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Abstract— This paper discusses efforts to parameterize the
actuation models of a four-wheel automobile for the purposes
of closed-loop control. As a novelty, the authors used the
equipment already available or in use by the vehicle, rather
than expensive equipment used solely for the purpose of system
identification. After rudimentary measurements were taken of
wheelbase, axle width, etc., the vehicle was driven and data
were captured using a controller area network (CAN) interface.
Based on this captured data, we were able to estimate the
feasibility of certain closed-loop controllers, and the models
they assumed (i.e., linear, or nonlinear) for control. Examples
were acceleration and steering. This work served to inform the
separation of differences in simulation and vehicle behavior
during vehicle testing.

I. INTRODUCTION

A major complexity of vehicle control is an accurate
model of the vehicle for controller design, and simula-
tion. Poor vehicle models can result in unstable behavior
when applied to hardware, resulting in unsafe situations for
those involved, or frustrating demonstrations that diverge
significantly from simulation results. As a result, significant
hardware-in-the-loop testing is necessary prior to control
system design, to minimize the risk.

This is undesirable from many aspects. First, hardware-in-
the-loop experiments are costly in terms of personnel time
and equipment, as well as any facilities which must be rented.
Additionally, it predicates the implementation of algorithms
for higher-level performance on already known or well-
understood platforms upon which those algorithms will run.
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Finally, it can encourage ad hoc design of controller software
that “seems” to be accurate, when in fact it is not. This latter,
especially, can be disastrous for a project if the accuracy of
the controller is not appropriately similar in hardware and
in simulation, and a significant amount of algorithm design
has been performed in simulation. All engineering exercises,
such as controller tuning, parameter identification for lookup
tables, etc., is in question.

In this paper, we address each of these concerns by
describing our technique for recovering the model of a
four-wheel drive vehicle. Through this use, we were able
to provide models describing the estimated behavior in
various operational modes of the vehicle (acceleration, steady
driving, slow-speed driving), and perform some assessment
of how closely fit the model is to actual performance. The
advantage to our approach is that we gathered data directly
from the vehicle’s CAN bus, and from various external
localization sources (primarily GPS and inertial data). We
present the graphs of our estimates, and actual performance,
under various circumstances.

A. Significance of the problem

This work was motivated by the experience of our research
team, who successfully created a significant body of high-
level algorithms, each of which utilized a common low-
fidelity model for steering and velocity control that interfaced
with open-source vehicle simulators. As hardware-in-the-
loop testing continued, it became apparent that many of
the algorithms, while running in simulation, were unable to
terminate, or produced significant functional errors, due to
the fact that they were tested and tuned using a simulator
that did not match the vehicle platform. While simulation
had enabled a “bootstrap” solution to tuning the parameters,
significant additional tuning (with the hardware-in-the-loop)
was required, which consumed enormous resources both in
time and personnel.

At runtime, vehicle operators were faced with the fol-
lowing quandary: was the previous failure due to a logical
error, optimization error, open-loop control error, or closed-
loop control error? Further, assumptions made in high-level
controllers on maximum turn rate, acceleration, etc., may not
reflect the vehicle’s actual behavior. Without confidence in
the model used by closed-loop controllers, significant devia-
tion could take place in vehicle trajectory (especially at low-
speeds), which is not noticed by a human driver watching the
road, but is compounded by a predictive controller that may
be estimating potential position in 10-15 seconds. In order



to place high confidence in the vehicle model used by the
closed-loop and open-loop controllers!, there must be some
focus on determining the model for actuating the vehicle in
question.

B. Novelty of solution

As the reader will doubtless suggest, this work seems to
duplicate results achieved in the field of system identification
[1] [2], and there exist plentiful patents for performing work
similar to this using state-of-the-art sensors [3]. What makes
this work unique is its dependency on information gathered
directly from the vehicle’s data stream, and other relatively-
unsophisticated sensors that were in use for high-level au-
tonomy. We perceive a difficulty for many researchers who
might need to decide whether their models are sufficiently
approximate for their purposes, but who do not have budget
or time to produce advanced system identification results
through specialized equipment, even though those results
would be highly accurate.

Another important reason to discover sufficiently approx-
imate models (rather than highly accurate models) is to
allow predictive controllers to utilize models that are rapid
to compute, and accurate for time horizons on the order of
10 seconds.

The low-cost and low-effort solution presented here con-
sists of analyzing data readily available through the vehicle’s
CAN bus, and through the GPS and inertial systems on board
the vehicle. In fact, researchers in autonomous vehicles may
already have these data available from years of research, but
not have analyzed it yet.

