
Games for the Verification of Timed Systems

Vinayak Prabhu

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-97

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-97.html

August 15, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Games for the Verification of Timed Systems

by

Vinayak Prabhu

B. Tech. (Indian Institute of Technology, Kanpur)

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering — Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Thomas A. Henzinger, Chair
Professor John Steel
Professor Pravin Varaiya

Fall, 2008

The dissertation of Vinayak Prabhu is approved:

Chair Date

Date

Date

University of California at Berkeley

Fall, 2008

Games for the Verification of Timed Systems

Copyright Fall, 2008

by

Vinayak Prabhu

1

Abstract

Games for the Verification of Timed Systems

by

Vinayak Prabhu

Doctor of Philosophy in Engineering — Electrical Engineering and Computer

Sciences

University of California at Berkeley

Professor Thomas A. Henzinger, Chair

Models of timed systems must incorporate not only the sequence of system events, but the

timings of these events as well to capture the real-time aspects of physical systems. Timed

automata are models of real-time systems in which states consist of discrete locations and

values for real-time clocks. The presence of real-time clocks leads to an uncountable state

space. This thesis studies verification problems on timed automata in a game theoretic

framework.

For untimed systems, two systems are close if every sequence of events of one

system is also observable in the second system. For timed systems, the difference in tim-

ings of the two corresponding sequences is also of importance. We propose the notion of

bisimulation distance which quantifies timing differences; if the bisimulation distance be-

tween two systems is ε, then (a) every sequence of events of one system has a corresponding

matching sequence in the other, and (b) the timings of matching events in between the

two corresponding traces do not differ by more than ε. We show that we can compute the

bisimulation distance between two timed automata to within any desired degree of accuracy.

We also show that the timed verification logic TCTL is robust with respect to our notion

of quantitative bisimilarity, in particular, if a system satisfies a formula, then every close

system satisfies a close formula.

Timed games are used for distinguishing between the actions of several agents,

typically a controller and an environment. The controller must achieve its objective against

all possible choices of the environment. The modeling of the passage of time leads to

2

the presence of zeno executions, and corresponding unrealizable strategies of the controller

which may achieve objectives by blocking time. We disallow such unreasonable strategies

by restricting all agents to use only receptive strategies — strategies which while not being

required to ensure time divergence by any agent, are such that no agent is responsible for

blocking time. Time divergence is guaranteed when all players use receptive strategies. We

show that timed automaton games with receptive strategies can be solved by a reduction to

finite state turn based game graphs. We define the logic timed alternating-time temporal

logic for verification of timed automaton games and show that the logic can be model

checked in EXPTIME. We also show that the minimum time required by an agent to reach

a desired location, and the maximum time an agent can stay safe within a set of locations,

against all possible actions of its adversaries are both computable.

We next study the memory requirements of winning strategies for timed automaton

games. We prove that finite memory strategies suffice for safety objectives, and that winning

strategies for reachability objectives may require infinite memory in general. We introduce

randomized strategies in which an agent can propose a probabilistic distribution of moves

and show that finite memory randomized strategies suffice for all ω-regular objectives. We

also show that while randomization helps in simplifying winning strategies, and thus allows

the construction of simpler controllers, it does not help a player in winning at more states,

and thus does not allow the construction of more powerful controllers.

Finally we study robust winning strategies in timed games. In a physical system,

a controller may propose an action together with a time delay, but the action cannot be

assumed to be executed at the exact proposed time delay. We present robust strategies

which incorporate such jitters and show that the set of states from which an agent can win

robustly is computable.

Professor Thomas A. Henzinger
Dissertation Committee Chair

iii

Contents

List of Figures v

1 Introduction 1

2 Quantifying Similarities between Timed Systems 11

2.1 Introduction . 11

2.2 Quantitative Timed Simulation Functions 14

2.2.1 Simulation Relations and Quantitative Extensions 14

2.2.2 Algorithms for Simulation Functions 17

2.3 Robustness of Timed Computation Tree Logic 26

2.4 Discounted CTL for Timed Systems . 31

3 Timed Automaton Games 36

3.1 Introduction . 36

3.2 Timed Games . 38

3.2.1 Timed Game Structures . 38

3.2.2 Timed Winning Conditions . 40

3.2.3 Timed Automaton Games . 43

3.3 Solving Timed Automaton Games . 46

3.4 Efficient Solution of Timed Automaton Games 49

4 Timed-Alternating Time Logic 59

4.1 Introduction . 59

4.2 TATL Syntax and Semantics . 60

4.3 TATL
∗ . 63

4.4 Model Checking TATL . 65

5 Minimum-Time Reachability in Timed Games 68

5.1 Introduction . 68

5.2 The Minimum-Time Reachability Problem 69

5.3 Reduction to Reachability with B�uchi and co-B�uchi Constraints 72

5.4 Termination of the Fixpoint Iteration . 76

CONTENTS iv

6 Trading Memory for Randomness in Timed Games 83

6.1 Introduction . 83
6.2 Randomized Strategies in Timed Games . 87
6.3 Safety Objectives: Pure Finite-memory Receptive Strategies Suffice 93
6.4 Reachability Objectives: Randomized Finite-memory Receptive Strategies

Suffice . 96
6.5 Parity Objectives: Randomized Finite-memory Receptive Strategies Suffice 108

7 Robust Winning of Timed Games 110

7.1 Introduction . 110
7.2 Robust Winning of Timed Parity Games . 113
7.3 Winning with Bounded Jitter and Response Time 118

8 Conclusions 124

Bibliography 129

v

List of Figures

2.1 Two similar timed automata . 13
2.2 Ar is 2-similar to As . 17
2.3 First automata for game with an ε of Θ(2 · n1 · n2 ·W) 19
2.4 Second automata for game with an ε of Θ(2 · n1 · n2 ·W) 20

3.1 A timed automaton game. 37

5.1 A timed automaton game. 69
5.2 An extended region with C< = C ∪ {z}, C= = ∅, C> = ∅ 78
5.3 An extended region with C< = C ∪ {z}, C= = ∅ and its time successor. . . . 78
5.4 An extended region with C< 6= ∅, C= 6= ∅, C> 6= ∅ and its time successor. . . 79

6.1 A timed automaton game. 84

7.1 A timed automaton game T. 111
7.2 The timed automaton game Tεj,εr obtained from T. 121

LIST OF FIGURES vi

Acknowledgements

I am indebted to my advisor Prof. Thomas A. Henzinger for his support, guidance

and the generous funding for the (many) years of this endeavor. I came to Berkeley not

even knowing the term “formal methods”, and fell in love with the field after taking his

course on verification. I have constantly referred to his excellent CAV book (co-authored

with Prof. Rajiv Alur). He has taught me about a myriad of issues, from how to think

about and do research, and be precise in formulating problems, to how to write theorems

in papers, how to correctly use LATEX and how to punctuate properly when writing. He

allowed me to be the teaching assistant in his CS172 course which was a wonderful learning

experience. Even after his move to Switzerland, he has managed to devote more time to

his students at Berkeley than most of the students get with their resident advisors. He has

been ready to call late at night his time, so that I could talk in the afternoon (because of

the time difference) and to work through a paper word by word. I also thank him for the

many productive visits to EPFL, and for bringing me in contact with the excellent research

groups he assembled at Berkeley and at EPFL. His influence will be present in all my future

work, in addition to this thesis.

I am also grateful to Prof. Pravin Varaiya for serving as my co-advisor after

Prof. Henzinger moved to EPFL, and for being the chair of my qualifying exam commit-

tee. He has always been ready to listen to my research (and other) problems and provide

valuable feedback and guidance. I have been incredibly lucky to have had not one but two

such excellent advisors.

I am thankful to Prof. John Steel for being on my dissertation committee,

and for teaching three beautiful courses on mathematical logic and recursion theory; to

Prof. Thomas Scanlon for being on my qualifying exam committee (and for teaching two

course on set theory and logic), and to Prof. David Aldous for agreeing to serve on the

qualifying exam committee 18 hours before the exam when Ruth, our graduate assistant,

told me she had not received confirmation from Prof Scanlon and that the exam could not

take place without an outside member making me run over to Evans Hall in panic mode to

Prof. Aldous at 4PM, though eventually we did receive the confirmation.

In my penultimate year, I wandered over to Prof. Kurt Keutzer’s MOT class at the

recommendation of Arkadeb, and it was a revelation, a different world. I thank Prof. Keutzer

for that excellent class (which must have required an enormous amount of effort and time on

LIST OF FIGURES vii

his part to manage the many visitors and firms) and his efforts to cultivate entrepreneurship

amongst EECS students.

I have also had the good fortune of being in the company of Prof. Rupak Majumdar

who served as an oracle for various academic and non-academic issues during my stay at

Berkeley. He introduced me to verification and logic and has always been ready with helpful

advice and pointers, and has been an inspiration.

In the past two years I have had the pleasure and good luck of collaborating

with the ultra-prolific Krishnendu Chatterjee with his infinite patience on my neverending

questions on µ-calculus and parity automata (and my flawed proofs). He always made time

for our papers, even when he had to write an entire (seperate) paper in two days; and

lately he has spent hours travelling from Mountain View to Berkeley (and back) to discuss

our work. I hope we will have many future joint projects. I have been fortunate to have

collaborated with Prof. Jean-François Raskin and Thomas Brihaye on the 2007 ICALP

paper. I also wish to thank Prof. Antar Bandyopadhyay for his patient help on Probability

Theory when I was struggling with the STAT205 course.

The administrative staff at Berkeley has been exemplary. Ruth Gjerde has always

been on top of things and always ready with solutions to the various problems of graduate

students. I have not encountered a better assistant (or a nicer person) anywhere. I am also

grateful to the Sylvie Vaucher in EPFL for taking care of my many visits to EPFL, and to

Fabien Salvi for providing computer support, and for giving me the script for expanding ps

files for printing which I’ve been using constantly.

I have had many good friends at Berkeley, Animesh Kumar and Biswo Poudel

have helped me enormously with my move when I literally had to leave stuff at Berkeley in

their capable hands and fly away, and have provided many hours of stimulating conversa-

tions; Arindam Chakrabarti has taught me to precisely analyze arguments and to question

the most basic assumptions we have (and with who I hope to collaborate in the future);

Arkadeb Ghosal has been an excellent officemate and collaborator; Prof. Marcin Jurdziński

has shared his viewpoints on various issues and provided many hours of discussion on re-

search. I have also enjoyed the company of Divesh Bhatt and Ushnish Basu who together

with Prof. Majumdar have hosted me on several occasions when I was apartment hunt-

ing; Prof. Rahul Jain, Kaushik Ravindran, Mohan Vamsi Dunga, Satrajit Chatterjee, Karl

Chen, James Wu, Minxi Gao, Arnab Nilim, Adam Cataldo, Digvijay Raorane, and Satish

Kumar amongst many others. The people in Prof. Henzinger’s group, past and present,

LIST OF FIGURES viii

have provided a stimulating work environment. I have been lucky to have been a part of

UCMAP, the experience will stay with me for life. I am grateful to the many instructors at

UCMAP who have provided countless hours of excellent instruction to other students, and

to Shri Balram Yadav at IIT Kanpur for introducing me to this field.

I would not have been able to come to Berkeley were it not for the support from my

teachers at Kanpur. Prof. Prabha Sharma’s course on Linear Algebra taught me the beauty

of mathematics, Prof. Katyal taught me that JEE physics could be tackled systematically

and Prof. Mitra cultivated a love of physical chemistry in us in high school. I also took many

other excellent courses during my BTech program, and am grateful to all my Professors.

The 4-top gang at IIT Kanpur provided an incredible support group during my BTech. I

am also grateful to Vivek Tandon for his extensive help during my first year at Kanpur, and

to Sumedh Wale for introducing me to Linux and who was always ready to troubleshoot

systems (and my assignments) and who worked straight through many nights until the

problems were solved or when he was able to show that the problems were not really

solvable. I enjoyed working with Tushar Kumar on countless projects throughout my last

two years at Kanpur. I could not have asked for a better project partner.

I am thankful to my brother for having been there whenever I needed help, and

for dragging me into outdoor adventures. Finally, I am most indebted to my parents for

providing unwavering support throughout my life, and for having endured my many quirks.

My BTech at IIT Kanpur (and hence this thesis) would not have been possible without

their understanding, the wonderful campus environment made possible by Father, and the

delicious food by Mother. I am also grateful to them for providing patient backing and for

bolstering my spirits whenever I needed it during my time at Berkeley.

1

Chapter 1

Introduction

Timed systems. The finite state model checking approach abstracts away from time,

retaining only the sequence of events of a reactive system for qualitative reasoning about

temporal properties (see [CGP00] and [Sch04] for an introduction to model checking and

verification of reactive systems). In this thesis we focus on properties of systems for which

time cannot be abstracted away, for example, an airplane controller must not only provide

inputs to the airplane, it must also do so in a timely fashion. Such systems are modeled as

timed systems in which the passage of time is made explicit. The discrete-time approach

models the time sequence as a monotonically increasing sequence of integers. This approach

is appropriate for synchronous digital systems where states are assumed to change at only

the times that are integer multiples of a known clock time period. Since physical systems

may not obey this restriction, the discrete-time model is only an approximation to real-

time systems (see [HMP92] for scenarios where a discrete-time approach suffices). The

dense-time approach models time as a dense set where the event timings are monotonically

increasing real (or rational) numbers.

Timed automata. Timed automata [AD94] are a well established dense-time formalism

for modeling and analysis of timed systems. A timed automaton is a finite state automaton

augmented with real-time clocks and clock constraints. The automaton has a finite set

of locations and a finite set of clocks. All clocks increase at unit rate, and transitions in

between locations are governed by clock constraints in which clocks are compared to rational

constants. A transition might also reset some clocks to 0. A state in such a system consists of

a location together with the values of the individual clocks. The presence of dense real-time

CHAPTER 1. INTRODUCTION 2

imposes challenges for verification of properties, for example, the universality and subset

inclusion problems are undecidable for timed automata (see [AM04] for a survey on decision

problems). However, a wide class of verification problems on timed automata have been

shown to be decidable [CY92, ACD93, CJ99, WDMR04]. In parallel with these theoretical

results, efficient verification tools for real-time and hybrid systems have been implemented

and successfully applied to industrial relevant case studies [HHWT95, LPY97, Fre05].

Robust models of timed systems. Timed automata and related models can distin-

guish between actions that are arbitrarily close in time. A state may satisfy a property,

with an arbitrary small deviation in the clock values of the state leading to a violation

of initial property. Since formal models for timed systems are only approximations of the

real world, and are subject to estimation errors, this presents a serious shortcoming in the

theory. Several attempts have been made to obtain a more robust theory for timed sys-

tems. The robust timed automata of [GHJ97] are such that if an automaton accepts a

trajectory, then it must accept neighboring trajectories also; and if a robust timed automa-

ton rejects a trajectory, then it must reject neighboring trajectories also. Another model

of robustness is to introduce arbitrarily small but non-zero drifts in the rates of clocks as

in [Pur98, WDMR04]. We may also explicitly model a bound on the clock drifts and delays,

as in [AT04, AT05].

Games. Often we want to distinguish between the actions of different agents in a system,

for example between a controller and an environment, where the controller must achieve its

objective irrespective of the behavior of the environment. The actions can be differentiated

by considering games played by interacting agents. We shall consider two player games. A

game proceeds in an infinite sequence of rounds where players propose moves. Each round

results in a new state, and the outcome of the game is a set of runs, a run being an infinite

sequence of states of the system. The game may be turn based or concurrent. In turn based

games, the states are partitioned into player-1 states and player-2 states: in player-1 states,

player-1 chooses the successor state; and in player-2 states, player-2 chooses the successor

state. In concurrent games, in every round both players simultaneously and independently

choose from a set of available moves, and the combination of both choices determines the

successor state. We may further categorize games as being pure, in which moves consist of

a unique desired successor state; and stochastic games where moves determine a probability

distribution on the possible successor states. For the most part, we shall focus on pure

CHAPTER 1. INTRODUCTION 3

games. An objective Φ for a player consists of a set of desired runs, and the player wins

from a given initial state if she has a strategy to ensure that no matter what the opponent

does, the set of resulting runs is a subset of Φ (in stochastic games, the player maximizes

her probability of winning). We mention two classes of objectives here: safety objectives

require that the game never gets outside a designated set of states; reachability objectives

require that player 1 ensure that the game gets to designated set of states eventually. The

synthesis problem (or control problem) for reactive systems asks for the construction of

a winning strategy in a game [Chu62, Büc62]. Game-theoretic formulations have proved

useful not only for synthesis, but also for the modeling [Dil89, ALW89], refinement [HKR02],

verification [dAHM00, AHK02], testing [BGNV05], and compatibility checking [dAH01] of

reactive systems. See [Cha07] for a survey of the results of game theory relevant to reactive

systems.

Timed automaton games. In timed automaton games, a player must not only indicate

what transition she wants to take, but also when she wants to take it. Since a state consists

of a location together with values of the clocks, even the set of successors from a state is

uncountably infinite. Construction of algorithms for timed games hence also needs extra

work to ensure termination. Termination is typically ensured by demonstrating that one

can work on a finite bisimulation quotient of the timed automaton, the region graph of the

system. Timed automaton games usually have a turn based flavor, there are controllable

transitions controlled by player 1, and uncontrollable transitions controlled by player 2.

A successor state in a round is determined by an action of either player 1 or player 2.

Typically, player 2 transitions can occur any time; player 1 only has control over her own

actions.

Since players have a choice of when they take transitions, some strategies result

in runs where time does not diverge, so called zeno runs. Zeno runs are not physically

meaningful, and hence various approaches are taken to ensure players do not win by blocking

time. The simplest approach is to discretize time so that players can only take transitions at

integer multiples of some fixed time period [HK99]. The second approach is to syntactically

ensure that players cannot block time. The syntactic restriction is usually presented as the

strong non-zenoness assumption where the attention is restricted to timed automata where

every cycle is such that in it some clock is reset to 0 and is also greater than an integer

value at some point [AM99, BBL04, PAMS98]. The third approach is to work in continuous

CHAPTER 1. INTRODUCTION 4

time, and put restrictions on strategies so that a player can win only if time diverges as

in [DM02, BDMP03]. This approach works for safety objectives but is unfair when player 1

wants to win a reachability objective, in this case player 2 may prevent player 1 from

reaching the desired state simply by blocking time. We follow the fourth approach, first

presented in [dAFH+03] which treats both reachability and safety objectives (and other

ω-regular objectives [Tho97]) in an equitable manner. To win a safety objective, player 1 is

required to not block time; and for reachability objectives she is guaranteed that player 2

will not block time. We show in the thesis that this approach is equivalent to requiring that

both players use only receptive strategies [SGSAL98, AH97]. To define receptive strategies,

we first need to assign blame to a player in case time converges. Given a run of a game, we

say player i is responsible for the run if her moves determine successor states infinitely often

in the run. We blame player i for blocking time in a zeno run if she was responsible for the

run. Note that we may blame both players in case of a time convergent run. A receptive

strategy for player i is then such that no matter what the opponent does, player i is never

responsible for blocking time. Restriction to receptive strategies is also fair as a player is

not required to guarantee time divergence. We also have that if both players use receptive

strategies, then time must diverge in the resulting runs.

Simulation and bisimulation relations. A trace of a system is a sequence of observ-

able state predicates for a given system execution, it could, for example, be the sequence

of states for a particular execution. Given an abstract system specification model S and

a more detailed model I for implementation, we want to know whether I is a faithful im-

plementation of A. This is the trace inclusion problem — we want to know whether every

trace of I is also a trace of S to ensure that no undesirable behaviors are present in I .

Unfortunately, as shown in [AD94], trace inclusion is undecidable for timed automata. The

existence of a simulation relation is a sufficient (but not necessary) condition for trace in-

clusion. Let Qs and Qi denote the state spaces of two systems S and I respectively, and

let µ(q) denote the observation on the state q. We denote q
m
→ q′ to denote that that the

system moves from the state q to q′ for the move m. For timed automata the move m can

be a simple timed move (denoting time passage), or it can be a discrete transition where

the location changes. A binary relation �⊆ Q × Q is a simulation if qi � qs implies the

following conditions:

1. µ(qi) = µ(qs).

CHAPTER 1. INTRODUCTION 5

2. If qi
m
→ q′i, then there exists q′s such that qs

m
→ q′s, and q′i � q′s.

The state q is simulated by the state q′ if there exists a simulation � such that q � q′. A

bisimulation is a symmetric simulation relation. It can be seen that if 〈qi, qs〉 ∈�, then every

trace from qi is also a trace of qs (the other direction also holds in case of a bisimulation).

To see whether qi simulates qs, we can consider the following game: player 2 plays from I

states and player 1 plays from S states. The goal of player 2 is to show that qi is not similar

to qs, and player 1 is trying to prove otherwise by matching every move of player 2. In each

round first player 2 proposes a move, which player 1 trys to match. The state qi simulates

qs iff player 1 has a strategy for matching every move of player 2 in every round.

Simulation relations between a design and an implementation often exist in prac-

tice if the implementation is closely coupled to the specification. This happens in case

the implementation follows the specification at the transition level. For timed systems, we

can have time-abstract simulation relations where the durations of matching simple timed

moves need not be the same. A time-abstract simulation relation ensures that the sequence

of observations from the first state can be observed from the second state, with their timings

being possibly unrelated. A timed simulation requires that the durations of the simple timed

moves must be the same, this ensures that the timed trace from the first state is observable

from the second, with timings matching exactly. Computation of the maximal time-abstract

and timed simulation relations is decidable for timed automata [HHK95, Cer92, Tas98].

Quantitative extensions of simulation relations. Quantitative extensions of sim-

ulation relations define pseudo-metrics on states. For example, for discrete systems, the

distance between two states may be based on how long player 1 can match player-2’s moves

in the simulation game. Such extensions are useful as a system that follows the specifica-

tion for 1010 steps, and then diverges is clearly better than a system that diverges from the

specification after 2 steps.

Temporal logics and quantitative interpretations. Temporal logics are a system

for qualitatively describing and reasoning about how the truth values of assertions change

over time (see [Eme90] for a survey). These logics can reason about properties like “even-

tually the specified assertion becomes true”, or “the specified assertion is true infinitely

often”. Typical temporal operators include 3P which is true if the assertion P is true

eventually, and 2Q which is true at a state if the assertion Q holds at the state and all

states which can follow in a system execution. A state satisfies a temporal formula ϕ if

CHAPTER 1. INTRODUCTION 6

the executions from the state satisfy the specification of ϕ. Quantitative interpretations

of temporal logics reason about how well a state satisfies the specification. The value of a

logic formula at a state is a real number rather than just a boolean value. For example, the

reachability formula 3P may have a higher value the sooner the assertion P holds, and the

safety property 2Q may have a higher value the longer Q holds.

Organization and results. We now present the organization of the thesis and

the main results of each chapter.

1. (Chapter 2). We first present the definitions for timed transition systems and timed

automata. The main results of the chapter are as follows:

• We define quantitative timed simulation functions and show that the value of

these functions can be computed to within any desired degree of accuracy for

timed automata.

• We show that the logic of timed CTL is robust with respect to our quantitative

version of bisimilarity.

• We define a quantitative temporal logic dCTL over timed systems which assigns

to every CTL formula a real value that is obtained by discounting real time. We

show that dCTL is robust with respect to the bisimilarity metic. We also present

a model checking algorithm for a subset of the logic over timed automata.

2. (Chapter 3). We first present the definitions for timed games, objectives, strategies

and receptiveness. Then, we demonstrate that the condition of receptiveness can be

pushed into objectives; that is the winning set for a timed game with objective Φ

in which only receptive strategies are allowed is the same as the winning set for the

game with an objective WC(Φ) in which all strategies are allowed. We then present

a reduction of our (semi)concurrent timed automaton games to classical turn based

games on finite state graphs. This reduction allows us to use the rich literature of

algorithms for finite game graphs for solving timed automaton games. It also leads to

algorithms with better complexity than known before.

3. (Chapter 4). We define the logics TATL and TATL
∗ to specify timed properties of

timed game structures and show that while model checking for TATL
∗ is not decidable

for timed automaton games, model checking for TATL is complete for EXPTIME.

CHAPTER 1. INTRODUCTION 7

4. (Chapter 5). We consider the optimal reachability problem for timed automata

which asks for the minimal time required by a player to satisfy a proposition irre-

spective of what the other player does. We present an EXPTIME algorithm for

computing this minimal time from all states of a timed automaton.

5. (Chapter 6). Chapter 6 contains the following results:

• We show that player 1 provably needs infinite memory to win reachability ob-

jectives in certain timed automaton games.

• We show that finite memory strategies suffice for winning safety objectives.

• We extend earlier deterministic strategies to strategies that can use randomiza-

tion.

• We show that randomization does not help player 1 in winning at more states,

and also that player 2 cannot spoil player 1 from winning from additional states

with the help of randomization. Thus, the winning sets remain the same in the

presence of randomized strategies.

• We show that with the use of randomization, finite-memory strategies suffice to

win all ω-regular objectives.

6. (Chapter 7). We define robust models of timed automaton games where player 1

must accommodate “jitter” and finite response times in her actions. We propose two

jitter models.

• In the first robust model, each move of player 1 must allow some jitter in when

the action of the move is taken. The jitter may be arbitrarily small, but it must

be greater than 0.

• In the second robust model, we give a lower bound on the jitter, i.e., every move

of player 1 must allow for a fixed jitter, which is specified as a parameter for the

game.

We show that the states from which player 1 can win with robust strategies under

both models is computable for all ω-regular objectives.

7. (Chapter 8). We conclude by reviewing some of the results in the thesis and pre-

senting directions for future work.

CHAPTER 1. INTRODUCTION 8

Related work.

Metrics and quantitative logics. Most of the work in this area has been done in the

untimed setting. The work in [dAFS04] studies metrics on finite state (untimed) quantita-

tive transition systems where propositions may have values in the set [0, 1]. The distance

function is computed by looking at the distance between the observations at corresponding

steps in the executions. Quantitative versions of the (untimed) logics LTL and µ-calculus

are presented together with robustness theorems. A discounted theory for (untimed) prob-

abilistic systems is presented in [dAHM03] where matching observations is given higher

value in the present than in the future. Robustness of the discounted µ-calculus is shown

with respect to discounted bisimilarity. Model checking algorithms for discounted logics on

(untimed) finite state stochastic systems are presented in [dAFH+05]. A measure theoretic

treatment of probabilistic bisimulation distances and quantitative probabilistic logics over

labeled Markov processes is presented in [DGJP04]. Bisimulation distances for generalized

semi-Markov processes are studied in [GJP06]. A robustness theorem for MITL is pre-

sented for timed systems in [HVG04], where distances between states are approximated as

those obtained from testing. Properties relating to skorokhod metric for trace distances of

hybrid systems are studied in [CB02]. The metric combines timing mismatches with output

mismatches for continuous state systems. The present thesis provides, to our knowledge,

the first algorithms for computing refinement metrics on timed systems. Recently [GJP08]

has explored approximate simulation relations for hybrid systems. That work however as-

sumes that the discrete dynamics of the two hybrid systems are the same, and also requires

that the time durations of the corresponding steps match exactly, with the value of the

continuous variables possibly being different. Algorithms for computing approximate sim-

ulation relations for certain classes of hybrid systems are given. These metrics and related

properties are also explored in [GP07b, GP07a] and it is shown that they are computable

for certain classes of linear systems by solving Lyapunov-like differential equations.

