
Power-Performance Tradeoffs in ASICs for Next
Generation Wireless Communication Datapaths

Farhana Sheikh

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-93

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-93.html

August 14, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Power-Performance Tradeoffs In ASICs for Next Generation Wireless
Communication Datapaths

by

Farhana Sheikh

B.Eng. (Carleton University, Canada) 1993
M.S. (University of California, Berkeley) 1996

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Borivoje Nikolić, Chair
Professor Andreas Kuehlmann

Professor Paul Wright

Fall 2008

The dissertation of Farhana Sheikh is approved.

Chair Date

Date

Date

University of California, Berkeley

Fall 2008

Power-Performance Tradeoffs In ASICs for Next Generation Wireless

Communication Datapaths

Copyright c© 2008

by

Farhana Sheikh

Abstract

Power-Performance Tradeoffs In ASICs for Next Generation Wireless

Communication Datapaths

by

Farhana Sheikh

Doctor of Philosophy in Engineering – Electrical Engineering and Computer

Sciences

University of California, Berkeley

Professor Borivoje Nikolić, Chair

New design methodologies that quickly and systematically explore power-performance

tradeoffs between architectures and design variables at each level of design abstraction

can enable design innovation and reduce design cost and design time. This dissertation pro-

poses a novel digital design methodology that systematically evaluates power-performance

tradeoffs at each level of design hierarchy in the context of constraints from lower levels of

design abstraction. It is a holistic approach that uses sensitivity information, which allows

designers to systematically and rapidly traverse a vast design tradeoff space, leading to

power-performance optimal architectures and enabling short design times. Little formalism

has been built around some of the earlier published works that have proposed sensitivity-

based design methodologies. This dissertation formalizes the methodology in an optimiza-

tion framework and algorithm. The framework is conceived using a previously published

custom circuit optimizer for power-performance optimization at the leaf cell. The viability

of using physical circuit parameters to estimate sensitivity is investigated and shown to be

instrumental in reducing design time required to uncover power-performance optimal archi-

tectures. A linear relationship between Cgate/Cwire and sensitivity to gate sizing is uncov-

1

ered. This first-order linear estimator mitigates the need to calculate derivatives or run large

circuit simulations. The use of composition rules is investigated to enable fast generation of

energy-delay curves for larger circuit blocks comprised of smaller leaf cells. Energy-efficiency

curves are generated for multiple architectures within short periods of time, allowing rapid

evaluation of architectures in the context of lower level design constraints and tuning vari-

ables such as circuit sizing. The composition process is formalized into an algorithm that

can be implemented as a convex optimization program. This provides an automated mecha-

nism for fast design space exploration at architecture, micro-architecture and circuit levels.

A digital FIR kernel for use in multi-mode, multi-standard radio transceiver is optimized

using the design methodology.

Professor Borivoje Nikolić
Dissertation Committee Chair

2

To my parents – Asrar and Parveen; my siblings – Fahim and Samia; and my husband

– Iftikhar

i

Contents

Contents ii

List of Figures vi

List of Tables x

Acknowledgements xi

1 Introduction 1

1.1 Next Generation Mobile Systems . 4

1.2 Technology Scaling . 7

1.3 Energy-Efficient System Design . 10

1.4 Sensitivity-Based Circuit Optimization . 12

1.4.1 Limitations of prior work . 13

1.5 Research Scope . 13

1.6 Dissertation Overview . 14

2 Power-Performance Optimization 16

2.1 Gradient-Based Optimization . 18

2.1.1 Modeling of Optimization Problems 19

2.1.2 Convex Sets and Convex Functions 20

2.1.3 Gradients and Iterative Optimization Methods 22

2.1.4 Lagrangian Theory and Methods . 24

2.1.5 Convex Optimization . 27

2.1.6 Interior Point Iterative Methods . 28

2.1.7 Geometric Programs . 30

ii

2.2 Discrete Optimization . 31

2.2.1 Branch and Bound . 32

2.2.2 Approximation Algorithms . 33

2.3 Gradients, Sensitivity, and Optimality . 34

2.3.1 Sensitivity and Design Hierarchy . 38

2.4 Sensitivity-Based Design Methodology . 44

2.5 Summary . 46

3 Hierarchical Power-Performance Optimization 48

3.1 Design Methodology Overview . 53

3.2 Fast Architecture Exploration . 55

3.2.1 Design Composition . 56

3.3 Sensitivity Balancing Across Layers of Hierarchy 61

3.4 Steps to Automation . 62

3.4.1 Data Structures . 62

3.4.2 Constraint Generation and Propagation 65

3.4.3 Sensitivity Balancing Formulations 66

3.5 Sensitivity Approximation Using Interior Point
Algorithms . 70

3.5.1 Saturation of Sensitivity and Variable Bounds 73

3.6 Limitations . 74

3.7 Summary . 75

4 Models and Constraints 76

4.1 Analytical Delay, Energy, and Area Models 77

4.1.1 Delay . 77

4.1.2 Energy . 78

4.1.3 Area . 80

4.2 Constrained Optimization . 80

4.3 Tabulated Models . 82

4.4 Wire Capacitance and Wire Resistance . 84

4.4.1 Effect of Interconnect on Delay . 84

4.4.2 Effect of Interconnect on Energy and Area 86

4.4.3 Effect of Interconnect on Sensitivity and Architecture Selection . . . 88

iii

4.5 Extension to Supply Voltage and Threshold Voltage
Optimization . 91

4.6 Analytical Models for Sensitivity . 92

4.6.1 Sensitivity to Sizing . 93

4.6.2 Sensitivity to Supply and Threshold Voltage 94

4.7 Design Composition . 95

4.7.1 Delay . 96

4.7.2 Energy . 98

4.8 Summary . 98

5 Sensitivity to Sizing 100

5.1 Introduction . 100

5.1.1 Constrained Circuit Sizing . 101

5.1.2 Chapter Overview . 103

5.2 Gradient-Based Circuit Sizing . 104

5.3 Gate Capacitance, Wire Capacitance, and Sensitivity 106

5.3.1 Analytical Derivation of Sensitivity to Sizing 107

5.3.2 Numerical Approach to Modeling Sensitivity to Sizing 114

5.4 Inverter Chain . 115

5.5 64-bit Ling Adder . 123

5.5.1 Synthesis-based Adder Optimization 125

5.6 Integer Execution Unit . 127

5.7 Finite Impulse Response Filter . 130

5.8 Model Limitations . 130

5.9 Summary . 131

6 Architecture Optimization of Multi-Standard Radio FIR 133

6.1 Digital Front-End FIR Requirements . 135

6.2 Design Tradeoff Space . 136

6.2.1 Architecture Tradeoffs . 137

6.2.2 Micro-Architecture Tradeoffs . 142

6.2.3 Logic and Arithmetic Tradeoffs . 143

6.2.4 Circuit and Technology Tradeoffs . 145

6.3 Flexible Filter Design Exploration . 145

iv

6.3.1 Design Space Exploration . 146

6.3.2 Architectures . 148

6.3.3 Flexible Conventional Architectures 149

6.3.4 Flexible Distributed Arithmetic Architecture 151

6.4 Flexible Digital Filters – High Performance Technologies 154

6.4.1 Results . 154

6.4.2 Sensitivity Analysis . 161

6.4.3 Optimized Filter Description . 163

6.4.4 Cost of Flexibility . 168

6.5 Flexible Digital Filters – Low Leakage Technology 169

6.6 Distributed Arithmetic Digital FIR Prototype 170

6.6.1 Filter Overview and Specifications 171

6.6.2 RTL and Simulink Modeling . 177

6.6.3 Functional Verification . 178

6.6.4 Silicon Implementation and Verification 179

6.6.5 Measured Results . 180

6.7 Summary . 182

7 Conclusion and Future Directions 183

7.1 Research Accomplishments . 184

7.2 Future Directions . 185

Bibliography 186

A Simulink to ASIC Design Methodology 193

A.1 Design Flow . 193

A.2 Distributed Arithmetic FIR Simulink Models 193

B Test Setup for Distributed Arithmetic Prototype 199

B.1 Test Methodology . 199

B.2 Lab Setup . 199

v

List of Figures

1.1 Mobile vs. Fixed Telephone Line Subscribers (1991–2006) 5

1.2 Telecommunications Revenue (1991–2004) 6

1.3 Exponential increase in frequency for Intel microprocessors (compiled from
www.intel.com and www.i-probe.com/i-probe/ip intel.html) 9

1.4 Power ceiling for Intel microprocessors (compiled from www.intel.com and
www.i-probe.com/i-probe/ip intel.html) . 9

1.5 Energy-efficient system design . 10

2.1 Convex and non-convex sets . 20

2.2 Epigraph of a convex function and Jensen’s inequality 21

2.3 Optimizations leading to local and global minima, and stationary points . . 24

2.4 Definition of sensitivity . 35

2.5 Circuit optimality using multiple tuning variables 37

2.6 Multi-variable optimization using sensitivity balancing 38

2.7 System optimality . 39

2.8 Composite pipeline stage . 41

2.9 Multi-stage pipeline . 42

2.10 Multi-stage composite pipeline . 43

3.1 Energy-delay tradeoffs at multiple levels of design abstraction 49

3.2 Gap between ideal and synthesized energy-efficiency boundaries 50

3.3 Two objectives of hierarchical optimization 51

3.4 Fast architecture exploration . 54

3.5 Relationship between optimal aggregate sensitivity and system energy-
efficiency boundary . 56

3.6 Design composition of multiply-accumulate (MAC) block 58

vi

3.7 Design composition of 32-tap transpose filter from MAC composite curve . 59

3.8 Interface constraint graphs for transpose and transverse filters 63

3.9 Examples of embedded netlists in filter constraint graphs 64

3.10 Example of a hierarchical constraint graph 65

3.11 Example of constraint propagation . 66

3.12 Example of register insertion to meet delay target 67

3.13 Conceptual representation of branch and bound 68

4.1 Matlab/C combinational circuit optimization framework for sizing, supply
voltage, and threshold voltage optimization 83

4.2 Wire capacitance as a side load at a circuit node 85

4.3 Interconnect delay contribution in a gate-dominated design 89

4.4 Effect of wire load models on energy-delay tradeoffs for a 64-bit Ling adder 90

4.5 Two cascaded 4-bit ripple carry adders . 97

4.6 Constraint graph for two cascaded 4-bit ripple carry adders 97

5.1 Two-stage inverter chain with wire side load 108

5.2 Two-stage inverter chain with Elmore wire segment delay 111

5.3 Convex model based optimizer built in Matlab 114

5.4 Inverter chain with wire capacitance and resistance 115

5.5 Inverter energy-efficiency curves for fixed wire capacitance of 100fF 116

5.6 Sensitivity versus Cgate/Cwire . 117

5.7 Sensitivity versus Cgate/Cwire . 118

5.8 Sensitivity versus Cgate/Cwire: fixed Cwire, varying Cin 119

5.9 Inverter energy versus delay for varying Cin 120

5.10 Inverter: slope of Cgate/Cwire versus Cin . 121

5.11 Inverter: linear model for sensitivity to sizing 123

5.12 Ling Adder . 124

5.13 Energy-efficiency curves for 64-bit Ling adder 125

5.14 Adder sensitivity to sizing versus Cgate/Cwire 125

5.15 64-bit Ling Adder: slope of Cgate/Cwire versus Cin 126

5.16 Synthesis versus custom optimization: adder energy-efficiency curves 127

5.17 Synthesis versus custom optimization: sensitivity to sizing model 127

5.18 Integer execution unit (IEU) . 128

vii

5.19 IEU energy versus delay . 128

5.20 IEU sensitivity to sizing versus Cgate/Cwire 129

5.21 Effect of inaccurate wire estimation: Cgate/Cwire vs. Cin for sensitivity of 2 130

5.22 FIR sensitivity to sizing versus Cgate/Cwire 131

6.1 Generic RF front-end architecture for multi-standard radio 134

6.2 A selection of filter architecture examples 137

6.3 3-tap, 6-bit input word distributed arithmetic FIR example 140

6.4 Bit serial implementation of distributed arithmetic FIR 141

6.5 Bit parallel implementation of distributed arithmetic FIR 141

6.6 FIR architecture tradeoff analysis flow . 147

6.7 Architecture candidates for flexible FIR . 149

6.8 Flexible conventional filter . 150

6.9 Implementation of a parallel distributed arithmetic FIR 152

6.10 Implementation of a parallel folded distributed arithmetic FIR 152

6.11 Tap programmability in a distributed arithmetic FIR 153

6.12 Input word programmability in a distributed arithmetic FIR 153

6.13 32-tap filter architecture tradeoffs (high performance 90nm CMOS process) 155

6.14 Cost of flexibility – energy . 156

6.15 Cost of flexibility – area . 156

6.16 Relative cost of programmability – energy 157

6.17 Relative cost of programmability – area . 157

6.18 Filter energy-delay tradeoffs in second high-performance 90nm technology . 159

6.19 Filter energy-delay tradeoffs in second high-performance 90nm technology . 159

6.20 Comparison of 65nm process with 90nm process 161

6.21 Block diagram of parallel interleaved filter with clock gating 166

6.22 Parallel interleaved filter with clock gating 166

6.23 Distribution of power and area cost for flexible filter 167

6.24 Distribution of power and area cost for flexible filter 168

6.25 32-tap filter architecture tradeoffs (low-leakage 90nm CMOS process) 170

6.26 Energy-delay tradeoffs of 8–64 tap, 2–12 bit input word, programmable dis-
tributed arithmetic filter in 90nm CMOS 172

6.27 Pin-out diagram for programmable distributed arithmetic filter 172

6.28 Clock generation and division . 173

viii

6.29 Scan in and out . 174

6.30 Block selection based on input word length and tap requirements 174

6.31 Address generation . 175

6.32 Address encoding . 175

6.33 Memory overview . 176

6.34 Power gating of memory partitions . 178

6.35 Ramp test verification of final taped out design 179

6.36 GSM test verification of final taped out design 179

6.37 WLAN test verification of final taped out design 180

6.38 Programmable distributed arithmetic filter die photo 180

6.39 Supply versus current . 181

6.40 Clock frequency versus current . 181

A.1 System level Simulink model for the distributed arithmetic flexible FIR . . 194

A.2 Partition select, decode, and accumulation tree 195

A.3 Partition select, decode and accumulation for each look-up table 195

A.4 Look-up table OBC decoder . 196

A.5 Partition select for each look-up table . 196

A.6 Single look-up table accumulation . 197

A.7 Final accumulation tree . 197

A.8 Programmable shift . 198

B.1 ASIC test board and connection to i-BOB 200

B.2 i-BOB and connection to laptop . 201

ix

List of Tables

3.1 Composition Rules for Filters . 57

3.2 Multiply-accumulate Block Composition . 60

6.1 Flexible Filter Requirements . 135

6.2 Summary of referenced FIR filters . 142

6.3 Reconfigurable filter requirements . 154

6.4 Tap programmable filter summary at 250MHz in second high-performance
90nm CMOS . 160

6.5 DFE FIR input/output ports . 164

6.6 Programmable Distributed Arithmetic Filter Pin-out Specification 173

x

Acknowledgements

My adviser, Borivoje Nikolić, has been instrumental in motivating me to complete this

research and this thesis. If I had not met him in January 2002, then I do not think I would

be here today with a completed dissertation and body of research. Bora was able to convince

me to pursue my dreams and goals of obtaining a PhD and to ”do something”. His support

and patience have been endless and his guidance invaluable. I am grateful to him for taking

me on as his student and for guiding me through the last 5 years of graduate school. I

am also indebted to my dissertation committee members Prof. Andreas Kuehlmann and

Prof. Paul Wright. They have been patient and have provided thoughtful evaluation of

my research proposal and review of this dissertation. I would also like to acknowledge the

support and encouragement from Prof. Haideh Khorramabadi and Prof. Tsu-Jae King Liu.

As fellow females in the profession, they understand how tough it can be and know how

much personal sacrifice is required. They have consistently encouraged me to stay in the

program and complete the degree. I am very grateful to have met them along the way.

I would like to thank the many students and staff at the Berkeley Wireless Research

Center for making my stay at Berkeley enjoyable and comfortable. In particular I would like

to thank Gary Kelson, the director of the lab for making sure that students feel comfortable

and have access to every possible piece of equipment required for their research. Tom Boot is

tireless in his efforts to make sure that the center is clean and the environment is pleasing.

Brenda has been wonderful with helping out with administrative issues. Brian Richards

invested a lot of his time in helping me out with testing in the lab and with the various

CAD issues arising from tools. The system administrators, Kevin Zimmerman and Brad

Krebs always went out of their way to resolve any computer or networking related issues.

Among the many BWRC students, I am particularly grateful to Louis Alarcon and Mubarak

Mishra for their friendship and help.

My colleagues in our research group are some of the smartest and nicest people I have

had the pleasure to work alongside. Socrates Vamvakos, Radu Zlatanovici, Joshua Garrett,

Melinda Ler, Dejan Marković graduated while I was still working on my research. I am

xi

indebted to them for helping me with qual practices, acting as sounding boards for ideas,

and giving me feedback on my initial work. Liang-Teck Pang and Bill Tsang walked with

me in May as we all participated in the graduation ceremonies. I am grateful to them for

their insight and help during tapeout and with lab issues. They have also been extremely

supportive and encouraging during the low points in my PhD career. Zhengya Zhang,

a fellow Canadian, was always available to drive me back from the airport and onto the

many BWRC retreats. He has been a good listener to both personal and professional

issues, and always a good source of advice. Renaldi Winoto, has always been around to

listen, encourage, and to help out with tapeouts and lab issues. Zheng Guo, Ji-Hoon Park,

Vinayak Nagpal, Seng-Oon Toh have encouraged me during the last few stressful days of

dissertation writing and lab testing. Their kind words of support will not be forgotten. I

am thankful to Lauren Jones and Kenny Duong for their humour and upbeat attitude. The

Scrabulous games with Kenny and Lauren were a great way to relax after a busy day.

Ruth Gjerde and Mary Byrnes in the graduate office have been invaluable sources of

support and encouragement. Mary and Ruth have helped me overcome many challenges

during my stay at Berkeley. Their support, caring and compassionate attitude intermingled

with inspirational stories of personal challenges helped me continue when things looked

bleak.

This research was supported financially by MARCO/C2S2, SRC, BWRC member com-

panies, and the Intel PhD Fellowship. During my studies I had the opportunity to complete

two internships at Intel Research. I am thankful to Anthony Chun, Ernest Tsui, Kirk Skeba,

Ram Krishnamurthy, Sanu Mathew and the rest of my colleagues at the Circuits Research

Lab for providing guidance and support. ST Microelectronics and CMP provided fabrica-

tion of the filter prototype.

On the personal side, I would have been lost without my friends outside of the engi-

neering department. In my first year, I got very sick and had to go to hospital. Daphne

Taylor-Garcia, a fellow Canadian who I barely knew, was kind enough to stay with me until

I recovered. Elisabeth Lamoureux, a friend from my Masters days, was ready with groceries

and introduced me to the nicest person I have ever known: Erika Gasperikova. Elisabeth

xii

and Erika helped me through the most darkest periods of my stay at Berkeley, and I am

thankful to them for their love, support, and encouragement. Alessandra Nardi, who I met

in my early days of my PhD, has become a close friend and confidante. She encouraged me

to continue to focus on the PhD when the personal side of life looked bleak. Sierra Boyd

acted as the ever-optimistic cheerleader, making sure that I was taking care of myself and

keeping healthy. The ladies only outings were the best distraction from a lab full of male

engineers.

Most of all, I am indebted to my family. My parents have always believed in my

abilities and encouraged me to overcome my weaknesses, no matter the situation. They

have stood by me during these last seven years, and have always told me to finish what I

started. My siblings, Fahim and Samia, have always been available to listen to my issues,

give me good advice and tell it like it is – no holes barred. I am grateful for their honesty,

love, and encouragement. My sister-in-law Deeba and my brother-in-law, Farhan, were

the proud family members, anxious to see me with a doctorate. Their love and support

is very much appreciated. My nieces and nephews – Yusuf, Nuha, Emaan, and Abdullah

– provided the best distractions from the tough PhD life and showed me that life is full

of many other wonderful things beyond just research in a lab. Last but not least, I am

grateful for the support of my husband, Iftikhar, who I met during my studies. He always

encouraged me and pushed me to complete my PhD. Even though we were separated by

many miles for two years, he never asked me to put him before my studies. I am grateful

for his understanding, patience, compassion, and love. Finally, I am thankful to God for

providing me with an opportunity to pursue a PhD at Berkeley. It has been a challenging

but rewarding experience. — Berkeley, California, August 12, 2008

xiii

xiv

xv

Chapter 1

Introduction

Integrated circuits will lead to such wonders as home computers — or at least
terminals connected to a central computer — automatic controls for automobiles,
and personal portable communications equipment. – Gordon E. Moore, 1965

The design of digital integrated circuits has undergone a paradigm shift. No longer is it

feasible to make incremental architecture changes, tweak design methodologies, and simply

scale designs to a new technology generation and subsequently reap the benefits of improved

performance, at minimal area or energy cost. Traditional digital design, based on minimizing

cycle time, is quickly approaching its demise as technologies scale to the 65nm node and

below. Process scaling is the first and foremost factor driving the need for innovation in

architectures, circuit techniques, device technology and design methodologies [1, 2, 3].

Over the past 40 years, technology scaling has fueled tremendous growth in the semicon-

ductor industry and enabled the development of a multitude of electronic products, from

mobile personal communication devices to advanced medical imaging systems. At each

new technology generation, the area required to implement a digital function is reduced

by approximately half [4], resulting in large levels of functionality integration on a single

chip. However, voltages have not scaled at the same rate, chip dimensions have increased

leading to increased resistance and capacitance, and architectural innovations have boosted

frequencies beyond those achievable via scaling alone [1]. The confluence of these phenom-

ena have led to an exponential increase in power dissipation. This exponential increase

1

cannot continue due to limits on cost of cooling, packaging, and reliability. Power is now

the primary design constraint for both portable and high performance applications. In

this power-limited scaling regime, it is necessary to systematically design energy-efficient

algorithms and architectures that consume the least power at the required performance.

At the current 65nm technology node and below, leakage power contributes significantly

to total power dissipation. In a system that is memory intensive, leakage power can account

for up to or even exceed 50% of the total power [5]. Various design techniques to combat

leakage power such as power gating using sleep transistors, multiple threshold devices, and

adaptive body bias provide flexibility to the designer but also increase design complexity

as the design tradeoff space increases considerably with additional tuning parameters.

Technology scaling has also impacted global communication across a chip. At each new

technology generation, global communication across a chip becomes more expensive. The

delay in global wires increases even with an optimal number of repeaters [6]. Traditional

design approaches that attempt to gain performance through wider issue machines will no

longer work as these machines require longer wires. Since longer wires will increase in delay

at each new technology generation, either the clock will have to slow down or additional

pipeline stages will be required [2]. Thus, performance gains will be limited using tradi-

tional architectural modifications. Innovative architectures needing fewer global wires or

those using new on-chip interconnects will be required to overcome global communication

constraints. Design methodologies that can highlight tradeoffs between new devices, power

mitigation techniques, new architectures and global communication techniques have become

necessary in reaching optimal system design. In addition to all of the above, today process

variability is becoming a major challenge that all designers must overcome. New devices,

circuit techniques and design methods will need to be developed to overcome process limita-

tions. The efficacy of future innovations will need to be evaluated in the context of today’s

complex systems without imposing an excessive burden on design time and cost.

Secondary and tertiary factors driving the need for a new design paradigm are limits

on instruction level parallelism and number of gates per clock cycle [2]. These two factors,

which have historically driven processor performance improvements, are no longer effec-

2

tive and are causing designers to rethink traditional design styles and methods. In [2],

authors show a leveling out of the improvement in effective parallelism across Intel, Alpha,

MIPS, HP, Power PC, and AMD processors by early 2004, indicating that traditional design

cannot extract any more performance improvements through instruction level parallelism.

Also in [2], authors show that the cycle time per fanout-of-four (FO4) delay has slowed

down, indicating that the number of gates per cycle has reached its limits in traditional

architectures.

The last but important factor driving the need for a paradigm shift in digital design is

design cost-per-function and time to market [3]. Consumer demand for new applications

on portable devices is primarily driving the increase in system complexity. Meeting these

demands while maintaining performance, reliability and keeping power dissipation low in-

creases design cost. Today, designers must understand the interactions between every level

of design abstraction – from technology to architecture – to meet complex constraints and

requirements. New methodologies that allow designers to quickly and systematically ex-

plore tradeoffs between various architectures and design tuning variables at each level of

design abstraction can enable design innovation, and reduce design cost and design time.

The task of estimating tradeoffs between power (energy) and performance (delay) for

each choice of design parameter at each level of design hierarchy for each different ap-

plication, under today’s extreme design constraints and small time-to-market windows, is

inherently complex. The design tradeoff space is vast, spanning a multi-dimensional search

space across multiple levels of design abstraction. Finding the most energy-efficient design

is an overwhelmingly complex and time-consuming task.

This dissertation proposes a novel digital design methodology that attempts to sys-

tematically evaluate power-performance tradeoffs at each level of design hierarchy in the

context of constraints from lower levels of design abstraction. It is a holistic approach that

uses sensitivity information, which allows designers to systematically and rapidly traverse a

vast design tradeoff space, leading to power-performance optimal architectures and enabling

short design times. The problem that is posed in this work is extremely difficult to solve

completely. Little formalism has been built around some of the earlier published works that

3

have attempted to describe sensitivity-based design methodologies. The solutions presented

here are by no means comprehensive. However, a general framework and formalism is built

in this work which can become a basis for further innovation and expansion. The most

important aspects of the general problem are addressed and various formalized solutions

presented.

The next section in this chapter highlights the primary design driver for the semicon-

ductor industry: next generation mobile systems. The flexible digital filter benchmark

presented in this dissertation is a necessary component in next generation mobile systems.

Following the brief discussion on next generation mobile systems, this chapter presents a

process scaling analysis, summarizing the move from performance-constrained designs to

today’s power-limited scaling regime. Then this chapter briefly introduces and reviews

sensitivity-based circuit optimization and previously published works in this area. The fi-

nal sections of this chapter provide an overview of the dissertation and the scope of the

research.

1.1 Next Generation Mobile Systems

One of the primary design drivers for the semiconductor industry is mobile communi-

cation [7]. Mobile communication has steadily increased over the last 15 years, and today

it is ubiquitous. From villagers in India to high-powered executives in America, wireless

radio is the primary medium of communication. In his prophetic statement in the April

1965 issue of Electronics Magazine, Gordon Moore foresaw large scale electronic integra-

tion as the key enabler of personal portable communication [8]. In 1991, the number of

world-wide fixed line telephone subscribers were estimated to be 546 million, and mobile

subscribers were estimated to be just 16 million. In 2006, the number of mobile subscribers

world-wide reached 2.6 billion with fixed line subscribers leveling off to 1.2 billion [9]. The

graph in Figure 1.1 illustrates this phenomenal rise in mobile communication; it shows a

yearly quadratic increase in mobile service subscribers over a period of 15 years. In 2002,

the number of mobile subscribers on the globe surpassed fixed line subscribers.

4

0

500

1000

1500

2000

2500

3000

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

M
ill

io
ns

 o
f s

ub
sc

rib
er

s

Mobile cellular subscribers

Main telephone lines
Internet users

Personal computers

Figure 1.1. Mobile vs. Fixed Telephone Line Subscribers (1991–2006)

During the last 15 years, mobile services revenue has increased at rates not yet seen

by other telecommunication revenue streams. Figure 1.2 shows this trend to 2004, where

revenue from mobile services approaches fixed line related revenue. In the near future, rev-

enue from mobile services will become the dominant revenue stream for telecommunication

service providers [9]. By 2008, cell-phone semiconductor content revenue is projected to

make up 20% ($60 billion) of the total semiconductor revenue ($300 billion) [3].

The mobile device market is clearly driving every phase of electronic system design [3].

The enormous growth in consumer demand for integration of voice, video, and data on

a single mobile device with small form factor, low power, high reliability and security is

creating an exponential increase in circuit complexity per device. The most significant

challenge is the accelerated deployment of multi-mode, multi-standard wireless systems.

The system and algorithmic complexity required to meet the functionality and flexibility

demands is outpacing the scaling benefits of Moore’s Law [8]. Innovative design methods,

technologies, and system architectures will need to be realized in order to meet the increasing

demand for new mobile applications and systems that must operate within the maximum

2W power limit and tight area limits.

For example, a straight-forward implementation of multi-mode operation requires sev-

5

0

100

200

300

400

500

600

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

U
S

$
B

ill
io

n

Telephone (revenue from installation, subscription and local,
trunk and international call charges for fixed telephone service)

Mobile

Other (leased circuits,
data communicationtelex, telegraph,
and other telecom-related revenue)

International (retail revenue)

Figure 1.2. Telecommunications Revenue (1991–2004)

eral parallel radios which can be inefficient in terms of energy and area. Voice transmission

and reception requires a mobile device to process 2.5G and/or 3G or 9 bands from 0.9 to

2.3GHz; listening to FM radio requires processing at 100MHz and DAB/Satellite radio re-

quires processing at 2.2GHz; GPS requires 1.5GHz processing and DVB-H for digital video

broadcast. Consumers also demand personal connectivity using Bluetooth and/or WiFi,

both at 2.4GHz. UWB, WiMAX, NFC and RFID will soon become mainstream, all operat-

ing in multiple bands. This explosion in radios, processing tasks, and interference avoidance

leads to a very complex system design problem. The design tradeoff space is very large;

thus significant effort is required to select the optimal architecture which will result in the

lowest power consumption for the required performance.

Chapters 6 presents a power-performance optimal digital filter kernel that is a basic

constituent of multi-mode, multi-standard wireless radio systems. This block has been

optimized using the design methodology proposed in this dissertation.

6

1.2 Technology Scaling

Technology scaling is the primary enabler for actualizing the technology and economic

trends seen in Figures 1.1 and 1.2. In the same April 1965 article cited earlier, Gordon Moore

predicted the exponential increase in the number of components that can be integrated on

a single chip. He stated that the number of components per integrated function would

double every year [8]. Today, this trend is commonly known as “Moore’s Law”. Since the

inception of integrated electronics in the late 1950’s, the yearly doubling of complexity on

chip continued, as predicted by Moore, until the 1970s when it started to slowdown. In

1975, Moore revised his 1965 statement: he stated that number of transistors on chip would

now double every two years. Over the last 40 years, technology scaling has held true to

Moore’s Law and facilitated over one million times higher integration complexity. Along

with circuit and architecture innovation, the advances in semiconductor manufacturing, the

inherent properties of technology scaling and device miniaturization have allowed engineers

to provide smaller, faster components at little or no additional cost.

Even though smaller transistors mean that each transistor consumes less power, the

very high transistor density and requirement for high performance results in overall higher

system power dissipation. In the past, the amount of integration that was possible on a

single chip was only limited by area. Today, it is also limited by power dissipation. Next,

a brief scaling analysis is presented to illustrate why designs are now power-limited.

Three different scaling models exist that facilitate scaling analysis. The first is known

as constant electrical field scaling, the second is termed fixed voltage scaling and the last is

general scaling. These models are summarized in [10].

Constant field scaling is the ideal scaling scenario presented by Dennard et.al. [4]. Here,

all device dimensions and voltages scale by the same factor, S. The recent trends show that

minimum physical dimensions of transistors are reduced by a factor S = 0.7 in each tech-

nology generation. Hence, the area required to implement a digital system is approximately

halved at each technology node. Due to the reduced capacitance, performance improves by

a factor 1/S or 1.4. In order to maintain constant electrical fields, voltages also scale by

7

the same factor S, resulting in constant power for the same area. Unfortunately, this ideal

scaling scenario is not feasible nor practical for actual designs.

Voltages cannot be scaled arbitrarily because new devices must be compatible with ex-

isting components. Historically, supply voltages were kept constant over multiple technology

generations to maintain compatibility of chip interfaces. Here the fixed voltage scenario is

more adept at modeling the trends to the early 1990s. When the voltage is kept fixed and

device dimensions are scaled at each technology generation, there is a severe power penalty:

a quadratic increase in power density.

Even as supply voltages began to scale down at around the 0.5µm node, manufacturers

kept them higher than the ideal VDD = feature size x 10V/µm to help increase performance.

High supply voltages and innovative architectures further increased power dissipation and

resulted in operating frequencies that were higher than ideal scaling scenario predictions.

A more general scaling model that scales device dimensions by S and voltages by U

models today’s trends more accurately. Since manufacturers have kept U greater than S –

voltages scale down slower than device dimensions – the result has been improved perfor-

mance at the cost of power dissipation. This trend is exemplified in the exponential rise in

operating frequency of Intel’s lead microprocessors and the increase in power dissipation by

a factor of 2.5 per generation (Figures 1.3 and 1.4).

For practical reasons, this trend cannot continue as power dissipation is limited by the

cost of cooling, packaging, and reliability. This is illustrated in Figure 1.4 by the 130W

power ceiling reached in high-performance Intel microprocessors. The ceiling is much lower

for mobile systems as forced air cooling is not possible and plastic packaging limits power

dissipation to about 2W. Portable systems are also limited by battery life which dictate

tight constraints on active and leakage power during standby and sleep modes.

Hence, power dissipation is now the limiting factor in both high-performance and mobile

systems.

8

0.1

1

10

100

1000

10000

1971 1972 1974 1978 1979 1982 1985 1989 1993 1995 1997 1999 2000 2001 2002 2004 2006

F
re

qu
en

cy
 [M

H
z]

4004

8008

8080

8086
8088 286

386 486

Pentium

Pentium Pro Pentium II

Pentium III

Pentium 4
Xeon

Itanium II -
180nm

Itanium II -
130nm

Dual Core Itanium

Figure 1.3. Exponential increase in frequency for Intel microprocessors (compiled from
www.intel.com and www.i-probe.com/i-probe/ip intel.html)

0.1

1

10

100

1000

1970 1975 1980 1985 1990 1995 2000 2005 2010

P
ow

er
 [W

]

4004

8008

8080

8086

8088
286

386
486

Pentium

Pentium Pro
Pentium II

Pentium III

Pentium 4
Xeon

Itanium II - 180nm

Itanium II - 130nm

Dual Core Itanium

130 W power ceiling

Figure 1.4. Power ceiling for Intel microprocessors (compiled from www.intel.com and
www.i-probe.com/i-probe/ip intel.html)

9

max

min

min

max

Figure 1.5. Energy-efficient system design

1.3 Energy-Efficient System Design

Under this power-limited scaling regime, energy-efficiency has displaced performance

as the primary design constraint in the optimization of digital integrated circuits. Tight

power constraints on a system maybe dictated by battery life, chip packaging, and/or cooling

costs. The circuit designer must determine the energy-efficiency boundary for the system

and try to maximize performance for a given energy-budget or minimize energy for a given

performance target. Determining this energy-efficiency boundary allows the designer to

better understand which tuning variables will impact energy the most for a given increase

or decrease in performance. It allows a designer to tune a non-optimal design and push it to

a point (or close to a point) on the energy-efficiency boundary, as illustrated in Figure 1.5.

The task of determining the energy-efficiency boundary for a system-on-chip (SoC) is

inherently very complex, time consuming, and cumbersome as it spans a multi-dimensional

search space across multiple levels of design abstraction. A systematic yet simple approach

that allows designers to accurately evaluate the increase in energy for a unit increase in

performance for each design parameter at each level of design abstraction can uncover

opportunities for improving energy-efficiency and can reduce design time.

Design tuning variables from architecture, micro-architecture, logic and arithmetic, cir-

10

cuit and technology levels must all be accounted for when evaluating the power-performance

tradeoffs for a system [11, 12]. The impact of wires and wire scaling must also be accounted

for in the analysis: for example, modular design with shorter local wires can impact ar-

chitecture organization [2, 6, 13]. Leakage power and variability in process parameters are

increasingly becoming problematic for designers as technology processes go beyond 90nm

and 65nm. These affect architecture, micro-architecture, and circuit choices that are avail-

able to meet design constraints. The overhead of including circuits that mitigate variability

must be evaluated with respect to their overall benefits.

The confluence of a multitude of circuit design variables, architecture and micro-

architecture choices, and flexibility in choosing technology parameters such as supply volt-

age and threshold voltage creates a challenging design environment. Process variations add

another layer of complexity to the already difficult task ahead for the design engineer. A

systematic design space exploration and optimization methodology, that begins at the archi-

tecture level and follows through to the technology level, can result in power-performance

optimal system architectures. Such a methodology can also shorten time-to-market and

improve design productivity. A key ingredient to the recipe are sound metrics that can be

used to evaluate the power-performance tradeoffs for a particular digital function.

This dissertation attempts to address this design problem by proposing a hierarchi-

cal, sensitivity-based ASIC design methodology. The optimal design is reached when

the marginal costs of all tuning variables at each level of design abstraction are bal-

anced [14, 15, 16]. The design methodology is exemplified in the architecture selection,

design,and optimization of two different digital subsystems that operate in a multi-mode,

multi-standard wireless radio system. This work builds on prior work by Zlatanovici [17]

and Markovic[12], and extends them to include a generic hierarchical methodology that can

be incorporated into any off-the-shelf commercial cell-based ASIC design environment.

Next, this chapter will briefly review sensitivity-based circuit optimization and previ-

ously published related works.

11

1.4 Sensitivity-Based Circuit Optimization

The hierarchical design methodology proposed in this dissertation is founded on

sensitivity-based optimization where energy efficiency is the primary design objective. The

application of gradients or sensitivity analysis to circuit optimization was first introduced

in the late 1960s for simulation and automated circuit network optimization in [18, 19, 20].

In the late 1980s and 1990s, gradients were used to solve the constrained circuit sizing prob-

lem [21, 22]. In 2002, authors in [14, 15, 16] simultaneously advocated the use of “hardware

intensity” or sensitivity to evaluate energy-delay tradeoffs at various levels of design hierar-

chy. Here, the authors defined sensitivity as the normalized derivative of the energy-efficient

curve with respect to a design tuning variable, such as gate size. A similar definition for

sensitivity is used throughout this work.

Based on sensitivity, appropriate metrics to evaluate power-performance tradeoffs were

proposed in various published works, with each author advocating a different metric [23,

24, 25, 15, 14, 16]. The energy-per-performance ratio [16] and hardware intensity [15] are

relative gradients which are mathematically equivalent, and encompass all other metrics.

Authors in [14] propose using absolute gradients instead. In fact, no single metric can

quantify the energy-efficiency for all digital designs; the appropriate metric is dependent on

the type of computation and the weight placed on energy or delay [16].

Zlatanovici in [17] and Markovic in [12] have demonstrated that circuit optimization

based on a sensitivity-based analysis leads to energy-efficient design. In [17], a power-

performance optimal 64-bit Ling Adder operating at 240ps and consuming 260mW at 1V

supply is designed using a gate sizing tool that incorporates sensitivity-based, convex power-

performance optimization. The adder was designed using a custom circuit design techniques.

In [12], a 4x4 adaptive SVD chip is optimized and implemented using dedicated sensitivity-

based analysis at the micro-architecture and circuit levels. This chip provides 250 Mbit/s

throughput at 34mW using a 385mV supply. This SVD chip was synthesized and automat-

ically placed and routed using commercial ASIC design tools.

12

1.4.1 Limitations of prior work

Unfortunately, Zyuban and Strenski [26] have not published results on an application of

the theory for hierarchical design optimization. The sensitivity-based optimality conditions

for circuits have been used in the design of a few custom circuits [27] and methodologies are

dedicated to select circuits [28, 29]. The impact of interconnect has been largely ignored

by all previous works. Interconnect is an important consideration for hierarchical design as

global and intermediate interconnect affects both energy and delay in the deep sub-micron

scaling regime. As technologies scale below 65nm, global wire delay increases, requiring

power-performance optimal architectures to reduce global communication. Architectures

that are more modular in nature or alternate global communication techniques such as on-

chip wireless transmission or optical communication maybe more adept at meeting global

communication constraints. Regardless, a sound and systematic design methodology is

required to evaluate the tradeoffs in selecting the appropriate architecture.

1.5 Research Scope

The work presented in this dissertation addresses a very difficult problem that in the

past, had very little formalism around it except at the circuit level. This dissertation builds

on previous custom circuit optimization [12, 14, 15, 17] to produce a design methodology

that can be automated within an exisiting standard cell design flow. The goals of the work

are to:

1. Produce a hierarchical power-performance optimization framework using an efficient

circuit optimizer for power-performance optimization at the leaf cell. The goal is

to bridge the gap between architecture-level design and circuit and technology level

design using sensitivity information.

2. Investigate the viability of using physical circuit parameters to estimate sensitivity.

The focus is on modeling sensitivity to gate sizing, where sensitivity to gate sizing is

13

a function of Cgate/Cwire and Cin. The investigation of using this metric leads to a

thorough study of the impact of wires on sensitivity-based optimization.

3. Investigate the use of composition rules to enable fast generation of energy-delay

tradeoff curves for larger circuit blocks comprised of smaller leaf cells.

4. Formalize the composition process into an algorithm that can be implemented effi-

ciently. The goal of the research is not to create a tool but to propose a methodology

and formulate possible algorithms that could be implemented in the future.

5. Demonstrate the methodology in the power-performance optimization and design of

a digital filter kernel for a multi-mode, multi-standard wireless radio transceiver.

1.6 Dissertation Overview

The dissertation is broken up into two main parts. The first part focuses on building

models, using the models to construct the design methodology, and then formalizing the key

ingredients into algorithms that can be implemented in software. The second part focuses

on designing and implementing a key component of multi-standard wireless radio systems

to demonstrate the viability and efficacy of the design framework.

Chapter 2 reviews the mathematical foundations of sensitivity-based design and

gradient-based optimization which is later used to formalize the key ingredients of the

design methodology. Chapter 3 follows with detailed presentation of the hierarchical power-

performance optimization methodology, highlighting its important components which are

formalized into implementable programs.

Chapter 4 focuses on reviewing existing low level models for delay, power, energy, area.

In the same chapter, the impact of wire capacitance and wire resistance on sensitivity

is investigated. Including interconnect information in the model for sensitivity impacts

design choices at higher levels of design hierarchy such as architecture selection. Chapter 5

details the development of a model for sensitivity to sizing which includes the impact of

interconnect.

