, V ) if maxP∈I(Γ) λ1(P ) > Λ

(1.63)

For constrained AVCs the second expression in (1.63) may in general be smaller than

the Cstd(Γ,Λ).

In order to prove this result in the unconstrained setting, Ahlswede used a sub-

sampling argument known as the “elimination technique” [6]. Beginning with a ran-

domized code C that achieves a rate below Cr, he showed that a new randomized

code consisting of n2 iid codebooks sampled from C has small average probability

of error. If Cd > 0 then the encoder sends a codeword consisting of two parts. It

first chooses one of the n2 codebooks uniformly at random. Because the deterministic

coding capacity Cd is positive, there exists a deterministic code which can transmit

the choice of codebook with small average probability of error. This requires only
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2 logn bits and so the blocklength required is negligible. The second part of the en-

coder’s codeword encodes the message using the selected codebook. Thus the overall

codeword consists of a short prefix containing the choice of codebook followed by the

encoded message.

The dichotomy between positive and zero capacity still holds in constrained AVCs.

However, the prefixing argument will not work in general for constrained AVCs, since

the jammer could use a state sequence with higher cost during the prefix. The sub-

sampling argument can still be used to construct randomized codebooks with smaller

key size. This line of argument is taken in Chapter 3. Csiszár and Narayan [46] proved

their result using properties of constant composition codebooks and techniques due

to Dobrushin and Stambler [52]. An important difference between the unconstrained

and constrained setting is that the capacity for a constrained AVC may be positive

but strictly lower than the randomized coding capacity, as shown by the following

example.

Example 1.6 – Real additive channel [46]

Consider the additive channel Y = X + S with X = S = {0, 1} and Y = {0, 1, 2}.
Let the cost functions be g(x) = x and l(s) = s. If P(X = 1) = p and P(S = 1) = q

then

Cr(Γ,Λ) = max
p≤Γ

min
q≤Λ

H(pq, (1 − p)(1 − q), p+ q − 2pq) − h(q) , (1.64)

which is 1/2 for Γ ≥ 1/2 and Λ ≥ 1/2. The optimal p and q are both equal to 1/2.

The deterministic coding capacity under average error Cd(Λ,Γ) has different be-

havior in the region where Γ ≥ 1/2 and Λ ≥ 1/2. First, if Λ > 1/2 the encoder

cannot choose p = 1/2 because the jammer can symmetrize that distribution. There-

fore the encoder cannot choose the distribution that maximizes Cr(Γ,Λ). Note that

if Γ ≤ Λ then the capacity is 0, since any input distribution satisfying the input cost
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constraint can be symmetrized by the jammer. However, if Γ > Λ then the jammer

cannot symmetrize all input distributions. In particular, p = Λ maximizes the mutual

information given in Theorem 4, so

Cd(Γ,Λ) = min
q≤Λ

H(Λq, (1− Λ)(1 − q),Λ + q − 2Λq) − h(q) Γ > Λ > 1/2 .

(1.65)

Therefore we can see that for some constraint values, 0 < Cd(Γ,Λ) < Cr(Γ,Λ), which

shows that the deterministic coding capacity can be positive and strictly smaller than

the randomized coding capacity.

1.3.4 List decoding

In Chapter 2 we present some new results on list decoding for AVCs with cost con-

straints. The proofs of these results are based on the proofs of earlier results on list

decoding for unconstrained AVCs. For maximal error, Ahlswede found list decod-

ing capacities for DMCs and AVCs [4] with an eye towards proving coding theorems

for AVCs with feedback [5]. He later strengthened these results into the following

Theorem.

Theorem 5 (List decoding under maximal error for unconstrained AVCs [4, 11]).

For an unconstrained AVC W, any rate R < Cdep is achievable under maximal error

using list decoding with lists of size

L(R) =

⌊
log |Y|
Cdep − R

⌋

+ 1 . (1.66)

For average error, Pinsker conjectured that all rates below Cstd should be achiev-

able using list decoding with constant list size. Ahlswede and Cai showed that this

was indeed the case [13], but did not prove tight bounds on the list size. The list size
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was improved by Blinovsky and Pinsker [30], who also observed that either CL = 0

or CL = Cr = Cstd for all L ≥ 1, which is the list decoding analogue of the dichotomy

in Theorem 4. Independently, Hughes [85] and Blinovsky, Narayan, and Pinsker [29]

showed that the concept of symmetrizability extends to lists as well and that lists

greater than the list-symmetrizability Lsym (defined on page 19) are sufficient to

achieve the randomized coding capacity Cr = Cstd.

Theorem 6 (List decoding under average error for unconstrained AVCs [85,29]). For

an unconstrained AVC W, the capacity under average error with list decoding using

lists of size L is given by

CL =







0 L ≤ Lsym

Cstd L > Lsym

(1.67)

where Lsym is the symmetrizability of the channel defined on page page 19.

Blinovsky et al.’s proof uses the dichotomy to establish the capacity result and

does not appear to extend naturally to constrained AVCs. In Chapter 2 we use the

method of Hughes to prove some analogous results for the constrained case.

List decoding can be used in conjunction with noiseless feedback to yield a capacity

expression for the arbitrarily varying channel. Because the encoder can track the

decoder’s actions, it can use a multi-stage coding strategy based on list codes in

which each stage disambiguates the list for the previous stage. Ahlswede [5] proved

a coding result for AVCs with maximal error and noiseless feedback and showed that

under some conditions the capacity with feedback is equal to Cdep.

1.3.5 Side information and other extensions

A key resource in some communication scenarios is side information about the chan-

nel behavior [138]. This information can be available at the encoder, decoder, or
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both. A unified framework for studying channel coding under different assumptions

about side information availability was recently proposed by Moulin and Wang in the

context of distortion-attack channels [116]. In the AVC literature, the problem was

systematically studied by Ahlswede and Wolfowitz [19] under randomized coding and

Stambler [145] under deterministic coding.

Theorem 7 (Randomized coding with side information at the decoder [19,145]). For

the AVC W, if the state sequence s is available at the decoder then the capacity under

randomized coding and average error is given by

Cr,CSIR = max
P∈P(X )

min
s∈S

I (P,W (·|·, s)) . (1.68)

The capacity under deterministic coding and average error is also given by the same

expression:

Cd,CSIR = max
P∈P(X )

min
s∈S

I (P,W (·|·, s)) . (1.69)

The paper of Gel’fand and Pinsker [70] found the capacity of channels with iid

state sequences known at the encoder. The corresponding result for AVCs was found

by Ahlswede [10], who used the elimination technique [6] together with a permutation

construction to show the following result for AVCs with the state sequence s known

to the encoder.

Theorem 8 (Side information at the encoder [10]). For the AVC W, if the state

sequence s is available at the encoder, the capacity for deterministic coding is the

same for maximal and average error and is given by

Cd = min
Q∈P(S)

max
P (U,S,X)∈PQ(U×S×X )

(I (U ∧ Y ) − I (U ∧ S)) , (1.70)
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where U is a random variable taking values in U with |U| ≤ |X | + |S| and

PQ(U × S × X ) =

{

P (u, s, x) :
∑

u,x

P (u, s, x) = Q(s)

}

. (1.71)

1.3.6 Error exponents

Once a capacity result has been established, the second order characterization is to

find how fast the probability of error can be made to decay with the blocklength.

The first results on error exponents for randomized coding were due to Stiglitz [146].

Ericson [59] established a tradeoff between the error and the amount of common

randomness and showed that using an exponential (in the blocklength n) number

of codebooks in a randomized code leads to an exponential decay in the average

probability of error.

A more thorough study of exponents was conducted by Hughes and Thomas [88],

who derived AVC versions of the random coding, sphere packing, and expurgated

bounds [67]. The class of randomized codes that they consider has a simple form: a

fixed constant-composition code followed by a random permutation of the n channel

symbols of the codeword. This scrambling makes the jammer’s input exchangeable.

We will need the random coding exponent to state later results in this thesis.

Theorem 9 (Random coding exponent for AVCs under maximal error [88]). Let W
be an AVC. For any rate R > 0 and δ > 0, and type P ∈ Pn(X ), let (Φ,Ψ) be

the randomized code of blocklength n formed by choosing ⌈exp(n(R − δ))⌉ codewords

independently and uniformly from Tn(P ) and letting Ψ be the maximum mutual in-

formation decoder for this set. Then there exists an n1(|X |, |Y|, |S|, δ) such that for

blocklength n ≥ n1 and all Q ∈ Pn(S) the error is upper bounded:

max
s∈Tn(Q)

ε(s) ≤ exp (−n [Er(R,W, P,Q) − δ]) , (1.72)
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where

Er(R,W, P,Q) = min
P̃XY S :P̃X=P,P̃S=Q

D
(

P̃XY S ‖ W × P ×Q
)

+
∣
∣
∣I(P, P̃Y |X) − R

∣
∣
∣

+

,

(1.73)

and the distribution W × P ×Q is given by

(W × P ×Q)(y, x, s) = W (y|x, s)P (x)Q(s) , (1.74)

P̃XY S is a joint distribution on X ×Y×S with marginals and conditional distributions

P̃X, P̃S, P̃Y |X, and D (· ‖ ·) is the Kullback-Leibler divergence.

When it is clear, we will suppress the dependence on W and define

Er(R,P,Λ) = min
Q∈Q(Λ)

Er(R,W, P,Q) . (1.75)

1.3.7 Multiuser channels

The AVC model has also been extended to multiuser channels. The coding and

capacity definitions for point-to-point channels extend readily to the case of multiple-

access (MAC) and broadcast channels. There are fewer results for these channels,

but the state of knowledge mirrors that for discrete memoryless channels; although

the MAC is fairly well-understood, the broadcast channel is not.

Jahn [89] found the randomized coding capacity of the arbitrarily varying multiple-

access channel as well as an achievable rate region for the general broadcast channel

using a code based on that of Marton [109]. He showed that if the interior of the

rate region of the MAC under deterministic coding is nonempty then Ahlswede’s

elimination arguments show that the deterministic capacity region under average

error is equal to the randomized coding capacity region under maximal error.

36



Chapter 1. Introduction

Gubner [72] extended the program of Csiszár and Narayan to the MAC and showed

that a corresponding notions of symmetrizability hold for the MAC. In particular, the

capacity region has empty interior under certain symmetrizability conditions, and he

conjectured that these conditions were also necessary. Ahlswede and Cai later proved

the conjecture true [15]. Together with Jahn’s result, this completely characterized

the capacity region of the MAC without constraints.

Gubner also used a different code construction and decoding rule which allowed

him to extend the MAC coding theorem to the case of state constraints [73] and in

particular to additive channels [74]. For deterministic coding under average error with

state constraints, time sharing between coding strategies may not be possible. To see

this, suppose that the encoder uses code A for the first half of the blocklength and

code B for the second half. The jammer could operate using cost 2Λ in the first half

and 0 in the second half, which means the code A would have to be designed for twice

the cost constraint. Time sharing is what justifies taking the convex closure of the

rate region for the discrete memoryless MAC, and Gubner and Hughes showed that

the rate region for the MAC under state constraints need not be convex in general [75].

For the Gaussian multiple-access AVC, La and Anantharam [100] relaxed the channel

model to limit the jamming strategies, which avoids the pathological behavior in

Gubner and Hughes’ result.

For the broadcast channel, the only results after Jahn are in a very recent paper by

Hof and Bross [82]. They found an achievable rate region for degraded message sets

with and without input and state constraints using techniques similar to Csiszár and

Narayan, Gubner, and Ahlswede and Cai. The symmetrizability conditions for the

general broadcast channel become particularly baroque, and it is unclear whether fur-

ther extensions to general AVC networks under deterministic coding will be amenable

to analysis.
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1.3.8 Continuous alphabets

There are a few continuous channel models which have been studied in the context of

arbitrarily varying channels. A Poisson channel version of the AVC has been studied

by Bross and Shamai [35] under randomized and deterministic coding. This the-

sis does not address this channel model. The Gaussian AVC, proposed by Hughes

and Narayan [86], is an additive white Gaussian noise (AWGN) channel with a power-

constrained but arbitrary additive interference signal s. We will investigate this chan-

nel and variants in Chapter 5. Finally, a general framework for studying AVC coding

problems under deterministic coding has been given by Csiszár [42].

1.4 Other models of channel uncertainty

The AVC model assumes an adversarial and non-statistical model for the state selec-

tion, which differs from some other approaches to modeling interference. The AVC

can model nonstationary channels, which is important in applications in which the

environment may change on a time-scale unknown to the designer. Another non-

stationary channel model is the compound channel model [27], which also consists

of a set {W (y|x, s) : s ∈ S}. In the compound channel a single s ∈ S governs the

transmission over the entire block. This can model a link whose gain is unknown

but constant, for example. Although the compound channel is not stationary, it is

conditionally stationary, which is helpful in proving coding theorems. Hughes stud-

ied the effect of interleaving codes for AVCs and the relationship to the compound

channel [84].

A particularly well-studied channel model related to compound channels is the
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quasistatic fading channel

Y = HX +W , (1.76)

where X and Y are vectors and H is a random matrix. Because the transmitter and

receiver must agree upon a code and rate without advance knowledge of H , there

is a chance that the channel cannot support the rate. In this case the channel is

considered to be in outage [152]. However, in this model, H is given a probability

distribution, and so the probability of outage is meaningful as a statement about H ,

whereas in the standard compound channel model there is no distribution on H .

One drawback to the AVC’s loose modeling of the state sequence is that it does

not easily encompass channels with memory or known probabilistic dynamics. For

example, inter-symbol-interference (ISI) channels are popular choices for modeling

communication links in which channel memory provides a source of interference. By

explicitly modeling the propagation properties of the communication medium, mod-

ulation and coding schemes can help mitigate the effects of this distortion.

The finite state channel (FSC) is an example of a channel with known dynamics.

The the FSC the state is governed by a finite state machine whose transitions are

given [67,33]. Recent work on these channels has focused on the benefits of feedback

[36,149,120]. In an AVC, by contrast, the state dynamics are not given such structure,

so there is a loss with respect to codes which can take advantage of known dynamics.

The other key aspect of the AVC model is the adversarial assumption on the inter-

ference, which is also taken up in two streams of works in the information theory and

communications literature. The first set of works is on a game theoretic formulation

of communication in which the transmitter and jammer use the mutual information

of the channel as a payoff function. In this framework, the mutual information is as-

sumed to have an operational significance a priori and is used as a proxy for the actual
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maximum rate of reliable communication. The first game-theoretic formulations are

due to Blachman [26] and Dobrushin [51]. McEliece and collaborators [31, 111, 112]

also studied jamming via a mutual information game in a scalar setting. The general

vector case was fully studied by Baker and Chao [22].

There is extensive work on jamming interference in the communications literature

(see for example [81, 108, 113]). One model of interest in the Gaussian setting is

the so-called “correlated jamming” attack, in which the interference is a random

process correlated with a transmitted random process. Early work on this model was

done by Başar and Başar [21]. This framework was further studied by Médard [113]

and more recent results have been found for multiple access [133] and multiantenna

channels [92]. These works are similar to the mutual information games but allow

for the jammer to know something about the transmitted signal. This may be a

more appropriate model for wireless scenarios where the jammer can eavesdrop on

the communication link.

One application area for adversarial channel models is in digital watermarking. In

these models, the encoder takes a vector T ∈ T n called the covertext and a message

m and produces a stegotext X ∈ X n. An attacker uses the stegotext to produce

a compromised signal Y ∈ Yn. The decoder must recover the message m from Yn.

The stegotext and compromised texts must satisfy distortion constraints:

de(T,X) =
n∑

i=1

de(Ti, Xi) ≤ De (1.77)

da(X,Y) =

n∑

i=1

da(Xi, Yi) ≤ Da , (1.78)

where de(·, ·) and da(·, ·) are distortion measures. In these problems the encoder and

decoder are typically allowed to use common randomness.

The encoder distortion constraint and attack distortion constraint can be used
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to constrain the allowable conditional distributions from T to X and X to Y. In

particular, the attacker is similar to a jammer that has knowledge of the transmitted

codeword, and the capacity is related to AVCs under the nosy noise error model. We

will return to a watermarking problem in the Gaussian setting in Chapter 5.

In Chapter 3 we will show that the randomized coding capacity for the AVC with

nosy noise is given by Cdep. The expression for is similar to a rate-distortion func-

tion. For a fixed distribution P , the jammer tries to minimize the mutual information

I (P, V ) over all channels V ∈ Wdep(Λ). In the rate-distortion setting, the encoder

attempts to minimize the mutual information I (P, V ) over all test channels V satis-

fying the distortion constraint. An operational meaning for this minimization in the

setting of channel coding was recently proposed by Agarwal, Sahai, and Mitter [1]. In

their model the input distribution P is fixed. For any P -typical input x, the channel

may output any vector y such that

d(x,y) =
∑

i

d(xi, yi) ≤ D , (1.79)

for some distortion function d(·, ·) and distortion level D. They proved that the

capacity for this channel under randomized coding is equal to the rate distortion

function Rd(P,D).

In many instances the two channel definitions coincide, so the AVC with nosy

noise is the distortion-constrained channel and the capacity expression can be found

from prior results. For example, for additive channels we can define the state cost in

terms of a difference distortion measure. Indeed, as in the watermarking example, it

may be more natural to define the channel in terms of a distortion-constrained attack.

Some of our later results on AVCs with nosy noise can be applied to the distortion-

constrained channel model as well. However, we will show that not all AVCs can be

modeled as channels with distortion constraints.
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1.5 What is in this thesis?

The results in this thesis are motivated by questions of how to design robust and

adaptive coding schemes for channels that model communication in sensor networks,

ad-hoc networks, and cognitive radio. We will use the AVC model and variants to

isolate these issues. We will primarily derive results for point-to-point communica-

tion over AVCs with a focus on quantifying the relationship between extra resources

available to the encoder and decoder and the achievable rates and error probability.

In particular, we will address how the number of keys K(n) is related to the error

probability, how limited feedback can let the encoder and decoder adapt the rate to

the actual state sequence s governing the channel rather than settling for the worst

case, and how side information at the encoder about some of the interference can be

used to gain more robustness against jamming.

Table 1.1 on page 25 showed known results for unconstrained AVCs. In this thesis

we will prove some corresponding results for constrained AVCs. In particular, we will:

• find bounds on the list-decoding capacities under average and maximal error

for constrained AVCs (Chapter 2),

• find the randomized coding capacity under nosy noise (Chapter 3),

• show that the randomized coding capacities for maximal error and nosy noise

are achievable with limited common randomness (Chapter 3),

• provide rateless constructions for maximal error and nosy noise (Chapter 4),

• show that the randomized coding capacity for the Gaussian version of the AVC

is achievable with limited common randomness (Chapter 5),

• show how additional known interference can be used to improve a threshold for

deterministic coding over Gaussian AVCs (Chapter 5).
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Some of the results in this thesis have appeared in the proceedings of conferences and

associated preprints. The results in Chapter 2 contains some results from [128,127].

Chapter 3 is drawn from [130, 127], and Chapter 4 is taken from [130, 129, 62, 61].

Chapter 5 is taken from the papers [125, 126,132].

In Chapter 2 we will provide results on list decoding for AVCs with input and state

constraints. For maximal error the results are entirely analogous – we can achieve

rates within Cdep(Γ,Λ) − O(1/L) with lists of size L. For average error, the story is

more complicated. As in the unconstrained case, there is a sufficiently large constant

list size for which list decoding achieves the randomized coding capacity Cr(Γ,Λ).

For smaller lists, we can achieve lower rates, and in some cases the capacity may

be smaller than the randomized coding capacity. This is analogous to deterministic

coding for constrained AVCs where the capacity may be positive but strictly smaller

than the randomized coding capacity.

In Chapter 3 we discuss two strategies for partial derandomization of AVCs that

have been used in the literature – the elimination technique and a message authen-

tication code. We describe these two strategies and use them to prove that a key

size of O(logn) bits is sufficient to achieve the randomized coding capacity for con-

strained AVCs. For maximal error we use the elimination technique together with

a randomized code based on permutations, and for AVCs with nosy noise we use

the message authentication code with the maximal error list codes of Chapter 2.

As by-products we show that the randomized coding capacity under nosy noise is

Ĉr(Γ,Λ) = Cdep(Γ,Λ) and that for distortion constrained channels we can achieve

the rate-distortion function with O(logn) bits.

We turn next to the impact of limited feedback in Chapter 4. In particular, we

adopt a model in which every c channel uses the decoder obtains an estimate of the

average channel and can send the encoder one bit to terminate transmission. That

is, the decoder can either send an ACK (acknowledge) or NACK (not acknowledge)
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to inform the encoder if it has decoded or not. This coarse feedback is enough to

let the encoder and decoder adapt their rate to the actual s governing the channel.

This is particularly important in applications where the worst case state given by an

adversarial assumption on the jammer gives significantly lower rates than those in

more realistic channel conditions. Under maximal error and nosy noise we can derive

similar coding strategies that achieve rates close to the empirical mutual information

induced by s.

All of the previous results have been for discrete channels with finite input, output,

and state alphabets, but most popular information theoretic models for wireless com-

munications use Gaussian channels. Chapter 5 address the Gaussian AVC. For the

Gaussian AVC, the deterministic coding capacity exhibits a threshold phenomenon

when the jammer can symmetrize the channel. We again show that O(logn) bits can

achieve the randomized coding capacity and use this result to prove an achievable rate

region for the Gaussian arbitrarily varying degraded broadcast channel. Finally, we

look at deterministic coding when there are two sources of interference: one from the

jammer and one from another system. We assume the latter is known non-causally

at the transmitter, which can then use the interference to mask its own message.

Although the encoder and decoder do not share a secret key, the extra interference

known to the transmitter makes it more difficult for the jammer to symmetrize the

channel and enlarges the capacity region. We can apply this coding scheme to water-

marking systems and a recently proposed model for cognitive radio systems.

Although the results proved here are for point-to-point channels, they are moti-

vated by problems that arise in networking. In particular, we can think of coding at

the link level for AVCs as “insulating” the link from time variation in the channel

quality caused by the actions of other links in a network. At a larger level, we could

think of groups of cooperating links which must be insulated from other groups of

links. These considerations may become important when modeling multiple networks
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of users competing for the same resources.
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Chapter 2

List decoding for discrete AVCs

2.1 Introduction

One way of relaxing channel coding problems is to consider list decoding [55, 156],

in which the decoder is allowed to output a list of codewords of size no more than

L and an error occurs if the transmitted codeword is not in the list. List decoding

can be used as a component in more complicated coding systems [66], and we will

use the codes constructed in this chapter in later chapters. The pioneering work of

Sudan [147] on decoding Reed-Solomon codes led to a number of improved algorithms

for list-decoding Reed-Solomon codes. The Guruswami-Sudan algorithm [80] has been

extended by Koetter and Vardy to take advantage of soft information [96]. More

complicated constructions have improved on the standard Reed-Solomon codes to

give better decoding performance [119,78, 79]. General combinatorial bounds on the

limits of list decoding have also been studied [77, 76].

For AVCs with deterministic coding, the list-decoding capacities under maximal
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error CL and average error CL for unconstrained AVCs have been investigated. For

maximal error, Ahlswede [4, 11] found that for any rate R = Cdep − ǫ is achievable

under list decoding with list size O(ǫ−1). For the average probability of error criterion,

the list coding capacity was found independently by Blinovsky, Narayan, and Pinsker

[30, 29] and Hughes [85]. They extended the notion of symmetrizability to lists and

showed that for channels with Cstd > 0 there exists a finite list size Lsym such that

CL = Cstd for L > Lsym. Furthermore, they show that the capacity is 0 using list

decoding with list size smaller than or equal to Lsym. That is, CL = 0 for L ≤ Lsym.

In this chapter we will extend these results to channels with state and input

constraints. We follow the line of argument used by Ahlswede [11] for the maximal

error case and by Hughes [85] for the average error case. For maximal error, the

results are similar but in the average error case they are qualitatively different. For

maximal error, we show that a rate R = Cdep(Γ,Λ)−ǫ is achievable using list decoding

with list size L = O(ǫ−1).

For average error we define a function L̃sym(P,Λ), called the weak symmetrizability

for type P . If P ∗ is the input distribution maximizing Cstd(Γ,Λ), then we show

that CL(Γ,Λ) = Cstd(Γ,Λ) for list sizes L > L̃sym(P ∗,Λ). For smaller list sizes we

can achieve positive rates using codebooks of type P if L > L̃sym(P,Λ). For the

converse, we define a function Lsym(P,Λ) called the strong symmetrizability of the

channel and show that the maximum rate achievable using list decoding is upper

bounded by the maximum mutual information over all types with Lsym(P,Λ) < L.

In particular, if Lsym(P ∗,Λ) < L, then the list-decoding capacity under average error

may be strictly smaller than Cstd(Γ,Λ). The behavior for constrained AVCs is thus

different from that in the unconstrained case. This result is analogous to deterministic

coding under average error, for which Csiszár and Narayan [46] showed that the

capacity may be positive and strictly smaller than the randomized coding capacity

Cr(Γ,Λ) = Cstd(Γ,Λ).
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Deterministic codes for maximal error are connected to the design of codes in

algebraic coding theory. The minimum distance of a linear code provides a bound

on the number of errors that can be corrected in a constrained AVC setting. The

generalized minimum distance [154,153] was used by Guruswami [76] to prove results

on the list coding limits for linear codes. It may be interesting to look at these results

via the symmetrizability of the associated AVCs.

2.2 List Decoding for Maximal Error

As we noted in the introduction, the capacity under maximal error using deterministic

codes is still not known. For some AVCs this capacity is equivalent to finding the

zero-error capacity of a corresponding DMC, which means this problem may be quite

difficult in general. List decoding is a way of relaxing the design requirements for

the AVC. For unconstrained AVCs, the capacity under list decoding was investigated

by Ahlswede [5, 11] using hypergraph coloring arguments [7, 8]. In this section we

generalize his result to the constrained AVCs using constant composition codes. Our

arguments do not use the hypergraph formalism.

Theorem 10 (List decoding for maximal error). Let W be an arbitrarily varying

channel with input and state cost functions g(x) and l(s). Then for any ǫ1 > 0 the

rate

R = Cdep(Γ,Λ) − ǫ1 (2.1)

is achievable under maximal error using list decoding with list size

L = O

(
1

ǫ1

)

. (2.2)
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That is, the capacity CL(Γ,Λ) under maximal error using list decoding with list size

L is bounded

Cdep(Γ,Λ) − O(L−1) ≤ CL(Γ,Λ) ≤ Cdep(Γ,Λ) . (2.3)

The proof of Theorem 10 is given in Section 2.2.4. We show in Lemma 3 that

Cdep(Γ,Λ) − ǫ is achievable with list size L satisfying

L >
6 log |Y|

ǫ
. (2.4)

Example 2.1 – Bit-flipping under list decoding

Consider the bit flipping example of Example 1.4 on page 21. There we saw that

Cdep(Λ) = 1 − hb(Λ) , (2.5)

where hb(·) is the binary entropy function. Figure 2.1 shows the rates achievable with

the maximal error list codes. For deterministic coding under average error, Csiszár

and Narayan have shown that 1 − hb(Λ) is achievable. That is, under average error,

Cd(Γ,Λ) = Cstd(Γ,Λ) is achievable with list size 1.

2.2.1 Preliminaries

Let V (y|x) be a channel. Then we denote the (V, ǫ)-shell of a length n sequence x by

T ǫV (x) = {y ∈ Yn : dmax (Tyx, V Tx) < ǫ} , (2.6)
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Figure 2.1: Rates achievable under maximal error with list decoding for bit-flipping chan-
nels with Λ = 0.1. The gap to capacity shrinks quite slowly with the list size.

Where dmax (·, ·) is the ℓ∞ distance between the probability distributions:

dmax (F,G) = max
z

|F (z) −G(z)| . (2.7)

We know the following bounds [44, Section 1.2] [85, Section III.B]:

|Tn(P )| ≥ (n + 1)|X | exp (nH(P )) (2.8)

V n ({y : Txy = PXY }|x) ≤ exp (−nD (PXY ‖ V × PX )) . (2.9)

V n ({y : Txyz = PXY Z}|z) ≤ exp (−nI (X ∧ Y |Z)) . (2.10)
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We can define an AVC-version of an ǫ-shell:

Vx,s(x, y) =
1

n

∑

k:xk=x

W (y|x, sk)

T ǫW (x|s) = {y ∈ Yn : dmax (Txy, Vx,s) < ǫ} . (2.11)

We can take the union over all s ∈ Sn(Λ) to get the set of all y sequences that could

have been generated from x and a state s satisfying the cost constraint:

T ǫW(x) =
⋃

s∈Sn(Λ)

T ǫW (x|s) . (2.12)

For a received sequence y, we must find the possible x sequences for which there

exists a state vector s ∈ Sn(Λ) such that x and s could have generated y. For an input

distribution P (x) and channel V (y|x) we can define an output distribution P ′(y) and

“reverse channel” V ′(x|y) using Bayes rule:

P ′(y) =
∑

x

P (x)V (y|x) (2.13)

V (y|x)P (x) = V ′(x|y)P ′(y) . (2.14)

The decoder can use the empirical output type Ty to find a candidate set of channels

V (y|x) consistent with the observed sequence. We define

VǫP (y) = {V ∈ Wdep(P,Λ) ∩ Pn(Y|X ) : dmax (P ′, Ty) < ǫ} . (2.15)

For a fixed y we will bound both the size of the set

T ǫV ′(y) = {x ∈ X n : dmax (Txy, V
′Ty) < ǫ} , (2.16)
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for V ∈ VǫP (y), and the size of the union of all T ǫV ′(y) where V ∈ VǫP (y).

2.2.2 List codes with exponential list size

The following lemma provides some combinatorial bounds on the cardinalities of

various typical sets and shells. This will allow us to prove Lemma 2, which constructs

a list-decodable code with a list size that is exponential in the blocklength. We will

use this code as the basis for constructing the code in Lemma 3, which has constant

list size.

Lemma 1. Let W be an AVC with state cost function l(s) and cost constraint Λ. For

any P ∈ P(X ) with minx P (x) > 0, α > 0, and any ǫ2 satisfying 0 < ǫ2 < mina P (a)

there exists an n sufficiently large such that the following statements all hold:

1. For x ∈ X n and s such that l(s) ≤ Λ we have for some E(ǫ2) > 0:

P (T ǫ2W (x|s)|x, s) ≥ 1 − exp (−nE(ǫ2)) . (2.17)

2. For P ∈ Pn(X ), channel V ∈ Wdep(P ), y ∈ Yn, and ǫ2 > 0,

|T ǫ2V ′(y)| ≤ exp

(

n

(
∑

y

H (V ′(x|y))Ty(y) +O(ǫ2 log ǫ−1
2 )

))

(2.18)

∣
∣
∣
∣
∣
∣

⋃

V ∈Vαǫ2
P

(y)

T ǫ2V ′(y)

∣
∣
∣
∣
∣
∣

≤ exp

(

n

(

max
V ∈Vǫ2

P
(y)

∑

y

H (V ′(x|y))P ′(y) +O(ǫ2 log ǫ−1
2 )

))

(2.19)
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3. For sufficiently small ǫ2 > 0, x ∈ TP , and y ∈ T ǫ2W(x) we have

x ∈
⋃

V ∈Vǫ2
P

(y)

T
(|X |+1)ǫ2
V ′ (y) (2.20)

y ∈
⋃

V ∈V |X|ǫ2
P

(y)

T ǫ2V (x) . (2.21)

Proof. We take up the different items in turn.

1. Fix sequences x and s with l(s) ≤ Λ. Let {Yi : i ∈ [n]} be independent random

variables with distribution {W (·|xi, si)}. Let g(a,b)(Y1, . . . , Yn) = N(a, b|x, Y n
1 ).

Then

E[g(a,b)(Y1, . . . , Yn)] =
∑

k:xk=a

W (b|a, sk)

If {Ỹi} are independent copies of {Yi : i = 1, . . . , n}, then we have

∣
∣
∣g(a,b)(Y1, . . . , Yi, . . . , Yn) − g(a,b)(Y1, . . . , Ỹi, . . . , Yn)

∣
∣
∣ ≤ 1 a.s. .

By standard concentration inequalities [49, Corollary 2.4.14], for any ǫ2 > 0,

P
(∣
∣g(a,b)(Y

n
1 ) − E[g(a,b)(Y

n
1 )]
∣
∣ ≥ nǫ2

)
≤ exp

(

−nD
(

1 + ǫ2
2

∥
∥
∥

1

2

))

. (2.22)

Taking a union bound over all (a, b) ∈ X × Y in (2.22) shows that there exists

a function E(ǫ2) > 0 so that for n sufficiently large

P (T ǫ2W (x|s)|x, s) ≥ 1 − exp (−nE(ǫ2)) .

53



Chapter 2. List decoding for discrete AVCs

2. For input distribution P and channel V we can define V ′ via (2.14). Equation

(2.18) then follows from [44, Lemma 2.13].

To prove (2.19) note that by (2.15) there are at most (n + 1)|X |·|Y channels

V ∈ Vαǫ2P (y). For any such V we have the bound (2.18), so a union bound

yields (2.19).

3. Since y ∈ T ǫ2W(x), from (2.12) we know there exists an s ∈ Sn(Λ) such that

y ∈ T ǫ2W,s(x). We define the channel

V (b|a) =
1

N(a|x)

∑

k:xk=a

W (b|a, sk)

=
∑

s

W (b|a, s)N(a, s|x, s)
N(a|x)

.

Therefore V ∈ Wdep and y ∈ T ǫ2V (x). We claim that V ∈ V |X |ǫ2
P (y).