Timed games. Timed automaton games were first presented in [MPS95] with the implicit

assumption that it is not possible for the controller to block time. Often work has been

done under the explicit assumption of strong-nonzenoness for ensuring time progress, see

e.g., [PAMS98, FTM02]. The work in [AH97] looks at safety objectives, and correctly re-

quires that a player might not stay safe simply by blocking time. It however also requires

that the player achieve her objective even if the opponent blocks time, and hence is defi-

CHAPTER 1. INTRODUCTION 9

cient for reachability objectives. In [DM02] the authors require player 1 to always allow

player 2 moves, thus, in particular, player 2 can foil a reachability objective of player 1 by

blocking time. The strategies of player 1 are also assumed to be region strategies by defini-

tion, automatically giving a finite abstraction of the game. However, they also explore the

resources required by player 1 to win, in terms of the number of clocks, and the granularity

of the constants that the clocks are compared to. The work is extended in [BDMP03] where

player 1 cannot fully observe the states of the system. The notion of receptive strategies

for timed systems is presented in [SGSAL98], however, no algorithm under the receptive-

ness restriction is given. The work of [dAFH+03] introduced the framework where player 1

can win either by achieving the objective irrespective of what player 2 does, or she wins

if her moves are allowed only finitely often by player 2. The connection to requiring that

players use receptive strategies was not explored. Decidability of an extension to the logic

TATL to include ATL
∗ was presented in [BLMO07], after TATL was introduced in our

paper [HP06]. There has also been work done on weighted timed games, where each loca-

tion is given a cost rate together with a discrete cost on transitions, and the objective of

player 1 is to minimize this cost for reachability or limit-average objectives. This problem is

decidable under the strong non-zenoness assumption [BCFL04, BBL04], but undecidable in

the general case [BBBR07]. Limit-average discrete-time games are presented in [AdAF05]

where timed moves are restricted to be of durations either 0 or 1 time unit.

Robustness for timed systems. Much work has been done on obtaining robust se-

mantics of timed automata (in the case of a single player). The robust timed automata

of [GHJ97] introduce fuzziness in accepting trajectories, the automata must not just accept

single trajectories, they must accept tubes of trajectories. In [HR00] it is shown that the

universality problem remains undecidable for robust timed automata (and hence that they

are not complementable). Another model is to introduce drifts in the rates of clocks, as

explored in [Pur98, ATM05, WDMR04, WLR05]. As shown in [ATM05], timed automata

with just one drifting clock are determinizable from which decidability of subset inclusion

follows. The work also shows the undecidability of language problems in the multi-clock

case. The work of [Pur98, Dim07] computes reachable sets in the presence of some clock

drift. The framework of a given controller executing in parallel with the system, and where

the controller has both an observation delay, and also an action delay when its actions take

effect is explored in [WDMR04, WLR05]. The first paper explores whether there exists some

CHAPTER 1. INTRODUCTION 10

delay for which a destination is reachable, the second explores the problem for a known de-

lay parameter. Robust model checking of LTL is shown to be decidable in [BMR06] and

that of coFlat-MTL in [BMR08]. The work in [AT04, AT05] explores hybrid automata

in the presence of known observation and action delays.

Bibliography.

Chapter 2 is based on the paper [HMP05] co-authored with Prof. Thomas A. Hen-

zinger, and Prof. Rupak Majumdar. Chapter 3 is based on the papers [HP06, CHP08c,

CHP08a] and the technical reports [CHP08d, CHP08b] co-authored with Prof. Thomas

A. Henzinger and Krishnendu Chatterjee. Chapter 4 is based on the paper [HP06] co-

authored with Prof. Thomas A. Henzinger. Chapter 5 is based on the paper [BHPR07a] and

the technical report [BHPR07b] co-authored with Prof. Thomas A. Henzinger, Prof. Jean-

François Raskin and Thomas Brihaye. Chapter 6 is based on the paper [CHP08c] and the

technical report [CHP08d] co-authored with Prof. Thomas A. Henzinger and Krishnendu

Chatterjee. Chapter 7 is based on the paper [CHP08a] and the technical report [CHP08b]

co-authored with Prof. Thomas A. Henzinger and Krishnendu Chatterjee.

11

Chapter 2

Quantifying Similarities between

Timed Systems

2.1 Introduction

Most formal models for timed systems are too precise: two states can be distin-

guished even if there is an arbitrarily small mismatch between the timings of an event.

For example, traditional timed language inclusion requires that each trace in one system

be matched exactly by a trace in the other system. Since formal models for timed sys-

tems are only approximations of the real world, and subject to estimation errors, this

presents a serious shortcoming in the theory, and has been well noted in the literature

[Frä99, Pur98, WLR05, WDMR04, HR00, GHJ97, ATM05, HVG03, GJP06]. On the other

hand, untimed notions of refinement, where each trace in one system must match only the

event sequence, throws out timing altogether, an important aspect of the models.

We develop a theory of refinement for timed systems that is robust with respect

to small timing mismatches. The robustness is achieved by generalizing timed refinement

relations to metrics on timed systems that quantitatively estimate the closeness of two

systems. That is, instead of looking at refinement between systems as a boolean true/false

relation, we assign a positive real number between zero and infinity to a pair of timed

systems (Tr, Ts) which indicates how well Tr refines Ts. In the linear setting, we define the

distance between two traces as ∞ if the untimed sequences differ, and as the supremum of

the difference of corresponding time points otherwise. The distance between two systems is

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 12

then taken to be the supremum of closest matching trace differences from the initial states.

For example, the distance between the traces a
1
→ b and a

2
→ b is 1 unit, and occurs due to

the second trace lagging the first by 1 unit at b. Similarly, the distance between the first

trace and the trace a
100
→ b is 99. Intuitively, the first trace is “closer” to the second than

the third; our metric makes this intuition precise.

Timed trace inclusion is undecidable on timed automata [AD94]. To compute a

refinement distance between timed automata, we therefore take a branching view. We define

quantitative notions of timed similarity and bisimilarity which generalize timed similarity

and bisimilarity relations [Cer92, Tas98] to metrics over timed systems. Given a positive

real number ε, we define a state r to be ε-similar to another state s, if (1) the observations

at the states match, and (2) if for every timed step from r there is a timed step from s such

that the timing of events on the traces from r and s remain within ε. We provide algorithms

to compute the similarity distance between two timed systems modeled as timed automata

to within any given precision.

We show that bisimilarity metrics provide a robust refinement theory for timed

systems by relating the metrics to timed computation tree logic (TCTL) specifications. We

prove a robustness theorem that states close states in the metric satisfy TCTL specifications

that have “close” timing requirements. For example, if the bisimilarity distance between

states r and s is ε, and r satisfies the TCTL formula ∃3≤5a (i.e., r can get to a state where

a holds within 5 time units), then s satisfies ∃3≤5+2εa. A similar robustness theorem

for MITL was studied in [HVG04]. However, they do not provide algorithms to compute

distances between systems, relying on system execution to estimate the bound.

As an illustration, consider the two timed automata in Figure 2.1. Each automaton

has four locations and two clocks x, y. Observations are the same as the locations. Let

the initial states be 〈a, x = 0, y = 0〉 in both automata. The two automata seem close

on inspection, but traditional language refinement of Ts by Tr does not hold. The trace

〈a, x = 0, y = 0〉
0
→ 〈b, 0, 0〉

4
→ 〈c, 4, 4〉 . . . in Tr cannot be matched by a trace in Ts. The

automaton Ts however, does have a similar trace, 〈a, x = 0, y = 0〉
0
→ 〈b, 0, 0〉

3
→ 〈c, 3, 3〉 . . .

(the trace difference is 1 time unit). We want to be able to quantify this notion of similar

traces. Our metric gives a directed distance of 1 between Tr and Ts: for every (timed) move

of Tr from the starting state, there is a move for Ts such that the trace difference is never

more than 1 unit. The two automata do have the same untimed languages, but are not

timed similar. Thus, the traditional theory does not tell us if the timed languages are close,

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 13

Tr Ts

reset y

reset x

reset
x, y

x ≤ 10

y = 3

reset y

3 ≤ y ≤ 4

reset x

reset
x, y

x ≤ 9 x ≤ 10

x ≤ 9

2 ≤ x ≤ 3 1 ≤ x ≤ 2

a b

d c

a b

d c

Figure 2.1: Two similar timed automata

or widely different. Looking at TCTL specifications, we note Ts satisfies ∃3(c ∧ ∃3≥7d),

while Tr only satisfies the more relaxed specification ∃3(c∧∃3≥5d). Robustness guarantees

a bound on the relaxation of timing requirements.

Once we generalize refinement to quantitative metrics, a natural progression is to

look at logical formulae as functions on states, having real values in the interval [0, 1]. We use

discounting [dAFH+05, dAHM03] for this quantification and define dCTL, a quantitative

version of CTL for timed systems. Discounting gives more importance to near events than

to those in the far future. For example, for the reachability query ∃3a, we would like to

see a as soon as possible. If the shortest time to reach a from the state s is ta, then we

assign βta to the value of ∃3a at s, where β is a positive discount factor less than 1 in

our multiplicative discounting. The subscript constraints in TCTL (e.g., ≤ 5 in ∃3≤5a)

may be viewed as another form of discounting, focusing only on events before 5 time units.

Our discounting in dCTL takes a more uniform view; the discounting for a time interval

depends only on the duration of the interval. We also show that the dCTL values are well

behaved in the sense that close bisimilar states have close values for all dCTL specifications.

For the discounted CTL formula ∃3c, the value in Tr is β9 and β10 in Ts (shortest time to

reach c on time diverging paths is 9 in Tr and 10 in Ts). They are again close (on the β

scale).

Outline. The rest of the chapter is organized as follows. In Section 2.2 we define the

standard notions of refinement, similarity relations, trace metrics, and quantitative notions

of simulation and bisimilarity, and exhibit an algorithm to compute these functions to

within any desired degree of accuracy for timed automata. In Section 2.3 we prove the

robustness theorem for quantitative bisimilarity with respect to timed computation tree

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 14

logic. In Section 2.4, we define dCTL, show its robustness, and give a model checking

algorithm for a subset of dCTL over timed automata.

2.2 Quantitative Timed Simulation Functions

We define quantitative refinement functions on timed systems. These functions

allow approximate matching of timed traces and generalize timed and untimed simulation

relations.

2.2.1 Simulation Relations and Quantitative Extensions

A timed transition system (TTS) is a tuple A = 〈Q,Σ,→, µ,Q0〉 where

- Q is the set of states.

- Σ is a set of atomic propositions (the observations).

- →⊆ Q× IR+ ×Q is the transition relation.

- µ : Q 7→ 2Σ is the observation map which assigns a truth value to atomic propositions

true in a state.

- Q0 ⊆ Q is the set of initial states.

We write q
t
→ q′ if (q, t, q′) ∈→. A state trajectory is an infinite sequence q0

t0→q1
t1→ . . . ,

where for each j ≥ 0, we have qj
tj
→qj+1. The state trajectory is initialized if q0 ∈ Q0 is an

initial state. A state trajectory q0
t0→q1 . . . induces a trace given by the observation sequence

µ(q0)
t0→µ(q1)

t1→ To emphasize the initial state, we say q0-trace for a trace induced by

a state trajectory starting from q0. A trace is initialized if it is induced by an initialized

state trajectory. A TTS Ai refines or implements a TTS As if every initialized trace of Ai

is also an initialized trace of As. The general trace inclusion problem for timed systems is

undecidable [AD94], simulation relations allow us to restrict our attention to a computable

relation.

Let A be a TTS. A binary relation �⊆ Q × Q is a timed simulation if q1 � q2

implies the following conditions:

1. µ(q1) = µ(q2).

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 15

2. If q1
t
→ q′1, then there exists q′2 such that q2

t
→ q′2, and q′1 � q′2.

The state q is timed simulated by the state q′ if there exists a timed simulation � such that

q � q′. A binary relation ≡ is a timed bisimulation if it is a symmetric timed simulation.

Two states q and q′ are timed bisimilar if there exists a timed bisimulation ≡ with q ≡ q′.

Timed bisimulation is stronger than timed simulation which in turn is stronger than trace

inclusion. If state q is timed simulated by state q′, then every q-trace is also a q′-trace.

Untimed simulation and bisimulation relations are defined analogously by ignoring

the duration of time steps. Formally, a binary relation �⊆ Q×Q is an (untimed) simulation

if condition (2) above is replaced by

(2)′ If q1
t
→ q′1, then there exists q′2 and t′ ∈ IR+ such that q2

t′
→ q′2, and q′1 � q′2.

A symmetric untimed simulation relation is called an untimed bisimulation.

Timed simulation and bisimulation require that times be matched exactly. This is

often too strict a requirement, especially since timed models are approximations of the real

world. On the other hand, untimed simulation and bisimulation relations ignore the times

on moves altogether. We now define approximate notions of refinement, simulation, and

bisimulation that quantify if the behavior of an implementation TTS is “close enough” to

a specification TTS. We begin by defining a metric on traces. Given two traces π = r0
t0→

r1
t1→ r2 . . . and π′ = s0

t′0→ s1
t′1→ s2 . . . , the distance D(π, π′) is defined by

D(π, π′) =





∞ : if rj 6= sj for some j

supj{|
∑j

n=0 tn −
∑j

n=0 t
′
n|} : otherwise

The trace metric D induces a refinement distance between two TTS. Given two timed

transition systems Ar, As, with initial states Qr, Qs respectively, the refinement distance

of Ar with respect to As is given by supπq
infπ′

q′
{D(πq, π

′
q′)} where πq (respectively, π′q′) is

a q-trace (respectively, q′-trace) for some q ∈ Qr (respectively, q′ ∈ Qs). Notice that the

refinement distance is asymmetric: it is a directed distance [dAFS04].

We also generalize the simulation relation to a directed distance in the following

way. For states r, s and δ ∈ IR, the simulation function S : Q × Q × IR → IR is the least

fixpoint (in the absolute value sense) of the following equation:

S(r, s, δ) =





∞ if µ(r) 6= µ(s)

sup′
tr

inf ′ts{max′ (δ, S(r′, s′, δ + tr − ts)) | r
tr→ r′, s

ts→ s′} otherwise

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 16

where sup′, inf ′,max′ consider only the modulus in the ordering, i.e., x <′ y iff |x| < |y| in

the standard real number ordering. We say r is ε-simulated by s if |S(r, s, 0)| ≤ ε. Note

the ε-simulation is not transitive in the traditional sense. If r is ε-simulated by s, and s is

ε-simulated by w, then r is (2ε)-simulated by w.

Given two states r, s, it is useful to think of the value of S(r, s, δ) as being the

outcome of a game. Environment plays on r (and its successors), and chooses a move at

each round. We play on s and choose moves on its successors. Each round adds another

step to both traces (from r and s). The goal of the environment is to maximize the trace

difference, our goal is to minimize. The value of S(r, s, δ) is the maximum lead of the r

trace with respect to the s trace when the simulation game starts with the r trace starting

with a lead of δ. If from r, s the environment can force the game into a configuration in

which we cannot match its observation, we assign a value of ∞ to S(r, s, ·). Otherwise, we

recursively compute the maximum trace difference for each step from the successor states

r′, s′. For the successors r′, s′, the lead at the first step is (δ + tr − ts). The lead from the

first step onwards is then S(r′, s′, δ + tr − ts). The maximum trace difference is either the

starting trace difference (δ), or some difference after the first step (S(r′, s′, δ + tr − ts)).

Note that different accumulated differences in the times in the two traces may

lead to different strategies, we need to keep track of the accumulated delay or lead. For

example, suppose the environment is generating a trace and is currently at state r, and our

matching trace has ended up at state s. Suppose r can only take a step of length 1, and

s can take two steps of lengths 0 and 100. If the two traces ending at r and s have an

accumulated difference of 0 (the times at which r and s occur are exactly the same), then

s should take the step of length 0. But if the r trace leads the s trace by say 70 time units,

then s should take the step of length 100, the trace difference after the step will then be

|70 + 1 − 100| = 29, if s took the 0 step, the trace difference would be 70 + 1 − 0 = 71.

We also define the corresponding bisimulation function. For states r, s ∈ Q and a

real number δ, the bisimulation function B : Q×Q × IR → IR is the least fixpoint (in the

absolute value sense) of the equations B(r, s, δ) = ∞ if µ(r) 6= µ(s), and

B(r, s, δ) = max





sup′
tr

inf ′ts{max′ (δ, B(r′, s′, δ + tr − ts)) | r
tr→ r′, s

ts→ s′},

sup′
ts

inf ′tr{max′ (δ, B(r′, s′, δ + tr − ts)) | r
tr→ r′, s

ts→ s′}





otherwise, where sup′, inf ′,max′ consider only the modulus in the ordering. The bisimilarity

distance between two states r, s of a TTS is defined to be B(r, s, 0). States r, s are ε-bisimilar

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 17

5

410

7

Ar

12 9

As

8

c3c2

b

c

a1

b1 b2

a

c1

Figure 2.2: Ar is 2-similar to As

if B(r, s, 0) ≤ ε. Notice that B(r, s, 0) = 0 iff r, s are timed bisimilar.

Proposition 1. Let r and s be two states of a TTS. For every trace πr from r, there is

a trace πs from s such that D(πr, πs) ≤ |S(r, s, 0)|. The bisimilarity distance B(r, s, 0) is a

pseudo-metric on the states of TTSs.

Example 1. Consider the example in Fig. 2.2. The observations have been numbered for

simplicity: µ(a1) = a, µ(bi) = b, µ(ci) = c. We want to compute S(a, a1, 0). It can be checked

that a is untimed similar to a1 All paths have finite weights, so S(a, a1, 0) < ∞. Consider

the first step, a takes a step of length 7 in Ar. As has two options, it can take a step to b1

of length 5 or a step to b2 of length 8, and to decide which one to take, it needs S(b, b1, 2)

and S(b, b2,−1). S(b, b2,−1) is −1 + 10 − 4 = 5. To compute S(b, b1, 2), we look at b1’s

options. In the next step, if we move to c2, then the trace at the (c, c2) configuration will be

2+10−9 = 3. If we move to c1, the trace difference will be 2+10−12 = 0 (this is the better

option). Thus S(b, b1, 2) = 2 (the 2 is due to the initial lead). Thus S(a, a1, 0) = 2.

2.2.2 Algorithms for Simulation Functions

Finite Weighted Graphs.

We first look at computing ε-simulation on a special case of timed transition sys-

tems. A finite timed graph T = (Q,Σ, E, µ,W) consists of a finite set of locations Q, a set

Σ of atomic propositions, an edge relation E ⊆ Q×Q, an observation function µ : V → 2Σ

on the locations, and an integer weight function W : E → N+ on the edges. For vertices

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 18

s, s′ ∈ Q, we write s
t
→ s′ iff there is an edge (s, s′) ∈ E with W (s, s′) = t. The following

theorem provides a bound on simulation functions on a finite timed graph.

Theorem 1. Let A be a finite timed graph and let n = |Q| be the number of nodes and

Wmax = maxe∈E{W (e)} the maximum weight of any edge. Let f ∈ {S,B}. (1) For every

pair of vertices r, s ∈ Q, if |f(r, s, 0)| < ∞, then |f(r, s, 0)| ≤ 2n2 ·Wmax. (2) The values

S(r, s, 0) and B(r, s, 0) are computable over finite timed graphs in time polynomial in n and

Wmax.

Proof. The proof is by contradiction, we give the argument for S(r, s, 0). Since we are

working on a finite graph, the sup-inf in the definition of S can be replaced by a max-min.

Consider the product graph A×A where if r
tr−→ r′ and s

ts−→ s′ in A, then 〈r, s〉
tr−ts−→ 〈r′, s′〉

in A × A. The value of the max-min can be viewed as the outcome of a game, where the

environment chooses a (maximizing) move for the first vertex in the product graph, we

choose a (minimizing) move for the second vertex, and the game moves to the resulting

vertex pair.

Suppose n2Wmax < |S(r, s, 0)| < ∞. Since there are only n2 locations in the

pair graph, and since each composite move can cause at most Wmax lead or lag, there

must be a cycle of composite locations in the game, with non-zero accumulative weight.

When the game starts, we would do our best to not to get into such a cycle. If we cannot

avoid getting into such a cycle because of observation matching of the environment moves,

|S(v, s, 0)| will be ∞, because the environment will force us to loop around that cycle forever.

If |S(r, s, 0)| < ∞, and we choose to go into such a cycle, it must be the case that there

is an alternative path/cycle that we can take which has accumulated delay of the opposite

sign. For example, it may happen that at some point in the game we have an option of

going into two loops, loop 1 has total gain 10, loop 2 has total gain -1000. We will take

loop 1 the first 500 times, then loop 2 once, then repeat with loop 1. The leads and lags

cancel out in part keeping S(r, s, 0) bounded. A finite value value of S(r, s, 0) is then due to

1) some initial hard observation matching constraint steps, with the number of steps being

less than n2 (no cycles), and 2) presence of different weight cycles (note we never need to

go around the maximum weight cycle more than once). A cycle in the pair graph can have

weight at most n2Wmax. Hence the value of |S(r, s, 0)| is bounded by 2n2Wmax.

Given the upper bound, the value of S() can then be computed using dynamic

programming (since all edges are integer valued, it suffices to restrict our attention to

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 19

q

p

p

p

p

p

p
s1

s2

s3

T1: All edges of
weight 2

Figure 2.3: First automata for game with an ε of Θ(2 · n1 · n2 ·W)

S(·, ·, δ) for integer valued δ). Further, this bound is tight: there is a finite timed graph A

and two states r, s of A with S(r, s, 0) in Θ(2 · n2 ·Wmax).

Example 2 (Game with a simulation distance of Θ(2 · n1 · n2 ·W)). Consider the game in

Figures 2.3 and 2.4. Suppose we start in locations 〈s1, l3〉. Player 2 reaches l4 in n2 − 4

moves, player 1 reaches s2 in n1 − 2 steps. If n2 − 4 6= n1 − 2, then player 2 will have to

move into the long p cycle again, for it can only take the l4 → l2 transition when player

1 is at s2, and his next state does not have a transition to q. This process continues, and

player 2 is forced to loop around the long cycle k times, where is the least number such that

k(n2 − 3)− 1 = m(n1 − 1)− 1. At the end of the k loopings, player 1 is at s2, and player 2

at l4. The worst case occurs when n1 − 1 and n2 − 3 are relatively prime, and k = n1 − 1.

Accumulated weight of player 2 = ((n1 − 1)(n3 − 3)− 1)W . Accumulated weight of player 1

= ((n1 − 1)(n3 − 3)− 1)2, so ε = ((n1 − 1)(n3 − 3)− 1)(W − 2). At the end of the loopings,

player 2 can move to l2 and then to l1, and allow player 1 to “catch up”.

Proposition 2. The following Algorithm computes ε-similarity for simple timed graphs.

r := 0;

MAX EPS:= 2 · n1 · n2 ·W

visitedr[1 . . . n1][1 . . . n2][−MAX EPS . . . MAX EPS][−MAX EPS . . . MAX EPS + 1] := false

for 1 ≤ sa ≤ n1, 1 ≤ sb ≤ n2, |i| ≤ MAX EPS do

if obs(sa) = obs(sb) then

f0(〈sa, sb, i〉) = g0(〈sa, sb, i〉) = i

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 20

q

p p p p

p

p p

1

1 1

1
l1

l2
l3

l4

T2 (Default edge weight is W >> 2)

Figure 2.4: Second automata for game with an ε of Θ(2 · n1 · n2 ·W)

else

f0(〈sa, sb, i〉) = g0(〈sa, sb, i〉) = ∞

end if

end for

for 1 ≤ sa ≤ n1, 1 ≤ sb ≤ n2, MAX EPS+ 1 ≤ |i| ≤ MAX EPS +W do

f0(〈sa, sb, i〉) = g0(〈sa, sb, i〉) = ∞

end for

repeat

r := r + 1

fr := Π(fr−1)

if |fr(〈sa, sb, i〉)| > 2 · n1 · n2 ·W then

fr(〈sa, sb〉) := ∞

end if

gr := max{gr−1, |fr|}

visitedr := visitedr−1

for 1 ≤ sa ≤ n1, 1 ≤ sb ≤ n2, |i| ≤ MAX EPS do

if fr(〈sa, sb, i〉) 6= ∞ then

visitedr(〈sa, sb, i, fr(〈sa, sb, i〉)〉) := true

else

visitedr(〈sa, sb, i, MAX EPS+ 1〉) := true

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 21

end if

end for

until visitedr = visitedr−1

ε(〈sa, sb〉) := gr(〈sa, sb, 0〉)

Where for Hr(sa, s
′
a, sb, s

′
b, i) = w(sa, s

′
a) − w(sb, s

′
b) + fr−1(〈s

′
a, s

′
b, i + w(sa, s

′
a) −

w(sb, s
′
b)〉 we have

Π(fr−1)(〈sa, sb, i〉) =





Hr(sa, s
′
a, sb, s

′
b, i) such that obs(s′′a) = obs(s′′b) and

|Hr(sa, s
′
a, sb, s

′
b, i)| =

max
s′′a :sa→s′′a

(
min

s′′
b
:sb→s′′

b
,obs(s′′a)=obs(s′′

b
)
|Hr(sa, s

′′
a, sb, s

′′
b , i)|

)
;

∞ if ∃s′a 6 ∃s′b(sa → s′a) ∧ (sb → s′b) ∧ (obs(sa) = obs(sb))

fr(〈sa, sb, i〉 keeps track of the accumulated lead of player 1 at the rth step, assum-

ing the game started with player 1 being in lead by i units. gr keeps track of the maximum

value of the difference seen upto the rth stage. visitedr[sa, sb, i, k] indicates the game

starting with sa, sb with player 1 having a lead of i has seen an ε of k before r steps (player

1 has lead player 2 by k at some step before the rth stage).

If at some point fr becomes more than 2 ·n1 ·n2 ·W , then we know the final value

cannot be finite by Theorem. 1 , so we set it to ∞ .

For termination, we record the values of the lead/lag seen upto r steps in visitedr.

When visitedr reaches a fixpoint, no new values of lead/lag can be generated, and hence

ε will not increase. Finally, the value of ε for two states sa, sb, is the value of the game

starting at 0 : gr(〈sa, sb, 0〉).

Suppose n1 = n2 = n, let there be m edges in each graph. Initializations take

time O(n6W 2). Each computation of Π take time O((n2 +m2)W), so the time taken for

each iteration of the repeat loop is dominated by the array assignment O(n6W 2). In each

iteration, at least one of the elements in the visited array must change, so there can at

most be O(n6W 2) iterations. Hence the total running time is O(n12W 4).

Timed Automata.

Timed automata provide a syntax for timed transition systems. A timed automaton

A is a tuple 〈L,Σ, C, µ,→, Q0〉, where

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 22

• L is the set of locations.

• Σ is the set of atomic propositions.

• C is a finite set of clocks. A clock valuation v : C 7→ IR+ for a set of clocks C assigns

a real value to each clock in C.

• µ : L 7→ 2Σ is the observation map (it does not depend on clock values).

• →⊆ L × L × 2C × Φ(C) gives the set of transitions, where Φ(C) is the set of clock

constraints generated by ψ := x ≤ d | d ≤ x | ¬ψ | ψ1 ∧ ψ2.

• Q0 ⊆ L× IR+|C|
is the set of initial states.

Each clock increases at rate 1 inside a location. A clock valuation is a function κ : C 7→ IR≥0

that maps every clock to a nonnegative real. The set of all clock valuations for C is denoted

by K(C). Given a clock valuation κ ∈ K(C) and a time delay ∆ ∈ IR≥0, we write κ + ∆

for the clock valuation in K(C) defined by (κ+ ∆)(x) = κ(x) + ∆ for all clocks x ∈ C. For

a subset λ ⊆ C of the clocks, we write κ[λ := 0] for the clock valuation in K(C) defined by

(κ[λ := 0])(x) = 0 if x ∈ λ, and (κ[λ := 0])(x) = κ(x) if x 6∈ λ. A clock valuation κ ∈ K(C)

satisfies the clock constraint θ ∈ Constr(C), written κ |= θ, if the condition θ holds when

all clocks in C take on the values specified by κ.

A state s = 〈l, κ〉 of the timed automaton game T is a location l ∈ L together

with a clock valuation κ ∈ K(C) such that the invariant at the location is satisfied, that

is, κ |= γ(l). The set of states is denoted Q = L × (IR+)|C|. An edge 〈l, l′, λ, g〉 represents

a transition from location l to location l′ when the clock values at l satisfy the constraint

g. The set λ ⊆ C gives the clocks to be reset with this transition. The semantics of timed

automata are given as timed transition systems. This is standard [AD94], and omitted here.

For simplicity, we assume every clock of a timed automaton A stays within M +1,

where M is the largest constant in the system.