Although these GPS and inertial systems are not inexpen-
sive, they are considered a standard part of any autonomous
vehicle’s package, and we therefore consider them to be
readily available. For systems where only dead-reckoning is
used, we do not require that the information be available
in real-time, so a posteriori results for localization, such
as SLAM, are certainly sufficient to produce the necessary
datasets.

II. SCOPE

This section describes the models we expected to find, and
the equations governing certain models that were assumed,
but of which we did not know the parameters. In addition,
the variances between control inputs and observables is
mentioned.

A. Steering Model Formalization

The Ackermann vehicle model [4] provides an approxi-
mation of vehicle motion for vehicles with four tires, and
steering control for the front two tires. Although the model
includes for different angles for the tires, it does not account
for mechanical vehicle stability and wear items, such as

't is important to note that while the use of the model is important, the
open-loop and closed-loop controllers may use different fidelity models for
their purposes. Generally, though, parameters for the low-fidelity models
are based on the linearization or approximation of the high-fidelity model.
Our work is different in this respect, by gathering the low-fidelity model
from data.

the transmission slip, and limited slip differential, when
accounting for motion.

Generally, though, the Ackermann Model is a good first-
order approximation to vehicle motion. In fact, for control
inputs, and predictive control, it is sufficient to consider
an even simpler model—a bicycle model—where the left
and right tires are combined into a “virtual” bicycle, with
one front and one rear tire at the center of the vehicle’s
longitudinal axis. Figure 1 shows the Ackermann Model, and
bicycle model. The motion equations of a bicycle model are
presented in (1) where (x,y) are the cartesian coordinates of
the front wheel, v is the speed of the body of the bicycle,
v is the angle of the body of the bicycle with respect to a
fixed frame, 0 is the angle of the front wheel with respect
to the body of the bicycle and b is the length between front
and rear wheels.

x(1) = v(t) cos (y(r) + (1))
y sin

_|_
(W) + (1) )
W(t) = (1) sin(8(1)

Fig. 1. The Ackermann Model, with a simplified bicycle model, used for
control, and predictive modeling of the vehicle’s trajectory of motion.

B. Steering Wheel versus Wheel Angle

The two steered tires in a four-wheeled vehicle are not
always turned at the same angle. Although simulation and
actual behavior of the vehicle reflects this difference, the
control input (from the steering wheel) provides only on
value. In addition to minor discrepancies introduced in the
rotational motion of the steering wheel to the road tires,
trigonometric-related nonlinearities are introduced by the
rack and pinion. Thus, the relationship between steering
wheel angle and the road tires is not easily calculated by
testing the limits of the vehicle’s steering, and performing
careful measurements of the tire angles from the longitudinal
direction of travel.

In this paper, we use & as the angle of the tire (relative to
the vehicle’s heading angle, y), and &, € [Og,,;,» Oswiee) S
the angle of the steering wheel. For most four-wheel vehicle,

6SWmtzx - aswmin ~5m



C. Acceleration Models

The accelerator models are important for controlling speed
in a closed-loop manner. Consider an accelerator model
where the accelerator input is defined as u, € [0,N], where
N e Z.

D. Small-Velocity Models

Because modern fuel-injected vehicles have an idle speed
which can drive the vehicle forward if the brake is not
depressed, velocities on the order of 2 m/s are difficult to
achieve. In such scenarios, chattering between the accelerator
and brake is common. Estimating the behavior of a velocity
controller at slow speeds can be very important, to reduce
this chattering.

E. Data Availability

The data were obtained from 3 sources: the vehicle’s CAN
bus, a NovAtel SPAN system and the custom actuation sys-
tem developed by the Sydney-Berkeley Driving Team. The
vehicle’s CAN bus provided measurements of the internal
state of the car such as both pedal positions (accelerator and
brake), the independent speed of each wheel, the revolutions
per minute of the engine and the gear used at each time step.
The NovAtel SPAN system provided accurate measurements
for position, velocities (linear and angular) and accelerations
(linear and angular). The actuation system was used in a
tele-operation mode, eliminating human errors during the
data acquisition process and allowing a fast and continuous
sampling of the steering wheel angle and the signal applied
to both pedals.

The time synchronization of all the sources was performed
by a computer running the QNX real-time operating system.

ITII. EXPERIMENTS PERFORMED

In order to gather useful data, we put the vehicle through
several motion plans, including several regular-use scenarios
(i.e., road driving by a human).

A. Steering Model Experiments

The following experiments were performed to test the
steering model approximation.