We can now bound dmax (Txy, P (x)V (y|x)) by using (2.11) and the fact that

P (a) = n−1N(a|x):

dmax (Txy, P (x)V (y|x)) = dmax

(

Txy,
1

n

∑

k:xk=a

W (y|a, sk)
)

≤ ǫ2 . (2.23)

This proves that y ∈ T ǫ2V (x). We must also show that V ∈ V |X |ǫ2
P (y). Marginal-

izing (2.23) over X we obtain:

dmax (Ty, P
′(y)) ≤ |X |ǫ2 , (2.24)

So V ∈ V |X |ǫ2
P (y), yielding (2.21).
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To show (2.20), let V be a channel such that y ∈ T ǫ2V (x).

dmax (Txy, P (x)V (y|x)) = dmax (Txy, TxV (y|x))

≤ ǫ2 . (2.25)

Now, marginalizing this over X allows us to bound the distance between Tx,y

and TyV
′(x|y):

dmax (Txy, TyV
′(x|y)) ≤ dmax (Tx,y, P

′(y)V ′(x|y)) + dmax (P ′(y)V ′(x|y), TyV
′(x|y))

≤ ǫ2 + |X |ǫ2 . (2.26)

Thus we have shown x ∈ T
(|X |+1)ǫ2
V ′ (y).

Using this lemma we can prove the existence of list-decodable codes for maximal

error with exponential list size. The codebook is the entire set of typical sequences

TP and the list is the union of ǫ-shells under the different state sequences whose

cardinality is bounded by (2.19). The decoder outputs a list that is the union of

shells.

Lemma 2. Let W be an AVC with state cost function l(s) and cost constraint Λ. For

any P ∈ P(X ) with minx P (x) > 0 and ǫ3 > 0 there is an n sufficiently large such

that for P ∈ Pn(X ) there is an (n,N, L) list-decodable code C with

N ≥ exp (n (H(P (x)) − o(1))) (2.27)

L ≤ exp

(

n

(

max
V ∈Wdep(Λ)

H(V ′(x|y)|P ′(y)) +O(ǫ3 log ǫ−1
3 )

))

(2.28)

εL ≤ exp(−nE(ǫ3)) , (2.29)
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where o(1) is a term that goes to 0 as n→ ∞.

Proof. Choose the codewords of the code to be all x ∈ TP . For each channel output

y the decoder outputs the list

⋃

V ∈Vǫ3
P

(y)

T
(|X |+1)ǫ3
V ′ (y) . (2.30)

Equation (2.27) follows from (2.8). The bound (2.28) on the list size follows from

(2.19) in Lemma 1 part 2 with ǫ2 = ǫ3 and α = 1/(|X | + 1). To bound the error

in (2.29) note that with probability upper bounded by exp(−nE(ǫ3)) we have y ∈
T ǫ3W(x|s) (by Lemma 1 part 1) and hence by Lemma 1 part 3 we have x ∈ T

(|X+1)ǫ3
V ′ (y)

for some V ∈ Vǫ3P (y).

2.2.3 List codes with constant list size

We will now show that for any input distribution P we can construct a list decodable

code that achieves a rate

min
V ∈Wdep(Λ)

I (P, V ) − ǫ (2.31)

with lists of size O(ǫ−1). Given a small gap ǫ from minV ∈Wdep(Λ) I (P, V ), we construct

the code by sampling codewords from the code of Lemma 2. By choosing a sufficiently

large list size we can show that with high probability the samples will form a list-

decodable code with probability of error going to 0 as the blocklength n goes to

∞.

Lemma 3. Let W be an AVC with state cost function l(s) and cost constraint Λ. For

any ǫ4 > 0 and P ∈ P(X ) with maxx P (x) > 0, for n sufficiently large there exists a

56



Chapter 2. List decoding for discrete AVCs

list code with codewords of type P , rate

R = min
V ∈Wdep(P,Λ)

I(P, V ) − ǫ4 , (2.32)

list size

L <

⌊
6 log |Y|

ǫ4

⌋

+ 1 , (2.33)

and error

εL ≤ exp(−nE(ǫ4)) , (2.34)

where E(ǫ4) > 0.

Proof. Fix P ∈ P(X ) and ǫ4 > 0. For any ǫ5 > 0, Lemma 2 says that we can choose n

sufficiently large such that there exists an (n,N0, L0) list code (φ0, ψ0) with codebook

C0 = {(u(i), Di) : i ∈ [N0]} satisfying (2.27)–(2.29) with ǫ3 = ǫ5. We will use this

code to construct an (n,N, L) list code of the desired rate and list size.

Let B = {x(j) : j ∈ [N ]} be a collection of N iid random variables uniformly

distributed on the set C0, where N < |Y|n. Define an encoding map by φ(j) = x(j)

and a decoding map by ψ(y) = B ∩ ψ0(y). Note that the size of ψ(y) depends

on y and may be different for each y. We will show that for n sufficiently large

and L chosen according to (2.33) we can choose R according to (2.32) so that with

high probability ψ(y) ≤ L for all y and random selection will produce a (n,N, L)

list-decodable code of rate R and error probability upper bounded by exp(−nE(ǫ4)).

Fix y ∈ Yn. We begin by looking at the expected size of the list ψ(y):

E [|ψ(y)|] ≤ L0

N0
. (2.35)
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This expectation is over the sampling from C0. For a fixed y, the size of the list

|ψ(y)| is given by the sum of indicator functions 1(y ∈ Dj) over codewords x(j) in

the sampled codebook B:

|ψ(y)| =

N∑

j=1

1(y ∈ Dj) . (2.36)

Because the codewords in B are selected in an iid manner, we can bound the prob-

ability that |ψ(y)| > L using Sanov’s Theorem [41, Theorem 12.4.1] on the random

variables {1(y ∈ Dj)}. Letting ν = (N + 1)2, the theorem gives

P

(

1

N

N∑

j=1

1(y ∈ Dj) >
L

N

)

≤ exp

(

−N
(

D

(
L

N

∥
∥
∥
L0

N0

))

+ log ν

)

. (2.37)

Let G denote the term inside the exponent. Then

G = −L log
L/N

L0/N0
−N

(

1 − L

N

)

log
1 − L/N

1 − L0/N0
+ log ν . (2.38)

To deal with the second term we use the inequality −(1 − a) log(1 − a) ≤ 2a (for

small a) on the term (1 − L/N) log(1 − L/N) and discard the small negative term

(1 − L/N) log(1 − L0/N0).

G ≤ −L log
L/N

L0/N0
+N

(

2
L

N

)

+ log ν (2.39)

= L log
L0

N0

+ L log
N

L
+ 2L+ log ν . (2.40)
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Now, from Lemma 2 we have

log
L0

N0
≤ n

(

max
V ∈Wdep(Λ)

H(V ′(x|y)|P ′(y)) −H(P (x)) +O(ǫ5 log ǫ−1
5 )

)

= −n
(

min
V ∈Wdep(Λ)

I (P, V ) − O(ǫ5 log ǫ−1
5 )

)

. (2.41)

Since N < |Y|n we have

log ν = 2 log(N + 1) (2.42)

≤ 2n log |Y| . (2.43)

Then we have the bound:

G ≤ −nL
(

min
V ∈Wdep(Λ)

I (P, V ) − 1

n
log

N

L
− O(ǫ5 log ǫ−1

5 ) − 2

L
log |Y|

)

+ 2L .

For any constant ǫ5 > 0 we can choose n large enough such that

G ≤ −nL
(

min
V ∈Wdep(Λ)

I (P, V ) −R −O(ǫ5 log ǫ−1
5 ) − 2

L
log |Y|

)

. (2.44)

Now we take a union bound over all y in (2.37) to get

P

(
⋃

y∈Yn

{

1

N

N∑

j=1

1(y ∈ Dj) >
L

N

})

≤ exp

(

−n
(

L

(

min
V ∈Wdep(Λ)

I (P, V ) − R− O(ǫ5 log ǫ−1
5 )

)

− 3 log |Y|
))

.

(2.45)

For any ǫ4 > 0 we can choose ǫ5 sufficiently small so that the ǫ4/2 = O(ǫ5 log ǫ−1
5 ) and
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the list size L according to:

L >
6 log |Y|

ǫ4
. (2.46)

Then if N is chosen such that R satisfies (2.32) the exponent is positive. Then

for sufficiently large n the probability that the construction yields a (n,N, L) list-

decodable code can be made arbitrarily close to 1. Since the codebook constructed

here is a subset of the original code of exponential list size, the maximal error bound

follows from Lemma 2.

2.2.4 Proof of Theorem 10

Using Lemma 3 with the input distribution P maximizing

Cdep(Γ,Λ) = max
P∈I(Γ)

min
V ∈Wdep(Λ)

I (P, V ) (2.47)

yields the result in Theorem 10.

Proof of Theorem 10. Let P ∗ ∈ P(X ) be given by

P ∗ = argmax
P∈I(Γ)

min
V ∈Wdep(P,Λ)

I (P, V ) . (2.48)

Then Cdep(Γ,Λ) = I (P ∗, V ).

Fix ǫ1 > 0. If minx P
∗(x) > 0 then Lemma 3 says that for n sufficiently large there

exists an (n,N, L) list decodable code with error as small as we like. If minx P
∗(x) = 0

then by the continuity of the mutual information for any ǫ1 there exists a δ such that

we for P with dmax (P, P ∗) < δ we have

min
V ∈Wdep(P,Λ)

I (P, V ) ≥ Cdep(Γ,Λ) − ǫ1/2 (2.49)
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We can choose a P such that minx P (x) > 0 and P ∈ I(Γ), so Lemma 3 says that

there exist codes achieving minV ∈Wdep(P,Λ) I (P, V ) − ǫ1/2 with list size O(ǫ−1
1 ) whose

error can be made as small as we like.

2.3 List Decoding for Average Error

In the case where we simultaneously allow list decoding and measure performance by

the average error over the codebook, we can achieve all rates below Cstd(Γ,Λ) with

finite list sizes. To state our main result we require some additional definitions.

Recall that for an integer m we defined Usym(m) as the set of channels U : Xm → S
that symmetrize the AVC W in (1.37):

Usym(m) =

{

U(s|xm) : V (y|x, x1, . . . , xm) =
∑

s

W (y|x, s)U(s|x1, x2, . . . , xm)

is symmetric

}

. (2.50)

The jammer can use a channel U ∈ Usym(m) to generate a state sequence from m

codewords. The average channel V = WU is a symmetric channel with m+1 inputs.

For a distribution P ∈ P(X ) we define strong symmetrizing cost λm(P ) to be

the smallest expected cost of a channel U(s|xm) that symmetrizes the AVC W with

arbitrarily correlated inputs which have marginal distributions P :

λm(P ) = min
U∈Usym(m)

max
P∈P(Xm):Pi=P

∑

xm

∑

s

P (xm)U(s|xm)l(s) . (2.51)

Here P is any joint distribution on Xm whose marginal distributions are equal to P .

We call an AVC strongly m-symmetrizable if λm(P ) ≤ Λ. We define the strong

symmetrizability Lsym(P,Λ) of the channel under input P to be the largest integer
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m such that λm(P ) < Λ. That is,

Lsym(P,Λ) = max {m : λm(P ) ≤ Λ} . (2.52)

If a codebook has codewords of type P and L ≤ Lsym(P,Λ) for a list-decodable code

of list size L, then the jammer can choose any L codewords from the codebook and

a channel U ∈ Usym(L) to generate a state sequence. From (2.51) we can show that

this state sequence will satisfy the cost constraint with probability going to 1 as the

blocklength increases. Lemma 6 shows that such a strategy will lead to a average

probability of error that does not go to 0 with the blocklength.

We define the weak symmetrizing cost λ̃m(P ) to be the smallest expected cost

of a channel U(s|xm) that symmetrizes the AVC W with independent inputs:

λ̃m(P ) = min
U∈Usym(m)

∑

xm

∑

s

Pm(xm)U(s|xm)l(s) , (2.53)

where Pm is the product distribution P × P × · · · × P . We call an AVC weakly m-

symmetrizable if λ̃m(P ) ≤ Λ. Similarly, the weak symmetrizability L̃sym(P,Λ)

is the largest integer m such that λ̃m(P ) ≤ Λ. That is,

L̃sym(P,Λ) = max
{

m : λ̃m(P ) ≤ Λ
}

. (2.54)

For the achievability arguments, Lemma 9 shows that we can find a decoding rule

that outputs a list of size no larger than L̃sym(P,Λ) + 1.

Because the strong symmetrizing cost includes a maximization over the joint dis-

tribution of the inputs to the channel U , we have λm(P ) ≥ λ̃m(P ) in general. This

means that Lsym(P,Λ) ≤ L̃sym(P,Λ).
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We will define for convenience the function

I (P,Λ) = min
V ∈Wstd(Λ)

I (P, V ) . (2.55)

We then have

Cstd(Γ,Λ) = max
P∈I(Γ)

I (P,Λ) . (2.56)

Let P ∗ be the input distribution maximizing Cstd(Γ,Λ).

Our main result in this section is a partial characterization of the capacity of

constrained AVCs under list decoding. For each list size L we can compute the distri-

butions P for which L > Lsym(P,Λ) and L > L̃sym(P,Λ). The strong symmetrizability

Lsym(P,Λ) gives a converse – the capacity CL(Γ,Λ) cannot exceed I(P ) for P sat-

isfying L > Lsym(P,Λ). The weak symmetrizability L̃sym(P,Λ) gives an achievable

region – for P with L > L̃sym(P,Λ) the rates I (P,Λ) are achievable and the capac-

ity CL(Γ,Λ) is at least as large as I (P,Λ). If L > L̃sym(P ∗,Λ) then the capacity

achieving input distribution P ∗ can be used and CL(Γ,Λ) = Cstd(Γ,Λ)

Theorem 11 (List decoding for average error). Let W be an arbitrarily varying chan-

nel with input and state cost functions g(·) and l(·). If L is such that the maximum

weak symmetrizing cost maxP∈I(Γ) λ̃L(P ) > Λ then we have the following lower bound

on CL(Γ,Λ).

CL(Γ,Λ) ≥ max
P∈I(Γ):L̃sym(P,Λ)<L

I(P ) . (2.57)

If L is such that maxP∈I(Γ) λL(P ) < Λ then we have the following upper bound on
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CL(Γ,Λ).

CL(Γ,Λ) ≤ max
P∈I(Γ):Lsym(P,Λ)<L

I(P ) (2.58)

(2.59)

If P ∗ is the capacity achieving input distribution for Cstd(Γ,Λ), then for list size

L > L̃sym(P ∗,Λ) we have

CL(Γ,Λ) = Cstd(Γ,Λ) . (2.60)

The proof of this theorem is given in Section 2.3.4 and parallels that of Csiszár

and Narayan [46] for constrained AVCs. The decoding rule we use is an extension

of the decoding rule used by Hughes [85] to the case with constraints. To show that

I (P,Λ) is achievable for L > L̃sym(P,Λ), we use the fact the a random codebook

with fixed type P enjoys certain properties (Lemma 10). We then show that L >

L̃sym(P,Λ) implies a certain “separation” of probability distributions (Lemma 8),

which we can use to show that the decoding rule will only output at most L̃sym(P,Λ)+

1 codewords (Lemma 9). We can then use the codebook properties to show that

I (P,Λ) is achievable with fixed input type P (Lemma 11). The converse arguments

are given in Section 2.3.2.

In general the strong and weak symmetrizabilities are different, so for a given list

size L we may have

Lsym(P,Λ) < L ≤ L̃sym(P,Λ) . (2.61)

In this case we cannot prove that I (P,Λ) is achievable with codebooks whose code-

words have type P . A similar problem arises in the arbitrarily varying multiple access
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channel [72], where correlation between the two users is allowed in the converse but

is not used in the achievability arguments. For list decoding we conjecture that the

list decoding capacity is dictated by the weak symmetrizability, which assumes inde-

pendent inputs to the symmetrizing channel.

Conjecture 1 (Capacity conjecture for CL). Let W be an arbitrarily varying channel

with input and state cost functions g(·) and l(·). Then the list coding capacity under

average error for W with lists of size L is

CL(Γ,Λ) = max
P∈I(Γ):L̃sym(P,Λ)<L

I(P ) . (2.62)

2.3.1 Finite symmetrizability

The following theorem shows that if I(P ) is positive, then L̃sym(P,Λ) is finite. In

particular, since I (P ∗,Λ) is finite, the theorem implies that if Cstd(Γ,Λ) > 0, then

L̃sym(P ∗,Λ) <∞.

Theorem 12 (Finite symmetrizability). Let W be an arbitrarily varying channel with

input and state cost functions g(·) and l(·). If Cstd(Γ,Λ) = 0 then Lsym(P,Λ) = ∞
for all P ∈ I(Γ). If Cstd(Γ,Λ) > 0 then

L̃sym(P,Λ) ≤ log(min(|Y|, |S|))
I (P,Λ)

(2.63)

for all P such that I (P,Λ) > 0.

Proof. Suppose Cstd(Γ,Λ) = 0. Then for all P ∈ I(Γ) we have I(P,Λ) = 0. Without

loss of generality, we may take P (x) > 0 for all x ∈ X . For such P there exists a

distribution Q(s) ∈ Q(Λ) such that the output distribution PY does not depend on
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the input x:

PY (y) =
∑

s

W (y|x, s)Q(s) ∀x ∈ X .

That is, the input and output are independent under Q(s). Let U(s|xL) = Q(s) for

all xL1 . Then the average channel

V (y|x, xL) =
∑

s

W (y|x, s)U(s|xL)

is symmetric in (x, x1, . . . , xL). Furthermore, for any distribution P (xL1 ) with marginal

distributions equal to P

λL(P ) =
∑

s,xL

P (xL)U(s|xL)l(S) =
∑

s

Q(s)l(s)

≤ Λ .

Since this holds for all L, λ̃L(P ) ≤ Λ for all L and thus Lsym(P,Λ) = ∞. Because

Lsym(P,Λ) ≥ L̃sym(P,Λ), this shows that the weak symmetrizability L̃sym(P,Λ) = ∞
as well.

Suppose now that Cstd(Γ,Λ) > 0. Let P be an input distribution for which

I(P,Λ) > 0. Suppose that under P the channel is weakly L-symmetrizable. Therefore

there is a channel U(s|xL1 ) that symmetrizes W . Let X1, X2, . . . , XL be independent

with distribution P and let (S,XL) be distributed according to the joint distribution

U(S|XL)P (X1) · · ·P (XL). Then (X,XL) → (X,S) → Y is a Markov chain, so by
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the Data Processing inequality we have

I (XS ∧ Y ) ≥ I
(
XXL ∧ Y

)

≥ I (X ∧ Y ) +

L∑

j=1

I (Xj ∧ Y )

= (L+ 1)I (X ∧ Y ) ,

where the last line follows from the symmetrizability. Now, subtracting I (X ∧ Y )

from both sides, we obtain the bound

I (S ∧ Y |X) ≥ L · I (X ∧ Y ) .

This gives us a bound on the list size:

L ≤ I (S ∧ Y |X)

I (X ∧ Y )

≤ log(min(|Y|, |S|))
I(P,Λ)

.

Since this bound holds for all L such that the AVC is weakly L-symmetrizable under

distribution P , we can substitute L̃sym(P,Λ) for L to obtain the result.

2.3.2 Converse bounds

The converse bound in Theorem 11 requires Lemmas 6 and 7 below. Lemma 6 shows

that codebooks whose codewords have types λL(P ) < Λ cannot have asymptotically

decreasing probability of error. Lemma 7 shows list decoding cannot achieve rates

higher than the mutual information of the channel. This kind of converse is based

on symmetrizability arguments in Hughes [85] and Csiszár and Narayan [46] and is

similar to those found in Gubner’s paper on the multiple-access channel [73].
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2.3.2.1 Converse for symmetrizable types

We begin with a lemma showing that a joint distribution P (xL1 ) with marginals Pi

that are all close to some P can be approximated by a joint distribution P̂ (xL1 ) whose

marginals are all equal to P . The proof is given in Section D.1.

Lemma 4 (Approximating joint distributions). Let X be a finite set with |X | ≥ 2.

For any ǫ > 0 and probability distribution P on X there exists a δ > 0 such that for

any collection of distributions {Pi ∈ P(X ) : i ∈ [L]} satisfying

dmax (Pi, P ) < δ ∀i (2.64)

and any joint distribution P (x1, x2, . . . , xL) with

∑

xj :j 6=i
P (x1, x2, . . . , xL) = Pi(xi) ∀i, xi ∈ X (2.65)

there exists a joint distribution P̂ (x1, x2, . . . , xL) such that

∑

xj :j 6=i
P̂ (x1, x2, . . . , xL) = P (xi) ∀i, xi ∈ X (2.66)

and

dmax

(

P, P̂
)

< ǫ . (2.67)

The following lemma shows that if the codebook has codewords whose types are

symmetrizable and close to a fixed symmetrizable type P , then the jammer has a

strategy that keeps the error bounded away from 0.

Lemma 5. Let W be an AVC with state cost function l(·) and constraint Λ and let

L be a positive integer. Let ǫ > 0 be arbitrary and suppose P is a distribution with
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λL(P ) < Λ− ǫ. Then there exists a δ > 0 and n0 such that for any (n,N, L) list code

with n ≥ n0 and N ≥ L+ 1 whose codewords {x(i) : i ∈ [N ]} satisfy

dmax

(
Tx(i), P

)
< δ ∀i ∈ [N ] (2.68)

λL(Tx(i)) < Λ − ǫ ∀i ∈ [N ] , (2.69)

the average error for the code is lower bounded:

max
s∈Sn(Λ)

εL(s) >
1

L+ 1
− L

N(L+ 1)
. (2.70)

Proof. From Lemma 4 we can see that for any ǫ1 > 0 there exists a δ1 > 0 such that

for any set J ⊂ [N ] of codewords with |J | = L and dmax

(
Tx(j), P

)
< δ1, we can find

a joint type P ∈ P(X L) with marginals equal to P such that the joint type Tx(J)

satisfies

dmax

(
Tx(J), P

)
< ǫ1 . (2.71)

Now let U achieve the minimum in the definition of λL(P ). Since λL(P ) < Λ − ǫ we

have

∑

s,xL
1

l(s)U(s|xL1 )Tx(J)(x
L
1 ) ≤

∑

s,xL
1

l(s)U(s|xL1 )P (xL1 ) + ǫ1λ
∗|X |L (2.72)

< Λ − ǫ+ ǫ1λ
∗|X |L , (2.73)

where λ∗ = maxs∈S l(s). Now choose ǫ1 = ǫ/(2λ∗|X |L) so that

∑

s,xL
1

l(s)U(s|xL1 )Tx(J)(x
L
1 ) < Λ − ǫ/2 , (2.74)
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and choose δ = δ1 according to Lemma 4.

The jammer will pick a J ⊂ [N ] with |J | = L uniformly from all such subsets and

select its state sequence according to the random variable S(J) with distribution

Qn(s) =

n∏

t=1

U(st|{xt(j) : j ∈ J}) . (2.75)

The expected cost of S(J) is

1

n
E[l(S(J))] =

1

n

n∑

t=1

∑

s

l(st)U(st|{xt(j) : j ∈ J}) (2.76)

=
∑

s,x̃L

l(s)U(s|x̃1, . . . , x̃L)
|{t : xt(j) = x̃j ∀j}|

n
(2.77)

=
∑

s,x̃L

l(s)U(s|x̃L1 )Tx(J) (2.78)

< Λ − ǫ/2 . (2.79)

We can also bound the variance of l(S(J)):

Var (l(S(J))) ≤ (λ∗)2

n
. (2.80)

Then Chebyshev’s inequality gives the bound:

P(l(S(UJ , J)) > Λ) ≤ (λ∗)2

n(Λ − (Λ − ǫ/2))2
(2.81)

≤ 4(λ∗)2

nǫ2
. (2.82)

We now need some properties of symmetrizing channels used with the random
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variables S(J). Firstly, we have:

E [W n(y|x(i),S(J))] =
∑

s

W n(y|x(i), s)Un(s|{x(j) : j ∈ J}) (2.83)

= E [W n(y|x(j),S(J \ {j} ∪ {i}))] . (2.84)

Using (2.84) we can see that for some subset G ⊂ [N ] with |G| = L+ 1:

∑

i∈G
E [εL(i,S(G \ {i}))] =

∑

i∈G



1 −
∑

y:i∈ψ(y)

E [W n(y|xi,S(G \ {i}))]



 (2.85)

= L+ 1 −
∑

i∈G

∑

y:i∈ψ(y)

E
[
W n(y|xi0,SG\{i0})

]
. (2.86)

Because each y can be decoded to a list of size at most L , we can get a lower bound

∑

i∈G
E
[
ε(i,SG\{i})

]
≥ L+ 1 − L

∑

y∈Yn

E
[
W n(y|xi0,SG\{i0})

]

= 1 . (2.87)

We can now begin to bound the probability of error for this jamming strategy. Let

J be the set of all subsets of [N ] of size L, and let J be a random variable uniformly

distributed on J . We can write the expected error as

EJ,S(J) [εL(S(J))] =
1
(
N
L

)
1

N

∑

J∈J

N∑

i=1

E [εL(i,S(J))] . (2.88)

Then we have:

EJ,S(UJ,J) [εL(S(UJ,J))] ≥ 1
(
N
L

)
1

N

∑

G⊂[N ]:|G|=L+1

∑

i∈G
E [εL(i,S(G \ {i}))] . (2.89)
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Now we can rewrite the inner sum using (2.84):

EJ,S(J) [εL(S(J))] ≥
(
N
L+1

)

(
N
L

)
·N

(2.90)

=

(
N
L

)
N−L
L+1

(
N
L

)
·N

(2.91)

=
N − L

(L+ 1)N
(2.92)

=
1

L+ 1
− L

N(L+ 1)
. (2.93)

Finally, we can add in the bound (2.82) to obtain

1

L+ 1
− L

N(L+ 1)
≤ EJ,S(J) [εL(S(J))] (2.94)

≤ max
s∈Sn(Λ)

εL(s) + P (l(S(J)) > Λ) (2.95)

≤ max
s∈Sn(Λ)

εL(s)
4(λ∗)2

nǫ2
. (2.96)

Now, we can choose n0 large enough such that

max
s∈Sn(Λ)

εL(s) >
1

L+ 2
− L

N(L+ 1)
. (2.97)

Lemma 6 combines Lemma 5 with a covering argument to show that for any ǫ > 0

the jammer’s strategy can be extended to codebooks for which all the codewords have

type P with λL(P ) < Λ − ǫ.

Lemma 6. Let W be an AVC with state cost function l(·) and constraint Λ and let

L be a positive integer. For any ǫ > 0 there exists a ν(L,W, ǫ) > 0 and n0 such

that for any (n,N, L) list code (φ, ψ) with n ≥ n0 and N > L + 1 whose codewords
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{x(i) : i ∈ [N ]} satisfy

λL(Tx(i)) < Λ − ǫ ∀i ∈ [N ] , (2.98)

the error must satisfy

max
s∈Sn(Λ)

εL(s) > ν(L,W, ǫ) . (2.99)

Proof. Fix ǫ > 0. For each P ∈ P(X ) from Lemma 4 we know there is a δ(P ) > 0 such

that any joint distribution P with marginals within δ(P ) of P can be approximated

by a P̂ with marginals equal to P such that dmax

(

P , P̂
)

< ǫ. Let

B(P ) = {P ′ ∈ P(X ) : dmax (P, P ′) < δ(P )} . (2.100)

Then {B(P ) : P ∈ P(X )} is an open cover of P(X ). Since P(X ) is compact there

is a constant r and finite subcover {B(Pj) : j ∈ [r]}. From this finite cover we can

create a partition {Aj : j ∈ [r]} of P such that Aj ⊆ B(Pj) for all j.

Now consider an (n,N, L) code whose codewords C satisfy (2.98). Let Fj = {i ∈
[N ] : Tx(i) ∈ Aj}. We can bound the error

εL(s) =
1

Nr

r∑

j=1

∑

i∈Fj

εL(i, s) ≥
|Fj |
Nr




1

|Fj|
∑

i∈Fj

εL(i, s)



 . (2.101)

Since {Fj} partition the codebook, for some j we have |Fj| ≥ N/r. From Lemma 5

the jammer can force the error to be lower bounded by

max
s∈Sn(Λ)

εL(s) ≥
1

r2

(
1

L+ 1
− L

N(L+ 1)

)

. (2.102)

Since the constant r is a function of ǫ, W and L, we are done.
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2.3.2.2 Converse for rates above the mutual information

The other converse result shows that a codebook with codewords whose types are in

a set A cannot achieve rates higher than the maximum of the mutual information

I (P,Λ) over all types P ∈ A.

Lemma 7. Let W be an AVC with state cost function l(·). Fix a subset A ⊂ P(X ).

For any constant list size L and constants Λ > 0 and ǫ > 0, there exists an n0

and δ > 0 such that for any (n,N, L) list-decodable code of blocklength n ≥ n0 with

codewords whose types are in A, the inequality

1

n
log

N

L
≥ max

P∈A
I (P,Λ) + ǫ (2.103)

implies

max
s:Sn(Λ)

εL(s) > δ . (2.104)

Proof. Fix ǫ > 0. For each P ∈ P(X ) let Q∗
P ∈ Q(Λ) be a jamming distribution that

achieves the minimum in

I (P,Λ) = min
V ∈Wstd(Λ)

I (P, V ) . (2.105)

Without loss of generality, we can take min l(s) = 0. Let s0 = argmins∈S l(s). For an

η ∈ (0, 1), we define the new distribution

QP (s) =







Q∗
P (s)(1 − η) s 6= s0

η + (1 − η)Q∗
P (s) s = s0

(2.106)
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Under QP (s), we have E[l(s)] ≤ Λ(1 − η). Define the channel

(V QP )(y|x) =
∑

s

W (y|x, s)QP (s) . (2.107)

The mutual information is uniformly continuous in the channel, so for any ǫ > 0 we

can choose η such that

I (P, V QP ) ≤ min
V ∈Wstd(Λ)

I (P, V ) + ǫ/2 . (2.108)

Because the mutual information is also continuous in the input distribution, for any

ǫ > 0 there exists a δ′ > 0 so that for any P ′ with dmax (P, P ′) < δ′ we have

I (P ′, V QP ) ≤ min
V ∈Wstd(Λ)

I (P, V ) + ǫ/4 . (2.109)

Now, the open balls

B(P ) = {P ′ : dmax (P, P ′) < δ′} (2.110)

are an open cover of the compact set P(X ), so there exists a constant r and a finite

set {Pj : j ∈ [r]} such that {B(Pj) : j ∈ [r]} is a finite subcover. From this we can

generate a partition {Aj : j ∈ [r]} of A such that Aj ⊂ B(Pj) for all j ∈ [r].

Now let {x(1) : i ∈ [N ]} be the codewords of an (n,N, L) list-decodable code

such that Tx(i) ∈ A for all i ∈ [N ]. Let Fj = {i : Tx(i) ∈ Aj}. We can find a k ∈ [r]

such that |Fk| ≥ N/r. The jammer will choose its state sequence s according to a

random variable S chosen iid according to QPj
. The expected error E[εL(S)] under
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this strategy can be lower bounded :

E[εL(S)] ≥ |Fk|
N

(

1

|Fk|
∑

i∈Fk

E[εL(i,S)]

)

(2.111)

≥ 1

r

(

1

|Fk|
∑

i∈Fk

E[εL(i,S)]

)

. (2.112)

The term inside the parentheses is the expected average error of the sub-codebook

{x(i) : i ∈ Fk} which has rate

1

n
log

|Fk|
L

≥ max
P∈A

I (P,Λ) + ǫ− 1

n
log r . (2.113)

This expected average error is equal to the average error εQ for the sub-codebook on

the DMC V QPK
. Then we can lower bound the error

max
s∈Sn(Λ)

εL(s) ≥ εQ − PQ(l(S) > nΛ) . (2.114)

By the strong converse for the list decoding on a DMC [117], for any ǫ′ > 0 and

rate larger than I (P, V QPk
) + ǫ′ the average error εQ converges to 1. Standard large

deviations results show that l(S) will satisfy the cost constraint with high probability.

Therefore, for sufficiently large n we can lower bound the error by δ = 1/(2r).

2.3.3 Achievability arguments

To show the forward part of Theorem 11 we must define a codebook and decoding

rule. In Section 2.3.3.1 we describe the decoding rule, which is a modified version of

the rule used by Hughes [85]. In Section 2.3.3.2 we prove a lemma (Lemma 9), which

we will use to show that the decoding rule can only produce a list of size L̃sym(P,Λ)+1

or smaller. In Section 2.3.3.3 we prove Lemma 10, which proves the existence of a
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constant composition codebook of type P with useful properties. Finally, in Section

2.3.3.4 we show that this codebook can be used in conjuction with the decoding rule

to achieve rates arbitrarily close to I (P,Λ) with lists of size L̃sym(P,Λ) + 1.

2.3.3.1 The decoding rule

In order to describe the decoding rule we will use, we define the set

Gη(Λ) = {PXSY ∈ P(X × S × Y) : D (PXSY ‖ PX × PS ×W ) ≤ η, E[l(s)] ≤ Λ} ,
(2.115)

where

(PX × PS ×W )(x, s, y) = PX(x)PS(s)W (y|x, s) . (2.116)

The set Gη(Λ) contains joint distributions which are close to those generated from the

AVC W via independent inputs with distribution PX and PS.

Definition 1 (Decoding rule). Let x1,x2, . . . ,xN be a given codebook and suppose y

was received. Let ψ(y) denote the list decoded from y. Then put i ∈ ψ(y) if and only

if there exists an s ∈ Sn(Λ) such that

1. Txisy ∈ Gη(Λ), and

2. for every set of L other distinct codewords {xj : j ∈ J, J ⊂ [N ] \ {i}, |J | = L}
such that there exists a set {sj : sj ∈ Sn(Λ), j ∈ J} with Txjsjy ∈ Gη(Λ) for all

j ∈ J we have

I
(
Y X ∧ XL

∣
∣S
)
≤ η , (2.117)

where PY XXLS is the joint type of (y,xi, {xj : j ∈ J}, s).
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This is the decoding rule used by Hughes [85] modified in the natural way sug-

gested by Csiszár and Narayan [46]. An interpretation of this rule is that the decoder

outputs a list of codewords {xi} each having a “good explanation” {si}. A “good

explanation” is a state sequence that plausibly could have generated the observed

output y (condition 1) and makes all other L-tuples of codewords seem independent

of the codeword and output (condition 2).

2.3.3.2 Guaranteeing a bounded list size

Lemma 9 will be used to show that the decoding rule cannot output a list larger

than M = L̃sym(P,Λ) + 1. The key is to show that no tuple of random variables

(Y,XM+1, SM+1) can satisfy the conditions of the decoding rule. This in turn shows

that for sufficiently large n, no set of M + 1 codewords can satisfy the conditions of

the decoding rule. Therefore, for sufficiently large blocklengths, the decoding rule

will only output M or fewer codewords.