14

Chapter 6 presents the architecture optimization of a multi-standard radio digital FIR.

The chapter starts with a discussion of the design tradeoff space, followed by a description

of the implementation and results of a taped out chip. This work was carried out mainly

at an internship at Intel Research. The final chapter concludes and summarizes the key ac-

complishments and results of the work presented in this dissertation. It also gives directions

for future research.

15

Chapter 2

Power-Performance Optimization

Overwhelming evidence is being amassed, however, that the digital computer may
enter the network design decision process. – Ronald. A. Rohrer, 1967

The hierarchical power-performance optimization of ASICs presented in this work lies

in the realm of multi-objective combinatorial optimization problems. The nature of the

problem is discrete, with multiple conflicting optimization criteria: minimize energy and

minimize delay. There are multiple levels of design hierarchy, each with a vast number of

tuning variables. The constraints or feasibility sets are not necessarily convex and neither

are the objective functions. One common approach that has been used to address such

problems in the past is to flatten the hierarchy and transform the conflicting objectives into

a single objective function. For example, delay is minimized subject to energy and/or area

constraints; or energy is minimized subject to delay and/or area constraints. Sometimes

the objective functions and constraints are massaged into, or approximated by, continuous

convex functions and subsequently solved using efficiency convex optimization techniques.

Heuristics are then employed to arrive at a discrete solution. Unfortunately, these techniques

are not very scalable to multiple tuning variables and multiple levels of design hierarchy.

The best answer to a multi-objective combinatorial optimization is to provide the de-

signer with an entire set of Pareto optimal solutions [30], or a subset, having an image under

the energy-delay tradeoff space. The Pareto set captures the notion of tradeoff, allowing

designers to ascertain the best architecture, algorithm, circuit, and technology for the given

16

application and design constraints. Unfortunately, computing the Pareto set is hard be-

cause: (1) typically it is exponential in size; and (2) computing one of the Pareto optima

is often NP-hard [30]. The best that can be done is to construct an estimate of the Pareto

set and traverse it systematically using gradients or sensitivities, with the goal of obtaining

the optimal digital system for the given constraints.

The use of gradients or sensitivity analysis has been applied to circuit optimization since

the late 1960s for simulation and automated circuit network optimization [18, 19, 20]. By

the late 1960s, digital computers were more prevalent in academic and industrial research

labs and they were actively used as aids for designing circuits, as Rohrer mentions in his

November 1967 article [18]. Optimization methods that could be translated into algorithms

and computer-aided tools were being actively investigated at the time [31]. Specifically,

gradient-based iterative optimization methods were applied to fixed-structure lumped, lin-

ear, time-invariant RLC network design problems [18, 20] and optimal design and synthesis

of switching circuits [19]. Sensitivity of network performance to parameter variation was

used as a guide to iterate to an optimum set of design parameters. Numerous methods

were used to determine sensitivities – ranging from variational calculus [18] to generating

expressions directly from forming adjoint networks [20]. A form of convexity analysis was

also used in these optimization techniques to determine whether the resulting solution was

a local or global minimum [31].

In their comprehensive article, describing the state-of-the-art computer-aided design in

1967, Temes and Calahan summarize the advantages of iterative optimization [31]:

The main advantage of design techniques based upon iterative optimization is
then their flexibility. They can incorporate all kinds of constraints, can lead
to compromise solutions reconciling conflicting requirements carrying different
weights, and can accommodate prescribed active elements, nonlinearities, para-
sitics, as well as restrictions on the types and values of the elements. . . . Also,
such important practical considerations as the sensitivity of performance to small
changes in the element values can be used as criteria in the optimization of the
network.

The advantages they list are exactly the reasons why research and development in the area

of iterative optimization has advanced considerably since the late 1960s. Today, the use of

17

gradient-based optimization in the design of circuits and systems is prevalent. The basic

principles of iterative optimization using gradients has not changed significantly since the

late 60s but there has been substantial advancement in the efficiency and optimality of

algorithms [32, 33].

The hierarchical design methodology proposed in this work is founded on sensitivity-

based (or gradient-based) optimization where energy efficiency is the primary design objec-

tive [11, 15, 16]. The algorithms described in Chapter 3 that formalize the propagation of

sensitivities across multiple layers of design abstraction are based on convex programs. The

techniques described in this dissertation provide an estimate of the Pareto set which allows

designers to choose how to tradeoff energy for delay using any number of design tuning

variables at any level of design hierarchy.

The first section in this chapter reviews basic material on gradient-based optimization

and convex programs. It is followed by a summary of how sensitivity analysis has been

applied to the circuit sizing problem and then Section 2.3 introduces more recent inter-

pretations and uses of sensitivity analysis to optimize circuits and micro-architectures for

energy-efficiency.

2.1 Gradient-Based Optimization

The material presented in this section is recapped from Bertsekas’s book on nonlinear

programming [32] and from a book on convex optimization by Boyd and Vandenberghe [33].

For a more comprehensive treatment of the subject, the reader is referred to the sources

cited earlier. Only those topics that are referred to in later chapters in this thesis are

summarized.

An iterative, gradient-based optimization method starts off at a “best-guess” estimate of

the solution vector, ~x0. Then successively improved solutions, ~x1, ~x2, ~x3, . . ., are generated

based on descent conditions – characterized by the gradient – with the goal of minimizing

the objective function, f , to an optimum point, f(~x∗). The gradient,∇f(~x) is the normal

to the surface of the objective function at a particular point f(~x). For continuously differ-

18

entiable functions, the gradient at local or global minimum is equivalent to zero. A formal

mathematical description of gradient methods is presented in the following, beginning with

a few necessary definitions.

2.1.1 Modeling of Optimization Problems

Mathematical modeling of optimization problems can be represented by a constraint set

X and a cost function f . The constraint set constitutes the available decisions or choices.

The set X has finite dimensions and is a subset of <n. For example, the set X ⊆ {0, 1}n

is a constraint set. The cost function f maps the set X ⊆ <n onto a scalar measure of

the undesirability of choosing some ~x in the set X. The goal of the optimization is to

find the optimal decision ~x∗ ∈ X such that f(~x∗) ≤ f(~x), ∀~x ∈ X. The decision ~x is an

n-dimensional vector, (x1, x2, . . . , xn). In the remainder of this work, the vector sign will

be omitted for clarity as it will be assumed that x is a vector unless otherwise stated.

If the set X has infinite number of choices, for example X = <n, then the optimization

problem is continuous; otherwise, if X is finite (e.g. X = {0, 1}n), then the problem is dis-

crete. Discrete optimization problems are generally more difficult to solve than continuous

ones; these problems are usually solved using combinatorial or discrete mathematics. Con-

tinuous optimization problems are solved using calculus and maybe massaged into convex

optimization problems which can generally be solved very efficiently.

If the cost function f is nonlinear or the constraint set X is specified by nonlinear equa-

tions and inequalities then the problem is classified as a nonlinear programming problem.

An unconstrained nonlinear programming problem is given by:

minimize f(x) subject to x ∈ <n (2.1)

A constrained nonlinear programming problem is given by:

minimize f(x) subject to

x ∈ <n

gi ≤ 0 i = 0 . . . n

hj = 0 j = 0 . . .m

(2.2)

19

x

y

y

x

y

x

x

y

x+(1-)y, 0< <1

Figure 2.1. Convex and non-convex sets

If there are no equality constraints, then the problem is known as an inequality constrained

optimization problem. If there are no inequality constraints, then problem is termed an

equality constrained optimization problem.

General unconstrained optimization problems that are continuous in nature are usually

solved by iteration of gradient methods and convergence analysis [32]. Optimality conditions

play an important role in determining whether a global minimum exists.

A point x∗ ∈ X is a global minimum if f(x∗) ≤ f(x), ∀x ∈ X. It is strict if the

inequality is strict, that is: x∗ 6= x,∀x ∈ X. A point is a local minimum if f(x∗) ≤
f(x), ∀x ∈‖ x − x∗ ‖< ε (in the neighborhood around x∗). It is a strict local minimum if

the inequality is strict. Convexity plays an important role in determining whether a unique

minimum exists for a particular optimization problem.

2.1.2 Convex Sets and Convex Functions

When f(x) is a convex function, a local minimum is also a global minimum over X; if

f(x) is strictly convex, then there is at most one global minimum. This fact is extremely

important in optimization. If an objective function can be shown to be convex, then it is

known apriori that any local minimum found will also be a global minimum and hence the

optimization can stop as soon as a local minimum is discovered. This fact leads to very

20

f(x)

x
x1 x2

f(x1 + (1-)x2)

f(x1)+ (1-)f(x2)

Figure 2.2. Epigraph of a convex function and Jensen’s inequality

efficient algorithms that can solve convex optimization problems in very short amounts of

time. Mathematically, convex sets and functions are defined as follows. A set X ⊆ <n is

convex if for all x, y ∈ X and λ ∈ [0, 1], the vector λx + (1 − λ)y ∈ X. This means that

the points along any line segment connecting two points in the set X also belong to the set

X. Figure 2.1 shows some examples of convex and non-convex sets.

A function f : <n → < is convex if and only if its epigraph is a convex set; the epigraph

of f is defined as:

epi(f) =
{
(x, y) ∈ <n+1 |f(x) ≤ y, x ∈ <n, y ∈ <}

(2.3)

The epigraph, which are the points above the graph, links convex sets to convex func-

tions [33]. This is useful because results about convex sets can be translated into results

about convex functions. For a convex function, Jensen’s inequality holds:

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ <n, λ ∈ [0, 1] (2.4)

Equation (2.4) says that the line segment between (x, f(x)) and (y, f(y)), which is the chord

from x to y, lies above the graph of f . That is, any point on the line λf(x)+(1−λ)f(y) lies

inside the epigraph of f . Figure 2.2 illustrates the epigraph of a convex function modeled

by equation (2.3) and Jensen’s inequality.

If a function can be recognized as being convex, then by definition, a local minimum for

the function is also the global minimum. A linear function is convex; any vector norm is

21

convex; and the weighted sum of convex functions, with positive weights, is also convex [32].

These hints help in determining whether any particular function is convex.

Gradient analysis is very useful when the objective function in an optimization problem

is shown to be continuously differentiable and convex. For such functions, x∗ is a global

minimum if and only if the gradient is equal to zero, ∇f(x∗) = 0 [32, 33]. There are multiple

ways of solving such an optimization problem; they are discussed in [32] and [33]. A method

based on iterative gradient analysis is described in the next section.

2.1.3 Gradients and Iterative Optimization Methods

The discovery of stationary points, x∗ where ∇f(x∗) = 0, is a hard problem to solve in

general, but motivates iterative optimization methods. Iterative descent methods are com-

putational methods for unconstrained minimization. A subset of these methods are termed

gradient methods because they use gradient or variation analysis to determine descent and

stopping conditions.

If the cost function f(x) is continuously differentiable then gradients and Taylor series

expansions can be used to compare the cost of a particular decision with the cost of decisions

that are small variations of the original [32] . This type of variation analysis of decisions

near the optimal, x∗, yields some necessary optimality conditions.

If the cost function f(x) is twice differentiable, and ∇f(x∗) = 0 and, in addition, if

∇2f(x∗) is positive semidefinite, then the vector x∗ is a local optimum point. If only the

∇f(x∗) = 0 condition is satisfied, then x∗ is only a stationary point. And as mentioned

earlier, if the cost function is convex, then x∗ is a global optimum. In this case, ∇f(x∗) = 0

and X is open are sufficient conditions for optimality. These optimality conditions help in

constructing iterative optimization methods which are defined and detailed in [32]. A short

general summary is given below.

Consider an unconstrained minimization of a continuously differentiable function, f :

<n → <, and f(x) ≥ L, ∀x ∈ <n. An iterative method generally starts off with an

initial guess of the solution vector, x0 ∈ <n. Then, successive solutions, x1, x2, x3, . . . are

22

generated such that f(xk+1) < f(xk), with the goal to decrease f all the way to f(x∗).

A gradient-based optimization method uses gradients to determine descent and stopping

conditions.

Convergence analysis in iterative methods is important because a global minimum is

not always guaranteed unless the objective function is convex. In fact, a local minimum is

not even guaranteed. The goal of convergence analysis is to show that the descent method

will not converge to a non-stationary point. The most that can be expected from a general

gradient-based descent method is that will converge to a stationary point (i.e. ∇f(x∗) = 0).

It is also important to measure the speed of convergence in the given parameter space.

So far, the discussion has been focused on unconstrained minimization of a general

objective function, f(x). As seen briefly in the discussion of convexity, if the objective

function or constraint set can be characterized as convex, then the optimization is simplified

and is efficient. However, in general cases, the optimization can be slow and become trapped

in local minima. The efficacy of a general iterative method is highly dependent on the initial

guess. If the initial guess is appropriately chosen, the iterative optimization may lead to

the global minimum. However, if a bad initial guess is chosen, then the minimization may

get stuck at a local minimum or even worse, at a stationary point. This is illustrated in

Figure 2.3. Thus, the goal is to avoid these pitfalls by exploiting properties of objective

functions and constraint sets to efficiently arrive at the optimal solution.

Certain classes of problems can be solved efficiently by exploiting the properties of

the objective functions and constraint sets, as alluded to by the discussion on convexity.

Unfortunately, it is rare that problems will fit nicely into the classes of problems that can be

solved efficiently. However, approximations and reformulation of the original problem may

lead to a form of the problem that does fit nicely into those classes of problems that can

be solved efficiently, such as convex formulations. Transformation of the original problem

is carried out via change of variables, additional variables and constraints, and exploitation

of duality.

23

f(x)

x
local minimum

Interval in which local
minimum holds

local minimum
that is not

strict

global minimum (strict)

stationary point

Initial guess in this interval
may lead to non-optimal
solution (local minima)

Initial guess in this interval
may lead to optimization

getting stuck at non-
stationary point

Figure 2.3. Optimizations leading to local and global minima, and stationary points

2.1.4 Lagrangian Theory and Methods

Unconstrained problems of the form minimize f(x) (which may not be convex) are

usually solved by iterative methods such as those discussed in the preceding sections. La-

grangian methods solve constrained optimization problems with equality and inequality

constraints. Auxiliary variables known as Lagrange multipliers help augment the objec-

tive function with a weighted sum of the constraint functions. For example, consider the

constrained optimization problem given in Equation (2.2). The Lagrangian is then defined

as:

L(x, λ, ν) = f(x) +
n∑

i=0

λigi(x) +
m∑

j=0

νhj(x) (2.5)

The vectors λ and ν are Lagrange multipliers that can be viewed as penalties for violat-

ing constraints. If the constraint penalties are set appropriately, minimizing the Lagrangian

given in Equation (2.5) leads to an unconstrained optimization problem which approximates

the original constrained optimization problem. Lagrange multipliers characterize the op-

timal solution and provide sensitivity information. They quantify, up to a first order, the

variation in optimal cost caused by variations in the problem data, x [32]. It is assumed

that f , gi, and hj are continuously differentiable. The basic Lagrange Multiplier Theorem

24

states that for a given local minimum, x∗, there exist scalars λi and νj such that:

∇xL(x∗, λ∗, ν∗) = ∇f(x∗) +
n∑

i=0

λi∇gi(x∗) +
m∑

j=0

νj∇hj(x∗) = 0 (2.6)

The Lagrange dual function is defined as the minimum of the Lagrangian over x. The

Lagrangian dual function is concave even when the problem in Equation (2.2) is not convex.

The dual function gives lower bounds on the optimal value of Equation (2.2) which is verified

in [33]. The best lower bound that can be obtained from the Lagrange dual function,

L(x, λ, ν), is given by the following optimization problem:

maximize G(λ, ν) = infL(x, λ, ν) subject to λ º 0 (2.7)

The problem in Equation (2.7) is termed the Lagrange dual problem and the optimal set

(λ∗, ν∗) are the optimal Lagrange multipliers, if they are optimal for Equation (2.7). The

Lagrange dual problem in Equation (2.7) is a convex optimization problem, regardless of

whether the primal problem in Equation (2.2) is convex. This is because the problem in

Equation (2.7) is a maximization of a concave function which is equivalent to minimizing

a convex function; and the constraint set is convex. The optimal solution to this problem,

G(λ∗, ν∗) is the best lower bound on the solution to the original constrained optimization

in Equation (2.2). That is:

G(λ∗, ν∗) ≤ f(x∗) (2.8)

If the original problem is not convex, this condition is known as weak duality. If G(λ∗, ν∗) =

f(x∗) holds, then this condition is termed strong duality. The bound given by Equation (2.7)

is then tight. Strong duality may hold even in the case where the original problem is not

convex. However, strong duality does not hold in general. In cases where the original

problem is convex and Slater’s condition on the inequality constraints is satisfied, then

strong duality holds [33].

Sensitivity analysis stems from strong duality. If strong duality holds, then the opti-

mal values, (λ∗, ν∗) provide a mechanism for variation analysis around the optimal point

(x∗, f(x∗)). This information is important because it allows designers to understand which

constraints have greater impact on the optimal solution. Further, if the optimal solution is

25

differentiable at (x∗, f(x∗)), then it can be shown that the optimal doublet (λ∗, ν∗) is re-

lated to the gradient at (x∗, f(x∗)). Readers are referred to Section 5.6 in [33] for a detailed

treatment of sensitivity and perturbation analysis.

The important fact to keep in mind is that, if strong duality holds, then the optimal

Lagrange multipliers resulting from the optimization in Equation (2.7) automatically pro-

vide the gradients at the optimal solution of the original problem in Equation (2.2). Most

optimizers that solve the primal problem by solving the dual problem, also provide the user

with the optimal Lagrange multipliers, thus making it easy to compute gradients [17].

Since dual feasible points establish a bound on how suboptimal a given feasible point

is without actually knowing the exact value of f(x∗), one can use the duality gap as a non-

heuristic stopping condition in an optimization algorithm. The duality gap associated with

a primal feasible point x and a dual feasible point (λ, ν) is defined as:

f(x)−G(λ, ν) (2.9)

If the algorithm generates a sequence of primal feasible points xk and dual feasible doublets

(λk, νk) and ε > 0 is a threshold on the required accuracy, then the stopping criteria for an

algorithm is given as:

f(xk)−G(λk, νk) ≤ ε (2.10)

Strong duality must hold if ε is made arbitrarily small. If the duality gap is equivalent to

zero, then x is primal optimal and (λ, ν) is dual optimal.

If strong duality holds, and the primal and dual optima are attained, then x∗ minimizes

L(x, λ∗, ν∗) over x. In addition, since x∗ minimizes L(x, λ∗, ν∗) over x, it implies that the

gradient at x∗ must be equivalent to zero:

∇f(x∗) +
n∑

i=0

λ∗i∇gi(x∗) +
m∑

j=0

ν∗j∇hj(x∗) = 0 (2.11)

This results in the following conditions [33] which are termed the Karush-Kuhn-Tucker

26

(KKT) conditions:

gi ≤ 0, i = 0, 1, . . . , n

hj = 0, j = 0, 1, . . . , m

λ∗i º 0 i = 0, 1, . . . , n

λ∗i gi(x∗) = 0 i = 0, 1, . . . , n

f(x∗) +
∑n

i=0 λ∗i∇gi(x∗) +
∑m

j=0 ν∗j∇hj(x∗) = 0,

(2.12)

The above says that for any optimization problem with differentiable objective and

constraint functions, any pair of primal and dual optimal points must satisfy the KKT

conditions when strong duality holds. If the original problem is convex, and the primal and

dual points satisfy the KKT conditions, then these points are optimal and the duality gap

is zero. This is a sufficient condition for optimality in the case where the original problem

is convex. If the original problem is convex with differentiable objective and constraint

functions that satisfy Slater’s constraint qualification condition, then the KKT conditions

provide necessary and sufficient conditions for optimality [33]. In some special cases, it

is possible to solve the KKT conditions, and hence the optimization problem analytically.

In others, algorithms that solve the KKT conditions can be used to solve the original

optimization problem.

2.1.5 Convex Optimization

Convex optimization efficiently solves problems whose objective functions and con-

straints are convex functions and convex sets. Consider the constrained optimization prob-

lem posed in Equation (2.2). The requirement that the feasible constraint sets be convex

requires that the inequality constraint functions gi are convex, and the equality constraint

functions hj are linear. The latter requirement is highly problematic because it is too re-

strictive. Fortunately, for most circuit optimization problems, equality constraints are not

present in the problem formulation. The application of convex optimization to the optimum

design of digital and analog circuits has been explored by a number of researchers over a

period of 20 years [21, 34, 35, 36, 37].

27

Convexity of the problem formulation has implications on iterative gradient descent

methods described earlier. If the optimization problem is convex, then it can be shown that

the unconstrained minimization using a gradient-based descent method will converge, and

once the gradient ∇f(x) is small at a particular point, then the point is nearly optimal [33].

Convergence using Newton’s Method is also very fast [33]. Constrained minimization as in

Equation (2.2) can be solved in a number of efficient ways. One of the most efficient ways

is to use interior point methods [33].

The biggest challenge in choosing to solve an optimization problem using convex opti-

mization is to formulate the problem such that the objective function and feasibility sets

are convex. In general, most problems are not convex by nature; however, if enough effort

is spent in reformulating and transforming the problem such that it becomes convex or

is approximated as a convex problem, then it can be solved extremely efficiently using the

algorithms described in the preceding discussion. A class of problems that are not convex in

their natural form but can be massaged into a convex formulation will be discussed shortly.

However, first a discussion on solving constrained minimization problems is required.

2.1.6 Interior Point Iterative Methods

Interior point iterative methods are used to solve convex optimization problems that

include inequality constraints, as in Equation (2.2) but with only one equality constraint of

the form Ax = b where A is a p by n real matrix with rank A = p < n. It is assumed that

an optimum x∗ exists. It is also assumed that the problem is strictly feasible; that is, there

exists some x in the domain of f that satisfies Ax = b and gi(x) < 0 for i = 0, 1, . . . , n.

Thus, Slater’s constraint qualification holds and there exists a dual optimal (λ∗, ν∗) such

that together with x∗, the KKT conditions are satisfied.

Interior point methods apply Newton’s Method to solve the optimization problem, (or

equivalently, the KKT conditions) in an iterative manner. One example of an interior

point algorithm is the barrier method. The barrier method approximates the inequality

constrained problem as an equality constrained problem and applies Newton’s Method to

28

iterate to a solution. The inequality constraints are made implicit in the objective function

by applying an indicator function as follows:

minimize f(x) +
n∑

i=0

I(gi(x)) subject to Ax = b (2.13)

where I : < → < is the indicator function defined as:

I(u) =

0 u ≤ 0

∞ u > 0
(2.14)

Since the indicator function is not differentiable, it must be approximated so that Newton’s

Method can be used to iterate to a solution. The Logarithmic barrier method uses the log

function to approximate the indicator function given in 2.14:

Î(u) = −(1/t)log(−u) where t¿0 (2.15)

The parameter t sets the accuracy of the approximation. The approximated indicator

function in Equation (2.15) is convex and nondecreasing, and is ∞ for u > 0 [33]. Substi-

tuting Equation (2.15) into Equation (2.13) results in a differentiable convex optimization

which can be solved using Newton’s Method. Since this optimization is only an approxima-

tion of the original problem, it is important to understand how well the resulting solution

approximates the actual optimum. In [33], the authors show that as t grows large, the

approximation improves; however, when t is large, it is difficult to minimize by Newton’s

Method. Hence, a sequence of problems is solved by increasing t slightly at each step of the

iteration and using the previous solution as the starting point for the next iteration.

There are many types of problems that are of the form in Equation (2.13) which have

twice differentiable objective and constraint functions. These are: linear programming prob-

lems, quadratic programming problems, quasi-convex quadratic programming problems,

and geometric programs in convex form. The first three are self-explanatory. Geometric

programs are discussed next. Many other problems that do not have the required form can

be reformulated and transformed such that they fit the required optimization template.

29

2.1.7 Geometric Programs

Geometric programs refer to a family of optimization problems that are not convex

but can be massaged into convex optimization problems via a change of variables and a

transformation of the objective and constraint functions.

A monomial function is defined as:

f(x) = cxa1
1 xa2

2 . . . xan
n (2.16)

where c > 0 and ai ∈ <. A posynomial is the sum of monomials:

f(x) =
K∑

k=1

ckx
a1k
1 xa2k

2 . . . xank
n (2.17)

Posynomials are closed under addition, multiplication, and nonnegative scaling; monomials

are closed under multiplication and division [33].

An optimization of the form:

minimize f(x) subject to

x ∈ <n

gi ≤ 1 i = 0 . . . n

hj = 1 j = 0 . . .m

(2.18)

where f(x) and gi(x) are posynomials and hj are monomials is called a geometric program.

The domain of the problem is the positive reals, and the constraint x Â 0 is implicit.

Geometric programs are not convex in general but can be transformed into a convex op-

timization via a change of variables. In order to accomplish this, first set yi = log(xi)

so xi = eyi . Then f(x) = eaT +b where b = log(c). The objective function, equality and

inequality constraint functions in Equation (2.18) can be transformed in this way to yield

an exponential of an affine function in the case of the equality constraints and sums of

exponentials of affine functions in the case of the objective and inequality constraint func-

tions [33]. Next, by taking the logarithm of the objective, inequality constraint, and equality

constraint functions, the result is a convex optimization problem which is referred to as a

30

geometric program in convex form [33]. This optimization problem is given as:

minimize f̃(y) = log(
∑K

k=1 eaT
k y+bk)

subject to g̃i(y) = log(
∑Ki

k=0 eaT
iky+bik) ≤ 0, i = 0, 1, . . . , n

h̃j(y) = edT
j y+wj = 0, j = 0, 1, . . . , m

(2.19)

The functions f̃ and g̃i are convex and h̃j are affine, the resulting problem given by Equa-

tion (2.19) is convex.

Geometric programs have been used extensively to optimize gate size in custom circuit

design [21, 34, 36, 37], where transistor or gate size is allowed to take on values from a

continuous set.

2.2 Discrete Optimization

All previously discussed optimization techniques apply to continuously differentiable

objective functions and constraints. In fact, up until now, only problems with a single

objective function have been addressed. Unfortunately, as will be shown in Chapter 3,

the problem that is posed in this thesis is significantly more complex because it is discrete

and the feasibility sets and the multiple, conflicting objective functions are not necessarily

convex. The variables in the problem addressed in this dissertation take on discrete values

in a finite set. Hence, it is a discrete optimization problem. A large number of practical

problems fall into this category and there are many diverse methods for solving them. A

subset of these methods rely on the solution of continuous optimization subproblems and

duality.

Some general problems that fall into the category of discrete optimization are integer-

constrained network optimization, unimodal problems, generalized assignment and facility

location problems, the traveling salesman problem, and separable resource allocation prob-

lems [32]. Branch and bound is an exhaustive search method that can be used to produce

an optimal solution. It relies on upper and lower bound estimates of the optimal cost. The

upper bounds are usually obtained via heuristics and the lower bounds are obtained through

integer constraint relaxation or via Lagrangian relaxation using the weak duality theorem.

31

A second general mechanism of solving discrete optimization problems to first make

them continuous and formulate them as known types of problems such as convex opti-

mization, solve them, and then use heuristics to make the solution discrete. This will

not necessarily produce the optimal but it may come close; in some cases it is possible to

determine how close the estimated solution is to the actual [33].

Another important subset of algorithms used to solve difficult discrete optimization are

known as approximation algorithms. The goal of these algorithms is to provide the best

possible solution and guarantee that the solution satisfies certain properties [30]. These

types of algorithms have recently seen an increase popularity due to their wide applicability

to real-world problems.

2.2.1 Branch and Bound

The branch-and-bound method is an iterative exhaustive search method that explores

the entire feasible set and enumerates each feasible solution. It can be very time-consuming

(in some cases, it can become exponential in time) but in principle, it will yield the exact

optimum. The basic principle is to partition the feasible set of solutions into smaller subsets

and determine the lower and upper bound on the cost of the solutions in the subsets. If

the cost lies outside the lower and upper bounds, then the subset is eliminated from further

consideration. The progressive refinement of the feasible set is captured in an acyclic graph

known as the branch-and-bound-tree [32]. The root of the tree contains the set of all feasible

solutions. Singleton solutions are stored at the leaf nodes. Other nodes contain subsets of

the entire feasible set stored at the root. At each non-terminal node, an algorithm exists that

calculates the lower bound to the minimum cost over the subset at the node; and calculates

the feasible solution in the subset that serves as the upper bound to the minimum cost over

the subset. The bounds are saved and those nodes or subsets that contain solutions that

fall outside the best current bounds are discarded.

Branch-bound-methods typically use continuous optimization to obtain lower bounds to

the optimal costs and to construct feasible solutions [32]. It is important to ensure that the

32

lower bounds are as tight as possible for the branch-and-bound approach to succeed, since

it leads to fewer iterations. Sometimes it is possible to reformulate a problem such that

more constraints are added that accelerate the branch-and-bound solution and improve the

lower bound, but do not affect the feasible set of solutions [32].

In the Lagrangian relaxation approach to obtaining lower bounds, constraints are made

implicit in the objective function by forming the Lagrangian function, dual function, and

dual optimization problem as discussed earlier. By the weak duality theorem, the dual

value obtained through maximization of the dual function, provides a lower bound to the

optimal primal value f(x∗) as does the optimal dual value. Thus solving the dual problem

gives a lower bound that can be used in the branch-and-bound procedure used to solve the

original problem.

For a convex cost and linear inequality constraints, the lower bound obtained via La-

grangian relaxation is no worse than the lower bound obtained via constraint relaxation

(continuous constraints). If both the cost function and constraint functions are linear then

the lower bounds are equivalent [32]. It must be noted that using Lagrangian relaxation can

lead to solutions that violate some of the constraints. Also, it may be difficult to maximize

the dual function as it may be non-differentiable. In this case cutting plane and sub-gradient

methods must be employed [32].

2.2.2 Approximation Algorithms

Approximation algorithms were formally introduced in 1966 by Ronald L. Graham [38]

and used to generate near-optimal solutions to optimization problems that could not be

solved efficiently. That is, they are usually used to solve NP-hard problems. Today, approxi-

mation algorithms are applied to many classical and new problems, including multi-objective

combinatorial optimization [30], where exact polynomial time algorithms are known but not

feasible due to large feasible solution sets. Unlike heuristics, which find reasonably good

solutions in a reasonable amount of time, approximation algorithms provide provably good

quality solutions with a provable bound on running time.

33

In some cases, it is possible to prove certain properties relating to the approximation

of an optimum. For example, in ρ-approximation algorithms, it has been proven that the

approximate solution x̂ will not be more (or less, depending on the situation) than a factor

ρ times the optimum solution x∗ [39]. That is:

x∗ ≤ x̂ ≤ ρx∗, if ρ > 1

ρx∗ ≤ x̂ ≤ x∗, if ρ < 1
(2.20)

The factor ρ is a relative performance guarantee. An approximation algorithm has an

absolute performance guarantee or bounded error ε if it can be shown that:

(x∗ − ε) ≤ x̂ ≤ (x∗ + ε) (2.21)

Approximation algorithms use all the concepts previously discussed in solving a par-

ticular problem. In this dissertation, an approximate economic equilibrium algorithm [30]

is modified and applied to the hierarchical sensitivity-based optimization of ASICs. The

problem is formulated as a convex optimization problem by exploiting the KKT conditions

and using interior-point methods to iterate to a solution. The algorithm will be discussed

in detail in Chapter 3.

2.3 Gradients, Sensitivity, and Optimality

Optimal circuit design requires knowledge of the energy-efficiency boundary which is

comprised of the Pareto optima for the particular problem. The gradient of the energy-

efficiency curve provides the designer with insight on how energy and delay change as the

design variables are either lowered or increased in value. If the sensitivity to a design

variable in the energy-delay tradeoff space is readily available, then the designer can sys-

tematically make sound decisions that tradeoff energy for delay in an iterative manner that

will eventually lead to an energy-efficient design.

Sensitivity is defined as the ratio of the relative increase in energy and the corresponding

relative gain in performance achieved by tuning a design parameter such as gate size or

supply voltage [15, 16]. For example, if the energy-efficient curve for a circuit, with respect

34

E
ne

rg
y

pe
r

O
pe

ra
tio

n
E(X0)

D(X0)

S(X0)

EmDn

(m=1,2,3,…; n=1,2,3,…)

Relat ive increase in
energy w ith respect

to relat ive gain in
perform ance by tuning X

0)(
)(

XX

X XDXE

XEXD
S

,...,, ThDD VVWX

0)(
)(

XX

X XDXE

XEXD
S

,...,, ThDD VVWX

Figure 2.4. Definition of sensitivity

to a circuit tuning variable such as gate size, is plotted in the energy-delay coordinate space,

then a specific value of sensitivity is the normalized derivative taken at a specific point on

this curve, as shown in Figure 2.4. The energy-efficiency curve represents the Pareto optimal

solutions set of the power-performance optimization.

Analytically, the sensitivity to a design parameter x is given as:

S(x) = −D∂E

E∂D

∣∣∣∣
x

, 0 ≤ S(x) ≤ ∞ (2.22)

Equation (2.22) is equivalent to the normalized gradient of the energy-efficiency curve of a

particular block, with respect to the tuning variable. This is also termed hardware intensity

in [15]. A simple interpretation of Equation (2.22) shows that S(x) is the percent energy

increase per percent improvement (reduction) in delay for an energy-efficient design [15].

The absolute gradient with respect to gate sizing, or the tangent of the energy-efficiency

curve at a particular point is defined as follows [12]:

Θ(x) = −∂E

∂D

∣∣∣∣
x

, 0 ≤ Θ(x) ≤ ∞ (2.23)

In order to make a clear distinction between Equation (2.22) and Equation (2.23),

the absolute gradient (or tangent) of the energy efficiency curve will be termed absolute

35

sensitivity, Θ. Analytical expressions for the absolute gradient can be derived if a few

simple assumptions are made such as fixing the input capacitance of a combinational block.

A derivation based on the Alpha-Power Law MOSFET Model [40] is provided in [12].

The authors in [11] state that the absolute gradients with respect to different tuning

variables must be equal for an optimal design. They claim (but never show) that this is

equivalent to the optimality condition in [15] which states that the hardware intensities with

respect to different tuning variables must be balanced. In fact, for a single block, where two

(or more) tuning variables, X and Y are employed to tune a block, the optimum condition

using normalized gradients is equivalent to the optimum condition using absolute gradients.

This is illustrated by comparing the optimality conditions for both absolute and normalized

gradients in Equation (2.24).

Θ(X) = Θ(Y) ⇒ − ∂E
∂D

∣∣
X

= − ∂E
∂D

∣∣
Y

S(X) = S(Y) ⇒ −D(X)
E(X) · ∂E

∂D

∣∣∣
X

= −D(Y)
E(Y) · ∂E

∂D

∣∣∣
Y

(2.24)

As shown in Equation (2.24), the optimality condition for both cases are equivalent if

the energy and delay points (at the optimal point) on the X and Y energy-efficient curves

are equal. This will be the case for a single block that is being optimized using two or

more tuning variables. The optimality condition implies that the energy-efficiency curves

are tangent to one another and have the same slope at the optimal point. If a curve

is generated where two variables are varied (for example, supply voltage and gate sizes),

then at each point on the aggregate energy-efficiency curve, the sensitivity to both tuning

variables will be balanced.

In Figure 2.5, if two variables X and Y are tuned for a block, and the sensitivity of Y

in the energy-delay space is greater than the sensitivity of X as shown by the initial design

point [D(X0, Y 0), E(X0, Y 0)], then decreasing Y , from Y 0 to Y 1, and increasing X from

X0 to X1 results in a more energy-efficient design for the same delay; this is given by design

point [D(X1, Y 1), E(X1, Y 1)], where sensitivities are balanced.

In the case where the energy-efficiency curve for the system-level block is available and

multiple tuning variables are employed at the same level of hierarchy, then the optimality

36

E
ne

rg
y

pe
r

O
pe

ra
tio

n

E(X0,Y0)

D(X0,Y0) = D(X1,Y1)

f(X,Y0)

(X0,Y0)

f(X0,Y)

f(X,Y1)

f(X1,Y)

(X1,Y1)
E(X1,Y1)

(X0,Y1)

SX(X0)=SY(Y1)

SX(X1)=SY(Y1)

SX(X0) SY(Y0)

Figure 2.5. Circuit optimality using multiple tuning variables

condition based on absolute gradients is equivalent to the optimality condition using nor-

malized gradients, or hardware intensity. Optimization that exploits the tuning variable

with the largest capability for energy reduction will eventually lead to the optimal point

where the energy-reduction potentials of all tuning variables are balanced [16, 15, 11]. This

is intuitive: energy can be maximally reduced by decreasing the tuning parameter with the

larger sensitivity, and performance can be maintained by increasing the parameter with the

smaller sensitivity, hence resulting in an overall energy reduction. An optimization that

iterates using this reasoning will eventually reach a fixed point where sensitivities to all

tuning variables are balanced.

An example from [28] is reproduced here to illustrate in detail how balancing sensitivities

to circuit tuning variables leads to maximum energy reduction. In Figure 2.6, the energy-

efficiency curves are given for: varying gate size while supply voltage and pipeline depth

remain fixed (curve A); varying gate sizes and supply voltage, while pipeline depth remains

fixed (curves B, C, and D); and varying gate sizes and pipeline depth, while supply voltage

remains fixed (curve E). According to [28], these curves are derived such that the sensitivities

to the various tuning variables are balanced at each point on the energy-efficiency curve.

If the initial design point is given by the 14 FO4 point on the curve which meets the

target cycle time, D0, then the objective is to find the best method to maintain performance

37

E
ne

rg
y

pe
r

O
pe

ra
tio

n

 12 FO4

 14 FO4

Energy budget

 18 FO4

 23 FO4

D0

1

2

At solution point 2 sensitivity to all variables are balanced

1. Decrease pipeline depth to reduce energy
2. Increase VDD to meet delay constraint

A. Vary frequency, fix VDD and pipeline depth
B, C, D: Vary VDD, fix pipeline depth
E. Vary pipeline depth, fix VDD

Figure 2.6. Multi-variable optimization using sensitivity balancing

while meeting the energy budget. Since the sensitivity to tuning pipeline depth has the

highest sensitivity to energy reduction, the first step is to decrease pipeline depth to reach

the 18 FO4 point labeled by the boxed number 1 on Figure 2.6. At the 18 FO4 point, the

tuning variable with lowest sensitivity is supply voltage. Hence, supply voltage is increased

to meet the target performance at the given energy budget, at the point labeled by boxed

number 2. At the optimal point that meets the energy and delay targets, the sensitivities

to sizing, pipeline depth, and supply voltage are balanced.

2.3.1 Sensitivity and Design Hierarchy

At the system level, the optimality condition of balanced sensitivity must be slightly

modified as different components of a design will contribute differently to the total energy

and the total delay. The sensitivity of each block in a system will vary as each component

contributes different amounts of complexity to the overall system [15, 16]. For example,

one cannot expect that an adder will have the same hardware intensity as a multiplier or

38

E
ne

rg
y

pe
r

O
pe

ra
tio

n

in
B
XB

B
A
XA

A
C
X S

d

e
S

d

e
S

System is opt im al w hen w eighted
sensit ivit ies of all tuning variables

for a ll blocks are balanced

Figure 2.7. System optimality

a floating point unit (FPU) as the total effective switched capacitance of an adder is very

different from a multiplier or FPU.

At the system level, the optimality conditions are derived using aggregate sensitivity

which gives the sensitivity of a system to a tuning variable in terms of a function of weighted

sensitivities of its components. For example, consider system C which is a series connection

of two blocks, A and B, as illustrated in Figure 2.7. The optimal system design is achieved

when the sensitivity of C, with respect to tuning variable X, is equivalent to the weighted

sensitivities of block A and block B [26]. For example, if a block A and block B have

differing complexity, are designed independently and each requires a different percentage of

total cycle delay (e.g. latch will use a different portion of the cycle delay than the logic),

then each block will have a different sensitivity to sizing. The block that has the higher

delay weight and lower energy weight will need to be designed more aggressively. If it is

assumed that the sensitivity to supply voltage is given as 2, then the optimality condition

using sensitivity balancing implies that the sensitivity to sizing for the entire system should

also be 2. However, this does not imply that the hardware intensity of block A or block B

must also be 2 because each contributes a differing amount to the system energy and delay.

39

In the case where gate sizing and supply voltage are jointly optimized, the system

optimality condition is given by: SC(W) = SC(V) where SC(V) is the sensitivity to supply

voltage and SC(W) is sensitivity to gate sizing. Since C is composed of two blocks, A

and B, the optimality conditions for each block when designed independently are given by:

SA(W) = SA(V) and SB(W) = SB(V). However, since A and B contribute differently to

total system energy, their contribution to aggregate sensitivity must be appropriately scaled

resulting in the following system optimality conditions [26].

eA = EA
EC

eB = EB
EC

dA = DA
DC

dB = DB
DC

SC(W) = eA
dA

SA(W) = eB
dA

SB(W)

SC(V) = eA
dA

SA(V) = eB
dA

SB(V)

(2.25)

The weights are the ratio of the contribution of the energy of each block to the total

energy and the contribution of each block to the total delay. The weights also depend on

the number of times a particular block maybe instantiated in a system. In addition, for each

different input capacitance, there will be a different energy-efficient curve for a particular

circuit. The energy-efficiency curve that envelopes all the possible input capacitances is the

overall energy-efficiency curve for a particular block, as shown in Figure 2.7.

The optimality conditions in Equation (2.25) can be expanded using the definition of

sensitivity, and then simplified. The result is shown in Equation (2.26) which states that

the tangents of the energy-efficiency curves for the system and its sub-blocks must be equal

for an optimal system. This translates directly to balanced absolute gradients.

40

1

1

2

2 M M

1 2 M

Figure 2.8. Composite pipeline stage

DC
EC

· ∂EC
∂DC

∣∣∣
W

= EA/EC

DA/DC
· DA

EA
· ∂EA

∂DA

∣∣∣
W

∂EC
∂DC

∣∣∣
W

= ∂EA
∂DA

∣∣∣
W

ΘC(V) = ΘC(W)

ΘC(W) = ΘA(W) = ΘB(W)

ΘC(V) = ΘA(V) = ΘB(V)

(2.26)

Composite Pipeline Stage

The results in Equations (2.25) and (2.26) hold for M blocks composing a single pipeline

stage as shown in Figure 2.8. The optimality condition for aggregate sensitivity is given in

terms of system block sensitivities which are summarized in Equation (2.27).