Region equivalence relation. Algorithms for problems on timed automata typically use

the region equivalence relation which induces a time-abstract bisimulation quotient. For a

real t ≥ 0, let frac(t) = t − ⌊t⌋ denote the fractional part of t. Given a timed automaton

game T, for each clock x ∈ C, let cx denote the largest integer constant that appears in

any clock constraint involving x in T. Two states 〈l1, κ1〉 and 〈l1, κ1〉 are said to be region

equivalent if all the following conditions are satisfied:

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 23

1. The locations match, that is l1 = l2.

2. For all clocks x, κ1(x) ≤ cx iff κ2(x) ≤ cx.

3. For all clocks x with κ1(x) ≤ cx, ⌊κ1(x)⌋ = ⌊κ2(x)⌋.

4. For all clocks x, y with κ1(x) ≤ cx and κ1(y) ≤ cy, frac(κ1(x)) ≤ frac(κ1(x)) iff

frac(κ2(x)) ≤ frac(κ2(x)), and

5. For all clocks x with κ1(x) ≤ cx, frac(κ1(x)) = 0 iff frac(κ2(x)) = 0.

A region is an equivalence class of states with respect to the region equivalence relation.

There are finitely many clock regions; more precisely, the number of clock regions is bounded

by |L| ·
∏

x∈C(cx + 1) · |C|! · 2|C|.

A region R of a timed automaton A can be represented as a tuple 〈l, h,P(C)〉

where

• l is a location of A.

• h is a function which specifies the integer values of clocks h : C → (IN∩ [0,M]) (M is

the largest constant in A).

• P(C) is a disjoint partition of the clocks {X0, . . . Xn | ⊎Xi = C,Xi 6= ∅ for i > 0}.

We say a state s with clock valuation v is in the region R when,

1. The location of s corresponds to the location of R

2. For all clocks x with κ(x) < M + 1, ⌊κ(x)⌋ = h(x).

3. For κ(x) ≥M + 1, h(x) = M . (This is slightly more refined than the standard region

partition, we have created more partitions in [M,M + 1), we map clock values which

are greater than M into this interval. This is to simplify the proofs.)

4. For any pair of clocks (x, y), frac(κ(x)) < frac(κ(y)) iff x ∈ Xi and y ∈ Xj with i < j

(so, x, y ∈ Xk implies frac(κ(x)) = frac(κ(y))).

5. frac(κ(x)) = 0 iff x ∈ X0.

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 24

We now show that given states r, s in a timed automaton A, the values of S(r, s, 0)

and B(r, s, 0) can be computed to within any desired degree of accuracy. We use a cor-

ner point abstraction (similar to that in [BBL04]) which can be viewed as a region graph

augmented with additional timing information. We show that the corner points are at a

close bisimilarity distance from the states inside the corresponding regions. Finally we use

Theorem 1 to compute the approximation for S(·) on the corner point graph.

A corner point is a tuple 〈α,R〉, where α ∈ IN|C| and R is a region. A region

R = 〈l, h, {X0, . . . Xn}〉 has n+ 1 corner points {〈αi, R〉 | 0 ≤ i ≤ n}:

αi(x) =





h(x) : x ∈ Xj with j ≤ i

h(x) + 1 : x ∈ Xj with j > i

Intuitively, corner points denote the boundary points of the region.

Using the corner points, we construct a finite timed graph as follows. The structure

is similar to the region graph, only we use corner points, and weights on some of the edges to

model the passage of time. For a timed automaton A, the corner point abstraction CP(A)

has corner points p of A as states. The observation of the state 〈α, 〈l, h,P(C)〉〉 is µ(l). The

abstraction has the following weighted transitions :

Discrete There is an edge 〈α,R〉
0

−→ 〈α′, R′〉 if A has an edge 〈l, l′, λ, g〉 (l, l′ are locations

of R,R′ respectively) such that (1) R satisfies the constraint g, and (2) R′ = R[λ 7→ 0],

α′ = α[λ 7→ 0] (note that corner points are closed under resets).

Timed For corner points 〈α,R〉, 〈α′, R〉 such that ∀x ∈ C, α′(x) = α(x) + 1, we have an

edge 〈α,R〉
1

−→ 〈α′, R〉. These are the edges which model the flow of time. Note that

for each such edge, there are concrete states in A which are arbitrarily close to the

corner points, such that there is a time flow of length arbitrarily close to 1 in between

those two states.

Region flow These transitions model the immediate flow transitions in between “adjacent”

regions. Suppose 〈α,R〉, 〈α,R′〉 are such that R′ is an immediate time successor of R,

then we have an edge 〈α,R〉
0

−→ 〈α,R′〉. If 〈α + 1, R′〉 is also a corner point of R′,

then we also add the transition 〈α,R〉
1

−→ 〈α+ 1, R′〉.

Self loops Each state also has a self loop transition of weight 0.

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 25

Transitive closure We transitively close the timed, region flow, and the self loop transi-

tions upto weight M (the subset of the full transitive closure where edges have weight

less than or equal to M).

The number of states in the corner point abstraction of a timed automaton A is

O(|L| · |C| · (2M)|C|), where L is the set of locations in A, C the set of clocks, and M the

largest constant in the system.

Lemma 1. Let s be a state in a timed automaton A, and let p be a corner point of the

region R corresponding to s in the corner point abstraction of A. Then s is ε-bisimilar to

p for ε = |C| + 1, that is, S(s, p, 0) ≤ |C| + 1, where C is the set of clocks in A.

Informally, each clock can be the cause of at most 1 unit of time difference, as the

time taken to hit a constraint is always of the form d−κ(x) for some clock x and integer d.

Once a clock is reset, it collapses onto a corner point, and the time taken from that point

to reach a constraint controlled by x is the same as that for the corresponding corner point

in CP(A).

Using Lemma 1 and Theorem 1, we can “blow” up the time unit for a timed au-

tomaton to compute ε-simulation and ε-bisimilarity to within any given degree of accuracy.

This gives an EXPTIME algorithm in the size of the timed automaton and the desired

accuracy.

Theorem 2. Given two states r, s in a timed automaton A, and a natural number m, we

can compute numbers γ1, γ2 ∈ IR such that S(r, s, 0) ∈ [γ1 − 1
m
, γ1 + 1

m
] and B(r, s, 0) ∈

[γ2 −
1
m
, γ2 + 1

m
] in time polynomial in the number of states of the corner point abstraction

and in m|C|, where C is the set of clocks of A.

Proof. Suppose given m, we want to compute S(r, s, 0) to an accuracy within 1/m. Multiply

the timed automaton by u = m2(|C| + 1), and let r′, s′ be region equivalent to ru, su

(each clock value multiplied by u) in the resulting corner point abstraction. We have

S(ru, r′) ≤ |C| + 1,S(s′, su, 0) ≤ |C| + 1.

Also let S(r′, s′, 0) = η S(ru, su, 0) ≤ S(ru, r′, 0) + S(r′, s′, 0) + S(s′, su, 0) = η + 2(|C| + 1).

So S(r, s, 0) ≤ η/u+ 2(|C| + 1)/u = η/u+ 1/m. The other direction is similar.

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 26

2.3 Robustness of Timed Computation Tree Logic

TCTL.

Timed computation tree logic (TCTL) [ACD93] is a real time extension of CTL

[CES86]. TCTL adds time constraints such as ≤ 5 to CTL formulae for specifying timing

requirements. For example, while the CTL formula ∀3a only requires a to eventually hold

on all paths, the TCTL formula ∀3≤5a requires a to hold on all paths before 5 time units.

We will use ∼ to mean one of the binary relations <,≤, >,≥. The formulae of

TCTL are given inductively as follows:

ϕ := a | false | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃(ϕ1 U∼dϕ2) | ∀(ϕ1 U∼dϕ2)

where a ∈ Σ and d ∈ IN.

The semantics of TCTL formulas is given over states of timed transition systems.

For a state s in a TTS

• s |= a iff a ∈ µ(s).

• s 6|= false.

• s |= ¬ϕ iff s 6|= ϕ.

• s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2.

• s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2.

• s |= ∃(ϕ1 U∼dϕ2) iff for some run ρs starting from s, for some t ∼ d, the state at time

t, ρs(t) |= ϕ2, and for all 0 ≤ t′ < t, ρs(t
′) |= ϕ1.

• s |= ∀(ϕ1 U∼dϕ2) iff for all (infinite) paths ρs starting from s, for some t ∼ d, the state

at time t, ρs(t) |= ϕ2, and for all 0 ≤ t′ < t, ρs(t
′) |= ϕ1.

We define the waiting-for operator as ∃(ϕ1 W∼cϕ2) = ¬∀(¬ϕ2 U∼c¬(ϕ1 ∨ ϕ2)),

∀(ϕ1 W∼cϕ2) = ¬∃(¬ϕ2 U∼c¬(ϕ1 ∨ ϕ2)). The until operator in ϕ1 U∼dϕ2 requires that

ϕ2 become true at some time, the waiting-for formula ϕ1 W∼dϕ2 admits the possibil-

ity of ϕ1 forever “waiting” for all times t ∼ d and ϕ2 never being satisfied. Formally,

s |= ∀(ϕW∼dθ) (respectively, s |= ∃(ϕW∼dθ)) iff for all traces (respectively, for some trace)

ρs from s, either 1) for all times t ∼ d, ρs(t) |= ϕ, or 2) at some time t, ρs(t) |= θ, and

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 27

for all (t′ < t) ∧ (t′ ∼ d), ρs(t
′) |= ϕ. Using the waiting-for operator and the identities

¬(ϕ∃U∼dθ) = (¬ϕ)∀W∼d(¬ϕ∧¬θ) and ¬(ϕ∀U∼dθ) = (¬ϕ)∃W∼d(¬ϕ∧¬θ), we can write

each TCTL formula ϕ in negation normal form by pushing the negation to the atomic

propositions.

Lemma 2. ¬(ϕ‡ U∼dθ) = (¬ϕ)‡W∼d(¬ϕ∧¬θ) where ‡ = ∀(∃), ‡ = ∃(∀) (the corresponding

dual to ‡).

Proof. We prove the first claim, the other case is similar.

⇒. We try to see if with the given condition s 6|= ¬(¬θ∃U∼c¬(ϕ ∨ θ)) , ie if s |= ψ =

¬θ∃U∼c¬(ϕ ∨ θ).

Suppose for all t ∼ c, ρ(t) |= ϕ, then, ρ(t) |= ϕ ∨ θ, so assume at some time t,

ρ(t) |= θ, and for (t′ < t) ∧ (t′ ∼ c) ρ(t′) |= ϕ.

If ¬(t ∼ c), then clearly ψ cannot be satisfied, so assume t ∼ c.

At time t θ is satisfied, so to satisfy ψ, we must have ¬ϕ ∧ ¬θ satisfied at (t′ <

t) ∧ (t′ ∼ c). But this is not possible, for at all (t′ < t) ∧ (t′ ∼ c), we have ρ(t′) |= ϕ Thus,

there is no trace which can be a witness for satisfying ψ, ie s |= ¬ψ, which is the given

formula.

⇐. s |= ¬(¬θ∃U∼c¬(ϕ ∨ θ)) iff there is no trace ρ such that for some time t ∼ c, ρ(t) |=

¬(ϕ ∨ θ) and for all t′ < t ρ(t′) |= ¬θ iff for all traces either for all t ∼ c ρ(t) |= ϕ ∨ θ or if

for t ∼ c, if ρ(t) |= ¬ϕ ∧ ¬θ, then there is some t′ < t such that ρ(t′) |= θ. We claim this

implies the given condition.

Suppose for some trace ρ for all t ∼ c, ρ(t) |= ϕ ∨ θ. Assume at time t′ ∼ c,

ρ(t′) |= θ∧¬ϕ. For this trace to be a witness to unsatisfiability of the given two conditions,

the second clause needs to be violated (we have assumed the violation of the first condition).

We also have ρ(t) |= θ. Assume there is no t′ such that ¬(t′ ∼ c) and ρ(t′) |= θ. So then,

we need that there be some t′ ∼ c such that ρ(t′) |= ¬ϕ and for all (t′′ ≤ t′) ∧ (t′′ ∼ c),

ρ(t′′) |= ¬θ. But that means at ρ(t′) |= ¬ϕ ∧ ¬θ, contrary to assumption.

Suppose for some trace ρ that there is some t ∼ c such that ρ(t) |= ¬(θ ∨ ϕ).

Then, we also have that there is some t′ < t such that ρ(t′) |= θ. This trace violates the

first condition, we need to see if it can violate the second one. The second condition can

be written as ∃t[ρ(t) |= θ ∧ ∀x(((x < t) ∧ (x ∼ c)) → ρ(x) |= ϕ)] = ∃t[ρ(t) |= θ ∧ ∀x((x ≥

t)∨¬(x ∼ c)∨ρ(x) |= ϕ)]. The negation of the condition is ∀t[ρ(t) 6|= θ∨∃x((x < t)∧(x ∼ c)∧

ρ(x) 6|= ϕ)] = ∀t[ρ(t) |= θ → ∃x((x < t)∧(x ∼ c)∧ρ(x) 6|= ϕ)]. This condition can be seen to

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 28

be equivalent to ∀t[ρ(t) |= θ → ∃x{((x < t)∧ (x ∼ c)∧ρ(x) 6|= ϕ)∧∀y(y ≤ x→ ρ(y) 6|= θ)}].

But we have that if at a time t ∼ c ρ(t) |= ¬(θ ∨ ϕ) then there is always a t′ < t

such that ρ(t′) |= θ. Thus the previous condition is not satisfiable, and hence we must

satisfy at least one of the conditions in the lemma.

δ-weakened TCTL.

For each TCTL formula ϕ in negation normal form, and δ ∈ IR+, a δ-weakening

ζδ(ϕ) of ϕ with respect to δ is defined as follows:

• ζδ(a) := a

• ζδ(¬a) := ¬a

• ζδ(false) := false

• ζδ(ϕ1 ∨ ϕ2) = ζδ(ϕ1) ∨ ζ
δ(ϕ2)

• ζδ(ϕ1 ∧ ϕ2) = ζδ(ϕ1) ∧ ζ
δ(ϕ2)

• ζδ(‡(ϕ1 U∼dϕ2)) = ‡(ζδ(ϕ1)U∼δ(d,∼)ζ
δ(ϕ2))

• ζδ(‡(ϕ1 W∼dϕ2)) = ‡(ζδ(ϕ1)W∼δ′(d,∼)ζ
δ(ϕ2))

where ‡ ∈ {∃,∀} and

δ(d,∼) =




d+ δ if ∼∈ {<,≤}

d− δ if ∼∈ {>,≥}
δ′(d,∼) =




d− δ if ∼∈ {<,≤}

d+ δ if ∼∈ {>,≥}

The ζδ function relaxes the timing constraints by δ. The U and the W operators are

weakened dually. Note that ¬ζδ(ψ) 6= ζδ(¬ψ). The discrepancy occurs because of the

difference in how δ and δ′ are defined. Let

δ2(d,∼) =




d+ 2δ where ∼ is <,≤

d− 2δ where ∼ is >,≥

and

δ′2(d,∼) =




d− 2δ where ∼ is <,≤

d+ 2δ where ∼ is >,≥

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 29

Proposition 3. • ¬ζδ(p) = ζδ(¬p)

• ¬ζδ(false) = ζδ(¬false)

• ¬ζδ(ϕ1 ∨ ϕ2) = ζδ(¬ϕ1) ∨ ζ
δ(¬ϕ2)

• ¬ζδ(ϕ1 ∧ ϕ2) = ζδ(¬ϕ1) ∧ ζ
δ(¬ϕ2)

• ¬ζδ(‡(ϕ1 U∼dϕ2)) = ζδ(¬ ‡ (ϕ1 U∼δ′2(d,∼)ϕ2))

• ¬ζδ(‡(ϕ1 W∼dϕ2)) = ζδ′2(c)(¬ ‡ (ϕ1 W∼δ2(d,∼)ϕ2))

Proof. Take for instance ϕ ‡ U∼cθ. ¬ζδ(ϕ ‡ U∼cθ) = ¬(ζδ(ϕ) ‡ U∼δ(c,∼)ζ
δ(θ)) =

¬(ζδ(ϕ))‡W∼δ(c,∼)¬(ζδ(θ) ∨ ζδ(ϕ)) = ζδ(¬ϕ))‡W∼δ(c,∼)ζ
δ(¬(θ ∨ ϕ)) =

ζδ(¬ϕ))‡W∼δ′(δ2(c,∼),∼)ζ
δ(¬(θ ∨ ϕ)) = ζδ(¬ϕ‡Wδ2(c,∼)¬(θ ∨ ϕ)) = ζδ(¬(ϕ ‡ U∼δ2(c,∼)θ))

Example 3. Let a and b be atomic propositions. We have ζ2(∃(aU≤5b)) = ∃(aU≤7b).

Earlier, a state had to get to b within 5 time units, now it has 7 time units to satisfy the

requirement. Similarly, ζ2(∃(aW≤5b)) = ∃(aW≤3b)). The pre-weakened formula requires

that either 1) for all t ≤ 5 the proposition a must hold, or 2) at some time t, b must hold,

and for all (t′ < t) ∧ (t′ ≤ 5) a must hold. The weakening operator relaxes the requirement

on a holding for all times less than or equal to 5 to only being required to hold at times less

than or equal to 3 (modulo the (t′ < t) clause in case 2).

The next lemma states that the ζ operator is indeed a weakening operator.

Lemma 3. For all reals δ ≥ 0, TCTL formulae ϕ, and states s of a TTS, if s |= ϕ, then

s |= ζδ(ϕ).

Proof. The proofs for base case, and the boolean connectives are obvious. Consider the

∀U case. Suppose s |= ϕ∀U∼cθ. Then for every path ρ starting from s, for some t ∼ c

ρ(t) |= θ, and for all t′ < t, ρ(t′) |= ϕ. The induction hypothesis gives ρ(t) |= ζδ(θ), and

ρ(t′) |= ζδ(ϕ). Thus s |= ζδ(ϕ∀U∼cθ). The other connectives follow a similar outline.

We now connect the bisimilarity metric with satisfaction of TCTL specifications.

Of course, close states may not satisfy the same TCTL specifications. Take ϕ = ∀3=5a,

it requires a to occur at exactly 5 time units. One state may have traces that satisfy a at

exactly 5 time units, another state at 5 + ε for an arbitrarily small ε. The first state will

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 30

satisfy ϕ, the second will not. However, two states close in the bisimilarity metric does

satisfy “close” TCTL specifications. Theorem 4 makes this precise.

Define state s0, s1 to be [ω, ε] bisimilar if

1. |ω| ≤ ε.

2. The observations of s0, s1 match.

3. If si takes a discrete move to s1i , then si makes a discrete move to s1
i
, such that

obs(si)
1 = obs(s1

i
); and s10, s

1
1 are again (ε0, ε1)

+ bisimilar.

4. If s0 (s1) takes a time move t (t′), then s1 (s0) can take a time move t′ (t) such that

s0 + t, s1 + t′ are [ω + (t− t′), ε] bisimilar.

ω, keeps track of how much system 1 is “leading” or “lagging”, and ε keeps track

of the maximum value of ω seen so far.

Lemma 4. Two states are ε-bisimilar iff they are [0, ε] bisimilar.

Theorem 3. Suppose s1, s2 are two (ω, ε) bisimilar states. If s1 |= ϕ, then s2 |= ζδ(ϕ),

where δ = 2ε.

Proof. The base case, and the boolean connectives are again simple. Take the ∀W

case. Suppose s1 |= ϕ∀W∼cθ and s2 6|= ζδ(ϕ)∀W∼δ′(∼,c)ζ
δ(θ). Since s2 does not sat-

isfy the formula, it must be that s2 |= ¬(ζδ(ϕ)∀W∼δ′(∼,c)ζ
δ(θ)). Equivalently s2 |=

¬ζδ(θ)∃U∼δ′(∼,c)¬(ζδ(ϕ) ∨ ζδ(θ)).

Take ∼ to be >, the other cases are similar. There must be a path ρ2 starting

from s2 such that 1) there exists a time t > c+ δ such that ρ2(t) |= ¬ζδ(ϕ)∧¬ζδ(θ), and 2)

for all t′ < t, ρ2(t
′) |= ¬ζδ(θ). Since s1, s2 are [ω, ε] bisimilar, there exists a path ρ1, and a

time t1 corresponding to t such that ρ1(t1), ρ2(t) are [ω+ t1− t, ε] bisimilar. |ω+ t1− t| ≤ ε,

so −ω − ε+ t ≤ t1. ω ≤ ε, and t > c+ 2ε, so we get t1 > c.

s1 |= ϕ∀W>cθ, so either for all t′1 > c ρ1(t
′
1) |= ϕ, or, for some t′1 ρ1(t

′
1) |= θ, and

for all c < t′′1 < t′1, ρ1(t
′′
1) |= ϕ . In the first case using ρ1(t1) |= ϕ, we get ρ2(t) |= ζδ(ϕ)

by inductive hypothesis - a contradiction. In the second case, suppose there is a t′1 ≤ c

such that ρ1(t
′
1) |= θ. Let t′ be such that ρ1(t1), ρ2(t

′) are [ω + t1 − t′, ε] bisimilar. Using

t′1 ≤ c, ω ≤ ε,−(ω + t1 − t′) ≤ ε, we get t′ ≤ c + 2ε, and by inductive hypothesis we have

ρ2(t
′) |= ζδ(θ), again a contradiction.

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 31

So, we just need to see if there can be a t′1 > c ρ1(t
′
1) |= θ, and for all c < t′′1 < t′1,

ρ1(t
′′
1) |= ϕ .

Suppose there is such a t′1 > t1. Since ρ1(t1) |= ϕ, we get ρ2(t) |= ζδ(ϕ) by inductive

hypothesis, a contradiction. So if there is a t′1, we must have t′1 ≤ t1 Now ρ1(t
′
1), ρ2(t

′) are

ε bisimilar for some t′ ≤ t. ρ1(t
′
1) |= θ, so by inductive hypothesis ρ2(t

′) |= ζδ(θ), a

contradiction.

Thus finally, we must have that s2 |= ζδ(ϕ)∀W>δ′(>,c)ζ
δ(θ) = ζδ(ϕ∀W>cθ).

Theorem 4. Let ε > 0. Let r, s be two ε-bisimilar states of a timed transition system, and

let ϕ a TCTL formula in negation normal form. If r |= ϕ, then s |= ζ2ε(ϕ).

The proof follows from Lemma 4 and Theorem 3. The crucial point is to note

that if r, s are ε-bisimilar, and if, starting from r, s the bisimilarity game arrives at the

configuration r1, s1, then r1, s1 are 2ε-bisimilar. So if r
t1
; r1

t2
; r2, and s

t′1
; s1

t′2
; s2 (with

ri, si being the corresponding states), then |t2 − t′2| ≤ 2ε. The states r1 and s1 are not

ε-bisimilar in general, but the traces originating from the two states are close and remain

within 2ε.

2.4 Discounted CTL for Timed Systems

Our next step is to develop a quantitative specification formalism that assigns real

numbers in the interval [0, 1] to CTL formulas. A value close to 0 is “bad,” a value close

to 1 “good.” We use time and discounting for this quantification. Discounting gives more

weight to the near future than to the far away future. The resulting logic is called dCTL.

Syntax, Semantics, and Robustness. We look at a subset of standard boolean CTL,

with 3 being the only temporal operator. The formulae of dCTL are inductively defined

as follows:

ϕ := a | false | ¬ϕ | ϕ1 ∨ ϕ2 | ∃3ϕ | ∀3ϕ

where a ranges over atomic propositions. From this, we derive the formulas: ∃2ϕ = ¬∀3¬ϕ

and ∀2ϕ = ¬∃3¬ϕ.

The semantics of dCTL formulas are given as functions from states to the real

interval [0, 1]. For a discount parameter β ∈ [0, 1], and a timed transition system, the value

of a formula ϕ at a state s is defined as follows:

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 32

• [[a]](s) := 1 if s |= a, 0 otherwise.

• [[false]](s) := 0.

• [[¬ϕ]](s) := 1 − [[ϕ]](s).

• [[ϕ1

{∨
∧

}
ϕ2]](s) :=

{max
min

}
{[[ϕ1]](s), [[ϕ2]](s)}.

• [[
{∃
∀

}
3ϕ]](s) :=

{sup
inf

}
πs

supt∈IR+{βt([[ϕ]](πs(t)))}.

where πs is an infinite time diverging path starting from state s, and πs(t) is the state on

that path at time t. Intuitively, for the 3 operator, the quicker we can get to a good state,

the better, and the discounted value reflects this fact. The temporal operators can again

be seen as playing a game. Environment chooses the path πs, and we choose the best value

on that path. In ∃3 the environment is cooperating and chooses the best path, in ∀3, it

plays adversially and takes the worst path. Note that β = 1 gives us the boolean case.

Example 4. Consider Tr in Figure 2.1. Assume we cannot stay at a location forever

(location invariants can ensure this). The value of ∀3b at the state 〈a, x = 0, y = 0〉 is β6.

The automaton must move from a to b within 6 time units, for otherwise it will get stuck

at c and not be able to take the transition to d. Similarly, the value at the starting state in

Ts is β7.

Consider now the formula ∀2(b⇒ ∀3a) = ¬∃3¬(¬b∨∀3a) = 1−∃3(min(b, (1−

∀3a))). What is its value at the starting state, 〈a, 0, 0〉, of Tr? The value of min(b, ·) is 0

at states not satisfying b, so we only need look at the b location in the outermost ∃3 clause.

Tr needs to move out of b within 9 time units (else it will get stuck at c). Thus we need to

look at states 〈b, 0 ≤ x ≤ 9, 0 ≤ y ≤ 4〉. On those states, we need the value of ∀3a. Suppose

we enter b at time t. Then the b states encountered are {〈b, t + z, z〉 | z ≤ 4, t + z ≤ 9}.

The value of ∀3a at a state 〈b, t + z, z〉 is β3+9−(t+z) (we exit c at time 9 − (t + z), and

can avoid a for 3 more time units). Thus the value of ∃3(min(b, (1 − ∀3a))) at the initial

state is supt,z{β
t+z(1 − β3+9−(t+z)) | z ≤ 4, t + z ≤ 9} (view t+ z as the elapsed time; the

individual contributions of t and z in the sum depending on the choice of the path). The

maximum value occurs when t+ z is 0. Thus the value of the sup is 1 − β12. So finally we

have the value of ∀2(b ⇒ ∀3a) at the starting state to be β12. It turns out that the initial

state in Ts has the same value for ∀2(b ⇒ ∀3a). Both systems have the same “response”

times for an a following a b.

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 33

dCTL is robust with respect to ε-bisimilarity: close states in the bisimilarity

metric have close dCTL values. Notice however that the closeness is not uniform and may

depend on the nesting depth of temporal operators [dAFH+05].

Theorem 5. Let k be the number of nested temporal operators in a dCTL formula ϕ, and

let β be a real discount factor in [0, 1]. For all states r, s in a TTS, if |B(r, s, 0)| ≤ ε, then

|[[ϕ]](r) − [[ϕ]](s)| ≤ (k + 1)(1 − β2ε).

Example 5. Consider ∀3b at the starting states (which are 1-bisimilar) in Tr, Ts in

Fig. 2.1. As shown in Ex. 4, the value in Tr is β6, and β7 in Ts. β
6 − β7 = β6(1 − β) ≤

1 − β ≤ 1 − β2.

Model Checking dCTL over Timed Automata. We compute the value of [[ϕ]](s) as

follows: for ϕ = ∃3θ, first recursively obtain [[θ]](v) for each state v in the TTS. The value

of [[ϕ]](s) is then sup{βtv ([[θ]](v))}, where tv is the shortest time to reach state v from state

s. For ϕ = ∀3θ, we need to be a bit more careful. We cannot simply take the longest time

to reach states and then have an outermost inf (i.e., dual to the ∃3 case). The reason is

that the ∃3 case had supπs
supt, and both the sups can be collapsed into one. The ∀3

case has infπs supt, and the actual path taken to visit a state matters. For example, it may

happen that on the longest path to visit a state v, we encounter a better value of θ before

v say at u; and on some other path to v, we never get to see u, and hence get the true

value of the inf. The value for a formula at a state in a finite timed graph can be computed

using the algorithms in [dAFH+05] (with trivial modifications). Timed automata involve

real time and require a different approach. We show how to compute the values for a subset

of dCTL on the states of a timed automaton.