The proof of Lemma 9 rests on Lemma 8, which guarantees a nonzero total vari-

ational distance between joint distributions on XM+1 ×Y induced by the AVC. For a

tuple xM = (x1, x2, . . . , xM), define xM−{i} to be the tuple (x1, . . . , xi−1, xi+1, . . . , xM).

Lemma 8. Let β > 0, W be an AVC with state cost function l(·) and constraint Λ,

P ∈ P(X ) with I(P,Λ) > 0 and minx P (x) ≥ β, and M = L̃sym(P,Λ) + 1. For any

α > 0 and every collection of distributions {Ui ∈ P(XM × S) : i = 1, 2, . . . ,M} such

that

∑

xM+1,s

P (xi)Ui(x
M
−{i}, s)l(s) ≤ λ̃M(P ) − α (2.118)
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for all i = 1, 2, . . . ,M + 1, there exists a ζ > 0 such that

max
j 6=i

∑

y,xM+1

∣
∣
∣
∣
∣

∑

s

W (y|xi, s)Ui(xM+1
−{i} , s)P (xi) −

∑

s

W (y|xj, s)Uj(xM+1
−{j} , s)P (xj)

∣
∣
∣
∣
∣
≥ ζ .

(2.119)

Proof. Note that the outer sum in (2.119) is over all xM+1. Define the function

Vk : XM+1 × S → R by:

Vk(x
M+1, s) = Uk(x

M+1
−{k}, s) . (2.120)

Let ΠM+1 be the set of all permutations of [M + 1] and for π ∈ ΠM+1 let πi be the

image of i under π. Then

max
j 6=i

∑

y,xM+1

∣
∣
∣
∣
∣

∑

s

W (y|xi, s)Vi(xM+1, s)P (xi) −
∑

s

W (y|xj, s)Vj(xM+1, s)P (xj)

∣
∣
∣
∣
∣

= max
j 6=i

∑

y,xM+1

∣
∣
∣
∣
∣

∑

s

W (y|xi, s)Vπi
(π(xM+1), s)P (xi)

−
∑

s

W (y|xj, s)Vπj
(π(xM+1), s)P (xj)

∣
∣
∣
∣
∣
. (2.121)

We can lower bound this by averaging over all π ∈ ΠM+1 :

max
j 6=i

∑

y,xM+1

1

(M + 1)!

∑

π∈ΠM+1

∣
∣
∣
∣
∣

∑

s

W (y|xi, s)Vπi
(π(xM+1), s)P (xi)

−
∑

s

W (y|xj, s)Vπj
(π(xM+1), s)P (xj)

∣
∣
∣
∣
∣
.

(2.122)
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Define the average

V (xM+1
−{i} , s) =

1

(M + 1)!

∑

π∈ΠM+1

Vπi
(π(xM+1), s)

=
1

(M + 1)!

M+1∑

l=1

∑

π∈ΠM+1:πi=l

Ul(π(xM+1)−{πi}, s)

=
1

(M + 1)!

M+1∑

l=1

∑

σ∈ΠM

Ul(σ(xM+1
−{i} ), s) .

Note that V is a symmetric function for all s.

Now we use the convexity of | · | to pull the averaging inside the absolute value to

get a further lower bound on (2.122) by substituting in V .

F (V , P ) = max
j 6=i

∑

y,xM+1

∣
∣
∣
∣
∣

∑

s

W (y|xi, s)V (xM+1
−{i} , s)P (xi)

−
∑

s

W (y|xj, s)V (xM+1
−{j} , s)P (xj)

∣
∣
∣
∣
∣
.

(2.123)

The function F (V , P ) is continuous function on the compact set of symmetric distri-

butions {V } and the set of distributions P with minx P (x) ≥ β, so it has a minimum

ζ = F (V
∗
, P ∗) for some (V

∗
, P ∗). We will prove that ζ > 0 by contradiction.

Suppose F (V
∗
, P ∗) = 0. Then

∑

s

W (y|xi, s)V ∗
(xM+1

−{i} , s)P
∗(xi) =

∑

s

W (y|xj, s)V ∗
(xM+1

−{j} , s)P
∗(xj) .
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So

∑

y

∑

s

W (y|xi, s)V ∗
(xM+1

−{i} , s)P
∗(xi) =

∑

y

∑

s

W (y|xj, s)V ∗
(xM+1

−{j} , s)P
∗(xj)

V
∗
(xM+1

−{i} )P ∗(xi) = V
∗
(xM+1

−{j} )P
∗(xj) ,

which implies (see [85, Lemma A3]) that for all j:

V
∗
(xM+1

−{j} )P
∗(xj) = P ∗(M+1)(xM+1) .

Therefore

∑

s

W (y|x1, s)V
∗
(s|xM+1

2 ) . (2.124)

is symmetric in (x1, x2, . . . , xM+1). Therefore V
∗
(s|xM+1

2 ) ∈ Usym(M + 1). From the

definition of λ̃M(P ) in (2.53) we see that

∑

xM+1,s

V
∗
(xM−{i}, s)P (xi)l(s) ≥ λ̃M(P ) . (2.125)

But from (2.118), and the definition of V we see that the {Ui} must be chosen such

that

∑

xM+1,s

V
∗
(xM−{i}, s)P (xi)l(s) ≤ λ̃M(P ) − α . (2.126)

Therefore we have a contradiction and the minimum ζ of F (V , P ) must be greater

than 0. Equation (2.119) follows.

We can use Lemma 8 to show that our decoding rule will not output a list of size
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larger than L̃sym(P,Λ)+1. The next lemma shows that for a sufficiently small choice

of the threshold η in the decoding rule given in Section 2.3.3.1 there are no random

variables that can force the decoding rule to output a list that is too large.

Lemma 9. Let β > 0, W be an AVC with state cost function l(·) and constraint

Λ, P ∈ P(X ) with minx P (x) ≥ β, and M = L̃sym(P,Λ) + 1. Then there exists an

η > 0 sufficiently small such that no tuple of rv’s (Y,XM+1, SM+1) can simultaneously

satisfy

min
x
P (x) ≥ β (2.127)

PXi
= P (2.128)

PY XiSi
∈ Gη(Λ) (2.129)

I
(

Y Xi ∧ XM+1
−{i}

∣
∣
∣Si

)

≤ η 1 ≤ i ≤M + 1 (2.130)

Proof. Assume, to the contrary, that there does exist a tuple of random variables

(Y,XM+1, SM+1) satifying (2.127)–(2.130). This will lead to a bound on a certain

KL-divergence which, via Pinsker’s inequality, becomes a bound on total variational

distance that contradicts the conclusion of Lemma 8 with Ui = PXM+1
−{i}

Si
. The as-

sumption (2.129) shows that

∑

xM+1,s

P (xi)PXM+1
−{i}

Si
(xM+1

−{i} , s)l(s) ≤ Λ < λ̃M(P ) , (2.131)

so (2.118) holds with α = λ̃M(P ) − Λ.

Let

(W × PXi
× PXM+1

−{i}
Si

)(y, xM+1, s) = W (y|xi, s)PXi
(xi)PXM+1

−{i}
Si

(xM+1
−{i} , s) . (2.132)
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For every i we have the following divergence bound:

D
(

PY XM+1Si

∥
∥
∥ W × PXi

× PXM+1
−{i}

Si

)

(2.133)

= D (PY XiSi
‖ Wi × PXi

× PSi
) +D

(

PXM+1
−{i}

|Y XiSi

∥
∥
∥ PXM+1

−{i}
|Si

∣
∣
∣PY XiSi

)

(2.134)

= D (PY XiSi
‖ Wi × PXi

× PSi
) + I

(

Y Xi ∧ XM+1
−{i}

∣
∣
∣Si

)

(2.135)

≤ 2η , (2.136)

where the last line follows from (2.129), (2.115) and (2.130).

Projecting the distributions onto Y ×XM+1 cannot increase the divergence. Set-

ting

Vi(y, x
M+1
−{i} |xi) =

∑

s

W (y|xi, s)PXM+1
−{i}

Si
(xM+1

−{i} , s) , (2.137)

we obtain from (2.136) the following inequality:

D (PY XM+1 ‖ Vi × PXi
) < 2η .

To use Lemma 8 we must turn this divergence bound into a bound on a total varia-

tional distance. We can use Pinsker’s inequality [44, p. 58, Problem 17] to show that

the KL-divergence is an upper bound on the variational distance:

∑

y,xM+1

∣
∣
∣PY XM+1(y, xM+1) − Vi(y, x

M+1
−{i} |xi)PXi

(xi)
∣
∣
∣ <

√

(4 ln 2)η ∀i ∈ [M + 1] .

(2.138)

Since the bound holds for all i, we know that ViPXi
is close to VjPXj

. The triangle
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inequality yields:

max
i6=j

∑

y,xM+1

∣
∣
∣Vj(y, x

M+1
−{j} |xj)PXj

(xj) − Vi(y|xM+1
−{i} |xi)PXi

(xi)
∣
∣
∣ < 2

√

(4 ln 2)η . (2.139)

By choosing η small enough this violates the conclusion of Lemma 8, which is the de-

sired contradiction. Therefore no tuple of random variables can satisfy the conditions

given in (2.127) - (2.130).

2.3.3.3 Codebook properties

We quote Lemma 1 from Hughes [85] in Lemma 10. The proof is given in [85] and

requires some large deviations results [9, 46] that have proved useful in many other

coding problems for AVCs under average error [48, 85, 72, 73]. We note that these

properties do not depend on the constraints.

Lemma 10 (Codebook existence). For any L ≥ 1, ǫ > 0, R = n−1 log(N/L) ≥ ǫ, and

type P , there exists an n sufficiently large and codewords x1,x2, . . . ,xN of blocklength

n, each of type P , such that for every x ∈ X n, s ∈ Sn, and joint type PXXLS we have

the following for k = 1, 2, . . . , L:

1. If I (X ∧ S) ≥ ǫ then

1

N
|{i : Txis = PXS}| ≤ exp(−nǫ/2) . (2.140)

2. If I (X ∧ XkS) ≥ |R− I (Xk ∧ S) |+ + ǫ then

1

N

∣
∣
{
i : Txixjs = PXXkS for some j 6= i

}∣
∣ ≤ exp(−nǫ/2) . (2.141)
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3. Also, for any x

∣
∣
{
j : Txxjs = PXXkS

}∣
∣ ≤ exp

(
n
(
|R− I (Xk ∧ XS) |+ + ǫ

))
. (2.142)

4. Moreover, if R < mink I (Xk ∧ S), then x1,x2, . . . ,xN can be selected to fur-

ther satisfy

|{J ⊂ [N ] : |J | = L, TxixJs = PXXLS}| ≤ exp(nǫ) . (2.143)

5. If R < mink I (Xk ∧ S) and I
(
X ∧ XLS

)
≥ ǫ then

1

N
|{i : TxixJs = PXXLS for some J ⊂ [N ] \ {i}, |J | = L}| ≤ exp(−nǫ/2) .

(2.144)

2.3.3.4 Achievable rates for list decoding

The proof of the following lemma is nearly identical to Lemma 3 of Hughes, and a

proof is included for completeness in Appendix D.2.

Lemma 11. Let W be an AVC with state cost function l(·) and state constraint Λ.

For any ǫ3 > 0, β > 0 and P ∈ P(X ) with I(P,Λ) > 0 and minx P (x) ≥ β, and

M = L̃sym(P,Λ) + 1 there exists a positive integer n0(β, ǫ3,W), δ(β, ǫ3,W) > 0 and

an (n,N,M) list-decodable code with n > n0 whose codewords have constant type P

such that

R =
1

n
log

(
N

M

)

> I (P,Λ) − ǫ3 (2.145)

max
s∈Sn(Λ)

ε(s) < exp(−nδ) . (2.146)
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2.3.4 Proof of Theorem 11

Proof. Define the function

ρ(α) = max
P∈I(Γ−α):λ̃L(P )≥Λ+α

min
V ∈Wstd(Λ)

I (P, V ) . (2.147)

We claim that ρ(α) is continuous for α in a small neighborhood of 0. Since I (P, V ) is a

continuous and concave function of P , the minimum I (P,Λ) = minV ∈Wstd(Λ) I (P, V )

is also a continuous concave function. Since λ̃L(P ) is a the minimum of a set of

linear functions it is concave in PL and from [32, p.86] we can see that it is a concave

function of P . Therefore, as in Csiszár and Narayan [46, p. 188] we can see that ρ(α)

is concave for α such that {P ∈ I(Γ − α) > λ̃L(P ) ≥ Λ + α} is nonempty. Since we

have assumed that maxP∈I(Γ) λ̃L(P ) > Λ the point α = 0 is in this interval, so there

exists a ζ > 0 such that ρ(α) is continuous in a small neighborhood (−ζ, ζ) of 0.

Fix α. Let P ∗ achieve the maximum for ρ(α). For any ǫ > 0 there exists a δ > 0

such that for any P with dmax (P ∗, P ) < δ′ we have

I (P,Λ) ≥ I (P ∗,Λ) − ǫ . (2.148)

We have then for some constant c1(L,W) that

∑

x∈X
g(x)P (x) ≤ Γ − α + c1(L,W)δ . (2.149)

Furthermore, let U ∈ Usym attain the minimum in λ̃L(P ). Then for some constant
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c2(L,W) we have

Λ + α ≤ λ̃L(P
∗) (2.150)

= min
U∗∈Usym

∑

s,xL
1

l(s)U∗(s|xL1 )

L∏

j=1

P ∗(xj) (2.151)

≤
∑

s,xL
1

l(s)U(s|xL1 )

L∏

j=1

P ∗(xj) (2.152)

≤ λ̃L(P ) + c2(L,W)δ . (2.153)

Thus we can choose δ small enough such that P ∈ I(Γ) and λ̃L(P ) ≥ Λ + α/2.

Now we can a P with with dmax (P ∗, P ) < δ′ such that there exists a β > 0 and

minx P (x) ≥ β. Then by Lemma 11 we can find a blocklength sufficiently large and

a list-decodable code with list size L such that

1

n
log

(
N

M

)

≥ I (P,Λ) − ǫ (2.154)

≥ ρ(α) − 2ǫ , (2.155)

and the error is as small as we like. Since ρ(α) is continuous, this shows that R = ρ(0)

is achievable with input constraint Γ and cost constraint Λ.

For the converse, note that for any α > 0, Lemmas 6 and 7 show that no rate

above

ν(α) = max
P∈I(Γ):λL(P )≥Λ−α

min
V ∈Wstd(Λ)

I (P, V ) (2.156)
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can be achievable. Again, I (P,Λ) is a continuous function of P , and

µλL(P ) + (1 − µ)λL(P
′) ≤ min

U∈Usym(L)
max

P :Pi=P, P
′
:P ′

i=P
′

∑

s,xL
1

l(s)U(s|xL1 )(µP + (1 − µP
′
)

≤ min
U∈Usym(L)

max
P

′′
:P ′′

i =µP+(1−µ)P ′

∑

s,xL
1

l(s)U(s|xL1 )P
′′
(xL1 )

= λL(µP + (1 − µ)P ′) , (2.157)

so λL(P ) is concave. Therefore ν(α) is continuous when {P ∈ I(Γ) : λL(P ) ≤ Λ−α}
is nonempty. Since maxP∈I(Γ) λL(P ) < Λ we know ν(α) is continuous at 0, which

gives the converse.

2.4 Example

We now turn to an example of an additive cost-constrained AVC. Let X = {−1, 1}
and let S = {−σ,−σ + 1, . . . , σ} for some integer σ. The output Y of this channel is

given by

Y = X + S . (2.158)

That is, Y is the real addition of the input and state. This is similar in spirit to the

example given by Hughes [85], but is more closely related to [134], which analyzes a

game between power constrained noise and an encoder with binary inputs.

We will consider two kinds of cost constraints on the jammer for this AVC. The

first is an L1 constraint:

l1(s) = |s| . (2.159)
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The second is an L2 constraint:

l2(s) = |s|2 . (2.160)

For each of these constraints we will compute capacities for different values of Λ.

2.4.1 Randomized coding capacity

The first question to settle is that of the randomized coding capacity Cr(Λ) = Cstd(Λ)

for this channel, given by (1.50). By symmetry, we may assume that the input

distribution P ∗ is uniform on the set {−1, 1}. Therefore we can write:

Cr(Λ) = min
Q(s)∈P(S,Λ)

I (X ∧ X + S)

= min
Q(s)∈P(S,Λ)

H(X + S) −H(S) . (2.161)

To find the random coding capacity we must minimize the mutual information

I (X ∧ X + S). This can be stated as the following optimization problem. Let

I(Q) = I (X ∧ X + S) with Q = Q(s) and P (X = 1) = P (X = −1) = 1/2. For a

cost function l(s) = |s|θ, let Θ = (l(−A), l(−A + 1), . . . l(A))T . The optimization is

minimize I(Q) (2.162)

subject to 1TQ = 1 (2.163)

−Q(s) ≤ 0 ∀s (2.164)

ΘTQ− Λ ≤ 0 , (2.165)

Since the mutual information is convex in the distribution Q, this is a convex op-

timization problem in the vector Q and can be solved using standard optimization

techniques [32].
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Figure 2.2: Randomized coding capacity Cr(Λ) versus σ for Λ = 1.5, 2, and 2.5 with loss
function l1(s). The dashed line is the randomized coding capacity for the unconstrained
jammer.
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Figure 2.3: Randomized coding capacity Cr(Λ) versus σ for Λ = 4, 8, 12, 16 with loss
function l2(s). The dashed line is the randomized coding capacity for the unconstrained
case.

By performing an optimization for each value of σ and Λ we can create the plots

of the capacities for the L1 case in Figure 2.2 and L2 case in Figure 2.3. As the cost

constraint Λ is increased, the randomized coding capacity decreases, and for smaller

alphabet sizes the constraint becomes inactive. As expected, the L2 cost constraint

is more restrictive as σ increases.

2.4.2 Achievable rates for average-error list decoding

For each list size L we can compute achievable and converse bounds for the list

decoding capacity CL(Λ). We can achieve the randomized coding capacity Cr(Λ)

with list size larger that L̃sym(P ∗,Λ). For lists smaller than Lsym(P ∗,Λ) we will
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not be able to achieve the randomized coding capacity. We will focus on showing

achievable rates for list decoding with fixed list size L.

For each candidate list size L and input distribution P , we must determine if

there exists a channel U : X L → S satisfying (2.50) whose weak symmetrizing cost in

(2.53) is less than the constraint Λ. For a fixed P , the set of symmetrizing channels

satisfying the weak cost constraint is convex. We can further restrict our attention

to symmetrizing U ’s that are themselves symmetric channels. To see this, fix a tuple

x = (x1, x2, . . . , xL) and think of U(s|x) as a length |S| column vector. Consider the

|Y| × |S| transition matrix W−1 = W (y| − 1, s):

W−1 =




I|S|

0



 . (2.166)

For any permutation π of [L], we have

W−1U(s|x) =




U(s|x)

0



 =




U(s|πx)

0



 = W−1U(s|πx) . (2.167)

Therefore U(s|x) can only depend on the type of x.

Thus we can write the average channel as

∑

s

W (y|x, s)U(s|t) , (2.168)

where t ∈ [0, 1, . . . , L] counts the number of 1’s in XL. The condition that this

channel be symmetric can be rewritten as:

∑

s

W (y| − 1, s)U(s|t) −
∑

s

W (y|+ 1, s)U(s|t− 1) ∀y, t (2.169)
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where U must satisfy

∑

s

l(s)

L∑

t=0

(
L

t

)

2−LU(s|t) ≤ Λ . (2.170)

We transform this minimization into a quadratic program in order to solve it more

efficiently. Note that (2.169) holds if and only if

f(U) =
∑

y

L∑

t=1

(
∑

s

W (y| − 1, s)U(s|t) −
∑

s

W (y| + 1, s)U(s|t− 1)

)2

= 0 .

(2.171)

To determine if the channel is L-symmetrizable, we minimize the function f(U). If

min f(U) = 0 then the channel is symmetrizable, and if min f(U) > 0 it is not. If

we replace the square in (2.171) with an absolute value function, then we obtain a

function similar to that in Lemma 8. Therefore order to calculate the symmetrizability

of the channel, we must solve the following program:

minimize (2.172)

subject to
∑

s

U(s|t) = 1 ∀t (2.173)

− U(s|t) ≤ 0 ∀s, t (2.174)

∑

s

L∑

t=0

(
L

t

)

2−Ll(s)U(s|t) − Λ ≤ 0 . (2.175)

This is a quadratic program in the channel U and we can again use fast solving

techniques to find L̃sym(P,Λ) for different P and Λ.

The plot in Figure 2.4 shows max I (P,Λ) versus Λ for l2(·) and σ = 8 under

list-decoding codes of fixed list sizes. As Λ increases, the capacity-achieving input

distribution with P (X = 1) = 1/2 becomes L-symmetrizable for small L. However,

93



Chapter 2. List decoding for discrete AVCs

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Highest rate achievable for L = 2, 4, 6, 8

Jammer constraint Λ

A
ch

ie
va

b
le

 r
at

e 
m

ax
 I(

P
) 

w
it

h
 d

et
er

m
in

is
ti

c 
lis

t 
co

d
e

 

 
L = 2
L = 4
L = 6
L = 8

Figure 2.4: The largest value of I (P,Λ) achievable versus Λ for l(s) = |s|2, σ = 8, and
for different list sizes.

suboptimal input distributions are not weakly L-symmetrizable, and list codes of size

L can still achieve some rates below Cr(Λ). In Figure 2.5 we show argmax I (P,Λ)

for the distributions P that are not L-symmetrizable.

The extensive analysis in [134] found that the worst case power-constrained noise

for binary modulation over an additive noise channel had support only on integer

points. In this example, we are interested in the interplay between the list size,

achievable rates, and cost constraint. In order to compute the random coding capacity

we need to find the worst-case noise distribution, but this capacity is not necessarily

realizable with deterministic codes. List decoding relaxes the coding problem and

already approaches the performance of randomized coding for quite small list sizes.

This is in contrast to the maximal error list decoding in Example 2.1 on page 49,

where the list size needs to be quite large to get close to the capacity.
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Figure 2.5: The value of P (X = 1) which is non-symmetrizable and achieves the highest
rate versus Λ for l(s) = |s|2, σ = 8, and different list sizes.

2.5 Discussion

In this chapter we found bounds on the capacity for list coding over constrained AVCs

under both maximal and average error. Under maximal error, list decoding with list

sizes L could achieve rates within a gap of O(L−1) of Cdep(Γ,Λ). In the next chapter

we will use the results on list decoding for maximal error to find the randomized

coding capacity under the nosy noise error model for general AVCs, generalizing the

results of Langberg [101] on the bit-flipping channel.

Under average error, the list coding capacity behaves differently depending on

whether there are constraints on the jammer. For sufficiently large L the list coding

capacity equals Cr(Γ,Λ) = Cstd(Γ,Λ), and for smaller L we may be able to achieve

smaller rates. It may be possible to further generalize the results on average error

to include multiple constraints or general alphabets. The techniques developed by
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Csiszár [42] could be applicable in this approach.

If we restrict our attention to linear codes, a connection between the notion of

symmetrizability for list codes and generalized Hamming weights [154, 153] has been

shown by Guruswami [76] for the case of list decoding from erasures. The r-th

generalized Hamming weight dr(C) of a code C is the minimum weight for the basis

of an r-dimensional subcode of C. For erasure channels, a list code C can correct Λn

errors with a list of size L if and only if dr(C) > Λn for r = 1 + ⌊log n⌋. The converse

argument is similar to that for the average-error AVC – the error pattern can simulate

r codewords if dr(C) < Λn. It would be interesting to see how strong this connection

is for more general AVCs.
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Chapter 3

Derandomization for discrete AVCs

3.1 Introduction

Early work on arbitrarily varying channels dealt with randomized coding from a game

theoretic perspective, but the engineering question of how much common random-

ness is needed to enable randomized coding has received less research attention. The

randomized encoding scheme described by Blackwell, Breiman, and Thomasian [28]

required that the encoder and decoder choose a random codebook prior to each trans-

mission. The corresponding amount of private information needed by the encoder and

decoder in order to carry out the coding scheme is therefore equal to the entropy of a

random variable on the set of iid codebooks. This key size dwarfs the amount of infor-

mation that is actually transmitted over the channel, which suggests that randomized

coding in this form may have very little practical engineering significance.

Research interest turned to deterministic coding theorems for AVCs in the work

of Kiefer, Wolfowitz, and Ahlswede [95, 19, 20]. Ahlswede proposed the “elimination
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technique” [6] to partially derandomize the fully randomized codes of Blackwell et

al., showing that it was sufficient for the encoder and decoder to choose one of n2

codebooks. His results imply that a key size of 2 logn bits is sufficient to achieve

randomized coding capacity Cr = Cdep. For unconstrained AVCs he used this result

to show that the deterministic coding capacity Cd is equal to Cr, provided Cd > 0.

Ahlswede’s technique is to treat the fully randomized code of Blackwell et al. as a

codebook-valued random variable B. He constructs a randomized code by drawing

n2 samples from B. The probability (over the sampling) that the randomized code

on n2 codebooks also has small probability of error can be made arbitrarily close to

1. Therefore such a randomized code must exist. Note that the jammer knows the

collection of n2 deterministic codes making up this new randomized code, but does

not know the key. That is, it does not know which codebook was chosen by the

encoder and decoder. If Cd > 0 then the encoder can choose a codebook and use a

short prefix to inform the decoder of this choice.

Ericson [59] used Ahlswede’s method to investigate error-exponents for AVCs.

To attain exponential decay in the probability of error using this method requires

a key size of O(n) bits, so the amount of shared common randomness is on the

same order as the data to be transmitted. This is reminiscent of Shannon’s “one-

time pad” [136] for cryptography. Hughes and Thomas [88, 151] used a different

code ensemble to find error exponents without bounding the amount of common

randomness. In this chapter we apply Ahlswede’s technique to the randomized codes

of Hughes and Thomas to find a range of tradeoffs between randomization and error

decay. This kind of tradeoff may be more useful in engineering applications in which

sharing O(n) bits of key to send O(n) bits of data is unreasonable.

For the nosy noise error criterion, where the jammer has access to the transmitted

codeword as well as the message, the elimination technique is no longer applicable.

Instead, we can adopt the approach taken by Langberg for bit-flipping AVCs [101],
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which uses maximal error list codes in conjunction with a combinatorial construction

due to Erdös, Frankl, and Füredi [56] to show that all rates below 1 − hb(Λ) can

be achieved with only O(logn) shared random bits for the key. The combinatorial

construction does not depend on the channel, so we can use the same construction

together with the maximal error list codes from the previous chapter to generalize

Langberg’s result to all AVCs.

In this chapter we provide achievable tradeoffs between error and key size, but we

do not have matching converse bounds showing that a certain amount of randomiza-

tion is required to achieve a given error decay.

3.2 “Elimination” for standard AVCs

We will first describe a partial derandomization method for constrained AVCs using

the “elimination technique” of Ahlswede.

3.2.1 Subsampling a random code

In the “elimination technique,” we start with a randomized code that has good prop-

erties and then sample from this code to obtain a smaller ensemble of codes that still

has good properties. The following lemma gives this result in a form that will be

convenient for us in the sequel. A proof is included for completeness.

Lemma 12 (Elimination technique [6]). Let J be a positive integer and let C be an

(n,N, J) randomized code with N = exp(nR) whose expected maximal error satisfies

max
s∈Sn(Λ)

max
i

EC[ε(i, s)] ≤ δ(n) , (3.1)
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for an AVC W with cost function l(·) and cost constraint Λ. Then for all µ satisfying:

µ log δ(n)−1 − hb(µ) log 2 >
n

K
(R log 2 + log |S|) , (3.2)

where hb(µ) is the binary entropy function, we can find a (n,N,K) randomized code

with maximal probability of error less than µ.

Proof. Let C1, C2, . . . , CK be K codebooks drawn according to the random variable C.

Let ε(C, i, s) be the error on message i for state sequence s under the deterministic

code C. The assumption on C is then that EC[ε(C, i, s)] ≤ δ(n) for all i and s ∈ Sn(Λ).

Then we can use Bernstein’s trick (exponentiating both sides and using the Markov

inequality):

PC

(

1

K

K∑

k=1

ε(Ck, i, s) ≥ µ

)

= PC

(

exp

(

r

K∑

k=1

ε(Ck, i, s)
)

≥ exp(Krµ)

)

≤ exp(−Krµ)EC [exp(rε(Ck, i, s)]K

= exp(−Krµ)EC

[

1 +

∞∑

m=1

1

m!
rmε(Ck, i, s)m

]K

≤ exp(−Krµ)

(

1 + δ(n)

∞∑

m=1

1

m!
rm

)K

≤ exp(−Krµ) (1 + δ(n)er)K

= exp (−K(rµ− log(1 + δ(n)er))) . (3.3)

Taking a union bound over all s and N = exp(nR log 2) messages we obtain:

PC

(

1

K

K∑

k=1

ε(Ck, i, s) ≥ µ, ∀s, i ∈ [N ]

)

≤ exp (−K(rµ− log(1 + δ(n)er)) + n(R log 2 + log |S|)) , (3.4)
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where R is measured in bits.

Therefore the probability (over the sampling of C) that the maximal error is

greater than µ for the randomized code uniformly distributed on {Ck : k ∈ [K]} can

be made as small as we like as long as K(rµ − log(1 + δ(n)er)) grows faster than n.

We can optimize over r:

d

dr
(rµ− log(1 + δ(n)er)) = µ− δ(n)er

1 + δ(n)er
. (3.5)

This gives r = log(µ/((1 − µ)δ)), which yields the condition for the probability in

(3.4) to go to 0:

K
(
µ log δ−1 − hb(µ) log 2

)
> n(R log 2 + log |S|) , (3.6)

where hb(µ) is the the binary entropy function of µ in bits. This shows that the prob-

ability (over sampling K codebooks) that the maximal error of our new randomized

code exceeds µ can be made as small as we like, and therefore a code whose error is

bounded by µ must exist.

3.2.2 Partial derandomization for standard AVCs

As noted by Ericson [59], Csiszár and Narayan [45], and Hughes and Thomas [88], the

first step of the elimination technique [6] can be used to reduce the randomization

needed for a randomized code. The capacity under this model is the randomized

coding capacity Cr(Γ,Λ) of the AVC. Previous authors were concerned with the case

where the key size is exponential in the blocklength, which gives an error probability

that decays exponentially in the blocklength. Here we look at more general error

key-size tradeoffs which provide a range of operating points.

Theorem 13. Let W be an AVC with cost function l(·) and cost-constraint Λ. For
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any ǫ > 0 and ζ > 0, there exists a sequence of (n, exp(nR), K(n)) randomized code,

where the key size K(n) satisfies K(n)/n → ∞ and n−1 log(K(n)/n) → 0 and the

rate and error satisfy

R = Cr(Γ,Λ) − ǫ (3.7)

ε(n) = ζ
n

K(n)
. (3.8)

Proof. Fix ǫ > 0. Hughes and Thomas [88, Theorem 6] show that for n sufficiently

large and N = exp(n(Cr(Γ,Λ) − ǫ)), there exists an (n,N, n!) randomized code C

with codewords of type P ∗ and maximal error

επ(C) ≤ exp (−n (Er(Cr(Γ,Λ) − ǫ/2, P ∗,Λ) − ǫ/2)) , (3.9)

where Er is the random coding exponent given in (1.75). This randomized code uses

an (n,N) deterministic code C = {x(i) : i ∈ [N ]} of constant type P ∗ and the keys

are all permutations Πn on [n]. The encoder encodes message i using permutation πk

by transmitting πk(x(i)).

Thus we can apply Lemma 12 to this code to show that there exists a set of

K permutations {π1, . . . , πK} such that {πkC : k ∈ [K]} is a randomized codebook

whose error ε(n) satisfies

K(n)

n
(nε(n)(Er(Cr(Γ,Λ) − ǫ/2, P ∗,Λ) − ǫ/2) − hb(ε(n)) log 2)

> (R log 2 + log |S|) . (3.10)

Now let ε(n) = ζn/K(n). We will show that for n sufficiently large (3.10) is satisfied.
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First, for small ε(n) we have an upper bound:

hb(ε(n)) = −ε(n) log ε(n) − (1 − ε(n)) log(1 − ε(n)) (3.11)

≤ −ε(n) log ε(n) + 2ε(n) . (3.12)

Then:

K(n)

n

(

nε(n)
(

Er

(

Cr(Γ,Λ) − ǫ

2
, P ∗,Λ

)

− ǫ

2

)

− hb(ε(n)) log 2
)

≥ K(n)

n

(

nε(n)
(

Er

(

Cr(Γ,Λ) − ǫ

2
, P ∗,Λ

)

− ǫ

2

)

− ε(n) log
1

ε(n)
log 2

− 2ε(n) log 2

)

= ζn

(

Er(Cr(Γ,Λ) − ǫ/2, P ∗,Λ) − ǫ/2 − log 2

n
log

K(n)

nζ
− 2 log 2

n

)

. (3.13)

For n sufficiently large we can make this as large as we like, so we can satisfy (3.10).

We can use this theorem to characterize different key-error tradeoffs:

• Suppose K(n) = nα for α > 1. Then the condition (3.8) becomes:

ε(n) = O(n1−α) . (3.14)

• Suppose K(n) = exp(βn). Reexamining (3.13) shows that the theorem holds if

β log 2 < Er(R,P
∗,Λ) − ǫ. Then (3.8) becomes:

ε(n) = O(exp(−β ′n)) , (3.15)

where β ′ < β.

103



Chapter 3. Derandomization for discrete AVCs

• Suppose K(n) = exp(nγ) for γ ∈ (0, 1). Then (3.8) shows:

ε(n) = O(exp(−nγ)) . (3.16)

3.3 Channels with nosy “noise”

We now turn to the nosy noise model, in which the jammer can choose s with knowl-

edge of the transmitted codeword x. For completeness, we provide a proof of the com-

binatorial construction used by Langberg in his proof of the bit-flipping AVC [56,101].