Sagg(V) = Sagg(W) = ei
di
· Si(W) = ei

di
· Si(V) for i = 1 . . . M

Θagg(V) = Θagg(W) = Θi(W) = Θi(V) for i = 1 . . . M
(2.27)

Multi-stage Pipeline

In a more complex system where there are multiple stages in a pipeline as shown in

Figure 2.9, the system optimality or aggregate sensitivity can be derived in a similar fashion

as for a composite pipeline stage. In this case, it is assumed that each stage has the same

delay.

First, assume that there are N pipeline stages, each with a different time slack available

41

1 2 N

1 2 N

Figure 2.9. Multi-stage pipeline

and differing amounts of logic. Each stage is a single block followed by a register and

contributes energy, Ei, to the total energy such that E =
∑N

i=1 Ei

The energy weight assigned to each block is giving by ei = Ei/E and
∑N

i=1 ei = 1. The

energy weight represents the fraction of the total system energy budget assigned to each

stage. Each stage has its own sensitivity to sizing given by Si. The aggregate sensitivity

(e.g. to sizing or supply voltage) for the entire system is Sagg. The clock period for the

system is given by D and each individual stage delay is Di = D. Using the definition for

sensitivity given in Equation (2.22), an increase in clock cycle by ∂D through retuning the

circuits in all stages increases the total energy by:

∂E =
N∑

i=1

∂Ei = −
N∑

i=1

Ei

Di
Si∂D (2.28)

Hence, by rearranging Equation (2.28) the aggregate sensitivity is given by:

Sagg = −∂E ·D
∂D · E =

N∑

i=1

eiSi (2.29)

Equation (2.29) gives a nice result as it says that the aggregate sensitivity for multi-

stage pipeline can be expressed through the sum of the weighted sensitivities of its individual

stages. If the same analysis is carried out using the definition of absolute sensitivity given

in Equation (2.23), the result is somewhat different as shown in the following derivation

which starts off similar to Equation (2.28).

42

11

11

12

12 1M 1M

11 12 1M

N1

N1

N2

N2 NM NM

N1 N2 NM

Figure 2.10. Multi-stage composite pipeline

∂E =
∑N

i=1 ∂Ei

∂E = −∑N
i=1 Θi · ∂Di

Θagg = − ∂E
∂D =

PN
i=1 Θi·∂Di

∂D

Θagg =
∑N

i=1 Θi

(2.30)

As is clear now from Equation (2.30), the absolute gradient definition of sensitivity

does not lend itself well to composability of block sensitivities because they add in absolute

terms. This is problematic. In an optimal system, aggregate sensitivity to sizing must

be balanced to system sensitivity to supply voltage. If absolute gradients are used, then

the definition of aggregate sensitivity supplied by Equation (2.30) would not account for

the different amounts of complexity in each stage of the pipeline, and the contribution of

energy from each stage to the system energy. In the remainder of this work, sensitivity will

be defined using normalized gradients.

Multi-stage Composite Pipeline

A more general and realistic representation for a general system is one with multiple

pipeline stages and each stage consisting of multiple blocks as shown in Figure 2.10. If

43

the energy for each block is given by Eij and the delay is Dij , then the system optimality

conditions for a multi-stage composite pipeline can be derived using a similar analysis as

for the preceding two cases. They are given as:

eij

dij
· Sij = eik

dik
· Sik 1 ≤ j, k ≤ M

Sagg =
∑N

i=1
eik
dik
· Sik for any sub-block k in stage i

(2.31)

When a system is optimal, the aggregate sensitivity is equal to the weighted sum of the

sensitivities for each pipeline stage. The sensitivity of each pipeline stage is given in terms

of the sensitivity of each component: it is equal to the weighted sensitivity of any one its

components.

Hierarchical energy-delay tradeoff analysis requires calculation or estimation of sensi-

tivity at each level of design hierarchy. This can be a compute intensive and over-whelming

task if the design is large and there are numerous tuning variables. The results in Equa-

tions (2.27), (2.30), and (2.31) are important because they show that system optimality

conditions can be easily expressed through sensitivities for smaller blocks. Hence, energy-

efficiency curves for large systems can be estimated from smaller blocks without having to

calculate or generate them through other tedious and time-consuming means.

2.4 Sensitivity-Based Design Methodology

Sensitivity can be used as a guide to systematically traverse the energy-delay design

tradeoff space. The use of energy-efficient curves and sensitivities to evaluate the tradeoff

between energy and delay under tight energy constraints has been applied in various custom

circuit design frameworks [15, 11, 37]. The main idea behind the optimization methods is

equalization of sensitivities at all levels of hierarchy for all tuning variables, as described

in Section 2.3. For example, if circuit design tools can calculate sensitivities for various

synthesized blocks, then they can use the sensitivity information to uncover opportunities

for reducing power. For example, if there are substantial differences in sensitivity between

blocks with respect to different tuning variables, then power-efficiency of a design can be

44

improved by adjusting the blocks and tuning variables until the sensitivities are balanced.

An example of such a process was depicted earlier in Figure 2.6.

Methods for efficient power minimization at the circuit and micro-architecture levels

that are based on energy and delay analytical models and derived analytical expressions

for sensitivity of various circuit tuning variables is presented in [11]. The authors show

that significant power savings can be obtained without a delay penalty when sensitivities

to sizing, supplies, and thresholds are equalized.

Calculation of the sensitivities is the major challenge to implementing tools that use this

type of sensitivity analysis in a design methodology. In [16] the author relies on simulation

and calculation of derivatives to quantify the hardware intensity or energy-per-performance

ratio (EPR) with respect to various design parameters such as supply voltage or device-to-

wire capacitance ratio. The drawback of both of the above approaches is the inability to

incorporate them easily in an automated hierarchical synthesis-based design flow commonly

used for ASICs.

In [15] the energy-efficiency analysis is carried out through simulation of circuits over a

range of values for the design parameter under consideration. Each simulation is tuned for a

particular value of sensitivity and the circuit blocks are optimized accordingly. Designs that

have multiple pipeline stages are optimal when the sensitivity is equalized across all stages.

This condition is met through a series of tuning variable adjustments based on calculation

of sensitivity from energy and delay data obtained via simulation and analysis tools.

The authors of [11] take this approach one step further. They derive analytical ex-

pressions for absolute gradients based on energy and delay models that are functions of

circuit tuning parameters such as device size, supply voltage and threshold voltage. The

expressions are derived for each individual gate in a circuit block. Each tuning variable

is adjusted to achieve minimal energy at each stage in the circuit block. The adjustment

is based on calculated sensitivities of each stage with respect to each design variable. A

similar approach is used for blocks with multiple levels of hierarchy where sensitivity infor-

mation from lower level blocks is used in the optimization at higher levels of abstraction

45

[11]. Unfortunately, these expressions can become complicated and involve energy and/or

delay calculations and are specific for the sub-circuits used in the design.

In [37], the authors employ a different method. Rather than calculating sensitivities,

they generate energy-efficient curves in the energy-delay tradeoff space for various adder

architectures and implementation strategies. The tuning variable is device size and the

curves are generated using software developed in Matlab. The underlying framework uses

a static timing formulation based on tabulated delay models. The optimization problem

is posynomial in nature and can be mapped onto a convex optimization problem easily.

The software minimizes delay based on given energy constraints. Once the energy-efficient

curves are generated, the designer can easily determine which design strategy will be best

suited to the given energy and delay constraints. Sensitivities are inherently present in the

generated curves since they are just derivatives calculated at various points on each curve;

however, the software never explicitly calculates them.

Each of the above methodologies serves a designer well if it is a one-time optimization

of a custom-designed circuit since each approach requires considerable execution time. In

addition, some manual intervention by the designer is required at some or all stages of the

optimization. Unfortunately, these methods would not be appropriate for a synthesis-based

automated design environment commonly used for ASICs. However, as suggested in [16], if

simple relationships between sensitivity and physical parameters of a circuit or design can be

discovered and modeled accurately, they can be incorporated into a synthesis environment

and used to guide optimization. Chapter 5 describes models for sensitivity that are derived

from simple physical properties of circuit, obviating the need to calculate derivatives.

2.5 Summary

In summary, the best solution to a multi-dimensional, multi-objective combinatorial

power-performance optimization is one that provides an energy-efficiency boundary which

represents the Pareto optimal solution set. The challenge lies in constructing the boundary

and traversing it systematically to arrive at the best solution that meets all the design

46

constraints. Sensitivity provides a means of evaluating the energy-efficiency of a design

at any level of design abstraction with respect to any tuning variable. It represents the

normalized gradient of the energy-efficiency curve at a particular point on the boundary.

An optimal system is constructed by balancing sensitivities to all tuning variables, across

all levels of design abstraction.

Sensitivity can be derived from analytical models or estimated by simulation. Sensitivity

is also a by-product of iterative, gradient-based optimization methods. In the next two

chapters, a hierarchical power-performance methodology is described that uses sensitivity

analysis. Sensitivity is obtained in two ways: one is via models based on physical properties

of a circuit or as a by-product of optimization algorithms based on iterative interior point

methods.

47

Chapter 3

Hierarchical Power-Performance

Optimization

Optimization at the architecture level can have a major impact on power.
– A. Chandrakasan and R. W. Brodersen, 1995

Power-performance optimization that spans all levels of design can yield significant re-

ductions in power for a given performance target [41]. Chandrakasan and Brodersen showed

that a design optimization spanning architecture, algorithm, micro-architecture, circuit, and

technology resulted in three orders of magnitude power savings for their portable media ter-

minal benchmark at the cost of increased latency and area [41]. Their power optimizations

included low threshold devices, architecture driven voltage scaling, parallelism, gated clocks,

power gating, accounting for switching activity in placement and routing, and in architec-

ture design. Today, even though these techniques are now widely employed in optimizing

designs for power and performance, they are still disjointly optimized. Architecture opti-

mizations are rarely carried out in the context of technology or circuit constraints as the

teams that design architecture, circuit, and technology are usually different. This leads to

architectures that are not well-suited to the underlying algorithm, circuit style or technol-

ogy. For example, if an architecture is memory intensive but is mapped to a technology that

is not optimized for memory applications (i.e. high leakage cells), then the resulting system

will be sub-optimal. This dissertation proposes integrating optimizations at various levels

48

E
n

er
g

y/
O

p

Delay

max

min

min

max

Figure 3.1. Energy-delay tradeoffs at multiple levels of design abstraction

of design hierarchy by propagating sensitivities to tuning variables at lower levels of design

(e.g. circuit or technology) to higher levels of design (e.g. architecture). This mechanism

allows designers to make power-performance tradeoffs at higher levels of design abstraction

in the context of lower level constraints.

Chandrakasan and Brodersen present an excellent overview of various power optimiza-

tion techniques available to the designer at each level of design abstraction, from technology

to architecture [41]. A few of these techniques (i.e. gate sizing, pipelining, parallelism,

power gating, and clock gating) are employed in the design of the benchmark presented in

Chapters 6 to show how low-level constraints can affect architecture level choices. Power-

performance optimization at the architecture level has the greatest potential for power

reductions at a given performance target, hence it is important to design an architecture

that is optimal in the energy-delay tradeoff space.

Fast architecture exploration over a large design tradeoff space in the context of lower

level design constraints is one of the most important objectives of energy-delay optimiza-

tion. For example, by plotting the energy-delay tradeoff curves at each level of design

abstraction as illustrated in Figure 3.1, it can be deduced that Architecture 3 achieves

higher performance than Architecture 1 for the given Emax energy constraint. The archi-

tecture composite curve is obtained by constructing energy-delay tradeoff curves for the

49

E
ne

rg
y/

O
p

Block C

Block A Block B

Figure 3.2. Gap between ideal and synthesized energy-efficiency boundaries

circuit tuning variables such as gate size and the tradeoff curves for the micro-architecture

level tuning variables such as pipeline depth. The architecture tradeoff curve represents

the points in the energy-delay space where the sensitivities of circuit tuning variables are

balanced to micro-architecture and architecture tuning variables [16, 15]. These points are

considered to be the Pareto optima for the given architecture.

The Circuit 1 tradeoff curve represents the circuit implementation of one of the system

blocks at a particular supply voltage. At the intersection of the Circuit 1 tradeoff curve

and the Micro-architecture 1 tradeoff curve, the sensitivity to gate sizing is equal to the

sensitivity to pipeline depth. In Chapter 2, it was shown that this optimality condition

can be captured in an equation that gives the optimal aggregate sensitivity as a function of

sensitivities to tuning variables at lower levels of design abstraction, allowing construction

of higher level energy-efficiency curves. Fast construction of architecture Pareto optima

allows designers to rapidly determine the architecture that is best suited to given design

constraints.

A second objective of power-performance optimization is to systematically narrow the

gap between the ideal (or optimal) energy-efficiency boundary and the actual synthesized

one, as shown in Figure 3.2. The figure shows the composition of two blocks, A and

50

E
ne

rg
y/

O
p

Synthesized
design point

Arch 1 ideal energy-
efficiency boundary

Emax

Dmax

Arch 2

Arch 3

1
2

1. Architecture exploration
2. Narrow ideal-actual gap through “sensitivity balancing”

Figure 3.3. Two objectives of hierarchical optimization

B, to form the system level block, C. The energy-efficiency boundaries of A and B are

composed according to the optimality rules described in Chapter 2 to generate the ideal

energy-efficiency boundary of block C which is shown as the blue curve. When block

C is synthesized, the energy-efficiency boundary generated is shown as the black dotted

curve, where sensitivities may not be balanced. The goal of the hierarchical energy-delay

optimization is to narrow the gap (depicted by the hashed space between the ideal and

synthesized energy-efficiency curves) by balancing sensitivities as best as possible. It may

not be possible to balance sensitivities exactly due to heuristic optimization, quantization

effects, saturation of variables, and inaccurate estimation of energy, delay, and capacitance.

However, it may be possible to balance sensitivities within a given threshold. This means

that the optimization reaches a fixed point once sensitivities to all tuning variables are

within a threshold, ε, of each other.

As seen from Figures 3.1 and 3.2, knowing the Pareto optima allows for improvement

of the current solution by bringing it closer to the estimated optimum for particular energy

and delay constraints. For example, in Figure 3.3, architecture exploration can be used

to determine the optimum architecture for the given energy and delay constraints; and

sensitivity balancing can be used to bring the synthesized solution closer to the Pareto

optimum.

51

The construction of the optimal energy-efficiency boundary at the architecture level or

at the system level requires energy-delay tradeoff information in the form of sensitivities to

various design tuning variables for all blocks in the system. As mentioned in the previous

chapter, the problem of constructing the Pareto optimal curve is a multi-objective combi-

natorial optimization problem with discrete variables; this implies that the constraints or

feasibility sets may not necessarily be convex.

A common approach to solving the above problem (for example, in the case of gate

sizing) is to flatten the hierarchy and transform the multiple objectives into a single objective

such that delay is minimized subject to an energy constraint or vice versa. The problem is

then relaxed into a continuous domain and transformed into a convex problem using models

and variable transformations. Once a fixed point solution is reached, heuristics are used

to return the solution to the discrete domain. Unfortunately, this approach does not scale

very well to large number of tuning variables or multiple levels of design hierarchy.

The approach used in this work is somewhat different: hierarchy is preserved allow-

ing for scalability. The methodology is both top-down and bottom-up as the greatest

energy-efficiency in design is achieved when design decisions at the top level of hierarchy

(architecture) are considered in the context of constraints at lower levels of hierarchy. This

is achieved through composition which will be described in Section 3.2.1. Constraints from

higher levels of hierarchy are propagated down to lower levels, and sensitivities of tuning

variables to energy and delay are balanced upward through the various design abstraction

layers.

Sensitivities to tuning variables such as gate size are not directly calculated but esti-

mated or modeled through physical properties of the block. For example, in Chapter 5

details are presented on modeling sensitivity to gate sizing using physical properties of a

circuit such as gate and wire capacitance. Once sensitivities for lower level blocks are mod-

eled or estimated, composition rules are used to construct energy-efficiency boundaries for

larger blocks at higher levels of design abstraction. Sensitivity can also be approximated

using the parameter t of the barrier method used in interior point algorithms. Section 3.5

describes in detail why this is the case.

52

The next three sections describe the hierarchical design methodology in detail. Following

this, a convex formulation of the problem is presented using an approximation algorithm.

This formulation is a starting point for implementation of the methodology as an automated

design tool that may be used to augment existing electronic design automation (EDA) tools.

3.1 Design Methodology Overview

The design methodology consists of two distinct stages. The first stage constructs the

Pareto optima points in the form of optimal aggregate sensitivities for a given architecture in

the energy-delay space. This may entail any number of points depending on whether there

is a specific sensitivity that is being targeted or whether a designer requires an energy-

efficiency boundary that spans a range of energy and delay constraints.

The energy-efficiency boundaries of various architectures are then used for fast architec-

ture exploration to determine the best architecture for the given design constraints. Once

the architecture becomes fixed, the second stage of the optimization attempts to narrow the

gap between the ideal energy-efficiency boundary and the actual synthesized design point.

This is done by trying to balance sensitivities across blocks and design tuning variables

using the rules described in Chapter 2.

The input to the design methodology is a hierarchical netlist and design constraints

such as input slopes, input loads, output loads, energy budgets and delay targets. After the

netlist and constraints are parsed, they are converted into hierarchical constraint graphs [42]

that store connectivity information along with constraint information on each of the nodes.

The edges store maximum wire capacitance constraints so that long wires are avoided.

Using a fast convex optimizer such as one described in [17], models for sensitivity are

constructed for a small subset of leaf cells. These are the basic building blocks of the

system (e.g. adder, register). Once these are available, sensitivity for lower level blocks

are estimated using the models and energy-efficiency tradeoff curves for larger blocks are

generated using composition rules for optimal aggregate sensitivity. The energy-efficiency

53

Netlist
Netlist

Netlist

Hierarchical
Netllist

Constraints

Generate hierarchical
constraint graph

Constraint
graphs

Generate sensitivity
models for leaf cells

Assign estimated sensitivity
to leaf cell nodes

Estimate E-D tradeoffs for
higher layers of abstraction

Ideal
Architecture

E-D Tradeoffs

Switching
Activity

Estimation

RTL
Synthesis

SAIF

Netlist

Backend
Place &
Route

Final netlist

Specification
Functional
Verification

Constraints,
RTL

Energy-Delay
Tradeoff Analysis

Sensitivity Estimation

Balance Sensitivity
Composition

Sensitivity

Netlist

Power, Delay,
Capacitance Estimates

Sensitivity balanced?

Constraints met?

Figure 3.4. Fast architecture exploration

curves at all levels of design abstraction take into account connectivity, throughput, power,

and capacitance constraints.

Figure 3.4(a) depicts the flow just described. In Section 3.4.1, constraint graphs and

their generation are described in detail. Sensitivity models can be generated from physical

circuit parameters as exemplified in Chapter 5. The flow in Figure 3.4(a) is required to

run only once at the start of a project. The generated energy-delay tradeoffs can then be

used any number of times in optimizing a system using sensitivity analysis. Figure 3.4(b)

shows how sensitivity analysis and sensitivity balancing is incorporated into a standard

synthesis flow. The process is an iterative one. Once the synthesized netlist is available

along with physical parameters (e.g. wire and gate capacitance) of the synthesized block,

sensitivity of the block is estimated using sensitivity models generated in the first phase of

design (Figure 3.4(a)). If the aggregate sensitivities across blocks and design parameters

are balanced (within a given threshold) according to the rules defined in Chapter 2, then

synthesis concludes and the best possible design is output.

54

3.2 Fast Architecture Exploration

Fast architecture exploration is the first phase in the proposed design methodology

(Figure 3.4(a)). It requires generation of energy-efficiency boundaries at all levels of design:

from technology through to architecture. This can be a time consuming and cumbersome

task if previously published methods such as simulation [15] or analytical models [11] are

used. Fortunately, there is another means of generating sensitivity information obviating

compute intensive tasks. Physical properties of a circuit can be used to estimate sensitivity

to a first order. For example, Chapter 5 shows that there is a first order linear relationship

between sensitivity to sizing and the ratio of total gate capacitance to total wire capacitance.

Since architecture selection is done very early on in the design process, the sensitivity

models need only be accurate to a first order to allow a designer to quickly understand the

tradeoffs of various choices in the energy-delay space. Once an architecture is selected that

best meets the design constraints, then finer-grained optimization can be used to further

reduce power for a given performance target.

Fast architecture exploration benefits from generation of energy-efficiency boundaries

at the architecture level that include lower level constraints. The inclusion of lower level

constraints such as technology or sizing information can impact choice of optimal architec-

ture. Unfortunately, architecture tradeoffs in the context of lower level constraints requires

tradeoff curves for all architecture components. If multiple tuning variables such supply

voltage and threshold voltage are used in addition to circuit sizing, then each of the trade-

off curves for those variables need to be generated and then the composite curve will need

to be constructed where sensitivities are balanced. If these tasks are performed for multiple

architectures, then the entire analysis process may take a long time unless there is a faster

way to obtain the architecture tradeoff curves.

The mechanism proposed here requires only sensitivity models for lower level building

blocks. As mentioned earlier in Chapter 2, balancing block sensitivities for system optimal-

ity means that the optimal aggregate sensitivity is either equal to a weighted sum of block

sensitivities or is equal to the ”normalized” block sensitivity. The weight or normalization

55

E
ne

rg
y/

O
p

SAGG(X)
2211

2
2

1
121 ,;

SeSeS
E

E
e

E

E
eDD

AGG

S 1 and S 2 can be est im ated
using (Cin , Cg a t e / Cw ire)

D1, E1 D2, E2

S1 S2

Figure 3.5. Relationship between optimal aggregate sensitivity and system energy-efficiency
boundary

factor for a block is based on the ratio of its contribution to the total energy and to the

total delay of a system. These balancing conditions described in Chapter 2 lead to compo-

sition rules for optimal aggregate sensitivity. General composition rules were described in

Chapter 2. The next section describes design composition via a filter example.

3.2.1 Design Composition

Hierarchical composition is a key ingredient to the design methodology that allows

it to scale to very large designs. Design composition rules for a particular circuit are

based on calculation of optimal aggregate sensitivities as outlined in Chapter 2. The set

of optimal aggregate sensitivities provides an ideal energy-efficiency boundary (or Pareto

optimal set) for the system. The boundary can be constructed for a synthesized design

or a design optimized using custom continuous gate sizes and/or supply voltages and/or

threshold voltages. The optimization depends on which models (synthesized or custom)

are used at the building block level. Composition rules for each system must be derived

using the general rules given in Chapter 2, for constructing optimal aggregate sensitivity.

Figure 3.5 gives a pictorial view of the relationship of optimal aggregated sensitivity to the

ideal energy-efficiency boundary of a system that is constructed from a multi-stage pipeline.

The optimal aggregate sensitivity conditions are given on the right side of the figure which

56

N-TAP FILTER DELAY MODEL ENERGY MODEL OPTIMAL AGG. SENSITIVITY

Transpose DMAC (N − 1)EMAC + Emult
eMAC
dMAC

SMAC + emult
dmult

Smult

Transverse Dmult + (N − 1)Dadd N(Emult + Eadd) + (N − 1)Ereg
emult
dmult

Smult = eadd
dadd

Sadd = ereg

dreg
Sreg

P-Parallel Transpose DTranspose/P P · ETranspose STranspose

Pipelined Transverse DMAC (N − 1)EMAC + Emult
eMAC
dMAC

SMAC + emult
dmult

Smult

Table 3.1. Composition Rules for Filters

provide a means to calculate optimal aggregate sensitivity for the system. The optimal

aggregate sensitivity is the normalized gradient of the system energy-efficiency boundary.

This is the Pareto optimal set of design points for the entire system.

Table 3.1 shows the composition rules derived for a set of different filter architectures.

The number of taps is N . For example, the first row in the table is calculated by observing

that the critical path in the transpose filter is the delay of a single multiply-accumulate

(MAC) block. The total energy of the filter is addition of (N − 1) MACs and a single

multiplier. The transpose filter is a multistage pipeline system; so using the generic rules

presented in Chapter 2, the optimal aggregate sensitivity is the addition of the weighted

sensitivities of the MAC and multiply blocks. The weights are dependent on the energy and

delay contribution of each block to the total energy and delay of the filter. The weights for

the transpose filter would be as follows: emult = Emult
(N−1)EMAC+Emult

and dmult = Dmult
DMAC

for

the multiplier; and eMAC = (N−1)EMAC

(N−1)EMAC+Emult
and dMAC = DMAC

DMAC
= 1 for the MAC. If the

delay and energy of a multiplier is approximated to be almost the same as the MAC (i.e.

delay and energy of the register and adder are negligible compared to the multiplier), then

the weights can be approximated as: emult = 1
N , dmult = 1, eMAC = (N−1)

N , and dMAC = 1.

The generic composition rules of the composite pipeline stage given in Chapter 2 are used

to obtain the optimal aggregate sensitivity for the transverse filter architecture.

It should be noted that leakage energy and dynamic energy must be calculated separately

and then accumulated. Activity factors must also be taken into account when estimating

dynamic energy. These composition rules provide a means to construct the energy-efficiency

57

Multiply-Accumulate Composition

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5 3
Delay (ns)

E
n

er
g

y
(p

J/
C

yc
le

)

Synthesized MAC

Ideal composite MAC

Multiply

Add

Register

SAGG = 5.71

SAGG = 0.79
SAGG = 1.33

Figure 3.6. Design composition of multiply-accumulate (MAC) block

boundary for any filter architecture. An example is given in Figure 3.6 and Figure 3.7.

Figure 3.6 shows the construction of the ideal energy-efficiency boundary for the MAC block

from energy-delay tradeoff curves for multiply, add, and register blocks. The ideal energy-

efficiency boundary is based on calculating optimal aggregate sensitivity. The figure shows

different values of optimal aggregate sensitivity on the energy-efficiency boundary. This

boundary is compared to the energy-delay tradeoff curve obtained from direct synthesis.

Figure 3.7 shows the calculation of the ideal energy-efficiency boundary for a 32-tap

transpose filter using the results of composition for the multiply-accumulate block. The

ideal composition curve is compared with the synthesized results. The composition must

take into account leakage energy and dynamic energy, and include best estimates for activity

factors. Figure 6.13 in Chapter 6 shows the entire filter architecture tradeoff space for 32-tap

filters which is generated using this methodology.

58

32-tap Transpose FIR Composition

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5 4
Delay (ns)

E
n

er
g

y
(p

J/
cy

cl
e)

Ideal composite MAC

Ideal composite 32-tap transpose

Synthesized 32-tap transpose

SAGG = 5.5

SAGG = 1.3 SAGG = 0.7

Figure 3.7. Design composition of 32-tap transpose filter from MAC composite curve

Design Composition Flow

Since it is not exactly clear from the figures and table, how the composition process

works, it is useful to describe it through the composition for a 32-tap transpose filter. Once

the composition rules are derived as shown in Table 3.1, the optimal aggregate sensitivity

is calculated based on the derived equations. The optimal aggregate sensitivity gives a

relationship between the system sensitivity and the sensitivities of the system components.

As long as this relationship is satisfied, the sensitivities are ideally balanced and the design is

optimal. Once the sensitivities for the MAC and the multiplier are available either through

simulation or modeling, then blocks are composed such that the relationship dictated by

the optimal aggregate sensitivity equation holds.

The first step is to derive the optimal aggregate sensitivity for the MAC block. The

optimal aggregate sensitivity for the MAC is based on the composite pipeline stage com-

position rules. The sensitivity of the MAC is equal to the weighted sensitivities of the add,

multiply, and register blocks. The optimal aggregate sensitivity of the MAC is given by:
ereg

dreg
Sreg = 1.77 or eadd

dadd
Sadd = 1.66 or eadd

dadd
Sadd = 1.72. Note that the sensitivities are not

59

BLOCK DELAY (ps) ENERGY (pJ) SENSITIVITY
Register 0.09 0.24 1.03

Add 0.59 0.58 2.53
Multiply 1.2 2.48 1.25

MAC 1.88 2.82 1̃.7

Table 3.2. Multiply-accumulate Block Composition

exactly balanced, but they are all within a 0.06 (6̃%) threshold. Also, note that the energy

is not a simple addition of the block energies as activity factors and leakage energy are

accounted for differently when composing designs (Chapter 4 discusses this further). The

results of the composition procedure is summarized in Table 3.2 for one point on the curve

shown in Figure 3.6.

The 32-tap transpose filter composition is now easy given the ideal optimal aggregate

sensitivities for the MAC and the derived rules in Table 3.1. In Figure 3.7, the contribution

of the single multiplier is negligible compared to 31 MAC blocks. For the example point,

the aggregate sensitivity for the filter will be approximately the same as SMAC = 1.7 block

since eMAC ≈ 1 and dMAC = 1.

Limitations

Achieving the optimal aggregate sensitivity might not be possible in practice, due to

a number of factors which include heuristic optimization in synthesis, quantization effects,

poor estimation of wire capacitance, and inaccurate estimation of power/energy. In addi-

tion, composition of delay where block delays do not add linearly and when variables or

sensitivity saturate, can also lead to inaccuracies. These limitations and issues are discussed

later in this chapter and the next. A representation of this phenomenon was shown earlier

in Figure 3.3. An actual example is shown in the difference between the ideal curve and the

synthesized one in Figure 3.7. Some of these issues can be addressed, but not completely

eliminated: we can use simulation to capture switching activity for a design; an iteration of

place and route can be performed to obtain a more accurate estimate of wire capacitance.

However, the quantization effect can only be reduced by adding more cells. In addition,

the approximated curve is based on models of sensitivity and approximation of the contri-

60

bution of a block to the total energy and delay of the system; hence it may not match the

synthesized curve.

3.3 Sensitivity Balancing Across Layers of Hierarchy

The ultimate goal is to minimize the difference between the synthesized energy-efficiency

boundary and the ideal estimated energy-efficiency boundary for the system, leading

to a more energy-efficient system. This is shown in the optimizations given in Equa-

tions (3.1) and (3.2).

min ‖ SC
X −OptAggS(SA

X , SB
X) ‖ (3.1)

min ‖ SC
X − SC

Y ‖ (3.2)

The optimization above is an example for a system C (see Figure 3.3) which is comprised of

two blocks A and B, and two tuning variables X and Y. The variable SC
X refers to the actual

sensitivity to tuning X in block C which is composed of block A and B. The constraints

are minimum and maximum conditions on sensitivity, energy, and delay. The OptAggS(·)
function refers to the calculated optimal aggregate sensitivity for the design C in terms of

sensitivities of A and B to the respective tuning variables. The calculation is carried out

based on composition rules. The optimal aggregate sensitivity can be either the one derived

for a custom circuit implementation using the linear model for sensitivity to sizing for a

custom-designed critical block such as the 64-bit adder mentioned earlier; or it can be the

one derived from the synthesized version of the model.

Equation (3.1) minimizes the difference between the ideal energy-efficiency boundary

and the current design point. Equation (3.2) minimizes the difference between sensitivity

to different design tuning variables at a particular level of design hierarchy. When the

difference between the previous and current iteration of the optimization is within a given

threshold or when a fixed point is attained, the optimization is complete.

This is an elegant way to balance sensitivities across layers of hierarchy as the optimal

aggregate sensitivity, which is our target, automatically provides us with a point on the ideal

energy-efficiency boundary for the entire system. In addition, since the optimal aggregate

61

sensitivity is computed in terms of sensitivities to tuning variables of lower level blocks, we

automatically assess energy-delay tradeoffs at higher levels of abstraction in terms of lower

level energy-efficiency constraints.

3.4 Steps to Automation

The previous sections described a general method for propagating sensitivity across

different layers of hierarchy while constructing the energy-efficiency boundary for a an entire

system. This section explains how this methodology may be automated within a standard

cell (ASIC) design flow. The presentation is only of a possible framework and is not rigorous.

The development and implementation of an eventual algorithm is left as a topic for another

dissertation. The problem is not easy to solve as the optimization spans a large design space

and multiple layers of hierarchy.

The first important step to automating the above design methodology is to choose an

appropriate data structures that can store a netlist for the system and can easily accommo-

date constraints such as interconnect, input and load capacitances, sensitivity, maximum

delay, and maximum energy. The data structure must also be able to accommodate hi-

erarchy and store architecture tradeoff information in the form of sensitivity. The next

subsection describes a data structure that is well-suited to the sensitivity-based hierarchical

optimization problem tackled in this dissertation.

3.4.1 Data Structures

The communication constraint graph structure described in [42] is modified slightly and

used to represent the system hierarchically. The constraint graph consists of computational

modules (of any size) communicating through point-to-point unidirectional channels that are

connected to modules via means of input/output ports [42]. Each node in the constraint

graph represents a port of a computational module, and each directed arc represents a

point-to-point connection between two modules. Representation using these graphs allows

for delineation between different architectures for the same function. An example is given

62

X

R
E

G
IS

T
E

R

CLK

+

aN-1

X[n]

X

R
E

G
IS

T
E

R

CLK

X

R
E

G
IS

T
E

R

CLK

+

aN-2 a0

Y[n]

aN-1_in

in

aN-2_in a0_in

out

Nodes represent I/O ports

Edges represent point-to-point
connection between two

modules

a0

X

X[n]

a1

REGISTER

CLK

X

+

aN-1

REGISTER

CLK

X

+ Y[n]

aN-1_in

in

a1_in

out

a0_in

Figure 3.8. Interface constraint graphs for transpose and transverse filters

in Figure 3.8 for two different filter architectures (transpose and transverse) which perform

the same function but have very different architectures and delay profiles.

The interface constraint graph contains the netlist if the nodes are grouped as shown in

Figure 3.9. The red nodes represent add blocks, the blue nodes represent multiply blocks,

and the green nodes represent registers in the constraint graph. Constraints are assigned

to each node in the form of sensitivity, input capacitance, maximum gate capacitance,

maximum delay and maximum energy. The sensitivity model generation is described in

Chapter 5. Each edge of the graph is assigned a maximum wire capacitance constraint to

prevent long wires. The cost of the netlist graph is in terms of delay, energy, and area. The

cost of the constraint graph is in terms of sensitivity, input capacitance, gate capacitance,

63

aN-1_in

in

aN-2_in a0_in

out

aN-1_in

in

a1_in

out

a0_in

Figure 3.9. Examples of embedded netlists in filter constraint graphs

load capacitance, and wire capacitance. Constraints at the input and output nodes depend

on the constraints of the constituent blocks and connectivity. Constraints can be modified

by insertion of buffers, memory, repeaters, mux and demux circuits. Topologies can then

be automatically evaluated using the mechanism presented in [42]. These graphs are used

to store architecture tradeoff information for different system implementations.

Hierarchy can be incorporated into the constraint graph as modules represented by the

nodes can be of any size. The modules themselves can contain additional constraint graphs

representing the implementation of the module in terms of its building blocks. A simple

example is shown in Figure 3.10. In the example, the top-level system D consists of three

building blocks A, B, and C. Each of these blocks is implemented using NAND, NOR, and

NOT gates. An interface constraint graph is constructed for each of A, B, and C. Then a

separate interface graph is constructed for system D. This type of hierarchical representation

allows constraints to be generated and propagated from lower levels of hierarchy to higher

levels using sensitivity information as explained in the next section.

64

D

in

out2

out1

out1

out2

in

C

C

out2

out2inA
inB

Figure 3.10. Example of a hierarchical constraint graph

3.4.2 Constraint Generation and Propagation

Constraint information is propagated from the top level block down to lower level blocks

based on system cycle time and energy constraints. The lower level implementation prop-

agates its delay and energy constraints upwards along with sensitivity information. The

nodes store models for sensitivity in addition to maximum delay and energy constraints.

The arcs store information about maximum wire capacitance constraints. Figure 3.11 shows

a simple constraint graph for two blocks, A and B, which are connected in series to form a

third block, C. The optimal aggregate sensitivity is given by the equation shown in the fig-

ure. The models for sensitivity in terms of gate capacitance and wire capacitance are stored

at the nodes for any number of different input capacitances. The optimality constraint

gives a specific gate capacitance to wire capacitance ratio for blocks A and B for a chosen

sensitivity target. This in turn provides the optimality point for block C. Figure 3.11 shows

that the optimal point for the targeted sensitivity exceeds the maximum delay target for

block C. Either the maximum delay constraint must be adjusted or an alternate architec-

ture must be chosen for block C. The mapping of the sensitivity model to the energy-delay

tradeoff space is shown in the left side of Figure 3.11.

The example in Figure 3.11 shows that the optimal aggregate sensitivity constraint

propagates sensitivity information to higher levels of abstraction providing the optimal

point on the system energy-efficiency boundary. The system level maximum energy and

65

Varying Cin
Block A
Block B
Block C

Varying Cin
Block A
Block B
Block C

1/Performance

E
n
e
rg
y
/O
p

CinA2
SA

Dmax

CinB2

Dmax

Dmax

CinC

Emax

SC
SB

B
B

B
A

A

A
C S

d

e
S

d

e
S B

B

B
A

A

A
C S

d

e
S

d

e
S

CinC = CinA
CgC = f(CgA,CgB)

CwC = f(CwA, CwB, CwA B)
in out
(SA, CgA/CwA, CinA) (SB, CgB/CwB, CinB)

(SC, CgC/CwC, CinC)?

Cg/Cw

S
e
n
s
it
iv
it
y
 (
S
)

CinA2

CgA
*/CwA

*

(eA/dA)SA

CinB2

CgB
*/CwB

*

CinC

CgC
*/CwC

*

Cg/Cw

S
e
n
s
it
iv
it
y
 (
S
)

CinA2

CgA
*/CwA

*

(eA/dA)SA

CinB2

CgB
*/CwB

*

CinC

CgC
*/CwC

*

Figure 3.11. Example of constraint propagation

delay constraints are propagated down to lower level blocks via constraints on their size

and estimated contribution to overall delay and energy. If the estimates are incorrect, they

are propagated back through the node constraints and the system level constraints are

updated accordingly. This is done through modeling delay and energy at the system level

in terms of delay and energy equations which are functions of energy and delay for smaller

blocks (or sub-constraint graphs).

The architecture in Figure 3.11 can be adjusted to meet the maximum delay constraint

by inserting a register between block A and B. The mechanism for modifications to archi-

tecture by insertion of buffers or registers can be automated based on the sensitivity and

constraint information using modified algorithms described in [42]. The constraint graph

for the example in Figure 3.11 would be adjusted as shown in Figure 3.12.

3.4.3 Sensitivity Balancing Formulations

Two possible formulations have been explored so far that relate to balancing sensitivities

across all blocks of a system. The first is a simple, iterative exhaustive search using branch

66

Multi-Level Optimization Design Methodology

in out
(SA, CgA/CwA, CinA) (SB, CgB/CwB, CinB)

in out
(SA, CgA/CwA, CinA) (SB, CgB/CwB, CinB)

Segmentation by insertion of a pipeline
register to meet timing with additional overhead

in terms of energy

A B

C

Figure 3.12. Example of register insertion to meet delay target

and bound. The second is a convex formulation using an approximation algorithm developed

for finding economic equilibrium. Both branch and bound algorithms and approximation

algorithms were introduced earlier in Chapter 2.

Exhaustive Search Using Branch and Bound

The first possible implementation of balancing sensitivity across a system is to employ a

branch and bound strategy that exhaustively searches the design space. Unfortunately, the

running time can be exponential in the worst case (i.e. where every single possible design

point is explored). The likelihood of encountering the worst case scenario is small since

the tuning variable with sensitivity that has the largest imbalance will be chosen to tune

the design at each iteration. The design points in the branch and bound graph represent

a particular system with a sensitivity that is estimated using a sensitivity model. The

sensitivity of each tuning variable is compared with others to see if they are balanced within

a given threshold. If they are not, then at each branch in the tree, the appropriate tuning

variable is adjusted and then compared with the optimal aggregate sensitivity. Branching

in this manner continues until a fixed point is reached or when the sensitivities are balanced

67

?thresholdSySx

?)(thresholdSxOptAggrSx?)(thresholdSyOptAggrSy

Figure 3.13. Conceptual representation of branch and bound

within the given thresholds. Figure 3.13 shows a conceptual representation of this method.

Solutions where the difference between sensitivities exceeds the smallest difference found so

far are pruned. The circuit and architecture tuning variable adjustments are stored in the

respective interface constraint graphs which are associated with each design point.

Sensitivity information is used for both branching and cost of the branch and bound

graph. The cost measures the difference between sensitivities (i.e. how close is the algorithm

to ideally balancing sensitivities). Branching is based on the resulting design point that

comes closest to having balanced sensitivities. The lowest cost found is used as a bound for

the next iteration. A fixed point can be reached if no improvement is made on lowering the

difference between sensitivities; or, when sensitivity to tuning variables is within a given

threshold and estimated sensitivity is within a threshold of optimal aggregate sensitivity.

Convex Formulation Using Approximation Algorithm

The convex formulation for balancing sensitivity uses an approximation algorithm that

was originally used to find economic equilibrium [30]. In the economic equilibrium problem,

there are m traders, Ti, i = 1, 2, . . . , m, and n commodities, Cj , j = 1, 2, . . . , n. A utility

function measures the Constant Elasticity of Substitution which represents the trader’s

68

utility for a bundle of commodities. The utility function has the form shown in Equation 3.3

where αj are constant parameters and ρ ∈ (−∞, 1] \ {0}:

u(x) =

n∑

j=1

αj · xρ
j

1
ρ

(3.3)

Every trader Ti has an initial set of commodities, Ci = {Ci,j , j = 1, 2, . . . , n} that she wants

to trade, and a utility function u(x). Ci,j is the amount of commodity Cj held by trader Ti.