Let Fmin(s, Z) denote the set of times that must elapse in order for a timed au-

tomaton A to hit some configuration in the set of states Z starting from the state s. Then

the minimum time to reach the set Z from state s (denoted by tmin(s, Z)) is defined to be

the inf of the set Fmin(s, Z). The maximum time to reach a set of states Z from s for the

first time (tmax(s, Z)) can be defined dually.

Theorem 6 ([CY92]). (1) For a timed automaton A, the minimum and maximum times

required to reach a region R from a state s for the first time (tmin(s,R), tmax(s,R)) are

computable in time O(|C| · |G|) where C is the set of clocks in A, and G is the region

automaton of A. (2) For regions R and R′, either there is an integer constant d such that

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 34

for every state s ∈ R′, we have tmin(s,R) = d, or there is an integer constant d and a clock

x such that for every state s ∈ R′, we have tmin(s,R) = d − frac(tx), where tx is the value

of clock x in s; and similarly for tmax(s,R).

We note that for any state s, we have [[P]](s) is 0 or 1 for a boolean combination

of propositions P , and this value is constant over a region. Thus the value of [[∃3P]](s) is

βtmin where tmin is the shortest time to reach a region satisfying P from s. For computing

∀3P , we look at the inf-sup game where the environment chooses a path πs, and we pick a

state πs(t) on that path. The value of the game resulting from these choices is βtP (πs(t)).

Environment is trying to minimise this value, and we are trying to maximise. Given a

path, we will pick the earliest state on that path satisfying P . Thus the environment will

pick paths which avoid P the longest. Hence, the value of [[∀3P]](s) is βtmax where tmax

is the maximum time that can be spent avoiding regions satisfying P . The next theorem

generalizes Theorem 6 to pairs of states. A state is integer (resp., rational) valued if its

clock valuation maps each clock to an integer (resp., rational).

Theorem 7. (1) Let r be an integer valued state in a timed automaton A. Then tmin(r, s),

the minimum time to reach the state s from r is computable in time O(|C| · |G|) where C

is the set of clocks in A, and G is the region automaton of A. (2) For a region R′, either

there is an integer constant d such that for every state s ∈ R′, we have tmin(r, s) = d; or

there is an integer constant d and a clock x such that tmin(r, s) = d + frac(tx), where tx is

the value of clock x in s.

Theorem 7 is based on the fact that if a timed automaton can take a transition

from s to s′, then 1) for every state w region equivalent to s, there is a transition w → w′

where w′ is region equivalent to s′, and 2) for every state w′ region equivalent to s′, there is

a transition w → w′ where w is region equivalent to s. If πr is a trajectory starting from r

and ending at s with minimal delay, then for any other state s′ region equivalent to s, there

is a corresponding minimum delay trajectory π′r from r which makes the same transitions as

πr, in the same order, going through the same regions of the region graph (only the timings

may be different). Note that an integer valued state constitutes a separate region by itself.

Theorem 7 is easily generalised to rational valued initial states using the standard trick of

multiplying automata guards with integers.

Theorem 8. Let ϕ be a dCTL formula with no nested temporal operators. Then [[∃3ϕ]](s)

(and so [[∀2ϕ]](s)) can be computed for all rational-valued states s of a timed automaton.

CHAPTER 2. QUANTIFYING SIMILARITIES BETWEEN TIMED SYSTEMS 35

Let ϕ be a boolean combination of formulas of form [[
{∃
∀

}
3P]] (P a boolean combi-

nation of propositions). We have shown [[ϕ]](s′) to be computable for all states (and moreover

it to have a simple form over regions). The value of [[∃3ϕ]](s) is then sup{βtmin(s,s′)[[ϕ]](s′)}.

The sup as s′ varies over a region is easily computable, as both [[ϕ]](s′) and tmin(s, s
′) have

uniform forms over regions. We can then take a max over the regions. Let |G| be the

size of the region graph, |G(Q)| the number of regions. Then computation of ϕ over all

regions takes time O(|G(Q)| · |C| · |G|). The computation of the minimum time in Theo-

rem 7 takes O(|C| · |G| ·m|C|), where m is the least common multiple of the denominators

of the rational clock values. Thus, the value of the formula ∃3ϕ can be computed in time

O(|C|2 · |G|2 · |G(Q)| ·m|C|), i.e., polynomial in the size of the region graph and in m|C|.

We can also compute the maximum time that can elapse to go from a rational

valued state to any (possibly irrational valued) state, but that does not help in the compu-

tation in the ∀3ϕ case, as the actual path taken is important. We can do it for the first

temporal operator since then ϕ is a boolean combination of propositions, and either 0 or

1 on regions. In the general case ϕ can have some real value in [0, 1], and this boolean

approach does not work. Incidentally, note that its not known whether the maximum time

problem between two general states is decidable. The minimum time problem is decidable

for general states via a complicated reduction to the additive theory of real numbers [CJ99].

Whether these techniques may be used to get a model checking algorithm for dCTL is open.

36

Chapter 3

Timed Automaton Games

3.1 Introduction

Timed automaton games [dAFH+03, AdAF05, CDF+05, FTM02] are used to dis-

tinguish between the actions of several players (typically a “controller” and a “plant”). In

this chapter, we shall consider two-player timed automaton games with ω-regular objec-

tives specified as parity conditions. The class of ω-regular objectives can express all safety

and liveness specifications that arise in the synthesis and verification of reactive systems,

and parity conditions are a canonical form to express ω-regular objectives [Tho97]. The

construction of a winning strategy for player 1 in such games corresponds to the controller

synthesis problem for real-time systems [DM02, MPS95, PAMS98, WH91] with respect to

achieving a desired ω-regular objective.

The issue of time divergence is crucial in timed games, as a naive control strategy

might simply block time, leading to “zeno” runs. Such invalid solutions have often been

avoided by putting strong syntactic constraints on the cycles of timed automaton games

[PAMS98, AM99, FTM02, BCFL04], or by semantic conditions that discretize time [HK99].

Other works [MPS95, DM02, BDMP03, CDF+05] have required that time divergence be

ensured by the controller —a one-sided, unfair view in settings where the player modeling

the plant is allowed to block time. We use the more general, semantic and fully symmetric

formalism of [dAFH+03] for dealing with the issue of time divergence. This setting places no

syntactic restriction on the game structure, and gives both players equally powerful options

for advancing time, but for a player to win, she must not be responsible for causing time to

converge. We shall show that this is equivalent to requiring that the players are restricted

CHAPTER 3. TIMED AUTOMATON GAMES 37

x ≤ 100 → y := 0

¬p p

y ≥ 1 → x := 0
a

y ≤ 2 → y := 0

b2

b1

Figure 3.1: A timed automaton game.

to the use of receptive strategies [AH97, SGSAL98], which, while being required to not

prevent time from converging, are not required to ensure time divergence. More formally,

our timed games proceed in an infinite sequence of rounds. In each round, both players

simultaneously propose moves, with each move consisting of an action and a time delay

after which the player wants the proposed action to take place. Of the two proposed moves,

the move with the shorter time delay “wins” the round and determines the next state of

the game. Let a set Φ of runs be the desired objective for player 1. Then player 1 has a

winning strategy for Φ if she has a strategy to ensure that, no matter what player 2 does,

one of the following two conditions hold: (1) time diverges and the resulting run belongs

to Φ, or (2) time does not diverge but player-1’s moves are chosen only finitely often (and

thus she is not to be blamed for the convergence of time).

Example 6. Consider the game depicted on Figure 3.1. Let edge a be controlled by player 1,

the others being controlled by player 2. There are two clocks x and y, and transitions can

be taken only if the clock constraints are satisfied. In addition, a transition might also reset

some clocks to 0. For example, the transition labeled a has the clock constraint y ≥ 1, and

resets the clock x to 0 when taken. Suppose we want to know if player 1 can reach p starting

from 〈¬p, x = 0, y = 0〉. Player 1 is not able to guarantee time divergence as player 2 can

keep on taking edge b1. On the other hand, we also do not want to put any restriction of the

number of times player 2 takes edge b1. The formulation of using only reasonable strategies

avoids these unnecessary restrictions and correctly indicates a winning strategy for player 1

to reach p.

In this chapter, we present the framework of timed games and show that concurrent

timed automaton parity games can be reduced to finite state turn based parity games. The

CHAPTER 3. TIMED AUTOMATON GAMES 38

reduction allows us to use the rich literature of algorithms for finite game graphs for solving

timed automaton games, and also leads to algorithms with better complexity than the

one presented in [dAFH+03]. We note that the restriction to receptive strategies does not

fundamentally change the complexity — it only increases the number of indices of the parity

function by two.

Outline. In section 3.2 we first introduce timed game structures, runs, strategies in

subsection 3.2.1. We then introduce objectives, timed winning conditions and recep-

tiveness in subsection 3.2.2. Timed automaton games are presented in subsection 3.2.3.

The construction of [dAFH+03] for solving timed games is briefly reviewed in sec-

tion 3.3. We improve the complexity by obtaining a reduction to finite state game

graphs in section 3.4, from roughly O
(
(M · |C| · |A1| · |A2|)

2 · (16 · |SReg|)
d+2
)

to roughly

O
(
M · |C| · |A2| · (32 · |SReg| ·M · |C| · |A1|)

d+2
3

+ 3
2

)
, where M is the maximum constant in

the timed automaton, |C| is the number of clocks, |Ai| is the number of player-i edges,

|Ai|
∗ = min{|Ai|, |L| · 2

|C|}, |L| is the number of of locations, |SReg| is the number of states

in the region graph (bounded by |L| ·
∏

x∈C(cx + 1) · |C|! · 2|C|), and d is the number of

priorities in the parity index function.

3.2 Timed Games

3.2.1 Timed Game Structures

In this subsection we present the definitions of timed game structures, runs, and

strategies of the two players.

Timed game structures. A timed game structure is a tuple G = 〈S,A1,A2,Γ1,Γ2, δ〉 with

the following components:

• S is a set of states.

• A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively. We

assume that ⊥ 6∈ Ai, and write A⊥
i for Ai ∪{⊥}. The set of moves for player i is

Mi = IR≥0 × A⊥
i . Intuitively, a move 〈∆, ai〉 by player i indicates a waiting period of

∆ time units followed by a discrete transition labeled with action ai.

• Γi : S 7→ 2Mi \ ∅ are two move assignments. At every state s, the set Γi(s) contains

the moves that are available to player i. We require that 〈0,⊥〉 ∈ Γi(s) for all states

CHAPTER 3. TIMED AUTOMATON GAMES 39

s ∈ S and i ∈ {1, 2}. Intuitively, 〈0,⊥〉 is a time-blocking stutter move.

• δ : S × (M1 ∪M2) 7→ S is the transition function. We require that for all time delays

∆,∆′ ∈ IR≥0 with ∆′ ≤ ∆, and all actions ai ∈ A⊥
i , we have (1) 〈∆, ai〉 ∈ Γi(s) iff

both 〈∆′,⊥〉 ∈ Γi(s) and 〈∆ − ∆′, ai〉 ∈ Γi(δ(s, 〈∆
′,⊥〉)); and (2) if δ(s, 〈∆′,⊥〉) = s′

and δ(s′, 〈∆ − ∆′, ai〉) = s′′, then δ(s, 〈∆, ai〉) = s′′.

The game proceeds as follows. If the current state of the game is s, then both players

simultaneously propose moves 〈∆1, a1〉 ∈ Γ1(s) and 〈∆2, a2〉 ∈ Γ2(s). The move with the

shorter duration “wins” in determining the next state of the game. If both moves have

the same duration, then one of the two moves is chosen nondeterministically. Formally, we

define the joint destination function δjd : S ×M1 ×M2 7→ 2S by

δjd(s, 〈∆1, a1〉, 〈∆2, a2〉) =





{δ(s, 〈∆1, a1〉)} if ∆1 < ∆2;

{δ(s, 〈∆2, a2〉)} if ∆2 < ∆1;

{δ(s, 〈∆1, a1〉), δ(s, 〈∆2, a2〉)} if ∆1 = ∆2.

The time elapsed when the moves m1 = 〈∆1, a1〉 and m2 = 〈∆2, a2〉 are proposed is given

by delay(m1,m2) = min(∆1,∆2). The boolean predicate blamei(s,m1,m2, s
′) indicates

whether player i is “responsible” for the state change from s to s′ when the moves m1 and

m2 are proposed. Denoting the opponent of player i ∈ {1, 2} by ∼i = 3 − i, we define

blamei(s, 〈∆1, a1〉, 〈∆2, a2〉, s
′) =

(
∆i ≤ ∆∼i ∧ δ(s, 〈∆i, ai〉) = s′

)
.

Runs.A run of the timed game structure G is an infinite sequence r =

s0, 〈m
0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . such that sk ∈ S and mk

i ∈ Γi(sk) and sk+1 ∈ δjd(sk,m
k
1 ,m

k
2)

for all k ≥ 0 and i ∈ 1, 2. For k ≥ 0, let time(r, k) denote the “time” at position k of the

run, namely, time(r, k) =
∑k−1

j=0 delay(mj
1,m

j
2) (we let time(r, 0) = 0). By r[k] we denote the

(k + 1)-th state sk of r. The run prefix r[0..k] is the finite prefix of the run r that ends in

the state sk; we write last(r[0..k]) for the ending state sk of the run prefix. Let Runs be the

set of all runs of G, and let FinRuns be the set of run prefixes.

Strategies. A strategy πi for player i ∈ {1, 2} is a function πi : FinRuns 7→Mi that assigns

to every run prefix r[0..k] a move to be proposed by player i at the state last(r[0..k]) if the

history of the game is r[0..k]. We require that πi(r[0..k]) ∈ Γi(last(r[0..k])) for every run

prefix r[0..k], so that strategies propose only available moves. The results of this paper are

equally valid if strategies do not depend on past moves chosen by the players, but only on

CHAPTER 3. TIMED AUTOMATON GAMES 40

the past sequence of states and time delays [dAFH+03]. For i ∈ {1, 2}, let Πi be the set of

player-i strategies. Given two strategies π1 ∈ Π1 and π2 ∈ Π2, the set of possible outcomes

of the game starting from a state s ∈ S is denoted Outcomes(s, π1, π2): it contains all runs

r = s0, 〈m
0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . such that s0 = s and for all k ≥ 0 and i ∈ {1, 2}, we have

πi(r[0..k]) = mk
i .

3.2.2 Timed Winning Conditions

In this subsection we present the definitions of parity objectives, receptiveness,

and winning conditions which account for the fact that players might not block time to

achieve their objectives.

Objectives. An objective for the timed game structure G is a set Φ ⊆ Runs of runs. We will

be interested in the classical reachability, safety and parity objectives. Parity objectives are

canonical forms for ω-regular properties that can express all commonly used specifications

that arise in verification.

• Given a set of states Y , the reachability objective Reach(Y) is defined as the set of

runs that visit Y , formally, Reach(Y) = {r | there exists i such that r[i] ∈ Y }.

• Given a set of states Y , the safety objective consists of the set of runs that stay within

Y , formally, Safe(Y) = {r | for all i we have r[i] ∈ Y }.

• Let Ω : S 7→ {0, . . . , k − 1} be a parity index function. The parity objective

for Ω requires that the maximal index visited infinitely often is even. Formally,

let InfOften(Ω(r)) denote the set of indices visited infinitely often along a run r.

Then the parity objective defines the following set of runs: Parity(Ω) = {r |

max(InfOften(Ω(r))) is even }.

A timed game structure G together with the index function Ω constitute a parity

timed game (of order k) in which the objective of player 1 is Parity(Ω). We use similar

notations for reachability and safety timed games.

Timed winning conditions. To win an objective Φ, a player must ensure that the

possible outcomes of the game satisfy the winning condition WC(Φ), a different subset

of Runs. We distinguish between objectives and winning conditions, because players must

win their objectives using only physically meaningful strategies; for example, a player should

CHAPTER 3. TIMED AUTOMATON GAMES 41

not satisfy the objective of staying in a safe set by blocking time forever. Formally, player

i ∈ {1, 2} wins for the objective Φ at a state s ∈ S if there is a player-i strategy πi such

that for all opposing strategies π∼i, we have Outcomes(s, π1, π2) ⊆ WCi(Φ). In this case, we

say that player i has the winning strategy πi. The winning condition is formally defined as

WCi(Φ) = (Timediv ∩Φ) ∪ (Blamelessi \Timediv),

which uses the following two sets of runs:

• Timediv ⊆ Runs is the set of all time-divergent runs. A run r is time-divergent if

limk→∞ time(r, k) = ∞.

• Blamelessi ⊆ Runs is the set of runs in which player i is responsible only for

finitely many transitions. A run s0, 〈m
0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . belongs to the set

Blamelessi, for i = {1, 2}, if there exists a k ≥ 0 such that for all j ≥ k, we have

¬ blamei(sj ,m
j
1,m

j
2, sj+1).

Thus a run r belongs to WCi(Φ) if and only if the following conditions hold:

• if r ∈ Timediv, then r ∈ Φ;

• if r 6∈ Timediv, then r ∈ Blamelessi.

Informally, if time diverges, then the outcome of the game is valid and the objective must

be met, and if time does not diverge, then only the opponent should be responsible for

preventing time from diverging.

A state s ∈ S in a timed game structure G is well-formed if both players can win

at s for the trivial objective Runs. The timed game structure G is well-formed if all states

of G are well-formed. Structures that are not well-formed are not physically meaningful.

We restrict out attention to well-formed timed game structures.

Receptive strategies. A strategy πi for player i ∈ {1, 2} is receptive if for all opposing

strategies π∼i, all states s ∈ S, and all runs r ∈ Outcomes(s, π1, π2), either r ∈ Timediv

or r ∈ Blamelessi. Thus, no what matter what the opponent does, a receptive player-i

strategy should not be responsible for blocking time. Strategies that are not receptive are

not physically meaningful. A timed game structure is thus well-formed iff both players have

receptive strategies. We now show in Theorem 9 that we can restrict our attention to games

which allow only receptive strategies. We first need the following lemma.

CHAPTER 3. TIMED AUTOMATON GAMES 42

Lemma 5. Consider a timed game structure G and a state s ∈ S. Let π1 ∈ ΠR
1 and πR

2 ∈ ΠR
2

be player-1 and player-2 receptive strategies, and let π2 ∈ Π2 be any player-2 strategy such

that Outcomes(s, π1, π2) ∩ Timediv 6= ∅. Let r∗ ∈ Outcomes(s, π1, π2) ∩ Timediv. Consider

a player-2 strategy π∗2 be defined as, π∗2(r[0..k]) = π2(r
∗[0..k]) for all run prefixes r[0..k] of

r∗, and π∗2(r[0..k]) = πR
2 (r[k′..k]) otherwise, where k′ is the first position such that r[0..k′]

is not a run prefix of r∗. Then, π∗2 is a receptive strategy.

Proof. Intuitively, the strategy π∗2 acts like π2 on r∗ , and like πR
2 otherwise. Consider any

player-1 strategy π′1 ∈ Π1, and any run r ∈ Outcomes(s, π′1, π
∗
2). If r = r∗, then r ∈ Timediv.

Suppose r 6= r∗. Let k′ ≥ 0 be the first step in the game (with player-2 strategy π∗2) which

witnesses the fact that r 6= r∗, that is, 1) we have r[0..k′ − 1] to be a run prefix of r∗, and

2) r[0..k′] to not be a run prefix of r∗ Consider the state sk′ = r[k′]. After this point (ie.,

from r[0..k′] onwards), the strategy π∗2 behaves like πR
2 when “started” from sk′ . Since πR

2 is

a receptive player-2 strategy, we have Outcomes(sk′ , π′1, π
∗
2) ⊆ Timediv∪Blameless2. Thus,

r ∈ Timediv∪Blameless2 (finite prefixes of runs do not change membership in these sets).

Hence π∗2 is a receptive player-2 strategy.

Theorem 9. Let s ∈ S be a state of a well-formed time game structure G, and let Φ ⊆ Runs

be an objective.

1. Player 1 wins for the objective Φ at the state s iff there is a receptive player-1 win-

ning strategy π∗1, that is, for all player-2 strategies π2, we have Outcomes(s, π∗1 , π2) ⊆

WC(Φ).

2. Player 1 does not win for the objective Φ at s using only receptive strategies iff there

is a receptive player-2 spoiling strategy π∗2. Formally, for every receptive player-1

strategy π∗1, there is a player-2 strategy π2 such that Outcomes(s, π∗1, π2) 6⊆ WC(Φ) iff

there is a receptive player-2 strategy π∗2 such that Outcomes(s, π∗1 , π
∗
2) 6⊆ WC(Φ).

The symmetric claims with players 1 and 2 interchanged also hold.

Proof. (1) Let π1 be the winning strategy for player 1 for objective Φ at state s. Let π1 be

not receptive. Then, by definition, there exists an opposing strategy π2 such that for some

run r ∈ Outcomes(s, π1, π2), we have both r 6∈ Timediv and r 6∈ Blameless1. This contradicts

the fact that π1 was a winning strategy.

(2) Let π∗1 be any player-1 receptive strategy. Player 1 loses for the objective Φ from state

s, thus there exists a player 2 spoiling strategy π2 such that Outcomes(s, π∗1 , π2) 6⊆ WC(Φ) .

CHAPTER 3. TIMED AUTOMATON GAMES 43

This requires that for some run r ∈ Outcomes(s, π∗1, π2), we have either 1) (r ∈ Timediv) ∧

(r 6∈ Φ) or 2) (r 6∈ Timediv) ∧ (r 6∈ Blameless1). We cannot have the second case, for π∗1

is a receptive strategy, thus, the first case must hold. By definition, for every state s′ in

a well-formed time game structure, there exists a player-2 receptive strategy πs′

2 . Now, let

π∗2 be such that its acts like π2 on the particular run r, and is like πs
2 otherwise, that is

π∗2(rf) = π2(rf), for all run prefixes rf of r, and π∗2(rf) = πs
2(rf) otherwise. The strategy

π∗2 is receptive, as for all strategies π′1, and for every run r′ ∈ Outcomes(s, π′1, π
∗
2), we have

(r′ ∈ Timediv) ∨ (r′ ∈ Blameless2). Since π∗2 acts like π2 on the particular run r, it is also

spoiling for the player-1 strategy π∗1 .

Corollary 1. For i = {1, 2}, let Wini(Φ) be the states of a well-formed timed game structure

G at which player i can win for the objective Φ for the winning condition WCi(Φ). Let

Win∗i (Φ) be the states at which player i can win for the objective Φ when both players are

restricted to use receptive strategies. Then, Wini(Φ) = Win∗i (Φ).

Note that if π∗1 and π∗2 are player-1 and player-2 receptive strategies, then for

every state s and every run r ∈ Outcomes(s, π1, π2), the run r is non-zeno. Thus, if we

restrict our attention to plays in which both players use only receptive strategies, then for

every objective Φ, player i wins for the winning condition WC(Φ) if and only if she wins

for the winning condition Φ. We can hence talk semantically about games restricted to

receptive player strategies in well-formed timed game structures, without differentiating

between objectives and winning conditions. From a computational perspective, we allow all

strategies, taking care to distinguish between objectives and winning conditions. Theorem 9

indicates both approaches to be equivalent.

3.2.3 Timed Automaton Games

In this section we present timed automaton games which are based on timed au-

tomata [AD94] and which give a finite syntax for specifying infinite-state timed game struc-

tures.

Timed automaton games. A timed automaton game is a tuple T =

〈L,Σ, σ, C,A1,A2, E, γ〉 with the following components:

• L is a finite set of locations.

• C is a finite set of clocks.

CHAPTER 3. TIMED AUTOMATON GAMES 44

• A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.

• E ⊆ L× (A1 ∪A2)×Constr(C)×L× 2C is the edge relation, where the set Constr(C)

of clock constraints is generated by the grammar

θ ::= x ≤ d | d ≤ x | ¬θ | θ1 ∧ θ2

for clock variables x ∈ C and nonnegative integer constants d. For an edge e =

〈l, ai, θ, l
′, λ〉, the clock constraint θ acts as a guard on the clock values which specifies

when the edge e can be taken, and by taking the edge e, the clocks in the set λ ⊆ C\{z}

are reset to 0. We require that for all edges 〈l, ai, θ
′, l′, λ′〉 6= 〈l, ai, θ

′′, l′′, λ′′〉 ∈ E, we

have ai 6= a′i. This requirement ensures that a state and a move together uniquely

determine a successor state.

• γ : L 7→ Constr(C) is a function that assigns to every location an invariant for both

players. All clocks increase uniformly at the same rate. When at location l, each

player i must propose a move out of l before the invariant γ(l) expires. Thus, the

game can stay at a location only as long as the invariant is satisfied by the clock

values.

A clock valuation is a function κ : C 7→ IR≥0 that maps every clock to a nonnegative real.

The set of all clock valuations for C is denoted by K(C). Given a clock valuation κ ∈ K(C)

and a time delay ∆ ∈ IR≥0, we write κ + ∆ for the clock valuation in K(C) defined by

(κ + ∆)(x) = κ(x) + ∆ for all clocks x ∈ C. For a subset λ ⊆ C of the clocks, we write

κ[λ := 0] for the clock valuation in K(C) defined by (κ[λ := 0])(x) = 0 if x ∈ λ, and

(κ[λ := 0])(x) = κ(x) if x 6∈ λ. A clock valuation κ ∈ K(C) satisfies the clock constraint

θ ∈ Constr(C), written κ |= θ, if the condition θ holds when all clocks in C take on the

values specified by κ.

A state s = 〈l, κ〉 of the timed automaton game T is a location l ∈ L together

with a clock valuation κ ∈ K(C) such that the invariant at the location is satisfied, that is,

κ |= γ(l). Let S be the set of all states of T. In a state, each player i proposes a time delay

allowed by the invariant map γ, together either with the action ⊥, or with an action ai ∈ Ai

such that an edge labeled ai is enabled after the proposed time delay. We require that for

i ∈ {1, 2} and for all states s = 〈l, κ〉, if κ |= γ(l), either κ + ∆ |= γ(l) for all ∆ ∈ IR≥0, or

there exist a time delay ∆ ∈ IR≥0 and an edge 〈l, ai, θ, l
′, λ〉 ∈ E such that (1) ai ∈ Ai and

CHAPTER 3. TIMED AUTOMATON GAMES 45

(2) κ+∆ |= θ and for all 0 ≤ ∆′ ≤ ∆, we have κ+∆′ |= γ(l), and (3) (κ+∆)[λ := 0] |= γ(l′).

This requirement is necessary (but not sufficient) for well-formedness of the game.

The timed automaton game T defines the following timed game structure [[T]] =

〈S,A1,A2,Γ1,Γ2, δ〉:

• S is defined above.

• For i ∈ {1, 2}, the set Γi(〈l, κ〉) contains the following elements:

1. 〈∆,⊥〉 if for all 0 ≤ ∆′ ≤ ∆, we have κ+ ∆′ |= γ(l).

2. 〈∆, ai〉 if for all 0 ≤ ∆′ ≤ ∆, we have κ + ∆′ |= γ(l), and ai ∈ Ai, and there

exists an edge 〈l, ai, θ, l
′, λ〉 ∈ E such that κ+ ∆ |= θ.

• δ(〈l, κ〉, 〈∆,⊥〉) = 〈l, κ+∆〉, and δ(〈l, κ〉, 〈∆, ai〉) = 〈l′, (κ+∆)[λ := 0]〉 for the unique

edge 〈l, ai, θ, l
′, λ〉 ∈ E with κ+ ∆ |= θ.

The timed game structure [[T]] is not necessarily well-formed, because it may contain cycles

along which time cannot diverge. We will see below how we can check well-formedness for

timed automaton games.

Clock region equivalence. Timed automaton games can be solved using the region

construction from the theory of timed automata [AD94], see subsection 2.2.2 of Chapter 2

for the definition of regions. For a state s ∈ S, we write Reg(s) ⊆ S for the clock region

containing s. For a run r, we let the region sequence Reg(r) = Reg(r[0]),Reg(r[1]), · · · .