This can be used with our results on maximal error list decoding from the previous

chapter to show that the randomized coding capacity under this error criterion is

Ĉr(Γ,Λ) = Cdep(Γ,Λ) = max
P∈I(Γ)

min
V ∈Wdep(P,Λ)

I (P, V ) . (3.17)

As an application, we can partially derandomize the construction of Agarwal, Sahai,

and Mitter [1] for distortion-constrained channels.

3.3.1 Derandomization via list-decodable codes

The construction given in the following Lemma has been used by Langberg [101] and

Smith [143] to construct randomized codes for constrained bit-flipping AVCs in which

the codeword is known to the jammer. By using our new list codes we can construct

such randomized codes for general AVCs.

Lemma 13 (Message Authentication [56, 101]). Let W be an AVC and suppose we

are given an (n,N, L) deterministic list-decodable code and probability of error ǫ. For

key size K(n) where K(n) is a power of a prime there exists an (n,N/
√

K(n), K(n))
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message

√
K

x3, A11 x5, A12 x16, A13

x81, A21 x9, A22 x22, A23

x4, A31 x63, A32 x2, A33

x1, A√
K1 x7, A√

K2 x42, A√
K3

b

b

b

b

b

b

b

b

b

b b b

b b b

b b b

b b b

Figure 3.1: Constructing a randomized code from a list-decodable code. We put the
codewords of the list code into a

√
K×N/

√
K table. Each column has a partition of the

set of K keys into sets Aij of
√
K keys each. The intersection of the key sets is small.

randomized code with probability of error ǫ+ ǫ′, where

ǫ′ =
2L logN(n)

√

K(n) logK(n)
. (3.18)

Proof. Let CL = {x(l) : l ∈ [N ]} be the codebook of the (n,N, L) list-decodable code.

To construct a randomized code from CL, we will associate a key k with a subset Ck
of the codewords of CL. We first place the codewords in CL arbitrarily in an array as

shown in Figure 3.1 and then we will associate a set of keys to each codeword. The

array has
√
K rows and N/

√
K columns. In column j we will make a partition of the

set of K keys into
√
K sets {Aij : i ∈ [

√
K]}, where |Aij| =

√
K for all i and j. To

encode message j using key k in the (n,N/
√

K(n), K(n)) randomized code, we find

the i such that k ∈ Aij and output the codeword associated to the set of keys Aij .

Let R′ = n−1 log(N/
√
K) and assume that

√
K is a power of a prime number.

Let i and z be elements of the finite field GF (
√
K) with

√
K elements, and let

the key be given by the pair (i, z). For a positive integer d to be chosen later, let

{fj(·) : j = 1, 2, . . . , 2nR
′} of 2nR

′
be a set of distinct monic polynomials of degree
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d− 1 over GF (
√
K). Then let

Aij = {(i, zfj(z) + i) : z = 1, 2, . . . ,
√
K} . (3.19)

Since i acts as a constant shift of the polynomial zfj(z), it is clear that for each j the

collection {Aij : i = 1, 2, . . . ,
√
K} is a partition of the set of all keys. Furthermore,

for j′ 6= j we have |Aij ∩ Aij′| ≤ d, since fj(z) = fj′(z) for at most d values of z.

For codeword x(l), let I(l) and J(l) be the row and column index for the position

of x(l) in the array. The encoder takes a message j and key (i, z) and outputs

the codeword of the list code in the (i, j)-th position in the table. The decoder for

the randomized code first decodes using the list code CL to find a list of at most

L candidate codewords {xl(1),xl(2), . . . ,xl(L)}. These codewords have associated key

sets {AI(l),J(l) : l ∈ [L]} given by the table. If a unique m ∈ [L] exists such that

I(l(m)) = i and (i, z) ∈ AI(l(m)),J(l(m)), then the decoder outputs the message J(l(m))

associated with codeword xl(m). If no m can be found or m is not unique then it

declares an error.

There are two possible decoding errors. If the list code has a decoding error then

the correct codeword will not be in the list and so the decoder for the randomized

code will fail. This happens with probability smaller than ǫ by the assumptions on

the list code. If the transmitted codeword is in the list produced by the list decoder,

then we will have an error if there is is another m′ ∈ [L] for which I(l(m′)) = i and

(i, z) ∈ AI(l(m′)),J(l(m′)). We know |Aij ∩ Aij′| ≤ d, so there are at most Ld values

of (i, z) for which this can happen. Since the jammer knows i and there are
√
K

values for z, the probability that the key cannot disambiguate the list is at most

ǫ′ = Ld/
√
K. The total error probability is then bounded by ǫ+ ǫ′.

The last part is to choose d appropriately. There are
√
K
d−1

monic polynomials
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of degree d− 1 over GF (
√
K), so we need

√
K
d−1 ≥ N√

K
. (3.20)

This in turn implies

d ≥ logN

log
√
K

. (3.21)

Substituting this into the expression for ǫ′ in the previous paragraph we obtain (3.18).

3.3.2 The capacity of channels with nosy noise

For AVCs with nosy noise, the state can depend on the transmitted codeword. By

using the list-decodable codes for cost constrained AVCs from Theorem 10 and com-

bining them with a message authentication scheme used by Langberg [101], we can

construct randomized codes for this channel with limited common randomness.

Theorem 14. Let W be an AVC with input and state cost functions g(·) and l(·)
and cost constraints Γ and Λ. For any ǫ > 0, there exists an n sufficiently large such

that the sequence of rate-key size pairs (R,K(n)) is achievable with error ε̂r(n), where

K(n) ≤ exp(nǫ) and

R = Cdep(Λ,Γ) − ǫ (3.22)

ε̂(n) ≤ exp(−nÊ(ǫ)) +
12nCdep(Λ,Γ) log |Y|
ǫ
√

K(n) logK(n)
, (3.23)

where Ê(a) > 0 for a > 0. Here Cdep(Λ,Γ) is given by (1.39) and is the randomized
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coding capacity of the AVC with nosy noise:

Ĉr(Λ,Γ) = Cdep(Λ,Γ) . (3.24)

Proof. We can use the previous lemma with our result on list codes to achieve the

desired tradeoff. Using Lemma 3, for any ǫ1(n) > 0 we can choose an (n,N(n), L)

codebook with

L =

⌊
6 log |Y|
ǫ1(n)

⌋

+ 1 (3.25)

N(n) = L exp(n(Cdep(Λ,Γ) − ǫ1(n))) , (3.26)

and error

εL ≤ exp(−nE(ǫ1(n))) . (3.27)

We can use Lemma 13 to construct an (n,N(n)/
√

K(n), K(n)) randomized code with

error probability

ε̂ ≤ exp(−nE(ǫ1(n))) +
2L logN(n)

√

K(n) logK(n)
(3.28)

< exp(−nE(ǫ1(n))) +
12nCdep(Λ,Γ) log |Y|
ǫ1(n)

√

K(n) logK(n)
. (3.29)

The rate of this randomized code is

R =
1

n
log

N(n)
√

K(n)
(3.30)

= Cdep(Λ,Γ) − ǫ1(n) − 1

n
log

√

K(n)

L
. (3.31)

For any ǫ > 0 and K(n) ≤ exp(nǫ) we can choose ǫ1(n) small enough so that R =
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Cdep(Λ,Γ) − ǫ.

Finally, we note that the jammer can choose a memoryless strategy U(s|x) ∈
U(P,Λ). Choosing the worst U yields a discrete memoryless channel whose capacity

is Cdep(Λ,Γ), and therefore the randomized coding capacity for this channel is given

by Cdep(Λ,Γ).

This theorem gives some tradeoffs between error decay, key size, and rate loss.

We could also phrase the result by fixing K(n) first and finding the corresponding

expressions. Now we look at some examples of K(n) scalings and the associated error

probability.

• Suppose K(n) = nα. Then the condition (3.23) becomes:

ε̂(n) = O(n1−α/2) . (3.32)

• Suppose K(n) = exp(βn). Then the condition (3.23) becomes:

ε̂(n) ≤ exp(−nE(ǫ)) +
12nCdep(Λ,Γ) log |Y|

ǫβn exp(nβ/2)
. (3.33)

Therefore ε̂(n) = O(exp(−nmin(E(ǫ), β/2))).

• Suppose K(n) = exp(βnγ) for γ ∈ (0, 1). Then the condition (3.23) becomes:

ε̂(n) ≤ exp(−nE(ǫ)) +
12nCdep(Λ,Γ) log |Y|
ǫβnγ exp(nγβ/2)

. (3.34)

Therefore ε̂(n) = O(exp(−nγ)).
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3.3.3 A connection to rate distortion

In Section 1.4 we described a channel model used by Agarwal, Sahai, and Mitter [1]

in which there is a distortion function d(x, y) between the input x and output y.

The channel is allowed to make any mapping from an input codeword x to output y

subject to an average distortion constraint D. The input is fixed to have distribution

P . They then show that the capacity of this channel is the rate distortion function

R(P,D) for a source distributed according to P with distortion measure d(x, y).

In an AVC the channel at each time is drawn from a bag of channels indexed by

a state, whereas in the rate-distortion model model the channel can be thought of as

taking an action mapping x→ y. Rather than putting a cost on a state, the constraint

is on the mapping. It is straightforward to create an AVC whose randomized coding

capacity under the “nosy noise” error model is equal to the rate distortion function

R(p,D). An analogous result was claimed independently by Moulin and Wang [116],

but their construction is not a well-defined AVC and they did not give a proof.

Theorem 15. Let P ∈ P(X ) be a given input distribution, d(·, ·) be a distortion

measure on X × Y, and D a given distortion constraint. Then there exists an AVC

W = {W (z|x, s) : s ∈ S} with input in X , output in Z = X ∪Y, state set S = X ×Y,

cost function l(·), and cost constraint D such that

min
V ∈Wdep(D)

I (P, V ) = Rd(P,D) . (3.35)

That is, the rate distortion function for P is the maximum rate achievable over this

AVC with input distribution P under the nosy noise error criterion.

Proof. Define the output set Z = X∪Y and state set S = X×Y . For s = (sx, sy) ∈ S,

define the cost function l(s) = l(sx, sy) = d(sx, sy). Finally, define the AVC W =
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{W (z|x, s) : s ∈ S} to be

W (z|x, (sx, sy)) =







1(sy) sx = x

1(x) sx 6= x
(3.36)

In this AVC, the jammer “wastes” some of its cost constraint by choosing an (sx, sy)

such that sx 6= x, because choosing such s reveals the input value x to the decoder.

In order to show (3.35) we will show that optimizing I (P, V ) over V ∈ Wdep(D)

gives the minimizing test channel for the rate distortion problem with source P and

distortion d(x, y).

Let U ∈ U(P,D) be a jamming channel and let V ∈ Wdep(D) be the average

channel under this jamming strategy:

V (z|x) =
∑

sx,sy

W (z|x, (sx, sy))U((sx, sy)|x) . (3.37)

We can simplify V using the definition of W . Note that for an input x, the output z

is either x or in Y . Thus we can write:

V (x|x) =
∑

sx 6=x

∑

sy

U((sx, sy)|x) (3.38)

V (y|x) = U(x, y|x) y ∈ Y . (3.39)

Now suppose Ṽ (y|x) is a test channel satisfying the distortion constraint:

∑

x,y

Ṽ (y|x)P (x)d(x, y) ≤ D . (3.40)

We define Ũ(sx, sy|x) = Ṽ (sy|x) for sx = x and 0 otherwise. This shows that the set

111



Chapter 3. Derandomization for discrete AVCs

Wdep(D) contains all valid test channels, so

min
V ∈Wdep(D)

I (P, V ) ≤ Rd(P,D) . (3.41)

Let X and Z denote random variables for the input and output of the AVC W
and let A = 1(Z ∈ Y). Then we can lower bound the mutual information I (X ∧ Z)

using the nonnegativity of mutual information:

I (X ∧ Z) = I (X ∧ Z,A) (3.42)

= I (X ∧ Z|A) + I (X ∧ A) (3.43)

≥ I (X ∧ Z|A = 0) P(A = 0) + I (X ∧ Z|A = 1) P(A = 1) . (3.44)

Now, when A = 0 we have Z = X, so I (X ∧ Z|A = 0) = H(X). When A = 1 we

have

P(X = x, Z = y|A = 1) =
1

P(A = 1)
U(x, y|x)P (x) . (3.45)

Therefore the conditional joint distribution satisfies the distortion constraint:

∑

x,y

d(x, y)P(X = x, Z = y|A = 1) =
1

P(A = 1)

∑

x,y

d(x, y)U(x, y|x)P (x) (3.46)

≤ 1

P(A = 1)
D . (3.47)

Therefore one term of (3.44) can be lower bounded by a rate distortion function:

I (X ∧ Z|A = 1) ≥ Rd

(

P,
1

P(A = 1)
D

)

. (3.48)
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Similarly, we can also lower bound the other term:

I (X ∧ Z|A = 0) ≥ Rd

(

P,
1

P(A = 0)
D

)

. (3.49)

Subsituting (3.48) and (3.49) into (3.44) and using the fact that the rate distortion

function is convex in the distortion, we see:

I (X ∧ Z) ≥ Rd

(

P,
1

P(A = 0)
D

)

P(A = 0) +Rd

(

P,
1

P(A = 1)
D

)

P(A = 1)

(3.50)

≥ Rd(P,D) . (3.51)

Since the upper and lower bounds on I (X ∧ Z) match, the mutual information of

the AVC is equal to the rate-distortion function.

The preceding theorem shows that any distortion constrained channel can be

thought of as an AVC. It may be tempting to think that any AVC can be modeled by

a distortion-constrained channel. However, this is not true, as shown by the following

example.

Example 3.1 – An AVC that cannot be modeled as a distortion-constrained

channel

Consider the AVC with binary inputs and outputs and ternary state S = {0, 1, 2}.
Under state 0 the channel is a BSC with crossover probability a, under 1 it is a Z-

channel with parameter b, and under 2 it is an “S-channel” (reversed Z-channel) with
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parameter c:

V (y|x, 0) =




1 − a a

a 1 − a



 (3.52)

V (y|x, 1) =




1 0

b 1 − b



 (3.53)

V (y|x, 2) =




1 − c c

0 1



 . (3.54)

We can assign values to a, b, and c such that this channel is not equivalent to a

distortion-constrained channel. The details are somewhat tedious and relegated to

Section C.2 .

Because we can construct an equivalent AVC for distortion constrained channels,

we can use codes for this AVC under nosy noise on the distortion constrained channel.

The following two results follow immediately from out earlier results on list decoding

and partial derandomization.

Corollary 1. Let P ∈ P(X ) be a given input distribution, d(·, ·) be a distortion

measure on X ×Y, and D a given distortion constraint. Then for any ǫ > 0 there is

an n sufficiently large and a list code with codeword of type P , rate

R = Rd(P,D) − ǫ , (3.55)

list size

L <

⌈
6 log |Y|

ǫ

⌉

+ 1 , (3.56)
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and error

εL ≤ exp(−nE(ǫ)) . (3.57)

Proof. Lemma 3 gives the list decoding result for the AVC constructed in Theorem

15.

Corollary 2. Let P ∈ P(X ) be an input distribution, d(·, ·) a distortion measure on

X × Y, and D a distortion constraint for the channel given by Agarwal, Sahai, and

Mitter. For any ǫ > 0, there exists an n sufficiently large such that the sequence of

rate-key size pairs (R(n), K(n)) is achievable with error ε̂r(n), where

R(n) = Rd(P,D) − ǫ (3.58)

ε̂(n) ≤ exp(−nE(ǫ)) +
12nRd(P,D) log |Y|
ǫ
√

K(n) logK(n)
, (3.59)

where Rd(P,D) is the rate distortion function.

Proof. It is clear that Theorem 14 shows that for any P there exists a channel code

of composition P such that

g(P ) = min
V ∈Wdep(P,Λ)

I (P, V ) (3.60)

is achievable for the AVC. We can use this code on the AVC equivalent of the Agarwal-

Sahai-Mitter channel. From the definition of their channel, the output will always be

in the set Y , so we can restrict the decoder in the AVC equivalent to outputs in Y .

From Theorem 15 this code can achieve any rates below Rd(P,D).
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3.4 Examples

We can now revisit some of our earlier examples from Chapter 1 and interpret the

plots of Cstd and Cdep in terms of the operational quantities Cr and Ĉr. For the bit

flipping channel in example 1.4 we saw that for Λ ≤ 1/2:

Cr(Λ) = Cstd(Λ) = 1 − hb(Λ) (3.61)

Ĉr(Λ) = Cdep(Λ) = 1 − hb(Λ) . (3.62)

(3.63)

Thus for this channel there is no difference between the capacities under maximal

error and nosy noise:

Cr(Λ) = Ĉr(Λ) = 1 − hb(Λ) . (3.64)

For other channels there may be a gap between Cstd and Cdep.

3.4.1 A real adder channel

In Example 1.5 we showed that for the binary-input binary-state real adder channel

Cdep(Γ,Λ) < Cstd(Γ,Λ) in general. These two information quantities are equal to

the randomized coding capacities under the nosy noise and maximal error criteria.

We reproduce in Figure 3.2 the plot from Figure 1.7 to illustrate this gap. As the

constraint Λ on the jammer increases the gap between the two capacities Cr(Γ,Λ)

and Ĉr(Γ,Λ) widens.

Figure 3.3 shows a plot of minV ∈Wstd(Λ) I (P, V ) for fixed input distribution (1 −
p, p). As we can see, for Λ ≤ 1/2 the capacity-achieving input distribution is always

p = 1/2.
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Figure 3.2: For the example in Section 3.4.1, the randomized capacities Cr(Γ,Λ) (solid
line) under maximal error and Ĉr(Γ,Λ) (dashed line) under nosy noise.

In the case where the state can depend on the input, the situation is less rosy –

for an input distribution P = (1 − p, p), if Λ ≥ 1 − p the jammer can change every 0

in the transmitted codeword into a 1, making the output sequence all 1’s and zeroing

the capacity. For smaller p the randomized coding capacity may be larger, as shown

in Figure 3.4. Another feature of this channel is that the mutual information does not

have a saddle point independent of Λ, so the capacity-achieving input distribution

will shift as a function of Λ.

3.4.2 BSC mixed with Z-channels

Consider a channel with binary inputs and binary outputs and three states S =

{0, 1, 2}. For S = 0 the channel is a binary symmetric channel with crossover proba-
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Figure 3.3: For the example in Section 3.4.1, a plot of minV ∈Wstd(Λ) I (P, V ) for Λ =
0.3, 0.5, 0.7. The unconstrained capacity is 1/2 and corresponds to p = 1/2. For Λ ≥ 1/2
we also have Cr(Λ) = 1/2.
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Figure 3.4: For the example in Section 3.4.1, a plot of minV ∈Wdep(Λ) I (P, V ) for Λ =
0.3, 0.5, 0.7. For large values of P(X = 0) the capacity is 0 and as Λ increases this zero
region grows. In addition, as Λ changes the capacity achieving input distribution changes.

119



Chapter 3. Derandomization for discrete AVCs

bility a, for S = 1 it is a Z-channel with crossover b:

W (y|x, 1) =




1 0

b 1 − b



 , (3.65)

and for S = 2 it is an “S-channel” with crossover c:

W (y|x, 1) =




1 − c c

0 1



 . (3.66)

The S-channel maps 1 to 1 with probability 1 and 0 to 1 with probability c. We will

set l(0) = 0 and let l(1) and l(2) be arbitrary.

This approach to modeling a channel assumes that the overall channel is a mixture

of channels with known characteristics. Figure 3.5 shows a plot of the minimum

mutual information minV ∈Wdep(Λ) I (P, V ) versus P for this example. The plot shows

that for different values of Λ the capacity achieving distribution can shift when the

state can depend on the input.

3.5 Discussion

We saw in this section two simple strategies for creating randomized codes with

different key sizes from other codes. For standard AVCs we can sample codes from

a randomized code with large key size to obtain randomized codes with smaller key

size. The error probability decays roughly inversely with the number of keys. For

AVCs with nosy noise we could use list codes to construct a randomized code whose

error decays inversely with the square root of the number of keys.

Being able to find randomized codes with small key size may be important in

applications in which secure common randomness is a scarce resource. Implementing
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Figure 3.5: For the example in Section 3.4.2, the mutual information
minV ∈Wdep(Λ) I (P, V ) for Λ = 0.1, 0.2, 0.4 with a = 0.01, b = 0.1, and c = 0.15, and
l(1) = 0.5 and l(2) = 0.6.
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randomized code constructions may involve a computational overhead that scales

with the key size. Finally, by limiting the amount common randomness, one can use

a secure feedback channel of negligible rate to enable randomized coding. In the next

chapter we will investigate another benefit of limited feedback in the form of adapting

the rate to the empirical channel.
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Chapter 4

Limited feedback and rateless coding

In his 1972 paper on broadcast channels [40], Thomas Cover compared certain broad-

casting problems to “giving a lecture to a group of disparate backgrounds and apti-

tudes.” Consider the following related scenario: at a certain progressive university, a

professor embarked on a controversial new lecturing technique for her morning class.

Each student’s alertness would wax and wane during the course of the lecture, due

to such factors as the amount they had slept, their activities the previous night, or

whether they had drunk any coffee. Since the professor could not tell how fast the

students would learn, she decided that they should be the best judge of their own

wakefulness. Each student was given an identical note sheet of fixed size. During

the lecture, she attempted to teach the students a fixed amount of information. The

students were to take notes as they understood the material; once their sheet was

full, they could leave. The professor would look up at the class every minute to see if

anyone was left, and the lecture would end only when every student had voluntarily

left the room. The professor’s goal was to design her lecture to allow each student to
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Chapter 4. Limited feedback and rateless coding

spend just as much time in class as was necessary for him or her to learn the material.

Consider first the problem of lecturing to a single student for a fixed length of

time. A simple information-theoretic approach might model the lecture as encoding

a message into a sequence of facts (the codeword) which is then conveyed via a

memoryless channel W (y|x) to the student. This model does capture the facts that

the student’s attention varies over time and that he has some knowledge of his own

wakefulness. We can instead use a channel W (y|x, s) with state s ∈ S and partial

information about the state sequence available to the decoder. There are now at least

two different models we can pursue, depending on whether or not we assume the

student’s ignorance is independent of the facts being presented1. In one case, we can

model the channel as a standard arbitrarily varying channel (AVC), and in the other

as an AVC with nosy noise.

We can think of designing the professor’s lecture as designing a rateless code for

an arbitrarily varying channel with partial state information at the decoder. A single

transmitter (the professor) wishes to communicate a common message (the informa-

tion) to a group of receivers (the students) over channels with varying states (the

complicated factors). The channels are unknown to the transmitter, but partially

known to the decoder (the student’s measure of their own wakefulness). The trans-

mitter and receivers share a secret key (the note sheet) that is independent of the

message. The transmitter encodes the message into a codeword (the lecture) such

that that receivers can decode (leave the room) at a rate compatible with their state

information.

Rateless codes are used to communicate over time varying channels when a low-

rate feedback link can be used by the decoder to terminate the transmission. Figure

4.1 shows a diagram of such a communication channel. Rateless codes were first

studied in the context of the erasure channel [107,141] and later discrete memoryless

1In practice, this may be a difficult distinction to make!
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Enc W (y|x, s) Dec
i x y î

s csi

c

ckey key

Figure 4.1: A rateless communication system. The encoder and decoder share a source
of common randomness. Every c channel uses the decoder receives partial information
about the channel state and can feed back a single bit.

compound channels [142, 54, 150]. Draper, Frey, and Kschischang [53] investigated

rateless coding over AVCs under average error with full state information at the

decoder. Coding for channels with full feedback was considered by Shayevitz and

Feder [140] under an “individual sequence” assumption on the state. Our approach

here is to assume only partial state information at the decoder, which results in rates

lower than that of Draper et al. [53].

In this chapter we will construct partially derandomized rateless codes for AVC-

like channel models. For the cost-constrained AVC under maximal error, we construct

a rateless code based on thinning codewords from a codebook of large blocklength.

Our coding construction may be used to partially derandomize a recently proposed

construction by Eswaran, Sarwate, Sahai, and Gastpar [62]. In the case where the

state sequence may depend on the transmitted codeword (nosy noise), we use a new

model of partial CSI in which the decoder is given a set of channels in which the true

empirical channel lies. By concatenating list-decodable codes, we find a new decoding

strategy that experiences negligible loss when the channel estimates are good.

Our code constructions use a maximum blocklength n and nominal rate ρ under

“worst-case” channel conditions but achieve rates higher than ρ under better chan-

nel conditions. This variation in rate is accomplished by decoding earlier, thereby
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shortening the effective blocklength. Our constructions rely on three parameters that

are functions of the worst-case blocklength n : the number of messages N(n), the

key size K(n) and the chunk size c(n). The encoder transmits one of N(n) messages

using a randomized code construction of key size K(n). The final parameter is the

chunk size c(n). After every c(n) channel uses, the decoder is given an estimate of

the channel and can feed back a single bit to terminate the transmission.

In our rateless code constructions we are interested in the case where the chunk

size c is sublinear in n, the number of messages N is exponential in n, and the key

size K is subexponential in n:

c(n)

n
→ 0 (4.1)

1

n
logN(n) → ρ (4.2)

1

n
logK(n) → 0 . (4.3)

We will choose the minimum rate ρ to be arbitrarily close to the randomized coding

capacity for an AVC with cost constraint Λ. The coding strategy for a rateless

code involves making a decision to terminate transmission based on the partial state

information received at the decoder. This induces a decoding time M that is a

function of the state sequence s ∈ Sn(Λ) and the state information.

Our results will be phrased as follows : there exists a code such that for any

s ∈ Sn(Λ), the decoding rule at time M results in a small probability of error. Suppose

we ignore the state information and feedback and just use one of the randomized codes

from Theorems 13 or 14 in Chapter 3. For these codes M = n almost surely, so they

always operate at the minimum rate. A regular block code for the AVC can therefore

be seen as a limiting case of a rateless code. In this chapter we provide decoding rules

and codes that use the side information to decode earlier. In the case where the side
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information is very accurate, we can bound the gap between the rate we achieve and

the empirical mutual information of the channel.

4.1 AVCs with periodic channel state information and

feedback

4.1.1 Channel model

We will model our time-varying channel by an arbitrarily varying channel W =

{W (y|x, s) : s ∈ S} with finite input alphabet X , output alphabet Y , and constrained

state sequence [45]. In point-to-point fixed blocklength channel coding problems, we

assume a constraint Λ on the average state cost, so that

l(s) ≤ nΛ a.s. . (4.4)

Recall that Sn(Λ) = {s : l(s) ≤ nΛ} is the set of sequences with average cost less

than or equal to Λ.

In this chapter, we use the following notation: for an input distribution P and set

of channels V we write

I (P,V) = min
V ∈V

I (P, V ) . (4.5)

This will allow us to write the results in a more compact form.

4.1.2 Rateless codes

A rateless code is a variable-length coding strategy that uses periodic single-bit active

feedback from the decoder to terminate the decoding. In our problem formulation,
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the decoder is periodically given side information consisting of an estimate of the

channel. Our construction will use a parameter c = c(n) called the chunk size. The

decoder receives an estimate of the channel and can feed back a single bit at integer

multiples of c. To be more precise, after the (mc)-th channel symbol is received, the

following events occur:

1. the decoder receives an estimate of the channel state (s(m−1)c+1, . . . , smc);

2. the decoder makes a decision whether to decode;

3. the decoder feeds back a single bit to the encoder to signal whether or not it

has decoded.

We denote the partial side information (channel estimate) given to the decoder

after the m-th chunk by Vm , which takes values in a set V(c) . Let yr1 denote

(y1, y2, . . . , yr) and define y(mc) = (y(m−1)c+1, . . . , ymc) , and similarly for x(mc) and

s(mc).

A (c, N,K) randomized rateless code is set of maps {(Φm, τm,Ψm) : m = 1, 2, . . .}:

Φm : [N ] × [K] × {0, 1}m−1 → X c (4.6)

τm : Ymc × V(c)m × [K] → {0, 1} (4.7)

Ψm : Ymc × V(c)m × [K] → [N ] . (4.8)

To encode chunk m, the encoding function Φm uses the message in [N ], key in [K],

and past feedback bits in {0, 1}m−1 to choose a vector of c channel inputs.

In the constructions given in this chapter, the decoder uses the function τm to

decide whether to feed back a 1 to tell the encoder to terminate transmission or a 0

to continue. When τm(·) = 1, then the decoder uses the function Ψm to decode the

message. Because the transmission terminates after the decoder feeds back a 1, the
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binary feedback signal {0, 1}m−1 is equal to all 0’s at all times prior to terminating

the scheme. In our constructions we can therefore disregard the input {0, 1}m−1 to

the encoder Φm.

The decision function τm defines a random variable, called the decoding time M

of the rateless code:

M = min {m : τm(ymc1 ,Vm1 , k) = 1} . (4.9)

Let M = {M∗,M∗+1, . . . ,M∗} be the smallest interval containing the support of M.

The set of possible rates for the rateless code are given by {(mc)−1 logN : m ∈ M}.
We can define decoding regions for the rateless code at a decoding time M = M .

Note that if M = M we have τM(Y Mc
1 ,VM1 , k) = 1. For message i, key k and side

information vector VM1 we can define a decoding region:

Di,k(VM1 ) =
{
Y Mc

1 : τM(Y Mc
1 ,VM1 , k) = 1, ΨM(Y Mc

1 ,VM1 , k) = i
}
. (4.10)

The maximal and nosy noise error for a (c, N,K) rateless code at decoding time

M = M are, respectively,

ε(M, s,VM1 ) = max
i∈[N ]

1

K

K∑

k=1

(

1 −WMc
(

Di,k(VM1 )
∣
∣
∣ΦM

1 (i, k), sMc
1

))

(4.11)

ε̂(M,J,VM1 ) = max
i∈[N ]

1

K

K∑

k=1

(

1 −WMc
(

Di,k(VM1 )
∣
∣
∣ ΦM

1 (i, k), JM(i,ΦM
1 (i, k))

))

.

(4.12)

Here J = (J1, . . . , JM) and JM : [N ] × XMc → SMc is the jammer’s strategy. Note

that in these error definitions we do not take the maximum over all s or J, because

the rate and error at which we decode will depend on the realized state sequence.
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This is in contrast to the equations (1.24) and (1.25).

4.1.3 Partial channel state information

In our rateless coding model, the decoder is given some partial information about

the channel after each chunk of c channel uses. We model this side information as a

subset of channels Vm that contains the true average channel in the m-th chunk. The

channel state information Vm takes values in a set V(c). Under maximal error we let

V(c) be a collection of subsets of Wstd(Λ) ∩ Pc(Y|X ), and under nosy noise let it be

a collection of subsets of Wdep(P,Λ) ∩ Pc(Y|X ) for a fixed input distribution P .

Suppose that during the m-th chunk of channel uses {(m − 1)c + 1, . . .mc} the

channel inputs were x(mc) and the state was s(mc). Under the maximal error criterion,

we define the average channel under s during the m-th chunk by

Vm(y|x) =
1

c

mc∑

t=(m−1)c+1

W (y|x, st) . (4.13)

Under the nosy noise criterion we define the average channel under under x and s by

Vm(y|x) =
1

N(x|x(mc))

mc∑

t=(m−1)c+1

W (y|xt, st)1(xt = x) . (4.14)

The model we will use for our channel state information is that the decoder receives a

subset of channels Vm ∈ V(c), where Vm(y|x) ∈ Vm. Here V(c) = Wstd(Λ)∩Pc(Y|X )

for maximal error and V(c) = Wdep(Λ) ∩ Pc(Y|X ) for nosy noise. In order for our

results to hold we need a polynomial upper bound on the size of V(c). We will assume

|V(c)| ≤ cv , (4.15)

for some v <∞.

130



Chapter 4. Limited feedback and rateless coding

In Section 4.2 we provide a rateless code construction for AVCs under maximal

error in the special case where the side information Vm at the decoder is an estimate

of the state cost during the m-th chunk. Let

λm =
1

c

mc∑

t=(m−1)c+1

l(st) . (4.16)

We will model the CSI after the m-th chunk as a measurement λ̂m ∈ R
+ with the

property that

λm ≤ λ̂m . (4.17)

That is, the decoder obtains an estimate of the average state cost in the chunk. The

number of possible values for λm is at most (c + 1)|S|, which is an upper bound on

the number of types on S with denominator c:

λm ∈ ℓ(c) = {λ : ∃ s ∈ Sc s.t. l(s) = cλ} . (4.18)

We can then set

V( c) = {Wstd(λ) ∩ Pc(Y|X ) : λ ∈ ℓ(c)} . (4.19)

Note that V(c) satisfies the polynomial cardinality bound. Now we can set

Vm = max
λ∈ℓ(c):λ≤λ̂m

Wstd(λ) ∩ Pc(Y|X ) . (4.20)

Therefore cost information about the empirical channel fits within the general frame-

work of partial side information.

In Section 4.3 we provide a rateless code construction for AVCs under the nosy
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noise error criterion. For those codes, we will not assume any particular structure on

the side information beyond the polynomial cardinality bound on V(c) given in (4.15).

That is, we will model the side information after chunk m as a subset Vm ⊂ Wdep

with the property that

1

c

∑

t∈{(m−1)c+1,...,mc}:xt=x

W (y|x, st) ∈ Vm . (4.21)

4.2 Rateless coding for standard AVCs

In this section we construct a rateless coding scheme for the standard AVC model

with cost constraints that uses cost estimates at the decoder to opportunistically

decode when it has received “enough” channel symbols.

4.2.1 The result

For the standard AVC model, we can use the construction of Csiszár and Narayan [45]

as a basis for constructing a randomized rateless code with unbounded key size. By

using the elimination technique to partially derandomize this construction we can

reduce the key size and establish a tradeoff between the randomization and error.

We will define some additional notation. Let

ΛM =
1

M

M∑

m=1

λm (4.22)

Λ̂M =
1

M

M∑

m=1

λ̂m (4.23)

be the true and estimated cost for the state sequence sMc
1 .