The consumption set Xi is the set of possible commodity bundles currently held by trader

Ti. Each trader wants to maximize the utility at a certain price p:

max ui(xi) subject to xi ∈ Xi and (p, xi) ≤ (p, Ci) (3.4)

In an economy where is the commodity is a price and each trader has a budget Ci = eiC,

where C is fixed, each trader is solving the following optimization problem:

max ui(xi) subject to xi ∈ Xi and (p, xi) ≤ ei (3.5)

The equilibrium price is one where all the traders spend their money and all goods are

sold leading to the following Economic Equilibrium Problem, where over-lined variables

represent vectors:

xi = argmax {ui (xi) | xi ∈ Xi; (xi, p) ≤ ei} , ∀ ≤ i ≤ m

∑m
i=1 xij ≤

∑m
i=1 eiC, ∀1 ≤ j ≤ n

(p,
∑m

i=1 xi) = (p,
∑m

i=1 eiC)

(3.6)

The classic general approach to solving the optimization in Equation 3.6 is exponential in

time [30]. Thus, approximate equilibrium and ε-equilibrium were introduced [30].

In [30], it is shown that the economic equilibrium problem can be solved using a convex

formulation that exploits the Karsh-Kuhn-Tucker (KKT) conditions of the utility maximiz-

ing problem, and when the economic equilibrium conditions can be formulated as a convex

feasibility problem. This is the case for linear utility functions. Lagrangian theory is used

in [30] to massage the optimization into a convex feasibility problem. The proof is not

repeated here but the reader is referred to the cited text. The running time is polynomial

if the utility function is linear [30].

69

The sensitivity balancing or sensitivity equilibrium problem can be similarly formulated.

Instead of traders, there are blocks, Bi, and the commodities are energy and delay functions

with respect to gate size represented by the vector wi: Ei(wi) and Di(wi). In order to

massage the problem into a convex optimization, a linear utility function is required in

terms of wi. Total energy or total area provide a linear function. The equilibrium ”price”

is the equilibrium sensitivity s. If the utility function is total energy and the total delay is

used as a budget for all blocks then the sensitivity equilibrium problem is formulated as:

wi = argmax {−Ei (wi) | wi ∈ Wi; (Di, s) ≤ di(wi)} , ∀ ≤ i ≤ m

∑m
i=1 Di(wi) ≤

∑m
i=1 diD, ∀1 ≤ j ≤ n

(
s,

∑m
i=1 Di(wi

)
= (s,

∑m
i=1 diD)

(3.7)

In Equation 3.7, convexity holds because energy and delay can be modeled as convex func-

tions (see Chapter 4). One of the limitations of the above formulation is that the blocks do

not operate independently as they are connected. Each block affects neighboring blocks in

the form of input capacitance and load capacitance. The effect of neighboring blocks can

be modeled by additional constraints.

3.5 Sensitivity Approximation Using Interior Point

Algorithms

In Chapter 5, a method of estimating sensitivity to sizing is outlined using simple

properties of a circuit such as total gate capacitance, input capacitance, and total wire

capacitance. A linear model is developed and shown to reasonably estimate sensitivity of any

type of circuit block. In this section, it is shown theoretically that sensitivity to sizing can be

automatically obtained if interior point algorithms are used to solve a convex optimization

problem. Zlatanovici shows in his thesis [17] that the continuous gate sizing problem can be

formulated as a convex optimization of the form min f0(x) subject to fi(x) ≤ 0, i = 1, . . . , m

and Ax = b, where f0, . . . , fm are convex and twice differentiable. If it is assumed that

the problem is solvable and strictly feasible then Newton’s method can be applied to a

sequence of equality constrained problems or to a sequence of modified KKT conditions.

70

The barrier method described in Chapter 2 is an interior point algorithm which reduces

the inequality constrained problem to a sequence of linear equality constrained problems.

Its only requirement is that functions be in convex form (i.e. linear programs, quadratic

programs, quasi-convex quadratic programs, or geometric programs). This is the case with

the gate sizing problem formulated and implemented in Zlatanovici’s convex optimizer [17].

The optimizer is used in this thesis to develop models for sensitivity.

The goal is to approximately formulate the inequality constraint problem as an equality

constrained problem so that Newton’s method can be be applied. The inequality constraints

are made implicit in the objective function. For example, consider the general energy-

delay optimization problem: min d(x) subject to e′(x) ≤ 0, where d(x) represents delay

and e′(x) = e(x) − emax represents energy. For simplicity assume that x ∈ <n
+. Both

energy and delay are functions of a set of optimization variables x which represent tuning

knobs such as gate sizes. The functions d(x) and e(x) can represent delay and energy,

respectively, at any level of design abstraction: circuit level, micro-architecture level, or

architecture level. From Chapter 2, the sensitivity to optimum value x∗ is given by:

S (x∗) = −∇e′(x∗)
∇d(x∗)

· d(x∗)
e′(x∗)

(3.8)

Now assume that d(x) and e(x) are both convex functions that are twice differentiable and

an optimal solution x∗ for the optimization problem exists and is strictly feasible: e′(x) < 0.

Then the optimization can be rewritten to make the inequality constraints implicit in the

objective function as shown in the following:

min d(x) + I
(
e′(x)

)
where I : < → < (3.9)

The indicator function was previously defined in Chapter 2 and repeated here for conve-

nience:

I(u) =

0 u ≤ 0

∞ u > 0
(3.10)

Since the objective function in Equation (3.9) is no longer differentiable in general, it can

be approximated by a log function as explained in Chapter 2.

71

Using the theory outlined in Chapter 2, the constrained delay minimization problem

becomes:

min − t · d(x)− log(−e′(x)) (3.11)

For t > 0, x∗(t) is defined as the solution to Equation (3.11) at each t. From Boyd and

Vanderberghe (Chapter 11) [33], the sets of points {x∗(t), t > 0} represents the central path

associated with the original optimization problem.

The central path has a simple mechanics interpretation in terms of potential forces

acting on a particle in the strictly feasible set. Each constraint is associated with a force

acting on a particle when it is at the position x:

E(x) = −∇ (−log(−e′(x))
)

=
1

e′(x)
· ∇e′(x) (3.12)

The potential associated with the total force field generated by the constraints is the loga-

rithmic barrier φ(x) = − (
1
t

)
log(−e′(x)). There is another force D(x) associated with the

particle at position x:

D(x) = −t · ∇d(x) (3.13)

Equation (3.13) represents the objective force field acting on the particle to pull it in the

negative gradient direction, i.e. toward a smaller d(x). The parameter t scales the objective

force, relative to the constraint forces. The central point x∗(t) is the point where the con-

straint forces exactly balance the objective forces felt by the particle: E(x∗(t)) = D(x∗(t)).

Then this implies the following:

−t · ∇d(x∗(t)) = 1
e′(x∗(t)) · ∇e′(x∗(t))

−t = ∇e′(x∗(t))
∇d(x∗(t)) · e′(x∗(t))

(3.14)

Equation (3.14) is very similar in form to Equation (3.8). If Equation (3.8) is divided by

d(x∗(t)) (note d(x∗(t)) > 0) then:

t = S(x∗(t))
d(x∗(t))

S(x∗(t)) = t · d(x∗(t))
(3.15)

Hence, sensitivity can be directly derived from the parameter t that results from the log

barrier interior point method.

72

According to [33], the point x∗(t) is m
t sub-optimal. The value m

t(0)
can be chosen to be

approximately the same order as f0(x0) − p∗, where p∗ is the optimum dual feasible point

for the Lagrangian. Then x∗(t) minimizes the Lagrangian: L(x, λ) = d(x) + λ · e′(x) for

λ = lambda∗(t). Every central point yields a dual feasible point and hence a lower bound

on the optimum value, d(x∗). Then:

λ∗(t) = − 1
t · e′(x∗(t)) = − d(x∗(t))

S(x∗(t)) · e′(x∗(t)) (3.16)

Equation (3.16) relates sensitivity to the Lagrange multiplier in a constrained delay mini-

mization; it also connects t to the Lagrange multiplier. In the case where the barrier method

is used, sensitivity provides a lower bound on the optimum delay at any point during the

optimization.

In the above, if a convex formulation for a continuous optimization of a constrained

delay minimization is possible, then employing an interior point method of solution (e.g.

log barrier method) gives an easy mechanism for estimating the sensitivity and hence the

lower bound on delay at any iteration of the Newton step. The method converges quickly

according to [33], so this is a feasible method of carrying out leaf cell sizing optimization

and obtaining sensitivity information as a by-product.

3.5.1 Saturation of Sensitivity and Variable Bounds

In some cases, sensitivity may saturate to very high values (i.e. along the steepest part

of the energy-delay curve at the minimum delay point) or to zero (i.e. minimum energy

point). Also, each design variable has certain bounds or limitations on their effectiveness.

For example, if gate sizes are reduced to very low values for a memory intensive design

such as the distributed arithmetic programmable filter designed in Chapter 6, the increased

delay can lead to an increase in (leakage) energy per cycle due to longer cycle time.

Constraints on sensitivity can be added to avoid saturation of sensitivity to either very

high values or values close to zero. Target minimum and maximum values of sensitivity can

be added to the constraint functions in the sensitivity balancing problem formulation. The

73

constraints could limit the exploration to remain at the knee of the energy-delay tradeoff

curve for all blocks.

If a desired aggregate sensitivity is not input to the algorithm or if constraints on

sensitivity are not set, then the algorithm can get stuck at either extreme: zero sensitivity

or infinite sensitivity. This can occur when sensitivities to all tuning variables for all blocks

are zero or infinity. The algorithm will stop when this is the case because the algorithm

sees a balance at these extreme points.

3.6 Limitations

There are certain limitations to using the hierarchical approach described in this chapter

to find optimal architectures for systems implementing a specific digital function. The

methodology is well-suited to early stages in design where the architecture has not been

finalized and a few candidates exist as possible choices. Energy and delay models must be

developed for each architecture in terms of lower level building blocks. Models for sensitivity

must be generated for the simplest building blocks and optimal aggregate sensitivity must

be calculated for each architecture. These tasks do not need to be repeated. They need to

be performed only once at the beginning of the optimization and then iterative optimization

can be carried out using the models to optimize a system for the given energy and delay

constraints.

Five of the most important issues that must be addressed by the models is how to

compose designs such that interconnect, leakage energy, activity factors for switching energy,

non-linear addition of delay, and variability are all accounted for accurately. Variability is

not addressed in this dissertation; it is left as a topic for future research. Composition that

takes into leakage energy, activity factors, and non-linear addition of delay in a manner

that is reasonable for architecture analysis and optimization is discussed in Chapter 4.

Interconnect and its impact on architecture selection is also discussed in the same chapter.

74

3.7 Summary

This chapter described a hierarchical methodology that spans technology, circuit, micro-

architecture and architecture levels. Sensitivity information is propagated up through the

design hierarchy using composition and optimal aggregate sensitivity rules. The method

allows a designer to quickly and systematically traverse the large energy-delay tradeoff

space without the need for long simulation or compute-intensive derivative calculation. The

methodology scales as the optimization is hierarchical. An example of generating energy-

efficiency boundaries for system level designs was given in the form of a digital filter.

A framework for automating the design methodology was provided. The best data

structure that captures hierarchy, constraints, and delineates between different architectures

for the same function is an interface constraint graph. Energy-delay tradeoff information

can be stored for different architectures using this hierarchical data structure.

Two possible implementations of the sensitivity balancing problem were provided in

the form of either an exhaustive branch and bound search or using an an approximation

algorithm based on economic equilibrium. The algorithm was modified to fit the sensitivity

balancing problem. The formulation is convex and running time is polynomial.

This chapter also outlined a method of estimating sensitivity to sizing automatically

via the use of the log barrier variant of the interior point method for solving a continuous

convex optimization. This is useful at the leaf cell level. Chapter 5 gives an alternate

method of estimating sensitivity if continuous convex optimization is not possible. The

next chapter reviews and summarizes models for energy, delay, and interconnect required

for this hierarchical power-performance optimization methodology.

75

Chapter 4

Models and Constraints

Taking all physical aspects of each component into account when designing
complex digital circuits leads to unnecessary complexity that quickly becomes in-
tractable.
– R. Rabaey et. al., Digital Integrated Circuits: A Design Perspective, 2003

Modeling and simulation develop an understanding of interaction between different parts

of a system and of the system as a whole. A model is a simplified representation of a system

at some particular point in time or space. Models are created with the intention to promote

understanding of a system or one of its components. If a model is too simple, it runs the risk

of neglecting relevant interactions; if it is too detailed, then the model becomes so complex

that it detracts from understanding the system or component behavior. The accuracy of

a model dictates the accuracy of the analysis and/or optimization. Good models benefit

designers by helping them understand dynamic complexity within a short period of time.

In circuit design, accurate transistor models are necessary in understanding, analyzing

and designing any circuit system. Without models that accurately reflect transistor be-

havior, circuit simulation and optimization would not be possible. Complex relationships

between physical properties of a circuit are abstracted using models, thereby easing the

analysis and design of circuits. Models also provide a means for shortening design times

thereby reducing time to market.

Models for energy, delay, area and interconnect are the basic foundations for circuit

76

analysis and optimization. There are many different ways of modeling energy, delay, area,

and interconnect. The first part of this chapter summarizes well-known models that abstract

delay, energy, and area in terms of circuit parameters such as gate capacitance, input

capacitance, and wire capacitance and resistance. These models provide the foundation for

the work in this dissertation.

The second part of this chapter introduces models for sensitivity. The work in this

dissertation requires sensitivity models to construct power-performance optimal systems.

Analytical models have been used in the past in other sensitivity-based optimization tech-

niques [11, 12, 14, 29] and are briefly summarized in Section 4.6. Chapter 5 describes

an alternate and simpler method for constructing a model for sensitivity to sizing. Once

a model for sensitivity is available, composition rules can be used to propagate sensitiv-

ity to higher levels of design abstraction as described in Chapter 2. Section 4.7 discusses

the subtleties of determining aggregate sensitivity based on the delay, energy, area, and

interconnect models described in this chapter.

4.1 Analytical Delay, Energy, and Area Models

In this section, analytical models for delay, energy, and area are summarized. A subset

of these are used in the implementation of the custom circuit optimizer [17] which is briefly

described in Section 4.2. The optimizer is used to optimize small circuits such as adders and

inverter chains. The results of the optimization are used to develop models for sensitivity

to sizing. In the next subsection models for delay of varying complexity and accuracy are

summarized.

4.1.1 Delay

The foundation of the delay model is a linear function of load capacitance as outlined

in the method of logical effort by Sutherland et. al. in [43]. The total delay for a given

gate is the sum of delay caused by capacitive load driven by the gate and its topology, and

a fixed parasitic delay that is also dependent on the topology of the gate. The basic delay

77

model can be enhanced to account for slopes, multiple paths from inputs to outputs, and

interconnect.

The logical effort delay model that accounts for multiple paths is given by:

tD =
N∑

i=1

pi + bi · gi · hi (4.1)

The variable pi represents the intrinsic parasitic delay of gate i, bi represents the branching

effort at input of gate i, gi represents the logical effort of gate i, and hi represents electrical

effort of gate i. The electrical effort is given by: hi =
Cgi+1

Cgi
, where Cgi is the relative size

of gate i. Equation (4.1) can be minimized with respect to relative sizes of gates, Cgi , such

that the input capacitance is less than a given maximum value and the relative size of any

gate is at least 1. The optimal design in terms of minimum delay is one where stage efforts

are equal: gi · bi · hi = gj · bj · hj [43].

Equation (4.1) is posynomial in nature and can be used to model delay in a convex

optimization program. In [17], Equation (4.1) is extended to account for dynamic gates

such that the delay expression remains posynomial as shown in below, where yi contains

the keeper sizes.

tD =
N∑

i=1

pi + (1 +
yi

2Cgi

) · bi · gi · hi (4.2)

The additional load due to the inverter used by the keeper is accounted for by lumping it

into the wire capacitance at that node [17]. Signal slopes are accounted for by adding an

additional term η · tslope,in to Equation 4.2. These are propagated through the path by an

additional equation:

tslope,out = λ + µ · CL

Cin
+ ν · tslope,in (4.3)

These models are similar to level-1 models used by commercial synthesis tools. In [17],

Equations (4.2) and (4.3) are massaged such that they remain posynomial and can be used

in the implementation of a convex circuit optimizer.

4.1.2 Energy

Switching or dynamic energy and leakage energy are the two dominant components

of total energy. Switching energy is proportional to switched capacitance and modulated

78

by activity factors and supply voltage. Equation (4.4) below gives the total switching

energy which is a function of αi, the switching activity at node i; Ci which is the switched

capacitance at node i; and VDD, the supply voltage:

Edynamic =
∑

nodes

αi · Ci · V 2
DD (4.4)

Dynamic energy is a strong function of supply voltage due to the V 2
DD term in Equation (4.4).

In [17], leakage energy is modeled simply by computing the average leakage power of a

gate via simulation and multiplying it by the size of the gate, Cgj and the cycle time, Tcycle:

Eleakage = Tcycle ·
∑
gates

Cgj · Pleak,j (4.5)

If Tcycle is computed as the maximum of all path delays, then Equations (4.5) and (4.4) are

generalized posynomials.

Leakage energy depends on sub-threshold current models. Analytically, the sub-

threshold current is defined as [44]:

Ids = µ · W

L

(
kT

q

)2

e
Vg−VTH

ηkT/q

(
1− e

− Vds
kT/q

)
(4.6)

In Equation (4.6), q is the electronic charge, T is the temperature, Vg is the gate voltage,

Vds is the source-to-drain voltage, k is Boltzmann’s constant, η is the MOSFET body-effect

coefficient, L is MOSFET channel length, W is the MOSFET width, and µ is the carrier

mobility. The first part of Equation (4.6) accounts for sub-threshold diffusion current and

the second exponential term accounts for drain induced barrier lowering (DIBL) effect [45].

Equation (4.6) can be rewritten as:

Ids = I0 ·W · 10
(Vgs−VTH)+γVds

S (4.7)

where S = 2.3 · ηkT
q is the sub-threshold slope; I0 is the MOSFET current per unit width

at the reference threshold for the given technology, and W is the relative width of the

transistor. The static leakage current for a gate with inputs in state Sin and where Vgs = 0,

Vds = VDD is given by [44, 46, 47]:

Ileakage = W · Ig(Sin) · e
VTH−γVDD

V0 (4.8)

79

where V0 = ηkT
q , W is the relative size of the gate, and Ig is the normalized leakage current

of the gate. The total leakage energy for a circuit is given by:

Eleakage = Tcycle · VDD ·
∑
gates

Wi · Igi(Singi
) · e

VTH−γVDD
V0 (4.9)

Switching energy and leakage energy are modeled separately and accumulated to form

the expression for total energy:

Etotal = Edynamic + Eleakage (4.10)

The model for total energy does not account for crowbar current which is negligible relative

to switching and leakage energy. When these models are transformed into posynomials and

used in optimization, the formulation becomes a generalized geometric program which can

be solved efficiently [33].

The dependence of energy on VDD and VTH is clear from Equations (4.9) and (4.4), and

can be used to extend the optimizer in [17] to use supply voltage and threshold voltage as

tuning variables. The delay model can be modified to include dependence on VDD and VTH

as will be shown in Section 4.5.

4.1.3 Area

Area can be modeled as a linear combination of gate sizes; u is the area of the gate

when Cgi is 1:

A =
N∑

i=1

ui · Cgi (4.11)

The expression is posynomial in Cgi and hence can be added to the optimization if desired.

In this work, the focus is on constrained delay minimization subject to an energy constraint.

The model for area is included here for completeness.

4.2 Constrained Optimization

The general constrained delay minimization problem cannot be solved analytically. A

numerical optimizer is required for a complete solution [48]. This section describes the gate

80

sizing problem formulation in the form of a convex optimization problem that can be solved

using a geometric program. It is same formulation that optimizer in [17] is based upon.

The optimizer uses tabulated models for accuracy. A discussion on the use of more accurate

tabulated models, their drawbacks, and the effect on optimality of the resulting solution is

given in Section 4.3. The models and problem formulation are extended in Section 4.5 to

account for supply voltage and threshold voltage adjustment.

The energy-delay optimization problem can be formulated as either an energy-

constrained delay minimization problem or as a delay-constrained minimization problem.

Using the models in Section 4.1, both formulations result in generalized geometric programs,

as the objective and constraints are generalized posynomials. The formulations are given

in Equations (4.12) and (4.13).

minimize tD over Cgi subject to

E ≤ Emax

Cin ≤ Cin,max

Cgi ≥ 1 1 . . . N

tslope,j ≤ tslope,max j = 0 . . . M

(4.12)

minimize E over Cgi subject to

tD ≤ tD,max

Cin ≤ Cin,max

Cgi ≥ 1 1 . . . N

tslope,j ≤ tslope,max j = 0 . . . M

(4.13)

There are multiple paths in a circuit and multiple critical paths. The latest arriving

signal at the output of a gate is used to determine the overall delay of the circuit. This is

given by the recursive equation:

Ti = maximize (Tj + Di) over j ∈ FI(i) (4.14)

FI(i) is the fan in of gate i, Ti is the maximum delay of all paths starting from the primary

inputs and ending at gate i. The overall delay of the circuit is given by the maximum of all

the latest arriving signals at the output of all gates:

D = maximize Ti over i = maximize {Ti|output gatei} over i (4.15)

81

Equation (4.15) is a recursive expression. The resulting optimization that takes into account

multiple paths is given by:

minimize tD over Cgi subject to

E ≤ Emax

Cin ≤ Cin,max

Cgi ≥ 1 1 . . . N

tslope,j ≤ tslope,max j = 0 . . .M

Ti = 0 for primary inputs

Tj ≤ D ∀j
Tj + Di ≤ Ti for j ∈ FI(i)

(4.16)

The optimization problem in Equation (4.16) can be extended to account for differences

in high-to-low delays and low-to-high delays as described in [17].

A simple static timer is used in implementing Equation (4.14) [17]. It does not account

for false paths, but estimates activity factors via logic simulation using a large number of

random input vectors. The activity factors are important for computing energy. The static

timer is implemented in C and a Matlab-based optimizer is used to solve the generalized

geometric program. Both are integrated into a standalone optimizer. The static timer

module can be replaced by a more sophisticated one as long as the interface is preserved.

The optimizer framework is summarized and depicted in Figure 4.1. Inputs include the

tabulated and analytical models for energy and delay, a circuit netlist, constraints and

optimization objective, and tuning variables. The operation is iterative until a fixed point

is reached.

4.3 Tabulated Models

When there is a need for more accuracy in delay estimation, analytical models such

as the convex models given above may fall short of what is required. Tabulated models

(non-convex) can replace analytical expressions. Required delay and slope values can be

looked up in a table during the optimization. The use of tabulated models impact the

optimality of the final result. In [17], the optimization using tabulated models is considered

82

Models Netlist Optimization Goal VariablesPlug-ins

Static Timer
(C++)

Optimizer
(Matlab)

Delay, Energy, ...

Design variables

Optimization
Core

Optimal Design
Results

Figure 4.1. Matlab/C combinational circuit optimization framework for sizing, supply volt-
age, and threshold voltage optimization

”near-convex” and its optimality is verified against a ”near-optimality” boundary which is

obtained by first performing the optimization using analytical models and then measuring

the delay and energy of the design obtained using accurate tabulated models. Effectively,

the design obtained using analytical models is evaluated using tabulated models. In practice,

the use of tabulated models results in gate sizes that give a near-optimal or optimal design.

This has been shown in a practical design of a high-performance 64-bit adder [17, 27].

The explanation given in [17] for the near-optimal solution is somewhat unsatisfactory.

A closer analysis using optimization theory presented in Chapter 2 shows that using tabu-

lated models results in non-convex optimization. Solving the KKT conditions as described

in Chapter 2 results in weak duality and a duality gap that is non-zero. By evaluating the

analytical model solution using the tabulated models, Zlatanovici [17] is essentially provid-

ing a practical means of measuring the non-zero duality gap. The resulting optimal doublet

(λ∗, ν∗) from the optimization only provides an accurate measure of variation around the

optimal point found using analytical models. The doublet only estimates the gradient at

the point obtained using tabulated models.

83

4.4 Wire Capacitance and Wire Resistance

Since interconnect is becoming an important issue for designs in new technologies, a

summary of interconnect models and their impact on delay and energy is presented in this

section. Additionally, effect of interconnect on sensitivity analysis and optimal architecture

selection is also presented here.

4.4.1 Effect of Interconnect on Delay

Interconnect adds complication to the logical effort model for delay. Stage efforts are

no longer equalized in the minimum delay solution: the effort of the gate driving the wire

will be greater than the effort of the gate following the wire. The effect of interconnect can

be modeled in a few different ways.

Short Wires

When wires are short, wire capacitance is treated as parasitic capacitance and lumped

in with parasitic gate capacitance. If the average length of the wire is known and the

average size of a gate is given, then the average ratio of parasitic diffusion capacitance to

parasitic wire capacitance can be computed [43]. This ratio is then used to estimate the

delay due to parasitic wire capacitance. The total delay due to parasitic capacitance is then

given by sum of delay due to parasitic capacitance of logic gates and delay due to parasitic

wire capacitance. The fixed delay attributed to the parasitic diffusion capacitance of a gate

is given by pi and the fixed delay attributed to parasitic wire capacitance at each node is

given by pwj . The delay equation becomes:

tD =
N∑

i=1

pi + bi · gi · hi +
total nodes∑

j=1

pwj (4.17)

Medium and Long Wires

In the case of long or medium length wires, the most common model is to include the

wire as an additional side load at the node where the wire appears. This model assumes

84

Cgi

Cwi

Cgj

Cgj+1

nodei

M driven gates

branching factor bi

Figure 4.2. Wire capacitance as a side load at a circuit node

that the wire lengths are constant and independent of the sizes of neighboring gates. In [17],

Equation (4.1) is extended by including interconnect as an additional load at a node. The

resulting equation for the delay at a node i with interconnect capacitance Cwi is given by:

tDi = pi + gi · Cwi+
PM

j=1 biCgj

Cgi
+ η · tslope,in

tslope,outi = λ + µ · Cwi+
PM

j=1 Cgj

Cgi
+ ν · tslope,ini

(4.18)

The variable M represents the total number of gates driven by gate i. It should be noted

that Zlatanovici has omitted the branching factor due to the wire in this node equation.

Figure 4.2 shows the representation of the node given in Equation 4.18. The resistive effect

of interconnect is accounted for by adding an additional term shown below, where α is a

fitting parameter close to one[17]:

tDi = tDi(R = 0) +
Rwi · (0.5 · Cwi + Cafter wire)

α
(4.19)

Equation (4.19) is originally developed in [49]. The wire capacitance and resistance must be

estimated prior to optimization. An early floor-plan of the design provides a good starting

point for gauging wire capacitance and resistance. Equation (4.18) is used in the circuit

optimizer developed in [17]. Unfortunately, the optimizer presented in [17] does not account

for wire resistance.

An alternate and slightly more accurate model is given by Sutherland et. al. in [43].

They model the effect of interconnect by including a branching factor at the wire driving

a gate; it is given as: (Cgate + Cwire)/Cgate. The branching factor accounts for the current

that is split between wire capacitance side load and the path following the interconnect.

85

The revised delay equation for multiple path delay excluding wire resistance becomes:

tD =
∑N

i=1 pi + gi ·
(
bihi + Cwi

Cgi

)
+ gi+1hi+1bi+1

(
Cgi+1+Cwi

Cgi+1

)
+ η · tslope,in (4.20)

The Elmore model for wire segment delay can be used to include wire resistance [10].

For long and medium wires, wire resistance must be included as follows:

tD = tD(R = 0) +
N∑

i=1

Rwi · (0.5 · Cwi + Cgi+1)
RoCo

(4.21)

In Equation (4.21), Rwi and Cwi are the wire resistance and capacitance of wire segment i,

and RoCo is the delay of a minimum-sized inverter in the given technology. Equation (4.20)

and Equation (4.21) are used in Chapter 5 to develop models for sensitivity to sizing.

4.4.2 Effect of Interconnect on Energy and Area

Interconnect increases total energy and total area of a system. The total switched

capacitance of a wire, including a multiplicative factor for crowbar current is modeled in [6]

as follows:

Ewire = cw · L · V 2
DD

(
1 +

4.5
3
√

3
· c · ŵ

l̂

)
(4.22)

In Equation (4.22), cw is the total switched capacitance due to interconnect per unit length,

L is the length of the wire, c represents the crowbar multiplier. The variables l̂ and ŵ

represent the optimal wire segment length and repeater width of normalized to their delay-

optimal values. The wire segment length between repeaters which have placed optimally

with respect to delay is given by lopt, and the optimal repeater width is given by wopt.

Since exact optimal device width is not usually used due to limited cell sizes in a standard

cell library, the actual wire segment length and repeater width are given by: l = lopt · l̂
and w = wopt · ŵ. As one can see from Equation (4.22), as total interconnect capacitance

increases in a design, total energy also increases. Equation (4.22) can be added on to

Equation (4.10) to account for additional energy due to interconnect.

Area also increases due to increase in total interconnect length. Wire length distribu-

tions can be estimated prior to the routing step. The basis for the calculation is Rent’s

86

Rule [50, 51, 52] which was discovered in the 1960s by E. F. Rent at IBM. He found a trend

between the number of pins (or terminals) at the boundary of an integrated circuit and the

number of gates. On a log plot, the data points from various IBM designs formed a straight

line, implying a power-law relationship: T = k ·Np [50]. The variable T is the total number

of I/O pins, k is the average number of I/O’s per gate, N is the total number of gates, and

p is Rent’s exponent which denotes the degree of wiring complexity with p = 1 being the

most complex wiring network. It should be noted that Rent’s Rule is an empirical result

based on interconnect properties of existing designs. The constant p should be fitted to the

types of architectures and constraints that are dominant in today’s systems.

The wire length distribution in a system is determined through recursive application of

Rent’s Rule. The shortest wires are estimated by applying Rent’s Rule at the logic level

where the system is partitioned into logic gates. Rent’s Rule is then applied to interconnects

between closest neighboring gates to determine the number of interconnections between

them. Longer wires are estimated by clustering gates into blocks recursively until the

longest interconnections are found.

There are a number of different ways to apply Rent’s Rule. The first was by Donath

in a 1979 article [51] where he developed the wire length distribution function for placed

and partitioned designs. It was later revised by Donath in 1981 [52] and is summarized

below in Equation (4.23) where fk is the fraction of wires with length k, g is a normalized

constant, L is a constant related to the size of the array and adequacy of placement, and

γ is a constant characteristic of the logic and related to Rent’s exponent p by the equation

2 · p + γ ≈ 3 [52].

fk = g/kγ when 1 ≤ k ≤ L

fk ≈ 0 when k > L
(4.23)

Since Donath’s 1981 publication, there have been many revisions and versions of the wire

length distribution function. One of the most useful variations (for architecture analysis)

is by Davis et. al. [53] that provides distributions for local, semi-global, and global wiring.

In [53], the wire length distribution is described by an Interconnect Density Function (IDF),

I(l) and a Cumulative Interconnect Distribution Function (CIDF) which gives the total

87

number of interconnects that have length less than or equal to l (measured in gate pitches).

It is defined below in Equation (4.24) where x is a variable of integration representing

length:

I(l) =
∫ l

1
i(x)dx (4.24)

In order to derive the wire length distribution of an integrated circuit, the circuit is

divided into N logic gates, where N is related to the total number of transistors Nt by

N = Nt/α where α is function of the average fan-in and the average fan-out in the system.

The gate pitch is defined as the average distance between logic gates and is given by
√

Ac/N

where Ac is the total area of the chip. An example of how Equation (4.24) is applied to

three blocks connected to one another is detailed in [53] and summarized in [54]. It will not

be repeated here for sake of brevity, but the reader is encouraged to consult the cited texts.

Once wire length distributions are derived for a system, they can be used to calculate total

interconnect area based on wire widths for all layers of metal in a technology, and also used

to estimate total interconnect capacitance for energy and delay tradeoff analysis.

4.4.3 Effect of Interconnect on Sensitivity and Architecture Selection

Interconnect scaling has an increasing effect on power and performance of digital cir-

cuits. Wire scaling studies, based on ITRS projections, show that digital designs become

communication bound rather than capacity bound as global and intermediate wires become

slower relative to logic [13, 55, 56, 6, 57]. As technologies scale to 65nm and beyond, in-

terconnect delay becomes a significant portion of the total delay, even for gate-dominated

paths [57]. In Figure 4.3, data provided by Texas Instruments shows that at 130nm, intra-

and inter-cell communication delay is 36% of total circuit delay; in 65nm technology, it

jumps to 54% [57].

The increase in interconnect delay is mainly due to an increase in wire resistance. As

wire aspect ratios cap at 2.2, wire resistance grows quickly with scaling. Wire delay is

equivalent to 2-3 FO4/mm2 for a 65nm process [6]. In his PhD dissertation, R. Ho shows

that even for an optimally repeated wire, the total delay along the wire is linear with total

88

64

18

18

57

22

21

46

28

26

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 C

o
n

tr
ib

u
ti

o
n

130nm 90nm 65nm

% Composition of Circuit Delay

Transistor Intra-cell Inter-cell

Figure 4.3. Interconnect delay contribution in a gate-dominated design

wire length, hence making extensive use of long or intermediate wires prohibitive for designs

in 65nm or below technologies [6]. This limitation has implications on architecture design.

In the past wider issue machines were used to provide performance gains; but with

scaling, wires in such architectures grow in length, requiring slower clocks or additional

pipeline stages so that the amount of state that is reachable in a single clock cycle remains

constant [2]. Hence, the performance gains from instruction-level parallelism are reduced as

technologies scale to 65nm and beyond, limiting the scalability of conventional architectures.

Increasing global wire delay and faster transistors also imply that centrally located large

memory-oriented architectures do not scale with technology [55]: modular designs are more

desirable. The increasing amount of interconnect delay in both wire- and gate-dominated

designs implies tradeoffs between the size and partitioning of structures. The requirement

for high performance also limits the size of pipeline stages and constrains placement. If a

slower clock is required to meet interconnect delay constraints, then more parallel architec-

tures are required to meet performance needs. At the same time, energy expended per cycle

must meet power budgets. In light of these studies and tradeoffs, architecture optimization

must consider the impact of interconnect on energy-efficiency at early stages in the design

process. The designer must have a vehicle for understanding the tradeoffs between central-

ized monolithic architectures versus modular, distributed parallel architectures to arrive at

an energy-efficient system that meets performance constraints.

89

64-bit Ling Adder: Custom vs. Synthesis

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

Normalized Delay

N
or

m
al

iz
ed

 E
ne

rg
y

/ C
yc

le

Varying wire
load models

Custom circuit optimizer

Synthesized - library default, enclosed

Synthesized - segmented

Synthesized - enclosed, back annotation from automated layout

Synthesized - enclosed, same models as in custom optimizer

90nm static CMOS, Nominal corner
Switching activity: toggle rate = 0.5, static probability = 0.5

Figure 4.4. Effect of wire load models on energy-delay tradeoffs for a 64-bit Ling adder

The impact of interconnect on design can be included via models for sensitivity as is

done in Chapter 5. However, the estimation of wire capacitance is dependent on wire load

models used in synthesis-based design. Addressing the issue of interconnect on architecture

selection is an entire thesis in itself so this section focuses on wire load models and their

effects on energy-delay tradeoffs.

Wire load models affect the estimation of Cwire which is critical in estimating the

sensitivity of a synthesized design as described in the next chapter. In Figure 4.4, a plot of

the energy-delay tradeoffs of a static CMOS 64-bit Ling adder is shown. The synthesized

version of the adder is exactly the same at the gate-level as the custom-sized version shown

by the blue curve. The wire loads used for the custom version are extracted capacitances

from a custom layout of the adder. The wire loads are varied for the synthesized versions.

The library default uses an enclosed model which is shown by the orange curve. The model

that uses an segmented wire load model is shown by the magenta curve. The brown and

green curves use custom wire load models: the brown one uses back annotation of wire

capacitances from automated layout of the adder design, and the green curve uses the same

values as for the custom optimized design.

90

As one can see the energy-delay tradeoffs vary greatly depending on what sorts of wire

load models are available. There is up to a 43% variance in the minimum delay when

compared to the custom sized adder in the same technology. In terms of energy, there is

up to a 60% variance from the custom optimized design. In Figure 4.4, each different wire

load model yields a different sensitivity at any given energy-delay point. This can easily be

seen by the position of the knee of the curve in the energy-delay tradeoff space.

If this adder was used as a building block in a larger design such as an integer execution

unit, it would be difficult to decide whether this particular block should be included or an

alternate be used if the wire load models are not accurate or have large variance. It would

also be difficult to estimate sensitivity based on just gate capacitance and wire capacitance

information under such large variation. Mitigation of these issues requires reasonable esti-

mates of wiring capacitance from the technology and at least one pass of place and route.

These numbers should be correlated to wire load models made available in the library. If

there is a large variance between the default models that come with the library, then the

custom generated wire load models based on accurate information from place and route

should be used.

4.5 Extension to Supply Voltage and Threshold Voltage

Optimization

The optimization framework at the circuit level can be extended to include tuning

variables such as supply voltage and threshold voltage. This can be achieved by extending

the models used for delay and energy to account for threshold and supply voltage. Energy

is modeled as a function of supply voltage and threshold voltages in Section 4.1 earlier.

In this section, delay is modified to include dependence on supply voltage and transistor

threshold voltage.

In [58], compact models are used to extend the model for delay and energy to include

dependence on supply voltage and threshold voltage. These models are transformed into

posynomials using a change of variables and the optimization tool described in Section 4.2

91

is employed to explore optimum supply and threshold for different process technologies

(180nm, 130nm, 90nm) in [58]. The model for delay uses the gate equivalent resistance [10]

which is computed from analytical saturation current models [59, 58] used in BSIM version

3 [60]. The equivalent resistance, REQ is given as [17]:

REQ =
3
4
· VDD · (β1 · VDD + β0 + VDD − VTH)

W ·K · (VDD − VTH)

(
1− 7

9
· VDD

VA

)
(4.25)

In Equation (4.25), VDD is the supply voltage; VTH is the threshold voltage; VA is the Early

voltage [44]; W is the size of the gate; K is the size of the gate with W = 1; β0 and β1 are

technology parameters. The delay is then given by:

tD = c2 ·REQ + c1 ·REQ · CL

Cin
+ (η0 + η1 · VDD) · tslope,in (4.26)

This equation is transformed into a posynomial expression in [58] and used in the optimizer

developed by Zlatanovici [17] to explore optimum supply and thresholds for different process

technologies.

The Alpha-Power Law [40] model can also be used to show the dependence of delay on

supply voltage, VDD and transistor threshold voltage, VTH [10, 47]:

tD =
CLVDD

2
·
(

KN

(VDD − VTHN
)αN

+
KP

(VDD−|VTHP
|)αP

)
(4.27)

Equation (4.27) is a curve fitted expression depending on the technology parameters KN and

KP for N and P devices, respectively; and on αN and αP for N and P devices, respectively.

The value CL is the total load capacitance, and VTHN
and VTHP

are the threshold voltages

for N and P transistors, respectively.

4.6 Analytical Models for Sensitivity

In the previous sections it was shown that energy and delay are functions of gate size,

supply voltage, and transistor threshold voltage. These three circuit tuning variables impact

energy and delay differently. For example, switching energy is a quadratic function of supply

voltage whereas it is a linearly related to total switched capacitance. The effectiveness of

each of these design tuning variables is captured by sensitivity as defined in Chapter 2.

92

Sensitivity can be analytically derived or it can be obtained via circuit simulation. In

this dissertation, it is shown that sensitivity can also be modeled using circuit properties

such gate capacitance and wire capacitance. Other authors have used alternate means of

calculating sensitivity.

Zyuban and Strenski use simulation to determine normalized sensitivity to supply volt-

age and gate sizing [15]. Markovic in his PhD dissertation [12] provides analytical models

for absolute sensitivity to sizing, sensitivity to supply voltage, and sensitivity to threshold

voltage. The models he describes are based on the Alpha-Power Law [40] delay model by

Sakurai and Newton. The analytical sensitivity models are summarized in the following

subsections. The basic delay model for a gate which is used as a starting point is not too

different from Equation (4.27):

tDi =
KD · VDD

(VDD − VON −∆VTH)αD
·
(

Wout

Win
+

Wpar

Win

)
(4.28)

Equation (4.28) is a curve fitted expression that depends on parameters VON and αD which

are intrinsically related [12, 40]; ∆VTH is the change in threshold voltage from the standard

value given by the technology; KD is a fitting parameter; Wout
Win

is the electrical fanout of a

gate; and Wpar

Win
is the intrinsic delay of a gate.

The energy of a gate is given by independent expressions for switching and leakage

energy as were summarized in Section 4.1. The optimization approach taken by Markovic

uses the minimum delay point as a reference under the standard supply voltage, V ref
DD and

threshold voltage, V ref
TH . From this reference point, Markovic adjusts gate size, supply

voltage, and threshold voltage until the sensitivities to each tuning variable are balanced.

The energy is minimized for each new delay target D = Dmin (1 + dinc/100), where the

delay is increased by the increment dinc at each step using the design tuning variables.

4.6.1 Sensitivity to Sizing

The sensitivity to sizing is calculated using the analytical expressions given above for

delay and energy. Markovic uses the absolute gradient to determine sensitivity [12]. The

absolute gradient or absolute sensitivity is equivalent to using normalized sensitivity for

93

to compare effectiveness of design tuning variables for small blocks without hierarchy (see

Chapter 2). Hence the analytical expressions can also be used to model sensitivity for small

designs. However, this method is not scalable to large designs that include multiple levels

of hierarchy and thousands of tuning variables. However, it is still useful to review the ana-

lytical expressions for sensitivity to various tuning variables to understand the dependency

on various parameters.

The sensitivity of switching energy to delay and leakage energy to delay (D) is given by

the following two equations:

∂Eswitching/∂wi

∂D/∂wi
= − ei

τref · (heff,i − heff,i−1)
(4.29)

∂Eleakage/∂wi

∂D/∂wi
=

Eleakage

D
− D · eleakage,i

τref · (heff,i − heff,i−1)
(4.30)

In the above, ei is the switching energy due to capacitances at stage i, τref is a process

independent time constant [12], heff,i is the effective fanout of stage i, and eleakage,i is the

leakage energy of gate i. When gate size is decreased, it decreases leakage current but also

increases cycle time, D, which has the opposite effect of increasing leakage energy. The

optimal design is reached when the sensitivity to sizing, supply voltage, and threshold are

balanced as shown in Chapter 2.