Two runs r, r′ are region equivalent if their region sequences are the same. An ω-regular

objective Φ is a region objective if for all region-equivalent runs r, r′, we have r ∈ Φ iff

r′ ∈ Φ. A strategy π1 is a region strategy, if for all runs r1 and r2 and all k ≥ 0 such

that Reg(r1[0..k]) = Reg(r2[0..k]), we have that if π1(r1[0..k]) = 〈∆, a1〉, then π1(r2[0..k]) =

〈∆′, a1〉 with Reg(r1[k] + ∆) = Reg(r2[k] + ∆′). The definition for player 2 strategies is

analogous. Two region strategies π1 and π′1 are region-equivalent if for all runs r and all

k ≥ 0 we have that if π1(r[0..k]) = 〈∆, a1〉, then π′1(r[0..k]) = 〈∆′, a1〉 with Reg(r1[k] +

∆) = Reg(r2[k] + ∆′). A parity index function Ω is a region (resp. location) parity index

function if Ω(s1) = Ω(s2) whenever Reg(s1) = Reg(s2) (resp. s1, s2 have the same location).

Henceforth, we shall restrict our attention to region and location objectives.

CHAPTER 3. TIMED AUTOMATON GAMES 46

3.3 Solving Timed Automaton Games

In this section we review the µ-calculus formulation for solving timed automaton

games as presented in [dAFH+03]. This formulation will be used in the next section to

reduce timed automaton games to finite state turn based parity games. We first show how

to encode Timediv and Blamelessi in terms of observable of the system.

Encoding Time-Divergence by Enlarging the Game Structure. Given a timed

automaton game T, consider the enlarged game structure T̂ with the state space Ŝ ⊆

S × IR[0,1) ×{true, false}2, and an augmented transition relation δ̂ : Ŝ × (M1 ∪M2) 7→ Ŝ.

In an augmented state 〈s, z, tick , bl1〉 ∈ Ŝ, the component s ∈ S is a state of the original

game structure [[T]], z is value of a fictitious clock z which gets reset to 0 every time it hits

1, tick is true iff z hit 1 at last transition and bl1 is true if player 1 is to blame for the

last transition. Note that any strategy πi in [[T]], can be considered a strategy in T̂. The

values of the clock z, tick and bl1 correspond to the values each player keeps in memory

in constructing his strategy. Any run r in T has a corresponding unique run r̂ in T̂ with

r̂[0] = 〈r[0], 0, false, false〉 such that r is a projection of r̂ onto T. For an objective Φ,

we can now encode time-divergence as: TimeDivBl1(Φ) = (23 tick → Φ) ∧ (¬23 tick →

32¬ bl1). Let κ̂ be a valuation for the clocks in Ĉ = C ∪ {z}. A state of T̂ can then be

considered as 〈〈l, κ̂〉, tick , bl1〉. We extend the clock equivalence relation to these expanded

states: 〈〈l, κ̂〉 tick , bl1〉 ∼= 〈〈l′, κ̂′〉, tick ′, bl ′1〉 iff l = l′, tick = tick ′, bl1 = bl ′1 and κ̂ ∼= κ̂′ (we

let cz = 1). Given a location l, and a set λ ⊆ Ĉ, we let R̂[loc := l, λ := 0] denote the

region {〈l, κ̂〉 ∈ Ŝ | there exist l′ and κ̂′ with 〈l′, κ̂′〉 ∈ R̂ and κ̂(x) = 0 if x ∈ λ, κ̂(x) =

κ̂′(x) if x 6∈ λ}. For every ω-regular region objective Φ of T, we have TimeDivBl(Φ) to be

an ω-regular region objective of T̂.

We first note the classical result of [AD94] that the region equivalence relation

induces a time abstract bisimulation on the regions.

Lemma 6 ([AD94]). Let T be a timed automaton game and let Ŷ , Ŷ ′ be regions in the

enlarged timed game structure T̂. Suppose player i has a move from ŝ1 ∈ Ŷ to ŝ′1 ∈ Ŷ ′, for

i ∈ {1, 2}. Then, for any s2 ∈ Ŷ , player i has a move from ŝ2 to some ŝ′2 ∈ Ŷ ′.

Let Ŷ , Ŷ ′
1 , Ŷ

′
2 be regions of T̂. We next prove in Lemma 7 that one of the following

two conditions hold: (a) for all states in Ŷ there is a move for player 1 with destination in

Ŷ ′
1 , such that for all player 2 moves with destination in Ŷ ′

2 , the next state is in Ŷ ′
1 ; or (b) for

CHAPTER 3. TIMED AUTOMATON GAMES 47

all states in Ŷ for all moves for player 1 with destination in Ŷ ′
1 there is a move of player 2

to ensure that the next state is in Ŷ ′
2 .

Lemma 7. Let T be a timed automaton game and let Ŷ , Ŷ ′
1 , Ŷ

′
2 be regions in the enlarged

timed game structure T̂. Suppose player i has a pure-time move from ŝ1 ∈ Ŷ to ŝ′1 ∈ Ŷ ′
i ,

for i ∈ {1, 2}. Then, one of the following cases must hold:

1. From all states ŝ ∈ Ŷ , for every player-1 pure-time move mbs
1 with δ(s,mbs

1) ∈

Y ′
1 , for all pure-time moves mbs

2 of player 2 with δ(ŝ,mbs
2) ∈ Ŷ ′

2, we have

blame1(ŝ,m
bs
1,m

bs
2, δ(ŝ,m

bs
1)) = true and blame2(ŝ,m

bs
1,m

bs
2, δ(ŝ,m

bs
2)) = false.

2. From all states ŝ ∈ Ŷ , for every player-1 pure-time move mbs
1 with δ(ŝ,mbs

1) ∈ Ŷ ′
1,

there exists a pure-time moves mbs
2 of player 2 with δ(ŝ,mbs

2) ∈ Ŷ ′
2, such that

blame2(ŝ,m
bs
1,m

bs
2, δ(ŝ,m

bs
2)) = true.

Proof. We first present the proof for the case when Ŷ ′
1 6= Ŷ ′

2 . The proof follows from the

fact that each region has a unique first time-successor region. A region R̂′ is a first time-

successor of R̂ 6= R̂′ if for all states ŝ ∈ R̂, there exists ∆ > 0 such that s + ∆ ∈ R̂′ and

for all ∆′ < ∆, we have s+ ∆′ ∈ R̂ ∪ R̂′. The time-successor of 〈l, h,P(Ĉ)〉 is 〈l, h′,P ′(Ĉ)〉

when (recall that cz = 1, and that the clock z cycles from 0 to 1, but it never has the value

1):

• h = h′, P(Ĉ) = 〈C−1, C0 6= ∅, C1, . . . , Cn〉, and P ′(Ĉ) = 〈C−1, C
′
0 = ∅, C ′

1, . . . , C
′
n+1〉

where C ′
i = Ci−1, and h(x) < cx for every x ∈ C0.

• h = h′, P(Ĉ) = 〈C−1, C0 6= ∅, C1, . . . , Cn〉, and P ′(Ĉ) = 〈C ′
−1 = C−1 ∪ C0, C

′
0 =

∅, C1, . . . , Cn〉, and h(x) ≥ cx for every x ∈ C0.

• h = h′, P(Ĉ) = 〈C−1, C0 6= ∅, C1, . . . , Cn〉, and P ′(Ĉ) = 〈C ′
−1, C

′
0 = ∅, C ′

1, . . . , C
′
n+1〉

where C ′
i = Ci−1 for i ≥ 2, h(x) < cx for every x ∈ C ′

1 ⊆ C0, and h(x) ≥ cx for every

x ∈ C0 \ C
′
1, and C ′

−1 = C−1 ∪ C0 \ C
′
1.

• P(Ĉ) = 〈C−1, C0 = ∅, C1, . . . , Cn〉, P ′(Ĉ) = 〈C−1, C
′
0 = Cn, C1, . . . , Cn−1〉, and

h′(x) = h(x) + 1 ≤ cx for every x ∈ Cn \ {z}, and h′(x) = h(x) otherwise.

• P(Ĉ) = 〈C−1, C0 = ∅, C1, . . . , Cn〉, P
′(Ĉ) = 〈C ′

−1 = C−1 ∪ Cn, C0, C1, . . . , Cn−1〉, and

h′(x) = h(x) = cx for every x ∈ Cn, and h′(x) = h(x) otherwise.

CHAPTER 3. TIMED AUTOMATON GAMES 48

• P(Ĉ) = 〈C−1, C0 = ∅, C1, . . . , Cn〉, P
′(Ĉ) = 〈C ′

−1 = C−1 ∪Cn \C ′
0, C

′
0, C1, . . . , Cn−1〉,

and h′(x) = h(x) + 1 ≤ cx for every x 6= z ∈ C ′
0 ⊆ Cn, h′(x) = h(x) = cx for every

x 6= z ∈ Cn \ C ′
0, and h′(x) = h(x) otherwise.

In case Ŷ ′
1 = Ŷ ′

2 , then player 2 can pick the same time to elapse as player 1, and ensure that

the conditions of the lemma hold.

Note that the lemma is asymmetric, the asymmetry arises in the case when time

delays of the two moves result in the same region. In this case, not all moves of player 2

might work, but some will (e.g., a delay of player 2 that is the same as that for player 1).

Given a parity objective Φ and the corresponding winning condition

TimeDivBl1(Φ), the winning set for player 1 can be expressed as the fixpoint of a µ-

calculus expression [dAHM01a]. The µ-calculus expression uses controllable predeces-

sor operator for player 1, CPre1 : 2
bS 7→ 2

bS , defined formally by s̃ ∈ CPre1(Z) iff

∃m1 ∈ Γ̂1(ŝ) ∀m2 ∈ Γ̂2(ŝ) . δ̂jd(ŝ,m1,m2) ⊆ Z. Informally, CPre1(Z) consists of the set

of states from which player 1 can ensure that the next state will be in Z, no matter what

player 2 does. Fox example, the µ-calculus expression for the reachability objective can be

expressed as: µY νX
[
(Ω−1(1) ∩ CPre1(Y)) ∪ (Ω−1(0) ∩ CPre1(X))

]
.

Lemma 8. Let X ⊆ Ŝ consist of a union of extended regions in a timed game structure

[̂[T]] . Then CPre1(X) is again a union of extended regions.

Proof. Follows from Lemmas 6 and 7

Lemma 8 demonstrates that the sets in the fixpoint computation of the µ-calculus

iteration always consist of unions of regions of T̂. Since the number of regions is finite, the

termination of the fixpoint iteration follows.

Theorem 10. Let T be a timed automaton game and let Φ be an ω-regular region objective

of order d. Then the set of states from which player-i can win for Φ can be computed in

time O
(
(M · |C| · |A1| · |A2|)

2 · (16 · |SReg|)
d+2
)
.

Corollary 2. The problem of solving a timed automaton game with a parity region objective

is EXPTIME-complete.

EXPTIME-hardness follows from the EXPTIME-hardness of alternating reach-

ability on timed automata [HK99].

CHAPTER 3. TIMED AUTOMATON GAMES 49

Solving timed automaton games with ω-regular objectives allows us to check the

well-formedness of a timed automaton game T: a state s of the timed automaton game T

is well formed iff both players can win for the objective Lω. This well-formedness check is

the generalization to the game setting of the non-zenoness check for timed automata, which

computes the states s such that there exists a time divergent run from s [HNSY94]. If not

all states of T are well-formed, then the location invariants of T can be strengthened to

characterize well-formed states (note that the set of well-formed states consists of a union

of regions).

It also follows from Lemmas 6 and 7, the moves of player 1 can always prescribe

moves to the same R̂′ from every state of a region R̂. Hence we have the following result.

Lemma 9. Let T be a timed automaton game and T̂ be the corresponding enlarged game

structure. Let Φ̂ be an ω-regular region objective of T̂. Then the following assertions hold.

1. Let π1 be a region strategy that is winning for Φ̂ from Win
bT
1 (Φ̂) and π′1 is a strategy

that is region-equivalent to π1. Then π′1 is a winning strategy for Φ̂ from Win
bT
1 (Φ̂).

2. Let player 1 have a winning strategy for Φ̂ in T̂. Then, player 1 has a finite memory

region strategy that is winning.

Finite memory suffices as player 1 only needs to remember a finite region history;

as the regions she proposes can be obtained from the µ-calculus fixpoint iteration algorithm

as in [dAHM01b].

3.4 Efficient Solution of Timed Automaton Games

In this section we shall present a reduction of timed automaton games to finite

game graphs. The reduction allows us to use the rich literature of algorithms for finite

game graphs for solving timed automaton games. It also leads to algorithms with better

complexity than the one presented in [dAFH+03]. Let T be a timed automaton game, and

let T̂ be the corresponding enlarged timed game structure that encodes time divergence.

We shall construct a finite state turn based game structure Tf based on regions of T̂ which

can be used to compute winning states for ω-regular objectives for the timed automaton

game T. In this finite state game, first player 1 proposes a destination region R̂1 together

with a discrete action a1. Intuitively, this can be taken to mean that in the game T̂, player 1

CHAPTER 3. TIMED AUTOMATON GAMES 50

wants to first let time elapse to get to to the region R̂1, and then take the discrete action

a1. Let us denote the intermediate state in Tf by the tuple 〈R̂, R̂1, a1〉. From this state

in Tf , player 2 similarly also proposes a move consisting of a region R̂2 together with a

discrete action a2. These two moves signify that player i proposed a move 〈∆i, ai〉 in T̂

from a state ŝ ∈ R̂ such that ŝ+∆i ∈ R̂i. Lemma 7 indicates that only the regions of ŝ+∆i

are important in determining the successor region in T̂.

Let ŜReg = {x | X is a region of T̂}. The state space of the finite turn based game

will then be O(|ŜReg|
2 · |L| · 2|C|) (a discrete action may switch the location, and reset some

clocks). We show that it is not required to keep all possible pairs of regions, leading to a

reduction in the size of the state space. This is because from a state ŝ ∈ R, it is not possible

to get all regions by letting time elapse.

Lemma 10. Let T be a timed automaton game, T̂ the corresponding enlarged game struc-

ture, and R̂ = 〈l1, tick , bl1, h, 〈C−1, C0, . . . , Cn〉〉 a region in T̂. The number of possible time

successor regions of R̂ are at most 2 ·
∑

x∈C 2(cx + 1) ≤ 4 · (M + 1) · (|C| + 1), where cx is

the largest constant that clock x is compared to in T̂, M = max{cx | x ∈ C} and C is the

set of clocks in T.

Proof. When time elapses, the sets C0, . . . , Cn move in a cyclical fashion, i.e., mod n+ 1.

The displacement mod n + 1 indicates the relative ordering of the fractional sets. A

movement of a “full” cycle of the displacements increases the value of the integral values

of all the clocks by 1. We also only track the integral value of a clock x ∈ C upto cx, after

that the clock is placed into the set C−1. Note that the extra clock z introduced in T̂ is

never placed into C−1, and always has a value mod 1. Let us order the clocks in C in order

of their increasing cx values, i.e., cx1 ≤ cx2 ≤ . . . cxN
where N = C. The most number of

time successors are obtained when all clocks have an integral value of 0 to start with. We

count the number of time successors in N stages. In the first stage, C−1 = ∅. After at most

cx1 full cycles, the clock x1 gets moved to C−1 as its value exceeds the maximum tracked

value. For each full cycle, we also have the number of distinct mod classes to be N + 1

(recall that we also have the extra clock z). We need another factor of 2 to account for

the movement which makes all clock values non-integral, e.g., 〈x = 1, y = 1.2, z = 0.99〉 to

〈x = 1.00001, y = 1.20001, z = 0.99001〉. Thus, before the clock cx1 gets moved to C−1, we

can have 2 · (cx1 + 1) · (N + 1) time successors. In the second stage, we can have at most

cx2 +1−cx1 before clock cx2 gets placed into C−1. Also, since x1 is in C−1, we can only have

CHAPTER 3. TIMED AUTOMATON GAMES 51

N+1−1 mod classes in the second stage. Thus, the number of time successors added in the

second stage is at most 2 · (cx2 +1− cx1) ·N . Continuing in this fashion, we obtain the total

number of time successors as 2 · ((cx1 + 1) · (N + 1) + (cx2 + 1 − cx1) · (N + 1 − 1) + · · ·+

(cxN
+ 1 −

∑N−1
i=1 cxi

) · (N + 1 − (N − 1))
)

= 4 ·
∑N

i=1 (cxi
+ 1).

A finite state turn based game G consists of the tuple 〈(S,E), (S1, S2)〉, where

(S1, S2) forms a partition of the finite set S of states, E is the set of edges, S1 is the set

of states from which only player 1 can make a move to choose an outgoing edge, and S2 is

the set of states from which only player 2 can make a move. The game is bipartite if every

outgoing edge from a player-1 state leads to a player-2 state and vice-versa. A bipartite turn

based finite game Tf = 〈(Sf , Ef), (ŜReg × {1}, ŜTup × {2})〉 can be constructed to capture

the timed game T. The state space Sf equals ŜReg×{1} ∪ ŜTup×{2}. The game Tf is such

that if Z is a player-i state, then the only outgoing edges are to the other player states.

The set ŜReg is the set of regions of T̂. Each Z ∈ ŜReg × {1} is indicative of a state in the

timed game T̂ that belongs to the region ŜReg. Each Y ∈ ŜTup × {2} encodes the following

information: (a) the previous state (which is a region of T̂), (b) an intermediate region of

T̂ (representing a time move in T̂ from the previous region), and (c) the desired discrete

action of player 1 to be taken from the intermediate state. An edge from Z = 〈R̂, 1〉 to Y is

indicative of the fact that in the timed game T̂, from every state ŝ ∈ R̂, player 1 has a move

〈∆, a1〉 such that ŝ + ∆ is in the intermediate region component R̂′ of Y , with a1 being

the desired discrete action. From the state Y , player 2 has moves to ŜReg × {1} depending

on what moves of player 2 in the timed game T̂ can beat the player-1 moves from R̂ to R̂′

according to Lemma 7.

Each Z ∈ Sf is itself a tuple, with the first component being a location of T. Given

a location parity index function Ω on T, we let Ωf be the parity index function on Tf such

that Ωf (〈l, ·〉) = Ω(〈l, ·〉). Another parity index function Ω̂f with two more priorities can be

derived from Ωf to take care of time divergence issues, as described in [dAFH+03]. Given

a set X = X1 × {1} ∪ X2 × {2} ⊆ Sf , we let RegStates(X) = {ŝ ∈ Ŝ | Reg(ŝ) ∈ X1}. We

now present the full construction of the reduction.

Construction of the finite turn based game Tf .

The game Tf consists of a tuple 〈Sf , Ef , Sf
1 , S

f
2 〉 where,

• Sf = Sf
1 ∪ Sf

2 is the state space. The states in Sf
i are controlled by player-i for

i ∈ {1, 2}.

CHAPTER 3. TIMED AUTOMATON GAMES 52

• Sf
1 = ŜReg × {1}, where ŜReg is the set of regions in T̂.

• Sf
2 = ŜTup × {2}.

The set ŜTup will be described later. Intuitively, a B ∈ ŜTup represents a 3-tuple

〈Y1, Y2, a1〉 where Yi are regions of T̂, such that 〈∆, a1〉 ∈ Γ̂1(ŝ) with ŝ+ ∆ ∈ Y2. The

values of Y2 and a1 are maintained indirectly.

• ŜTup = L×{true, false}2×H×P(Ĉ)×{0, . . . ,M}×{0, . . . , |C|+1}×{true, false}×

L× 2C ×{true, false}, where H is the set of valuations from C to positive integers

such that each clock x is mapped to a value less than or equal to cx where cx is the

largest constant to which clock x is compared to.

Given Z = 〈l1, tick , bl1, h, 〈C−1, . . . , Cn〉, k, w, om , l2, λ, tev 〉 ∈ ŜTup, we let

FirstRegion(Z) denote the region 〈l2, tick , bl1, h, 〈C−1, . . . , Cn〉〉 ∈ ŜReg. Intuitively,

FirstRegion(Z) is the region from which player 1 first proposes a move. The move

of player 1 consists of a intermediate region Y , denoting that first time passes to

let state change from FirstRegion(Z) to Y ; and a discrete jump action specified by a

destination location l2, together with the clocks to be reset, λ (we observe that the

discrete actions may also be directly specified as a1 ∈ A1 in case |A1| ≤ |L| · 2C).

The variable tev is true iff player 1 proposed any relinquishing time move. The re-

gion Y is obtained from Z using the variables 0 ≤ k ≤ M , 0 ≤ w ≤ |C| + 1, and

om ∈ {true, false}. The integer w indicates the the relative movement of the clock

fractional parts C0, . . . Cn (note that the movement must occur in a cyclical fash-

ion). The integer k indicates the number of cycles completed. It can be at most M

because after that, all clock values become bigger that the maximum constant, and

thus need not be tracked. The boolean variable om indicates whether a small ǫ-move

has taken place so that no clock value is integral, eg., 〈x = 1, y = 1.2, z = 0.99〉 to

〈x = 1.00001, y = 1.20001, z = 0.99001〉.

Formally, SecondRegion(Z) denotes the region 〈l2, tick
′, bl1, h

′, 〈C ′
−1, . . . , C

′
m〉〉 ∈ ŜReg

where

– h′(x) =





h(x) + k if h(x) + k ≤ cx and x ∈ Cj with j + w ≤ n;

h(x) + k + 1 if h(x) + k + 1 ≤ cx and x ∈ Cj with j + w > n;

cx otherwise.

The integer k indicates the number of integer boundaries crossed by all the clocks

CHAPTER 3. TIMED AUTOMATON GAMES 53

when getting to the new region. Some clocks may cross k integer boundaries,

while others may cross k + 1 integer boundaries.

– hmax(x) =





h(x) + k if x ∈ Cj with j + w ≤ n;

h(x) + k + 1 if x ∈ Cj with j + w > n.

(hmax will be used later in the definition of fhmax
max .)

– 〈C ′
−1, . . . , C

′
m〉 = fCompact ◦ f

hmax
max ◦ fom

OpenMove ◦ f
w
Cycle(〈C−1, . . . , Cn〉), where

∗ fw
Cycle(〈C−1, . . . , Cn〉) = 〈C−1, C

′
0, . . . , C

′
n〉 with C ′

(j+w) mod (n+1) = Cj.

This function cycles around the fractional parts by w.

∗ fom
OpenMove(〈C−1, C0, . . . , Cn〉) =





〈C−1, C0, . . . , Cn〉 if om = false;

〈C−1, ∅, C0, . . . , Cn〉 if om = true.

This function indicates if the current region is such that all the clocks have

non-integral values (if om = true).

∗ fmax(〈C−1, C0, . . . , Cn〉) = 〈C ′
−1, C

′
0, . . . , C

′
n〉 with C ′

j = Cj \ Vj for j ≥ 0

and C ′
−1 = C−1 ∪

n
j=0 Vj where (a) x ∈ V0 iff x ∈ C0 and hmax(x) > cx; and

(b) x ∈ Vj for j > 0 iff x ∈ Cj and h′(x) = cx.

When clocks are cycled around, some of them may exceed the maximal

tracked values cx. In that case, they need to be moved to C−1. This function

is accomplished by fmax.

∗ fCompact(〈C−1, C0, . . . , Cm〉) eliminates the empty sets for j > 0. It can be

obtained by the following procedure:

i := 0, j := 1

while j ≤ m do

while j < m and Cj = ∅ do

j := j + 1

end while

if Cj 6= ∅ then

Ci+1 := Cj

i := i+ 1, j := j + 1

end if

end while

return 〈C−1, C0, . . . , Ci〉

– tick ′ = true iff k > 0; or z ∈ Ci and w > n− i.

CHAPTER 3. TIMED AUTOMATON GAMES 54

• The set of edges is specified by a transition relation δf , and a set of available moves

Γf
i . We let Af

i denote the set of moves for player-i, and Γi(X) denote the set of moves

available to player-i at state X ∈ Sf
i .

• Af
1 = (ŜReg × L× 2C ∪ {⊥1}) × {1}.

The component ŜReg denotes the region that player 1 wants to let time elapse to in T̂

to before she takes a jump with the destination specified by the location and the set

of clocks that are reset. The move {⊥1} × {1} is a relinquishing move, corresponding

to a pure time move in T̂.

• Af
2 = ŜReg × {1, 2} × L× 2C × {2}.

The component ŜReg denotes the region that player 2 wants to let time elapse to in

T̂ to before she takes a jump with the destination specified by the location and the

set of clocks that are reset. The element in {1, 2} is used in the case player 2 picks

the same intermediate region ŜReg as player 1. In this case, player 2 has a choice of

letting the move of player 1 win or not, and the number from {1, 2} indicates which

player wins.

• The set of available moves for player 1 at a state

〈X, 1〉 is given by Γf
1(X × {1}) = {⊥1} × {1} ∪




〈Y, ly, λ, 1〉

∣∣∣∣∣∣∣∣

∃ ŝ = 〈lx, κ̂x〉 ∈ X, ∃〈∆,⊥〉 ∈ Γ̂1(ŝ) such that

〈lx, κ̂x〉 + ∆ ∈ Y and ∃ŝ′ ∈ Y, ∃〈lx, a1, θ, ly, λ〉 ∈ Γ̂1(ŝ
′),

such that ŝ′ |= θ





• The set of available moves for player 2 at a state 〈X, 2〉 is given by Γf
1 (X × {2}) =




〈Y, i, ly, λ, 2〉

∣∣∣∣∣∣∣∣∣∣∣

i ∈ {1, 2}, ∃ ŝ = 〈lx, κ̂x〉 ∈ FirstRegion(〈X, 2〉),

∃〈∆,⊥2〉 ∈ Γ̂2(ŝ) such that 〈lx, κ̂x〉 + ∆ ∈ Y and

(a) ly = lx and λ = ∅ or,

(b) ∃ŝ′ ∈ Y ∃〈lx, a2, θ, ly, λ〉 ∈ Γ2(ŝ
′) such that ŝ′ |= θ





• The transition function δf is specified by

– δf (〈l, tick , bl1, h, 〈C−1, . . . , Cn〉, 1〉, 〈Y, ly , λ, 1〉) =

〈l, tick , bl1, h, 〈C−1, . . . , Cn〉, k, w, om , ly, λ, false, 2〉, where 0 ≤ k ≤

M, 0 ≤ w ≤ |C| + 1, om ∈ {true, false} are such that Y =

SecondRegion(〈l, tick , bl1, h, 〈C−1, . . . , Cn〉, k, w, om , ly, λ, false, 2〉).

CHAPTER 3. TIMED AUTOMATON GAMES 55

– δf (〈l, tick , bl1, h, 〈C−1, . . . , Cn〉, 1〉, 〈⊥, 1〉) =

〈l, tick , bl1, h, 〈C−1, . . . , Cn〉, 0, 0, false, l, ∅,true, 2〉.

– Let 〈Z, 2〉 = 〈l, tick , bl1, h, 〈C−1, . . . , Cn〉, k, w, om , lz, λz, tev , 2〉).

Then, δf (〈Z, 2〉, 〈Y, 2, ly , λy, 2〉) =



〈SecondRegion(Z)[loc := lz, λz := 0, bl1 := true], 1〉

if tev = false and all player 1 moves to SecondRegion(Z)

beat all player 2 moves to Y

from the region FirstRegion(Z) according to Lemma 7;

〈Y [loc := ly, λy := 0, bl1 = false], 1〉 otherwise.

– δf (〈Z, 2〉, 〈Y, 1, ly , λy, 2〉) =



〈SecondRegion(Z)[loc := lz, λz := 0, bl1 = true], 1〉

if tev = false and all player 1 moves to

SecondRegion(Z) beats all player 2 moves to Y

from the region FirstRegion(Z) according to Lemma 7;

〈SecondRegion(Z)[loc := lz, λz := 0, bl1 := true], 1〉

if tev = false and Y = SecondRegion(Z) ie., both

players pick the same time delay, (and player 2

allows the player 1 move, signified by the 1 in〈Y, 1, ly , λy, 2〉);

〈Y [loc := ly, λy := 0, bl1 := false], 1〉 otherwise..