Our main result is the following theorem, which provides a rateless code construc-

tion. The proof of this theorem is given in Section 4.2.4.
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Theorem 16. Let W be an AVC. For any ǫ > 0 and input type P ∈ P(X ) with

minx P (x) > 0, there exists an n sufficiently large and an (c(n), N(n), K(n)) rateless

code with M∗ = n/c for which, given

l(smc1 ) ≤ mc · Λ̂m ∀m , (4.24)

the decoding time M is given by

M = min

{

M :
1

Mc(n)
logN(n) ≤ I

(

P,Wstd(Λ̂M)
)

− 2
M∗(n)

M
ǫ

}

, (4.25)

and for all (s, λ̂M
1 ), the maximal error ε(M, s,VM

1 ) of this code satisfies

ε(M, s,VM
1 ) = O

(
Mc(n)

K(n)

)

. (4.26)

Example 4.1 – Bit-flipping (mod-two adder)

Consider the mod-two additive AVC described in Example 1.4 on page 21. For this ex-

ample, we can think of the partial side information λ̂m as an estimate of the empirical

Hamming weight of the state sequence s(mc) such that

λ̂m ≥ 1

c

mc∑

t=(m−1)c+1

l(st) . (4.27)

The receiver tracks the empirical weight of the state sequence to compute an empirical

crossover probability Λ̂M . Theorem 16 says there is a rateless code that can decode

as soon as the estimated empirical mutual information Mc(1 − hb(Λ̂M)) exceeds the

size of the message (logN bits).
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4.2.2 Coding strategy

Our scheme uses a fixed maximum blocklength n and we will express other parameters

as functions of n. It can be described in three steps:

Algorithm I : Rateless coding for standard AVCs

1. The encoder and decoder choose a key k ∈ [K(n)] to use for their transmission

using common randomness. The encoder chooses a message i ∈ [N(n)] to

transmit and maps it into a codeword x(i, k) ∈ X n.

2. If τm−1(y
(m−1)c
1 , λ̂m−1

1 , k) = 0, the encoder transmits x(mc)(i, k) in channel uses

(m− 1)c+ 1, (m− 1)c+ 2, . . . , mc.

3. The decoder receives channel outputs y(mc) and an estimate λ̂m of the state cost

in the m-th chunk such that

λm =
1

c

mc∑

t=(m−1)c+1

l(st) ≤ λ̂m . (4.28)

Define the decision function

τm(ymc1 , λ̂m1 , k) = 1

(
logN

mc
< I

(

P,Wstd(Λ̂m)
)

− δ(M)

)

. (4.29)

If τm(·) = 1 then the decoder attempts to decode the received sequence, sets

î = Ψm(ymc1 , k), and feeds back a 1 to terminate transmission. Otherwise, the

decoder feeds back a 0 and we return to step 2) to send chunk m+ 1.

Our code relies on the existence of a set of codewords {x(i, k)} which, when

truncated to blocklength mc, form a good randomized code for an AVC satisfying a

given cost constraint. The key to our construction is that the condition checked by

the decision function (4.29) is sufficient to guarantee that the decoding error will be

small.
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4.2.3 Codebook construction

Our codebook will consist of codewords drawn uniformly from the set

B(n, c) = (Tc(P ))n/c = Tc(P ) × Tc(P ) × · · · Tc(P )
︸ ︷︷ ︸

n/c times

. (4.30)

That is, the codewords are formed by concatenating constant-composition chunks of

length c. For a fixed number N(n) of messages to be transmitted, the minimum rate

supportable by this codebook is ρ = n−1 logN , so M∗ = n/c is the largest element of

the set of decoding times M. The maximum rate is given by the randomized coding

capacity with cost constraint 0 on the state. We choose M∗ such that

ρn

M∗c
= Cr(0) − δ(M∗) , (4.31)

for some small constant δ(M∗).

To make our results easier to state, for n, M , c, ρ, and δ let us define Λ̃M to

satisfy

ρM
∆
=

n

Mc
ρ = I

(

P,Wstd(Λ̃M)
)

− δ(M) . (4.32)

That is, Λ̃M is the cost constraint for which the empirical rate is equal to the empirical

mutual information on an AVC with input type P .

To summarize, over channel uses 1 to Mc the true state cost is ΛM , the channel

estimate at the decoder is Λ̂M , and the codebook decoding rule is designed for an

AVC with cost constraint Λ̃M . The decision rule checks to see if

I
(

P,Wstd(Λ̃M)
)

< I
(

P,Wstd(Λ̂M)
)

, (4.33)
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which implies that Λ̃M ≥ Λ̂M . By assumption,

Λ̂M ≥ ΛM , (4.34)

so I
(

P,Wstd(Λ̂M)
)

≤ I (P,Wstd(ΛM)). Therefore if τM(yMc
1 , λ̂M1 , k) = 1 then we also

have

logN

Mc
< I (P,Wstd(ΛM)) − δ(M) . (4.35)

That is, we know that if the decoding time M is equal to M ,

Λ̃M ≥ Λ̂M ≥ ΛM . (4.36)

Our strategy has two sources of loss – one from the inaccuracy in the channel estimates

that makes a gap between the true cost ΛM and the estimates Λ̂M , and one from the

precision of the decoding rates {ρm} that generates a gap between the codebook’s

designed cost Λ̃M and the estimate Λ̂M used in the decision rule.

Lemma 14 (Fully randomized rateless codebook). Let W be an AVC with cost func-

tion l(·) and let Λ̃M be given by (4.32). For any ǫ > 0 and input distribution P ∈ P(X )

there exists a blocklength n sufficiently large and c(n) with c−1 logn→ 0 such that the

randomized codebook {X(i) : i ∈ [N ]} of size exp(nρ) uniformly distributed on B(n, c)

has the following property: for any M ∈ M, this codebook truncated to blocklength

n = Mc is the codebook of an (Mc,N(n)) randomized code of rate

ρM =
n

Mc
ρ (4.37)
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and maximum probability of error

δM ≤ exp

(

−Mc

(

Er

(

ρM + 2
M∗

M
ǫ, P, Λ̃M

)

− 2ǫ

))

. (4.38)

Proof. Fix ǫ > 0. We will prove that for each M ∈ M there exists a randomized

codebook CM of blocklength Mc with the specified error for the AVC with cost con-

straint Λ̃M . The distribution of the codebook CM will be the same as the distribution

of the codebook CM∗ of blocklength M∗c truncated to blocklength c.

Standard randomized codebook. Fix M and let AM be a randomized code-

book of A codewords drawn uniformly from the constant composition set TMc(P ).

From Hughes and Thomas [88, Theorem 1] we have the following error bound on

message i with RM = (Mc)−1 logA for an AVC with cost constraint Λ̃M :

δM(AM , i) ≤ exp
(

−Mc
(

Er(RM + ǫ, P, Λ̃M) − ǫ
))

,
∆
= ζM (4.39)

Therefore we have the same bound on the average error

1

A

A∑

i=1

δM(AM , i) ≤ ζM . (4.40)

Expurgation. Let BM be a random variable formed by expurgating all code-

words not in the set (Tc(P ))M . That is, we keep only those codewords which are

piecewise constant composition with composition P . We write BM = AM∩(Tc(P ))M .

Note that a realization of BM has a variable number of codewords. We declare an

encoding error if the number of codewords in BM is smaller than B for some number
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B. We use a combinatorial bound from Lemma 24 in Appendix B:

|Tc(P )|M
|TMc(P )| ≥ exp(−M log(Mc)η(P ))

∆
= γM , (4.41)

where η(P ) <∞ is a positive constant.

Since AM is formed by iid draws from TMc(P ), the codebook size |BM | is the sum

of A Bernoulli random variables with parameter greater than γM . Hence we can use

Sanov’s theorem [41]:

P (|BM | ≤ B) ≤ (A+ 1)2 exp (−A ·D (B/A ‖ γM )) . (4.42)

We can bound the exponent by using the inequality −(1−a) log(1−a) ≤ 2a for small

a and discarding the small positive term −(1 −B/A) log γM :

A ·D (B/A ‖ γM ) = B log
B/A

γM
+ A(1 − B/A) log

1 −B/A

1 − γM
(4.43)

≥ B log
B/A

γM
− 2B . (4.44)

If we let B/A = βMγM then

P (|BM | ≤ B) ≤ exp (−AγMβM(log βM − 2) + 2 log(A+ 1)) . (4.45)

Since A = O(exp(Mc)) the probability of encoder error is much smaller than the

decoding error bound ζM .

The encoder using BM now operates as follows : it draws a realization of a code-

book and declares an error if the realization contains fewer than B codewords. If

there is no encoding error it transmits the i-th codeword in the codebook for message
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i ∈ [B]. Note that this construction uses only B codewords for each codebook. The

average error on the fraction B/A = βMγM of preserved codewords can be at most

A/B times the original average error:

1

B

B∑

i=1

δM(BM , i) ≤
A

B
ζM (4.46)

=
ζM

βMγM
. (4.47)

Permutation. We now form our random codebook CM by taking the codebook

induced by encoder using BM and permuting the message index. The encoder using

CM takes a message i, randomly chosen permutation π on [B], and a codebook B
from BM and outputs the codeword π(i) from B. The maximal error for a message i

in this codebook is given by

δM (CM , i) =
1

B!

∑

π

δM(BM , π(i)) (4.48)

=
1

B

B∑

i=1

δM(BM , i) (4.49)

≤ ζM
βMγM

(4.50)

= β−1
M exp

(

−Mc

(

Er(RM + ǫ, P, Λ̃M) − ǫ− log(Mc)

c
η(P )

))

. (4.51)

For each M ∈ M we can construct a randomized codebook CM as described above.

Nesting. Now consider the codebook CM∗ of blocklength n = M∗c and set the

size of the codebook to exp(nρ). We can write the rate of our original codebook AM∗

as

RM∗ = ρ− 1

M∗c
log(βM∗γM∗) . (4.52)
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Truncating CM∗ to blocklength Mc for M ∈ M gives a code of rate

RM =
n

Mc
ρ− 1

Mc
log(βM∗γM∗) . (4.53)

Therefore if we truncate CM∗ to blocklength Mc, the resulting randomized code is

identically distributed to CM with βM = βM∗γM/γM∗. For n and c sufficiently large

we obtain the following inequality from (4.41):

logn

c
η(P ) − 1

Mc
log βM∗ < ǫ . (4.54)

We can write the error as

δM (CM∗, i) ≤ exp
(

−Mc
(

Er(ρM + δ(M), P, Λ̃M) − 2ǫ
))

, (4.55)

where

δ(M) =
M∗

M
2ǫ . (4.56)

The last thing to do is choose Λ̃M to make the exponent positive. We need

ρM + δ(M) < I
(

P,Wstd(Λ̃M)
)

. (4.57)

But this is clear from (4.32) and (4.33).

With the previous lemma in hand, we can apply Lemma 12 to derandomize the

randomized code.

Lemma 15 (Derandomized rateless codebook). Let W be an AVC with cost function

l(·). For any ǫ > 0 and input type P ∈ P(X ), there is an n sufficiently large, c(n)

and an (n,N(n), K(n)) randomized code for maximal error such that the codewords
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truncated to blocklength Mc is an (Mc,N,K) randomized code for maximal error with

rate and error at blocklength Mc given by

ρM = I(P,Wstd(Λ̃M)) − M∗

M
2ǫ (4.58)

δM = O

(
Mc

K(n)

)

, (4.59)

where c(n)−1 log n→ 0.

Proof. Let C be the codebook-valued random variable that is the randomized code

from Lemma 14. For each M , let CM be the the codebook truncated to blocklength

Mc. We know that CM forms a good randomized codebook with error (4.38) for the

AVC with cost constraint Λ̃M in (4.58). Let us write ν for the upper bound in (4.38).

We can now draw K codebooks sampled uniformly from CM∗ . Since CM∗ trun-

cated to blocklength Mc is CM , this sampling induces a sampling on CM for each

M . For any M , Lemma 12 shows that the probability that the randomized codebook

formed from the samples has error larger than δM can be driven to 0 as long as

K(n)

Mc

(

−McδM

(

Er

(

ρM + 2
M∗

M
ǫ, P, Λ̃M

)

− 2ǫ

)

− hb(δM) log 2

)

>

((

ρM + 2
M∗

M
ǫ

)

log 2 + log |S|
)

. (4.60)

As in the proof of Theorem 13 we can choose δM to satisfy (4.59).

4.2.4 Proof of Theorem 16

Proof. Fix ǫ > 0. Then Lemma 15 gives a codebook with the desired error as long as

the M given by the stopping rule guarantees that the state sequence will have cost
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no more than Λ̃M . If λ̂m satisfies (4.28) then we can see from the stopping rule that

l
(
sMc
1

)
= McΛM ≤ McΛ̂M ≤McΛ̃M . (4.61)

Therefore Lemma 15 gives the desired error bound at the decoding time M.

4.2.5 Loss from channel estimation

We now address the efficiency of our scheme and show that the loss in rate can be

made arbitrarily small if the channel estimates are within an arbitrarily small gap η

of the true channel cost.

Corollary 3. Let ǫ > 0 be given and consider the (c(n), N(n), K(n)) rateless code

constructed in Lemma 15. Let η > 0 and suppose that for all m,

λ̂m − λm ≤ η . (4.62)

Then

∣
∣
∣
∣

1

Mc
logN − I (P,Wstd(ΛM))

∣
∣
∣
∣
≤ 2

M∗

M
ǫ+ f(η) . (4.63)

where f(η) = O(η log η−1).

Proof. Note that the condition (4.62) implies that Λ̂M−ΛM ≤ η. Let Q̂(s) ∈ Q(Λ̂M)

be a distribution on S that minimizes I
(

P,Wstd(Λ̂M)
)

. We will find a distribution

Q ∈ Q(ΛM) such that dmax

(

Q̂, Q
)

is small.

Let s1 = argmin l(s) and s2 = argminl(s)6=l(s1) l(s). Given a gap in cost η and a

distribution Q̂, we can construct a distribution Q by setting Q(s1) = Q̂(s1) + µ and

removing mass µ from elements s with higher cost than s1. The largest µ that this
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can incur can be bounded:

dmax

(

Q̂, Q
)

≤ µ =
η

l(s2) − l(s1)
. (4.64)

Let V̂ ∈ Wstd(Λ̂M) and V ∈ Wstd(ΛM) be the channels corresponding to Q̂ and

Q. Given the bound on dmax

(

Q̂, Q
)

, we have

dmax

(

V̂ , V
)

= max
x,y

∣
∣
∣
∣
∣

∑

s

W (y|x, s)Q̂(s) −
∑

s

W (y|x, s)Q(s)

∣
∣
∣
∣
∣

(4.65)

≤ max
x,y

∑

s

W (y|x, s) · |Q̂(s) −Q(s)| (4.66)

≤ |S|dmax

(

Q̂, Q
)

. (4.67)

Let g(η) = |S|η/(l(s2) − l(s1)) Now, using a bound from Lemma 23 in Appendix B,

we can bound the mutual information gap:

∣
∣
∣I (P, V ) − I

(

P, V̂
)∣
∣
∣ = I (P, V ) − I

(

P, V̂
)

≤ 2(|Y| − 1)hb(g(η)) + 2(|Y| − 1) log(|Y − 1))g(η) (4.68)

∆
= f(η) . (4.69)

Now from the definition of the decoding time in (4.25) we have:

∣
∣
∣
∣

1

Mc
logN − I (P,Wstd(ΛM))

∣
∣
∣
∣
≤ I (P,Wstd(ΛM)) − I

(

P,Wstd(Λ̂M)
)

+ 2
M∗

M
ǫ

≤ I (P, V ) − I
(

P, V̂
)

+ 2
M∗

M
ǫ

≤ 2
M∗

M
ǫ+ f(η) . (4.70)
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4.3 Rateless coding for AVCs with nosy noise

We now turn to a rateless coding construction for AVCs where the state sequence can

depend on the transmitted codeword but we have partial side information about the

empirical channel at the decoder. This construction is based on the list-decodable

codes of Theorem 14.

4.3.1 The result

In the case of nosy noise, the state can depend on the transmitted codeword. We

can also use a codebook of concatenated constant-composition components to make

a rateless code for this model.

Theorem 17. For any ρ > 0, ǫ > 0, δ > 0, and input type P ∈ P(X ) with

minx P (x) > 0, for n sufficiently large, there is an (c(n), N(n), K(n)) rateless code

with N = ⌈exp(nρ)/K(n)⌉ for which, given that the channel

Vm(y|x) =
1

N(x|x(mc))

mc∑

t=(m−1)c+1

W (y|xt, st)1(xt = x) (4.71)

is in Vm for all m, the decoding time M is given by

M = min

{

M :
1

Mc
logN ≤ 1

M

M∑

m=1

I (P,Vm) − ǫ

}

. (4.72)

and for all such VM
1 and jamming strategies J , the error for this code satisfies

ε̂(M, J,VM
1 ) ≤ M exp(−cE(ǫ)) +

24nρ log |Y|
ǫ
√
K logK

, (4.73)

where E(ǫ) > 0.

The proof of this theorem is given in Section 4.3.4. The theorem says that there

144



Chapter 4. Limited feedback and rateless coding

exists a rateless code which can be decoded as soon as the empirical mutual infor-

mation c
∑M

m=1 I (P,Vm) is enough to sustain the logN bits for the message. This

threshold is sufficient to guarantee decoding with small probability of error because

the codebook is designed for an AVC with nosy noise.

4.3.2 Coding strategy

In order to make our decoder opportunistic, we explicitly use information about the

output sequence y at the decoder together with the side information Vm. For δ > 0

and distribution P ∈ P(X ), given the m-th chunk of channel outputs y(mc) and the

side information set Vm let

Vm(y(mc), ǫ) =

{

V ∈ Vm : dmax

(

Ty(mc) ,
∑

x

P (x)V (y|x)
)

< δ

}

. (4.74)

Although Vm(y(mc), δ) depends on P , in our construction P is fixed so we do not make

this dependence explicit. The coding algorithm depends on two additional constants

δ and ǫ.

Algorithm II : Rateless coding for nosy “noise”

1. Using common randomness, the encoder and decoder choose a key k ∈ [K] to

use. The encoder chooses a message i ∈ [N ] to transmit and maps it into a

codeword x(i, k) ∈ X n.

2. If τm−1(·) = 0, the encoder transmits x(mc) in channel uses (m− 1)c + 1, (m−
1)c+ 2, . . . , mc.

3. The decoder receives channel outputs y(mc) and the channel state information
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set Vm and calculates the set of possible channels Vm(y(mc), δ). If

logN

mc
<

1

m

m∑

i=1

I
(
P,Vm(y(mc), δ)

)
−mcǫ (4.75)

for some i, then the decoder sets τm(·) = 1 and attempts to decode. Otherwise,

it feeds back a 0 and we return to step 2) for chunk m+ 1.

For each chunk, the decoder looks over all channels in the side information set

consistent with what it received, and takes the worst-case mutual information. The

average of these worst-case mutual informations is our estimate of the empirical mu-

tual information of the channel.

4.3.3 Codebook construction

The codebook we use is again sampled from B(n, c) given in (4.30):

B(n, c) = (Tc(P ))n/c = Tc(P ) × Tc(P ) × · · · Tc(P )
︸ ︷︷ ︸

n/c times

. (4.76)

For the AVC with nosy noise we use a two-step decoding process. Given a decoding

time, the decoder list-decodes the received sequence using the partial side information.

It then uses the key to disambiguate the list using the same message authentication

scheme as in Theorem 14.

Lemma 16 (Exponential list decoding with variable side information). Let W be an

AVC. For any δ > 0 and ξ > 0, P ∈ P(X ) with minx P (x) > 0 there is a c sufficiently

large such that for any V ∈ V(c) the set Tc(P ) is an (c, N, L(V)) list-decodable code
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for the AVC W under maximal error with

N = |Tc(P )| ≥ exp (c(H(X) − ξ)) (4.77)

L(V) ≤ exp

(

c

(

max
V ∈V(yc

1,δ)
H(X|Y ) + ξ

))

, (4.78)

and error

εL ≤ exp(−c · E1(ξ)) , (4.79)

where H(X) is calculated with respect to the distribution P (x) and for V ∈ V(yc1, δ)

the conditional entropy H(X|Y ) is with respect to the distribution P (x)V (y|x), and

E1(ξ) > 0.

Proof. Fix ξ > 0 and δ > 0. For an input distribution P (x) and channel V (y|x),
let P ′(y) be the marginal distribution on Y and V ′(x|y) be the channel such that

P (x)V (y|x) = P ′(y)V ′(x|y). Our decoder will output the set

L(yc1) =
⋃

V ∈V(yc
1,δ)

T
(|X |+1)ξ
V ′ (y) . (4.80)

The size of this set is, by a union bound, upper bounded by (4.78). The proof of

Lemma 1 on page 53 shows that the probability that either x /∈ L(yc1) or

y /∈
⋃

V ∈V(yc
1,δ)

T ξV (x) (4.81)

is upper bounded by

εL(W) ≤ exp(−c · EL(W, ξ)) . (4.82)
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For c sufficiently large, the size of this list can be bounded by (4.78), and the error

probability is still bounded by

εL(W) ≤ exp(−c · EL(W, ξ)) . (4.83)

Thus, with probability exponential in c, this set will contain the transmitted x ∈ T cP .

Taking a union bound over the |V(c)| = cv possible values of the side information Vc
shows that

εL ≤ exp(−c · EL(W, ξ) − v log c) , (4.84)

which gives the exponent E1(ξ).

With the previous lemma as a basic building block, we can create nested list-

decodable codes where c is chosen to be large enough to satisfy the conditions of

Lemma 16. The codebooks we will consider are

B(Mc, c) = (Tc(P ))M = Tc(P ) × Tc(P ) × · · · Tc(P )
︸ ︷︷ ︸

M times

. (4.85)

We will fix a number ρ and a set of N = exp(nρ) codewords for our rateless code

construction. Let M = {M∗,M∗ + 1, . . . ,M∗}, where M∗ = n/c and

M∗ = (nρ)/(cmin{|X |, |Y|}) . (4.86)

The set M is the set of possible decoding times for our code.

Lemma 17 (Concatenated exponential list codes). Let W be an AVC. For any δ > 0

and ξ > 0, P ∈ P(X ) with minx P (x) > 0, and VM1 = (V1,V2, . . . ,VM) ∈ V(c)M ,

there is a c sufficiently large such that the set B(Mc, c) is an (Mc,NM , L(VM1 )) list-
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decodable code with

NM ≥ exp (Mc(H(X) −Mξ)) (4.87)

L(VM1 ) ≤ exp

(

c

(
M∑

m=1

max
V ∈Vm(y(mc),δ)

H(Xm|Ym) +Mξ

))

, (4.88)

and maximal probability of error

εL ≤M exp(−cE2(ξ)) , (4.89)

where H(X) is calculated with respect to the distribution P (x) and for a channel

V ∈ Vm(y(mc), δ) the conditional entropy H(X|Y ) is with respect to the distribution

P (x)V (y|x), and E2(ξ) > 0.

Proof. Choose c large enough to satisfy the conditions of Lemma 2. Our decoder will

operate by list decoding each chunk separately. Let Lm be the list size guaranteed

by Lemma 2 for the m-th chunk. Then the corresponding upper bound in
∏M

m=1 Lm

is the desired the upper bound on L(VM1 ). The probability of the list in each chunk

not containing the corresponding transmitted chunk can be upper bounded:

εL ≤M exp(−cE1(ξ)) . (4.90)

As long as c grows faster than logM the decoding error will still decay exponentially

with the chunk size c.

Our codebook is constructed by sampling codewords from the codebook B(n, c) =

B(M∗c, c). Truncating this set to blocklength Mc gives B(Mc, c). We want to show

that for each M the sampled codewords can be used in a (Mc,N, L) list decodable

code for constants L and N not depending on M . We can define for each truncation

M , output sequence yMc
1 , and side information sequence (V1, . . . ,VM) a “decoding
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bin”

B(M,yMc
1 ,VM1 ) ⊂ XMc , (4.91)

which is the list given by the code in Lemma 17. The size of each bin is

|B(M,yMc
1 ,VM1 )| ≤ exp

(

c

(
M∑

m=1

max
V ∈Vm(y(mc),δ)

H(Xm|Ym) +Mξ

))

. (4.92)

Lemma 18 (Concatenated codes with constant list size). Let W be an AVC. For

any ǫ > 0, P ∈ P(X ) with minx P (x) > 0, there is an n large enough, constant L,

minimum rate ρ > 0, and a set of codewords {x(j) : j ∈ [N ]} with N = exp(nρ) such

that given any CSI sequence (V1,V2, . . . ,VM∗) and channel output with decoding time

M given by (4.75), the truncated codebook {xMc
1 (j) : j ∈ [N ]} is an (Mc,N, L) list

decodable code for constant list size L satisfying

L ≥ 12 log |Y|
ǫ

, (4.93)

and maximal probability of decoding error

εL(M) ≤M exp(−cE(ǫ)) , (4.94)

where E(ǫ) > 0.

Proof. (Proof of Lemma 18) Fix ǫ > 0. We begin with the codebook B(M∗c, c). Note

that the truncation of this codebook to blocklength Mc for M ∈ M is the codebook

in Lemma 17. Let {Zj : j ∈ [N ]} be N = exp(nρ) random variables distributed

uniformly on the set B(M∗c, c).

For any δ > 0 and ξ > 0 we can choose c(n) sufficiently large so that for any M ,

yMc
1 , and VM1 ∈ V(c)M that satisfy the conditions of the decoding rule in (4.75) we
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have

P(Zj ∈ B(M,yMc
1 ,VM1 )) (4.95)

≤ |B(M,yMc
1 ,VM1 )|

exp (Mc (H(X) − ξ))
(4.96)

≤ exp

(

−c
M∑

m=1

(

H(X) − max
V ∈Vm(y(mc),δ)

H(Xm|Ym)Ty(mc)

)

+ 2Mcξ

)

(4.97)

≤ exp

(

−c
M∑

m=1

I
(
P,Vm(y(mc), δ)

)
+ 2Mcξ

)

. (4.98)

Let

G = exp

(

−c
M∑

m=1

I
(
P,Vm(y(mc), δ)

)
+ 2Mcξ

)

. (4.99)

From our stopping rule, we know that (M,yMc
1 ,VM1 ) satisfies:

nρ < c

M∑

m=1

I
(
P,Vm(y(mc), δ)

)
−Mcǫ . (4.100)

The random variable 1(Zi ∈ B(M,yMc
1 ,VM1 )) is Bernoulli with parameter smaller

than G, so we can bound the probability that L of the N codewords land in the set

B(M,yMc
1 ,VM1 ) using Sanov’s theorem:

P

(

1

N

N∑

i=1

1(Zi ∈ B(M,yMc
1 ,VM1 )) > L/N

)

≤ (N + 1)2 exp (−ND (L/N ‖ G)) .

(4.101)

The exponent can be written as

L log

(
L/N

G

)

+N(1 − L/N) log

(
1 − L/N

1 −G

)

. (4.102)
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To deal with the (1−L/N) log((1−L/N)/(1−G)) term we use the inequality −(1−
a) log(1− a) ≤ 2a (for small a) on the term (1− L/N) log(1−L/N) and discard the

small positive term −(1 − L/N) log(1 −G):

ND (L/N ‖ G) ≥ L log

(
L/N

G

)

−N2(L/N) (4.103)

= L log

(
L/N

G

)

− 2L (4.104)

= L

(

−nρ+ c

M∑

m=1

I
(
P,Vm(y(mc), δ)

)
− 2Mcξ

)

+ L logL− 2L

(4.105)

> L (Mcǫ − 2Mcξ) + L logL− 2L . (4.106)

For large enough n we can upper bound (N + 1)2 ≤ 2nρ + L. For large enough L,

L logL > 3L, so we can ignore those terms as well. This gives the bound

P

(

1

N

N∑

i=1

1(Zi ∈ B(M,yMc
1 ,VM1 )) > L/N

)

(4.107)

≤ exp (−LMc (ǫ− 2ξ) + 2nρ− L logL+ 3L) (4.108)

≤ exp (−LMc (ǫ− 2ξ) + 2nρ) . (4.109)

Now the number of decoding bins B(M,yMc
1 ,VM1 ) can be bounded by

∣
∣
{
B(M,yMc

1 ,VM1 ) : VM1 ∈ V(c)M , yMc
1 ∈ YMc

}∣
∣ ≤ |Y|MccMv . (4.110)
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Therefore we can take a union bound:

P




⋃

{B(M,yMc
1 ,VM

1 )}

{

1

N

N∑

i=1

1(Zi ∈ B(M,yMc
1 ,VM1 )) > L/N

}

 (4.111)

≤ exp (−LMc (ǫ− 2ξ) +Mc log |Y| +Mv log c+ 2nρ) . (4.112)

From (4.86) we know ρ is sufficiently small such that nρ ≤ Mc log |Y| for all M .

Then we can choose n and c sufficiently large such that the upper bound becomes:

exp (−LMc (ǫ− 2ξ) + 4Mc log |Y|) . (4.113)

If ǫ > 2ξ then we can choose

L >
4 log |Y|
(ǫ− 2ξ)

, (4.114)

to guarantee that subsampling will yield a good list-decodable code for all M ∈
{M∗, . . . ,M

∗}. Choosing ξ = ǫ/3 and E(ǫ) = E2(ǫ/3) yields the result.

4.3.4 Proof of Theorem 17

Proof. We will use the codebook from Lemma 18. Since the set of messages of fixed

size N , we use the construction of Lemma 13. This makes the code, when decoded

at Mc an (Mc, exp(nρ)/
√

K(n), K(n)) randomized code with probability of error

ε̂(M, s) ≤M exp(−cE(ǫ)) +
2Lnρ√
K logK

. (4.115)
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Then we can use choose L = 12(log |Y|)/ǫ to get

ε̂(M, s) ≤M exp(−cE(ǫ)) +
24nρ log |Y|
ǫ
√
K logK

. (4.116)

4.4 An application to individual sequence channels

In some cases we can apply the partially derandomized code in Section 4.2 to the

scheme proposed by Eswaran, Sarwate, Sahai, and Gastpar for communicating over a

channel with an individual state sequence [62]. We will focus on the binary modulo-

additive case:

y = x ⊕ s , (4.117)

for which the empirical frequency of 1’s in s is equal to the cost in the AVC setting. In

this section we will describe the coding strategy and show how the common random-

ness resources required for the scheme can be reduced using a randomized rateless

code for the AVC.

In the individual sequence model, the channel state s is fixed prior to transmission

but is otherwise arbitrary. As in a rateless code, the goal is to achieve a rate close

to that given by the channel averaged over s. The coding scheme used by Eswaran

et al. achieves the “empirical capacity” for a model similar to Shayevitz and Feder’s

but using a limited feedback strategy. The strategy adapts strategies for reducing

feedback [123,124,122] that were originally derived in the context of error exponents.

The methodology is inspired by Hybrid ARQ [144]. The decoder uses the feedback

link to terminate rounds that are too noisy but otherwise attempts to correct the
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error in less noisy rounds.

The encoder attempts to send k bits over the channel during a variable length

round. The encoder sends chunks of the codeword to the decoder, after which the

decoder feeds back a decision as to whether it can decode. The encoder and decoder

use common randomness to choose a set of randomly chosen training positions during

which the encoder sends a fixed message. The decoder uses the training positions to

estimate the channel. If the number of bits than can be transmitted over a channel

with the estimated empirical mutual information exceeds k, then the decoder at-

tempts to decode. This combination of training-based channel estimation and robust

decoding exploiting the limited feedback yields rates asymptotically equal to those

with advance knowledge of the average channel.

Eswaran et al. use a coding strategy that operates over a total blocklength of

N . The state sequence s of length N is also fixed prior to transmission. Because the

channel quality is not known in advance, the number of bits which can be reliably

transmitted during this block is also unknown. The encoder attempts to send k(N)

bits at a time using a rateless code. Once the k bits have been received successfully,

it attempts to send the next k bits. Within each chunk of the rateless code, some

channel uses are reserved for “training” which can allow the decoder to estimate

the empirical channel, which in this case is the empirical fraction of 1’s in the state

sequence.

Corollary 4 (Binary additive individual sequence channels [62]). For the binary

modulo-additive channel with an individual noise sequence, there is a coding strategy

that with probability 1 − ε(N) achieves the rate

R ≥ 1 − hb(p) − ρ(N) , (4.118)
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with feedback rate

Rfb = ν(N) . (4.119)

and hb(·) is the binary entropy function. Furthermore, as N → ∞ we have ρ(N) → 0,

ν(N) → 0, and ε(N) → 0.

4.4.1 The coding algorithm

We divide the blocklength N into chunks of length c = c(N). Feedback occurs at

the end of chunks with three possible messages: “BAD NOISE”, “DECODED”, and

“KEEP GOING”.

The encoder attempts to send k = k(N) bits over several chunks comprising a

round. Let Vm = (m− 1)c + 1, (m− 1)c+ 2, . . . , mc be the time indices in the m-th

chunk within a round. For each chunk m, the decoder and encoder choose t = t(N)

training positions Tm (via common randomness) during which a known sequence is

transmitted to enable the decoder to estimate the empirical channel. The remaining

time indices Um = Vm\Tm are used to transmit the codeword. Let Vm = V1, . . . , Vm,

Tm = T1, . . . , Tm, and Um = U1, . . . , Um be the time indices up to the m-th chunk for

the round, training, and codeword positions, respectively.

Fix an distribution P (x) ∈ Pc(X ). The encoder and decoder choose a random

codebook of type P for each round. In a round, the encoder divides the codebook into

segments of length c− t and transmits the n-th segment over the c− t non-training

positions in Um.

The decoder uses the training positions to estimate the empirical noise distribution

in that chunk. After each chunk the decoder will decide either (a) that the empirical

noise is too bad and tell the encoder to terminate the round and start over, (b) to

decode the k bits and tell the encoder to terminate the round, or (c) that it cannot
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total: b b b bbb

0 n

round 1 2 3

round: b b b

c 2c 3c
chunk 1 2 3

chunk:
c

training codeword

Figure 4.2: After each chunk of length b feedback can be sent. Rounds end by decoding
a message or declaring the noise to be bad.

decode yet and tell the encoder to send another chunk.