1) Driving in an arc: The steering controller was given
a series of reference inputs for &, while driving in a
clockwise arc. The reference inputs were provided while
driving at a longitudinal velocity of 2.8 m/s. After each
reference input, the reference was set back to 0 (i.e., straight
ahead). This experiment was repeated while traveling in a
counter-clockwise arc at 2.4 m/s. The pair of experiments
was repeated at 5.2 m/s.

2) Driving in a circle: The reference value for J;, was
gradually increased to turn clockwise until full lock was
achieved (i.e., the tightest turn possible). The vehicle held
this trajectory until a circle was traversed. This experiment
was repeated for a counter-clockwise circle.

3) Figure FEight Turns: Human driver, performing all
steering, acceleration and braking inputs. The vehicle was put
through figure eight turns, at a relatively constant velocity.
Only “Low” gear was used.

B. Acceleration/Speed Model Experiments

The following experiments were performed to exercise the
acceleration and speed models.

1) Manual Steering, autonomous speed (single ramps):
Driving on an almost straight road, accelerator and brake
in autonomous mode, steering wheel in manual mode. The
speed reference was a ramp from 0 m/s to 6 m/s, maintain
for a short time and then another ramp from 6 m/s to 0 m/s.
This experiment was duplicated with ramps of [0,4] m/s, and
[0,8] m/s.

2) Manual Steering, autonomous speed (sequence of
ramps): Similar to Section III-B.1, but with a sequence of
ramps as [0,4] m/s, [4,8] m/s, [8,4] m/s, and [4,0] m/s.

3) Open-loop response of throttle and brake: This exper-
iment was performed without the feedback loop of the low-
level speed controller. The vehicle was accelerated, braked
to a hale, accelerated, and braked to a halt. This experiment
was repeated.

IV. STEERING MODEL RECOVERY

To achieve a simple model of the steering model, we
determine the tire angle from calculating the difference in tire
speed between the front tires, left and right. This information
is captured from the CAN, as described in Section II-E.

A. Model Approximation

The estimate is based on the following model:

VI =10 )
Vr =10 3)
rr=r11+Cy, €]
Ve — V]
0= C )
5=2 ©)
1%

where v; and v, the respective velocities of the left and right
tires, r; and r, are the radii of the left and right tires of
the angle of the vehicle’s turn, Cj, is the centerline distance
between the two front tires, @ is the rotational velocity of
the logical middle tire, and & is the steering angle of the
logical middle tire.

B. Parameter Identification

In using these models, we can derive parameters for the
following approximate model for the tire angle:

= Aoffset + Ascale 6&w (7)

Where 6, . is an estimate of the logical center tire’s
angle, Aofrser and Agcqle are constants representing the linear
offset and scaling factor (respectively), and J, is the mea-
sured steering wheel angle. This methodology is described
in greater detail in [5] and is based on foundational work
found in [6].

To derive the parameters, we use offline optimization
routines to compare the actual value of the vehicle’s po-
sition, with our estimate of the vehicle’s position using this

6[ estimate
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Fig. 2. A model of the car turn angle, based on steering wheel angle

measurements. The top graph shows the rate of turn (calculated in (5)).
The next graph displays the forward wheel speeds. Note here that the
nonlinearities in the rack and pinion are evident at the most significant
steering wheel angle, even though the wheel is not fully locked. The next
graph shows the measured steering wheel angle, based on CAN data. The
final two graphs compare the estimated value with two calculated turn
angles: that of the values in the top graph divided by the speed, and the
bottom graph reflecting yaw rates gathered from the differential GPS unit.

simplified steering model for steering wheel input control.
Measurement errors are minimized by selecting as optimiza-
tion inputs the Aggser and Ageale parameters, to minimize the
difference of the actual measured tire angle and &, . over
the entire dataset.

C. Results of Steering Model Recovery

Figure 2 shows the results of processing data from experi-
ments described in Section III-A, specifically Experiment ITI-
A.3. The sinusoidal graphs are indicative of the figure eights
as they were traversed. Most interesting are the bottom two
graphs in the figure, which show the estimated turning angle
(8, imae) cOmpared against turning angles calculated from
two sources: the calculated tire angle & (see (6)), and based
on differential yaw measurements.

Note that the error for comparison against the calculated
tire angle (based on other measurements) is proportional to
the rate of change of turn. The second calculation, however,

is susceptible to noise from the inertial system (note espe-
cially the large spikes). The estimate does not differ from the
calculated measurement by more than 5%. The calculated
values for our particular vehicle were Aggser = 0.017, and
Agcale = 0.08.

V. ACCELERATOR MODEL RECOVERY

We consider several basic zones of execution, which were
chosen based on our platform-specific knowledge of vehicle
performance, and are not necessarily of interest to every kind
of four-wheeled vehicle, nor are they optimal for this vehicle.
However, they were indicated as discrete modes of execution
based on user experience. These zones were the idle-motion
v € [0,2] m/s, low-velocity v € (2,5] m/s, and high-speed
v € (5,20] m/s.