Note that we change the values of bl1 and tick only after player-2 moves.

Theorem 11. Let T̂ be an enlarged timed game structure, and let Tf be the correspond-

ing finite game structure. Then, given an ω-regular region objective Parity(Ω), we have

Win
bT
1 (TimeDivBl1(Parity(Ω))) = RegStates(WinTf

1 (Parity(Ω̂f))).

Proof. A solution for obtaining the set Win
bT
1 (TimeDivBl1(Parity(Ω))) has been presented

in [dAFH+03] using a µ-calculus formulation. The µ-calculus iteration uses the controllable

predecessor operator for player 1, CPre1 : 2
bS 7→ 2

bS , defined formally by s̃ ∈ CPre1(Z) iff

∃m1 ∈ Γ̂1(ŝ) ∀m2 ∈ Γ̂2(ŝ) . δ̂jd(ŝ,m1,m2) ⊆ Z. Informally, CPre1(Z) consists of the set

of states from which player 1 can ensure that the next state will be in Z, no matter what

player 2 does. It can be shown that CPre1 preserves regions of T̂ using Lemma 7. We use the

Pre1 operator in turn based games: Pre1(X) = {s ∈ ŜReg ×{1} | ∃s′ ∈ X such that (s, s′) ∈

Ef} ∪ {s ∈ ŜTup × {2} | ∀(s, s′) ∈ Ef we have s′ ∈ X}. From the construction of Tf , it

CHAPTER 3. TIMED AUTOMATON GAMES 56

also follows that given X = X1 × {1} ∪X2 × {2} ⊆ Sf , we have

RegStates(PreTf

1 (PreTf

1 (X))) = CPre
bT
1 (RegStates(X)) = CPre

bT
1 (X1) (3.1)

Let φc be the µ-calculus formula using the CPre1 operator describing the winning set for

Parity(Ω̂) = TimeDivBl1(Parity(Ω)) . Let φt be the µ-calculus formula using the Pre1 operator

in a turn based game describing the winning set for Parity(Ω̂) . The formula φt can be

obtained from φc by syntactically replacing every CPre1 by Pre1. Let the winning set for

Parity(Ω̂) in Tf be W1 ×{1} ∪ W2 ×{2}. It is described by φt. The game in Tf proceeds in

a bipartite fashion — player 1 and player 2 alternate moves, with the state resulting from

the move of player 1 having the same parity index as the originating state. Note that the

objective Parity(Ω̂) depends only on the infinitely often occurring indices in the trace. Thus,

W1 ×{1} can be also be described by the µ-calculus formula φ′t obtained by replacing each

Pre1 in φt with Pre1 ◦Pre1, and taking states of the form s×{1} in the result. Since we are

only interested in the set W1 × {1}, and since we have a bipartite game where the parity

index remains the same for every next state of a player-1 state, the set W1 × {1} can also

be described by the µ-calculus formula φ′′t obtained from φ′t by intersecting every variable

with ŜReg × {1}. Now, φ′′t can be computed using a finite fixpoint iteration. Using the

identity 3.1, we have that the sets in the fixpoint iteration computation of φ′′t correspond

to the sets in the fixpoint iteration computation of φc, that is, if X × {1} occurs in the

computation of φ′′t at stage j, then RegStates(X) occurs in the computation of φ′′t at the

same stage j. This implies that the sets are the same on termination for both φ′′t and φc.

Thus, Win
bT
1 (TimeDivBl1(Parity(Ω))) = RegStates(WinTf

1 (Parity(Ω̂f))).

Complexity of reduction. Recall that for a timed automaton game T, Ai is the

set of actions for player i, C is the set of clocks and M is the largest constant in

T. Let |Ai|
∗ = min{|Ai|, L · 2|C|} and let |TConstr | denote the length of the clock con-

straints in T. We now show that the size of the state space of Tf is bounded by |ŜReg| ·

(1 + (M + 1) · (|C| + 2) · 2 · (|A1|
∗ + 1)), where |ŜReg| ≤ 16·|L|·

∏
x∈C(cx+1)·|C+1|!·2|C|+1

is the number of regions of T̂. We also show that the number of edges in Tf is bounded by

|ŜReg| · ((M + 1) · (|C| + 2) · 2) · (|A1|
∗ + 1) [(1 + (|A2|

∗ + 1) · ((M + 1) · (|C| + 2) · 2)].

In the construction of Tf , we can keep track of actions, or the locations together

with the reset sets depending on whether |Ai| is bigger than L ·2|C| or not, hence we shal use

|Ai|
∗ in our analysis. We have |Sf

1 | = |ŜReg|, and |Sf
2 | = |ŜReg|·(M+1)·(|C|+2)·2·(|A1|

∗+1)

CHAPTER 3. TIMED AUTOMATON GAMES 57

(we have incorporated a modification where we represent possible actions by {⊥1} ∪ A1

instead of L× 2C ×{true, false}). Given a state Z ∈ Sf
1 , the number player-1 edges from

Z is equal to one plus the cardinality of the set of time successors of Z multiplied by player-1

actions. This is equal to (|A1| + 1)∗ · ((M + 1) · (|C| + 2) · 2) (the +1 corresponds to the

relinquishing move). Thus the total number of player-1 edges is at most |ŜReg| · (|A1|
∗ + 1) ·

((M + 1) · (|C| + 2) · 2). Given a stateX ∈ Sf
2 , the number player-2 edges fromX is equal to

2·(|A2|
∗+1) multiplied by the cardinality of the set of time successors of FirstRegion(X) (the

plus one arises as player-2 can have a pure time move in addition to actions from A2). Thus,

the number of player-2 edges is at most |Sf
2 | ·2 · (|A2 |

∗ +1) · ((M + 1) · (|C| + 2) · 2). Hence,

|Ef | ≤ |ŜReg|·((M + 1) · (|C| + 2) · 2)·(|A1|
∗+1) [(1 + (|A2|

∗ + 1) · ((M + 1) · (|C| + 2) · 2)].

Let |TConstr | denote the length of the clock constraints in T. For our complexity analysis,

we assume all clock constraints are in conjunctive normal form. For constructing Tf , we

need to check whether regions satisfy clock constraints from T. For this, we build a list

of regions with valid invariants together with edge constraints satisfied at the region. This

takes O(|ŜReg| · |TConstr |) time. We assume a region can be represented in constant space.

Theorem 12. Let T be a timed automaton game, and let Ω be a region parity index function

of order d. The set WinTimeDivT
1 (Parity(Ω)) can be computed in time

O

(
(|ŜReg| · |TConstr|) + [M · |C| · |A2|

∗] ·
[
2 · |ŜReg| ·M · |C| · |A1|

∗
] d+2

3
+ 3

2

)

where |ŜReg| ≤ 16 · |L| ·
∏

x∈C(cx +1) · |C+1|! ·2|C|+1, M is the largest constant in T, |TConstr|

is the length of the clock constraints in T, C is the set of clocks, |Ai|
∗ = min{|Ai|, L · 2|C|},

and |Ai| the number of discrete actions of player i for i ∈ {1, 2} .

Proof. From [Sch07], we have that a turn based parity game with m edges, n states

and d parity indices can be solved in O(m · n
d
3
+ 1

2) time. Thus, WinTimeDivT
1 (Parity(Ω))

can be computed in time O

(
(|ŜReg| · |TConstr|) + F1 · F

d+2
3

+ 1
2

2

)
, where F1 = |ŜReg| ·

((M + 1) · (|C| + 2) · 2) · (|A1|
∗ + 1) [(1 + (|A2|

∗ + 1) · ((M + 1) · (|C| + 2) · 2)], and F2 =

|ŜReg| · (1 + (M + 1) · (|C| + 2) · 2 · (|A1|
∗ + 1)), which is equal to

O

(
(|ŜReg| · |TConstr|) + [M · |C| · |A2|

∗] ·
[
2 · |ŜReg| ·M · |C| · |A1|

∗
] d+2

3
+ 3

2

)

From Theorem 11, we can solve the finite state game Tf to compute winning

sets for all ω-regular region parity objectives Φ for a timed automaton game T, using

CHAPTER 3. TIMED AUTOMATON GAMES 58

any algorithm for finite state turn based games, e.g., strategy improvement, small-progress

algorithms [VJ00, Jur00]. Note that Tf does not depend on the parity condition used, and

there is a correspondence between the regions repeating infinitely often in T and Tf . Hence,

it is not required to explicitly convert an ω-regular objective Φ to a parity objective to solve

using the Tf construction. We can solve the finite state game Tf to compute winning sets

for all ω-regular region objectives Φ, where Φ is a Muller objective. Since Muller objectives

subsume Rabin, Streett (strong fairness objectives), parity objectives as a special case, our

result holds more a much richer class of objectives than parity objectives.

Corollary 3. Let T̂ be an enlarged timed game structure, and let Tf be the corresponding

finite game structure. Then, given an ω-regular region objective Φ, where Φ is specified as

a Muller objective, we have Win
bT
1 (TimeDivBl1(Φ)) = RegStates(WinTf

1 (TimeDivBl(Φ))).

59

Chapter 4

Timed-Alternating Time Logic

4.1 Introduction

Temporal logics are a system for qualitatively describing and reasoning about

how the truth values of assertions change over time (see [Eme90] for a survey). These

logics can reason about properties like “eventually the specified assertion becomes true”,

or “the specified assertion is true infinitely often”. Branching time logics provide explicit

quantifications over the set of computations, for example the CTL formula ∀ϕ requires

that a state satisfying ϕ be visited on all paths, and the formula ∃ϕ specifies that a state

satisfying ϕ be visited on some path. Given a state of a system and a temporal logic

specification, the model checking problem is to determine whether the state satisfies the

logic specification.

In game structures, we want to differentiate between agents in the logic specifica-

tion. In [AHK02], several alternating-time temporal logics were introduced to specify prop-

erties of untimed game structures, including the CTL-like logic ATL, and the CTL
∗-like

logic ATL
∗. These logics are natural specification languages for multi-component systems,

where properties need to be guaranteed by subsets of the components irrespective of the

behavior of the other components. Each component represents a player in the game, and

sets of players may form teams. For example, the ATL formula
〈
〈i〉
〉
3p is true at a state

s iff player i can force the game from s into a state that satisfies the proposition p. We

interpret these logics over timed game structures, and enrich them by adding freeze quan-

tifiers [AH94] for specifying timing constraints. The resulting logics are called TATL and

TATL
∗. The new logic TATL subsumes both the untimed game logic ATL, and the timed

CHAPTER 4. TIMED-ALTERNATING TIME LOGIC 60

non-game logic TCTL [ACD93]. For example, the TATL formula
〈
〈i〉
〉
3≤d p is true at a

state s iff player i can force the game from s into a p state in at most d time units. We

restrict our attention here to the two-player case (e.g., system vs. environment; or plant vs.

controller), but all results can be extended to the multi-player case.

The model checking of these logics requires the solution of timed games. Timed

game structures are infinite-state. In order to consider algorithmic solutions, we restrict

our attention to timed automaton game structures. For timed systems, we need the players

to use only receptive strategies when achieving their objectives and we use the framework

presented in Chapter 3. We show that the receptiveness requirement can be encoded within

TATL
∗ (but not within TATL). However, solving TATL

∗ games is undecidable, because

TATL
∗ subsumes the linear-time logic TPTL [AH94], whose dense-time satisfiability prob-

lem is undecidable. We nonetheless establish the decidability of TATL model checking, by

carefully analyzing the fragment of TATL
∗ we obtain through the winning condition trans-

lation. We show that TATL model checking over timed automaton games is complete for

EXPTIME; that is, no harder than the solution of timed automaton games with reacha-

bility objectives.

Outline. In Section 4.2 we present the syntax and semantics of the logic TATL, and in

Section 4.3 that for the logic TATL
∗. Model checking of TATL proceed by an encoding to

TATL
∗ and is described in Section 4.4.

4.2 TATL Syntax and Semantics

In this chapter we consider a fixed timed game structure together with propositions

on states, G = 〈S,Σ, σ,A1,A2,Γ1,Γ2, δ〉 where

• Σ is a finite set of propositions.

• σ : S 7→ 2Σ is the observation map, which assigns to every state the set of propositions

that are true in that state.

• S,A1,A2,Γ1,Γ2, δ are as defined in Chapter 3.

In this chapter we shall consider ω-objectives Φ over propositions, ie., objectives Φ that

are such that there exists an ω-regular set Ψ ⊆ (2Σ)ω of infinite sequences of sets of

CHAPTER 4. TIMED-ALTERNATING TIME LOGIC 61

propositions such that a run r = s0, 〈m
0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . is in Φ iff the projection

σ(r) = σ(s0), σ(s1), σ(s2), . . . is in Ψ.

The temporal logic TATL (Timed Alternating-Time Temporal Logic) is inter-

preted over the states of G. We use the syntax of freeze quantification [AH94] for specifying

timing constraints within the logic. The freeze quantifier “x·” binds the value of the clock

variable x in a formula ϕ(x) to the current time t ∈ IR≥0; that is, the constraint x ·ϕ(x)

holds at time t iff ϕ(t) does. For example, the property that “every p state is followed by a

q state within d time units” can be written as: ∀2x·(p→ 3y·(q∧ y ≤ x+ d)). This formula

says that “in every state with time x, if p holds, then there is a later state with time y

such that both q and y ≤ x+ d hold.” Formally, given a set D of clock variables, a TATL

formula is one of the following:

• true | p | ¬ϕ | ϕ1 ∧ϕ2, where p ∈ Σ is a proposition, and ϕ1, ϕ2 are TATL formulae.

• x + d1 ≤ y + d2 | x·ϕ, where x, y ∈ D are clock variables and d1, d2 are nonnegative

integer constants, and ϕ is a TATL formula. We refer to the clocks in D as formula

clocks.

•
〈
〈P〉
〉
2ϕ |

〈
〈P〉
〉
ϕ1 Uϕ2, where P ⊆ {1, 2} is a set of players, and ϕ,ϕ1, ϕ2 are TATL

formulae.

We omit the next operator of ATL, which has no meaning in timed systems. The freeze

quantifier x·ϕ binds all free occurrences of the formula clock variable x in the formula ϕ.

A TATL formula is closed if it contains no free occurrences of formula clock variables.

Without loss of generality, we assume that for every quantified formula x ·ϕ, if y ·ϕ′ is a

subformula of ϕ, then x and y are different; that is, there is no nested reuse of formula

clocks. When interpreted over the states of a timed automaton game T, a TATL formula

may also contain free (unquantified) occurrences of clock variables from T.

There are four possible sets of players (so-called teams), which may collaborate

to achieve a common goal: we write
〈
〈 〉
〉

for
〈
〈∅〉
〉
; we write

〈
〈i〉
〉

for
〈
〈{i}〉

〉
with i ∈ {1, 2};

and we write
〈
〈1, 2〉

〉
for
〈
〈{1, 2}〉

〉
. Roughly speaking, a state s satisfies the TATL formula

〈
〈i〉
〉
ϕ iff player i can win the game at s for an objective derived from ϕ. The state s satisfies

the formula
〈
〈 〉
〉
ϕ (resp.,

〈
〈1, 2〉

〉
ϕ) iff every run (resp., some run) from s is contained in the

objective derived from ϕ. Thus, the team ∅ corresponds to both players playing adversially,

CHAPTER 4. TIMED-ALTERNATING TIME LOGIC 62

and the team {1, 2} corresponds to both players collaborating to achieve a goal. We therefore

write ∀ short for
〈
〈 〉
〉
, and ∃ short for

〈
〈1, 2〉

〉
, as in ATL.

We assign the responsibilities for time divergence to teams as follows: let

Blameless∅ = Runs, let Blameless{1,2} = ∅, and let Blameless{i} = Blamelessi for i ∈ {1, 2}.

A strategy πP for the team P consists of a strategy for each player in P. We denote

the “opposing” team by ∼P = {1, 2} \ P. Given a state s ∈ S, a team-P strategy πP,

and a team-∼P strategy π∼P, we define Outcomes(s, πP ∪ π∼P) = Outcomes(s, π1, π2)

for the player-1 strategy π1 and the player-2 strategy π2 in the set πP ∪ π∼P of strate-

gies. Given a team-P strategy πP, we define the set of possible outcomes from state s by

Outcomes(s, πP) = ∪π∼P
Outcomes(s, πP∪π∼P), where the union is taken over all team-∼P

strategies π∼P.

To define the semantics of TATL, we need to distinguish between physical time

and game time. We allow moves with zero time delay, thus a physical time t ∈ IR≥0

may correspond to several linearly ordered states, to which we assign the game times

〈t, 0〉, 〈t, 1〉, 〈t, 2〉, . . . For a run r ∈ Runs, we define the set of game times as

GameTimes(r) =
{〈t, k〉 ∈ IR≥0 × IN | 0 ≤ k < |{j ≥ 0 | time(r, j) = t}|} ∪

{〈t, 0〉 | time(r, j) ≥ t for some j ≥ 0}.

The state of the run r at a game time 〈t, k〉 ∈ GameTimes(r) is defined as

state(r, 〈t, k〉) =





r[j + k] if time(r, j) = t and for all j′ < j, time(r, j′) < t;

δ(r[j], 〈t − time(r, j),⊥〉) if time(r, j) < t < time(r, j + 1).

Note that if r is a run of the timed game structure G, and time(r, j) < t < time(r, j + 1),

then δ(r[j], 〈t − time(r, j),⊥〉) is a state in S, namely, the state that results from r[j] by

letting time t − time(r, j) pass. We say that the run r visits a proposition p ∈ Σ if there

is a τ ∈ GameTimes(r) such that p ∈ σ(state(r, τ)). We order the game times of a run

lexicographically: for all 〈t, k〉, 〈t′, k′〉 ∈ GameTimes(r), we have 〈t, k〉 < 〈t′, k′〉 iff either

t < t′, or t = t′ and k < k′. For two game times τ and τ ′, we write τ ≤ τ ′ iff either τ = τ ′

or τ < τ ′.

An environment E : D 7→ IR≥0 maps every formula clock in D to a nonnegative

real. Let E [x := t] be the environment such that (E [x := t])(y) = E(y) if y 6= x, and

(E [x := t])(y) = t if y = x. For a state s ∈ S, a time t ∈ IR≥0, an environment E , and a

TATL formula ϕ, the satisfaction relation (s, t, E) |=td ϕ is defined inductively as follows

(the subscript td indicates that players may win in only a physically meaningful way):

CHAPTER 4. TIMED-ALTERNATING TIME LOGIC 63

• (s, t, E) |=td true.

• (s, t, E) |=td p, for a proposition p, iff p ∈ σ(s).

• (s, t, E) |=td ¬ϕ iff (s, t, E) 6|=td ϕ.

• (s, t, E) |=td ϕ1 ∧ ϕ2 iff (s, t, E) |=td ϕ1 and (s, t, E) |=td ϕ2.

• (s, t, E) |=td x+ d1 ≤ y + d2 iff E(x) + d1 ≤ E(y) + d2.

• (s, t, E) |=td x·ϕ iff (s, t, E [x := t]) |=td ϕ.

• (s, t, E) |=td

〈
〈P〉
〉
2ϕ iff there is a team-P strategy πP such that for all runs r ∈

Outcomes(s, πP), the following conditions hold:

If r ∈ Timediv, then for all 〈u, k〉 ∈ GameTimes(r), we have
(state(r, 〈u, k〉), t + u, E) |=td ϕ. If r 6∈ Timediv, then r ∈ BlamelessP.

• (s, t, E) |=td

〈
〈P〉
〉
ϕ1 Uϕ2 iff there is a team-P strategy πP such that for all runs

r ∈ Outcomes(s, πP), the following conditions hold:

If r ∈ Timediv, then there is a 〈u, k〉 ∈ GameTimes(r) such that
(state(r, 〈u, k〉), t + u, E) |=td ϕ2, and for all 〈u′, k′〉 ∈ GameTimes(r) with
〈u′, k′〉 < 〈u, k〉, we have (state(r, 〈u′, k′〉), t + u′, E) |=td ϕ1. If r 6∈ Timediv,
then r ∈ BlamelessP.

Note that for an ∃ formula to hold, we require time divergence (as Blameless{1,2} = ∅). Also

note that for a closed formula, the value of the environment is irrelevant in the satisfaction

relation. A state s of the timed game structure G satisfies a closed formula ϕ of TATL,

denoted s |=td ϕ, if (s, 0, E) |=td ϕ for any environment E .

We use the following abbreviations. We write
〈
〈P〉
〉
ϕ1 U∼d ϕ2 for

x·
〈
〈P〉
〉
ϕ1 U y ·(ϕ2 ∧ y ∼ x+ d), where ∼ is one of <, ≤, =, ≥, or >. Interval con-

straints can also be encoded in TATL; for example,
〈
〈P〉
〉
ϕ1 U (d1,d2] ϕ2 stands for

x·
〈
〈P〉
〉
ϕ1 U y ·(ϕ2 ∧ y > x+ d1 ∧ y ≤ x+ d2). We write 3ϕ for trueUϕ as usual, and

therefore
〈
〈P〉
〉
3∼d ϕ stands for x·

〈
〈P〉
〉
3y ·(ϕ ∧ y ∼ x+ d).

4.3 TATL∗

TATL is a fragment of the more expressive logic called TATL
∗. There are two

types of formulae in TATL
∗: state formulae, whose satisfaction is related to a particular

CHAPTER 4. TIMED-ALTERNATING TIME LOGIC 64

state, and path formulae, whose satisfaction is related to a specific run. Formally, a TATL
∗

state formula is one of the following:

(S1) true or p for propositions p ∈ Σ.

(S2) ¬ϕ or ϕ1 ∧ ϕ2 for TATL
∗ state formulae ϕ, ϕ1, and ϕ2.

(S3) x+ d1 ≤ y + d2 for clocks x, y ∈ D and nonnegative integer constants d1, d2.

(S4)
〈
〈P〉
〉
ψ for P ⊆ {1, 2} and TATL

∗ path formulae ψ.

A TATL
∗ path formula is one of the following:

(P1) A TATL
∗ state formula.

(P2) ¬ψ or ψ1 ∧ ψ2 for TATL
∗ path formulae ψ, ψ1, and ψ2.

(P3) x·ψ for formula clocks x ∈ D and TATL
∗ path formulae ψ.

(P4) ψ1 Uψ2 for TATL
∗ path formulae ψ1, ψ2.

The logic TATL
∗ consists of the formulae generated by the rules S1–S4. As in TATL,

we assume that there is no nested reuse of formula clocks. Additional temporal operators

are defined as usual; for example, 3ϕ stands for trueUϕ, and 2ϕ stands for ¬3¬ϕ. The

logic TATL can be viewed as a fragment of TATL
∗ consisting of formulae in which every

U operator is immediately preceeded by a
〈
〈P〉
〉

operator, possibly with an intermittent

negation symbol [AHK02].

The semantics of TATL
∗ formulae are defined with respect to an environment

E : D 7→ IR≥0. We write (s, t, E) |= ϕ to indicate that the state s of the timed game

structure G satisfies the TATL
∗ state formula ϕ at time t ∈ IR≥0; and (r, τ, t, E) |= ψ to

indicate that the suffix of the run r of G which starts from game time τ ∈ GameTimes(r)

satisfies the TATL
∗ path formula ψ, provided the time at the initial state of r is t. Unlike

TATL, we allow all strategies for both players (including non-receptive strategies), because

we will see that the use of receptive strategies can be enforced within TATL
∗ by certain

path formulae. Formally, the satisfaction relation |= is defined inductively as follows. For

state formulae ϕ,

• (s, t, E) |= true.

CHAPTER 4. TIMED-ALTERNATING TIME LOGIC 65

• (s, t, E) |= p, for a proposition p, iff p ∈ σ(s).

• (s, t, E) |= ¬ϕ iff (s, t, E) 6|= ϕ.

• (s, t, E) |= ϕ1 ∧ ϕ2 iff (s, t, E) |= ϕ1 and (s, t, E) |= ϕ2.

• (s, t, E) |= x+ d1 ≤ y + d2 iff E(x) + d1 ≤ E(y) + d2.

• (s, t, E) |=
〈
〈P〉
〉
ψ iff there is a team-P strategy πP such that for all runs r ∈

Outcomes(s, πP), we have (r, 〈0, 0〉, t, E) |= ψ.

For path formulae ψ,

• (r, 〈u, k〉, t, E) |= ϕ, for a state formula ϕ, iff (state(r, 〈u, k〉), t + u, E) |= ϕ.

• (r, τ, t, E) |= ¬ψ iff (r, τ, t, E) 6|= ψ.

• (r, τ, t, E) |= ψ1 ∧ ψ2 iff (r, τ, t, E) |= ψ1 and (r, τ, t, E) |= ψ2.

• (r, 〈u, k〉, t, E) |= x·ψ iff (r, 〈u, k〉, t, E [x := t+ u]) |= ψ.

• (r, τ, t, E) |= ψ1 Uψ2 iff there is a τ ′ ∈ GameTimes(r) such that τ ≤ τ ′ and (r, τ ′, t, E) |=

ψ2, and for all τ ′′ ∈ GameTimes(r) with τ ≤ τ ′′ < τ ′, we have (r, τ ′′, t, E) |= ψ1.

A state s of the timed game structure G satisfies a closed formula ϕ of TATL
∗, denoted

s |= ϕ, if (s, 0, E) |= ϕ for any environment E .

4.4 Model Checking TATL

We restrict our attention to timed automaton games. Given a closed TATL (resp.

TATL
∗) formula ϕ, a timed automaton game T, and a state s of the timed game struc-

ture [[T]], the model-checking problem is to determine whether s |=td ϕ (resp., s |= ϕ). The

alternating-time logic TATL
∗ subsumes the linear-time logic TPTL [AH94]. Thus the

model-checking problem for TATL
∗ is undecidable. On the other hand, we now solve the

model-checking problem for TATL by reducing it to a special kind of TATL
∗ problem,

which turns out to be decidable.

Given a TATL formula ϕ over the set D of formula clocks, and a timed automaton

game T, we look at the timed automaton game Tϕ with the set Cϕ = C ⊎D of clocks (we

assume C ∩ D = ∅). Let cx be the largest constant to which the formula variable x is

CHAPTER 4. TIMED-ALTERNATING TIME LOGIC 66

compared in ϕ. We pick an invariant γ(l) in T and modify it to γ(l)′ = γ(l)∧(x ≤ cx∨x ≥ cx)

in Tϕ for every formula clock x ∈ D (this is to inject the proper constants in the region

equivalence relation). Thus, Tϕ acts exactly like T except that it contains some extra clocks

which are never used.

As in Chapter 3, we represent the sets Timediv and Blamelessi using ω-regular

conditions. Since both players appear in TATL objectives, we need the variable bl2 in

addition to bl1. Thus, we look at the enlarged automaton game structure [̂[Tϕ]] with the

state space Ŝ = Sϕ × {T, F}3, and an augmented transition relation δ̂jd : Ŝ ×M1 ×M2 7→

2
bS . In an augmented state 〈s, tick , bl1, bl2〉 ∈ Ŝ, the component s ∈ Sϕ is a state of

the original game structure [[Tϕ]], tick is true if the global clock z has crossed an integer

boundary in the last transition, and bl i is true if player i is to blame for the last transition.

It can be seen that a run is in Timediv iff tick is true infinitely often, and that the set

Blamelessi corresponds to runs along which bl i is true only finitely often. We extend the clock

equivalence relation to these expanded states: 〈〈l, κ〉, tick , bl1, bl2〉 ∼= 〈〈l′, κ′〉, tick ′, bl ′1, bl
′
2〉

iff l = l′, tick = tick ′, bl1 = bl ′1, bl2 = bl ′2 and κ ∼= κ′. Finally, we extend bl to teams:

bl∅ = false, bl{1,2} = true, bl{i} = bl i.

We will use the algorithms of Chapter 3 which compute winning sets for timed

automaton games with untimed ω-regular objectives. We first consider the subset of TATL

in which formulae are clock variable free. Using the encoding for time divergence and blame

predicates, we can embed the notion of receptive winning strategies into TATL
∗ formulae.