A formal description of the coding strategy follows, and an illustration is provided

in Figure 4.2. At the beginning of round r, the encoder and decoder use common

randomness to choose a random codebook of type P to be used in that round. Let x(r)

denote the codeword to be sent in round r. Let sm = sm(r) denote the state sequence

during them-th chunk of round r. We will suppress the dependence on r for simplicity.

For a set of indices J = {j1, j2, . . .}, we will let s(J ) = (zj1, zj2 , . . . , zj|J |
), so that

s(Tm) is the state vector during the training in chunk m, s(Tm) is the state during all

the training positions, s(Um) is the state during all the non-training positions, and

s(Vm) is the state vector of the current round up to the m-th chunk.

For each round, the following steps are repeated for each chunk:

1. The encoder and decoder choose t positions Tm to use for the training in chunk

m using common randomness.

2. The encoder transmits the chunk. At times j ∈ Tm the encoder sends 0. In the

c−t remaining positions the encoder sends x({(m−1)(c−t)+1, . . . , m(c−t)}),
which are the next c− t entries in the codeword corresponding to the k bits to

be sent in the current round.
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3. The decoder estimates the empirical channel Wz(Um)(y|x) in chunk m and the

empirical channel over the round so far:

p̂(m)
emp =

|X |
t

· |{j ∈ Tm(x) : yj = 1}|

p̃(m)
emp =

1

m

m∑

i=1

p̂(i)
emp .

4. The decoder makes a decision based on p̃
(m)
emp and m:

(a) if

1 − hb(p̃
(m)
emp) < τ(N) , (4.120)

then the decoder feeds back “BAD NOISE” and the round is terminated

without decoding the k bits. In the next round, the encoder will attempt

to resend the k bits from this round.

(b) if

k

(c− t) ×m
< 1 − hb(p̃

(m)
emp) − ǫ1(N) , (4.121)

then the decoder decodes, feeds back ”DECODED,” and the encoder starts

a new round.

(c) otherwise the decoder feeds back “KEEP GOING” and goes to 2).

The coding strategy uses log 3 bits of feedback per chunk for the decision messages

(“BAD NOISE,” ”DECODED,” and “KEEP GOING”). Letting b get large with N

causes the feedback rate to go to zero.
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4.4.2 Application of rateless code and resource analysis

We can now apply the code construction from Lemma 15 to partially derandomize

the codebook for a single round of the overall strategy of Eswaran et al. The decoding

threshold (4.121) defines the minimum rate ρ as ǫ1(N). We can use the rateless code-

book with exp(k(N)) messages and chunk size c(N). The cost information available

to the decoder is given by the training estimates:

λ̂m = p̂(m)
emp (4.122)

Λ̂M = p̂(M)
emp . (4.123)

The coding strategy uses common randomness to choose the training positions

for each chunk and the codebook for each round. The codebook from Lemma 15

is decodable with small probability of error at blocklength mc as long as we can

guarantee that the true cost is larger than the codebook’s designed cost:

ΛM ≤ Λ̃M . (4.124)

Eswaran et al. [62] proved that with probability going to 1, the channel estimates are

close to the true channel:

∣
∣
∣λM − λ̂M

∣
∣
∣ ≤ ǫ . (4.125)

By increasing ǫ26 we can guarantee that for some ǫ′ > ǫ we have

Λ̃M > λ̂M + ǫ′ > λM . (4.126)

Thus we can use the partially derandomized codebook to limit the common random-

ness required to operate this scheme of Eswaran et al.
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We would like to quantify the amount of common randomness required by the

scheme. There are two parts of the scheme which require common randomness: the

choice of training positions and the choice of codebook.

• For each chunk, the encoder and decoder must agree upon t(N) training posi-

tions, which takes t(N) log c(N) bits per chunk, or

t(N)N

c(N)
log c(B) . (4.127)

bits over the whole scheme.

• The encoder and decoder must agree on a codebook to use for each round. The

code from Section 4.2 can be used with K(N) bits per round, where K(N) =

Ω(log k(N)). Because new training positions are selected for each chunk, a new

codebook is not needed when the round is terminated due to excess noise. Since

there are at most N/k(N) rounds, the scheme needs

N

k(N)
K(n) (4.128)

bits to choose the codebooks.

Thus, as we can see, the total amount of common randomness needed for the

algorithm is

t(N)N

c(N)
log c(B) +

N

k(N)
K(n) (4.129)

bits, which can be made sublinear in N as long as c(N) and k(N) grow fast enough.

In particular, with the choices given in [62] of k(N) = N1/2, c(N) = N1/4, and

t(N) = N1/8 we can choose K(N) to grow slower than N1/2.
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4.5 Conclusions

We saw in this chapter that the derandomization strategies of the previous chapter

extend to the study of rateless coding when the decoder can obtain an estimate of

the empirical channel. Under the standard AVC model, we studied the case where

decoder obtains an estimate of the average state cost over a “chunk.” We constructed

a coding strategy and bound its loss from the true empirical mutual information in

terms of the channel estimation error. For channels with the more robust nosy noise

model, we constructed a strategy that list decodes on a chunk-by-chunk basis. This

architecture may be interesting for more practical code constructions, given the recent

research interest on list decoding with soft information [96].

An additional application of the results and techniques of this chapter is to the

problem of communicating over channels with individual state sequences as studied

in [62]. The common randomness required to use our code constructions can be

generated from zero-rate noiseless feedback from the decoder to the encoder. In the

scheme presented in [62], the partial channel state information is generated by training

sequences in the forward link.

Finally, although the results in this chapter are for finite alphabets, extensions

to continuous alphabets and the Gaussian AVC setting [86,87,48] should be possible

using appropriate approximation techniques. An interesting rateless code using lattice

constructions has been proposed by Erez et al. in [58], and it would be interesting to

see if that approach can work for more robust arbitrarily varying channel models.

161



��
on-

�
s'en

��
va

��
cette

�
al-

�
de:

	 � �� ����
4
3

nous

�
nous

�� �
lons,



Car

� ��
com-

	� ��
me

���
en

– Beau Soir, Claude Debussy (lyrics by Paul Bourget)

Chapter 5

Continuous AVCs : the Gaussian case

5.1 Introduction and channel model

In this chapter we study an AVC with continuous-alphabets known as the Gaussian

AVC (GAVC). In the GAVC an additive white Gaussian noise (AWGN) channel is

modified by adding a power-constrained jamming interference signal. This channel

model was first proposed by Hughes and Narayan [86]. As in the discrete AVC with

constraints [45], the capacity is well defined when the power constraints Γ and Λ on the

input and jammer are required to hold almost surely. The randomized coding capacity

under maximal error Cr(Γ,Λ) is the same as that of an AWGN channel treating

the jammer as more Gaussian noise. Csiszár and Narayan [48] showed that the

deterministic coding capacity under average error Cd(Γ,Λ) exhibits a threshold due

to symmetrizability. If Γ ≤ Λ then the channel is symmetrizable and Cd(Γ,Λ) = 0.

Otherwise Cd(Γ,Λ) is equal to Cr(Γ,Λ) – that is, Cd(Γ,Λ) is given by the AWGN

capacity treating the jammer as additional Gaussian noise.
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i Enc
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(Φ,Ψ)

î

Figure 5.1: The Gaussian arbitrarily varying channel under randomized coding.

For the vector Gaussian channel, the randomized coding capacity was found by

Hughes and Narayan [87] and the deterministic coding capacity by Csiszár [42]. For

multiuser Gaussian AVCs, the only results are due to La and Anantharam [100],

who found the capacity of a modified arbitrarily varying multiple access channel.

Their channel model puts additional constraints on the jammer, which allows the

transmitters to time-share between rates.

The Gaussian AVC is shown in Figure 5.1. For an input sequence x ∈ R
n the

output of the Gaussian AVC is given by

y = x + s + w . (5.1)

The input is corrupted by iid additive white Gaussian noise w with variance σ2

and an unknown interference vector s. The input signal x and jammer signal s are

constrained in power:

1

n
‖x‖2 ≤ Γ (5.2)

1

n
‖s‖2 ≤ Λ . (5.3)

Randomized coding for this channel was first studied by Hughes and Narayan [86].

A (n,N) deterministic code C satisfying the input constraint Γ is a pair of maps
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(φ, ψ) with

φ : [N ] → R
n (5.4)

ψ : R
n → [N ] , (5.5)

such that for all i ∈ [N ] we have ‖φ(i)‖2 ≤ nΓ. A (n,N) randomized code C

satisfying the input constraint Γ is a random variable taking on values in the set of

(n,N) deterministic codes. It is written as a pair of random maps (Φ,Ψ) where each

realization is an (n,N) deterministic code satisfying the constraint Γ. If (Φ,Ψ) almost

surely takes values in a set of K codes, then we call this an (n,N,K) randomized

code.

The maximal probability of error for randomized coding and average probability

of error for deterministic coding with jamming signal s, respectively are

ε(C, s) = max
i

EC [Pw (ψ(xi + s + w) 6= i)] (5.6)

ε(C, s) =
1

N

N∑

i=1

Pw (ψ(xi + s + w) 6= i) . (5.7)

The maximal and average error are given by maximizing these quantities over the

state s:

ε(C) = max
s∈Sn(Λ)

ε(C, s) (5.8)

ε(C) = max
s∈Sn(Λ)

ε(C, s) . (5.9)

As in the discrete case, under maximal error we can think of the state s as depending

on the transmitted message. For average error s may depend on the codebook C but

not the message.
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We say a rate R is achievable under maximal error with randomized coding if

there exists a sequence of (n, exp(nR)) randomized codes whose maximal error goes

to 0 as n → ∞. The randomized coding capacity under maximal error Cr(Γ,Λ) is

the supremum of the achievable rates under maximal error with randomized coding.

Similarly, we say R is achievable under average error with deterministic coding if

there is a sequence of (n, exp(nR)) deterministic codes whose average error goes to

0 as n → ∞. The deterministic coding capacity under average error Cd(Γ,Λ) is the

supremum of achievable rates under average error with deterministic coding.

Hughes and Narayan [86] showed that if the input and jammer are both bounded

in power almost surely and the random variable C is unconstrained, then the capacity

is equal to that of an additive white Gaussian noise (AWGN) channel with the jammer

treated as additive noise:

Cr(Γ,Λ) =
1

2
log

(

1 +
Γ

Λ + σ2

)

. (5.10)

Csiszár and Narayan [48] showed that for deterministic codes, the capacity is equal

to (5.10) if and only if the encoder has a higher power limit than the jammer:

Cd(Γ,Λ) =







0 Γ ≤ Λ

1
2
log
(
1 + Γ

Λ+σ2

)
Γ > Λ .

(5.11)

This condition is equivalent to non-symmetrizability. If Λ ≥ Γ then there exists a

channel U(S|X′) such that

V (Y|X,X′) =

∫

Rn

W (Y|X,S)U(S|X′)dS . (5.12)

is symmetric in X and X′. The channel U(S|X′) corresponds to choosing S = X′+Z,

where X′ is a randomly chosen codeword from the deterministic code and Z is an iid
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Gaussian vector with variance Λ − Γ.

The capacity-achieving codebooks used for the GAVC are formed by drawing

vectors x from the uniform distribution on the sphere of radius
√
nΓ. For fully

randomized coding, it is straightforward to show that any jammer input s is bad for

a vanishingly small fraction of such codebooks. Because of the power constraints on

the input and jammer, a prefix-based scheme such as the elimination technique [6]

cannot be used to convert a randomized code for the GAVC into a deterministic

one. This is because the jammer can pool its power to jam the prefix, rendering the

decoder incapable of decoding that part of the message. Under deterministic coding,

more careful geometric arguments are needed to show that for Γ > Λ there exists a

codebook which is decodable with small probability of error for all s.

In this chapter we explore a few aspects of the GAVC. We first derive results anal-

ogous to those in Chapter 3 and show that a modest amount of common randomness

is sufficient to achieve the randomized coding capacity. This result has applications

to the arbitrarily varying degraded Gaussian broadcast channel. For deterministic

coding we propose a new channel model in which there are two sources of interfer-

ence, one of which is known to the transmitter but not the jammer. We propose a

“dirty paper” scheme that exploits the known interference signal. These are strate-

gies that have found uses in applications from digital watermarking to multiantenna

broadcasting. We will apply our construction to an information-theoretic model for

cognitive radio systems.

5.2 Partial derandomization for the GAVC

Our goal in this section is to quantify the amount of randomization, or key size,

that is needed to obtain the randomized coding capacity. Our main result is that

as in the discrete case, we can use a sub-exponential number (in the blocklength n)
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of codebooks to obtain an asymptotically decreasing upper bound on the average

probability of error. Although the probability of error decreases for modest key sizes,

in order to get an exponential decrease in the probability of error our construction

requires an exponential number of codebooks. This gives a characterization of the

achievable error decay as a function of the common randomness available between

the encoder and decoder in the same spirit as Chapter 3.

5.2.1 Rotated codebooks : a randomized code construction

The class of randomized codes we consider can be built in two steps. As in the

construction in [88], we “modulate” a single Gaussian codebook. Let N = exp(nR)

and M be an arbitrary integer.

1. Let B = {x1,x2, . . . ,xN} be a set of N vectors on the sphere of radius
√
nΓ.

We can choose this set to have small maximal error for both the AWGN channel

with noise variance Λ + σ2 and the channel with additive noise Vn + w, where

Vn is uniform on the sphere of radius
√
nΛ and w is iid Gaussian noise with

variance σ2.

2. Let {Uk : k = 1, 2, . . . , K} be n× n unitary matrices generated uniformly from

the set of all unitary matrices. Without loss of generality we take U1 = I.

3. The randomized code is uniform on the set {UkB : k = 1, 2, . . . , K}. To send

message i, the encoder draws an integer k uniformly from {1, 2, . . . , K} and

encodes its message as Ukxi.

4. The decoder knows k and chooses the codeword in Bk that minimizes the dis-

tance to the received vector:

φ(y, k) = argmin
j

‖y − Ukxj‖ . (5.13)
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For all rates below (1/2) log(1+Γ/(Λ+σ2)) we can choose the codebook B to have

exponentially decaying probability of error [139,67,102] for both the AWGN channel

with noise variance Λ + σ2 and the channel with additive noise Vn + w:

ε(B) ≤ exp(−nE(n−1 logN)) . (5.14)

We can use this result to get a lower bound on the pairwise distance between any two

codewords. This lower bound will be useful in the proof of Theorem 18 below.

Consider two codewords xi and xj from the codebook. Let γ > 0 be half the

distance between them:

‖xi − xj‖ = 2γ . (5.15)

Suppose that we transmit xi over an AWGN channel with noise variance Λ + σ2.

Then the probability of error for message i can be lower bounded by the chance that

the noise in the direction of xj − xi is larger than γ. Since the noise is iid, the error

can be bounded by the integral of a Gaussian density [152]:

ε(i) ≥ 1
√

2π(Λ + σ2)

∫ ∞

γ

exp

(

− 1

2(Λ + σ2)
z2

)

dz (5.16)

>

√

Λ + σ2

2πγ2

(

1 − Λ + σ2

γ2

)

exp(−γ2/2) . (5.17)

Therefore there exists a µ > 0 such that for sufficiently large n we have γ > (µ/2)
√
n

for some µ > 0, which means that

‖xi − xj‖ > µ
√
n . (5.18)
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We will first prove our result for no noise, so σ2 = 0. The extension to the

case with σ2 > 0 is straightforward. The proof entails showing that there exists a

randomized code as described above that can achieve the randomized-coding capacity

for the AVC.

Theorem 18. Let K(n) be chosen such that K(n)/n→ ∞ and n−1 log(K(n)/n) → 0.

For input power constraint Γ, jammer power constraint Λ, and ζ > 0 there is an n

sufficiently large and an (n,N,K(n)) randomized code for the GAVC with σ2 = 0 of

rate R < Cr(Γ,Λ), where

Cr(Γ,Λ) =
1

2
log

(

1 +
Γ

Λ

)

, (5.19)

whose error satisfies

ε(n) = ζ
n

K(n)
. (5.20)

That is, the randomized coding capacity Cr(Γ,Λ) is achievable using codes whose key

size is superlinear in the blocklength.

Proof. Fix a rate R < Cr(Γ,Λ). We will suppress the dependence of K(n) on n in the

proof. We need to show that for n sufficiently large, there exists a codebook B and

K unitary matrices {Uk} such that the probability of error is bounded for any choice

of s. To do this we will first show that if s lies in a dense subset of the
√
nΛ sphere,

then the event that the average error for K randomly chosen matrices {Uk} is too

large has probability exponentially small in K. Therefore we can choose a collection

{Uk} that satisfies the probability of error bound for any s.

Consider the codebook B of N vectors from the sphere of radius
√
nΓ. We know

that the expected performance of this code is good for an additive noise channel with

noise Vn distributed uniformly on the sphere of radius
√
nΛ. That is, for any δ > 0
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there exists an n sufficiently large such that

max
i∈[N ]

EVn
[ε(i,Vn)] < exp(−nE(R)) (5.21)

∆
= δ . (5.22)

Suppose that we sample K points v1,v2, . . . ,vK independently from the distribu-

tion of Vn. Then using the same argument from Lemma 12 on page 99 we can see

that

PVn

(

1

K

K∑

k=1

ε(i,vk) ≥ t

)

= exp
(
−K(t log δ−1 − hb(t) log 2)

)
. (5.23)

We can take a union bound over all i ∈ [N ]:

PVn




⋃

i∈[N ]

{

1

K

K∑

k=1

ε(i,vk) ≥ t

}

 = exp
(
−K(t log δ−1 − hb(t) log 2) + logN

)
.

(5.24)

Thus the probability that the collection of points {vm} induces an error probability

that exceeds t is exponentially small in K.

Now consider drawing K unitary matrices {Uk : k = 1, 2, . . . , K} uniformly. For

a fixed v, the points

vk = U−1
k v (5.25)

are uniform samples from Vn. Unlike Lemma 12, we cannot take a union bound over

all s, so we require an approximation argument. Let {am : m = 1, 2, . . .M} be a

set of vectors on the sphere of radius
√
nΛ. Then another union bound yields the
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following:

P





M⋃

m=1

⋃

i∈[N ]

{

1

K

K∑

k=1

ε(i, U−1
k ak) ≥ t

}

 (5.26)

≤ exp
(
−K(t log δ−1 − hb(t) log 2) + logM + logN

)
. (5.27)

Results of Wyner and Lapidoth [157, 103] tell us that there exists a collection

of exp(n(ρ + ǫ)) points on the
√
nΛ-sphere such that any point on the

√
nΛ-sphere

is at most a distance η from one of the points, where η and ρ are related by ρ =

(1/2) log (Λ/η2). If we choose M = exp(n(ρ+ ǫ)) and let {am} be the corresponding

rate-distortion codebook, we get from (5.27):

P





M⋃

m=1

⋃

i∈[N ]

{

1

K

K∑

k=1

ε(i, U−1
k am) ≥ t

}

 (5.28)

≤ exp
(
−K(t log δ−1 − hb(t) log 2) + n(ρ+R + ǫ)

)
. (5.29)

If K(n)/n→ ∞ then the probability that the error is smaller than t for the M points

{am} can be made arbitrarily close to 1 for any η. The next step is to argue that we

can extend the bound from s ∈ {am} to all s.

Because R < Cr(Γ,Λ), for a sufficiently small constant ν we have

R <
1

2
log

(

1 +
Γ

(1 + ν)2Λ

)

, (5.30)

for some sufficiently small constant ν. That is, we can choose our code to have small

error probability for noise of variance (1 + ν)2Λ. From (5.29) we know that for each
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message i there is a set Ki of at least (1 − t)K keys for which

∥
∥xi − xj + (1 + ν)U−1

k am
∥
∥ > (1 + ν)‖am‖ ∀j 6= i . (5.31)

Equivalently, we can write

2
〈
xj − xi, U

−1
k am

〉
<

1

1 + ν
‖xi − xj‖2 . (5.32)

Now suppose the jammer’s input is s. For each k ∈ Ki s, the rate-distortion codebook

property guarantees that s is only a distance η
√
n from some point U−1

k am. We would

like to prove a bound like (5.32) for all s. To start:

2 〈xj − xi, s〉 = 2
〈
xj − xi, s− U−1

k am
〉

+ 2
〈
xj − xi, U

−1
k am

〉
(5.33)

< 2 · ‖xi − xj‖ · η
√
n +

1

1 + ν
‖xi − xj‖2 (5.34)

<

(

2
η

µ
+

1

1 + ν

)

‖xi − xj‖2 , (5.35)

where we used (5.32), the Cauchy-Schwartz inequality, the distortion bound for {am},
and and (5.18). Now choose η sufficiently small so that

2 〈xj − xi, s〉 < ‖xi − xj‖2 . (5.36)

This shows that the minimum distance decoding rule results in a small error proba-

bility for all s with ‖s‖2 = nΛ.

The last thing we need is to show that the average error probability is monotonic

in the length of the jamming vector for a given direction. Suppose that there was an

error for s but now the jammer inputs (1 + b)s. Then there is an error if

‖xi − xk + (1 + b)s‖ ≤ (1 + b) ‖s‖ .

172



Chapter 5. Continuous AVCs : the Gaussian case

But we can easily bound this using the triangle inequality:

‖xi − xk + (1 + b)s‖ ≤ ‖xi − xk + s‖ + ‖bs‖

≤ (1 + b) ‖s‖ .

Thus the error probability can only become smaller for shorter jamming inputs s.

We have shown that for any t > 0 there is an n sufficiently large such that with

high probability, choosing a random set of K unitary matrices {Uk} results in a

randomized code whose error can be made smaller than t. As in Theorem 13 we can

choose the error bound t to satisfy (5.20). Therefore there such a randomized code

exists.

The extension to the noisy case follows the same argument. The equivalent channel

is

y = xi + U−1
k (s + w) . (5.37)

The effective noise U−1
k w has the same distribution as w, and we can follow the

arguments previously by taking expectations over the noise w.

Theorem 19. Let K(n) be chosen such that K(n)/n → ∞ and n−1 log(K(n)/n) →
0. For input power constraint Γ, jammer power constraint Λ, and ζ > 0 there is

an n sufficiently large and an (n,N,K(n)) randomized code for the GAVC of rate

R < Cr(Γ,Λ), where

Cr(Γ,Λ) =
1

2
log

(

1 +
Γ

Λ

)

, (5.38)

whose error satisfies

ε(n) = ζ
n

K(n)
. (5.39)
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That is, the randomized coding capacity Cr(Γ,Λ) is achievable using codes whose key

size is superlinear in the blocklength.

We can characterize different key-error tradeoffs using the proof of Theorem 19.

• Suppose K(n) = nα for α > 1. Then

ε(n) = O(n1−α) . (5.40)

• Suppose K(n) = exp(nγ) for γ ∈ (0, 1). In this case we have

ε(n) = O(exp(−nγ)) . (5.41)

The first example show that choosing K(n) polynomial in n is possible, so O(logn)

bits is a sufficient key size.

5.2.2 Gaussian Broadcast

We can apply Theorem 19 to the a degraded broadcast channel with a common

jammer. Here the two users receive

y1 = x + s + w1 (5.42)

y2 = x + s + w2 , (5.43)

where w1 is iid Gaussian with variance σ2
1, w2 is iid Gaussian with variance σ2

2, and

σ2
1 < σ2

2. The channel is shown in Figure 5.2. We call receiver 1 the strong user and

receiver 2 the weak user.

An (n,N1, N2) deterministic code with power constraint Γ for this channel is a
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(i, j) Tx
xij

s w1

w2

y1
Rx 1 î

y2
Rx 2 ĵ

Figure 5.2: The arbitrarily varying degraded Gaussian broadcast channel. The jammer is
shared between both receivers. Since we assume the noise w2 has higher variance that
w1, we call receiver 1 the “strong” user and receiver 2 the “weak” user.

tuple of maps (φ, ψ1, ψ2), where

φ : [N1] × [N2] → R
n (5.44)

ψ1 : R
n → [N1] (5.45)

ψ2 : R
n → [N2] , (5.46)

and ‖φ(i, j)‖2 ≤ nΓ for all (i, j). The map φ is the encoder and the maps ψ1 and

ψ2 are the decoders for users 1 and 2. The average probability of error for the code

under state constraint Λ is

ε = max
s:‖s‖2≤nΛ

1

N1N2

N1∑

i=1

N2∑

j=1

P (ψ1(φ(i, j) + s + w1) 6= i, ψ2(φ(i, j) + s + w2) 6= j) .

(5.47)

The error is averaged over the messages to both users. We say the pair of rates (R1, R2)

is achievable if there exists a sequence of (n, exp(nR1), exp(nR2)) deterministic codes

whose average error goes to 0 as n→ ∞. The capacity region is the union of achievable

rates.

The discrete arbitrarily varying broadcast channel without constraints was first

studied by Jahn [89], who proved an achievable rate region for randomized coding

175



Chapter 5. Continuous AVCs : the Gaussian case

and then applied the elimination technique [6] to derandomize the code. As we

have seen, this approach does not work in general for constrained AVCs. Discrete

constrained AVCs with degraded message sets were studied by Hof and Bross [82].

Their achievable strategy requires a number of non-symmetrizability conditions which

are analogous to our result in Theorem 20. By using our earlier results on randomized

coding, we obtain a much shorter proof.

We build a superposition code [40] based on our rotated codebook construction.

The strong user can treat the message for the weak user as a random key in a ran-

domized code. The codebook for user 2 is a deterministic code (“cloud centers”) with

power αΓ and the codebook for user 1 is a randomized code with power (1 − α)Γ,

where the randomization is over the codewords of user 2. From Theorem 19 we can

see that the randomization provided by user 2’s message is sufficient for user 1 to

achieve the randomized coding capacity. This scheme is limited by the result in [48]

to those α for which αΓ > Λ.

Theorem 20. If Λ ≥ Γ then the deterministic coding capacity region of the arbitrarily

varying degraded Gaussian broadcast channel is the empty set. If Λ ≤ Γ then for

α ∈ (Λ/Γ, 1], the rates (R1, R2) satisfying the following inequalities are achievable with

deterministic codes for the arbitrarily varying degraded Gaussian broadcast channel

under average probability of error:

R1 <
1

2
log

(

1 +
(1 − α)Γ

Λ + σ2
1

)

(5.48)

R2 <
1

2
log

(

1 +
αΓ

(1 − α)Γ + Λ + σ2
2

)

(5.49)

R1 +R2 <
1

2
log

(

1 +
Γ − Λ

Λ + σ2
1

)

+
1

2
log

(

1 +
Λ

Γ + σ2
2

)

. (5.50)

Proof. The converse follows from the converse for the standard AVC. Since we are

limited to deterministic codes, if Λ ≥ Γ the jammer can choose a message pair (i′, j′)
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and transmit φ(i′, j′) plus additional noise.

To show the achievable rate region, suppose that Λ < Γ and generate a code-

book using Theorem 19 containing N2 = exp(nR2) codewords {vj} on the
√
nαΓ-

sphere. For each ui generate N1 = exp(nR1) codewords {vij} uniformly on the
√

(n− 1)(1 − α)Γ-sphere. Let the overall codebook be:

xij = ui + AiUivij , (5.51)

where Ai is an isometric mapping of R
n−1 to the plane orthogonal to ui and Ui is a

random unitary transformation as in the construction of Theorem 19. The codebooks

satisfy the the power constraint.

The weak decoder first decodes ui, treating the signal AiUivij as additional noise.

From the results of Csiszár and Narayan [48] we know that the average probability

of error can be made small if αΓ > Λ. This gives the first rate bound.

The strong decoder replicates the first step of the weak user. If message i was

decoded correctly, it can subtract out ui and the residual channel is identical to a

GAVC with input power (1 − α)Γ using the codebook of Theorem 19. This gives us

the second rate bound.

To see the sum-rate bound (5.50), note that the weak user can give up any part

of its message to the strong user, which means that rate splitting between the points

where α = Λ/Γ and α = 0 are also achievable.

A plot of the achievable rate region is shown in Figure 5.3. This achievable

region is tight for α > Λ/Γ because the jammer could just add Gaussian noise to

make the channel a degraded Gaussian broadcast channel [23,24,25,68]. The coding

scheme above cannot be used in the regime where α ≤ Λ/Γ because the jammer can

symmetrize the {uj} codebook to the stronger user. At present we do not know if new

achievable strategies can achieve higher rates in this regime or if different converse
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Figure 5.3: Achievable rates for the degraded broadcast Gaussian AVC with Γ = 6, Λ = 1,
σ2

1 = 0.1, and σ2
2 = 5.

arguments can show that rate splitting is optimal.

5.3 Dirty paper coding

In this section we turn to a different AVC model in which there are two sources of

interference, one of which is known to the transmitter. The benefits of channel state

information at the transmitter have been investigated by researchers since Shannon

[138]. In one version of the problem, a time-varying state sequence is known non-

causally at the transmitter, and the encoder can base its codebook on this known

sequence. The capacity for discrete channels with iid state sequences was found in the

celebrated paper of Gel’fand and Pinsker [70]. Costa [39] showed an analogous result

for the Gaussian case and showed that the capacity is equal to that of a channel with

no interference at all. His strategy is called a “dirty paper code.” These results have

found applications to inter-symbol interference (ISI) channels [57], watermarking [38],

multi-antenna broadcasting [155], and models for “cognitive radio” [50, 90]. The

purpose of this section is to quantify the benefits of known interference in the context
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of arbitrarily varying channels.

For the GAVC, if sufficient common randomness is available to the encoder and

decoder, the capacity is equal to that of an additive white Gaussian noise (AWGN)

channel treating the jammer as independent noise. However, under deterministic

coding, the capacity for these channels is zero when the jammer’s power limit is

greater than or equal to that of the encoder:

Cd(Γ,Λ) =







0 Γ ≤ Λ

1
2
log
(
1 + Γ

Λ+σ2

)
Γ > Λ .

(5.52)

We will show that without common randomness, dirty paper coding can use a known

interference signal to boost the effective power of the encoder and thus enlarge the

region where the capacity is equal to the AWGN capacity.

We will consider channels with inputs and outputs in R
n of the form

Y = X + T + S + W . (5.53)

Here we take W ∼ N (0, σ2
WI), ‖S‖2 ≤ Λn, ‖X‖2 ≤ Γn, and T ∼ N (0, σ2

t I). The

channel input created by the transmitter is X, the vector T is interference known to

the transmitter, S is jamming interference, and W is the independent noise at the

receiver. If randomized coding is allowed, then Costa’s result implies that the capacity

is equal to the AWGN capacity without T and the jammer treated as additional noise.

In this section we will deal with deterministic coding. Again, if the jammer’s

power limit is sufficiently high it can simulate both the interference and the code-

word, rendering the capacity 0 (Lemma 20). Our main result (Theorem 21) is an

achievable rate region using a dirty-paper code in the spirit of [38] for this channel.

For a range of the parameters (Γ,Λ, σ2
t ) this scheme is capacity achieving (Corollary 5)

– in this regime Costa’s strategy cannot be defeated by adversarial interference. For
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m Enc
X

T S W

Y
Dec m̂

Figure 5.4: The Gaussian arbitrarily varying channel with a known interference signal at
the encoder.

other sets of parameters we achieve positive rates but there is no matching converse.

A discrete AVC model with the jammer input S known to the encoder was stud-

ied by Ahlswede [10], but his techniques do not apply directly to power-constrained

continuous-alphabet channels.

One way of interpreting our results is as the deterministic coding analogue of the

additive attack Gaussian watermarking game [38]. Under additive attacks of power

Λ and watermark power Γ, the watermarking capacity under randomized coding is

(1/2) log(1 + Γ/Λ), regardless of the value of σ2
t . The case σ2

t = 0 corresponds

to randomized coding for the Gaussian AVC [86]. We can achieve the same rates

without randomization as long as σ2
t is large enough. Another application of this

result is to a particular model for spectrum-sharing systems in which a secondary

system can code its message with knowledge of a primary system’s message. For this

cognitive radio model, a more robust assumption is that the interference seen by the

secondary system is only partially known – the remaining interference may not be

well-modeled by an iid noise process. In the AVC version of this channel we calculate

achievable rates for the secondary system.

5.3.1 Channel and strategy

For simplicity, we will redefine inner products and norms to be normalized by the

dimension, so ‖X‖2 = dim(X)−1 ‖X‖2
2 and 〈T, X〉 = dim(X)−1TTX.
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An (n,N) code with power constraint Γ for this channel is a pair of functions

(φ, ψ), where φ : [N ] × R
n → R

n and ψ : R
n → [N ] and

‖φ(i,T)‖2 ≤ Γ a.s. . (5.54)

The average probability of error (over W and T) for this code with jammer power Λ

is given by

ε = max
S:‖S‖2≤Λ

1

N

N∑

i=1

P (ψ(φ(i,T) + T + S + W) 6= i) . (5.55)

A rate R is achievable if there exists a sequence of (n, ⌈exp(nR)⌉) codes with

εn → 0 as n → ∞. The capacity Cd is defined to be the supremum of all achievable

rates. For σ2
t = 0 this channel model reduces to the Gaussian AVC [48], whose

capacity as we saw earlier exhibits the following dichotomy:

Cd =







0 Γ ≤ Λ

1
2
log
(

1 + Γ
Λ+σ2

W

)

Γ > Λ .
(5.56)

Our codebook construction uses two auxiliary rates RU and Rbin and will depend

on parameters α and ρ to be chosen later and positive constants ǫ1 and ǫ2 that can

be made arbitrarily close to 0.

1. The encoder will generate an auxiliary codebook {Uj} of exp(n(RU−ǫ1)) vectors

drawn uniformly from the n-sphere of power PU , where

PU = Γ + 2ρα
√

Γσ2
t + α2σ2

t . (5.57)

2. These codewords are divided randomly into exp(n(R − 2ǫ1)) bins {Bm} such

that each bin has exp(n(Rbin + ǫ1)) codewords. We denote the i-th codeword of
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bin Bm by U(m, i).

3. Given a message m and an interference vector T, the encoder chooses the vector

U(m, i) ∈ Bm that is closest to βT, where

β2 =
PU
σ2
t

(

1 +
(1 − ρ2)Γ

PU − (1 − ρ2)Γ

)

. (5.58)

If no such U(m, i) exists then we declare an encoder error. The encoder trans-

mits

X = U(m, i) − αT . (5.59)

We will show that for ǫ2 > 0, we can choose n sufficiently large so that ‖X‖2 ≤ Γ

and

〈U(m, i) − αT, T〉 ≥ ρ
√

Γσ2
t − ǫ2 . (5.60)

4. The decoder first attempts to decode U(m, i) out of the overall codebook {Uj}
and produces an estimate U(m̂, î). It then outputs the estimated message index

m̂.