As introduced in Section II-C most fuel-injected vehicles
will move at a constant speed at idle (over level-ground).
Thus, to maintain a velocity vo € (0,viqie] requires actuation
of the brake. In our case, we presume that viqe ~ 2 m/s.

The low-velocity group is chosen specifically for its upper-
bound. In our case, the velocity of 5 m/s (approximately
11.2 miles/hour) is near the our desired top speed for “Low”
gear in the transmission. Thus, with actuator control for
gear shifting, we could conceivably shift between controller
models when shifting into “Middle” gear.

The actual vehicle model for velocity (with the accelerator
control input) is highly nonlinear due to vehicle inertia,
engine operating temperature, transmission gear, differential
slip, tire traction, and many other factors. However, using
PID control to maintain velocity (above the idle velocity)
is actually somewhat trivial. The difficulty, therefore, is
providing an approximate model, suitable for the high-
performance requirements of predictive controllers over a
finite horizon, while not significantly compromising accuracy
over that same horizon. Without this suitable approximations,
predictive controllers could choose suboptimal paths in early
timesteps, resulting in a cul-de-sac trajectory choice.

A. Model approximation

Given the high nonlinearities expected, we treat the accel-
erator model as a black box, and evaluate it over our arbitrary
zones of speed. Nonetheless, we provide the following defi-
nition for optimization:

Aestimate = Aoffset T Ascaleap 3

where degiimate 1 the accelerator estimate, Agffser and Ageale
are constants representing the linear offset and scaling factor
(respectively), and ap represents the measured accelerator
angle.

B. Parameter Identification

To identify parameters over these ranges, we collect
data over a wide range of system exercise (described in
Section III), and perform offline optimization of (8) with
optimization inputs of Agfrer and Agcale, t0 minimize the
difference between actual measured, and deggimate-
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Fig. 3. A model of the car speed/acceleration at very slow speed, between
(0,2] m/s. The upper graph shows input data of the accelerator pedal, speed,
and brake setting. In the lower graph, estimates of the acceleration are
compared with the measured speed from the differential GPS unit. The
estimate of the acceleration is based on the estimated accelerator angle.

C. Results of Accelerator Model Recovery

The recovery of accelerator performance is significantly
less accurate, in terms of percentage, than that of the steering
wheel relationship to the turning angle. This is due in part
to the relative complexity of each problem (there is a near
mechanical linkage between the steering wheel and tires,
whereas the drivetrain is separated from the accelerator pedal
by many nonlinear devices).

Figures 3, 4, and 5 show the results of many collected
datasets that were selected from experiments described in
Section III-B. The data are extracted based on the speed,
such that all datasets would be reconstructed if data were re-
assimilated from the three graphs (i.e., subsets of each range
of the zones described previously were removed). Since our
model makes no assumptions on continuity or inertia, this
poses no threat to testing our model of the accelerator.

Figure 3 shows acceleration estimates, based on estimated
accelerator pedal values as calculated in (8), for velocities
between 0 and 2 m/s. The mean-square error is 50.8329%,
based on calculated speed compared to that of the differential
GPS speed, as recorded.
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Fig. 4. A model of the car speed/acceleration at moderate speed, between
(2,5] m/s. The upper graph shows input data of the accelerator pedal, speed,
and brake setting. In the lower graph, estimates of the speed are compared
with the measured speed from the differential GPS unit. The estimate of
the acceleration is based on the estimated accelerator angle.

Likewise, Figure 4 shows estimated and actual acceler-
ations subset of speeds between 2 m/s and 5 m/s. In this
case, the MSE is much lower, 33.8004%, based on the
same comparisons. Finally, Figure 5 displays a much higher
MSE, at 71.0085%. The higher variance of these acceleration
estimates, and how performing this analysis informed the
vehicle’s controllers and models, is addressed in the next
section.

VI. ANALYSIS

As would be expected, based on the simple models we
were deriving from these datasets, the models for these com-
plex behaviors are not of sufficient fidelity for simulation.
What we have calculated is a simple relationship between
control inputs for our vehicle’s simulated behavior: steering
wheel angle to manipulate the turn angle, and accelerator
pedal to manipulate the velocity.

Since the closed loop controllers that would most likely
implement such behaviors for an autonomous system would
likely be linear themselves, we can now surmise two impor-
tant points: (a) the steering wheel relationship to turn angle
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differential GPS unit. The estimate of the acceleration is based on the
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is appropriate for such linear controllers, and (b) control of
the speed by the simple accelerator model is sufficient, but
will likely experience some chattering and lag to achieve the
desired velocity.