It should be noted that Equations (4.29) and (4.29) calculate the derivative over every

gate in the circuit which can be time consuming. Also, it would be difficult to use these

expressions when calculating aggregate sensitivity for a large block that contains hierarchy.

4.6.2 Sensitivity to Supply and Threshold Voltage

The scaling of supply voltage and its effect on delay is modeled by Markovic by intro-

ducing a supply voltage scaling factor, KV [12]:

KV =
V low

DD

V ref
DD

·
(

V ref
DD − Von

V low
DD − VON

)αd

(4.31)

When supply is scaled down, the logical effort and parasitic delay increase. The scaling

factor KV modulates the delay to account for gates operating at lower supply which require

increased logical effort to equalize delay across all stages.

94

The sensitivity to supply voltage adjustment is given by the following two equations:

∂Eswitching/∂VDD

∂D/∂VDD
= −2Eswitching · (1− VON/VDD)

D · (αD − 1 + VON/VDD)
(4.32)

∂Eleakage/∂VDD

∂D/∂VDD
= −Eleakage

D
·
(

(1− VON/VDD) · (1 + γ · VDD/V0)
αd − 1 + VON/VDD

− 1
)

(4.33)

As supply voltage decreases from the technology reference supply, delay increases. As

delay increases leakage energy also increases. However, with a decrease in supply, leakage

power tends to decrease. Thus, supply scaling affects leakage energy in two different ways.

Overall, with supply reduction, leakage energy tends to decrease which accounts for the

negative sensitivity in Equation (4.33).

Switching energy is not a function of threshold voltage as was seen in Section 4.1.

Hence, scaling threshold voltage only impacts delay and leakage energy. The sensitivity to

threshold voltage adjustment is given by the following equation:

∂Eleakage/∂(∆VTH)
∂D/∂(∆VTH)

= −Eleakage

D
·
(

VDD − VON −∆VTH

αD · V0
− 1

)
(4.34)

The threshold voltage can be lowered in conjunction with reduced supply to minimize

leakage energy and reduce switching energy. An optimum operating point is reached with

the sensitivity to supply voltage scaling and sensitivity to threshold voltage scaling are

balanced.

Energy was modeled using two independent components, and sensitivity models also

use two components to account for switching and leakage energy. Design composition when

using the models for energy, delay, and sensitivity must also carefully account for the two

dominant components of energy: switching energy and leakage energy.

4.7 Design Composition

In Chapter 3, composition is used to build optimal aggregate sensitivity for large designs

and in addition, energy and delay constraints are created in terms of lower level building

blocks. This sections highlights the necessity to take into account accurate estimation of

activity factors when forming energy models for high level blocks. In addition, leakage

95

energy must be estimated independently of dynamic energy. The two are then accumulated

to form the total energy as described in previous sections. This section highlights the issues

using the models developed earlier.

4.7.1 Delay

When composing small blocks to form larger blocks, delay is simply accumulated if the

blocks are composed in series, unless registers are inserted. In Table 3.1 in Chapter 3, the

total delay of an N-tap transpose filter is given by the delay of the multiply-accumulate

block whereas the delay of an N-tap transverse filter is given the delay of the multiply block

and (N − 1) add blocks. In the transpose architecture, each multiply-accumulate block is

followed by a register and these are connected in series. The longest path from register to

register is through a single multiply-accumulate block. In the transverse architecture, the

longest path is through a series connection of one multiply and (N − 1) add blocks, hence

the delay is much longer in the transverse architecture. However, the total energy per cycle

is different, giving the transverse architecture lower energy per cycle.

In some cases, the delays of a series of connected blocks do not add linearly. This can be

seen in the case of N cascaded ripple carry adder blocks. The critical path delay of the N

adder system is not N ·Dadder in this case. An example of two cascaded 4-bit ripple carry

adders is shown in Figure 4.5. In the figure, the worst case critical path runs through 5

1-bit full-adders, or one 4-bit ripple carry adder and one 1-bit full-adder. When composing

systems, the system delay model must include enough information to take into account this

non-linear addition of delay. Optimal aggregate sensitivity depends on the total delay of a

system because the weight depends on contribution of delay of each component to the total

delay.

Different delay profiles were given in Table 3.1 for different filter architectures and it

was shown that the constraint graph representation of the system highlights the differences

in critical path delay for the two filter examples in Figure 3.8. The graph uses nodes to

represent ports and edges to represent point-to-point connections between modules. The

96

Full Adder Full Adder Full Adder Full Adder

Full Adder Full Adder Full Adder Full Adder

Ci,0 Co,0 Co,1 Co,2 Co,3

Ci,1 Co,4 Co,5 Co,6 Co,7

A0 B0 A1 B1 A2 B2 A3 B3

D3D2D1D0

S0 S1 S2 S3

Figure 4.5. Two cascaded 4-bit ripple carry adders

Ci,0

Ci,0

A0 B0 A1 B1 A2 B2 A3 B3

Co,3

Co,7

S0 S1 S2 S3

Figure 4.6. Constraint graph for two cascaded 4-bit ripple carry adders

constraint graph for the ripple carry adder example in Figure 4.5 is given in Figure 4.6. In

Figure 4.6, it is clear that once the outputs of the first four full-adders are available, the

full-adder blocks of the second ripple carry adder can proceed with their computation. The

constraint graph representation clearly shows this parallel computation, resulting the red

highlighted critical path.

97

4.7.2 Energy

Since energy per cycle is a function of total power and cycle time, activity factors and

how long a block is idle during the entire cycle must be accounted for when estimating

energy. The activity factors for small blocks can be estimated via vector simulation. This

is done by the convex optimizer used at the leaf cell level. When blocks are composed,

the activity factors for the blocks must scaled depending on the total cycle time for the

particular architecture. The percentage contribution to total delay can be used as a scaling

factor. That is, if a block’s estimated activity is only 33% of the its total delay, tblock, then

for a total system delay of 3 · tblock, the activity factor would be adjusted by 1
3 . This is

only a rough method of scaling activity factors and may not be entirely accurate. However,

when performing high-level rapid prototyping, and high-level energy-efficiency curves need

to be generated early on in the design stage, this type of estimation is adequate.

The leakage energy for a block must also be adjusted based on its contribution to total

system delay. If a block is idle for a significant amount of total system delay (say 90%), but

only idle for 10% of block delay, then it will contribute more leakage energy to the entire

system. Again, a leakage scaling factor can be assigned to the block based on its total

contribution to system delay when modeling of system leakage energy in terms of lower

level building blocks. This is a crude means of modeling but it is adequate for early stages

of design where this design methodology is most effective.

4.8 Summary

This chapter summarized well-known models for energy, delay, and interconnect. They

are used to estimate sensitivity and in the implementation of the convex circuit optimizer

used at the leaf cell level. The delay and energy model used in the convex optimizer differ

from the models used to develop a first-order model for sensitivity to sizing in Chapter 5.

Energy and delay models using the Alpha-power Law are used to create analytical models

for absolute sensitivity.

98

Design composition described in Chapter 3 requires careful modeling of energy for large

systems in terms of lower level building blocks due to activity factor estimation and leakage

energy that changes with composition.

99

Chapter 5

Sensitivity to Sizing

Independent of the choice of logic family or topology, optimized tran-
sistor sizing will play an important role in reduced power consumption.
– A. Chandrakasan et. al., JSSC, April 1992

5.1 Introduction

Circuit sizing plays an important role in the power-performance optimization of digital

systems. Switching energy per transition is linearly proportional to the effective switching

capacitance of a circuit, implying that the minimum energy solution, ignoring short-circuit

currents, is one where gates are minimally sized. The minimum delay solution based on

the method of logical effort advocates that gates should be sized such that each stage bears

the same gate effort. These two solutions are disjoint, so arriving at a power-performance

optimal circuit sizing solution is a non-trivial task. It requires a tradeoff analysis or equiv-

alently, generation of a Pareto optimal solution set. As mentioned earlier in Chapter 2,

computation of the Pareto optimal set is often NP-hard so various heuristics and simplifi-

cations have been employed in the past to arrive at reasonable solution sets for a particular

sizing problem.

100

5.1.1 Constrained Circuit Sizing

The constrained circuit sizing problem has been the subject of many optimization pa-

pers, starting from the 1977 IBM paper by Ruehli et. al. [61]. Authors in [61] formulate

the problem as a power minimization subject to timing constraints. Their models for delay

and power result in singularities and discontinuities in the objective function. The dis-

continuities are resolved by a mapping of variables which results in a posynomial delay

constraint. Since their gate delay model has singularities, the authors replace the model

with a quadratic function for large gate widths. Gradient-based optimization is then used

to iterate to a minimum power solution (i.e. gradients are zero at the minimum). How-

ever, their solution method is plagued by slow convergence and does not scale well to large

designs.

In 1985, Fishburn and Dunlop formulated the circuit sizing problem using RC equivalent

circuits to model transistors and used the Elmore delay model for gates [21]. The resulting

formulation is shown to be posynomial in transistor and wire widths, and thus can be

converted into a convex problem by a simple mapping of variables. Fishburn and Dunlop

first run a static timer to estimate arrival and required times at each node in the circuit.

Then, sensitivities for each transistor are calculated, and a greedy sensitivity-based sizing

approach is employed iteratively until a fixed point is reached at the global minimum.

Soon after Fishburn and Dunlop showed that the circuit sizing problem could be for-

mulated as a posynomial in transistor and wire sizes, Sapatnekar et. al. proposed an exact

solution to the convex sizing problem in [34]. In 1999, Conn et. al. [22] moved away from

the inaccuracies of approximating the logic gate as an RC circuit. Instead, they combined

multiple methods from previous works to optimize transistor sizes. A static-timing based

formulation was implemented with the objective to minimize the maximum of all path de-

lays subject to area and transistor width constraints. Rise and fall times are accounted for

along with timing slew. A non-linear optimizer based on augmented Lagrangian methods

is used, and fast transient simulation was employed to compute sensitivity information.

Conn et. al. base their sensitivity computation on adjoint and direct gradient computation

101

methods. The advantage of their optimization is that any type of custom circuitry can be

accommodated.

In more recent convex formulations [36, 37], geometric programming is used to effi-

ciently solve the convex circuit sizing problem. Boyd et. al. in [36] combine geometric

programming, dynamic programming, and static timing analysis to solve very large circuit

and wire sizing problems efficiently. In [37], on-the-fly static timing is combined with geo-

metric programming and tabulated delay models to solve a similarly formulated problem.

The advantage of the work in [37] is that once the delay models for gates are created using

circuit simulation, any type of custom circuitry can be accommodated – from static CMOS

gates to dynamic logic.

In each of the works mentioned above, the constrained gate sizing problem for a partic-

ular path in a combinational circuit is generally formulated in Equation (5.1). Additional

constraints can be included for better accuracy.

minimize Dpath(Wi) subject to

E ≤ Emax

Cin ≤ Cin,max

Wi ≥ 1 i = 1 . . . N

tslope,j ≤ tslope,max ∀j ∈ FI(i)

(5.1)

The objective in Equation (5.1) minimizes the total delay of a given path, Dpath, which is

a function of the relative gate sizes, Wi, and the input signal slopes, tslope,j arising from the

fan-in of gate i. The energy is given by E which includes both switching and leakage energy.

The energy budget is given by Emax. The input capacitance of the path, Cin is limited to

be less than the maximum for the design, Cin,max. The total number of gates along the

given path is N . A combinational circuit consists of many paths, hence the total circuit

delay is given by the maximum of all path delays: Dtotal = max (Dpathj , j = 1 . . .M).

Thus, the overall objective for the circuit sizing problem is to minimize Dtotal subject

to the constraints shown in Equation (5.1). A recursive formulation based on dynamic

programming can be employed to find the delay of a circuit without enumerating all of its

paths [36]. The constrained sizing optimization in Equation (5.1) can also be modeled as

an energy minimization subject to delay constraints [17] (see Chapter 4, Equation (4.13)).

102

When circuit sizing is combined with other tuning variables such as supply voltage and

threshold voltage, it can be shown that significant savings in energy dissipation are obtained

while maintaining performance [11, 12, 14, 62, 63, 64, 65]. The relative effectiveness of

tuning one variable over the other to maximize energy-efficiency is captured by sensitivities

to individual tuning parameters. If sensitivity information is used as an optimization guide,

it allows systematic traversal of the tradeoff space, leading to a quick discovery of the

optimal system design as was described in Chapter 3.

5.1.2 Chapter Overview

This chapter introduces an alternative method for estimating or calculating sensitivity

to sizing. As highlighted in Chapter 3, sensitivity is a necessary ingredient to hierarchical

power-performance optimization. Once sensitivities to tuning variables such as gate size are

available, it can be used as a guide for optimization. A simple first order model for sensitivity

to sizing is presented. It is based on physical parameters of a circuit that are readily

available to designers through either CAD tools or via simple calculations. Specifically,

the components of the model include total gate capacitance, total wire capacitance, and

input capacitance. The model obviates the need to calculate derivatives or generate large

numbers of energy-efficiency curves.

The first section reviews previous attempts to calculate and use sensitivity in the context

of the constrained circuit sizing problem. The circuit sizing tool described at the end of

the section is used in this work to develop models for sensitivity. Section 5.3 begins with

an analytical approach and then moves to a numerical approach for developing a model for

sensitivity to sizing. Circuit benchmarks, starting with an inverter chain and ending with

digital filters, are used to develop the model for sensitivity to sizing. The optimization of

small combinational blocks (e.g. inverter chain and adder) is accomplished using a Matlab-

based custom circuit optimizer developed in [17]. Next, the model is verified for larger

blocks and for synthesis optimized blocks. Section 5.8 presents the model’s limitations.

The final section summarizes the chapter.

103

5.2 Gradient-Based Circuit Sizing

In the late 1980s and 1990s, sensitivity analysis was applied to constrained circuit sizing

optimization in tools such as TILOS [21] and Einstuner [22]. In 1985, Fishburn and Dunlop

applied convex optimization to transistor sizing of a combinational circuit. Given a set of

N transistors of size x1, x2, . . . , xN , the problem is to find the optimal size of each transistor

given a constraint on either area or delay in the form the required clock period. They termed

their CAD tool TILOS; it took as input a transistor connectivity file and an input/output

delay file. The output was a transistor connectivity file. Under the hood, TILOS used a

static timing analyzer to extract all relevant timing paths. The problem was formulated in

three different ways: (1) minimize area, which is correlated to the sum of transistor sizes,

subject to a delay constraint; (2) minimize delay subject to an area constraint; (3) minimize

the product of area and delay to the power of some integer, which allows designers to put

a weighting factor on delay.

In [21], the authors show that the sizing problem is posynomial in transistor and wire

widths, and can be converted to a convex optimization problem by a simple mapping of

variables. The delay through a single path is modeled as a posynomial, hence making

the delay constraint or objective function (depending the optimization) convex. Since the

area is simply the sum of the transistor sizes, all three formulations are convex in nature

and geometric programming is used to solve the optimization. Fishburn and Dunlop use

sensitivity information to decide which transistor must be increased in size: the one with

the largest sensitivity to increasing performance is selected for up-sizing. The sensitivity is

calculated on the fly by fixing all other transistor sizes and increasing the size of one critical

transistor. The resulting sensitivity is given as a function of resistance and capacitance of a

unit-sized FET, the resistance and capacitance of the driven RC chain, and the size of the

selected transistor [21]. For efficiency purposes, not all paths are enumerated, neither are

all sensitivities stored. Recently, the formulation that Fishburn and Dunlop proposed has

been used as a foundation for further work on gate sizing by other researchers [34, 33, 37].

Fishburn and Dunlop use a heuristic method to solve the optimization whereas Sapatnekar

104

et. al. [34] employ exact methods. The drawback of methods in [21] and [34] is that they

both suffer from the inaccuracy of approximating a logic gate by an RC circuit.

Conn et. al. in [22] alleviated this problem by using simulation-based static timing

analysis, where the delay across a single path is the maximum arrival time at the output

of a gate. The maximum is transformed into a continuous differentiable objective function

by the addition of an auxiliary variable. They take into consideration rising and falling

arrival times, and rising and falling slew. Their approach relies on nonlinear optimization

and incremental time-domain gradient computation to optimally size a circuit to minimize

delay under area constraints. Unfortunately, their more accurate modeling of delay results

in a non-convex optimization problem, and has the danger of falling into a local minimum.

A simulator is used to evaluate path delays and updates the rising and falling arrival times

and slews which are then passed to the nonlinear optimizer. Gradients are also computed

via the circuit simulator using adjoint methods. Sensitivity to transistor sizing (gradients)

are used in the nonlinear optimizer but the details are not clarified by the authors. The

authors simply state that the nonlinear optimizer uses a Lagrangian merit function and a

penalty term consisting of a weighted sum-of-squares of the constraints [22]. In 2005, the

nonlinear optimizer was updated to use interior point iterative methods to arrive a final

solution [66].

More recently, a similar static-timing-based optimizer using a posynomial formulation

based on logical effort [43] has been implemented in Matlab and is used to minimize delay

in custom datapath circuits under given energy constraints [67, 37, 17]. The tool can be

extended to generate energy-delay tradeoff curves to help designers analyze various archi-

tecture and implementation choices. The determination of sensitivities from the generated

energy-efficient curves is left to the designer. Similar geometric programming based formu-

lations have also appeared in [33] and are solved by optimizers using interior-point methods.

The Matlab tool described in [17] is used in this work to optimize small combinational cir-

cuits and develop models for sensitivity to sizing. Models for energy, delay and area used

in the optimization are described in Chapter 4.

In each of the above optimization methods, gradients or sensitivity analysis is necessary

105

in determining the direction of the next iteration (i.e. which transistor, gate, or path is

selected for resizing). In the design methodology developed here, hierarchical optimization

uses sensitivity as a guide in determining system optimality and tradeoffs. The next section

describes how sensitivity to sizing may estimated by simple circuit properties such as gate

capacitance and wire capacitance.

5.3 Gate Capacitance, Wire Capacitance, and Sensitivity

Device sizing is characterized by the total gate capacitance to wire capacitance ratio

(Cgate/Cwire), assuming that the path fanout (Cload/Cin) is a simple function of Cin [16].

This is useful since Cgate/Cwire can be easily estimated after the technology mapping stage

of synthesis. An accurate value is available to the designer after the design has been ini-

tially placed and routed. After synthesis and during the floor-planning stage, a reasonable

estimate of total wiring capacitance is usually available along with sizes of individual gates

which will remain relatively constant during place and route. As Cgate, Cwire, Cin, and Cload

are physical parameters of any circuit that are readily available through tools or design cal-

culations, a model for sensitivity to sizing that uses these parameters can be extremely

useful in determining the optimality of a design. The remainder of this chapter explores

the relationship between sensitivity to sizing, S(W), and the ratio of total gate capacitance

and total wire capacitance via optimization of benchmarks ranging from a simple inverter

chain to digital filters.

Interconnect introduces a complication to the logical effort model for delay [43]. Since

the wire capacitance remains fixed, the effort required at the gate driving the wire will not

equal the effort at the gate following the wire. Hence, for paths that include wires, the

efforts across the stages in the path are not equal. The gate driving the wire will have a

higher effort than the gate at the end of the wire [43].

The effect of interconnect on path efforts is modeled by Sutherland et. al. in [43] by

a branching effort at the wire driving a gate; it is given as: (Cgate + Cwire)/Cgate. Since

this branching effort changes whenever gates are resized, an approximation of the branching

106

effort is often required to optimally size a path for minimum delay [43]. Iteration is used

to determine the optimal number of stages as the branching effort at the wire is initially

unknown.

Short wires in a design are usually treated as parasitic capacitance. A path containing

long wires is split into two parts: the first part drives the wire and the second receives input

from the wire. Each part can be designed independently, lumping the wire capacitance as

either a load or as an input capacitance. When wires become very long, the resistance of

a wire begins to impact delay and energy. Since wire delay scales quadratically with wire

length [6, 10, 43], long wires are usually broken into smaller sections by inserting repeaters.

When repeaters are inserted optimally, the delay along a wire scales linearly with wire

length [6].

Medium wires with capacitance that is comparable with gate capacitance pose a difficult

design problem. The wire branching effort becomes a strong function of both the gates and

the wire. In this case, wire capacitance cannot be treated as parasitic capacitance, nor

can it be lumped as load or input capacitance. Sizing a path with medium wires requires

a numerical solution to a polynomial function [43]. In newer technologies, this is even a

bigger issue as wire resistance starts playing a role in increased delay across medium wires

in addition to long wires.

In the following subsection, the logical effort method of sizing gates is augmented to

include interconnect. It shows the dependence of sensitivity to sizing on wire, gate, and

input capacitance of a circuit. The simple two-stage inverter chain with interconnect is used

as a starting point for the analytical derivation.

5.3.1 Analytical Derivation of Sensitivity to Sizing

The method of logical effort for optimizing the sizing of logic gates (for minimum delay)

along a path without wires is based on equal stage efforts, gihi = gjhj , where gi is the

logical effort of gate i and hi is the electrical effort of gate/stage i [43]. However, when

interconnect is present in a path, stage efforts are not necessarily equal. Three distinct

107

C
g 1

CLCw

C
g 2

Figure 5.1. Two-stage inverter chain with wire side load

methods of sizing a simple two-stage inverter chain (shown in Figure 5.1) in the presence

of interconnect have been published [10, 43, 68, 69, 70]. The three methods yield different

solutions.

Interconnect as a Side Load - Short Interconnect

Sutherland et. al. [43] and Horowitz [68] state that the minimum delay sizing problem

that includes side loads either from wire capacitance or loading of non-critical gates is

difficult to solve exactly. However, it is easily solved approximately. In both solutions, the

approximate minimum delay sizing solution neglects wire resistance.

The logical effort solution from [43] uses branching effort at the output of the driv-

ing inverter to model the effect of interconnect. The branching effort is given as
on path capacitance + off path capacitance

on path capacitance = Cgate+Cwire

Cgate
. This ratio is used to gauge the

difference between gate capacitance along a path and wire capacitance which stays rela-

tively fixed. If the contribution of wire capacitance to path delay is small and pat delay is

dominated by gate capacitance, then the ratio is close to unity. In this case, it is reasonable

to treat wires as additional parasitic capacitance when minimizing for delay. The total para-

sitic capacitance includes parasitic wire capacitance and parasitic diffusion capacitance [43].

Stage efforts are equalized and the best stage effort is slightly over four for paths with rea-

sonably short wires [43]. Horowitz in [68] gives a similar solution. The delay equation for

the two-stage inverter chain with interconnect that acts as parasitic capacitance is given

by:

D =
Cg2

Cg1

+
CL

Cg2

+ 2 + pwire (5.2)

108

Minimizing Equation (5.2) with respect to the electrical effort gives the same solution

as the minimum delay solution without interconnect: equal stage efforts, Cg2
Cg1

= CL
Cg2

. The

size of the second gate is then given by Cg2 =
√

CLCg1 and the stage effort is given by:

fi =
√

CL
Cg1

. When Cw is small compared to Cg2 , its effect on the path effort is small [43, 68].

Equation (5.2) is a good approximation only if the wire capacitance is very small relative

to gate sizes and thus, can be treated as parasitic capacitance.

Interconnect as A Side Load – Medium and Long Interconnect

In the case of very long wires, a simple approximation is to split the chain into two pieces:

the first piece drives the wire and treats it as an output load [43, 68, 69]. This approach is

detailed in [69]. The stage effort of the gate driving the wire is given by f1 = Cg2+Cw

Cg1
and

the stage effort of the gate after the wire is given by f2 = CL
Cg2

. In [69], the authors show

that for an inverter chain with n inverters preceding the wire and m inverters after the wire,

the optimal delay cannot be solved analytically but bounds on the optimal stage efforts are

presented by assuming equal stage efforts along gates preceding the wire and equal stage

efforts among gates after the wire. However, this is still an approximation as the effort

of the gate driving the wire will not necessarily be equal to the gates preceding the gate

driving the wire [43, 68]. The main issue with this approximation for long wires is that it

does not include branching effort due to the wire. It must be included at the node driving

the wire as wire capacitance affects the stage effort of the gate following the interconnect as

well as the gate driving the wire. Current will be split amongst the wire capacitance side

load and the path following the interconnect. The proper way to model delay for medium

and long wires with side load capacitance is as follows.

If Cw is comparable to the gate capacitance, Cg2 , and load capacitance CL, then the

branching effort for wires (Cgate +Cwire)/Cgate is a strong function of both wire capacitance

and gate capacitance, and must be included in the delay equation as shown in Equation (5.3).

D = g1h1b1 + p1 + g2h2b2 + p2

D = (Cg2+Cw)
Cg1

+ CL
Cg2

· (Cw+Cg2)
Cg2

+ 2
(5.3)

109

Minimizing Equation (5.3) with respect to gate size results in the following optimal

sizing condition:

Cg1 =
C2

g2

CL
·
(

Cg2

Cg2 + 2Cw

)
(5.4)

When wire capacitance is zero, Equation (5.4) reduces to the optimality condition for a

two-stage inverter chain without interconnect, and results in Cg2 =
√

Cg1CL. The optimal

sizing for Cg2 in the presence of interconnect is given by a solution to the following cubic

equation:

C3
g2
− Cg1CLCg2 − 2CLCwCg1 = 0 (5.5)

The size for the gate following the interconnect is given by:

Cg2 =
3

√
CLCwCg1 +

√
(CLCwCg1)2 +

(Cg1CL)3

27
− 3

√
−CLCwCg1 +

√
(CLCwCg1)2 +

(Cg1CL)3

27
(5.6)

Note that the two stage efforts are not equal. The driving gate will require higher

effort as interconnect capacitance increases relative to gate capacitance. As interconnect

capacitance increases relative to the load capacitance, the stage effort of the second gate

must also increase. The dependence on Cw is shown in Equations (5.4) and (5.6). In newer

technologies, delay due to wire capacitance and wire resistance are contributing a significant

amount to the cycle time of a system [6], hence models for delay and energy must include

their effect for accurate architecture tradeoff analysis.

Wire Resistance

The delay dependence on the length of the wire is seen by representing the interconnect

along a path by the Elmore π-delay model for wire segment delay [10]. This is shown in

Figure 5.2. Based on the Elmore delay model (which includes wire resistance), the total

delay long the two-stage chain with interconnect is then given by [10]:

D = 0.69R1(Cp1 + Cg2) + 0.69(R1cw + rwCg2)L + 0.38rwcwL2 (5.7)

In Equation (5.7), L is the length of the wire, rw and cw are the wire resistance and

110

C
g 1
, C

p1
, R

1

Cw/2 Cw/2

Rw

C
g 2
, C

p2
, R

2

CL

Figure 5.2. Two-stage inverter chain with Elmore wire segment delay

capacitance per unit length. Equation (5.7) clearly shows the dependence of delay on wire

length. If the wire is very long, then the quadratic term becomes quite large. In order to

mitigate this, repeaters are usually inserted along a long wire so that the dependence of

delay on wire length becomes linear [6].

The previous minimum delay sizing solutions neglected wire resistance. In the following,

wire resistance is included using the Elmore delay model. Authors in [70] use the π-delay

model for wire segment delay and the method of logical effort to arrive at a result that

shows how stage efforts change in the presence of interconnect. However, their derivation

neglects branching efforts due interconnect. The branching factor due to interconnect is

augmented to the equation for delay given in [70]. Equation (5.8) derives the delay model

for the two-stage inverter chain with interconnect in the presence of wire capacitance and

wire resistance.

D =
∑N

i=1 gi · (hi + hwi) + gi+1hi+1 ·
(

Cgi+1+Cwi

Cgi+1

)
+ (pi + pwi)

D = h1 + hw1 + p1 + pw1 + h2

(
Cg2+Cw1

Cg2

)
+ p2

D = h1 + Cw
Cg1

+ Rw·(0.5Cw+Cg2)
RoCo

+ CL
h1Cg1

·
(

h1Cg1+Cw

h1Cg1

)
+ 2

(5.8)

In Equation (5.8), h1 = Cg2
Cg1

represents the electrical effort for stage 1; Cgi is the input

capacitance of gate i; Rw and Cw is the wire resistance and capacitance of wire segment; hwi

is termed the capacitive interconnect effort which is Cwi
Cgi

; RoCo is the delay of a minimum-

sized inverter. If the wire is short, then wire resistance can be neglected and the resulting

equation is given by:

D = h1 +
Cw

Cg1

+
CL

h1Cg1

·
(

h1Cg1 + Cw

h1Cg1

)
+ 2 (5.9)

111

When the two-stage inverter chain with wires is optimized for delay given in Equa-

tion (5.8) (derivative of delay with respect to gate size is set to zero), the resulting optimality

condition is given by:

(
1 +

RwCg1

RoCo

)
· h1 = h2 ·

(
Cg2 + 2Cw

Cg2

)
(5.10)

The two stage efforts are different due to the wire resistance and wire capacitance. If

wire resistance is not significant (as for short wires), then the optimality condition reduces to

the one in Equation (5.4). When interconnect is not present in the path, then the optimality

condition reduces to the one of equal stage efforts. The above analysis is extended for general

gates along a path in [70] and here it is augmented with appropriate branching factors. The

derivation is not presented here, but the resulting optimality condition for minimum delay

is given by:

(
gi +

RwiCgi

RoCo

)
· hi = gi+1 ·

(
hi+1 ·

(
Cgi+1 + 2Cwi

Cgi+1

)
+

Cwi+1

Cgi

)
(5.11)

In Equation (5.11), the stage efforts are modulated by wire resistance and wire capaci-

tance. The stage effort for the gate driving the wire will increase as wire resistance increases,

and effort of the stage following the wire will increase as wire capacitance increases rela-

tive to the size of the stage. In the absence of interconnect, the optimality condition for

minimum delay reduces to that of equal stage efforts.

Constrained Delay Minimization

Sensitivity analysis is based on constrained delay minimization or constrained energy

minimization as explained in Chapter 2.

Energy is given by switching and static energy as summarized in Chapter 4. If it is

assumed static power can be neglected for the two-stage inverter chain example, then the

energy is approximately given by the switching energy which is proportional to the switched

capacitance and square of the supply voltage:

E ≈ α · (Cw + Cg2) · V 2
DD (5.12)

112

The general constrained circuit sizing problem given in Equation (5.1) cannot be solved

analytically. A numerical optimizer is required for a complete solution [48]. The main

feature of the optimal solution is that stage efforts increase along the chain towards the load

capacitance. In the presence of interconnect, the constrained delay minimization problem

is further complicated.

In the case of the two-stage inverter chain example in Figure 5.2, the constrained delay

minimization can be solved analytically using Lagrangian methods. Since the Lagrange

multiplier provides a lower bound on the sensitivity, the resulting optimal Lagrange multi-

plier can be used to understand the dependency of sensitivity on gate capacitance and wire

capacitance. The Lagrangian for the problem neglecting wire resistance is given by:

L(Cg2 , λ) =
Cg2

Cg1

+
Cw

Cg1

+
CL

Cg2

·
(

Cg2 + Cw

Cg2

)
+ 2 + λ · (α · (Cw + Cg2) · V 2

DD −Emax) (5.13)

By setting ∂L
∂Cg2

= 0, the Lagrange multiplier is found to be:

λ =
1

α · V 2
DD

·
[

CL

C2
g2

(
Cg2 + 2Cw

Cg2

)
− 1

Cg1

]
(5.14)

In Equation (5.14), λ is a function of the branching effort, and the inverse of the input

capacitance to Cg2 . When wire resistance is included, an additional term 1
α·V 2

DD
· Rw

RoCo

is subtracted from the Equation (5.14). As the branching factor ratio becomes a strong

function of wire resistance, the sensitivity to sizing will increase for a given set of gate

capacitances. As the wire length increases, wire resistance will increase as well causing a

decrease in sensitivity to sizing for the second stage. As the capacitance of the gate driving

the gate increases, the sensitivity to sizing will increase slightly. Equation (5.14) indicates

that sensitivity to sizing is a function of wire branching effort, input capacitance, wire

capacitance, and wire resistance.

Constructing an analytical equation in terms of Cgate/Cwire for the above case is a long

exercise and does not yield an interesting result as most paths in circuits are longer than

two inverter stages, contain diverse gates, and include interconnect at multiple nodes along

a path. For diverse and longer paths, it is much more convenient to use a numerical opti-

mization to develop a model for sensitivity. The next subsection describes the experimental

setup.

113

Delay,
Energy

Optimum gate
sizes, VDD, VTH

Models; wire,
input & output

loads

Initial gate sizes,
VDD, VTH

Gate sizes

Figure 5.3. Convex model based optimizer built in Matlab

5.3.2 Numerical Approach to Modeling Sensitivity to Sizing

The model for sensitivity to sizing in terms of total gate capacitance, input capacitance,

and wire capacitance is developed through the use of a custom circuit optimizer which is

described in detail in [17]. A simplified diagram of the optimizer is shown in Figure 5.3.

The optimizer is based on convex models for energy and delay as described in Chapter 4.

The netlists for the various benchmarks are described in a format similar to HSPICE,

tabulated delay models for each gate and technology are created using circuit simulation.

The drawbacks of using tabulated models are described in Chapter 4. The netlist and

models are input to the optimizer which produces the optimal gate sizes for minimum

delay subject to an energy constraint. Wire capacitance is accurately measured through

one pass of place and route, and then fed back into the optimizer as input. The optimizer

neglects wire resistance in the optimization [17]. At the completion of the optimization,

after the optimal gate sizes are available, Matlab scripts are used to calculate the sensitivity

to sizing for each point on the energy-efficiency curve for different input capacitances. Then

sensitivity to sizing is plotted against the ratio of total gate capacitance and total wire

capacitance for a given input capacitance and load capacitance.

The benchmark studies presented in the following sections show that there is a simple

first-order linear relationship between sensitivity to sizing and the pair (Cgate/Cwire, Cin).

Opportunities for improvement in the energy-efficiency of a given design through gate sizing

at different levels of design abstraction can be quickly identified using this model for sen-

sitivity. The simplicity of the approach obviates the need to calculate the energy-efficient

114

Cin

w
1

w
n

Cw/2 Cw/2

Rw
x

1
x

m

CL

Figure 5.4. Inverter chain with wire capacitance and resistance

curves in the energy-delay coordinate space and lends itself well to an automated sizing op-

timization for an energy-constrained circuit within a synthesis-based design flow for ASICs.

5.4 Inverter Chain

The first simple benchmark is an inverter chain consisting of 20 inverters, with a wire

capacitance and resistance placed in the middle of the chain, after the tenth inverter, as

shown in Figure 5.4. The inverter chain is implemented in a 90nm standard CMOS process.

The 90nm CMOS inverter has a 5.6ps/fanout delay and 7.1ps self-loaded delay at 1.0V

supply. The intrinsic capacitance and resistance are 1.6fF and 11kΩ, respectively. The gate

and diffusion capacitance are 0.73fF and 0.93fF, respectively. Wires in the 90nm process

have a sheet resistance of 0.07Ω/¤ resulting in a wire resistance of 0.01Ω/µm. The total

wire capacitance per length is given as 0.35fF/µm. The wire capacitance stays fixed at

100fF during each optimization.

Energy-efficiency curves are generated for input capacitances ranging from 2fF to 30fF.

The total load at the end of the chain is set to be four times that of the input capacitance.

The energy-efficiency curves are shown in Figure 5.5 for the different values of input capac-

itance. The minimum delay across the chain is 0.25ps. The lowest curve in the plot is for

Cin = 2fF and the highest curve on the graph is for Cin = 30fF .

Matlab scripts are used calculate the total wire capacitance, total gate capacitance, and

sensitivity for a given input capacitance. The sensitivity is then plotted against the ratio of

total gate capacitance to total wire capacitance. Figures 5.6 shows a subset of the results

of the optimization for the inverter chain with a 100fF wire capacitance and a fixed fanout

115

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Delay (ps)

E
ne

rg
y

(p
J/

cy
cl

e)

Cin = 2fF
Cin = 5fF
Cin = 10fF
Cin = 15fF
Cin = 20fF
Cin = 25fF
Cin = 30fF

Figure 5.5. Inverter energy-efficiency curves for fixed wire capacitance of 100fF

relationship (i.e. Cload = 4 · Cin). The plots show sensitivity to sizing plotted against the

ratio of total gate capacitance to total wire capacitance for Cin = 5fF, 10fF, 15fF, 20fF,

25fF, and 30fF. As illustrated in each of the plots, there is a clear linear relationship between

Cgate/Cwire and sensitivity to sizing. The x-intercept gives the minimum energy point where

gates are minimally sized. The dispersion around the linear function for Cin = 25fF is due

to the inability of the custom optimizer to converge to an optimal point for sensitivities

higher than 5. This is case is special because the wire capacitance is exactly to the load

capacitance which causes problems for the optimizer. This phenomena was also seen for

other cases where wire capacitance was exactly the same as load capacitance.

116

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

C
gtotal

/C
wire

S
en

si
tiv

ity
 to

 s
iz

in
g

Cin=5fF, Cload=20fF, Cwire=100fF
 linear fit

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

C
gtotal

/C
wire

S
en

si
tiv

ity
 to

 s
iz

in
g

Cin=10fF, Cload=40fF, Cwire=100fF
 linear fit

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

C
gtotal

/C
wire

S
en

si
tiv

ity
 to

 s
iz

in
g

Cin=15fF, Cload=60fF, Cwire=100fF
 linear fit

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
gtotal

/C
wire

S
en

si
tiv

ity
 to

 s
iz

in
g

Cin=20fF, Cload=80fF, Cwire=100fF
 linear fit

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12

14

C
gtotal

/C
wire

S
en

si
tiv

ity
 to

 s
iz

in
g

Cin=25fF, Cload=100fF, Cwire=100fF
 linear fit

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

20

C
gtotal

/C
wire

S
en

si
tiv

ity
 to

 s
iz

in
g

Cin=30fF, Cload=120fF, Cwire=100fF
 linear fit

Figure 5.6. Sensitivity versus Cgate/Cwire

117

Sensitivity vs. Cgate /Cwire

0

5

10

15

20

25

0 1 2 3 4 5 6 7

Cgate /Cwire

S
en

si
ti

vi
ty

 t
o

 S
iz

in
g

Cin =2fF

Cin =10fF
Cin =20fF

Cin =30fF

Figure 5.7. Sensitivity versus Cgate/Cwire

Figure 5.7 shows the curves for Cin = 2fF , Cin = 10fF , Cin = 20fF , and Cin = 30fF

plotted on the same axis which highlights the changes in the slopes of the curves as input

capacitance is increased. As Cin increases (causing Cload to increase due to the fixed fanout

relationship), gates are sized up. When total gate capacitance increases in relation to the

total fixed wire capacitance, the ratio (Cgate+Cwire)/Cgate starts approaching unity. Hence,

for a fixed delay target, the amount of additional energy required to compensate for loss in

delay in the wire is reduced. This is shown by the smaller slope of the sensitivity versus

Cgate/Cwire plot for increasing Cin in Figure 5.7. Less additional energy is required for a

percentage increase in performance when the input and load capacitance increase relative

to the fixed wire capacitance.

When input capacitance is left to vary up to a maximum value and the load capacitance

remains fixed, a very clear linear relationship between sensitivity to sizing and Cgate/Cwire

emerges as shown in Figure 5.8, for different fixed wire capacitances. As wire capacitance

increases, the slope of the linear curve also increases. The gate driving the wire must

work harder to compensate for the increased delay across the wire to meet the target

delay constraint. The driving inverter must then be up-sized causing an up-size of the

118

Optimized Inverter Chain (20 gates)
with Wire Capacitance & Load Capacitance

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Cgate /Cwire

S
en

si
ti

vi
ty

 t
o

 S
iz

in
g

Cwire = 70fF

Cwire = 50fF

Cwire = 35fF

Cwire = 20fF

Cwire = 15fF

Cwire = 10fF

Figure 5.8. Sensitivity versus Cgate/Cwire: fixed Cwire, varying Cin

other inverters preceding the driving inverter resulting in an increase in energy. When

wire capacitance increases, more energy must be expended for each percentage increase in

performance.

Figure 5.9 shows the energy-efficiency curves corresponding to the inverter chain opti-

mization for different wire capacitances. The minimum energy point and the energy-delay-

squared point (ED2) on the knee of the curve are highlighted to show that only these two

points are required to create a linear model for sensitivity in terms of Cgate/Cwire. If a

designer knows the minimally sized solution for a particular design and can calculate the

total gate and wire capacitance for the EDP or ED2 points, then sensitivity to sizing can

be approximated without having to calculate derivatives or without having to generate

multiple points on the energy-efficiency curve.

There is another way to model the sensitivity. The x-intercept of the graphs in Figure 5.7

and Figure 5.8 is the minimum energy point where the gates are minimally sized. The slope

is based on the ratio (Cgate + Cwire)/Cgate, Cwire, and Cin. As observed in the two graphs,

the slope increases as wire capacitance increases but decreases as Cin increases. Using these

119

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.1 0.3 0.5 0.7 0.9 1.1 1.3

Delay (ps)

E
n

er
g

y
(p

J/
C

yc
le

) Cwire = 70fF

Cwire = 50fF

Cwire = 35fF

Cwire = 20fF
Cwire = 15fF

Cwire = 10fF

Wire dominated

Gate dominated
Required points for
linear approximation

Figure 5.9. Inverter energy versus delay for varying Cin

facts and the analysis of the two-stage inverter chain which shows that sensitivity is a strong

function of branching factors due to interconnect, the slope is approximated by the following

equation:

slope =
Cwire

Cin
· Cgate

(Cgate + Cwire)
(5.15)

The first part of the model is based on the observation of how the slope varies in

relation to changes in Cwire and Cin. The second term is based on the inverse of the

branching factor given in [43], but the values are based on total wire capacitance and total

gate capacitance. This is opposed to the product of branching factors. When equalizing

stage efforts, the product is used. However, stage efforts will not be equal across gates in

the chain. If a general path in a circuit is considered where there may be interconnect at

multiple nodes in the path, the path delay equation in (5.11) shows that each node where

the wire is located contributes a term to the summation. When the partial derivative of

delay is taken with respect to each gate size (i.e. Cg2 , Cg3 , . . . , Cgn), each partial derivative

contributes a wire branching factor term to the sensitivity and hence to the slope of the

sensitivity versus Cgate/Cwire graph. A good estimate of the total contribution is to form

120

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35

Cin (fF)

S
lo

p
e

Slope - optimizer data

Slope - linear model estimation

Fitted power curve to optimizer data

Figure 5.10. Inverter: slope of Cgate/Cwire versus Cin

the ratio (Ctotal gate +Ctotal wire)/Ctotal gate along a path. Intuitively, the ratio is accounting

for current split among all the interconnect and all the gates along a path. The inverse is

used because as Cgate increases relative to the fixed wire capacitance, less additional energy

is required to compensate for delay across the wire, hence lowering the slope. The solid

line in Figure 5.7 plots the model for sensitivity as a linear function of Cgate, Cwire, and

Cin. It is not feasible to extract exact values of Cgate, the term Cgate/(Cgate + Cwire to

form a reasonable model for the slope. Since Cwire is fixed, Cgate needs be approximated in

some manner. The value chosen for Cgate will depend on whether the design is inherently

gate-limited or wire-limited.