Let PI = Λ+σ2
W denote the expected power of the interference plus noise. Define

PY = Γ + 2ρ
√

Γσ2
t + σ2

t + Λ + σ2
W . (5.61)

In Costa’s original paper, choosing ρ = 0 and α = α0, where

α0 =
Γ

Γ + Λ + σ2
W

(5.62)

gives an achievable rate of (1/2) log(1+Γ/(Λ+σ2
W )). We will analyze the performance
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U
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αT
X

V

βT

Figure 5.5: Geometric picture for dirty-paper encoding with general parameters.

of this coding strategy on an AVC with for general ρ and α.

5.3.2 Main result

Our main result is an achievable rate region for the Gaussian AVC with partial state

information at the encoder that is achievable using this generalized dirty-paper code.

For some parameter values the achievable rate is the capacity of the channel. One

way of interpreting this result is that the presence of extra interference known to the

transmitter boosts its effective power and therefore lowers the power threshold for

the standard Gaussian AVC.

Our first lemma guarantees that the encoding is successful.

Lemma 19. For any ǫ1 > 0 and ǫ2 > 0 we can choose sufficiently large n such that

the probability that no U(m, i) ∈ Bm exists satisfying equation (5.60) and ‖X‖2 ≤ Γ

can be made as small as we like provided

Rbin ≥ 1

2
log

(
PU

(1 − ρ2)Γ

)

. (5.63)
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Proof. Consider the picture in Figure 5.5 and let

β2 =
PU
σ2
t

(

1 +
(1 − ρ2)Γ

PU − (1 − ρ2)Γ

)

. (5.64)

We must show that a U(m, i) ∈ Bm exists satisfying (5.60). By the rate-distortion

theorem for Gaussian sources, for Rbin satisfying (5.63), the codebook Bm chosen

uniformly on the sphere of power PU can compress the source βT to distortion

D =
PU(1 − ρ2)Γ

PU − (1 − ρ2)Γ
. (5.65)

To see this, consider the test channel βT = U + V, where V is iid Gaussian with

variance D. The mutual information of this test channel is

1

n
I (βT ∧ U) =

1

2
log

(

1 +
PU
D

)

(5.66)

=
1

2
log

(
PU

(1 − ρ2)Γ

)

. (5.67)

We can choose U(m, i) to be the codeword in Bm that corresponds to quantizing

βT. For any ǫ1 > 0 the codebook Bm has rate greater than the rate distortion function

for the source βT with distortion D, so there exists an ǫ > 0 such that with high

probability,

‖βT − U(m, i)‖2 ≤ D − ǫ . (5.68)

For any δ > 0 we can choose n sufficiently large such that with high probability we

have

〈U, T〉 >
√

PUσ2
t

PU +D − ǫ
− δ . (5.69)
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If we choose δ small enough, we can find an η > 0 such that with high probability,

〈U, T〉 >
√

PUσ2
t

PU +D
+ η (5.70)

=
√

σ2
t (PU − (1 − ρ2)Γ) + η (5.71)

= ρ
√

Γσ2
t + ασ2

t + η . (5.72)

Therefore with high probability we have

〈U − αT, T〉 > ρ
√

Γσ2
t + η/2 . (5.73)

Therefore we can choose ǫ2 to satisfy (5.60).

The last thing to check is that we can satisfy the encoder power constraint with

high probability. Setting X = U − αT, we can see that for any δ′ > 0, with high

probability

‖X‖2 ≤ PU − 2α 〈U, T〉 + α2σ2
t + δ′ . (5.74)

Choosing δ′ sufficiently small yields ‖X‖2 < Γ − αη, which proves the result.

Theorem 21. Let

A(Λ) =







(α, ρ) :

(

Γ + (1 + α)ρ
√

Γσ2
t + ασ2

t

)2

Γ + 2ρα
√

Γσ2
t + α2σ2

t

> Λ







. (5.75)

The following rate is achievable:

R = max
(α,ρ)∈A(Λ)

1

2
log

(
(1 − ρ2)ΓPY

(1 − α)2(1 − ρ2)Γσ2
t + PIPU

)

. (5.76)
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Proof. We will choose the constants ǫ1 and ǫ2 according to Lemma 19. The decoder

must decode U(m, i) from the received signal Y:

Y = U(i) + (1 − α)T + S + W . (5.77)

The codebook {Uk} can be used to achieve any rate below the deterministic coding

capacity of the GAVC with input U, noise W + (1− α)T, and jamming interference

S, provided PU > Λ. We can therefore choose RU to be equal to this capacity and

for fixed α and ρ we calculate the capacity in what follows.

We first find the power of the component of T that is orthogonal to U:

T =
〈U, T〉
‖U‖2 U +

(

T − 〈U, T〉
‖U‖2 U

)

. (5.78)

From (5.60) we see that for any δ > 0 we can choose n sufficiently large that

P

(

〈U, T〉 ≥ ρ
√

Γσ2
t − ασ2

t − 2ǫ2

)

≥ 1 − δ . (5.79)

Let PT be the expected power in the second term of (5.78). Then for sufficiently large

n we also have

P




PT ≤




σ

2
t −

(

ρ
√

Γσ2
t + ασ2

t − 2ǫ2

)2

PU









 ≥ 1 − δ . (5.80)

Some algebraic manipulation reveals that there is a constant c such that

P

(

PT − (1 − ρ2)Γσ2
t

PU
≤ cǫ2

)

≥ 1 − δ . (5.81)

In the GAVC (5.77) we define the equivalent noise variance as PI + (1 − α)2PT .

In order for U to be decodable, RU must be smaller than the capacity of the
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corresponding AWGN channel:

RU <
1

2
log

(
PUPY

(1 − α)2(1 − ρ2)Γσ2
t + PIPU

)

. (5.82)

Then RU −Rbin gives the term to be maximized in (5.76). Note that in the presence

of a jammer with power constraint Λ, the U codebook is only capacity achieving if

the received power in the U direction exceeds Λ. This received power is:

γ(α, ρ) =

(

Γ + (1 + α)ρ
√

Γσ2
t + ασ2

t

)2

PU
. (5.83)

Thus for (α, ρ) ∈ A(Λ) the the GAVC threshold for the U codebook can be met and

U can be decoded. Lemma 19 shows that for large n the encoding will succeed, so

the probability of error can be made as small as we like.

For parameter values such that the point (α0, 0) ∈ A(Λ), the Costa rate is achiev-

able. Since this rate corresponds to the jammer adding iid noise, the dirty-paper code

is capacity achieving.

Corollary 5 (Capacity achieving parameters). If Γ, Λ and σ2
t are such that

Λ <
(Γ + α0σ

2
t )

2

Γ + α2
0σ

2
t

, (5.84)

then the capacity of the channel (5.53) under deterministic coding is

Cd =
1

2
log

(

1 +
Γ

Λ + σ2
W

)

, (5.85)

and is achievable using the dirty paper code.

There is a threshold on Λ making the capacity equal to 0. If the jammer can

simulate both the known interference and the transmitter’s strategy, then it can
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symmetrize the channel.

Lemma 20 (Näıve outer bound). We have

Cd ≤







0 Λ > (σt +
√

Γ)2

1
2
log
(

1 + Γ
Λ+σ2

W

)

otherwise .
(5.86)

Proof. If Λ > (σt +
√

Γ)2, the jammer chooses a message m′ uniformly in [N ] and

creates a variable T′ identically distributed to T. It then mimics the encoder φ to

create X′ = φ(m′,T′) and sets S = T′ + X′. Since Λ > (σt +
√

Γ)2, this is a valid

jamming strategy. The signal seen by the receiver is

Y = (φ(m,T) + T) + (φ(m′,T′) + T′) + W . (5.87)

Since the channel is symmetric, standard AVC arguments show that the capacity

must be 0.

Figure 5.6 shows an example of the achievable rate versus Γ. The two circles show

the thresholds given by Corollary 5 and the threshold for the standard Gaussian AVC

with deterministic coding and average error. The presence of the known interference

T extends the capacity region relative to the standard AVC and achieves capacity

for values of Γ that are smaller than the jammer constraint Λ. Thus far we have

been unable to improve the converse for the region in which DPC does not achieve

capacity; it may be that a different coding scheme utilizing the interference T can

achieve higher rates in this regime.
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Figure 5.6: Rates versus Γ for Λ = 5, σ2
t = 2, and σ2

W = 1. The solid line is the achievable
rate and the dashed line is the outer bound. The dotted line is the AVC capacity without
the known interference signal. The threshold for the dotted line is at Γ = Λ and the DPC
threshold is given by (5.84).

5.3.3 Watermarking for additive attacks

One application in which DPC is useful is Gaussian watermarking [38]. In the

watermarking problem, an encoder must encode a message m in a given cover-

text (e.g. an image) which is modeled by an iid Gaussian sequence T. The en-

coder produces a stegotext V = φ(m,T) + T that satisfies a distortion constraint

‖V − T‖ = ‖φ(m,T)‖2 ≤ Γ. In the standard watermarking game, V is then sub-

jected to an attack that can depend on V to produce a compromised text Y. The

attack is also required to have limited distortion, so ‖Y −V‖2 ≤ Λ. The decoder

must recover the message m from Y. The encoder and decoder are typically allowed

to use (unlimited) common randomness. A modified dirty-paper code achieves the

watermarking capacity, which is defined to be the maximum rate at which a water-

mark can be conveyed with vanishingly small probability of decoding error (averaged

over messages).

A limited class of attacks are additive attacks, which take the form of an additive
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signal S that is independent of the stegotext V. Under randomized coding, this kind

of attacker can do no worse than add Gaussian noise to the stegotext, and the capacity

is given by (1/2) log(1 + Γ/Λ). We can use Theorem 21 with the noise W set to 0 to

find achievable rates for this problem under deterministic coding; a decoder should be

able to read the watermark without sharing a secret key with the encoder. Because

the encoder does not want to distort the covertext by too much, an interesting regime

for deterministic watermarking is when the power σ2
t of the covertext is much higher

than the distortion limit Γ of the encoder. From (5.84) we can see that large σ2
t

benefits the encoder by increasing the effective power of the auxiliary codebook to

beat the jammer Λ.

By setting equality in (5.84), ρ = 0, and α = α0, we can solve for σ2
t to get

σ2
t =

1

2
Λ

(

5 + 4
Λ

Γ

)1/2

− Γ − 1

2
Λ . (5.88)

Let us set β = Λ/Γ be the ratio of the attack distortion to the watermark distortion.

We can rewrite the achievable σ2
t threshold as a function of β:

σ2
t = Γ

(
1

2
β(5 + 4β)1/2 − 1

2
β − 1

)

. (5.89)

As we can see, the required σ2
t grows like β3/2. Therefore for a fixed watermark

distortion, the cover text variance must increase like Λ3/2 in order to communicate at

the randomized watermarking capacity.

An additive attack is a weak model for watermarking. It is more interesting to

consider attackers which can directly manipulate the stegotext, as in the nosy noise

error model. With deterministic coding, the jammer can read the watermark and

then base its attack on that. This corresponds to an attack on the U codebook in

the dirty-paper code, and appears to be a difficult sphere-packing problem. An easier
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Figure 5.7: An AVC model for a cognitive radio system. The cognitive encoder can use
the message mp for the primary user to encode its own codeword.

problem may be to develop codes that use limited common randomness, as in Chapter

3, but we leave this for future work.

5.3.4 An AVC perspective on cognitive radio

A cognitive radio is a communication system that acts as a secondary user of licensed

spectrum by agreeing to not impair the performance of the system used by a primary

licensee. An interesting challenge posed by these new communications systems is

to find theoretical models whose analysis reveals fundamental design tradeoffs. One

model that has been proposed by Devroye, Mitran, and Tarokh [50] is the “cognitive

interference channel” as shown in Figure 5.7. In this model, the primary and sec-

ondary (or cognitive) users can collaborate to communicate their messages to their

respective decoders. More specifically, the cognitive transmitter is given non-causal

knowledge of the primary user’s message.

Let mp and mc denote the messages for the primary and cognitive systems. The

primary encoder maps mp into a codeword Xp of power Γp and the cognitive encoder

maps mc andmp into a codeword Xc of power Γc. The received signals at the decoders
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are

Yp = Xp + hcpXc + Sp (5.90)

Yc = hpcXp + Xc + Sc . (5.91)

The gains hcp and hpc are assumed to be known to all parties. Devroye et al. model

the noise signals Sp and Sc as Gaussian noise of variance Λp and Λc. The requirements

are that the primary system should be agnostic to the actions of the cognitive system.

This means that the rate

Rp =
1

2
log

(
Γp + Λp

Λp

)

(5.92)

should be achievable with the same primary encoder/decoder, regardless of the pres-

ence of the cognitive system.

The capacity under this model was found by Jovic̆ić and Viswanath [90] when Xp

is generated from a Gaussian codebook. The achievable scheme is based on spending

part of the cognitive system’s power to boost the primary’s signal and using the

remaining power in a dirty-paper code treating the primary’s signal and boosting as

known interference. For Λc = 1 the cognitive link achieves a rate

Rc =
1

2
log (1 + (1 − µ)Γc) , (5.93)

where µ is a constant that depends on the other parameters. More precisely, the

cognitive encoder transmits Xc = V+
√

µΓc/ΓpXp, where V is encoded using a dirty

paper code treating (hpc +
√

µΓc/Γp)Xp as known interference.

We will focus on the cognitive system and instead treat Sc as arbitrarily varying

interference of power Λc while leaving Sp as Gaussian noise. This corresponds to

a model where the interference seen by the cognitive system can be broken into
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one component from a known interferer (the primary) and another from unknown

interferers (possibly other cognitive systems). We can evaluate the performance of

generalized dirty-paper coding for this cognitive radio model by modifying our main

result. We choose the cognitive system’s codeword to be

Xc = V + ηXp , (5.94)

where V is encoded using our the AVC dirty paper code. From the perspective of

the cognitive system, we define T = (η + hpc)Xp to get the channel

Yc = V + T + Sc . (5.95)

Here σ2
t = (η + hpc)

2Γp. The parameters (η, α, ρ) must be chosen to satisfy the

overall transmit power constraint ‖Xc‖2 ≤ Γc, the AVC threshold constraint, and the

coexistence condition (5.92).

Before we can continue with the analysis, we must address one difference in this

channel and the channel analyzed in Theorem 21. In Theorem 21 we could bound

the average error of the scheme by noting that {Uj} is a capacity-achieving codebook

for the GAVC under average error. The distribution on {Uj} induced by Gaussian

interference T is uniform in expectation, so bounding the average error of {Uj} gives

a bound on the error of the scheme. In the cognitive radio channel, the known

interference Xp is not Gaussian. However, we will assume that Xp is drawn from

a Gaussian codebook. Therefore the induced distribution on {Uj} converges to the

uniform distribution and therefore the results will still hold.

First fix (η, α, ρ). Then the expected transmit power is

Γc = ‖Xc‖2 = ‖V‖2 + η2Γp +
2η

η + hpc
〈V, T〉 . (5.96)
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Let Γv = ‖V‖2. Then, using the definition of ρ in (5.60), we obtain the following

quadratic equation in
√

Γv:

0 = Γv + 2ηρ
√

Γp
√

Γv + (η2Γp − Γc) . (5.97)

Solving, we find

Γv =
((

Γc − η2(1 − ρ2)Γp
)1/2 − ηρ

√

Γp

)2

. (5.98)

Thus we can use power Γv in the dirty paper code.

With Γv and σ2
t thus defined, the expected received power PYc

and auxiliary

codebook power PU are given by

PYc
= Γv + 2ρ

√

Γvσ2
t + σ2

t + Λc (5.99)

PU = Γv + 2αρ
√

Γvσ2
t + α2σ2

t . (5.100)

Theorem 21 gives a condition for which a choice of (η, α, ρ) will be sufficient to

overcome the AVC threshold Λc = 1:

Λ <
(Γv + (1 + α)ρ

√

Γvσ2
t + ασ2

t )
2

PU .
. (5.101)

If ρ 6= 0, then the transmitted V contributes power to the primary received signal

in the Xp direction. This affects how the coexistence condition (5.92) is satisfied.

The received signal at the primary can be rewritten as

Yp = (1 + hcpη)Xp + hcpV + Sp . (5.102)

The projection of V in the direction of Xp has power ρ2Γv, so the overall noise power
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with respect to Xp is (1 − ρ2)h2
cpΓv + Λp. The total received power PYp

= ‖Yp‖2 is

PYp
= (1 + hcpη)

2Γp + 2(1 + hcp)hcpρ
√

ΓpΓv

+ h2
cpΓv + Λp . (5.103)

Thus the coexistence constraint can be expressed as:

Γp + Λp

Λp

=
PYp

(1 − ρ2)h2
cpΓv + Λp

. (5.104)

We can express this achievable rate region in the following corollary:

Corollary 6. Let Γv be given by (5.98), σ2
t = (η + hpc)

2Γp, and

A = {(η, α, ρ) : (5.101), (5.104) satisfied} . (5.105)

Then the following rate is achievable for the cognitive system:

Rc = max
(η,α,ρ)∈A

1

2
log

(
(1 − ρ2)ΓvPYc

(1 − α)2(1 − ρ2)Γσ2
t + ΛcPU

)

. (5.106)

Figure 5.8 and 5.9 give two plots of the achievable rates as a function of the gain

hpc from the primary transmitter to the cognitive receiver. Figure 5.8 corresponds to

small hcp, which means the cognitive transmitter is far from the primary receiver. In

this case, the effect of spending power to aid the primary transmission hampers the

cognitive system and it requires larger hpc to overcome the jammer. Figure 5.9 is for

larger hcp, which means the cognitive transmitter is closer to the primary receiver.

Here the cognitive system achieves lower rates but reaches capacity faster as a function

of hpc. That is, stronger known interference from the primary system can helps weak

cognitive transmitter reach capacity in the presence of jamming interference.
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Figure 5.8: Plot of achievable rates versus varying gain from the primary transmitter to
the cognitive receiver when the primary receiver is far from the cognitive transmitter (small
hcp). The flat region corresponds to the capacity assuming Sc is noise.
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Figure 5.9: Plot of achievable rates versus varying gain from the primary transmitter to
the cognitive receiver when the primary receiver is close to the cognitive transmitter (large
hcp). The flat region corresponds to the capacity assuming Sc is noise.
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5.4 Conclusions

In this chapter we showed that a modest amount of randomization is sufficient to

achieve the randomized coding capacity of the GAVC and saw an example of how

to use the randomization for broadcast channels. If there exists a source of common

randomness [16,17] R′ shared between the encoder and decoder, they can generate a

key rate of R′, which is sufficient for an exponential error decay. However, our results

show that a more modest key size is sufficient to achieve capacity.

Because the required key size is small, we could instead consider a case where the

encoder and decoder must generate it from a correlated source. Suppose instead that

a sequence of random variables {Ui : i = 1, 2, . . . n} and {Vi : i = 1, 2, . . . , n} are

given to the encoder and decoder respectively. For discrete AVCs, it was shown by

Ahlswede and Cai [14] that even if the common randomness CR(U, V ) = 0, as long

as the mutual information I (U ∧ V ) > 0 the deterministic coding capacity under

average error is always equal to the randomized coding capacity. An open question

is whether this remains true for the Gaussian AVC.

We also investigated how a known interference signal at the transmitter can help

a transmitter overcome arbitrarily varying interference. By using a dirty paper code,

the transmitter uses some of the interference power to augment its own effective

power. This leads into an improved threshold for the capacity region of Gaussian

AVCs. Our theorem shows that deterministic watermarking codes can achieve the

randomized coding capacity if the covertext variance is sufficiently large. We also

found achievable rates for an AVC model for cognitive radios in which a cognitive

system may cooperate with a primary system but is subject to unknown interference

from other signals.
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Chapter 6

Looking Ahead

As architectures for communication systems transition from centralized to decentral-

ized designs, new challenges will arise in the design of robust and adaptive protocols.

Platforms such as sensor networks, ad-hoc networks, and cognitive radio require com-

munication schemes to work in a variety of channel conditions that may not be mod-

eled by the stationary channel models most often studied in information theory. The

arbitrarily varying channel is an alternative model that makes very little assumptions

on the channel dynamics.

Assuming an adversarial model for the channel state selection may not be philo-

sophically or phenomenologically satisfying for “real-world” communication systems

outside of military communications. The AVC model can be relaxed in several differ-

ent ways that make the jammer seem less adversarial. Allowing randomization, list

decoding, feedback, or moving to the average error criterion are examples of these

relaxations. In this thesis we saw how extra resources can help make point-to-point

communication over AVCs more robust and adaptive.
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Chapter 6. Looking Ahead

For the capacity of the AVC under nosy noise, we saw that list decoding plays

an important role in the achievable scheme using randomization. The recent results

on list decoding for Reed-Solomon codes and variants [79, 78, 119] mean that it may

be possible to design practical randomized codes that achieve the capacity for some

AVC models. It would be extremely interesting to find list decoding algorithms for

other ensembles of codes, such as low-density parity check (LDPC) codes.

The bulk of this thesis focused on discrete AVCs, which had been studied fairly ex-

tensively in the research literature. The Gaussian AVC has been less studied and there

are still many interesting aspects to consider in that setting in terms of robustness

and adaptivity. For example, multiple antenna (MIMO) systems are an important

first step in understanding distributed collaboration schemes. In the Gaussian AVC

context we may model the jammer as another system with a different number of an-

tennas than the transmitter and receiver. Preliminary work on this problem suggests

that the behavior may be quite interesting [131].

There has been a spate of recent work in the information theory literature on

cooperative communication protocols (see for example the special issue of the IEEE

Transactions on Information Theory [98], the recent monograph by Kramer, Marić,

and Yates [99], and references therein). This research deals with quantifying the

potential gains from user cooperation in a communication system and how how to

realize these gains. In contrast, there is an ever-growing literature in networking on

congestion control and resource allocation via market mechanisms such as pricing

[93,94], auctions [83], and game theory. These models assume users do not cooperate

and in fact are competing for the same resources in the network.

One difference between these two views is granularity – the users in the network

context may be groups of cooperating users in the physical layer context. In the

multiple access case, this is similar to the model studied by La and Anantharam [100].

Another model may be via coalitional game theory [110]. Arbitrarily varying channels
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may be one way to merge these two perspectives – a group of cooperating users can

share joint randomization and other resources to compete against other users. The

channels seen by each group are AVCs treating the other groups as jammers. Coding

strategies for more general AVCs can therefore be seen as a way of insulating groups

of cooperating users from the vagaries of other groups. As wireless systems become

more complex, this isolation may be an important tool for reducing the complexity

of system design.
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Appendix A

Notation

Typeface conventions

Style Example Description

calligraphic X , S, etc. alphabets for random variables

boldface x, s, etc. vector (x1, x2, . . . , xn)

Sets, types

Symbol Description Reference

[M ] the set {1, 2, . . . ,M} Page 7

P(X ) probability distributions on X Page 7

P(Y|X ) conditional distributions on Y given X Page 7

N(x|x) the number of times x appears in x Page 7

Tx the type of x (1.1)

Tn(P ) set of all length-n sequences of type P (1.2)

T ǫP ǫ-typical P -sequences (1.8)

T ǫV (x) (V, ǫ)-shell around x (1.9)
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Information measures and metrics

Symbol Description Reference

dmax (P,Q) ℓ∞ distance between distributions P and Q (1.7)

H(X) entropy of a random variable X [41, 44]

H(P ) entropy of the distribution P [41, 44]

H(Y |X) conditional entropy of Y given X [41, 44]

H(V |P ) H(Y |X) under the distribution V (y|x)P (x) [41, 44]

I (X ∧ Y ) mutual information between X and Y [41, 44]

I (P, V ) mutual information under the distribution V (y|x)P (x) (1.26)

hb(·) binary entropy function Page 22

Arbitrarily varying channel parameters

Symbol Description Reference

W an AVC {W (·|·, s) : s ∈ S} Page 9

g(·) input cost function Page 9

γ∗ upper bound on g(·) Page 9

Γ input cost bound (1.13)

l(·) state cost function Page 9

λ∗ upper bound on l(·) Page 9

Λ state cost bound (1.14)

203



Chapter A. Notation

Sets and functions for the AVC

Symbol Description Reference

Sn(Λ) set of sequences with average cost ≤ Λ (1.15)

I(Γ) input distributions satisfying cost constraint (1.27)

Q(Λ) state distributions satisfying cost constraint (1.28)

U(P,Λ) nosy noise jammer channels satisfying cost constraint (1.29)

Wstd(Λ) convex closure of the AVC (1.30)

Wdep(P,Λ) row-convex closure of the AVC with input P (1.31)

Usym(m) set of channels Xm → S that symmetrize the AVC (1.37)

Cstd(Γ,Λ) max-min under iid state selection (1.38)

Cdep(Γ,Λ) max-min under input-dependent state selection (1.39)

Er(R,P,Λ) error exponent for AVCs under maximal error (1.75)

Coding and errors

Symbol Description Reference

(φ, ψ) deterministic encoder and decoder (1.20)

(Φ,Ψ) randomized encoder and decoder Page 13

Di set of outputs which decode to message i Page 12

ε(i, s) probability of error for message i given state s (1.21)

ε maximal error (1.22)

ε average error (1.23)

ε̂ error under nosy noise (1.25)

εL error for list decoding under maximal error (1.35)

εL error for list decoding under average error (1.36)
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Capacities

Symbol Description

Ĉd capacity for deterministic coding and nosy noise error

Cd capacity for deterministic coding and maximal error

Cd capacity for deterministic coding and average error

Ĉr capacity for randomized coding and nosy noise error

Cr capacity for randomized coding and maximal error

Cr capacity for randomized coding and average error

CL capacity under list decoding with list size L and maximal error

CL capacity under list decoding with list size L and average error

List decoding

Symbol Description Reference

Lsym unconstrained symmetrizability Page 19

λm(P ) strong symmetrizing cost (2.51)

Lsym(P,Λ) strong symmetrizability (2.52)

λ̃m(P ) weak symmetrizing cost (2.53)

L̃sym(P,Λ) weak symmetrizability (2.54)

Gη(Λ) allowable joint types for average-error decoding (2.115)
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Rateless codes

Symbol Description Reference

I (P,V) minimum mutual information minV ∈V I (P, V ) (4.5)

c chunk size for rateless code Page 128

Vm state information set after m chunks Page 128

V(c) possible values for Vm Page 128

λM average state cost over chunk m (4.16)

λ̂m side information about cost at chunk m (4.17)

ΛM average state cost up to chunk m (4.22)

Λ̂M average cost estimate up to chunk M (4.23)

Λ̃M cost used by codebook after chunk M (4.32)

v polynomial exponent for size of V(c) Page 130

x(mc), y(mc), s(mc) m-th chunk of vectors x, y and s Page 128.

xr1, yr1, sr1 first r elements of x, y, and s Page 128

Φm rateless code encoder for m-th chunk (4.6)

τm rateless code feedback function for m-th chunk (4.7)

Ψm rateless code decoder for m-th chunk (4.8)

M decoding time for rateless code (4.9)

M possible values of the decoding time M Page 129

M∗ minimum value of M Page 129

M∗ maximum value of M Page 129

ε(M, s) rateless coding maximal error (4.11)

ε̂(M,J) rateless coding error under nosy noise (4.12)
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Appendix B

Some simple inequalities

B.1 Continuity bounds for entropies

We need a short technical lemma about concave functions.

Lemma 21. Let f be a concave increasing function on [a, b]. Then if a ≤ x < x+ǫ ≤
b, we have

f(x+ ǫ) − f(x) ≤ f(a+ ǫ) − f(a) . (B.1)

Proof. Without loss of generality we can take a = 0, b = 1, and f(a) = 0. Now

consider

f(x) = f

(
x

x+ ǫ
· (x+ ǫ) +

ǫ

x+ ǫ
· 0
)

≥ x

x+ ǫ
f(x+ ǫ) +

ǫ

x+ ǫ
f(0)

=
x

x+ ǫ
f(x+ ǫ)

f(ǫ) = f

(
x

x+ ǫ
· 0 +

ǫ

x+ ǫ
· (x+ ǫ)

)

≥ x

x+ ǫ
f(0) +

ǫ

x+ ǫ
f(x+ ǫ)

=
ǫ

x+ ǫ
f(x+ ǫ) .
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Therefore

f(x) + f(ǫ) ≥ f(x+ ǫ) , (B.2)

as desired.

Using the preceding lemma, we can show that a bound on the total variational

distance between two distributions gives a bound on the entropy between those two

distributions.

Lemma 22. Let P and Q be two distributions on a finite set S with |S| ≥ 2. If

|P (s) −Q(s)| ≤ ǫ ∀s ∈ S , (B.3)

then

|H(P ) −H(Q)| ≤ (|S| − 1) · hb(ǫ) + (|S| − 1) log(|S| − 1) · ǫ , (B.4)

where hb(·) is the binary entropy function.

Proof. Let S = {s1, s2, . . .}. We proceed by induction on |S|. Suppose |S| = 2, and

let p = P (s1) and q = Q(s1). The entropy function hb(x) is concave, increasing on

[0, 1/2] and decreasing on [1/2, 1]. Applying Lemma 21 to each interval, we obtain

the bound:

|hb(x+ ǫ) − hb(x)| ≤ hb(ǫ) . (B.5)

Since H(P ) = hb(p) and H(Q) = hb(q), this proves our result.

Now suppose that the lemma holds for |S| ≤ m−1, and consider the case |S| = m.

Without loss of generality, let P (sm) > 0 andQ(sm) > 0. Let λ = (1−P (sm)) and µ =
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(1−Q(sm)) and note that |λ−µ| < ǫ by assumption. Define the (m−1) dimensional

distributions P ′ = λ−1(P (s1), . . . , P (sm−1)) and Q′ = λ−1(Q(s1), . . . , Q(sm−1)), so

that

P = (λP ′, (1 − λ))

Q = (µQ′, (1 − µ)) .

Therefore,

H(P ) = hb(λ) + λH(P ′)

H(Q) = hb(µ) + µH(Q′) .

Now we we can expand the difference of the entropies, using the fact that λ < 1,

the induction hypothesis on |H(P ′)−H(Q′)| and |hb(λ)−hb(µ)|, and the cardinality

bound on the entropy H(Q′) to obtain

|H(P )−H(Q)| = |λH(P ′) − µH(Q′) + hb(λ) − hb(µ)|

≤ λ|H(P ′) −H(Q′)| + |λ− µ|H(Q′) + |hb(λ) − hb(µ)|

≤ (m− 2) · hb(ǫ) + (m− 2) log(m− 2) · ǫ+ log(m− 1) · ǫ+ hb(ǫ)

≤ (m− 1) · hb(ǫ) + (m− 1) log(m− 1) · ǫ .

Lemma 23. Let W (y|x) and V (y|x) be two channels with finite input and output

alphabets X and Y. If

|W (y|x) − V (y|x)| ≤ ǫ ∀(x, y) ∈ X × Y , (B.6)
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then for any input distribution P on X we have

|I(P,W ) − I(P, V )| ≤ 2(|Y| − 1) · hb(ǫ) + 2(|Y| − 1) log(|Y| − 1) · ǫ , (B.7)

where hb(·) is the binary entropy function.

Proof. We simply apply Lemma 22 twice. Let QW and QV be the marginal distribu-

tions on Y under channels W and V respectively. Then

|QW (y) −QV (y)| ≤
∑

x

P (x)|W (y|x)− V (y|x)| ≤ ǫ .

Now we can break apart the mutual information and use Lemma 22 on each term:

|I(P,W )− I(P, V )| ≤ |H(QW ) −H(QV )|

+
∑

x

P (x)|H(W (Y |X = x)) −H(V (Y |X = x))|

≤ 2(|Y| − 1) · hb(ǫ) + 2(|Y| − 1) log(|Y| − 1) · ǫ .

B.2 Properties of concatenated fixed composition sets

Let τ(x) be the type of x. Let Tn(P ) = {x ∈ X n : τ(x) = P} be the set of of all

length-n vectors of type P . For a vector x, let xm1 be the first m elements of x.

Lemma 24. For all finite sets X , and all types P with p0 = minx∈X P (x) > 0, there

exists η = η(P ) <∞ such that for all integers M,n > 0,

|Tn(P )|M
|Tmn(P )| ≥ exp(−ηM log(n+ 1)) . (B.8)
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Proof. We begin by expanding the ratio:

|Tn(P )|M
|Tmn(P )| =

(
n

p1n, p2n, ..., p|X|n

)M

(
Mn

p1Mn, p2Mn, ..., p|X|Mn

) .

We can bound the multinomial coefficient using Stirling’s approximation [65, pp.

50–53] :

(
n

p1n, p2n, . . . , p|X |n

)

=
n!

(p1n)! · (p2n)! · · · (p|X |n)!

≥ (
√

2π)−|X |+1 · nn
√
n

∏|X |
x=1(pxn)pxn

√
pxn

· exp




1

12n+ 1
−

|X |
∑

x=1

1

12pxn



 ,

and

(
Mn

p1Mn, p2Mn, . . . , p|X |Mn

)

=
(Mn)!

(p1Mn)! · (p2Mn)! · · · (p|X |Mn)!

≤ (
√

2π)−|X |+1 · (Mn)Mn
√
Mn

∏|X |
x=1(pxMn)pxMn

√
pxMn

· exp



− 1

12Mn + 1
+

|X |
∑

x=1

1

12pxMn



 .
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Now we can cancel some terms to get a further lower bound for some 0 < ν(P ) <∞:

|Tn(P )|M
|Tmn(P )|

≥ (
√

2π)−(M−1)(|X |−1) · nMn

(Mn)Mn
·





|X |
∏

x=1

(pxMn)pxMn

(pxn)pxMn





·




(Mn)(|X |−1)

nM(|X |−1)
·
|X |
∏

x=1

p−(M−1)
x





1/2

· exp




M

12n+ 1
−

|X |
∑

x=1

M

12pxn
+

1

12Mn+ 1
−

|X |
∑

x=1

1

12pxMn





≥ exp(−M |X | log
√

2π) · exp

(
1

2
(|X | − 1)(logMn−M log n)

)

· exp (−ν(P )M/n)

≥ exp

(

−M
(

|X | log
√

2π +
1

2
(|X | − 1) logn− (|X | − 1) logMn

2M
+
ν(P )

n

))

≥ exp(−ηM log(n+ 1)) ,

where η = η(P ) <∞.
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Appendix C

Computations for examples

This appendix contains some of the computations used in the examples provided in

the thesis.