Lemma 11. A state s in a timed game structure [[Tϕ]] satisfies a formula clock vari-

able free TATL formula ϕ in a meaningful way, denoted s |=td ϕ, iff the state ŝ =

〈s, false, false, false〉 in the expanded game structure [̂[Tϕ]] satisfies the TATL
∗ formula

atlstar(ϕ), that is, iff ŝ |= atlstar(ϕ) where atlstar is a partial mapping from TATL to

TATL
∗, defined inductively as follows:

atlstar(true) = true

atlstar(p) = p
atlstar(¬ϕ) = ¬ atlstar(ϕ); atlstar(ϕ1 ∧ ϕ2) = atlstar(ϕ1) ∧ atlstar(ϕ2)
atlstar(

〈
〈P〉
〉
2ϕ) =

〈
〈P〉
〉
((23 tick → 2 atlstar(ϕ)) ∧ (32¬ tick → 32¬ blP))

atlstar(
〈
〈P〉
〉
ϕ1 Uϕ2) =

〈
〈P〉
〉((23 tick → atlstar(ϕ1)U atlstar(ϕ2)) ∧

(32¬ tick → 32¬ blP)

)

Now, for ϕ a clock variable free TATL formula, atlstar(ϕ) is actually an ATL
∗

formula. Thus, the untimed ω-regular model checking algorithm of [dAFH+03] can be used

CHAPTER 4. TIMED-ALTERNATING TIME LOGIC 67

to (recursively) model check atlstar(ϕ). As we are working in the continuous domain, we

need to ensure that for an until formula
〈
〈P〉
〉
ϕ1 Uϕ2, team P does not “jump” over a

time at which ¬(ϕ1 ∨ ϕ2) holds. This can be handled by introducing another player in

the opposing team ∼P, the observer, who can only take pure time moves. The observer

entails the opposing team to observe all time points. The observer is necessary only when

P = {1, 2}. We omit the details.

A naive extension of the above approach to full TATL does not immediately work,

for then we get TATL
∗ formulae which are not in ATL

∗ (model checking for TATL
∗ is

undecidable). We do the following: for each formula clock constraint x + d1 ≤ y + d2

appearing in the formula ϕ, let there be a new proposition pα for α = x+ d1 ≤ y + d2. We

denote the set of all such formula clock constraint propositions by Λ. A state 〈l, κ〉 in the

timed automaton game Tϕ satisfies pα for α = x + d1 ≤ y + d2 iff κ(x) + d1 ≤ κ(y) + d2.

The propositions pα are invariant over regions, maintaining the region-invariance of sets

in the algorithms of Chapter 3. We note that in applying the reduction of Section 3.4 of

Chapter 3, we need to construct a separate finite state game graph for each team P.

Lemma 12. For a TATL formula ϕ, let ϕΛ be obtained from ϕ by replacing all formula

variable constraints x+ d1 ≤ y + d2 with equivalent propositions pα ∈ Λ. Let [[Tϕ]]Λ denote

the timed game structure [[Tϕ]] together with the propositions from Λ. Then,

1. We have s |=td ϕ for a state s in the timed game structure [[Tϕ]] iff the state s |=td ϕ
Λ

in [[Tϕ]]Λ.

2. Let ϕΛ = w·ψΛ. Then, in the structure [[Tϕ]]Λ the state s |=td ϕ
Λ iff s[w := 0] |=td ψ

Λ.

3. Let ϕ =
〈
〈P〉
〉
2p |

〈
〈P〉
〉
p1 Up2, where p, p1, p2 are propositions that are invariant over

states of regions in Tϕ. Then for s ∼= s′ in Tϕ, we have s |=td ϕ iff s′ |=td ϕ.

Lemmas 11 and 12 together with the EXPTIME algorithm for timed automaton

games with untimed ω-regular region objectives give us a recursive model-checking algorithm

for TATL.

Theorem 13. The model-checking problem for TATL (over timed automaton games) is

EXPTIME-complete.

EXPTIME-hardness follows from the EXPTIME-hardness of alternating reach-

ability on timed automata [HK99].

68

Chapter 5

Minimum-Time Reachability in

Timed Games

5.1 Introduction

In this chapter we consider the problem of minimum-time reachability in timed

games, where we ask what is the earliest time at which player 1 is able to guarantee the

satisfaction of a proposition. This is the quantitative version of the classical reachability

query and is useful in competitive optimization problems. We work in the framework of

Chapter 3 where both players must only use receptive strategies in the timed game. We

illustrate the problem with the following example.

Example 7. Consider the game depicted in Figure 5.1. Let edge a be controlled by player-

1; the others being controlled by player-2. Suppose we want to know what is the earliest

time that player-1 can reach p starting from the state 〈¬p, x = 0, y = 0〉 (i.e., the initial

values of both clocks x and y are 0). Player-1 is not able to guarantee time divergence, as

player-2 can keep on choosing the edge b1. On the other hand, we do not want to put any

restriction of the number of times that player-2 chooses b1. Requiring that the players use

only receptive strategies avoids such unnecessary restrictions, and gives the correct minimum

time for player-1 to reach p, namely, 101 time units.

We present an EXPTIME algorithm to compute the minimum time needed by

player-1 to force the game into a target location, with both players restricted to using

only receptive strategies (note that reachability in timed automaton games is EXPTIME-

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 69

x ≤ 100 → y := 0

¬p p

y ≥ 1 → x := 0
a

y ≤ 2 → y := 0

b2

b1

Figure 5.1: A timed automaton game.

complete [HK99]). We first show that the minimum time can be obtained by solving a

certain µ-calculus fixpoint equation. We then give a proof of termination for the fixpoint

evaluation. This requires an important new ingredient: an extension of the clock-region

equivalence [AD94] for timed automata. We show our extended region equivalence classes

to be stable with respect to the monotone functions used in the fixpoint equation.

We note that standard clock regions do not suffice for the solution. The minimum-

time reachability game has two components: a reachability part that can be handled by

discrete arguments based on the clock-region graph; and a minimum-time part that requires

minimization within clock regions (cf. [CY92]). Unfortunately, both arguments are inter-

twined and cannot be considered in isolation. Our extended regions decouple the two parts

in the proofs. We also note that region sequences that correspond to time-minimal runs

may in general be required to contain region cycles in which time does not progress by an

integer amount; thus a reduction to a loop-free region game, as in [AdAF05], is not possible.

Outline. The minimum-time reachability problem is defined in Section 5.2. The problem

is reduced to finding the winning set for simple reachability in Section 5.3. We show in

Section 5.4 that reachability problem can solved using the classical µ-calculus algorithm.

The algorithm runs in time exponential in the number of clocks and the size of clock

constraints.

5.2 The Minimum-Time Reachability Problem

Let G be a well-formed timed game with propositions on locations as described

in Chapters 3 and 4. The minimum-time reachability problem is to determine the minimal

time in which a player can force the game into a set of target states, using only receptive

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 70

strategies. Formally, given a timed game G, a target proposition p ∈ Σ, and a run r of T,

let

Tvisit(G, r, p) =





∞ if r does not visit p;

inf {t ∈ IR≥0 | p ∈ σ(state(r, 〈t, k〉)) for some k} otherwise.

The minimal time for player-1 to force the game from a start state s ∈ S to a visit to p is

then

Tmin(G, s, p) = inf
π1∈ΠR

1

sup
π2∈ΠR

2

sup
r∈Outcomes(s,π1,π2)

Tvisit(T, r, p)

We omit G when clear from the context. We restrict our attention to well-formed timed

automaton games. The definition of Tmin quantifies strategies over the set of receptive

strategies. Our algorithm will instead work over the set of all strategies. Theorem 14

presents this reduction. We will then present a game structure for the timed automaton

game T in which Timediv and Blameless1 can be represented using B�uchi and co-B�uchi

constraints as in Chapter 3. In addition, our game structure will also have a backwards

running clock, which will be used in the computation of the minimum time, using a µ-

calculus algorithm on extended regions.

Allowing Players to Use All Strategies. To allow quantification over all strategies, we

first modify the payoff function Tvisit, so that players are maximally penalized on zeno runs:

TUR
visit(r, p) =





∞ if r 6∈ Timediv and r 6∈ Blamelessi;

∞ if r ∈ Timediv and r does not visit p;

0 if r 6∈ Timediv and r ∈ Blamelessi;

inf {t ∈ IR≥0 | p ∈ σ(state(r, 〈t, k〉)) for some k} otherwise.

It turns out that penalizing on zeno-runs is equivalent to penalizing on non-

receptive strategies:

Theorem 14. Let s be a state and p a proposition in a well-formed timed game structure

G. Then:

Tmin(s, p) = inf
π1∈Π1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

TUR
visit(r, p)

Proof. We restrict our attention to strategies for plays starting from state s. The proof of

the theorem relies on Lemmas 13,14 and 15 which we present next.

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 71

Lemma 13. Consider a timed game structure G and a state s ∈ S. Let π1 ∈ ΠR
1 and

πR
2 ∈ ΠR

2 be player-1 and player-2 receptive strategies, and let π2 ∈ Π2 be any player-2

strategy such that Outcomes(s, π1, π2)∩Timediv 6= ∅. Let r∗ ∈ Outcomes(s, π1, π2)∩Timediv.

Consider a player-2 strategy π∗2 be defined as, π∗2(r[0..k]) = π2(r
∗[0..k]) for all run prefixes

r[0..k] of r∗, and π∗2(r[0..k]) = πR
2 (r[k′..k]) otherwise, where k′ is the first position such that

r[0..k′] is not a run prefix of r∗. Then, π∗2 is a receptive strategy.

Proof. Intuitively, the strategy π∗2 acts like π2 on r∗ , and like πR
2 otherwise. Consider any

player-1 strategy π′1 ∈ Π1, and any run r ∈ Outcomes(s, π′1, π
∗
2). If r = r∗, then r ∈ Timediv.

Suppose r 6= r∗. Let k′ ≥ 0 be the first step in the game (with player-2 strategy π∗2) which

witnesses the fact that r 6= r∗, that is, 1) we have r[0..k′ − 1] to be a run prefix of r∗, and

2) r[0..k′] to not be a run prefix of r∗ Consider the state sk′ = r[k′]. After this point (ie.,

from r[0..k′] onwards), the strategy π∗2 behaves like πR
2 when “started” from sk′ . Since πR

2 is

a receptive player-2 strategy, we have Outcomes(sk′ , π′1, π
∗
2) ⊆ Timediv∪Blameless2. Thus,

r ∈ Timediv∪Blameless2 (finite prefixes of runs do not change membership in these sets).

Hence π∗2 is a receptive player-2 strategy.

Lemma 14. Consider a timed game structure G and a state s ∈ S. We have,

inf
π1∈Π1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

TUR
visit(r, p) = inf

π1∈ΠR
1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

TUR
visit(r, p)

Proof. Consider any π1 ∈ Π1 \ ΠR
1 . There exists π2 ∈ Π2 such that Outcomes(s, π1, π2) 6⊆

Timediv∪Blameless1. Thus, infπ1∈Π1\ΠR
1

supπ2∈Π2
supr∈Outcomes(s,π1,π2) T

UR
visit(r, p) = ∞.

Lemma 15. Consider a timed game structure G and a state s ∈ S. For every

player-1 receptive strategy π1 ∈ ΠR
1 , we have supπ2∈Π2

supr∈Outcomes(s,π1,π2) T
UR
visit(r, p) =

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2) T
UR
visit(r, p).

Proof. Let π2 ∈ Π2.

Consider r ∈ Outcomes(s, π1, π2). Since π1 is receptive, we cannot have r 6∈

Timediv and r 6∈ Blameless1.

Suppose r 6∈ Timediv. Then r ∈ Blameless1. In this case, 0 = TUR
visit(r, p) ≤ TUR

visit(r
′, p) for any

r′ ∈ Outcomes(s, π1, π
R
2) and πR

2 any player-2 receptive strategy (as we have a well-formed

time game structure, there exists some receptive strategy πR
2).

Suppose r ∈ Timediv and r does not visit p. Consider the strategy π∗2 which

acts like π2 on r, and like πR
2 otherwise, as formally defined in Lemma 13. We

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 72

have π∗2 to be receptive. Clearly r ∈ Outcomes(s, π1, π
∗
2) does not visit p, and hence

supr∈Outcomes(s,π1,π2) T
UR
visit(r, p) = supr∈Outcomes(s,π1,π∗

2) T
UR
visit(r, p) = ∞.

Finally, let r visit p and be in Timediv. Let π∗2 be a player-2 recep-

tive strategy as in Lemma 13. We again have r ∈ Outcomes(s, π1, π
∗
2), and hence

supr∈Outcomes(s,π1,π2) T
UR
visit(r, p) ≤ supr∈Outcomes(s,π1,π∗

2) T
UR
visit(r, p).

Thus, supπ2∈Π2
supr∈Outcomes(s,π1,π2) T

UR
visit(r, p) =

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2) T
UR
visit(r, p).

Lemmas 14 and 15 together imply

inf
π1∈Π1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

TUR
visit(r, p) = inf

π1∈ΠR
1

sup
π2∈ΠR

2

sup
r∈Outcomes(s,π1,π2)

TUR
visit(r, p)

Theorem 14 follows from the fact that for π1 ∈ ΠR
1 , π2 ∈ ΠR

2 and r ∈ Outcomes(s, π1, π2),

we have TUR
visit(r, p) = Tvisit(r, p).

5.3 Reduction to Reachability with B�uchi and co-B�uchi Con-

straints

We now decouple reachability from optimizing for minimal time, and show how

reachability with time divergence can be solved for, using an appropriately chosen µ-calculus

fixpoint.

Lemma 16. Given a state s, and a proposition p of a well-formed timed automaton game

T, 1)we can determine if Tmin(s, p) <∞ , and 2) if Tmin(s, p) <∞, then Tmin(s, p) < M =

8|L| ·
∏

x∈C(cx + 1) · |C + 1|! · 2|C|. This upper bound is the same for all s′ ∼= s.

Proof. 1. Tmin(s, p) <∞ iff player 1 has a strategy to reach p from state s, and this can

be determined using the algorithms of Chapter 3. (here we have used the syntax of

TATL from Chapter 4).

2. Suppose Tmin(s, p) < ∞. This means there is a player-1 strategy π1 such that for all

opposing strategies π2 of player 2, and for all runs r ∈ Outcomes(s, π1, π2) we have

that, 1) if time diverges in run r then r contains a state satisfying p, and 2) if time

does not diverge in r, then player 1 is blameless. Suppose that for all d > 0 we

have s 6|=td

〈
〈1〉
〉
3≤d p. We have that player 1 cannot win for his objective of 3≤d p,

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 73

in particular, π1 is not a winning strategy for this new objective. Hence, there is a

player-2 strategy πd
2 such that for some run rd ∈ Outcomes(s, π1, π

d
2) either 1) time

converges and player 1 is to blame or 2) time diverges in run rd and rd contains a

location satisfying p, but not before time d. Player 1 does not have anything to gain

by blocking time, so assume time diverges in run rd (or equivalently, assume π1 to

be a receptive strategy). The only way strategies πd
2 and runs rd can exist for every

d > 0 is if player 2 can force the game (while avoiding p) so that a portion of the

run lies in a region cycle Rk1 , . . . Rkm
, with tick being true in one of the regions of

the cycle (note that a system may stay in a region for at most one time unit). Now,

if a player can control the game from state s so that the next state lies in region

R, then he can do the same from any state s′ such that s′ ∼= s. Thus, it must be

that player 2 has a strategy π∗2 such that a run in Outcomes(s, π1, π
∗
2) corresponds to

the region sequence R0, . . . , Rk, (Rk1 , . . . Rkm
)ω, with none of the regions satisfying p.

Time diverges in this run as tick is infinitely often true due to the repeating region

cycle. This contradicts the fact the π1 was a winning strategy for player 1 for
〈
〈1〉
〉
3p.

Thus, it cannot be that for all d > 0, player 2 has a strategy πd
2 such that for some

run r ∈ Outcomes(s, π1, π
d
2), time diverges in run r and r contains a state satisfying

p, but not before time d.

Let M be the upper bound on Tmin(s, p) as in Lemma 16 if Tmin(s, p) < ∞,

and M = 1 otherwise. For a number N , let IR[0,N] and IR[0,N) denote IR ∩ [0,N] and

IR ∩ [0, N) respectively. We first look at the enlarged game structure [̂[T]] with the state

space Ŝ = S×IR[0,1)×(IR[0,M]∪{⊥})×{true, false}2, and an augmented transition relation

δ̂ : Ŝ × (M1 ∪M2) 7→ Ŝ. In an augmented state 〈s, z, β, tick , bl1〉 ∈ Ŝ, the component s ∈ S

is a state of the original game structure [[T]], z is value of a fictitious clock z which gets

reset every time it hits 1, β is the value of a fictitious clock which is running backwards,

tick is true iff the last transition resulted in the clock z hitting 1 (so tick is true iff the last

transition resulted in z = 0), and bl1 is true if player-1 is to blame for the last transition.

Formally, 〈s′, z′, β′, tick ′, bl ′1〉 = δ̂(〈s, z, β, tick , bl1〉, 〈∆, ai〉) iff

1. s′ = δ(s, 〈∆, ai〉)

2. z′ = (z + ∆) mod 1;

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 74

3. β′ = β⊖∆, where we define β⊖∆ as β−∆ if β 6= ⊥ and β−∆ ≥ 0, and ⊥ otherwise

(⊥ is an absorbing value for β).

4. tick′ = true if z + ∆ ≥ 1, and false otherwise

5. bl1 = true if ai ∈ A⊥
1 and false otherwise.

Each run r of [[T]], and values z ∈ IR≥0, β ≤M can be mapped to a corresponding

unique run r̂z,β in [̂[T]], with r̂z,β[0] = 〈r[0], z, β, false, false〉. Similarly, each run r̂ of [̂[T]]

can be projected to a unique run r̂ ↓ T of [[T]]. It can be seen that the run r is in Timediv

iff tick is true infinitely often in r̂z,β, and that the set Blameless1 corresponds to runs along

which bl1 is true only finitely often.

Proposition 4. Consider the set Sp for a proposition p in a timed game structure [[T]].

1. If a run r of [[T]] visits Sp at time t ≤M , then, the run r̂0,β visits Sp × IR[0,1) ×{0} ×

{true, false}2, for β = t.

2. If for some β ∈ IR, a run r̂ of [̂[T]] with r̂[0] = 〈s, 0, β, false, false〉 visits Sp×IR[0,1)×

{0} × {true, false}2, then the corresponding run r = r̂ ↓ T of [[T]] visits Sp at time

t = β.

Proposition 4 is a straightforward result of the fact that β is kept decrementing at

rate −1 till it hits 0.

Lemma 17. Given a timed game structure [[T]], let X̂p = Sp×IR[0,1)×{0}×{true, false}2.

1. For a run r of the timed game structure [[T]], let Tvisit(r, p) < ∞. Then, Tvisit(r, p) =

inf{β | β ∈ IR[0,M] and r̂0,β visits the set X̂p}.

2. Let Tmin(s, p) <∞. Then,

Tmin(s, p) = inf
{
β | β ∈ IR[0,M] and 〈s, 0, β, false, false〉 ∈

〈
〈1〉
〉
3X̂p

}

3. If Tmin(s, p) = ∞, then for all β, we have 〈s, 0, β, false, false〉 6∈
〈
〈1〉
〉
3X̂p.

Proof. 1. The first claim is a corollary of Proposition 4.

2. The second claim of Lemma 17 essentially follows from the fact that the additional

components in the states do not help the players in creating more powerful strategies.

Tmin(s, p)

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 75

= infπ1∈ΠR
1

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2) Tvisit([[T]], r, p)

= infπ1∈ΠR
1

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2)





∞ if r does not visit p;

inf





β | β ∈ IR[0,M] and

r̂0,β visits the set X̂p



 o.w.





= infπ1∈ΠR
1

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2) infβ∈IR[0,M]{
g(r, β)

∣∣∣ g(r, β) = ∞ if r̂0,β does not visit X̂p; β otherwise
}

= infβ∈IR[0,M]
infπ1∈ΠR

1
supπ2∈ΠR

2
supr∈Outcomes(s,π1,π2){

g(r, β)
∣∣∣ g(r, β) = ∞ if r̂0,β does not visit X̂p; β otherwise

}

Now, considering plays in [̂[T]] which start from state ŝ = 〈s, z, β, tick , bl1〉, every

strategy π̂i ∈ Π̂i is equivalent to a strategy πi ∈ Πi in which player-i “guesses” the

values of z, β, tick , bl1. Once these initial values have been guessed, each player can

keep on deterministically updating the values at each step. Hence observation of the

additional components in states of [̂[T]] do not help the players in their strategies.

Therefore,

Tmin(s, p) = infβ∈IR[0,M]
inf

cπ1∈cΠ1
R sup

cπ2∈cΠ2
R supbr0,β∈Outcomes(s,cπ1,cπ2){

g(r, β)
∣∣∣ g(r, β) = ∞ if r̂0,β does not visit X̂p; β otherwise

}

3. The values of z, β, tick and bl1 do not control transitions, and hence are irrelevant in

determining whether the target proposition is reached or not.

The reachability objective can be reduced to a parity game: each state in Ŝ is

assigned an index Ω : Ŝ 7→ {0, 1}, with Ω(ŝ) = 1 iff ŝ 6∈ X̂p; and tick ∨ bl1 = true. We also

modify the game structure so that the states in X̂p are absorbing.

Lemma 18. For the timed game [̂[T]] with the reachability objective X̂p, the state ŝ =

〈s, 0, β, false, false〉 ∈
〈
〈1〉
〉
3X̂p iff player-1 has a strategy π1 such that for all strategies

π2 of player-2, and all runs r̂0,β ∈ Outcomes(ŝ, π1, π2), the index 1 does not occur infinitely

often in r̂0,β.

Proof. We first note that the states in X̂p can be absorbing as [̂[G]] is a well-formed time

game structure, and hence player-1 has a receptive strategy which does not block time when

the game starts at state ŝ for every state ŝ ∈ X̂p. Consider a run r̂ such that r̂ visits X̂p.

We can assume without loss of generality that either time diverges in r̂, or time converges

but player-1 is not to blame (player-1 can play a receptive strategy upon reaching X̂p).

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 76

Thus this run satisfies the winning condition for player-1. And since X̂p is absorbing in our

parity game, we see 1 only finitely often.

Consider a run r̂ such that r̂ does not visit X̂p. Let time diverge in this run. This

run violates the winning condition for player-1, and correspondingly we also see the index

1 infinitely often (due to tick being true infinitely often). Now let time converge in this run

(so tick is true only finitely often). If player-1 is to blame for blocking time, then the index

1 will again be true infinitely often. If player-1 is not to blame, then bl1 will only be true

finitely often in this run, and hence we will see the index 1 only finitely often.

The fixpoint formula for solving the parity game in Lemma 18 is given by (as

in [dAHM01a]),

Y = µY νZ
[
(Ω−1(1) ∩ CPre1(Y)) ∪ (Ω−1(0) ∩ CPre1(Z))

]

The fixpoint expression uses the variables Y,Z ⊆ Ŝ and the controllable predecessor op-

erator, CPre1 : 2
bS 7→ 2

bS , defined formally by CPre1(X) ≡ {ŝ | ∃m1 ∈ Γ1(ŝ) ∀m2 ∈

Γ2(ŝ) (δ̂jd(ŝ,m1,m2) ⊆ X)}. Intuitively, ŝ ∈ CPre1(X) iff player 1 can force the augmented

game from ŝ into X in one move.

5.4 Termination of the Fixpoint Iteration

We prove termination of the µ-calculus fixpoint iteration by demonstrating that

we can work on a finite partition of the state space. Let an equivalence relation ∼=e on the

states in Ŝ be defined as: 〈〈l1, κ1〉, z1, β1, tick1, bl11〉
∼=e 〈〈l

2, κ2〉, z2, β2, tick2, bl21〉 iff

1. l1 = l2, tick1 = tick2, and bl1 = bl2.

2. κ̂1 ∼= κ̂2 where κ̂i : C ∪ {z} 7→ IR≥0 is a clock valuation such that κ̂i(c) = κi(c) for

c ∈ C, κ̂i(z) = zi,and cz = 1 (cz is the maximum value of the clock z in the definition

of ∼=) for i ∈ {1, 2}.

3. β1 = ⊥ iff β2 = ⊥.

4. If β1 6= ⊥, β2 6= ⊥ then

• ⌊β1⌋ = ⌊β2⌋

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 77

• frac(β1) = 0 iff frac(β2) = 0.

• For each clock x ∈ C∪{z} with κ1(x) ≤ cx and κ2(x) ≤ cx, we have frac(κ1(x))+

frac(β1) ∼ 1 iff frac(κ2(x)) + frac(β2) ∼ 1 with ∼ ∈ {<,=, >}.

The number of equivalence classes induced by ∼=e is again finite

(O
(
(|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|)2 · |C|

)
). We call each equivalence class an

extended region. An extended region Y of [̂[T]] can be specified by the tuple

〈l, tick , bl1, h,P, βi, βf , C<, C=, C>〉 where for a state ŝ = 〈〈l, κ〉, z, β, tick , bl1〉,

• l, tick , bl1 correspond to l, tick , bl1 in ŝ.

• h is a function which specifies the integer values of clocks: h(x) = ⌊κ(x)⌋ if κ(x) <

Cx + 1, and h(x) = Cx + 1 otherwise.

• P ⊆ 2C∪{z} is a partition of the clocks {C0, . . . , Cn | ⊎Ci = C ∪{z}, Ci 6= ∅ for i > 0},

such that 1)for any pair of clocks x, y, we have frac(κ(x)) < frac(κ(y)) iff x ∈ Cj , y ∈

Ck for j < k; and 2)x ∈ C0 iff frac(κ(x)) = 0.

• βi ∈ IN ∩ {0, . . . ,M} ∪ {⊥} indicates the integral value of β.

• βf ∈ {true, false} indicates whether the fractional value of β is greater than 0,

βf = true iff β 6= ⊥ and frac(β) > 0.

• For a clock x ∈ C ∪ {z} and β 6= ⊥, we have frac(κ(x)) + frac(β) ∼ 1 iff x ∈ C∼ for

∼ ∈ {<,=, >}.

Pictorially, the relationship between κ̂ and β can be visualized as in Fig. 5.2.

The figure depicts an extended region for C0 = ∅, βi ∈ IN ∩ {0, . . . ,M}, βf = true, C< =

C ∪ {z}, C= = ∅, C> = ∅. The vertical axis is used for the fractional value of β. The

horizontal axis is used for the fractional values of the clocks in Ci. Thus, given a disjoint

partition {C0, . . . , Cn} of the clocks, we pick n+1 points on a line parallel to the horizontal

axis, {〈Cf
0 , frac(β)〉, . . . , 〈Cf

n , frac(β)〉}, with Cf
i being the fractional value of the clocks in

the set Ci at κ̂.

We now show that the extended regions induce a backward stable bisimulation

quotient.

Lemma 19. Let Y, Y ′ be extended regions in a timed game structure [̂[T]]. Consider a state

ŝ ∈ Y and t ∈ IR>0. Suppose (0, t] = T Y ∪T Y ′
, such that for all τ ∈ T Y we have ŝ+ τ ∈ Y ,

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 78

frac(β)

C
f
1 C

f
3

0 1

1

C
f
2

Figure 5.2: An extended region with C< = C ∪ {z}, C= = ∅, C> = ∅

frac(β)

C
f
1 C

f
3

0 1

1

C
f
2

frac(β)

0 1

1

C
f
1

′

C
f
2

′

C
f
3

′

Figure 5.3: An extended region with C< = C ∪ {z}, C= = ∅ and its time successor.

and for all τ ∈ T Y ′
we have ŝ+ τ ∈ Y ′ (Y → Y ′ is the first extended region change due to

the passage of time). Then, for all states ŝ2 ∈ Y , there exists t2 ∈ IR>0 such that for some

T Y
2 , T

Y ′
2 with (0, t2] = T Y

2 ∪T Y ′
2, for all τ2 ∈ T Y

2 we have ŝ2 + τ2 ∈ Y , and for all τ2 ∈ T Y ′
2

we have ŝ2 + τ2 ∈ Y ′.