As one can see, there is very good agreement between the optimized points and the

model. If the slopes derived from the optimized data are plotted as a function of Cin, and

the model described in Equation (5.15) is used to estimate the slope, then good agreement

is shown in Figure 5.10.

The choice of the branching factor value depends on the relative difference between Cin,

Cload, and Cwire. This is because short, medium and long wires must be treated differently.

If (Cin + Cload) ≤ 1
4 · Cwire, then the minimum energy point is chosen for the Cgate value.

This for wire-limited designs. If (Cin +Cload) > 1
4 ·Cwire and (Cin +Cload) < 1

2 ·Cwire, then

121

the ED2 point can be chosen for Cgate. This value is appropriate for designs where total

wire capacitance is similar in size to total gate capacitance. The ED2 point was chosen after

experimentation with different values obtained from various points on the energy-efficiency

curves. The points along the knee of the curve provided the best fit for designs where wire

capacitance was comparable to total gate capacitance. If (Cin + Cload) ≥ 1
2 · Cwire, the

minimum delay point is chosen for the value of Cgate. This value is suited to designs that

are gate-limited rather than wire-limited.

For designs with small total wire capacitance in relation to total gate capacitance, delay

is dominated by gate capacitance. If the minimum delay point is used to approximate the

branching factor, (Cgate + Cwire)/Cgate, then the approximation puts more weight on the

total gate capacitance, which closely ties sensitivity to sizing for delay across gates rather

than wires. For designs with wire capacitance approximately equal to gate capacitance, de-

lay is equally partitioned across wires and gates. The branching factor is then approximated

by a point on the knee of the energy-efficiency curve (e.g. ED2 or ED3 or ED4 points). For

designs with large total wire capacitance in relation to total gate capacitance, wire capaci-

tance and resistance contribute significantly to delay. The branching factor is approximated

by the minimum energy point because this puts more weight on wire capacitance.

The above rules for choosing the value for Cgate which helps determine the slope for the

sensitivity model were based on a number of different experiments where wire capacitance,

input capacitance, and load capacitance were varied. Figure 5.11 shows the resulting linear

model for sensitivity to sizing for each of the input capacitances. The rules given in the

previous paragraph were used to generate the curves. It should be noted that since the

custom optimizer neglects wire resistance in the optimization, it is also missing from the

model given in Equation (5.15). The impact of wire resistance on sensitivity and architecture

optimization was detailed in the previous chapter.

The inverter chain is a limited example as it contains no branching or reconvergent paths

as is the case with most realistic circuits. Larger blocks must be investigated to ensure that

the linear model holds across multiple types of circuits and across layers of hierarchy. Next,

122

Sensitivity vs. Cgate /Cwire
Linear Model

(Fixed wire (100fF), fixed Cin)

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5

Cgate /Cwire

S
en

si
ti

vi
ty

 t
o

 S
iz

in
g

Cin =2fF

Cin =5fF

Cin =10fF
Cin =15fF
Cin =20fF
Cin =25fF
Cin =30fF

Figure 5.11. Inverter: linear model for sensitivity to sizing

a 64-bit adder is optimized using both a custom circuit optimizer and a synthesis-based

optimizer. The adder is then used as a component in an integer execution unit.

5.5 64-bit Ling Adder

The adder study focuses on two levels of hierarchy. The bottom level is a transistor-

level implementation of a 64-bit sparse radix-4 Ling carry-look-ahead adder. The sum-

precompute path uses a static CMOS implementation whereas the carry-look-ahead tree

is implemented using footless domino. The generic carry-select architecture is depicted in

Figure 5.12. The higher level of hierarchy is an integer execution unit (IEU) that is built

from six 64-bit adders, cache, register files, and muxes. The optimization of the IEU is

described in Section 5.6.

The adder gate sizes are optimized for a range of input capacitances for minimum delay

under fixed energy constraints using the optimization tool described in [17]. The total wire

capacitance is calculated from extracted wire capacitances after layout. The total input and

output capacitance for the extracted design were set at 27fF. The energy-efficient curves for

the adder are generated for input capacitance varying from 13.5fF to 108fF and the total

123

Carry Look Ahead Tree

Sum Precompute

Sum Select

Sum0[63:0]

Sum1[63:0]

Sum[63:0]

A[63:0]

B[63:0]

Figure 5.12. Ling Adder

output capacitance, Cout, has a simple relationship with Cin for all optimizations:

Cout = 6 · Cin + 2 · CRF + Ccache + Cbus

Cout ' 9 · Cin + +Cbus

(5.16)

The output capacitance equation is based on the fact the adder is used in an integer execu-

tion unit that has six 64-bit adders, two register files, and a cache sitting on a bus, which

is similar to the Itanium design published in [71]. The load capacitance of the cache and

register files is approximately the same as the load of an adder. Initially, the total wire

capacitance was kept at the same value as the extracted Cwire for Cin = 27fF since it was

assumed that for a regular block like an adder, the total wiring capacitance does not vary

too much with varying input capacitance relative to total device capacitance. However,

it was found that for large input capacitances, the linear relationship broke down due to

inaccurate wire estimation. The larger load and input capacitance results in larger area

for the adder overall, which results in increased routing overhead. As long as the wiring

overhead is appropriately accounted for, the linear relationship holds.

The energy-efficiency curves for the Ling adder are shown in Figure 5.13. The minimum

achievable delay for the 64-bit adder is shown to be about 230ps; increasing the input

capacitance beyond 54fF results in little change in the minimum achievable delay.

In Figure 5.14, the plot for the 64-bit Ling adder shows a linear relationship between

sensitivity and Cgate/Cwire for all input loading conditions. The minimum energy solution

is given by the x-intercept as was the case for the inverter chain example. The slopes are

plotted against Cin in Figure 5.15. A profile similar to the inverter chain results. The

branching factor is estimated using the minimum energy point since the adder design has

124

64-bit Ling Adder

10

15

20

25

30

35

40

45

50

55

0.2 0.25 0.3 0.35 0.4 0.45

Delay (ns)

E
n

er
g

y
(p

J/
C

yc
le

)

Cin = 14fF
Cin = 27fF

Cin = 34fF

Cin = 47fF

Cin = 54fF
Cin = 61fF

Cin = 81fF

Cin = 108fF

Figure 5.13. Energy-efficiency curves for 64-bit Ling adder

Sensitivity to Sizing

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14 16

Cgate /Cwire

S
en

si
ti

vi
ty

 t
o

 S
iz

in
g

Cin = 14fF

Cin = 20fF

Cin = 34fF
Cin = 81fF

Cin = 108fF

Figure 5.14. Adder sensitivity to sizing versus Cgate/Cwire

a large output load; that is, (Cin total + Cload) ≤ 1
4Cwire. Figure 5.15 shows a very good

correspondence between the model for the slope and the measured slopes of each of the

sensitivity versus Cgate/Cwire plots in Figure 5.14.

5.5.1 Synthesis-based Adder Optimization

A static version of a radix-2 full-tree 64-bit Ling Adder is optimized using the custom

circuit optimizer and a commercial synthesis tool in the same technology. The comparison is

made to ensure that the linear model holds across different types of optimization. Synopsys

Design Compiler is used to synthesize the gate-level Verilog model of a static radix-2 full-

tree 64-bit Ling adder. A 90nm standard CMOS process with nominal operating conditions

125

64-bit Ling Adder

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120

Cin (fF)

S
lo

p
e

o
f

S
 v

s
C

g
at

e
/C

w
ir

e
 p

lo
t Measured from optimized design

Estimated via model

Cin_total + Cload < 1/4 Cwire
Branching factor: (Cgmin + Cwire)/Cgmin
Slope: (Cwire /Cin_total)[Cgmin /(Cgmin +Cwire)]

Figure 5.15. 64-bit Ling Adder: slope of Cgate/Cwire versus Cin

was used for mapping the design. Wire load models were created from custom layout, and

50% switching probability was assigned to the inputs. The energy-delay curves for the

synthesized version of the adder and the custom circuit optimized version are shown in

Figure 5.16.

Sensitivity versus Cgate/Cwire is plotted using the available estimates of total Cgate,

Cwire, and Cin after one pass of place and route. Figure 5.17 shows a significant differ-

ence between the synthesized design and the custom design. The plot of sensitivity versus

Cgate/Cwire for Cin = 27fF highlights the gap by the difference in slopes. The custom-

synthesis gap is due to the fact that synthesized designs require more routing area and

gate sizes are quantized. Additionally, the delay constraint dominates in synthesis. Once

the delay constraint is met, little effort is spent in optimizing the energy. However, the

relationship between sensitivity and Cgate/Cwire remains linear for a given Cin. This linear

relationship extends to larger blocks as will be seen for the IEU and digital filters.

126

90nm CMOS 64-bit Radix-2 Full Tree Ling Adder
Custom Circuit Optimization vs. Synthesis Optimization

7

9

11

13

15

17

19

21

23

300 400 500 600 700 800 900 1000

Delay (ps)

E
n

er
g

y
(p

J/
cy

cl
e)

Gate level synthesis optimized,
Synopsys wire load models (back annotation)

Custom circuit optimized,
extracted wire

Figure 5.16. Synthesis versus custom optimization: adder energy-efficiency curves

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25

Cgate /Cwire

S
en

si
ti

vi
ty

 t
o

 S
iz

in
g

Synthesis Optimization Custom Optimization

Figure 5.17. Synthesis versus custom optimization: sensitivity to sizing model

5.6 Integer Execution Unit

The adder and inverter chain represent simple lower level leaf cells. In order to show

that the linear model for sensitivity to sizing holds for larger blocks, an integer execution

unit (IEU) is optimized. The architecture is based on the Itanium-2 design [71] and is

illustrated in Figure 5.18. The IEU consists of six ALUs operating in parallel, two register

files, a cache, and a loop-back bus. The core of each ALU is the 64-bit Ling adder.

A simple energy and delay model for the IEU is created based on the design information

presented in [71].

DIEU = 2 ·DALU + DBUS

EIEU = 6 · EALU + 2 · ERF + ECACHE + EBUS

(5.17)

127

Figure 5.18. Integer execution unit (IEU)

70

120

170

220

270

320

370

420

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

Delay (ns)

E
n

er
g

y
(p

J/
C

yc
le

)

Cin = 108fF

Cin = 81fF

Cin = 61fF
Cin = 54fF

Cin = 47fF
Cin = 34fF

Cin = 27fF Cin = 20fF
Cin = 14fF

Figure 5.19. IEU energy versus delay

In [71] the authors show that each half clock cycle of the IEU is exactly the delay of

one ALU. The amount of energy dissipated in the register files and cache is small compared

to the ALU and is lumped together with the energy attributed to the large bus, hence, the

model for energy can be simplified to: EIEU = 6 · EALU + EBUS . Based on this simplified

model, energy-efficient curves for the same range of input capacitances as used in the adder

optimization are generated and plotted. These are shown in Figure 5.19.

In order to gauge the effect of wire scaling, two extreme models are used for calculating

total Cgate/Cwire for the IEU. The first only includes wiring overhead for the six adder

blocks and the bus, and neglects all additional wiring overhead associated with the cache

128

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14 16

Cgate /Cwire

S
en

si
ti

vi
ty

 t
o

 S
iz

in
g

Cin = 108fF
Cin = 81fF

Cin = 61fF

Cin = 34fF

Cin = 20fF

Cin = 14fF

Wires must scale to accommodate

larger area due to increased gate

size. At 65nm technology node,

wire resistance must be included

Figure 5.20. IEU sensitivity to sizing versus Cgate/Cwire

and register files. The second model includes the total wiring overhead of the peripheral

circuitry as 1.2Cwire and is included in the calculation of Cgate/Cwire.

Figure 5.20 shows sensitivity versus Cgate/Cwire, where wiring overhead for the periph-

eral circuitry in the IEU is included in the calculation of the total wire capacitance. The

linear relationship continues to hold for larger blocks composed of smaller building blocks

such as adders.

When Cgate/Cwire is plotted against Cin for sensitivity of 2 (at the knee of the energy-

efficiency), the effect of inaccurate wire estimation is shown in Figure 5.21. The curve

becomes polynomial in nature rather than linear. However, when the correct total wire

capacitance is used, the slope of the curve closely matches the slope of the curve for the

adder

The plot of Cgate/Cwire versus Cin for sensitivity of 2 shown in Figure 5.21 verifies

that for an optimum design the sensitivity of both blocks is equal at only one particular

Cgate/Cwire and Cin. Figure 5.21 also shows that when wires scale with the design, an

increase in Cin causes a linear rise in Cgate/Cwire for both the adder and IEU; when wires

remain fixed and do not scale with the design, there is no correlation between the adder and

IEU in how Cgate/Cwire scales with increasing Cin. The light blue curve with triangular

points is for an IEU model that neglects to take into account overhead of wiring for the

register files, cache and multiplexers.

129

Cgate /Cwire vs. Cin for Sensitivity = 2

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

Cin (fF)
C

g
at

e
/C

w
ir

e

IEU without wire estimation
for additional circuitry in IEU

64-bit adder with
extracted wire capacitance

IEU with wire estimation
for additional circuitry in IEU

Figure 5.21. Effect of inaccurate wire estimation: Cgate/Cwire vs. Cin for sensitivity of 2

5.7 Finite Impulse Response Filter

In order to further illustrate the linear relationship between sensitivity and Cgate/Cwire,

transpose and transverse 32-tap filters are synthesized using high-level RTL code using the

tools and methodology described in Section 5.5.1. The resulting sensitivity curves from the

optimized filters using synthesis tools are shown in Figure 5.22. The relationship remains

linear, according to the same type of model developed for the IEU, adder, and inverter chain.

The x-intercept represents the minimally sized solution (minimum energy design point), and

the slope is estimated using Equation 5.15. The branching factor is approximated by the

minimum delay point as the filters represent systems which are gate-limited rather than

wire-limited due to large number of multipliers, registers, and adders. The transverse filter

has less routing overhead than the transpose filter which is shown by the different slopes

and x-intercepts.

5.8 Model Limitations

The results in the previous sections highlight a fast approach to estimating sensitivity

to sizing without the need to calculate derivatives or generate large numbers of energy-

efficiency curves. The model is a first order linear model that can be used at early stages

of design. It is useful to accurately model small building blocks of a design such as adders,

130

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

Cgate /Cwire

S
en

si
ti

vi
ty

 t
o

 S
iz

in
g

Transverse
Cin = load of register

Transpose
Cin = load of register

Figure 5.22. FIR sensitivity to sizing versus Cgate/Cwire

multiplier, registers, and muxes. Once these models are available, then composition rules

can be used to generate energy-efficiency curves or sensitivity to sizing for larger systems

using the building blocks as components. The composition method of generating system

level energy-efficiency curves is described in Chapter 3.

There are some limitations to using a model for sensitivity. First, it is an approximation

based on how well the optimizer behaves on smaller blocks. The branching factor used in

estimating the slope is also an approximation. Sometimes, it is not clear whether a design

will be wire-limited, gate-limited or the total wire capacitance will be on the same order

as total gate capacitance. Hence picking an appropriate value for branching factor may be

difficult if an initial synthesis with wire estimation has not yet taken place.

5.9 Summary

This chapter built a first-order linear model for sensitivity to sizing using numerical

optimization of various types of benchmark circuits. The first step to developing the model

was to analytically solve an optimization of a two-stage inverter chain in the presence of in-

terconnect. The results hinted that sensitivity to sizing is characterized by total gate capac-

itance, total wire capacitance, and input capacitance. The benchmark optimization results

for inverter chain and 64-bit adder show that in regions of the energy-delay space where

the sensitivity lies below 5, the relationship between sensitivity and device-to-wire capaci-

131

tance ratio is linear. At higher levels of design abstraction where the adder is a sub-block,

the relationship between sensitivity and device-to-wire capacitance ratio remains linear as

long as wires scale with devices. If wires do not scale at the same rate as device size (or

total gate area), then the relationship becomes increasingly polynomial due to non-optimal

gate sizing. The linear model can be exploited to easily quantify the power-performance

tradeoff due to sizing in the energy-delay space without having to directly calculate sen-

sitivities from energy-efficient curves. It provides a mechanism to automatically uncover

opportunities for improving the energy-efficiency of a digital circuit in synthesis-based de-

sign environment. The model is used in the hierarchical power-performance optimization

methodology described in Chapter 3.

132

Chapter 6

Architecture Optimization of

Multi-Standard Radio FIR

Data-rate and mobility tradeoffs and different standards like 2G, 3G, Blue-
tooth, WLAN, GPS and digital video broadcast are leading to multi-mode
requirements; and issues relating to co-existence and inter-working of these
different technologies must be solved. Furthermore, secure data transfer
and encryption are vital...Together, these issues lead to challenging ar-
chitectural requirements such as reconfigurability and programmability...
– H. Eul (Infineon), ISSCC, February 2006

The accelerated deployment of multi-mode, multi-standard wireless systems is resulting

in an exponential increase in algorithmic complexity that is outpacing the scaling benefits of

Moore’s Law [8]. Multi-mode, multi-standard wireless communication demands extremely

high levels of functionality and flexibility which cannot be simply obtained via technology

scaling at little or no area or energy cost. It is necessary to design energy-efficient algorithms

and architectures that consume the least power at the required performance. For example,

a straight-forward implementation of multi-mode operation requires several transmit and

receive chains – one for each radio; this is a costly system in terms of energy and area

cost. Ideally, the most efficient design is one where a single transceiver chain is shared

among multiple modes and multiple standards. Numerous architectures can be conceived

which achieve the required throughputs. However, wireless transceivers have tight power

133

Figure 6.1. Generic RF front-end architecture for multi-standard radio

and area constraints due to battery and size restrictions; additionally, consumers continue

to demand increasing amounts of functionality, low-cost, and highly reliable systems. The

design tradeoff space is very large and design constraints are numerous; thus significant

effort is required to select the optimal architecture which will result in the lowest power

consumption for the required performance.

Future multi-mode, multi-standard wireless receivers will continue to move boundary

between analog and digital signal processing for increased flexibility [72]. The general

receiver architecture consists of analog hardware from the antenna to the analog-to-digital

converter (ADC). Since analog blocks are difficult to design for reconfiguration, recent

proposals for new architectures [72] recommend that some analog signal processing tasks be

relegated to the digital domain for flexibility. Consequently, the requirements for flexibility

in the analog front-end are reduced. The generic flexible receiver architecture for multi-

standard radio is shown in Figure 6.1. The traditional analog interface between the RF

front-end and baseband processing block is now replaced by a digital one.

Various signal processing tasks must now be constructed in the digital domain to sup-

port the new digital interface between the RF front-end and the baseband processing.

These include: signal detection, channel selection, decimation, sampling rate conversion,

and equalization. Finite impulse response (FIR) filters are essential blocks that help imple-

ment all of these tasks which are required in the digital front-end of flexible radio receivers

(and transmitters). Each of the signal processing tasks and standards require varying num-

ber of taps, coefficient and input word lengths, and throughput rates. The flexible filters

134

STANDARD FILTER REQUIREMENTS
Max. Throughput No. Taps Word Length (bits)

3G
WCDMA-UMTS 16-32 MSample/s 1.92 Mbit/s (5MHz) 8-64 6-8
WLAN
802.11g 40-80 MSample/s 54 Mbit/s 8-64 10-12
802.11n 40-160 MSample/s 100-200 Mbit/s (40 MHz) 8-64 10-12
DIGITAL VIDEO BROADCAST
DVB-T/H 20-25 MSample/s 4-30 Mbit/s (5-8 MHz) 32-64 10-12
ATSC Resample Filter 15-25 MSample/s 20 Mbit/s 32-64 10-12

Table 6.1. Flexible Filter Requirements

must consume very little power but support low to high throughput rates, and varying num-

ber of bits in the word length of the coefficient and input stream. Each standard dictates

different requirements for the FIR filter. Some of these are shown in Table 6.1 [73].

This chapter describes the various filter choices, design tradeoff space, the final design

and final implementation of a flexible FIR filter for use in a multi-standard, multi-mode

radio receiver. The FIR kernel can be used within any channelizer or synchronization

block of a wireless receiver in a baseband processor. The design methodology presented in

previous chapters is exemplified in the architecture selection and design of the FIR filter.

The content of the chapter references work published in [74] and some material from M.

Ler’s Master’s thesis [75]. The chapter concludes by presenting measured results from the

fabricated distributed arithmetic FIR filter.

6.1 Digital Front-End FIR Requirements

The designed filter supports the Advanced Television Systems Committee (ATSC) stan-

dard, Digital Video Broadcasting (DVB) standard for both terrestrial (DVB-T) and hand-

held receivers (DVB-H), 3G cellular networks (WCDMA-UMTS), and wireless local area

network (WLAN) standards (IEEE 802.11g/n) as given in Table 6.1. The goal of the design

is to limit power consumption to two to four times as much power as a filter dedicated to

a single standard, while maintaining flexibility and performance.

The specifications given in Table 6.1 are the result of discussions with researchers at Intel

based on the implementation of their flexible radio system [73]. As seen from Table 6.1,

135

throughput requirements range from 16 MSample/s for WCDMA to 160 MSample/s for

802.11n. The range of input word length varies from 6 bits to 12 bits, and the number

of taps vary from 8 to 64 [73]. The number of taps for DVB-T/H depends on the tuner

architecture; typically, less than 32-taps are required for standard architectures with SAW

(surface acoustic wave) devices, but for non-standard architectures (without SAW devices)

that may require increased oversampling, 32 to 64-taps are needed [73]. WLAN systems

typically require 32-taps for decimation functions; however, flexibility in the number of taps

can facilitate reuse for other tasks such as automatic gain control (AGC) and resampling.

AGC requires flexibility as WLAN switches between antenna. The ATSC resample filter

for digital video broadcast has slightly different range of throughput requirements [73].

6.2 Design Tradeoff Space

An N-tap finite impulse response digital filter is described by the following equation:

y[n] =
N−1∑

k=0

akx[n− k] (6.1)

There are numerous architectures available for implementing the filter described in

Equation (6.1); however, a systematic methodology is required to discover the most energy-

efficient design that supports flexibility. The methodology described in Chapters 2 and 3 is

used to uncover and evaluate the digital FIR design space, so that the power-performance

optimal FIR architecture is chosen for the given underlying technology.

There are four separate design abstraction layers where power-performance-flexibility

tradeoffs must be considered: architecture level, micro-architecture level, logic or arithmetic

level, and circuit level. Constraints for each layer must be propagated to the other layers

to ensure an optimal tradeoff between power, performance, and area. The cost of flexibility

is measured as the additional power and area required to support flexibility in terms of

tap programmability, and in terms of programmability of input and coefficient word length.

The authors in [76] present a detailed analysis of the various architecture, arithmetic level,

136

X

D Q

CLK

a0 Xa1

x[n] D Q

CLK

Xa2

D Q

CLK

XaN-1

(a) Direct transverse filter

y[n]

X

D Q

CLK

aN-1 XaN-2

x[n]

D Q

CLK

XaN-3

D Q

CLK

(b) Direct transpose filter

y[n]D Q

CLK

Xa0

T = Tmult + (N-1)Tadd

T = Tmult + Tadd

X

D Q

CLK

a0 Xa1

x[n] D Q

CLK

Xa2

D Q

CLK

Xa3

(c) Transverse filter with multi-operand addition

y[n]

T = Tmult + (log2N)Tadd

Xa1
0 Xa0

0

x[n]

D Q

CLK

Xa1
1

(d) Bitplane transpose filter

y[n]

D Q

CLK

Xa0
1

bitplane

T = Tmult + 2Tadd

Figure 6.2. A selection of filter architecture examples

and logic level choices available for a conventional filter design. The following subsections

highlight the vastness of the filter design tradeoff space.

6.2.1 Architecture Tradeoffs

At the architecture level, a designer can choose to either time-multiplex or fold or

parallelize (e.g. multiplex in the space domain) [77]. Time-multiplexing is attractive if

the specified throughput constraint is low or medium and power or area constraints are

tight. Multiplexing in space is generally used if high-performance is of major concern to

the designer. Parallelization of a design is not so straightforward due to the serial nature of

the input, so a parallel filter is constructed by splitting the impulse response into multiple

phases (i.e. poly-phases) [77, 76].

At this abstraction layer, the designer also has the option of choosing between different

filter structures: direct transversal filter, transposed direct form, multi-operand addition

where addition forms a tree, or using a distributed arithmetic structure that eliminates

multiplication. Each of these structures are shown in Figure 6.2 and Figure 6.4.

137

Conventional FIR Filters

A one-to-one mapping of Equation (6.1) leads to the direct form shown in Figure 6.2(a).

Unfortunately, this form does not yield high performance as the critical path consists of

one multiplication followed by N-1 additions. Pipelining a transverse filter can improve

performance. A more efficient design is the transpose form shown in Figure 6.2(b). The

critical path in this structure is one multiplication followed by one addition. However, this

design exhibits an overly large input capacitance due to the multiplications at the input

unless buffering is employed. Thon in his ISSCC 1995 presentation described an 8-tap

programmable transposed filter for disk-drive read channels; it was fabricated in 0.8µm,

3.7V CMOS and consumed 150mW of power at 240Mb/s throughput [78]. Coefficient

word length and tap programmability is supported and the filter incurs a small 3-cycle

latency penalty that includes input and output latches [78]. An example of a transpose

filter design using space multiplexing is described in [79]; the authors report a 550 Mb/s,

36mW (in a 0.21µm CMOS process) 8-tap transpose filter using Booth-encoded data. The

drawback of this approach is increased area due to additional hardware, and increased power

consumption.

An interleaved, bit-plane approach shown in Figure 6.2(c) is used to reduce area and

power costs and maintain performance. The main idea behind the interleaved approach

is to compute and accumulate the partial products associated with the filter coefficients

simultaneously, which reduces routing complexity dramatically [77]. If the coefficients are

interleaved so that their partial products are computed in different rows, then this leads to

a bit-plane architecture as shown in Figure 6.2(c). Folding or multiplexing in time may be

applied to a bit-plane architecture that increases speed and enables systematic synthesis.

The authors in [80] describe this technique in detail for a transpose direct form filter. Au-

thors in [81] present a five-tap programmable FIR filter that uses two interleaves to achieve

high throughput and simplify clock and signal distribution at the physical design level; the

cost is increased area. They also employ pipelining, Booth-recoded partial products, and

multi-operand addition. The pipelining of the carry-save partial-product summation array

adds an additional cycle of latency [81].

138

Distributed Arithmetic Digital Filters

Conventional filter architectures are based on a straightforward mapping of the FIR

filter algorithm to hardware with a multiply-accumulate function as the core processing

element. A distributed arithmetic filter eliminates explicit multiplication by reordering and

mixing the multiplication terms of the filter [82, 83]. This architecture eliminates the need

for multipliers which are costly in terms of computation and power. The output of the

N-tap, W-bit input word FIR filter can be represented by Equation (6.2) which can be

rewritten as in Equation (6.3).

y[n] =
N−1∑

k=0

ak

−x(W−1)[n− k] +

W−1∑

j=1

x(W−1−j)[n− k] · 2−j

 (6.2)

y[n] = −
N−1∑

k=0

akx(W−1)[n− k] +
W−1∑

j=1

(
N−1∑

k=0

akx(W−1−j)[n− k]

)
· 2−j (6.3)

The inner product sums in Equation (6.3), namely akx(W−1−i)[n−k] where i = 0 . . . (W−1),

are simply the coefficients of the N -tap filter weighted by the (W −1− i) bit of each x[n−k]

input word. Since there can only be 2N such inner sums for N coefficients, these inner sums

can be precomputed and stored in a look-up table (LUT). Equation (6.3) can be rewritten

as:

y[n] = ((. . . ((0+A0) ·2−1 +A1) ·2−1 + . . .+A(W−3)) ·2−1+A(W−2)) ·2−1−A(W−1) (6.4)

where A(W−1−i) =
∑N−1

k=0 akx(W−1−i)[n− k].

In a serial implementation, at the i-th clock cycle (where i = 0 . . . (W − 1)),the i-th bit

of the input signals x[n− k] where k = 0 . . . (N − 1) form an N -bit address which is used to

retrieve the inner product sum A(W−1−i). Each inner product sum is accumulated with the

previous partial sum and then shifted to the right by one bit as in Equation (6.4). After

(W − 1) clock cycles, the precomputed inner sum corresponding to the sign bit of the input

stream (i.e. the MSB) is subtracted from the partial accumulated sum and shifted to the

right by one bit to produce the final output of the N -tap FIR filter. Figure 6.3 shows a

pictorial representation of the steps just described.

139

a1+ a2+ a3111

a1+ a2011

a1+ a3101

a1001

a2+ a3110

a2010

a3100

0000

Ax[n- 2]x[n- 1]x[n]

a1+ a2+ a3111

a1+ a2011

a1+ a3101

a1001

a2+ a3110

a2010

a3100

0000

Ax[n- 2]x[n- 1]x[n]
Look- up table

0 1 1 0 1 0

0 1 0 1 0 0

1 1 0 0 0 1

x[n]

x[n- 1]

x[n- 2]

3-bit address

y[n] (after 6 clock cycles)

6 - bit input data

a 3a 1+ a 32 - 1a 2+ (a 1+ a 32 - 1) 2 - 1

2 - 1

DA im plem entat ion allow s
for m ult iplier- less

im plem entat ion of FI R
filter ing algorithm

0

0

1

1

0

0

0

1

0

0
1

1
1

2
1

2
1

1 2)2)...2)2)0((...((][AAAAAny WW 0
1

1
1

2
1

2
1

1 2)2)...2)2)0((...((][AAAAAny WW

Figure 6.3. 3-tap, 6-bit input word distributed arithmetic FIR example

Figure 6.4 shows a bit serial block level implementation of an N -tap distributed arith-

metic filter. A parallel implementation is possible by duplicating the the look-up tables

for each bit of the input word stream. For example, if there are 12-bits in the input word

stream then there would be 12 replicas of the look-up tables, each indexed by the same

N -bit address. The bit-serial implementation takes W clock cycles to produce the final

result, whereas in a parallel implementation, a single clock cycle is all that is required. A

parallel implementation of a distributed arithmetic FIR is shown in Figure 6.5.

The disadvantage of using the distributed arithmetic FIR filter is that it consumes a

lot of memory: memory requirements grow exponentially with increasing number of taps.

For example, for a 64-tap filter, the look-up table size required (for processing a single bit)

would be 264! Section 6.2.3 describes how this problem may be mitigated.

Previous implementations of distributed arithmetic FIR filters [83, 84, 85] have focused

on using this structure to achieve high performance for low-order filters. For example,

in [84], 8-tap and 10-tap filters are implemented in a 0.5µm BiCMOS process which achieves

over 200MHz operation at over 300mW. A 10-tap digital FIR in 0.18µm domino CMOS is

demonstrated in [83]. This filter performs at 2.3GSample/s consuming 1.2W of power. In a

revised design, Tierno et. al. published a variable-latency distributed arithmetic 6-bit, 10-

tap distributed arithmetic filter also in 0.18µm domino CMOS which achieved 1.3GSample/s

140

+

A
dd

re
ss

G
en

er
at

io
n

Pre-computed
coefficient sums

look-up table (LUT)

F
IF

O

x[n]
N-bit

address
W

Registers

LSBMSB

Output Select

ADD/SUB

y[n] (after W clock cycles)

Figure 6.4. Bit serial implementation of distributed arithmetic FIR

Shift and add block

2
-1

2
-1

2
-1

2
-1

Output

In
pu

t F
IF

O

Select
Logic

Encoder

M-bit
select
lines

M
E

M
 S

ub
-b

lo
ck

 0

M
E

M
 S

ub
-b

lo
ck

 1

S
ub

-b
lo

ck
 M

+

M
E

M
 S

ub
-b

lo
ck

 2

S
ub

-b
lo

ck
 M

-1

N/M bits
N-bit address bus

Block Selector

Figure 6.5. Bit parallel implementation of distributed arithmetic FIR

141

AUTHORS FILTER TYPE TECHNOLOGY THROUGHPUT POWER
Thon et. al. 8-tap transpose programmable 0.8µm, 3.7V CMOS 240Mb/s 150mW
ISSCC 1995 in taps and coefficient word length

Booth-encoded coefficients
Pearson et. al. 6-bit, 8-tap and 10-tap 0.5µm BiCMOS 250MSample/s (8-tap) 340mW (8-tap)
JSSC December 1995 distributed arithmetic 3.7V (8-tap) 270MSample/s (10-tap) 780mW (10-tap)

3.3V (10-tap)
Moloney et. al. Programmable interleaved 5-tap 0.7µm BiCMOS, 5V 200MSample/s 165mW
JSSC July 1998 transverse with Booth recoded

partial products
Staszewski et. al. 8-tap parallel transpose 0.21µm CMOS, 1.8V 550Mb/s 36mW
JSSC August 2000 with Booth-encoded input data
Rylov et. al. 6-bit, 10-tap distributed arithmetic 0.18µm domino 2.3Gb/s 1.2W
ISSCC 2001 filter with domino logic adders CMOS, 1.8V
Tierno et. al. 6-bit, 10-tap distributed arithmetic 0.18µm domino 1.3Gb/s at 2.1V 450mW
ISSCC 2002 filter with dynamic logic datapath CMOS, 1.8V

with variable latency
Kim et. al. 10-bit, 32-tap distributed arithmetic 0.6µm CMOS, 3.3V 20MSample/s 75mW
TVLSI 2003 filter

Table 6.2. Summary of referenced FIR filters

at 2.1V and dissipated 450mW [85]. The filter uses independent precharge and compute

signals per domino stage and these signals are controlled by by self-timed control circuits.

Latches at the input and output of the datapath resynchronize the data to the clock [85]. In

2003, Kim et. al. demonstrated a 32-tap distributed arithmetic filter in 0.6µm 3.3V CMOS

which achieves 20MHz operation and consumes 75mW of power [82].

A summary of the referenced conventional and distributed arithmetic filters are given in

Table 6.2. The goal in this thesis is to evaluate the energy-efficiency of using a distributed

arithmetic structure compared to conventional FIR architectures for a multi-standard radio

receiver using the design methodology described in earlier chapters. The systematic tradeoff

analysis clarifies for the designer which filter structure is best suited for use in a multi-mode,

multi-standard radio receiver.

6.2.2 Micro-Architecture Tradeoffs

Pipelining and retiming are common techniques used at the micro-architecture level to

improve performance or reduce power consumption. Pipelining over N stages for a N -tap

filter can attain a speedup of N over sequential processing. This can easily be seen if applied

to an N -tap transverse filter implemented in its direct form. The latency of its design is

only changed if the critical paths are of unequal length. Pipelining the N -tap transverse

filter can result in the same performance in terms of delay as a transpose filter.

142

Parallel processing is a dual of pipelining: here multiple outputs are computed in a

single cycle. For a parallel implementation of a digital filter, the single-input, single-output

natural structure must first be converted into a multiple-input, multiple-output structure.

Pipelining can be combined with parallelism to further increase the speed of a pipelined

architecture [77].

Retiming can be used to change the position of sequential elements without affecting

the functionality of the filter. It is a useful technique to reduce the number of registers

in a design (and hence power consumption) while maintaining the required performance.

Retiming can also be used to improve the performance of the design by reducing the delay

along the critical path. A detailed discussion of retiming filters is provided in [77].

Unfolding and folding are transformation techniques that affect performance and power

consumption. Unfolding can uncover hidden concurrencies in a design which can help

parallelize a design [77]. Folding is used to decrease the number of adders and multipliers,

registers, multiplexers, and wires by systematically determining where multiple operations

(e.g. additions) can be time-multiplexed into a single functional unit (e.g. pipelined adder).

6.2.3 Logic and Arithmetic Tradeoffs

At the logic and arithmetic level, decisions on number representation, sign processing,

and adder and multiplier architectures can affect the number of partial products, the critical

path delay, and power dissipation. For example, two’s-complement representation of the

input helps eliminate the need for multipliers in a distributed arithmetic architecture.

Recoding of input data and/or coefficients can reduce the number of partial products.

Typically, Booth recoding is used to reduce area and power dissipation [76, 79, 81]. Booth

encoding of coefficients can save power and area only if the reduction in partial products

saves more power and area than the increase in cost required to implement the encoding.

An example is given in [86]: here it is shown that Booth recoding of coefficients in a modified

bitplane structure can reduce area by approximately 20% and lower power dissipation by

about 25%. Booth encoding of data allows reduction of area since resources are shared as

143

shown and implemented in [79]. In this filter, Staszewski et. al. encoded the data so that

the coefficient pre-multiplication could be performed off the critical path; this saving in

performance outweighed the penalty due to the overhead of coding the input data [79].

In a distributed arithmetic scheme, memory partitioning and offset binary coding can

dramatically reduce the amount of memory required [87]. Memory partitioning subdivides

the address space into several clusters and maps addresses to different memory banks which

can be independently enabled or disabled [87]. For example, for an N -tap filter, 2N coef-

ficients need to be stored. Instead of generating N -bit addresses, N
M -bit addresses can be

used if the memory space is partitioned into M clusters. This reduces the memory required

to 2N/M ·M words instead of 2N words. The benefit of memory partitioning increases with

increased filter order.

Memory code compression can be used to further reduce memory requirements for a dis-

tributed arithmetic filter. Offset binary coding represents binary numbers as {-1,1} instead

of {0,1} and exploits the identity x = 1
2 [x− (−x)] to reduce the memory requirements by

one half [87]. The two’s-complement number −x is given as:

−x = −x0 +
W−1∑

i=1

xi · 2−i + 2−(W−1) (6.5)

The over-score indicates the complement of a bit. Then,

x =
1
2

[
−(x0 − x0) +

W−1∑

i=1

(xi − xi) · 2−i − 2−(W−1)

]
(6.6)

Letting Xi = xi − xi where i 6= 0 and X0 = −(x0 − x0) and allowing possible values of

Xi be ±1, then (6.6) can be rewritten as:

x =
1
2

[
W−1∑

i=0

(Xi · 2−i − 2−(W−1)

]
(6.7)

By substituting (6.7) into (6.4), the result is:

y[n] =
W−1∑

i=0

(A(W−1−i) · 2−i + A(0) · 2−(W−1) (6.8)

where A(0) =
∑N−1

k=0
ak
2 . The inner product sum term A(W−1−i) in (6.8) now has only N−1

possible values thus reducing the memory requirement to 2N−1. There is a small overhead

of initializing the accumulation with the A(0) term.

144

The use of different adders and multipliers can also affect the power-performance of a

design. Carry path reduction via carry-select and carry-lookahead architectures can respec-

tively reduce the carry propagation path from O(n) to O(
√

n) and O(log(n)) [10]. Deep

pipelining of the carry path can yield a O(1) carry propagation delay albeit with higher

synchronization overhead. Carry-save architectures in multipliers are utilized to postpone

the carry propagation for several additions but needs a final adder stage for merging the

sum and carry vectors [10].

6.2.4 Circuit and Technology Tradeoffs

At the circuit level, decisions on circuit implementation style, choice of supply and

threshold voltages, clocking scheme, static or dynamic flip-flops that can be either edge-

triggered or level-sensitive, and choice of gate sizes can impact the performance and power

of a design. A comprehensive study of the impact of these circuit level choices on power-

performance tradeoffs in custom circuits and signal processing ASICs is provided in dis-

sertations by Zlatanovici [17] and Marković [12]. The results from these works have been

highlighted in earlier chapters.

The choice of technology type also can dictate whether one architecture is superior to an-

other in meeting system requirements. For example, if a technology process is optimized for

memory or leakage, then it is quite possible that a memory intensive design is better suited

to meet the power and performance specifications. If a process is optimized for something

other than leakage, then a memory-intensive design may not be the best implementation

choice.

6.3 Flexible Filter Design Exploration

This section presents the architecture exploration of a flexible communication core

(FCC) digital front-end (DFE) FIR filter which supports multiple diverse wireless stan-

dards such as those given in Table 6.1. This section and the following sections represent

work that was performed as part of an internship at Intel Research. The goal of the work

145

was to create a flexible filter kernel for use in a universal radio digital front-end processor (as

outlined in the introduction to this chapter). Composition which was described earlier in

Chapter 3 was used to generate energy-delay tradeoff information for each filter architecture

rapidly for a number of different technologies and design constraints. The energy reductions

gained by choosing the optimal architecture are used to implement flexibility. The power-

performance-flexibility optimization is carried out by characterizing each different choice of

filter architecture in the energy-delay tradeoff space. The cost of flexibility is measured by

comparing fixed architecture area and power with that of flexible architectures.

Three different 90nm CMOS technologies were used in the design space exploration.

The first two processes are high performance technologies: high-performance-1 and high-

performance-2. The third 90nm CMOS process is optimized for low leakage. A 65nm

CMOS process was used to understand the impact of newer technologies on architecture

optimization. Section 6.4 focuses mainly on the architecture tradeoff analysis using the two

90nm CMOS high-performance technologies. In these technologies, the optimized filter is

based on a conventional filter architecture.

Section 6.5 presents a tradeoff analysis carried out in a process that was optimized for

low leakage rather than high performance. The optimal architecture in this technology

was found to be a folded, parallel distributed arithmetic design that was eventually taped

out in the low-leakage 90nm process. The majority of design space exploration in the low-

leakage process was carried out by M. Ler and is described in [75]. The main results are

summarized in Section 6.5 for convenience of the reader as they are referred to in Section 6.6

which describes the taped out filter.