C.1 Cdep(Γ,Λ) for binary real additive channels

In Example 1.5 on page 22, we claimed the that Cdep(Γ,Λ) of the binary-input,

binary-state real additive channel was given by

Cdep(Γ,Λ) =







hb
(

1−Λ
2

)
− 1+Λ

2
hb
(

2Λ
1+Λ

)
Γ ≥ 1−Λ

2

hb(Γ) − (Λ + Γ)hb
(

Λ
Λ+Γ

)
Γ < 1−Λ

2

(C.1)

To show this we must compute the max-min expression

Cdep(Γ,Λ) = max
P∈I(Γ)

min
V ∈Wdep(P,Λ)

I (P, V ) . (C.2)

Intuitively we expect that the optimal jamming strategy is to set s = 0 when x = 1

and s = 1 when x = 0 in order to make the output equal 1 as often as possible. We

can verify that this is indeed the optimal strategy.
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Fix an input distribution P = (1 − p, p) so that P (X = 1) = p. We can define a

channel U(s|x) ∈ U(P,Λ) via a matrix

U




U00 1 − U00

1 − U11 U11



 , (C.3)

where Uij = U(j|i). Under U the averaged channel V =
∑

sW (y|x, s)U(s|x) can be

written as

V =




U00 1 − U00 0

0 1 − U11 U11



 , (C.4)

For fixed p want to minimize the mutual information I (P, V ) over U00 and U11 subject

to the cost constraint

EPU [l(s)] = (1 − p)(1 − U00) + pU11 ≤ Λ . (C.5)

We form the Lagrangian

J(U00, U11, µ) = (1 − p)U00 log
1

1 − p
+ pU11 log

1

1 − p

+ (1 − p)(1 − U00) log
1 − U00

(1 − p)(1 − U00) + p(1 − U11)

+ p(1 − U11) log
1 − U11

(1 − p)(1 − U00) + p(1 − U11)

+ µ((1 − p)(1 − U00) + pU11) . (C.6)
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Differentiating with respect to U00 and U11 and canceling terms we obtain:

∂J

∂U00
= (1 − p) log

1

1 − p
− (1 − p) log

1 − U00

(1 − p)(1 − U00) + p(1 − U11)
− (1 − p)µ

= −(1 − p)

(

log
(1 − p)(1 − U00)

(1 − p)(1 − U00) + p(1 − U11)
+ µ

)

(C.7)

∂J

∂U11
= p log

1

p
− p log

1 − U11

(1 − p)(1 − U00) + p(1 − U11)
+ pµ

= −p
(

log
p(1 − U11)

(1 − p)(1 − U00) + p(1 − U11)
− µ

)

. (C.8)

If the constraint is inactive, then the multiplier µ = 0 and we can see that the the

partial derivatives with respect to U00 and U11 are both positive. Thus the minimizing

point is at U00 = 0 and U11 = 0. The resulting mutual information is 0 because the

output is always equal to 1. Substituting 0 for U00 and U11 in the cost formula shows

that the constraint is inactive when

Λ ≥ 1 − p . (C.9)

Turning now to the case where the constraint is active, we have µ > 0. Again,

the derivative with respect to U11 is always positive, so the optimal U11 = 0. Since

the constraint is active we can see from the cost expression that

1 − U00 =
Λ

1 − p
. (C.10)
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Substituting this into the mutual information expression we obtain

f(p) = (1 − p− Λ) log
1

1 − p
+ Λ log

Λ/(1 − p)

Λ + p
+ p log

1

Λ + p
(C.11)

= hb(p) + Λ log
Λ

Λ + p
+ p log

p

Λ + p
(C.12)

= hb(p) − (Λ + p)hb

(
Λ

Λ + p

)

. (C.13)

We now have to maximize f(p) subject to p ≤ min(Γ, 1 − Λ). Taking the derivative

of f(p) we get

df

dp
= log

1 − p

p
+

Λ

Λ + p
log

p

Λ
− hb

(
Λ

Λ + p

)

(C.14)

= log
1 − p

Λ + p
. (C.15)

We have df/dp = 0 at p = (1−Λ)/2. Therefore if Γ ≥ (1− Λ)/2 then we can choose

p = (1 − Λ)/2. In the range (0, (1 − Λ)/2) we have df/dp > 0, so if Γ < (1 − Λ)/2

the optimal choice is p = Γ. To summarize:

Cdep(Γ,Λ) =







hb
(

1−Λ
2

)
− 1+Λ

2
hb
(

2Λ
1+Λ

)
Γ ≥ 1−Λ

2

hb(Γ) − (Λ + Γ)hb
(

Λ
Λ+Γ

)
Γ < 1−Λ

2

(C.16)

C.2 Not all AVCs are distortion-constrained channels

In this section we will look at an example of an AVC that cannot be thought of as

a distortion channel in the sense of [1]. Because the capacity formulae under both

models involves the minimization over a constrained set of channels, we will look at

the generic minimization problem over a set of binary-input binary-output channels.
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We want to investigate the structure of a minimization

min
z
I(P,W (z)) (C.17)

s.t. f(P, z) ≥ 0 (C.18)

Where P = (1 − p, p) is the input distribution of a binary input, binary output

channel, and

W =




W00(z) W01(z)

W10(z) W11(z)



 . (C.19)

is the channel transition matrix that is a function of some parameter z.

We form the Lagrangian

J(z) = I(P,W (z)) + λf(P, z) . (C.20)

Let z be some element of z. Then

∂

∂z

(

(1 − p)W00 log

(
W00

(1 − p)W00 + pW10

))

(C.21)

= (1 − p)
∂W00

∂z
log

(
W00

(1 − p)W00 + pW10

)

+ (1 − p) ((1 − p)W00 + pW10)
∂

∂z

(
W00

(1 − p)W00 + pW10

)

(C.22)

= (1 − p)
∂W00

∂z
log

(
W00

(1 − p)W00 + pW10

)

+ (1 − p)p

(

W10
∂W00

∂z
−W00

∂W10

∂z

(1 − p)W00 + pW10

)

.

(C.23)
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Similarly:

∂

∂z

(

pW10 log

(
W10

(1 − p)W00 + pW10

))

(C.24)

= p
∂W10

∂z
log

(
W10

(1 − p)W00 + pW10

)

+ (1 − p)p

(

W00
∂W10

∂z
−W10

∂W00

∂z

(1 − p)W00 + pW10

)

.

(C.25)

Therefore the second terms cancel and we get

∂I(P,W )

∂z
= (1 − p)

∂W00

∂z
log

(
W00

(1 − p)W00 + pW10

)

+ (1 − p)
∂W01

∂z
log

(
W01

(1 − p)W01 + pW11

)

+ p
∂W10

∂z
log

(
W10

(1 − p)W00 + pW10

)

+ p
∂W11

∂z
log

(
W11

(1 − p)W01 + pW11

)

. (C.26)

Now we can use the fact that W00 = 1 −W01 and W11 = 1 −W10 to get

∂I(P,W )

∂z
= (1 − p)

∂W01

∂z
log

(
W01

1 −W01

· (1 − p)(1 −W01) + pW10

(1 − p)W01 + p(1 −W10)

)

+ p
∂W10

∂z
log

(
W10

1 −W10
· (1 − p)W01 + p(1 −W10)

(1 − p)(1 −W01) + pW10

)

.

(C.27)

C.2.1 Cost constrained AVCs with nosy noise

Suppose we have a state set S and cost function l : S → R
+. The channel model we

consider is an AVC with nosy noise. There is a channel V (y|x, s) where the state s can

depend on the transmitted symbol x. We define the class of memoryless randomized

strategies for choosing the state by channels U : X → S. We can write these as a
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channel matrix

U =




U0,1 U0,2 · · · U0,|S|

U1,1 U1,2 · · · U1,|S|



 , (C.28)

Where U0,1 = 1 −∑j>1U0,j and U1,1 = 1 −∑j>1U1,j . The channel induced by such

a U is given by:

W00 =
∑

s

V (0|0, s)U0,s (C.29)

W01 =
∑

s

V (1|0, s)U0,s (C.30)

W10 =
∑

s

V (0|1, s)U1,s (C.31)

W11 =
∑

s

V (1|1, s)U1,s . (C.32)

For a cost constraint Λ, we restrict our attention to U such that

(1 − p)
∑

s

U0,sl(s) + p
∑

s

U1,sl(s) ≤ Λ . (C.33)

The U takes the place of our variable z in the previous section, and the constraint f

is given by the cost constraint C.33.
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We can compute partial derivatives:

∂W01

∂U0,s
= V (1|0, s) − V (1|0, 1) s > 1 (C.34)

∂W10

∂U1,s
= V (0|1, s) − V (0|1, 1) s > 1 (C.35)

∂f(P, U)

∂U0,s

= (1 − p)(l(s) − l(1)) (C.36)

∂f(P, U)

∂U1,s
= p(l(s) − l(1)) . (C.37)

The other partial derivatives are 0.

C.2.2 The rate distortion problem

Suppose we fix an input distribution P = (1 − p, p) on X and then ask for the W

that minimizes the mutual information I(P,W ) subject to a distortion constraint:

∑

x,y

P (x)W (y|x)d(x, y) ≤ D . (C.38)

We will write dxy for the number d(x, y). We can carry out the Lagrangian optimiza-

tion directly to get the conditions

∂J

∂W01

= (1 − p) log

(
W01

1 −W01

· (1 − p)(1 −W01) + pW10

(1 − p)W01 + p(1 −W10)

)

+ (1 − p)λ(d01 − d00)

(C.39)

∂J

∂W01
= p log

(
W10

1 −W10
· (1 − p)W01 + p(1 −W10)

(1 − p)(1 −W01) + pW10

)

+ pλ(d10 − d11) . (C.40)
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So the conditions in the end are:

0 = log

(
W01

1 −W01
· (1 − p)(1 −W01) + pW10

(1 − p)W01 + p(1 −W10)

)

+ λ(d01 − d00) (C.41)

0 = log

(
W10

1 −W10
· (1 − p)W01 + p(1 −W10)

(1 − p)(1 −W01) + pW10

)

+ λ(d10 − d11) (C.42)

D = (1 − p)W01d01 + (1 − p)(1 −W01)d00 + pW10d10 + p(1 −W10)d11 . (C.43)

C.2.3 The BSC / Z switching channel

Consider the AVC with binary inputs and outputs and ternary state S = {0, 1, 2}.
Under state 0 the channel is a BSC with crossover probability a, under 1 it is a

Z-channel with parameter b, and under 2 it is an S-channel with parameter c:

V (y|x, 0) =




1 − a a

a 1 − a



 (C.44)

V (y|x, 1) =




1 0

b 1 − b



 (C.45)

V (y|x, 2) =




1 − c c

0 1



 . (C.46)

Then for a randomized jammer strategy:

U =




1 − U01 − U02 U01 U02

1 − U11 − U12 U11 U12



 . (C.47)
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We can compute W as:

W =




(1 − U01 − U02)(1 − a) + U01 + U02(1 − c) (1 − U01 − U02)a+ U02c

(1 − U11 − U12)a+ U11b (1 − U11 − U12)(1 − a) + U11(1 − b) + U12



 .

(C.48)

Now,

∂W01

∂U01
= −a (C.49)

∂W01

∂U02
= −a + c (C.50)

∂W10

∂U11
= −a + b (C.51)

∂W10

∂U12
= −a . (C.52)

So we get the following equations from the optimization:

0 = −a log

(
W01

1 −W01
· (1 − p)(1 −W01) + pW10

(1 − p)W01 + p(1 −W10)

)

+ λ′(l(1) − l(0)) (C.53)

0 = −(a− c) log

(
W01

1 −W01

· (1 − p)(1 −W01) + pW10

(1 − p)W01 + p(1 −W10)

)

+ λ′(l(2) − l(0)) (C.54)

0 = −(a− b) log

(
W10

1 −W10
· (1 − p)W01 + p(1 −W10)

(1 − p)(1 −W01) + pW10

)

+ λ′(l(1) − l(0)) (C.55)

0 = −a log

(
W10

1 −W10
· (1 − p)W01 + p(1 −W10)

(1 − p)(1 −W01) + pW10

)

+ λ′(l(2) − l(0)) . (C.56)
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Or:

0 = −a log

(
W01

1 −W01
· (1 − p)(1 −W01) + pW10

(1 − p)W01 + p(1 −W10)

)

− λ′
l(1) − l(0)

a
(C.57)

0 = −(a− c) log

(
W01

1 −W01
· (1 − p)(1 −W01) + pW10

(1 − p)W01 + p(1 −W10)

)

− λ′
l(2) − l(0)

a− c
(C.58)

0 = log

(
W10

1 −W10

· (1 − p)W01 + p(1 −W10)

(1 − p)(1 −W01) + pW10

)

− λ′
l(1) − l(0)

a− b
(C.59)

0 = log

(
W10

1 −W10
· (1 − p)W01 + p(1 −W10)

(1 − p)(1 −W01) + pW10

)

− λ′
l(2) − l(0)

a
. (C.60)

C.2.4 The final pieces

Consider the AVC above with total cost constraint Λ and let P = (1 − p, p) be

the capacity-achieving input distribution for this AVC. For this P , let W be the

minimizer of I(P,W ) subject to the constraints. Suppose that there exists a distortion

measure d(x, y) and total distortion D such that the Agarwal-Sahai-Mitter problem

with input P , measure d and bound D yields W as the optimal test channel. Then an

examination of the conditions in (C.41)–(C.42) and (C.57)–(C.60) yield the following:

−λ′ l(2) − l(0)

a− c
= λ(d01 − d00) = −λ′ l(1) − l(0)

a
. (C.61)

This implies that

l(2) − l(0)

a− c
=
l(1) − l(0)

a
. (C.62)

But this need not hold. Therefore in some cases we cannot find a distortion measure

d that yields the same mutual information minimizing channel.

223



Appendix D

Proofs for list decoding under average

error

D.1 Proof of Lemma 4

Proof of Lemma 4. Fix ǫ > 0 and P . We consider two cases depending on whether

minx∈X P (x) = 0 or not.

Case 1. First suppose minx∈X P (x) = β > 0. Consider a set of distributions

{Pi : i ∈ [L]} satisfying (2.64) and let P (xL1 ) be a joint distribution satisfying (2.65).

We treat probability distributions as vectors in R
|X |L. We can construct a distribution

P̂ satisfying (2.66) and (2.67) in two steps: first we project P onto the set of all vectors

whose entries sum to 1 and satisfy (2.66), and then we find a P̂ close to this projection

which is a proper probability distribution.

Let B be the subspace of R
|X |L of all vectors P ′ satisfying the marginal constraints

(2.66) as well as the sum probability constraint

∑

xL
1

P ′(xL1 ) = 1 . (D.1)
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We can summarize these linear constraints in the matrix form

AP ′ = b′ , (D.2)

where A contains the coefficients on the left-hand sides of the constraints (2.66) and

(D.1) and b′ has the right-hand sides. We can assume A has full row-rank by removing

linearly dependent constraints. Note that the distribution P satisfies

AP = b , (D.3)

where b has the right-hand sides of (2.65) instead of (2.66).

Now let P̃ be the Euclidean projection of P onto the subspace B :

P̃ = P + AT (AAT )−1(b′ − AP ) . (D.4)

The error in the projection is

P − P̃ = AT (AAT )−1(AP − b′) (D.5)

= AT (AAT )−1(b− b′) . (D.6)

From (2.64) we can see that all elements of (b− b′) are in (−δ, δ). Since the rows of A

are linearly independent, the singular values of A are strictly positive and a function

of |X | and L only. Therefore there is a function µ1(|X |, L) such that

∥
∥AT (AAT )−1(b− b′)

∥
∥

2
< µ1(|X |, L) · δ . (D.7)
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Since |X | is finite there is a function µ2(|X |, L) such that

dmax

(

P̃ (xL1 ), P (xL1 )
)

< µ2(|X |, L) · δ . (D.8)

If the resulting P̃ from this first projection has all nonnegative entries, then we set

P̂ = P̃ and choose δ sufficiently small so that µ2(|X |, L) · δ < ǫ.

If P̃ has entries that are not in [0, 1] then it is not a valid probability distribution.

However, since P is a probability distribution, we know that

min
xL
1

P̃ (xL1 ) > −µ2(|X |, L) · δ . (D.9)

Let PL be the joint distribution on X L with independent marginals P :

PL(x1, . . . , xL) = P (x1) · · ·P (xL) . (D.10)

Since minx P (x) > β we have PL(xL1 ) > βL for all L. Let

α =
µ2(|X |, L) · δ

βL
, (D.11)

and set

P̂ = (1 − α)P̃ + αPL . (D.12)
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Then P̂ (xL1 ) > 0 for all xL1 and by the triangle inequality:

dmax

(

P, P̂
)

≤ dmax

(

P, P̃
)

+ dmax

(

P̃ , P̂
)

(D.13)

< µ2(|X |, L) · δ + αdmax

(

P̃ , PL
)

(D.14)

<

(

1 +
1

βL

)

µ2(|X |, L) · δ . (D.15)

Therefore for δ sufficiently small, we can choose a P̂ such that dmax

(

P , P̂
)

< ǫ for

any ǫ > 0.

Case 2. We turn now to the second case. Suppose that minx∈X P (x) = 0. Let

X0 = {x ∈ X : P (x) = 0} and Z = X \ X0. Let Q ∈ P(Z) be the restriction of P

to Z. Then Q is a probability distribution on Z. First suppose that |Z| = 1. Then

P (x) = 1 for some x ∈ X . Let

P̂ (xL1 ) = P (x1) · · ·P (xL) . (D.16)

Since all the marginal distributions Pi of P satisfy dmax (P, Pi) < δ we know that

dmax

(

P , P̂
)

< δ.

Now suppose |Z| ≥ 2. We can construct P̂ by first finding a a joint distribution

Q that is close to P and then invoking the first case of this proof on Q. From (2.64)

we know that for some c > 0 we have

∑

xL
1 /∈ZL

P (x1, x2, . . . , xL)
∆
= cδ (D.17)

< |X |Lδ . (D.18)
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Define Q by

Q(xL1 ) =







P (xL1 ) + |Z|−Lcδ xL1 ∈ ZL

0 xL1 /∈ ZL
(D.19)

Since Q has support only on ZL we can think of it either as a distribution on X L or

on ZL. Note that

dmax

(
P,Q

)
< cδ . (D.20)

Let {Qi : i ∈ [L]} be the i-th marginal distributions of Q:

Qi(xi) =
∑

xj :j 6=i
Q(x1, x2, . . . , xL) = Qi(xi) ∀i, xi ∈ Z . (D.21)

Then we have for some c′ > 0

dmax (Q,Qi) < c′δ . (D.22)

Now we can apply Case 1 of this proof using the set Z and distributions Q, {Qi},
and Q. For any ǫ1 > 0 we can find a δ1 > 0 such that if {Qi} satisfy

dmax (Q,Qi) < δ1 , (D.23)

then there exists a Q̂ with marginals equal to Q such that

dmax

(

Q, Q̂
)

< ǫ1 . (D.24)

Let P̂ be the extension of Q̂ to a distribution on X L by setting P̂ (xL1 ) = Q̂(xL1 ) for
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xL1 ∈ ZL and 0 elsewhere. By the triangle inequality we have

dmax

(

P , Q̂
)

≤ dmax

(
P,Q

)
+ dmax

(

Q, Q̂
)

(D.25)

< cδ + ǫ1 . (D.26)

We can choose δ sufficiently small so that δ1 and ǫ1 are sufficiently small to guarantee

that this distance is less than ǫ.

D.2 Proof of Lemma 11

Proof of Lemma 11. Fix ǫ3 > 0, β > 0, and distribution P ∈ P(X ) with I(P ) > 0

and minx P (x) ≥ β. Let M = L̃sym(P,Λ) + 1. Choose R such that N = M exp(nR)

is an integer and

I(P,Λ) − ǫ3 < R < I(P,Λ) − 2ǫ3/3 . (D.27)

For any ǫ > 0 and blocklength n sufficiently large we can choose N codewords of

type P with the properties guaranteed by Lemma 10. Denote these codewords by

{xi : i ∈ [N ]}. We will use these codewords together with the decoding rule in

Definition 1 using a parameter η > 0 to form a list-decodable code of list size M . We

first show how to choose η.

We can show that the list produced by the decoding rule does not have more than

M codewords provided that η is sufficiently small. We have two conditions on η.

First, suppose PY XS ∈ Gη(Λ). Then from Pinsker’s inequality [44, p. 58, Problem
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17], we have:

η ≥ D (PXSY ‖ PX × PS ×W ) (D.28)

≥ 1

2 ln 2

(
∑

y,x,s

|PY XS(y, x, s) −W (y|x, s)PX(x)PS(s)|
)2

. (D.29)

By choosing η sufficiently small, we can make the variational distance between PY XS ∈
Gη(Λ) and PX × PS × W as small as we like. Because the mutual information is

uniformly continuous in PXY , for any ǫ3/3 > 0 we can choose η sufficiently small such

that for all PY XS ∈ Gη(Λ) we have

I (X ∧ Y ) ≥ I(PX) − ǫ3/3 . (D.30)

Now, suppose that there exists a y ∈ Yn such that M + 1 codewords {xij : j ∈
[M + 1]} exist satisfying the conditions of Definition 1. The decoding rule implies

that there are state sequences {sij : j ∈ [M + 1]} for each codeword. Let the tuple

of random variables ({Xj, Sj}, Y ) have joint distribution according to the type of

({xij , sij},y):

P{Xj ,Sj},Y = T{xij
,sij

:j∈[M+1]},y . (D.31)

Because {xij : j ∈ [M + 1]} satisfy the decoding rule, we have:

min
x
P (x) ≥ β (D.32)

PXi
= P (D.33)

PY XiSi
∈ Gη(Λ) (D.34)

I
(

Y Xi ∧ XM+1
−{i}

∣
∣
∣Si

)

≤ η . (D.35)
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From Lemma 9 we can choose an η sufficiently small such that no tuple of M + 1

random variables can satisfy these conditions. Therefore no such y can exist and the

decoding rule always outputs a list of size M or smaller.

The remainder of the proof is to show (2.146), which says that the probability of

error averaged over the messages can be made small for every s ∈ Sn(Λ). We will

bound the average error for a given s:

ε(s) =
1

N

N∑

i=1

ε(i, s) . (D.36)

We have an error when transmitting message i under state sequence s if the codeword

xi does not satisfy the conditions of the decoder in Definition 1.

Fix s ∈ Sn(Λ). We divide the set of messages [N ] into two sets based on the joint

type Txis

F (s) = {i : I (X ∧ S) < ǫ, PXS = Txis} . (D.37)

For a joint type PXS we can bound |F c(s)| using part 1 of Lemma 10:

1

N

∑

i∈F c(s)

ε(i, s) ≤ |F c(s)|
N

≤
∑

PXS∈Pn(X ,S)

exp(−nǫ/2)

≤ (n + 1)|X ||S| exp(−nǫ/2) . (D.38)
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Therefore for n sufficiently large we can upper bound the error:

ε(s) =
1

N

∑

i∈F c(s)

ε(i, s) +
1

N

∑

i∈F (s)

ε(i, s) (D.39)

≤ exp(−nǫ/3) +
1

N

∑

i∈F (s)

ε(i, s) . (D.40)

We now turn to bounding the error ε(i, s) for i ∈ F (s). A decoding error occurs

if the true codeword does not satisfy the first or second condition of the decoding

rule. For each message i we first consider those y ∈ Yn such that the first part of the

decoding rule fails. Define the set

Ai(s) = {y : Txisy ∈ Gη(Λ)} . (D.41)

An output y ∈ Aci(s) fails the first part of the decoding rule for message i. Since i ∈
F (s) we know that for random variables X and S with joint distribution PXS = Txis:

D (PXS ‖ PX × PS ) = I (X ∧ S) < ǫ . (D.42)

For y ∈ Aci(s), let PXSY = Txisy. We have the following equality:

D (PXSY ‖ PXS ×W ) + I (X ∧ S) = D (PXSY ‖ PX × PS ×W ) . (D.43)

Since y ∈ Aci(s), we know Txisy /∈ Gη(Λ), which implies by (2.115) that

D (PXSY ‖ PX × PS ×W ) ≤ η . (D.44)
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Therefore:

D (PXSY ‖ PXS ×W ) > η − ǫ . (D.45)

Thus we can bound using (D.45) and (2.9):

∑

i∈F (s)

W n(Aci(s)|xi, s) ≤
∑

PXSY /∈Gη(Λ)

W n ({y : PXSY = Txisy}|xis)

≤ (n+ 1)|X ||S||Y| exp(−nD (PXSY ‖ PXS ×W ))

≤ (n+ 1)|X ||S||Y| exp(−n(η − ǫ)) . (D.46)

Thus for ǫ sufficiently small and the blocklength n sufficiently large we have:

1

N

∑

i∈F (s)

W n(Aci(s)|xi, s) ≤ exp(−n(η − ǫ)/2) . (D.47)

Now we turn to bounding the error for messages i ∈ F (s) over those y such that

Txisy ∈ Gη(Λ). In this case there is an error if the second part of the decoding rule

fails. For a subset J ⊂ [N ], let xJ = {xj : j ∈ J}. An output y ∈ Ai(s) results in an

error if there exists a set J ⊂ [N ] \ {i} with |J | = M such that for each j ∈ J the

first part of the decoding rule is satisfied and

I
(
Y X ∧ XM

∣
∣S
)
≤ η , (D.48)

where the mutual information is over the joint distribution PY XXMS = Ty,xi,xJ ,s.

Define the set of joint distributions which violate the second part of the decoding
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rule:

Hη =
{

PY XXMS ∈ Pn(Y × XM+1 × S) :

PY XS ∈ Gη(Λ)

∃Sj s.t. PY XjSj
∈ Gη(Λ), j ∈ [M ]

I
(
Y X ∧ XM

∣
∣S
)
> η
}

. (D.49)

For each type PY XXMS, message i and state sequence s we can define the set of

outputs y for which a set J violating the second part of the decoding rule exists:

E(PY XXMS, i, s) = {y : ∃J ⊂ [N ] \ {i}, |J | = M, s.t. PY XXMS = TyxixJs} . (D.50)

Therefore we can write the remaining error term as:

1

N

∑

i∈F (s)

∑

P
Y XXM S

∈Hη

W n (E(PY XXMS, i, s)|xi, s) . (D.51)

In order to bound this error expression, we look at two different cases for each

joint distribution PY XXMS. In the first case, suppose that

R < min
j
I (Xj ∧ S) . (D.52)

We consider two sub-cases. If I
(
X ∧ XMS

)
≥ ǫ then part 5 of Lemma 10 shows

that

1

N
|{i : (xi,xJ , s) ∈ TXXLS for some J ⊂ [N ] \ {i}, |J | = M}| ≤ exp(−nǫ/2) .

(D.53)

234



Chapter D. Proofs for list decoding under average error

Therefore for PY XXMS such that (D.52) holds and I
(
X ∧ XMS

)
≥ ǫ we have

1

N

∑

i∈F (s)

W n (E(PY XXMS, i, s)|xi, s) ≤ exp(−nǫ/2) . (D.54)

The second sub-case is for I
(
X ∧ XMS

)
< ǫ. Let

J (PY XXMS) = {J ⊂ [N ] \ {i} : Txi,xJ ,s = PY XXMS} . (D.55)

Then

W n (E(PY XXMS, i, s)|xi, s) ≤
∑

J∈J (P
Y XXM S

)

W n ({y : PY XXMS = Ty,xi,xJ ,s} |xi, s) .

(D.56)

From (2.10) we know that each summand can be bounded:

W n ({y : PY XXMS = Ty,xi,xJ ,s} |xi, s) ≤ exp
(
−nI

(
Y ∧ XM

∣
∣XS

))
. (D.57)

Now (2.143) in Part 4 of Lemma 10 shows that |J (PY XXMS)| ≤ exp(nǫ), so

W n (E(PY XXMS, i, s)|xi, s) ≤ exp
(
−n(I

(
Y ∧ XM

∣
∣XS

)
− ǫ)

)
. (D.58)

Since I
(
X ∧ XMS

)
< ǫ and I

(
Y X ∧ XM

∣
∣S
)
> η for types PY XXMS ∈ Hη we

can write:

I
(
Y ∧ XM

∣
∣XS

)
= I

(
Y X ∧ XM

∣
∣S
)
− I

(
X ∧ XM

∣
∣S
)

(D.59)

≥ I
(
Y X ∧ XM

∣
∣S
)
− I

(
X ∧ XMS

)
(D.60)

> η − ǫ . (D.61)
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Therefore we get the bound:

W n (E(PY XXMS, i, s)|xi, s) ≤ exp (−n(η − 2ǫ)) . (D.62)

For the second case, suppose the joint distribution PY XXMS. satisfies

R ≥ min
j
I (Xj ∧ S) . (D.63)

Pick some j for which R ≥ I (Xj ∧ S). We can first upperbound each summand of

(D.51):

W n (E(PY XXMS, i, s)|xi, s) ≤W n
({

y : ∃j 6= i s.t. Tyxxjs = PY XXjS

}
|xi, s

)
.

(D.64)

We again consider two sub-cases. Suppose first that

I(X ∧XjS) ≥ |R− I(Xj ∧ S)|+ + ǫ . (D.65)

Then Part 2 of Lemma 10 says that

1

N

∣
∣
{
i : (xi,xj, s) ∈ TXXjS for some j 6= i

}∣
∣ ≤ exp(−nǫ/2) . (D.66)

Therefore

1

N

∑

i∈F (s)

W n (E(PY XXMS, i, s)|xi, s) ≤ exp(−nǫ/2) . (D.67)

For the second sub-case, suppose

I(X ∧XjS) < |R− I(Xj ∧ S)|+ + ǫ . (D.68)
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We know PXj
= P , so we can further upperbound (D.64):

W n (E(PY XXMS, i, s)|xi, s) ≤
∑

j 6=i:Txi,xj ,s=PXXjS

W n
({

y : Tyxxjs = PY XXjS

}
|xi, s

)
.

(D.69)

Now using (2.10) we can bound each summand:

W n
({

y : Tyxxjs = PY XXjS

}
|xi, s

)
≤ exp (−nI (Y ∧ Xj |XS)) . (D.70)

Part 3 of Lemma 10 shows that

∣
∣
{
j : Txi,xj ,s = PXXjS

}∣
∣ ≤ exp

(
n
(
|R− I (Xj ∧ XS) |+ + ǫ

))
, (D.71)

so we can write a new upperbound:

W n (E(PY XXMS, i, s)|xi, s)

≤ exp
(
−n
(
I (Y ∧ Xj|XS) − |R− I (Xj ∧ XS) |+ − ǫ

))
. (D.72)

Now we use the fact that R ≥ I (Xj ∧ S) with (D.68) to get

R > I (X ∧ XjS) + I (Xj ∧ S) − ǫ (D.73)

≥ I (Xj ∧ X|S) + I (Xj ∧ S) − ǫ (D.74)

= I (Xj ∧ XS) − ǫ . (D.75)
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So

I (Y ∧ Xj|XS) − |R− I (Xj ∧ XS) |+ − ǫ ≥ I (Xj ∧ Y XS) − R− 2ǫ (D.76)

≥ I (Xj ∧ Y ) −R− 2ǫ . (D.77)

From the definition of Hη we know there exists a random variable Sj for which

PY XjSj
∈ Gη(Λ) and see that the joint distribution PY XjSj

yields a mutual information

I (Xj ∧ Y ) = I (X ∧ Y ), so by (D.27) we have

I (Xj ∧ Y ) −R ≥ I(P ) − R− ǫ3/3 (D.78)

> ǫ3/3 . (D.79)

Therefore, we can bound:

W n (E(PY XXMS, i, s)|xi, s) ≤ exp (−n(ǫ3/3 − 2ǫ)) . (D.80)

We can finally put the bounds together. From the two cases earlier, we can take

the bounds (D.54), (D.62), (D.67) and (D.80) on the sets E(PY XXMS, i, s) together

with a union bound over all types in Hη to get:

1

N

∑

i∈F (s)

∑

P
Y XXM S

∈Hη

W n (E(PY XXMS, i, s)|xi, s)

≤ |Hη| exp (−nmin {ǫ/2, η − 2ǫ, ǫ3/3 − 2ǫ}) . (D.81)
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Since ǫ can be made arbitrarily small, for ǫ sufficiently small and n sufficiently large,

1

N

∑

i∈F (s)

∑

P
Y XXM S

∈Hη

W n (E(PY XXMS, i, s)|xi, s) ≤ |Hη| exp(−nǫ/2) (D.82)

≤ exp(−nǫ/3) . (D.83)

Then (D.38) and (D.47) give us

ε(s) =
1

N

N∑

i=1

ε(i, s) < exp(−nǫ/3) . (D.84)

Then for δ = ǫ/3 we have (2.146). Note that ǫ and the blocklength n depend on β,

ǫ3, and W. The bound holds for all s ∈ Sn(Λ) so we are done.
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[149] Tatikonda, S., Yang, S., and Kavčić, A. Feedback capacity of finite-state
machine channels. IEEE Transactions on Information Theory 51, 3 (March
2005), 799–810.

[150] Tchamkerten, A., and Telatar, I. E. Variable length coding over an
unknown channel. IEEE Transactions on Information Theory 52, 5 (May 2006),
2126–2145.

252



BIBLIOGRAPHY

[151] Thomas, T. G., and Hughes, B. Exponential error bounds for random codes
on Gaussian arbitrarily varying channels. IEEE Transactions on Information
Theory 37, 3 (1991), 643–649.

[152] Tse, D., and Viswanath, P. Fundamentals of Wireless Communication.
Cambridge University Press, Cambridge, UK, 2005.
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