Raising these two points is extremely important for con-
trollers who perform online optimization. In fact, it helps
system designers understand that controlling the steering is
much easier than controlling velocity, and as such velocity
control should have a higher cost.

Further, it is clear from the MSE of the three zones of
vehicle speed, that the simple accelerator model is the most
accurate between (2,5] m/s. As such, a vehicle controller
should attempt to remain in this zone as much as possible.

Two immediate ways to enforce this speed band are to
set a minimum speed for the vehicle’s velocity, which is
overridden in case of dangerous obstacles or commands to
stop, or to consider the speed model as a hybrid controller,
where transitions to the lower or higher speeds are permitted,
but only when the horizon indicates that the acceleration
changes are not expected.

Finally, due to the knowledge that very low speeds near
idle are prone to errors and lags in setting velocities, vehicle
designers will be less-likely to try to test at slow speeds
for controller tuning, since it should be apparent that such
tunings will be inaccurate for higher speeds. Without this
knowledge, the controller implementation team could spend
tremendous hours scratching their heads as to why turning
up the speed works in simulation, but not in hardware.

VII. CONCLUSIONS

We have presented motivation, and justification, for de-
veloping an oversimplified model for vehicle acceleration
and turning angle estimates, based on measurable values
(accelerator pedal, and steering wheel). We showed that such
models are certainly not high-fidelity in terms of accuracy,
but that since closed loop controllers may be linear, that
understanding when or why there are discrepancies can
inform high-level modelers of additional costs to consider
in their optimizations.

To perform these calculations and analyses, we discussed
how using existing data from the vehicle, such as CAN
bus data and GPS measurements, the data can be captured
without the need for significant equipment outlay. Further,
since many high-fidelity system identification models will
not run in real-time, we have provided a rough approximation
for these closed-loop control input relationships that could
be used in predictive controllers to assign a real-time cost
based on the current state, and known errors in estimation.

VIII. ACKNOWLEDGEMENTS

This work was due to the tremendous effort of the Sydney-
Berkeley Driving Team, which entered the DARPA Urban
Challenge in 2006. Special thanks for that effort are de-
served for Dr. Ben Upcroft, whose contributions provided
the ability to gather much of the data in this paper. The
Sydney-Berkeley Driving Team was supported in part by
Rio Tinto, Komatsu, Chess at UC Berkeley, Toyota, ZeroC,
and Advantech. Additional in-kind support was provided
in the form of discounts on equipment from the following
manufacturers: SICK, NovAtel, and Honeywell.

REFERENCES

[1] K. Yi and K. Hedrick, “Observer-based identification of nonlinear
system parameters,” Journal of Dynamic Systems, Measurement, and
Contol, vol. 117, no. 2, pp. 175-182, 1995.

[2] A. B. Proca and A. Keyhani, “Identification of power steering system
dynamic models,” Mechatronics, vol. 8, no. 3, pp. 255-270, April 1998.

[3] T. Kawabe and K. Ito, “Model solving type vehicle steering control
system with parameter identification,” U.S. Patent, January 1988, Nissan
Motor Co., Ltd.

[4] E. Nebot, “Navigation system design,” Lecture Notes, May 2005, center
of Excellence for Autonomous Systems, University of Sidney, Australia.

[5] J. M. Eklund, M. Korenberg, and P. McLellan, “Nonlinear system
identification and control of chemical processes using fast orthogonal
search,” Journal of Process Control, vol. 17, no. 9, pp. 742-754,
October 2007.

[6] M. J. Korenberg, “A robust orthogonal algorithm for system identifica-
tion and time-series analysis,” Biol. Cybernetics, vol. 60, pp. 267-276,
1989.



	INTRODUCTION
	Significance of the problem
	Novelty of solution

	SCOPE
	Steering Model Formalization
	Steering Wheel versus Wheel Angle
	Acceleration Models
	Small-Velocity Models
	Data Availability

	EXPERIMENTS PERFORMED
	Steering Model Experiments
	Driving in an arc
	Driving in a circle
	Figure Eight Turns

	Acceleration/Speed Model Experiments
	Manual Steering, autonomous speed (single ramps)
	Manual Steering, autonomous speed (sequence of ramps)
	Open-loop response of throttle and brake


	STEERING MODEL RECOVERY
	Model Approximation
	Parameter Identification
	Results of Steering Model Recovery

	ACCELERATOR MODEL RECOVERY
	Model approximation
	Parameter Identification
	Results of Accelerator Model Recovery

	ANALYSIS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	References