The data generated from the comprehensive tradeoff analysis and design of the filter

resulted in the development of the design methodology described in earlier chapters.

6.3.1 Design Space Exploration

The primary objective of this study was to manually apply the concepts of the

sensitivity-based design methodology described in Chapters 2 and 3 to obtain a power-

146

Figure 6.6. FIR architecture tradeoff analysis flow

performance-flexibility tradeoff analysis of a wide variety of architectures. The design

methodology supports fast architecture exploration. In a matter of days, it was possible to

obtain a wide range of results for many different architectures using multiple technologies.

The method uses energy-delay tradeoff curves to understand the tradeoff between en-

ergy and throughput of various design choices. Here, we implemented a bottom-up and

top-down hierarchical approach so that a number of different architectures could be ex-

plored. Synopsys Design Compiler Tcl scripts were created to synthesize various building

blocks such as multipliers and multiply-accumulate blocks for various delay and throughput

targets. Composition rules allowed for quick power and throughput analysis of different

filter architectures. Optimal aggregate sensitivity was used to construct energy-efficiency

curves for the filters. Conventional transpose and transverse filter architectures were coded

in Module Compiler and Verilog was generated for each different delay target. The best mul-

tiplier and adder architecture choice for the given performance constraints was determined

automatically by Design Compiler. Filter architecture throughput and power dissipation

was estimated using Design Compiler. Simulink and ModelSim were used later to gener-

ate test vectors and activity factors were back-annotated so that Design Compiler could

provide more accurate power estimation. Synthesized filter architectures were compared

147

with the energy-efficiency curves generated from use of composition and optimal aggregate

sensitivity calculations. A flow diagram shown in Figure 6.6 outlines the procedure.

Power analysis without accurate activity factors does not invalidate the architecture

analysis at early design stages, since each architecture will scale similarly. For example,

if the estimate is possibly twice the actual power number for a particular architecture, it

will be generally the same for the other architectures. Once an appropriate architecture is

chosen that best meets the design constraints, a more accurate analysis can be made. The

underlying reason behind this is that at early stages in exploration, only the sensitivities to

architecture changes are required. That is, only the relative differences in energy and delay

between two different architecture choices are required.

At the micro-architecture level, pipelining, parallelism, and folding were used as design

tuning variables. At the logic and arithmetic level, the choice of multiplier and adder type

was left to the discretion of the tool. The level of memory partitioning and offset binary

encoding was explored thoroughly for the distributed arithmetic architecture. The main

circuit tuning variable was gate size. The effect of changing supply voltage or threshold are

planned for future work.

6.3.2 Architectures

A wide variety of architectures were evaluated in the energy-delay tradeoff space. These

included both types of conventional filters — transpose and transverse — and variations on

them such as parallel and pipelined structures. In addition, the distributed arithmetic ar-

chitecture was also evaluated for similar filter order, and input and coefficient word lengths.

The tradeoff analysis is carried out using three different 90nm CMOS technologies: two are

high performance CMOS technologies, and the third is a low leakage 90nm CMOS process.

The architectures that are explored are shown in Figure 6.7. As one can see there

are numerous combinations of architectures, micro-architecture, and logic and arithmetic

modifications. In the figure, OBC refers to offset binary encoding; 1x folded means that

the architecture is folded in time once, so that two clock cycles are required to process an

148

Figure 6.7. Architecture candidates for flexible FIR

entire sample of data; 2X parallel refers to parallelizing the filter so that two samples can

be processed in one clock cycle. The fully parallel distributed arithmetic filter refers to

processing each input word bit in parallel. The folded, fully parallel distributed arithmetic

filter processes half the input word bits in parallel in one clock cycle and the other half in

parallel in a second clock cycle.

The next two subsections describe flexible conventional architectures and flexible dis-

tributed arithmetic architectures. The distributed arithmetic architecture does not require

multipliers.

6.3.3 Flexible Conventional Architectures

Flexibility can be added to conventional architectures by combining parallelism and

time-multiplexing, and by adding some control and memory. The general system architec-

ture is shown in Figure 6.8.

The design is time-multiplexed (or folded) to support tap programmability in steps of

149

FILTER

CONTROL
UNIT (~counter)

M
U

X

D
E

M
U

X

DUAL-PORT
MEMORY

COEFFICIENTS
64-words

16-bit

Bank 1 – 8 words

Bank 2 – 8 words

Bank 8 – 8 words

Y[n]

Y’[n-k]

X[n]

X’[n-k]

No. of Taps
(multiple of 8)

Max_count

Figure 6.8. Flexible conventional filter

8. The memory stores the coefficient words in blocks of 8 words so that at each cycle, eight

taps are processed. A counter is used to load the appropriate block of 8 words at the rising

edge of the main clock. The clock can be varied for throughput flexibility, depending on

the filter order. In order to support a wide range of throughputs and taps, the 8-tap filter

is parallelized so that the odd and even streams are processed in parallel. Thus, an 8-tap

filter running at 250MHz can support a maximum throughput of 500MSample/s.

The control block (e.g. counter) runs at a lower frequency than the filter, depending

on the filter order. If the filter order is 47, then the control clock would be set to 80MHz

to meet a required throughput of 80MSample/s. This requires the filter clock to be set to

250MHz for a parallel, time-multiplexed 8-tap real filter. The multiplexing and demultiplex-

ing operations assist the folding operation. The results of previously processed taps need to

be included in the processing of the next set, until the entire set of taps are processed and

accumulated to create the final filter output. Any conventional filter can be substituted in

the filter block. The basic structure in Figure 6.8 was used to evaluate different types of

conventional architectures.

150

6.3.4 Flexible Distributed Arithmetic Architecture

The multiplier-less distributed arithmetic architecture lends itself well to flexibility due

its inherently programmable structure. Programmable filter order can easily be accommo-

dated by partitioning memory. Memory banks that are not required can be easily enabled

and disabled. For example if the look-up table of a 64-tap distributed arithmetic filter is

partitioned into 8 partitions, then the filter order becomes programmable in steps of 8 taps.

Input word programmability can also be easily added to the distributed arithmetic FIR

filter. In a bit-serial implementation, as shown in Figure 6.4, the number of accumulation

clock cycles necessary to produce the final filter output can be varied to match the input

stream word length. For example, if the number of bits in the input word length is W ,

then W accumulation clock cycles are required to produce the final output. In the parallel

implementation of the filter, as shown in Figure 6.5, each of the W replicas of the LUT

containing the partial coefficient product sums can be placed in idle mode or put in sleep

mode to accommodate word lengths less than W .

The basic parallel distributed arithmetic architecture used for comparison with the

conventional filter architectures is shown in Figure 6.9. The parallel implementation of the

distributed arithmetic filter uses an address generation block that takes the input word and

generates an N-bit address, where N is the number of taps. The address is passed to an

address encoder which uses offset binary encoding to generate a (N − 1)-bit address which

addresses the look-up tables. There is one look-up table per input word bit. After the partial

coefficient sum is retrieved from the memory, it is decoded and partially accumulated. The

LUT partition adder accumulates each partial coefficient sum from the internal registers of

each LUT. The result is then shifted and accumulated to form the final filter output. The

select signal selects current block and partition, based on the number of bits in the input

word and the number of taps.

A folded version of the fully parallel filter is shown in Figure 6.10. The filter in Fig-

ure 6.10 is folded in time so only half the number of look-up tables are required. The

151

WA

LUT 11

D

WA

LUT 10

D

WA

LUT 9

D

WA

LUT 8

D

WA

LUT 7

D

WA

LUT 6

D

OBCdec
PartSel

Address Generator

Xn[11:0]

56

LUTadd

OBCdec
PartSel
LUTadd

OBCdec
PartSel
LUTadd

OBCdec
PartSel
LUTadd

OBCdec
PartSel
LUTadd

OBCdec
PartSel
LUTadd

2-1 2-2 2-52-3 2-4

Address
Encoder

yn[25:0]

12

NEGATE

Address
Encoder

Address
Encoder

Address
Encoder

Address
Encoder

Address
Encoder

WA

LUT 5

D

WA

LUT 4

D

WA

LUT 3

D

WA

LUT 2

D

WA

LUT 1

D

WA

LUT 0

D

OBCdec
PartSel
LUTadd

OBCdec
PartSel
LUTadd

OBCdec
PartSel
LUTadd

OBCdec
PartSel
LUTadd

OBCdec
PartSel
LUTadd

OBCdec
PartSel
LUTadd

2-7 2-8 2-112-9 2-10

Address
Encoder

Address
Encoder

Address
Encoder

Address
Encoder

Address
Encoder

Address
Encoder

2-6

+

56 56 56 56 56 56 56 56 56 56 56

55 55 55 55 55 55 5555 55 55 55 55

176 176 176 176 176 176 176 176 176

25 25 25 25 25 25 25 25 25 25 2525

+

Accum_init

176 176 176

select

Figure 6.9. Implementation of a parallel distributed arithmetic FIR

RA

LUT 5

Q

RA

LUT 4

Q

RA

LUT 3

Q

RA

LUT 2

Q

RA

LUT 1

Q

RA

LUT 0

Q

OBC Decoder
Partition Selector

Xn[11:0]

64

56

64

56

64

56

64

56

64

56

64

56

Partition Adder

25

OBC Decoder
Partition Selector
Partition Adder

25

OBC Decoder
Partition Selector
Partition Adder

25

OBC Decoder
Partition Selector
Partition Adder

25

OBC Decoder
Partition Selector
Partition Adder

25

OBC Decoder
Partition Selector
Partition Adder

25

2-1 2-2 2-3 2-4

Address
Encoder

select

22 22 22 22 22 22

Address
Encoder

Address
Encoder

Address
Encoder

Address
Encoder

Address
Encoder

12

code_bits

6464 64 64 64 64 64 64 64 64 64 64

shift_en shift_en shift_en shift_en shift_en

shift_en

yn[25:0]

+

+

Demux

Reg Reg

NEGATE shift_en 2-5

8 8 8 8 8 8

Reg

Programmable Shift
LUT_select 6

25

Accum_init

Reg

Accum_init_load

shift_en

shift_en

Figure 6.10. Implementation of a parallel folded distributed arithmetic FIR

152

a3+ a4+ a5111

a3+ a4011

a3+ a5101

a3001

a4+ c5110

a4010

a5100

0000

A2x[n- 5]x[n- 4]x[n- 3]

a3+ a4+ a5111

a3+ a4011

a3+ a5101

a3001

a4+ c5110

a4010

a5100

0000

A2x[n- 5]x[n- 4]x[n- 3]

0 1 1 0 1 0

0 1 0 1 0 0

1 1 0 0 0 1

x[n]

x[n- 1]

x[n- 2]

1 0 0 1 0 1x[n- 3]

1 1 0 0 0 1x[n- 4]

1 0 0 1 0 1x[n- 5]

a0+ a1+ a2111

a0+ a1011

a0+ a2101

a0001

a1+ a2110

a1010

a2100

0000

A1x[n- 2]x[n- 1]x[n]

a0+ a1+ a2111

a0+ a1011

a0+ a2101

a0001

a1+ a2110

a1010

a2100

0000

A1x[n- 2]x[n- 1]x[n]

3-bit address

3 - tap filter

Shut off part it ion to reduce num ber of taps

Figure 6.11. Tap programmability in a distributed arithmetic FIR

Address

LUT 0

Dout

Address

LUT 1

Dout

Address

LUT 2

Dout

Address

LUT Wd-2

Dout

Address

LUT Wd-1

Dout

Address

LUT Wd

Dout

OBC Decoder
Partition Selector

Address Generator

Xn[Wd-1:0]

N

N-1

N

N-1

N

N-1

N

N-1

N

N-1

N

N-1

Partition Adder

WM

OBC Decoder
Partition Selector
Partition Adder

WM

OBC Decoder
Partition Selector
Partition Adder

WM

OBC Decoder
Partition Selector
Partition Adder

WM

OBC Decoder
Partition Selector
Partition Adder

WM

OBC Decoder
Partition Selector
Partition Adder

WM

2-1 2-2 2-M2-(M-2) 2-(M-1)

+/-

Address
Encoder

BLOCKSELECT

WM

WORDSELECT

WM WM WM WM WM

Address
Encoder

Address
Encoder

Address
Encoder

Address
Encoder

Address
Encoder

Wd

NB

yn[WM-1:0]Parallel DA FIR

Figure 6.12. Input word programmability in a distributed arithmetic FIR

shift en signal is used to select either the six MSB bits of the input word or the six LSB

bits. The shift en signal runs at half the frequency of the system clock.

Figures 6.11 and 6.12 illustrate how tap programmability and input word programma-

bility may be implemented using the architecture described in Figure 6.9. Tap programma-

bility is implemented by simply turning off memory partitions in each look-up table. Input

word programmability is achieved by turning off entire look-up tables in a parallel imple-

mentation. In a serial implementation, the number of clock cycles can be varied to match

the number of bits in the input word.

153

FILTER PARAMETER RECONFIGURABLE FIR SPECIFICATION
System clock 80MHz to 250MHz

Number of taps 8 to 48
Input data length 12 bits

Input format 2’s complement
Output data length 30 bits
Coefficient memory 6 sets of 8 coefficients
Coefficient length 16 bits

Table 6.3. Reconfigurable filter requirements

Coefficient word length programmability can be accommodated by slicing each LUT

partition into separate memory banks with smaller word size. Each memory bank is selected

using a K-bit word (where K is the number of banks) select signal along with the block

select signal that together choose the appropriate memory bank in the given partition. The

reader is referred to [75] for further details.

6.4 Flexible Digital Filters – High Performance Technologies

This section focuses mainly on the architecture tradeoff analysis using 90nm processes

that were optimized for high performance rather than reduced leakage current. In these

technologies, the optimized filter is based on a conventional filter architecture. The opti-

mized filter supports the requirements listed in Table 6.3.

The goal is to create an architecture that is scalable to support larger number of taps.

This filter can be used for either baseband processing or in the digital front-end of a multi-

standard radio transceiver as described in the introduction of this chapter. Conventional

architectures are compared with a parallel distributed arithmetic filter with memory parti-

tioning and offset binary encoding.

6.4.1 Results

Results of the architecture tradeoff analysis are presented here for each of the vari-

ous architectures considered. The results from the study show that flexibility requires a

distributed arithmetic filter or a hybrid parallel-time multiplexed conventional filter, de-

154

32-Tap Filter Energy-Performance Tradeoffs

0.00

50.00

100.00

150.00

200.00

250.00

0 1000 2000 3000 4000 5000 6000 7000 8000
1/Throughput (ps)

E
ne

rg
y

P
er

 C
yc

le
 (

pJ
)

Distributed arithmetic

High Performance 90nm CMOS Technology

10-bit input wordlength
16-bit coefficients
0.9V supply
Leakage measured at 1V

Parallel transpose

Folded parallel
transposeTranspose

Pipelined transverse

Transverse

Folded transpose

Folded pipelined
transverse

Folded transverse

400 MHz 200 MHz

Figure 6.13. 32-tap filter architecture tradeoffs (high performance 90nm CMOS process)

pending on the type of technology used and throughput requirements. The distributed

arithmetic filter is preferred for high throughput applications and flexibility in terms of tap

programmability, variable input and coefficient word length.

First High-performance 90nm Technology Results

For a 32-tap filter with 4-tap granularity at 400MHz clock, the distributed arithmetic

architecture energy efficiency is 1202 million operations per milliwatt (MOPS/mW) with a

total area of 309.7K gates. The 32-tap distributed arithmetic architecture is compared with

conventional architectures in Figure 6.13. Figure 6.13 shows that parallelism provides high

throughput (see parallel transpose curve) and that folding in time provides low energy (see

folded transverse plot). As one can see from Figures 6.13, 6.14, and 6.15, at lower through-

puts a flexible conventional architecture, such as the transpose or transverse, outperforms

the distributed arithmetic FIR. However, at very high throughputs, the distributed arith-

metic FIR is the most energy-efficient. Area can be reduced for the distributed arithmetic

architecture by folding it in time. It is possible to do this and still meet throughput specifi-

cations because the filter can operate at such high throughput rates at low power. The cost

155

Energy per Cycle vs. No. Taps
Fixed Throughput: 400 MSample/s

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

No. Taps

N
or

m
al

iz
ed

 E
ne

rg
y

pe
r

C
yc

le

Parallel transpose

Distributed arithmetic

Transpose

Transverse
pipelined

Transverse

Cost of flexibility by using DA FIR:
• ~50-80% decrease in MOPS/mW
• ~60-80% increase in area
(dependent on number of taps)

Cost of flexibility

Figure 6.14. Cost of flexibility – energy

Area vs. No. Taps
Fixed Throughput: 400 MSample/s

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0 10 20 30 40 50 60 70
No. Taps

A
re

a
(K

 g
at

es
)

Parallel transpose

Distributed arithmetic

Transpose

Transverse
pipelined

Transverse

Cost of flexibility by using DA FIR:
• ~50-80% decrease in MOPS/mW
• ~60-80% increase in area
(dependent on number of taps)

Cost of flexibility

Figure 6.15. Cost of flexibility – area

156

D
istributed A

rithm
etic

D
istributed A

rithm
etic

F
olded P

arallel T
ranspose

F
olded P

arallel T
ranspose - N

ot P
rogram

m
able

D
istributed A

rithm
etic

F
olded P

arallel T
ranspose

F
olded P

arallel T
ranspose - N

ot P
rogram

m
able

D
istributed A

rithm
etic

F
olded P

arallel T
ranspose

F
olded P

arallel T
ranspose - N

ot P
rogram

m
able

F
olded P

arallel T
ranspose

F
olded P

arallel T
ranspose - N

ot P
rogram

m
able

0

500

1000

1500

2000

2500

3000

M
O

P
S

/m
W

4 8 16 32 64

No. Taps

Programmable Architectures Meeting 200 MSample/s Throughput
400 MHz, 10-bit input, 16-bit coefficient

Figure 6.16. Relative cost of programmability – energy
D

istributed A
rithm

etic

D
istributed A

rithm
etic

F
olded P

arallel T
ranspose

F
olded P

arallel T
ranspose - N

ot P
rogram

m
able

D
istributed A

rithm
etic

F
olded P

arallel T
ranspose

F
olded P

arallel T
ranspose - N

ot P
rogram

m
able

D
istributed A

rithm
etic F

olded P
arallel T

ranspose

F
olded P

arallel T
ranspose - N

ot P
rogram

m
able

F
olded P

arallel T
ranspose

F
olded P

arallel T
ranspose - N

ot P
rogram

m
able

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

A
re

a
(K

 g
at

es
)

4 8 16 32 64

No. Taps

Programmable Architectures Meeting 200 MSample/s Throughput
400 MHz, 10-bit input, 16-bit coefficient

Figure 6.17. Relative cost of programmability – area

157

of the flexibility provided by the distributed arithmetic architecture is not overly large over

the fixed conventional style architectures: approximately an average 50% decrease in energy

efficiency and 60-80% increase in area, depending on the number of taps. This is within

the goals of the project where a maximum overhead of 2 to 4 times for a programmable

architecture is targeted.

By adding limited flexibility (i.e. tap programmability only) to the conventional style

architecture as shown in Figure 6.8, the cost ranges from 65% to 18% decrease in energy

efficiency depending on the number of taps and type of filter. There is a 6% to 38% increase

in area depending on number of taps and type of filter. Figures 6.16 and 6.17 show the

relative cost of flexibility over a fixed non-programmable architecture for both a distributed

arithmetic architecture and folded parallel transpose design.

Second High-Performance 90nm Technology Results

A similar but more limited study was carried out for a filter supporting tap programma-

bility and a full-band/half-band mode as given in Table 6.3. Unfortunately, in this second

high-performance technology it was found that the conventional direct form filters could not

meet the timing requirements for a 400MHz clock as in the first high-performance 90nm

technology. The maximum clock rate for this technology for the direct form transverse fil-

ters was found to be 250MHz for 16-tap filter and lower for higher order filters; and for the

transpose filters it was 375MHz for a 4-tap filter and slightly lower for higher order filters.

Even though the multiply-accumulate component of the filter was able to meet timing at a

400MHz clock, the addition of wiring overhead in construction of the filters did not allow

for a 400MHz clock. Figure 6.18 shows these tradeoffs.

Figure 6.19(a) and (b) show that in the second high-performance technology, the best

choice for an 8-tap filter in the programmable tap paradigm is the direct form transverse

filter in terms of area and power. However, a parallel version is necessary to support

large throughput rates for filters of high order. Unfortunately, in this technology, it is not

possible to support filter orders above 47 without incurring a latency penalty. The largest

158

FIR Energy-Delay Tradeoffs

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9

Delay (ns)

E
n

er
g

y
p

er
 C

yc
le

 (
p

J)

maximum clock f = 375MHz

 clock f = 250MHz

 clock fAFE = 320MHz

 clock f = 200MHz

P1213 (R14)
0.90V Supply
Worst case corner
16-bit coefficients
12-bit input

16-tap transpose

16-tap transverse

8-tap transpose

8-tap transverse

4-tap transpose
4-tap transverse

Figure 6.18. Filter energy-delay tradeoffs in second high-performance 90nm technology

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35

Number of Taps

P
o

w
er

 (
m

W
)

0

100000

200000

300000

400000

500000

600000

0 5 10 15 20 25 30 35

Number of Taps

A
re

a
(u

m
2)

P1213 (R14)
0.90V Supply
Worst case corner
16-bit coefficients
12-bit input

320MHz
Transpose

320MHz
Transpose

285MHz
Transpose

285MHz
Transpose

P1213 (R14)
0.90V Supply
Worst case corner
16-bit coefficients
12-bit input

(a) Conventional filter power tradeoffs

(b) Conventional filter area tradeoffs

285MHz
Transverse

250MHz
Transpose

80MHz
Transpose

80MHz Transverse

80MHz
Transpose

250MHz
Transpose

285MHz Transverse
80MHz Transverse

Figure 6.19. Filter energy-delay tradeoffs in second high-performance 90nm technology

159

250MHz CLOCK HALF-BAND MODE FULL-BAND MODE
8-TAPS
Throughput (MS/s) 500 500
Power (mW) 30 60
16-TAPS
Throughput (MS/s) 250 250
Power (mW) 60 120
24-TAPS
Throughput (MS/s) 166 166
Power (mW) 90 180
32-TAPS
Throughput (MS/s) 125 125
Power (mW) 120 240
40-TAPS
Throughput (MS/s) 100 100
Power (mW) 150 300
48-TAPS
Throughput (MS/s) 83 83
Power (mW) 180 360

Table 6.4. Tap programmable filter summary at 250MHz in second high-performance 90nm
CMOS

throughput rate supported for a 48-tap filter is 83 MSample/s. Table 6.4 gives a summary

of estimated power and throughput at 250MHz.

In either technology, if a more flexible approach is desired with variable input and coef-

ficient word length, then it is recommended that the distributed arithmetic architecture be

implemented as it supports much higher throughput rates and increased flexibility without

cost in throughput or latency.

Memories and technology comparison

It was found that memory leakage power was high for the high performance technology

compared to the low leakage CMOS technologies. The memories in the high performance

90nm CMOS technology required 2.8 times more power than the ones available in the low

leakage 90nm CMOS process.

A quick analysis of the 65nm process with the 90nm process was also carried out and

showed that 65nm performance is approximately 12% better than 90nm; and 65nm en-

ergy per cycle is approximately 65% better than 90nm. These results were obtained for

a 32-tap direct transverse filter synthesized in both technologies. The energy savings in

160

65nm process vs. 90nm process: 32-tap direct transverse FIR

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

2000 2200 2400 2600 2800 3000 3200 3400 3600

1/Throughput (ps)

E
ne

rg
y

pe
r

C
yc

le
 (

pJ
)

12%

65%

90nm CMOS

65nm CMOS

Figure 6.20. Comparison of 65nm process with 90nm process

the 65nm design resulted mainly from a significant decrease in area, approximately 60%.

Figure 6.20 shows the comparison between the two technologies for a 32-tap transverse filter

implementation. All conventional filter implementations scaled in the same manner.

6.4.2 Sensitivity Analysis

Section 3.2.1 in Chapter 3 described the composition procedure for a 32-tap transpose

filter in detail. Composition rules are derived from optimal aggregate sensitivity calcula-

tions as given in Table 3.1. These are applied to each architecture explored to construct

the energy-efficiency boundary as shown in Figure 6.13. The calculation of the extreme op-

timal aggregate sensitivity points (minimum delay and minimum energy) are difficult since

sensitivities are saturated at either infinity or zero. These points for each filter architecture

are approximated using the minimum delay and energy points obtained for each component

block, and the architecture models for energy and delay.

In some cases, only a single point on the knee of the curve is necessary. This is seen

in the composition of the multiply-accumulate block in Figure 3.6. The register energy-

efficiency point is effectively a single point, at the knee of the curve (sensitivity is 1.03).

161

The relative contribution to total delay and energy of this block compared to the adder and

multiplier is very small. Similarly, the add block has a smaller contribution to total system

energy and delay as compared to the multiply block. In the case of the add block, only

three points are relevant: the knee (sensitivity is 2.53), the minimum delay point, and the

minimum energy point.

The MAC example clearly shows that balancing sensitivity is difficult since three dif-

ferent values for optimal aggregate sensitivity were obtained for the MAC (see Chapter 3,

Section 3.2.1 for details). However, they were balanced within a 6% threshold of one an-

other. As mentioned earlier, artifacts of synthesis cause these discrepancies in optimal

aggregate sensitivity calculations.

At the micro-architecture level, the composition rules given in Table 3.1 are applied

to the direct transpose and direct transverse architectures to yield energy-efficiency curves

for parallel transpose, pipelined transverse, and their folded versions. At the logic and

arithmetic level, the synthesis tool was given a free-hand to choose the appropriate adder

and multiplier architecture for the given throughput constraint. At the circuit level, only

gate sizing was used as the tuning variable.

The plot in Figure 6.13 represents the energy-efficiency tradeoffs for a set of different

filter architectures given a wide range of throughput constraints. At 400MSample/s, a

subset of architectures are plotted using the energy-delay tradeoff information on an energy

versus taps plot (see Figure 6.14). This plot shows the relative cost of using the distributed

arithmetic filter for flexibility over conventional filter architectures. The sensitivity of energy

to number of taps is different for each architecture and is given by the slope of the graph. The

flexible distributed arithmetic architecture slope is the same as the fixed parallel transpose

architecture slope.

In every technology, each standard cell library is optimized for different applications.

The first high performance library resulted in very good performance at the expense of

leakage. This library was targeted towards high performance RF mobile systems. The

second high performance library was targeted to general purpose digital functions that do

162

not require the same kind of performance as those blocks in RF mobile systems. The

first library included hand-crafted standard cells in a newer 90nm technology with updated

design rules whereas all the cells in the second library were generated from automated tools

and used an older version of the 90nm process. For example, the sensitivity of delay and

energy of a two-input NAND gate from a standard cell library may be used to characterize

the sensitivity of using one library over another.

The sensitivity of process and standard cell parameters to delay and energy impacts the

choice of architecture as seen in the results from the energy-delay tradeoffs for the second

high performance 90nm technology. If a library is optimized for low leakage rather than

high performance, then the sensitivity of memory parameters to total system energy and

delay can be used to gauge the efficiency of one technology over another for a given archi-

tecture. Some examples of valid technology parameters that can be used to characterize

SRAM cells can be found in [88]. These include write line margin, writeability current, and

bit-line current at the ’0’ storage node during a read. The authors in [88] propose a mea-

surement methodology that characterize large SRAM arrays using the various characterized

parameters; the methodology is demonstrated in a 45nm technology.

6.4.3 Optimized Filter Description

Based on the above analysis an 8–48 tap programmable FIR was designed in the high

performance 90nm CMOS technology with the following features.

• Operation in half-band mode and full-band mode

• Programmability in number of taps: 8, 16, 24, 32, 40, 48

• Maximum 12-bit input

• Maximum 16-bit coefficients

• 30-bit output

• Sleep mode supported

163

SIGNAL NAME DIRECTION DESCRIPTION
Clk DFE IN 250MHz filter clock
X[11:0] IN Filter input 12-bit word
Y[30:0] OUT Filter output 30-bit word
C[15:0][0:7] IN 8 16-bit filter coefficients
SELECT1 IN Demux select to generate two parallel odd and even streams
SELECT2 IN Mux select to interleave the parallel streams into a single stream
FIR half band mode IN Half-band filter mode select
FIR sleep mode IN Sleep mode select

Table 6.5. DFE FIR input/output ports

This filter supports both full-band and half-band mode operation. Folding in time was

used to support tap programmability. It uses a parallel transverse architecture to meet

the throughput constraints. It is programmable in steps of 8 taps. The filter clock ranges

from 80MHz to 250MHz depending on the desired throughput. The input word length

and coefficient word length remain fixed at the maximum number of bits required for all

supported standards.

The two main modules of this filter are the actual filter block and the control unit.

There are two versions of each. The first version of the design supports an interleaved

filter that computes the odd and even paths in parallel, allowing the filter to support up

to 500 MSample/s for an 8-tap filter. Initially it was thought that clock gating the odd

path would provide an efficient and elegant implementation of a programmable half-band

filter however, this design did not support a functional half-band filter as the center odd

coefficient was clock-gated off. However, this filter is fully functional in full-band mode. An

alternate architecture was used to mitigate the half-band problem in the first architecture.

Both of these filter architectures and their corresponding control blocks are described in the

next few subsections.

Filter Input/Output Ports

Table 6.5 shows the input/output ports for both flexible filter designs in the second

high-performance 90nm technology. For the second design that does not zero out the center

coefficient, additional control signals are generated to select or deselect a constant 0 by 0

multiply.

164

Module Clocking

The filter can be clocked at a maximum clock rate of 250MHz. This allows 8 taps to be

processed, dissipating 30mW which includes the overhead of the mux, demux, interleaver,

deinterleaver, memory and control unit. A parallel version results in approximately doubling

the power to 60mW to support a high throughput rate.

A secondary clock is required for time multiplexing which is dependent on the desired

throughput for each standard. If a throughput of 80MSample/s is required then an 80 MHz

clock is required which would support a filter of maximum of 48-taps.

Clock Gating

In the first filter design that includes clock gating, the entire odd stream can be clock

gated as two paths for the system clock are generated, one for the odd path and one for the

even path. This saves power.

Timing

At each rising edge of the 250MHz clock, the counter counts up and a new block of 8

coefficients are loaded into memory so that the filter can proceed to process the input stream.

At the rising edge of the secondary clock, 80MHz, the output of the filter is generated as

the selects on the multiplexer and demultiplexer are toggled.

Parallel Interleaved Filter with Clock Gating

The first version of the filter features a parallel 8-tap direct form transverse filter that

supports up to 48 taps. The block diagram is shown in Figure 6.21. The odd and even

paths are processed in parallel as shown in Figure 6.22. The half-band mode is used to

clock-gate the odd path. However, this also results in the center odd coefficient being gated

off as well which is an unfortunate side-effect of this design. This is remedied in the design

165

DE-
INTERLEAVER

X[n]
X[2n]

X[2n+1]

 PARALLEL
REAL

FILTER

INTERLEAVERY[2n]

Y[2n+1]

Y[n]

CLK_2n

CLK_2n+1

CLOCK
GATING
CIRCUIT

FIR_half_band_mode

FIR_sleep_mode

CLK

Figure 6.21. Block diagram of parallel interleaved filter with clock gating

a0

X

X[2n]

a1 aN-1

Y[2n]

X

+

D Q D Q

X

+

D Q

a0

X

X[2n+1]

a1 aN-1

Y[2n+1]

X

+

D Q D Q

X

+

D Q

Figure 6.22. Parallel interleaved filter with clock gating

without clock gating. The estimated power dissipation of the design is annotated on the

block diagram in Figure 6.23.

The control block is a simple counter that counts based on the number of blocks of 8

coefficients required. For example a 48-tap filter requires 6 blocks of 8 coefficients. The

counter is reset on each rising edge of the outer slower clock (e.g. 80MHz). If the sleep

mode is desired then the clocks for the odd and even paths are gated to turn off the filter.

If the half-band mode is desired and the sleep mode is not on, then the clock for the odd

path is gated to save power.

Parallel Interleaved Filter without Clock Gating

A parallel interleaved filter without clock gating similar to the one used above is created

to allow for the center odd tap in a half-band to remain active during filtering. This is done

166

8-TAP INTERLEAVED

REAL FILTER

CONTROL UNIT

M
U

X

D
E

M
U

X

48-words

16-bit

Bank 1 �8 words

Bank 2 �8 words

Bank 4 �8 words

Y[n]

Y[n-k]

X[n]

X�[n-k]

FIR_taps

(multiple of 8)

RESET

Bank 3 �8 words

Bank 5 �8 words

Bank 5 �8 words

FIR_half_band_mode

FIR_sleep_mode

CLK_DFE

12

30

P1213 90nm CMOS

0.90V Supply

W orst case corner

16-bit coefficients

12-bit input

250MHz, 60mW

0.126mm
2

0.2mW , 686 m
2 58.8mW , 99985 m

2

0.5mW , 3883 m
2

0.9mW , 21161 m
2

128 words, 18-bits

Figure 6.23. Distribution of power and area cost for flexible filter

by using multiplexers to turn on and off the required multipliers as depicted in Figure 6.24.

The only change from the previous design is that instead of using clock gating, we are using

multiplexers to turn on and off multipliers depending on the operation mode of the filter.

The rest remains the same except that the control block has now to generate each of the

select signals for the multiplexers.

Figure 6.24 shows the changes to the filter required to support the selection of multipliers

depending on whether the coefficients are zero or otherwise. The mselect[i] signals are

generated by the control block depending on whether the loaded coefficient is zero. If the

coefficient is zero then the mselect[i] is 0 and the multiplexer selects the constant zero to

use in the multiply rather than the input data. Otherwise the multiplier operates using the

input data.

The power and area numbers are as follows for an 8-tap non-parallelized version of this

direct form transverse filter with multiplexers at each odd numbered multiplier:

• 250MHz: area is 0.13mm2, power is 30mW.

• 80MHz: area is 0.13mm2, power is 8.4mW

167

a0

X

X[2n]

a1 aN-1

Y[2n]

X

+

D Q D Q

X

+

D Q

a0

X

X[2n+1]

a1 aN-1

Y[2n+1]

X

+

D Q D Q

X

+

D Q

MUX mselect1

MUX mselect1

MUX mselectN-1

MUX mselectN-1

Figure 6.24. Distribution of power and area cost for flexible filter

The power dissipation of this filter is only slightly higher than the direct form transverse

filter without the additional multiplexers (i.e. 29.4mW at 250MHz clock).

This control block is slightly different from the one with clock gating. The control block

for this version of the filter is more complicated because it must generate the mselect[i]

signals for each odd coefficient based on whether the coefficient is zero or non-zero. This

is not an overly complicated task as it can be done when the coefficients are loaded into

memory. A simple comparison of the coefficient with zero is made and the mselect[i] signal

is generated accordingly at each rising edge of the 250MHz clock.

6.4.4 Cost of Flexibility

An estimate of the cost of flexibility was measured by synthesizing a dedicated half-band

WLAN 27-tap filter and comparing it to a programmable half-band filter supporting the

same number of taps and coefficients. The half-band dedicated filter was first designed and

simulated in Simulink and then Verilog code was generated and synthesized to the second

90nm high-performance technology for 250MHz and 80MHz clock. This was compared to

the power and area estimates for the synthesized programmable half-band parallel filter

without clock gating.

168

Dedicated Half-Band WLAN 27-Tap Filter

The dedicated half-band filter only requires 8 multipliers which significantly reduces

power compared to a flexible approach. At 250MHz, the filter dissipates a total of 21.6mW

and requires 0.11mm2 area. At 80MHz, the filter dissipates 5.7mW and requires 0.10mm2

area.

Programmable Half-Band WLAN 27-Tap Filter

The programmable half-band filter supports 27-taps using 32-tap filter. A 32-tap filter

was used because the filter is only programmable in steps of 8; 27-taps are implemented by

using zero coefficients for the last five taps. With more than half of its multipliers turned

off, the filter consumes approximately 23mW resulting in a throughput of 120MSample/s.

At 80 MSample/s throughput, the power is reduced to approximately 15.3mW, giving the

estimated cost of flexibility to be three times that of the dedicated filter which is within

the required two to four times target. The area penalty for flexibility is a little under two

times.

6.5 Flexible Digital Filters – Low Leakage Technology

This section presents the tradeoff analysis carried out in a 90nm CMOS process that

was optimized for low leakage rather than high performance. The optimal architecture in

this technology was found to be a folded, parallel distributed arithmetic design that was

eventually taped out in the low-leakage process. The block diagram of the architecture was

shown earlier in Figure 6.10. The work done in this process is described in detail by M. Ler

in her Master’s thesis [75]. It is summarized here.

Figure 6.25 shows the resulting architecture tradeoff space for a 32-tap FIR filter for

some of the evaluated architectures. In a low leakage process technology, the distributed

arithmetic filter is the best choice for filter architecture. In the high performance process,

a hybrid parallel, folded conventional filter is the most energy-efficient choice.

169

32-Tap Filter Energy-Performance Tradeoffs

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0 1000 2000 3000 4000 5000 6000 7000 8000

1/Throughput (ps)

E
ne

rg
y

P
er

 C
yc

le
 (

pJ
)

Distributed Arithmetic

Transpose

Transverse

Pipelined transverse

Low leakage 90nm CMOS technology

320 MHz

10-bit input wordlength
16-bit coefficients
0.9V supply
Leakage measured at 1V

Figure 6.25. 32-tap filter architecture tradeoffs (low-leakage 90nm CMOS process)

The tradeoff analysis carried out in M. Ler’s thesis shows that the optimum design for

the distributed arithmetic filter is a hybrid parallel, time multiplexed distributed arithmetic

architecture that has offset binary encoding to reduce the number of words in the look-up

tables. The optimum number (in terms of area and energy efficiency) of partitions was

determined to be 16, providing programmability of taps in steps of 8. The partition size

is 128x24. Coefficient programmability was not implemented since the energy efficiency

significantly reduced with coefficient programmability when two or more memory banks

were active [75].

Ler in her design did not implement full clock gating or power gating on the memory

blocks. The taped out design presented in this thesis uses Ler’s filter design but modifies

to include better leakage power management. In the taped out design described in the next

section, clock gating and power gating are implemented to improve energy-efficiency.

6.6 Distributed Arithmetic Digital FIR Prototype

The distributed arithmetic filter is preferred for high throughput applications and flex-

ibility in terms of tap programmability, variable input and coefficient word length. For the

170

given specifications of throughput and clock rate, results from the optimization using a low

leakage technology showed that a time-multiplexed, parallel distributed arithmetic filter us-

ing an offset binary coding scheme for a partitioned memory was the most energy-efficient

flexible digital FIR. The block diagram of the implemented filter is given in Figure 6.10.

This section describes the implementation and chip design for the distributed arithmetic

FIR filter. Measured results from the chip prototype are presented at the end of this section.

6.6.1 Filter Overview and Specifications

The flexible distributed arithmetic filter has been fabricated in a low-leakage 90nm static

CMOS technology. It supports tap programmability in steps of 8 taps; the number of taps

can range from 8 to 64. The filter supports programmability of the input word length with a

maximum of 12-bits and programmable in steps of 2. The main clock is at 320MHz and the

secondary clock that supports time-multiplexing runs at 160MHz. The clock is generated

and divided by a custom designed clock generation circuit using a simple bias and current

mirror. This work was done by M. Ler [75]. The energy-delay tradeoff curve for this filter

without scan-in and scan-out blocks is shown in Figure 6.26. The core supply is set to 1.0V

and the input/output pads run at an external 2.5V. The total area of the chip, including

pads is 2mm x 2mm.

The total number of pins is 91 for the chip and one extra ground pin for the I/O reference

compensation block that must be included in all 90nm designs taped out in the low-leakage

process. The pin-out diagram is given in Figure 6.27. Table 6.6 describes the signals in

detail.

The main blocks in the design are summarized in the following.

Clock Generation

The full custom clock generation circuit is designed using a bias circuit, pre-amplifier

and a latch. A simple flip-flop is used to divide the clock in half to generate the secondary

171

Parallel, Folded Distributed Arithmetic Energy-Delay Tradeoff
(8 to 64 taps, 2 to 12 bits input word, OBC, 8 memory partitions)

108

110

112

114

116

118

120

122

124

126

128

130

0 2000 4000 6000 8000 10000 12000 14000 16000

1/Throughput (ps)

E
ne

rg
y

pe
r

cy
cl

e
(p

J)

160 MSample/s (802.11n, 64 taps, 12 bits)
310 MSample/s

Increase due to leakage
current in memories - use power
gating to mitigate

Figure 6.26. Energy-delay tradeoffs of 8–64 tap, 2–12 bit input word, programmable dis-
tributed arithmetic filter in 90nm CMOS

Reconfigurable Distributed Arithmetic
Digital FIR

DATA_IN[3]

DATA_IN[2]

VDDE6

BIST_SEL

CE_SG

DATA_IN[11]

IO7

GNDE6

LUT_OUT_SCAN

DATA_IN[10]

DATA_IN[9]

DATA_IN[5]

VDD6

GND6
DATA_IN[8]

DATA_IN[7]

DATA_IN[6]

VDDE5
GNDE5

DATA_IN[4]

VDD5
GND5

DATA_IN[1]
DATA_IN[0]
IO5

IO
4

V
D

D
E

4
G

N
D

E
4

W
D

A
T

A
[1]

W
D

A
T

A
[2]

W
D

A
T

A
[3]

B
LO

C
K

S
[0]

V
D

D
4

G
N

D
4

B
LO

C
K

S
[1]

B
LO

C
K

S
[2]

B
LO

C
K

S
[3]

D
A

T
A

_O
U

T
[0]

V
D

D
E

3
G

N
D

E
3

D
A

T
A

_O
U

T
[2]

D
A

T
A

_O
U

T
[1]

D
A

T
A

_O
U

T
[3]

D
A

T
A

_O
U

T
[5]

D
A

T
A

_O
U

T
[4]

D
A

T
A

_O
U

T
[6]

V
D

D
3

G
N

D
3

D
A

T
A

_O
U

T
[7]

IO
3

DATA_OUT[11]

DATA_OUT[8]

DATA_OUT[18]

ISOURCE

CLK_2_OUT

GND1

IO1

DATA_OUT[17]

DATA_OUT[16]

VDD1

DATA_OUT[15]

GND2

DATA_OUT[14]

DATA_OUT[13]
DATA_OUT[12]

GNDE1

VDDE1

INN
INP

VDD2

DATA_OUT[10]
DATA_OUT[9]

GNDE2
VDDE2

IO2

IO
8

V
D

D
E

7
G

N
D

E
7

LU
T

_B
Y

P
A

S
S

LU
T

_W
E

N

A
C

C
U

M
_L

O
A

D
_I

N
IT

S
C

A
N

_I
N

_I
N

IT

V
D

D
7

R
E

S
E

T

LU
T

_I
N

_S
C

A
N

G
N

D
7

T
E

S
T

_S
P

E
E

D
_M

O
D

E

D
A

T
A

_O
U

T
[2

4]
D

A
T

A
_O

U
T

[2
3]

G
N

D
E

8

D
A

T
A

_O
U

T
[2

1]

V
D

D
E

8

D
A

T
A

_O
U

T
[2

0]
D

A
T

A
_O

U
T

[1
9]

IO
9

IO
10

G
N

D
8

V
D

D
8

D
A

T
A

_O
U

T
[2

2]

D
A

T
A

_O
U

T
[2

5]

Figure 6.27. Pin-out diagram for programmable distributed arithmetic filter

172

I/O NO. OF PORTS DESCRIPTION
data in 12 Input signal to be filtered (signed 2’s complement)
wdata[3:1] 3 Control bits indicating number of LUTs to be active (wdata[0]=0)
blocks[3:0] 4 Control bits indicating number of blocks (maximum number of taps/number of partitions)
data out[25:0] 26 Filter output (signed 2’s complement)
inn 1 Clock generation input 1
inp 1 Clock generation input 2
isource 1 Clock generation input 3 – current source
LUT in scan 1 Input for LUT initialization
LUT out scan 1 Output scan of memory contents for testing purposes
LUT wen 1 LUT write enable
LUT bypass 1 Memory bypass (active high)
bist sel 1 Selector for mux between clk and bist clk for LUT (active high)
reset 1 Reset pin (active low)
scan in init 1 Enables scan in registers (active low)
clk 2 out 1 Divided clock output (160MHz nominal)
test speed mode 1 Select between external input and scan chain input
accum init load 1 Initialize accumulation tree with offset (active high)
ce sg 1 Main clock enable
vdd, gnd, vdde, gnde 32 Core and external I/O supply pins

Table 6.6. Programmable Distributed Arithmetic Filter Pin-out Specification

BIAS
PRE-AMP

isource
vbp

vbtail

inp
inn

LATCH
outn

outp
IVSVTX4 IVSVTX12 Q

Q
SET

CLR

D

BUFSVTX4 BUFSVTX12

FD1QNSVTX1

clk_2

clk

isource

W=10
L=0.5

W=10
L=0.5

W=10
L=0.5

W=10
L=0.5

W=35
L=0.5

VDD

vbp

vbtail

BIAS

vbtail W=100
L=0.5

inp inn

vbp vbp

W=50
L=0.5

W=50
L=0.5

W=160
L=0.5

W=160
L=0.5

VDD

outn outp

PRE-AMPLIFIER

LATCH

outn

VDD

W=0.75
L=0.1

W=0.75
L=0.1

W=1.30
L=0.1

W=1.30
L=0.1

outp

Figure 6.28. Clock generation and division

clock. The clock generation circuit blocks are shown in Figure 6.28. The simulation of this

circuit is provided in [75].

Memory, Input, and Output Scan

The look-up table scan in of coefficients, the input word scan in and the output word scan

out are coded in module compiler and Verilog is subsequently generated and customized.

These blocks are simply a chain of shift registers implementing scan functionality. A block

diagram of the scan in relation to the filter is shown in Figure 6.29.

173

DAFIRSCAN_IN SCAN_OUT
1

0

0

1
1

0

test_speed_mode test_speed_mode

scan_in_init

LUT SCAN IN

183

LUT Scan In MSB out

26-bit x 128 12-bit x 128

data_in

12

12

12

26

Figure 6.29. Scan in and out

LUT Select

Input Word Length(2, 4, 6, 8, 10, 12)

Partition Select

Num Taps/Partitions

LUT Select[0] LUT Select[11]

Select 0 Select 11

SHIFT_EN

SEL 0 SEL 1 SEL 2 SEL 3 SEL 4 SEL 5

Select 0
Select 6

Select 1
Select 7 Select 8 Select 9 Select 10 Select 11

Select 2 Select 3 Select 4 Select 5

SHIFT_EN

CLK

0 1

MSBs LSBs

(a)

(b)

(c)

Figure 6.30. Block selection based on input word length and tap requirements

Block Select

Block select and block select multiplexer select the memory partitions in each of the

look-up tables based on the number of taps. Six 8-bit select signals are generated based on

the control inputs of the number of input word bits (wdata[3:0]) and the number of taps

divided by 8 (blocks[3:0]). These two blocks were hand-coded using Verilog. One clock

cycle selects the MSBs of the input word and a second cycle is used to select the LSBs.

Figure 6.30(a) and (b) show the implementation of the circuits, and Figure 6.30(c) shows

the relationship of the main clock to the shift en signal.

174

D Q D Q

64 64 64 64 64 64646464646464

Xn[11]

Xn[10]

Xn[9]

Xn[8]

Xn[7]

Xn[6]

Xn[5]

Xn[4]

Xn[3]

Xn[2]

Xn[1]

Xn[0]

LUTaddress 5 LUTaddress 4 LUTaddress 3 LUTaddress 2 LUTaddress 1 LUTaddress 0

Shift_en

0 1

Shift_en

0 1

Shift_en

0 1

Shift_en

0 1

Shift_en

0 1

Shift_en
0 1

D
at

a
R

ou
te

6 4 x 1 2 b input
registers are clock-

gated based on
select signals

Clocked at 1 6 0 MHz

shift_ en= 0 : LSB
shift_ en= 1 : MSB

Figure 6.31. Address generation

Figure 6.32. Address encoding

Address Generation and Encoding

The address generation, address encoder and input FIFO blocks are designed in custom

Verilog and implement address generation from the incoming input word. The encoder

encodes the 64-bit generated address using offset binary encoding to produce a 56-bit address

and an 8-bit coding signal used later for decoding. A block diagram of its components are

shown in Figure 6.31 and Figure 6.32 [75]. The 64x12-bit input registers are clock-gated

based on select signals.

175

DAFI R Look- up Table

Address

LUT 5

Dout

Address

LUT 4

Dout

Address

LUT 3

Dout

Address

LUT 2

Dout

Address

LUT 1

Dout

Address

LUT 0

Dout

OBC Decoder
Partition Selector

Address Generator

Xn[Wd-1:0]

N

N-1

N

N-1

N

N-1

N

N-1

N

N-1

N

N-1

Partition Adder

WM

OBC Decoder
Partition Selector
Partition Adder

WM

OBC Decoder
Partition Selector
Partition Adder

WM

OBC Decoder
Partition Selector
Partition Adder

WM

OBC Decoder
Partition Selector
Partition Adder

WM

OBC Decoder
Partition Selector
Partition Adder

WM

2-1 2-2 2-3 2-4

Address
Encoder

BLOCKSELECT

WM WM WM WM WM WM

Address
Encoder

Address
Encoder

Address
Encoder

Address
Encoder

Address
Encoder

Wd

Code_bits

NB

NN N N N N N N N N N N

Shift_en

Shift_en Shift_en Shift_en Shift_en Shift_en

Shift_en

2-6

yn[29:0]

+

+

Demux

Reg Reg

NEGATE
Shift_en 2-5

Shift_en = 1 MSB LUTs
Shift_en = 0 LSB LUTs

Q

MTRCK
MTWCK
RCK
RCSN

SELRCK

SELWCK
TBYPASS

WCK
WCSN
WEN

D

RA
WA

22x8

8

8

56

7

22x8

LUT

Figure 6.33. Memory overview

Memory

The memory for the look-up tables uses generated memory blocks from the foundry.

Custom power gating in the form of sleep transistors was added to the memory block layouts

so that the look-up tables can be turned off when the input word is less than 12-bits. The

memory is partitioned such that the 64-bit memory address is divided into 8 clusters. The

memory requirement is then 8 · 28 = 2048 words for each look-up table. Memory code

compression using offset binary encoding further reduces the memory requirement by half,

resulting in a total of 8 · 27 = 1024 words for each look-up table. Thus each look-up table

has 8 memory blocks, each representing a memory partition. There are 6 replicas of each

look-up table, resulting in a total of 48 foundry-generated memory blocks for the entire

filter. Figure 6.33 [75] shows an overview of the memory implementation.

Leakage Control

The estimated leakage from synthesis verification shows that power due to leakage cur-

rent is approximately 50% of the total power for the filter. This is mainly due to leakage

from the memories. Power gating is implemented to suppress leakage current when memory

176

blocks are not being used. The select signals are used to power gate the memories which re-

duces power due to leakage current. Sleep mode switches are inserted to disconnect register

files from power and ground rails. A custom memory cell was created which implemented

the power gating for the foundry-generated memory block. The custom cell instantiates a

single memory partition which is surrounded by a power ring consisting of ground, VDD

supply, and sleep rail VDDS . A PMOS transistor was selected as the sleep transistor since

the read degradation due to power gating with a PMOS was 1.5% as compared to 2% when

using an NMOS device. The enable signal is tied to the block select lines which control

which memory partition must be enabled based on the number of bits in the input word

and the required number of taps. An additional NMOS pulldown was included to tie the

outputs to ground when the memory partition is not needed. The circuit schematic and

layout are shown in Figure 6.34. When all the memories are power-gated off, the leakage

power drops from an estimated 87mW to an estimated 9mW (at 320MHz), reducing leakage

by 90% (78mW).

Decoding, Partition selection, and Accumulation

The OBC decoder, partition select, and partition accumulation blocks were modeled in

Simulink so that the fixed point arithmetic was easily implemented in Verilog using System

Generator. The OBC decoder decodes the output of the memory reads and the partition

select block outputs the correct word from the enabled partitions. The accumulation block

shifts and accumulates the partial coefficient sums from each look-up table resulting the

filter output. The appendix contains the figures for each of the Simulink blocks.

6.6.2 RTL and Simulink Modeling

The majority of the blocks were modeled in Module Compiler and Verilog. These

blocks were modeled in Simulink as block boxes. The decoding, partition selection, and

accumulation were modeled in Simulink and System Generator was used to generate the

177

Figure 6.34. Power gating of memory partitions

Verilog for these blocks. The entire system was simulated and verified functionally in

Simulink and ModelSim.

6.6.3 Functional Verification

First, a block-by-block simulation was done to verify functionality; the simulation was

timing accurate. Then as each block was integrated into the overall system, a separate

integration verification was performed, until the entire system was verified. A simple ramp

test was first performed to make sure that the filter was walking through each memory

location correctly. Then two separate tests for programmability were done: one test checked

if it was possible to implement a 32-tap WLAN filter and the second test checked if a 64-tap

178

Figure 6.35. Ramp test verification of final taped out design

Figure 6.36. GSM test verification of final taped out design

GSM filter was implemented correctly. The same test vectors and models are used for chip

testing. Figures 6.35, 6.36, and 6.37 show the results of the verification.

6.6.4 Silicon Implementation and Verification

The entire design was synthesized to an ASIC targeting the low-leakage 90nm CMOS

process. Cycle-accurate and bit-accurate co-simulation of the final taped Verilog was per-

formed at the gate-level; the netlist had both SDF and activity factor annotation for timing

and power verification. Full-chip synthesis, place and route, LVS, and DRC were carried out

179

Figure 6.37. WLAN test verification of final taped out design

Figure 6.38. Programmable distributed arithmetic filter die photo

using Synopsys Design Compiler and the SOC Encounter flow from the foundry. The esti-

mated power from synthesis is 78mW of dynamic power and 87mW of leakage power (with

no power-gating); with power-gating the leakage power drops to 9mW with all memories

gated off. The total cell area estimate without input/output pads is 1.08mm2.

6.6.5 Measured Results

This section presents the results of measurements taken from the distributed arithmetic

flexible filter chip. Figure 6.38 shows the chip die photo.

At the time of writing this dissertation, there was a problem found with the supply

180

Current vs. Supply (Chip 7)

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Supply Voltage (V)

C
ur

re
nt

 (
m

A
)

100MHz Clock

Quadratic curve fit

Figure 6.39. Supply versus current

Current vs. Frequency (Chip 7)

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180

Frequency (MHz)

C
ur

re
nt

 (
m

A
)

1V Supply

0.5V Supply

Figure 6.40. Clock frequency versus current

181

distribution on the test board which was initially designed for a previous version of the chip

which had I/O pads at 1V instead of 2.5V. The effect on chip testing is that output of the

divided clock, the scan out of the LUTs, and the filter output are not measurable. Work

is continuing to locate the source of this issue, however, the chip definitely has a clock tree

that is working. A simple test that measures the current drawn by the chip (without input

of test vectors) while the clock frequency and supply voltage are varied was carried out. The

results are shown in Figures 6.39 and 6.40. They show a linear relationship between change

in frequency and current and a quadratic relationship between current and supply voltage.

Further testing will continue once the test board is fixed. The test setup is described in the

appendix.

6.7 Summary

The architecture exploration and design of a flexible digital filter for a multi-mode,

multi-standard wireless radio transceiver was presented. The architecture exploration was

performed using a sensitivity-based design methodology which employed composition to

rapidly generate energy-delay tradeoff information for numerous architectures. Within a

week, it was possible to evaluate all the different architecture choices for a single technology

process. The architecture selected for implementation and tape-out was a parallel, folded

distributed arithmetic design with clock-gating and power-gating of memories to reduce

leakage. It was shown that the optimal architecture choice is highly dependent on the

underlying technology (high performance or low leakage) and the memory-to-logic ratio for

a particular design. The cost of flexibility was determined to be a maximum of 2 to 4 times

that of a filter designed to support a single wireless standard.

182

Chapter 7

Conclusion and Future Directions

Every day you may make progress. Every step may be fruitful. Yet there
will stretch out before you an ever-lengthening, ever-ascending, ever-improving
path. You know you will never get to the end of the journey. But this,
so far from discouraging, only adds to the joy and the glory of the climb.
– Sir Winston Churchill

This research addresses a challenging problem with very little formalism around it ex-

cept at the circuit level. The following list summarizes the accomplishments and progress

towards producing a viable sensitivity-based hierarchical design methodology and formalism

so that a tool or algorithm maybe developed to automate the entire design process. This

dissertation proposes a systematic design methodology for hierarchical power-performance

optimization of ASICs, where energy-efficiency is the primary design constraint. The pro-

posed methodology is a hierarchical design optimization framework that cascades design

constraints and targets from the system level down to its lower level blocks and circuits

in a systematic fashion. Sensitivities to tuning variables are balanced up from lower level

blocks to higher-level sub-systems through design composition that meets optimal aggre-

gate sensitivity criteria. Models are used to abstract energy-delay sensitivity to circuit

tuning variables so that it is unnecessary to calculate derivatives and to allow circuit-level

constraints to flow to higher levels of abstraction. This ”top-down, bottom-up” design ap-

proach ensures energy-efficiency, consistency and optimality of design decisions across the

entire ASIC.

183

The design methodology is applied to three levels of hierarchy: architecture, micro-

architecture, and circuit level. The proposed hierarchical design framework is validated

through design of key circuit components of multi-standard mobile platforms. So far it has

been manually applied to the design of an optimally energy-efficient flexible digital FIR

filter for use in digital front-end components of a multi-standard wireless radio receiver.

7.1 Research Accomplishments

• An optimization framework is conceived using a custom circuit optimizer developed

in [17] for power-performance optimization at the leaf cell. Due to the short compu-

tation time, this optimizer is a good choice for optimizing small blocks using sizing,

supplies, and threshold voltages as circuit tuning variables.

• The viability of using physical circuit parameters to estimate sensitivity is investigated

and shown to be instrumental in reducing design time required to uncover power-

performance optimal architectures.

• A thorough exploration of employing Cgate/Cwire as an estimator of sensitivity to

gate sizing is presented. Results show that there is a linear relationship between

(Cgate/Cwire, Cin) and sensitivity to sizing. This implies that Cgate/Cwire can be

used as a first-order estimator of sensitivity to gate size without having to calculate

derivatives or evaluate analytical expressions. The investigation of using this metric

leads to a thorough study of the impact of wires on sensitivity-based optimization.

• The use of composition rules is investigated to enable fast generation of energy-delay

curves for larger circuit blocks comprised of smaller leaf cells. Energy-efficiency curves

are generated for multiple architectures for each of the benchmarks within short pe-

riods of time (on the order of days), allowing rapid evaluation of architectures in

the context of lower level design constraints and tuning variables such as circuit siz-

ing. A multi-standard wireless communication digital filter was used as the prototype

benchmark for architecture exploration using this method. Energy-delay curves were

184

generated for lower-level blocks and composition was used to populate the energy-

delay space with a wide range of filter architectures. It was shown that a wide range

of filter architectures could be evaluated within a single week as long as specifications

and technology remained constant.

• The composition process is formalized into an algorithm that can be implemented as a

convex optimization program. This provides an automated mechanism for fast design

space exploration at architecture, micro-architecture and circuit levels.

• A digital filter kernel for multi-mode, multi-standard wireless radio system transceiver

is designed and optimized using a manual application of the formalized design method-

ology to demonstrate its viability and flexibility.

7.2 Future Directions

In the future, the goal is to implement the proposed algorithm in software which would

provide a means to automatically select optimal architectures for a set of given design

constraints. A wider range of benchmarks that are relevant to multi-standard radio systems

could be easily evaluated for optimality.

An excellent extension to this work would be to add variability to the problem descrip-

tion which would mean that not one single energy-efficiency boundary is generated but a

range is required. A robust optimization approach maybe possible in this case.

A useful exercise would be to evaluate the impact of interconnect on multi-core architec-

ture choices using newer technologies such as 45nm and this methodology once an automated

tool is available. The automation would allow rapid evaluation and optimization of a broad

range of architectures for multiple types of high-performance systems.

185

Bibliography

[1] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no. 4, pp.
23–29, July/August 1999.

[2] M. Horowitz and W. Dally, “How scaling will change processor architecture,” in Pro-
ceedings of IEEE International Solid State Circuits Conference, San Francisco, CA,
February 2004, pp. 132–133.

[3] L. Counts, “Analog and mixed-signal innovation: The process-circuit-system-
application interaction,” in Proceedings of IEEE International Solid State Circuits
Conference, San Francisco, CA, February 2007, pp. 26–32.

[4] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE Jour-
nal of Solid-State Circuits, vol. SC-9, no. 5, pp. 256–268, October 1974.

[5] S. Borkar, “Obeying Moore’s Law beyond 0.18µm,” in Proceedings of 13th Annual
IEEE International ASIC/SOC Conference, Arlington, VA, September 2000, pp. 26–
31.

[6] R. Ho, “On-chip wires: Scaling and efficiency,” Ph.D. dissertation, Dept.of Electrical
Engineering, Stanford University, August 2003.

[7] Semiconductor Industry Association. (2005) International Technology Roadmap
for Semiconductors (ITRS). [Online]. Available: http://www.itrs.net/Common/
2005ITRS/Home2005.htm

[8] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics Mag-
azine, vol. 38, no. 8, April 1965.

[9] International Telecommunication Union. (1991-2006) ITU Statistics and Indicators.
[Online]. Available: http://www.itu.org

[10] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Circuits: A Design
Perspective, Second Edition. New Jersey: Prentice-Hall, 2003.

[11] D. Marković, V. Stojanović, B. Nikolić, M. A. Horowitz, and R. W. Brodersen, “Meth-
ods for true energy-performance optimization,” IEEE Journal of Solid-State Circuits,
vol. 39, no. 8, pp. 1282–1293, August 2004.

[12] D. M. Marković, “A power/area optimal approach to vlsi signal processing,” Ph.D.
dissertation, Dept.of EECS, University of California, Berkeley, May 2006.

186

[13] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proceedings of the
IEEE, vol. 89, no. 4, pp. 490–504, April 2001.

[14] V. Stojanović, D. Marković, B. Nikolić, M. A. Horowitz, and R. W. Brodersen, “Energy-
delay tradeoffs in combinational logic using gate sizing and supply voltage optimiza-
tion,” in Proceedings of the 28th European Solid-State Circuits Conference, ESSCIRC
2002, Florence, Italy, September 24–26 2002, pp. 211–214.

[15] V. Zyuban and P. Strenski, “Unified methodology for resolving power-performance
tradeoffs at the microarchitectural and circuit levels,” in Proceedings of the IEEE/ACM
International Symposium on Low Power Electronics and Design (ISPLED), Monterey,
CA USA, August 2002, pp. 166–171.

[16] H. P. Hofstee, “Power-constrained microprocessor design,” in Proceedings of the IEEE
International Conference on Computer Design: VLSI in Computers and Processors,
Freiberg, Germany, September 2002, pp. 14–18.

[17] R. Zlatanovici, “Power-performance optimization for digital circuits,” Ph.D. disserta-
tion, Dept.of EECS, University of California, Berkeley, December 2006.

[18] R. A. Rohrer, “Fully automated network design by digital computer: Preliminary
considerations,” Proceedings of the IEEE, vol. 55, no. 11, pp. 1929–1939, November
1967.

[19] G. D. Hachtel and R. A. Rohrer, “Techniques for the optimal design and synthesis of
switching circuits,” Proceedings of the IEEE, vol. 55, no. 11, pp. 1864–1877, November
1967.

[20] S. W. Director and R. A. Rohrer, “The generalized adjoint network and network sensi-
tivities,” IEEE Transactions on Circuit Theory, vol. CT-16, no. 3, pp. 318–323, August
1969.

[21] J. P. Fishburn and A. E. Dunlop, “TILOS: A posynomial programming approach to
transistor sizing,” in Proceedings of the IEEE/ACM International Conference on Com-
puter Aided Design, San Jose, CA, USA, November 1985, pp. 326–338.

[22] A. R. Conn, I. M. Elfadel, W. M. M. Jr., P. R. O’Brien, P. N. Strenski, C. Visweswariah,
and C. B. Whan, “Gradient-based optimization of custom circuits using a static-timing
formulation,” in Proceedings of the ACM/IEEE 36th Annual Conference on Design
Automation, New Orleans, LA, USA, June 1999, pp. 452–459.

[23] T. Burd and R. Brodersen, “Energy efficient CMOS microprocessor design,” in Proceed-
ings of the IEEE 28th Annual Hawaii International Conference on System Sciences,
Hawaii, USA, January 3–6 1995, pp. 288–297.

[24] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose microproces-
sors,” IEEE Journal of Solid-State Circuits, vol. 31, no. 9, pp. 1277–1283, September
1996.

[25] A. J. Martin, “Towards an energy complexity of computation,” Information Processing
Letters, vol. 77, pp. 123–129, February 2001.

187

[26] V. Zyuban and P. Strenski, “Balancing hardware intensity in microprocessor pipelines,”
IBM Journal of Research and Development, vol. 47, no. 5/6, pp. 585–598, Septem-
ber/November 2003.

[27] S. Kao, R. Zlatanovici, and B. Nikolić, “A 250ps 64-bit carry-lookahead adder in 90nm
CMOS,” in Proceedings of the IEEE International Solid-State Circuits Conference, San
Francisco,CA USA, February 2006, pp. 438–439.

[28] V. Zyuban, D. Brooks, V. Srinivasan, M. Gschwind, P. Bose, P. N. Strenski, and P. G.
Emma, “Balancing hardware intensity in microprocessor pipelines,” IEEE Transactions
on Computers, vol. 53, no. 8, pp. 1004–1016, August 2004.

[29] D. Marković, R. W. Brodersen, and B. Nikolić, “A 70 GOPS, 34mw multi-carrier
MIMO chip in 3.5mm2,” in IEEE 2006 International Symposium on VLSI Circuits:
Digest of Technical Papers, Honolulu, HI, June 2006, pp. 158–159.

[30] T. F. Gonzalez, Ed., Handbook of Approximation Algorithms and Metaheuristics.
Florida, USA: Chapman and Hall / CRC, Taylor and Francis Group, LLC, 2007.

[31] G. C. Temes and D. A. Calahan, “Computer-aided network optimization: The state-
of-the-art,” Proceedings of the IEEE, vol. 55, no. 11, pp. 1832–1863, November 1967.

[32] D. P. Bertsekas, Nonlinear Programming, Second Edition. Belmont, MA USA: Athena
Scientific, 1995.

[33] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, United Kingdom:
Cambridge University Press, 2004.

[34] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, and S. M. Kang, “An exact solution to
the transistor sizing problem for CMOS circuits using convex optimization,” IEEE
Transactions on Computer-Aided Design of ICs and Systems, vol. CAD-12, pp. 1621–
1634, November 1993.

[35] M. Hershenson, S. Boyd, and T. Lee, “GPCAD: A tool for CMOS op-amp synthesis,”
in Proceedings of IEEE/ACM International Conference on Computer Aided Design
(ICCAD), San Jose, CA, November 1998, pp. 296–303.

[36] S. P. Boyd, S. Kim, D. D. Patil, and M. A. Horowitz, “Digital circuit optimization via
geometric programming,” Operations Research, vol. 53, no. 6, pp. 899–932, November–
December 2005.

[37] R. Zlatanovici and B. Nikolić, “Power-performance optimization for custom digital
circuits,” in Proceedings of PATMOS 2005, Leuven, Belgium, September 2005, pp.
404–414.

[38] R. L. Graham, “Bounds for certain multiprocessing anomalies,” Bell System Technical
Journal, vol. 45, pp. 1563–1581, 1966.

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
Second Edition. Cambridge, MA: MIT Press, 2001.

[40] T. Sakurai and A. R. Newton, “Alpha-power law MOSFET model and its applications
to CMOS inverter delay and other formulas,” IEEE Journal of Solid-State Circuits,
vol. 25, no. 2, pp. 584–594, April 1990.

188

[41] A. Chandrakasan and R. W. Brodersen, “Minimizing power consumption in digital
CMOS circuits,” Proceedings of the IEEE, vol. 83, no. 4, pp. 498–523, April 1995.

[42] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Constraint-driven commu-
nication synthesis,” in Proceedings of the 39th ACM/IEEE Design Automation Con-
ference, New Orleans, Louisiana, June 10–14 2002, pp. 783–788.

[43] I. Sutherland, R. F. Sproul, and D. Harris, Logical Effort:Designing Fast CMOS Cir-
cuits. San Francisco, CA USA: Morgan Kaufmann Publishers, 1999.

[44] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. Cambridge, U.K.:
Cambridge University Press, 1998.

[45] B. Nikolić, “Lecture 4: Transistor and gate models,” EE 241 Lecture Notes, University
of California, Berkeley, Spring 2008.

[46] C. Hu, “Mosfet technology scaling, leakage current, and other topics,” EECS 130 Lec-
ture Notes, University of California, Berkeley, Spring 2006.

[47] R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and threshold voltage scaling
for low power cmos,” IEEE Journal of Solid-State Circuits, vol. 32, no. 8, pp. 1210–
1216, August 1997.

[48] J. Choi and K. Lee, “Design of CMOS tapered buffer for minimum power-delay prod-
uct,” IEEE Journal of Solid-State Circuits, vol. 29, no. 9, pp. 1142–1145, September
1994.

[49] B. S. Amrutur and M. A. Horowitz, “Fast low-power decoders for RAMs,” IEEE Jour-
nal of Solid-State Circuits, vol. 36, no. 10, pp. 1506–1515, October 2001.

[50] B. S. Landman and R. L. Russo, “On a pin versus block relationship for partitions
of logic graphs,” IEEE Transactions on Computers, vol. C-20, no. 12, pp. 1469–1479,
December 1971.

[51] W. Donath, “Placement and average interconnection lengths of computer logic,” IEEE
Transactions on Circuits and Systems, vol. 26, no. 4, pp. 272–277, April 1979.

[52] ——, “Wire length distribution for placements of computer logic,” IBM Journal of
Research and Development, vol. 25, no. 3, pp. 152–155, May 1981.

[53] J. A. Davis, V. K. De, and J. D. Meindl, “A stochastic wire-length distribution for
gigascale integration (GSI) – part I: Derivation and validation,” IEEE Transactions on
Electron Devices, vol. 45, no. 3, pp. 580–589, March 1998.

[54] K. C. Saraswat, “Ee 371 notes: Scaling of interconnections,” EE 371 Lecture Notes,
Stanford University, Spring 2006.

[55] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock rate versus ipc:
The end of the road for conventional microarchitectures,” in Proceedings of the 27th
International Symposium of Computer Architecture, Vancouver, Canada, June 12–14
2000, pp. 248–259.

189

[56] R. Ho, K. Mai, and M. Horowitz, “Managing wire scaling: A circuit perspective,”
in Proceedings of the IEEE 2003 International Interconnect Technology Conference,
Burlingame, CA, June 2–4 2003, pp. 177–179.

[57] M. Joshi, N. S. Nagaraj, and A. Hill, “Impact of (metal) interconnect scaling and
process variation on performance,” Slide Presentation, Texas Instruments, 2006.

[58] J. Garrett, “Compact models for exploring energy-delay tradeoffs in deeply scaled
CMOS digital design,” Master’s Report, Dept.of EECS, University of California, Berke-
ley, May 2004.

[59] K. Y. Toh, P. K. Ko, and R. G. Meyer, “An engineering model for short-channel cmos
devices,” IEEE Journal of Solid-State Circuits, vol. 23, no. 4, pp. 584–594, August
1988.

[60] Device Group. (2005) BSIM3/BSIM4 SPICE Device Models. [Online]. Available:
http://www-device.eecs.berkekey.edu/∼bsim3

[61] A. E. Ruehli, S. P.K. Wolff, and G. Goertzel, “Analytical power/timing optimization
technique for digital system,” in Proceedings of the 14th ACM/IEEE Design Automa-
tion Conference (DAC 1977), New Orleans, Louisiana, USA, June 20–22 1977, pp.
142–146.

[62] S. Augsburger and B. Nikolić, “Combining dual-supply, dual-threshold and transistor
sizing for power reduction,” in Proceedings of 2002 IEEE International Conference
on Computer Design: VLSI in Computers and Processors (ICCD 2002), Freiburg,
Germany, September 16–18 2002, pp. 316–321.

[63] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Thompson, and K. Keutzer,
“Minimization of dynamic and static power through joint assignment of threshold volt-
ages and sizing optimization,” in Proceedings of the 2003 International Symposium of
Low Power Electronics and Design (ISPLED 2003), Seoul, Korea, August 25–27 2003,
pp. 158–163.

[64] A. Srivastava, D. Sylvester, and D. Blaauw, “Concurrent sizing, vdd, and vTH assign-
ment for low-power design,” in Proceedings of Design, Automation and Test in Europe
Conference and Exhibition (DATE 2004), vol. 1, Seoul, Korea, February 16–20 2004,
pp. 718–719.

[65] D. G. Chinnery and K. Keutzer, “Linear programming for sizing, vTH , and vDD assign-
ment,” in Proceedings of the 2005 International Symposium of Low Power Electronics
and Design (ISPLED 2005), San Diego, CA, USA, August 8–10 2005, pp. 149–154.

[66] A. Wachter, C. Visweswariah, and A. R. Conn, “Large-scale nonlinear optimization in
circuit sizing,” Future Generation Computer Systems, vol. 21, no. 8, pp. 1251–1262,
October 2005.

[67] R. Zlatanovici and B. Nikolić, “Power - performance optimal 64-bit carry-lookahead
adders,” in European Solid-State Circuits Conference, Estoril, Portugal, February 16–
18 2003, pp. 321–324.

[68] M. Horowitz, “Ee371 handout: Logic effort revisited,” EE 371 Handout, Stanford
University, Spring 1998–1999.

190

[69] G. Dimitrakopoulos and D. Nikolos, “Closed-form bounds for interconnect-aware
minimum-delay gate sizing,” Lecture Notes on Computer Science, vol. 3728, pp. 308–
317, August 2005.

[70] A. Morgenshtein, E. G. Friedman, R. Ginosar, and A. Kolodny, “Timing optimization
in logic with interconnect,” in Proceedings of 2008 International Workshop on System-
Level Interconnect Prediction, Newcastle, United Kingdom, April 5–6 2008, pp. 19–26.

[71] E. S. Fetzer, M. Gibson, A. Klein, N. Calick, C. Zhu, E. Busta, and B. Mohammad, “A
fully bypassed six-issue integer datapath and register file on the Itanium-2 microproces-
sor,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp. 1433–1440, November
2002.

[72] L. Maurer, T. Burger, T. Dellsperger, R. Stuhlberger, M. Schmidt, and R. Weigel, “On
the architectural design of frequency-agile multi-standard wireless receivers,” in IST
Mobile and Wireless Summit, Dresden, Germany, June 19–23 2005.

[73] E. Tsui, A. Chun, and K. Skeba, Private discussions, Intel Corporation, 2005–2006.

[74] F.Sheikh, M. Ler, R. Zlatanovici, D. Marković, and B. Nikolić, “Power-performance
optimal dsp architectures and asic implementation,” in Proceedings of Asilomar Con-
ference on Signals, Systems, and Computers, Pacific Grove,CA USA, October 29 –
November 1 2006, pp. 1480–1485.

[75] M. Ler, “An energy-efficient reconfigurable FIR architecture for a multi-protocol digital
front-end,” Master’s Report, Dept. of EECS, University of California, Berkeley, March
2006.

[76] T. Gemmeke, M. Gansen, H. J. Stockmanns, and T. G. Noll, “Design optimization
of low-power high-performance DSP building blocks,” IEEE Journal of Solid-State
Circuits, vol. 39, no. 7, pp. 1131–1139, July 2004.

[77] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation.
New York, USA: John Wiley & Sons, Inc., 1999.

[78] L. Thon, P. Sutardja, F. Lai, and G. Coleman, “A 240mhz 8-tap programmable fir filter
for disk-drive read channels,” in IEEE International Solid-State Circuits Conference,
San Francisco,CA USA, February 15–17 1995, pp. 82–83.

[79] R. B. Staszewski, K. Muhammad, and P. Balasra, “A 550-msample/s 8-tap FIR digital
filter for magnetic recording read channels,” IEEE Journal of Solid-State Circuits,
vol. 35, no. 8, pp. 1205–1210, August 2000.

[80] W. Wilhelm and T. G. Noll, “A new mapping technique for automated design of highly
efficient multiplexed FIR digital filters,” in Proceedings of 1997 IEEE International
Symposium on Circuits and Systems, vol. 4, Hong Kong, June 9–12 1997, pp. 2252–
2255.

[81] D. Moloney, J.O’Brien, E. O’Rourke, and F. Brianti, “Low-power 200-mbps, area-
efficient, five-tap programmable FIR filter,” IEEE Journal of Solid-State Circuits,
vol. 33, no. 7, pp. 1134–1138, July 1998.

191

[82] K. Kim and K. Lee, “Low-power and area-efficient FIR filter implementation suitable
for multiple taps,” IEEE Transactions on VLSI Systems, vol. 11, no. 1, pp. 150–153,
February 2003.

[83] S. Rylov, A. Rylyakov, J. Tierno, M. Immediato, M. Beakes, M. Kapur, P. Ampadu,
and D. Pearson, “A 2.3 GSample/s 10-tap digital FIR for magnetic recording read
channels,” in IEEE International Solid-State Circuits Conference, San Francisco,CA
USA, February 5–7 2001, pp. 190–191.

[84] D. J. Pearson, S. K. Reynolds, A. C. Megdanis, S. Gowda, K. R. Wrenner, M. Immedi-
ato, and R. L. Galbraith, “Digital FIR filters for high speed PRML disk read channels,”
IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1517–1523, December 1995.

[85] J. Tierno, A. Rylyakov, S. Rylov, M. Singh, P. Ampadu, S. Nowick, M. Immediato,
and S. Gowda, “A 1.3GSample/s 10-tap full-rate variable-latency self-timed FIR filter
with clocked interfaces,” in IEEE International Solid-State Circuits Conference, San
Francisco,CA USA, February 3–7 2002, pp. 60–61.

[86] C. Lutkemeyer and T. G. Noll, “A transversal equalizer with an increased adaptation
speed and tracking capability,” IEEE Journal of Solid-State Circuits, vol. 33, no. 3,
pp. 503–507, March 1998.

[87] S. A. White, “Applications of distributed arithmetic to digital signal processing: A
tutorial review,” IEEE ASSP Magazine, vol. 6, no. 3, pp. 4–19, July 1989.

[88] Z. Guo, A. Carlson, L.-T. Pang, K. Duong, T.-J. King-Liu, and B. Nikolić, “Large-
scale read/write margin measurement in 45nm CMOS SRAM arrays,” in Proceedings
of 2008 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, June 18–20 2008, pp.
42–43.

[89] W. R. D. et. al., “An automated design flow for low-power, high-throughput dedicated
signal processing systems,” in Proceedings of the Asilomar Conference on Signals, Sys-
tems and Computers, Pacific Grove, CA USA, November 4–7 2001, pp. 475–480.

192

Appendix A

Simulink to ASIC Design
Methodology

A.1 Design Flow

The distributed arithmetic flexible filter prototype that is fabricated in a 90nm static
CMOS technology was synthesized using a Simulink to ASIC design flow developed at the
Berkeley Wireless Research Center [89].

The design is entered as Simulink functional blocks, providing a data flow description
of the system. From the Simulink environment, Xilinx System Generator is used translate
the graphical representation into Verilog or VHDL code that can then be synthesized to a
gate level netlist. Custom Verilog/VHDL blocks can be inserted into the Simulink model
as black boxes. Once the code is synthesized to a gate-level netlist, it can be instantiated
in the Simulink environment and co-simulated with ModelSim, as described in Chapter 6.

The Simulink environment is also used for chip testing as described in Appendix B. This
appendix describes the Simulink models for each of the blocks of the distributed arithmetic
filter.

A.2 Distributed Arithmetic FIR Simulink Models

The various Simulink models for the distributed arithmetic FIR are provided here for
reference. The address generator, input FIFO, block select, memories, memory encoder,
and scan blocks are all coded in Verilog and instantiated as black boxes in the Simulink
model. The decoding, accumulation and shift functions are modeled in Simulink and code
is automatically generated using System Generator from Xilinx.

The system Simulink model is shown in Figure A.1.

The decode, accumulation, and shift functions are modeled using Simulink and Xilinx
building blocks. The main reason for implementing the backend of the filter in this manner
was to take advantage of the floating to fixed point conversion. Figure A.2 shows the various
functional blocks of the back end. The partial coefficient sums are read from memory and

193

Figure A.1. System level Simulink model for the distributed arithmetic flexible FIR

decoded based on the current configuration of the filter in terms of number of taps and input
word length. Then the sums are shifted appropriately and accumulated. The accumulation
must be initialized with the A(0) term as described in Chapter 6 which is integrated into
the programmable shift and final accumulation portion of the model. Figure A.3 shows the
partition selection, decode, and accumulation for partial coefficient sums read from a single
8-partition memory block. Figure A.4 shows Simulink model for the offset binary decoding
block for each 8-partition memory block. The decoding simply checks if the memory con-
tents need to be negated or kept as is. Figure A.5 shows Simulink model for the partition
selection for each look-up table. Figure A.6 shows Simulink model for the accumulation of
partial coefficient sums for each look-up table. Figure A.7 shows Simulink model for the
accumulation of all partial coefficient sums from all six look-up tables. Figure A.8 shows
Simulink model for the shift of partial coefficient sums based on the number of taps and
input word length.

194

Figure A.2. Partition select, decode, and accumulation tree

Figure A.3. Partition select, decode and accumulation for each look-up table

195

Figure A.4. Look-up table OBC decoder

Figure A.5. Partition select for each look-up table

196

Figure A.6. Single look-up table accumulation

Figure A.7. Final accumulation tree

197

Figure A.8. Programmable shift

198

Appendix B

Test Setup for Distributed
Arithmetic Prototype

B.1 Test Methodology

The Simulink environment is also used for testing fabricated prototypes in the lab.
The Simulink design and test vectors are programmed onto an i-BOB (infiniband break-
out board) board that houses memory and FPGAs; the i-BOB feeds data to the ASIC
inputs. The i-BOB board also samples the data output from the ASIC for comparison with
expected results. The read/write ports of the block RAMs, clock enable, reset, and other
control signals can be set by the user through a software interface to the i-BOB.

B.2 Lab Setup

The lab setup is shown in Figure B.1. The picture shows the connection of the i-BOB
with the ASIC test board through ribbon cables. A general purpose laptop running the
interface software for the i-BOB is used to monitor and set control signals on the i-BOB.
Programming the i-BOB is carried out via the serial port on the laptop. Figure B.2 shows
the communication between the laptop and the i-BOB board.

The i-BOB supply is set to 5.0V and the general purpose I/Os operate at 2.5V which
is the same supply as the I/O pads of the test chip. The ASIC core operates at 1.0V.
There are four supply domains on the ASIC test board. The ±10V and ±3.3V domains are
required for the current supply and differential pair biasing of the clock generation circuit
on the test chip. The 2.5V and 1.0V domains are required for the ASIC chip. Figure B.1
shows a picture of the test board housing the ASIC test chip.

The ASIC test board was designed for the initial version of the distributed arithmetic
prototype which did not have power gating of memories. The initial prototype used 1.0V
chip I/Os hence the board required resistive dividers to down-shift inputs to the chip, while
active comparators were used to up-convert outputs to 3.3V. In the second version of the
prototype, these are no longer required as the chip I/Os operate at 2.5V. Extensive testing
revealed that the ad-hoc modifications made to the ASIC test board were insufficient and

199

Figure B.1. ASIC test board and connection to i-BOB

200

Figure B.2. i-BOB and connection to laptop

hence it was difficult to complete testing of the prototype. At the time of writing this
dissertation the board is undergoing modifications to simplify its design.

201