Proof. We outline a sketch of the proof. For simplicity, consider the values of each clock x

to be less than Cx + 1. We look at the time successors of states ŝ in Y . The following cases

for Y = 〈l, tick , bl1, h,P = {C0, . . . , Cn}, βi, βf , C<, C=, C>〉 can arise:

Case 1 C0 = ∅, βi ∈ IN ∩ {0, . . . ,M}, βf = true, C< = C ∪ {z}, C= = ∅, C> = ∅.

For any state in Y , the next extended region Y ′ can only be 〈l, tick , bl1, h,P, βi, β
′
f =

false, C<, C=, C>〉, which is hit after a time of frac(βf) (note that Cf
n + frac(β) < 1

implies P is going to be unchanged in the time successor extended region).

Case 2 C0 = ∅, βi ∈ IN ∩ {0, . . . ,M}, βf = true, C< 6= ∅, C= 6= ∅, C> 6= ∅.

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 79

0 1

1

C
f
1

frac(β)

C
f
4 C

f
5C

f
2 C

f
3

0

1

frac(β′)

C
f
1

′

C
f
2

′

C
f
5

′

= C
f
0

′

= 0C
f
3

′

C
f
4

′

Figure 5.4: An extended region with C< 6= ∅, C= 6= ∅, C> 6= ∅ and its time successor.

Pictorially, this can be depicted as in Fig. 5.4.

Consider any state in Y . The extended region changes after a time of 1−Cf
n . The new

state then lies in an extended region such that C ′
i = Ci for 0 < i < n, and C ′

0 = Cn.

Also, Cf
i

′
= Cf

i + (1 − Cf
n) for 0 < i < n, and fracβ′ = frac(β) − (1 − Cf

n). We also

have that if Cf
i + frac(β) ∼ 1, then Cf

i

′
+ fracβ′ = Cf

i + frac(β) ∼ 1 for ∼ ∈ {<,=, >

}, 0 < i < n. Thus the new state lies in the region 〈l, tick ′, bl1, h
′,P ′ = {C ′

0, . . . C
′
n−1 |

C ′
i = Ci for 0 < i < n,C ′

0 = Cn}, βi, βf , C
′
< = C< ∪ Cn, C

′
= = C=, C

′
> = C> \ Cn〉,

with tick ′ = true iff z ∈ Cn, and h′ is h with the integer values for clocks in Cn \ {z}

incremented by 1. This analysis holds for all the states in Y . Thus the extended

region Y ′ following Y is unique.

Case 3 C0 6= ∅, βi ∈ IN ∩ {0, . . . ,M}, βf = true

All the states in Y then move to 〈l, tick , bl1, h,P
′ = {C ′

0, . . . , C
′
n+1 | C ′

0 =

∅ and C ′
i+1 = Ci, 0 ≤ i ≤ n}, βi, βf , C<, C=, C>〉.

Case 4 C0 6= ∅, βi ∈ IN ∩ {1, . . . ,M}, βf = false

The time successor in this case is 〈l, tick , bl1,P
′ = {C ′

0, . . . , C
′
n+1 | C ′

0 = ∅ and C ′
i+1 =

Ci, 0 ≤ i ≤ n}, β′i = βi − 1, β′f = true, C ′
<, C

′
=, C

′
>〉. We show C ′

<, C
′
=, C

′
> to be

unique as follows: the new state ŝ + t has the constraints 1)frac(β′) = 1 − t and

2)Cf
i+1

′
= Cf

i + t for i ≤ n. Thus, frac(β′)+Cf
i+1

′
= (1− t)+Cf

i + t = 1+Cf
i . Hence,

C ′
< = ∅ and C ′

= = C ′
1 = C0 (the other clocks belong in C ′

>..

Case 5 βi = 0, βf = false

We get β′ = ⊥ in the next state (and hence C< = C= = ∅, βi = ⊥, βf = false).

The rest of the components of the extended region have a unique value as in the time

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 80

successors of standard regions.

Case 6 βi = ⊥

The value of P ′ gets updated as in the time successors of standard regions.

The analysis of the remaining cases proceeds in a similar vein to the above cases.

Lemma 19 has the following corollary, which states that the equivalence relation

∼=e induces a time-abstract bisimulation.

Corollary 4. Let Y, Y ′ be extended regions in a timed game structure [̂[T]]. Suppose player-i

has a move from s1 ∈ Y to s′1 ∈ Y ′, for i ∈ {1, 2}. Then, for any s2 ∈ Y , player-i has a

move from s2 to some s′2 ∈ Y ′.

Let Y, Y ′
1 , Y

′
2 be extended regions. We have that from a state in Y , for every move

of player-2 to the extended region Y ′
2 , either player-1 can force the game in one step so that

the next state lies in Y ′
1 , or player-2 can always foil player-1 from going to the extended

region Y ′
1 . Thus moves to some extended regions always “beat” moves to other extended

regions.

Lemma 20. Let Y, Y ′
1 , Y

′
2 be extended regions in a timed game structure [̂[T]]. Suppose

player-i has a move from s1 ∈ Y to s′1 ∈ Y ′, for i ∈ {1, 2}. Then, one of the following cases

must hold:

1. From all states ŝ ∈ Y , player-1 has some move mbs
1 with δ̂(ŝ,mbs

1) ∈ Y ′
1 such that for all

moves mbs
2 of player-2 with δ̂(ŝ,mbs

2) ∈ Y ′
2, we have blame1(ŝ,m

bs
1,m

bs
2, δ̂(ŝ,m

bs
1)) = true

and blame2(ŝ,m
bs
1,m

bs
2, δ̂(ŝ,m

bs
2)) = false.

2. From all states ŝ ∈ Y , for all moves mbs
1 of player-1 with δ̂(ŝ,mbs

1) ∈ Y ′
1 , player-2 has

some move mbs
2 with δ̂(ŝ,mbs

2) ∈ Y ′
2 such that blame2(ŝ,m

bs
1,m

bs
2, δ̂(ŝ,m

bs
2)) = true.

Lemma 21. Let X ⊆ Ŝ consist of a union of extended regions in a timed game structure

[̂[T]] . Then CPre1(X) is again a union of extended regions.

Proof. The lemma is essentially a corollary of Lemma 20.

Lemma 21 demonstrates that the sets in the fixpoint computation of the µ-calculus

algorithm which computes winning states for player-1 for the reachability objective X̂p

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 81

consist of unions of extended regions. Since the number of extended regions is finite, the

algorithm terminates.

Theorem 15. For a state s and a proposition p in a timed automaton game T,

1. The minimum time for player-1 to visit p starting from s (denoted Tmin(s, p)) is com-

putable in time O
(
(|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|)7 · |C|5 · |A1|

∗2 · |A2|
∗
)
, where

|C| is the number of clocks, |Ai| is the number of player-i edges, |Ai|
∗ = min{|Ai|, |L| ·

2|C|}, and |L| is the number of of locations.

2. For every region R of [[T]], either there is a constant dR ∈ IN∪{∞} such that for every

state s ∈ R, we have Tmin(s, p) = dR, or there is an integer constant dR and a clock

x ∈ C such that for every state s ∈ R, we have Tmin(s, p) = dR − frac(κ(x)), where

κ(x) is the value of the clock x in s.

Proof. 1. Let M be the upper bound on Tmin(s, p) as in Lemma 16 if Tmin(s, p) < ∞,

and M = 1 otherwise. We have M = O
(
|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|

)
from

Lemma 16. The number of equivalence classes in the enlarged game structure

[̂[T]] is N = O
(
(|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|)2 · |C|

)
. Similar to the construc-

tion presented in Section 3.4 of Chapter 3, we can construct an equivalent turn

based parity game for [̂[T]], with n = O (M · |C| · |A1|
∗ ·N) vertices, and m =

O(N · M2 · |C|2 · |A1|
∗ · |A2|

∗) edges. A parity game with 2 priorities on a graph

with m edges and n vertices can be solved in O(n · m) time. Hence, the mini-

mum time required to visit p can be computed in O(N2 ·M3 · |C|3 · |A1|
∗2 · |A2|

∗) =

O
(
(|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|)7 · |C|5 · |A1|

∗2 · |A2|
∗
)

time.

2. From the comments after Lemma 8, the states in Ŝ from which player-

1 has a winning strategy for reaching X̂p are computable, and consist of

a union of extended regions ∪n
k=1Yk. Suppose this union is non-empty.

Using Lemma 17, the minimum time for player-1 to reach p from s is

then mink

{
inf
{
β | β ∈ IR[0,M] and 〈s, 0, β, false, false〉 ∈ Yk

}}
. Note that s =

〈l, κ〉 is fixed here, only β can be varied. We also have that inf{β |

β ∈ IR[0,M] and 〈〈l, κ〉, 0, β, false, false〉 ∈ Yk} is equal to (letting Yk =

〈l, false, false, h,P, βi, βf , C<, C=, C>〉):

(a) An integer when C> = C= = ∅ or when βf = false. The infimum value for β is

CHAPTER 5. MINIMUM-TIME REACHABILITY IN TIMED GAMES 82

reached when βf = false (for then the set of β’s is a singleton). Thus, player-1

has an optimal strategy when βf = false.

(b) dk − frac(κ(x)) when C= = Cj 6= ∅, and where x ∈ Cj . The infimum value is

actually attained by player-1 with some strategy π1 in this case.

(c) dk − frac(κ(x)) when C= = ∅, C> 6= ∅, where x ∈ Cj for C> = {Cj , . . . , Cn}. The

infimum value is not attained by player-1 in this case – he can only get arbitrarily

close to the optimum.

Note that z ∈ C0 in every Yk (for, κ̂(z) = 0). Finally, mink{ek | ek = dk or dk − xk}

is again an expression of the form dr or dr − x over a region.

83

Chapter 6

Trading Memory for Randomness

in Timed Games

6.1 Introduction

The winning strategies constructed in Chapter 3 for timed automaton games as-

sume the presence of an infinitely precise global clock to measure the progress of time, and

the strategies crucially depend on the value of this global clock. Since the value of this

clock needs to be kept in memory, the constructed strategies require infinite memory. In

fact, the following example (Example 9) shows that infinite memory is necessary for win-

ning with respect to reachability objectives. Besides the infinite-memory requirement, the

strategies constructed in Chapter 3 are structurally complicated, and it would be difficult

to implement the synthesized controllers in practice. Before offering a novel solution to this

problem, we illustrate the problem with an example of a simple timed game whose solution

requires infinite memory.

Example 8 (Signaling hub). Consider a signaling hub that both sends and receives signals

at the same port. At any time the port can either receive or send a signal, but it cannot do

both. Moreover, the hub must accept all signals sent to it. If both the input and the output

signals arrive at the same time, then the output signal of the hub is discarded. The input

signals are generated by other processes, and infinitely many signals cannot be generated in

a finite amount of time. The time between input signals is not known a priori. The system

may be modeled by the timed automaton game shown in Figure 6.1. The actions b1 and b2

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 84

p q
b2

x > 0 → x := 0
b1

x > 0 → x := 0

a2, x > 0 → x := 0

a1, x > 0 → x := 0

Figure 6.1: A timed automaton game.

correspond to input signals, and a1 and a2 to output signals. The actions bi are controlled

by the environment and denote input signals; the actions ai are controlled by the hub and

denote signals sent by the hub. The clock x models the time delay between signals: all

signals reset this clock, and signals can arrive or be sent provided the value of x is greater

than 0, ensuring that there is a positive delay between signals. The objective of the hub

controller is to keep sending its own signals, which can be modeled as the generalized Büchi

condition of switching infinitely often between the locations p and q (ie., the LTL objective

2(3p ∧ 3q)).

Example 9 (Winning requires infinite memory). Consider the timed game of Figure 6.1.

We let κ denote the valuation of the clock x. We let the special “action” ⊥ denote a time

move (representing time passage without an action). The objective of player 1 is to reach

q starting from s0 = 〈p, x = 0〉 (and similarly, to reach p from q). We let π1 denote the

strategy of player 1 which prescribes moves based on the history r[0..k] of the game at stage

k. Suppose player 1 uses only finite memory. Then player 1 can propose only moves from

a finite set when at s0. Since a zero time move keeps the game at p, we may assume that

player 1 does not choose such moves. Let ∆ > 0 be the least time delay of these finitely

many moves of player 1. Then player 2 can always propose a move 〈∆/2, b〉 when at s0.

This strategy will prevent player 1 from reaching q, and yet time diverges. Hence player 1

cannot win with finite memory; that is, there is no hub controller that uses only finite

memory. However, player 1 has a winning strategy with infinite memory. For example,

consider the player 1 strategy π2 such that π2(r[0..k]) = 〈1/2k+2, a1〉 if r[k] = 〈p, κ〉. and

π2(r[0..k]) = 〈1,⊥〉 otherwise.

In this chapter we observe that the infinite-memory requirement of Example 6.1 is

due to the determinism of the permissible strategies: a strategy is deterministic (or pure)

if in each round of the game, it proposes a unique move (i.e., action and time delay). A

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 85

more general class of strategies are the randomized strategies: a randomized strategy may

propose, in each round, a probability distribution of moves. We now show that in the game

of Example 9 finite-memory randomized winning strategies do exist. Indeed, the needed

randomization has a particularly simple form: player 1 proposes a unique action together

with a time interval from which the time delay is chosen uniformly at random. Such a

strategy can be implemented as a controller that has the ability to wait for a randomly

chosen amount of time.

Example 10 (Randomization instead of infinite memory). Recall the game in Fig-

ure 6.1. Player 1 can play a randomized memoryless strategy π3 such that π3(〈p, κ〉) =

〈Uniform((0, 1 − κ(x))), ai〉; that is, the action ai is proposed to take place at a time chosen

uniformly at random in the interval (0, 1 − κ(x)). Suppose player 2 always proposes the

action bi with varying time delays ∆j at round j. Then the probability of player-1’s move

being never chosen is
∏∞

j=1(1 − ∆j), which is 0 if
∑∞

j=1 ∆j = ∞ (by Lemma 26). Inter-

rupting moves with pure time moves does not help player 2, as 1 −
∆j

1−κ(x) < 1 − ∆j. Thus

the simple randomized strategy π3 is winning for player 1 with probability 1.

Previously, only deterministic strategies were studied for timed games; here, for

the first time, we study randomized strategies. We show that randomized strategies are

not more powerful than deterministic strategies in the sense that if player 1 can win with

a randomized strategy, then she can also win with a deterministic strategy. However, as

the example illustrated, randomization can lead to a reduction in the memory required for

winning, and to a significant simplification in the structure of winning strategies. Random-

ization is therefore not only of theoretical interest, but can improve the implementability

of synthesized controllers. It is for this reason that we set out, in this paper, to systemati-

cally analyze the trade-off between randomization requirements (no randomization; uniform

randomization; general randomization), memory requirements (finite memory and infinite

memory) and the presence of extra “controller clocks” for various classes of ω-regular ob-

jectives (safety; reachability; parity objectives).

Our results in this chapter are as follows. First, we show that for safety objectives

pure (no randomization) finite-memory winning strategies exist. Next, for reachability

objectives, we show that pure (no randomization) strategies require infinite memory for

winning, whereas uniform randomized finite-memory winning strategies exist. We then use

the results for reachability and safety objectives in an inductive argument to show that

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 86

uniform randomized finite-memory strategies suffice for all parity objectives, for which pure

strategies require infinite memory (because reachability is a special case of parity). In all

our uses of randomization, we only use uniform randomization over time, and more general

forms of randomization (nonuniform distributions; randomized actions) are not required.

This shows that in timed games, infinite memory can be traded against uniform randomness.

Finally, we show that while randomization helps in simplifying winning strategies, and

thus allows the construction of simpler controllers, randomization does not help a player

in winning at more states, and thus does not allow the construction of more powerful

controllers. In other words, the case for randomness rests in the simplicity of the synthesized

real-time controllers, not in their expressiveness.

We note that in our setting, player 1 (i.e., the controller) can trade infinite memory

also against finite memory together with an extra clock. We assume that the values of all

clocks of the plant are observable. For an ω-regular objective Φ, we define the following

winning sets depending on the power given to player 1: let [[Φ]]1 be the set of states from

which player 1 can win using any strategy (finite or infinite memory; pure or randomized)

and any number of infinitely precise clocks; in [[Φ]]2 player 1 can win using a pure finite-

memory strategy and only one extra clock; in [[Φ]]3 player 1 can win using a pure finite-

memory strategy and no extra clock; and in [[Φ]]4 player 1 can win using a randomized

finite-memory strategy and no extra clock. Then, for every timed automaton game, we

have [[Φ]]1 = [[Φ]]2 = [[Φ]]4. We also have [[Φ]]3 ⊆ [[Φ]]1, with the subset inclusion being in

general strict. It can be shown that at least one bit of memory is required for winning of

reachability objectives despite player 1 being allowed randomized strategies. We do not

know whether memory is required for winning safety objectives (even in the case of pure

strategies).

We note that removing the global clock from winning strategies is nontrivial. The

algorithms of Chapter 3 use such a global clock to construct winning strategies. Without a

global clock, time cannot be measured directly, and we need to argue about other properties

of runs which ensure time divergence. For safety objectives, we construct a formula that

depends only on clock resets and on particular region valuations, and we argue that the

satisfaction of that formula is both necessary and sufficient for winning. This allows us

to construct pure finite-memory winning strategies for safety objectives. For reachability

objectives, we construct “ranks” for sets of states of a µ-calculus formula, and use these

ranked sets to obtain a randomized finite-memory strategy for winning. The proof requires

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 87

special care, because our winning strategies are required to be invariant over the values of

the global clock. Finally, we show that if player 1 does not have a pure (possibly infinite-

memory) winning strategy from a state, then for every ε > 0 and for every randomized

strategy of player 1, player 2 has a pure counter strategy that can ensure with probability

at least 1 − ε that player 1 does not win. This shows that randomization does not help in

winning at more states. We note that in this chapter, we assume that player 2 is playing with

randomized strategies. It turns out that randomization is not of help to her in preventing

player 1 from winning.

Outline. We start off by introducing the notions of randomized strategies and sure and

almost sure winning sets in Section 6.2. We also show that randomized strategies do not

change winning sets. In Section 6.3 we show that pure finite memory strategies suffice for

winning safety objectives. In Section 6.4 we show that player 1 needs only finite memory

for winning reachability objectives provided that she can use randomization in proposing

moves. Finally in Section 6.5 we show how the safety and reachability strategies can be

combined by player 1 to obtained a finite memory randomized strategy for winning all parity

objectives.

6.2 Randomized Strategies in Timed Games

In this section we first present the definitions of objectives, randomized strategies

and the notions of sure and almost-sure winning in timed game structures. We then show

that sure winning sets do not change in the presence of randomization.

Objectives. An objective for the timed game structure G is a set Φ ⊆ Runs of runs. We will

be interested in the classical reachability, safety and parity objectives. Parity objectives are

canonical forms for ω-regular properties that can express all commonly used specifications

that arise in verification.

• Given a set of states Y , the reachability objective Reach(Y) is defined as the set of

runs that visit Y , formally, Reach(Y) = {r | there exists i such that r[i] ∈ Y }.

• Given a set of states Y , the safety objective consists of the set of runs that stay within

Y , formally, Safe(Y) = {r | for all i we have r[i] ∈ Y }.

• Let Ω : S 7→ {0, . . . , k − 1} be a parity index function. The parity objective

for Ω requires that the maximal index visited infinitely often is even. Formally,

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 88

let InfOften(Ω(r)) denote the set of indices visited infinitely often along a run r.

Then the parity objective defines the following set of runs: Parity(Ω) = {r |

max(InfOften(Ω(r))) is even }.

A timed game structure G together with the index function Ω constitute a parity

timed game (of index k) in which the objective of player 1 is Parity(Ω). We use similar

notations for reachability and safety timed games.

Strategies. A strategy for a player is a recipe that specifies how to extend a run. Formally,

a probabilistic strategy πi for player i ∈ {1, 2} is a function πi that assigns to every run

prefix r[0..k] a probability distribution Di(r[0..k]) over Γi(r[k]), the set of moves available

to player i at the state r[k]. Pure strategies are strategies for which the state space of the

probability distribution of Di(r[0..k]) is a singleton set for every run r and all k. We let

Πpure
i denote the set of pure strategies for player i, with i ∈ {1, 2}. For i ∈ {1, 2}, let Πi

be the set of strategies for player i. If both both players propose the same time delay, then

the tie is broken by a scheduler. Let TieBreak be the set of functions from IR≥0 to {1, 2}.

A scheduler strategy πsched is a mapping from FinRuns to TieBreak. If πsched(r[0..k]) = h,

then the resulting state given player 1 and player 2 moves 〈∆, a1〉 and 〈∆, a2〉 respectively,

is determined by the move of player h(∆). We denote the set of all scheduler strategies

by Πsched. Given two strategies π1 ∈ Π1 and π2 ∈ Π2, the set of possible outcomes of the

game starting from a state s ∈ S is denoted Outcomes(s, π1, π2). Given strategies π1 and

π2, for player 1 and player 2, respectively, a scheduler strategy πsched and a starting state s

we denote by Prπ1,π2,πsched
s (·) the probability space given the strategies and the initial state

s.

Receptive strategies. A strategy πi is receptive if for all strategies π∼i, all states s ∈ S,

and all runs r ∈ Outcomes(s, π1, π2), either r ∈ Timediv or r ∈ Blamelessi. We denote ΠR
i

to be the set of receptive strategies for player i. Note that for π1 ∈ ΠR
1 , π2 ∈ ΠR

2 , we have

Outcomes(s, π1, π2) ⊆ Timediv.

Sure and almost-sure winning modes. Let PureWin1(ψ) denote the winning set for

player 1 when both players are forced to use only pure (possibly non-receptive strategies).

Let SureWinG
1 (Φ) (resp. AlmostSureWinG

1 (Φ)) be the set of states s in G such that player 1

has a receptive strategy π1 ∈ ΠR
1 such that for all scheduler strategies πsched ∈ Πsched

and for all player-2 receptive strategies π2 ∈ ΠR
2 , we have Outcomes(s, π1, π2) ⊆ Φ (resp.

Prπ1,π2,πsched
s (Φ) = 1). Such a winning strategy is said to be a sure (resp. almost sure)

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 89

winning receptive strategy. In computing the winning sets, we shall quantify over all strate-

gies, but modify the objective to take care of time divergence. Given an objective Φ, let

TimeDivBl1(Φ) = Win1(Φ) = (Timediv∩ Φ)∪ (Blameless1 \Timediv), i.e., TimeDivBl1(Φ) de-

notes the set of paths such that either time diverges and Φ holds, or else time converges and

player 1 is not responsible for time to converge. Let SureWinG
1 (Φ) (resp. AlmostSureWinG

1 (Φ))

be the set of states in G such that for all s ∈ SureWinG
1 (Φ) (resp. AlmostSureWinG

1 (Φ)),

player 1 has a strategy π1 ∈ Π1 such that for all strategies for all scheduler strategies

πsched ∈ Πsched and for all player-2 strategies π2 ∈ Π2, we have Outcomes(s, π1, π2) ⊆ Φ

(resp. Prπ1,π2,πsched
s (Φ) = 1). Such a winning strategy is said to be a sure (resp. almost

sure) winning for the non-receptive game. The following result establishes the connection

between SureWin and SureWin sets.

Theorem 16. For all well-formed timed game structures G, and for all ω-regular objectives

Φ, we have SureWinG
1 (TimeDivBl1(Φ)) = SureWinG

1 (Φ).

Proof. Since we are interested in the sure winning set for player 1, we can restrict our

attention to pure strategies of player 1. The rest of the proof is similar to that for Theorem 9.

Region equivalence. For a state s ∈ S, we write Reg(s) ⊆ S for the clock region con-

taining s. For a run r, we let the region sequence Reg(r) = Reg(r[0]),Reg(r[1]), · · · . Two

runs r, r′ are region equivalent if their region sequences are the same. Given a distribution

Dstates over states, we obtain a corresponding distribution Dreg = Regd(Dstates) over regions

as follows: for a region R we have Dreg(R) = Dstates({s | s ∈ R}). An ω-regular objective

Φ is a region objective if for all region-equivalent runs r, r′, we have r ∈ Φ iff r′ ∈ Φ. A

strategy π1 is a region strategy, if for all prefixes r1 and r2 such that Reg(r1) = Reg(r2),

we have Regd(π1(r1)) = Regd(π1(r2)). The definition for player 2 strategies is analo-

gous. Two region strategies π1 and π′1 are region-equivalent if for all prefixes r we have

Regd(π1(r)) = Regd(π
′
1(r)). A parity index function Ω is a region parity index function

if Ω(s1) = Ω(s2) whenever s1 ∼= s2. Henceforth, we shall restrict our attention to region

objectives. As in Chapter 3, we let T̂ be the enlarged game structure with the global clock

z.

Winning sets with Randomization. We now show that the sure winning sets for player 1

remains unchanged in the presence of randomized player-1 or player-2 strategies. First, we

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 90

show that randomization does not help player 2 in spoiling player 1 from winning.

Lemma 22. Let T be a timed automaton game and T̂ be the corresponding enlarged game

structure. Let Φ̂ be an ω-regular region objective of T̂. Then, PureWin
bT
1 (Φ) ⊆ SureWin

bT
1 (Φ̂).

Proof. Let ŝ ∈ PureWin
bT
1 (Φ) be a state. Player 1 has a pure winning strategy πpure

1 which

wins against all possible pure strategies of player 2 from ŝ. That is, for all strategies

πpure
2 of player 2 we have Outcomes(ŝ, π1pure, πpure

2) ⊆ Φ. This means in particular that
⋃

π
pure
2 ∈Πpure

2

Outcomes(ŝ, πpure
1 , πpure

2) ⊆ Φ̂. Let π2 be any randomized strategy of player 2.

Then, we have Outcomes(ŝ, πpure
1 , π2) ⊆

⋃
π

pure
2 ∈Πpure

2

Outcomes(ŝ, πpure
1 , πpure

2) ⊆ Φ̂. Thus,

PureWin
bT
1 (Φ) ⊆ SureWin

bT
1 (Φ̂).

We now show that randomization does not help player 1 in winning at more states.

Theorem 17. Consider a timed automaton game T with an ω-regular objective Φ. For all

s ∈ S \ SureWinT
1 (Φ), for every ε > 0, for every randomized strategy π1 ∈ Π1 of player 1,

there is a player 2 pure strategy π2 ∈ Πpure
2 and a scheduler strategy πsched ∈ Πsched such

that Prπ1,π2,πsched
s (TimeDivBl1(Φ)) ≤ ε.

Proof. Let T be a timed automaton game with an ω-regular region objective Φ. Suppose ŝ

is a not a sure winning state for player 1, i.e., ŝ ∈ S \ SureWinT
1 (Φ). We show that for all

randomized strategies π1, for all ε > 0, there exists a pure region strategy π2 for player 2

and a strategy πsched for the scheduler such that Prπ1,π2,πsched

bs
(TimeDivBl1(Φ)) ≤ ε. Consider

the finite turn based graph Tf from Section 3.4 of Chapter 3. In Tf , essentially player 1

first selects a destination region, then player 2 picks a counter-move to specify another

destination region. Since TimeDivBl1(Φ) is an ω-regular region objective in Tf , if player 1

cannot win surely, then there is a pure region spoiling strategy π∗2 for player 2 that works

against all player 1 strategies in Tf .

Fix some ε > 0, and a sequence (εi)i≥0 such that εi > 0, for all i ≥ 0, and
∑

i≥0 εi ≤

ε. Consider a randomized strategy π1 of player 1 in T̂. We will construct a counter strategy

π2 for player 2 to π1. If player 1 proposes a pure move, then the counter move of player 2 can

be derived from the strategy π∗2 in Tf . Suppose player 1 proposes a randomized move of the

form 〈D(α,β), aj
1〉 (the case where the move is of the form 〈D[α,β), aj

1〉, 〈D
[α,β], aj

1〉, 〈D
(α,β], aj

1〉

is similar) at a state ŝj in the j-th step. The interval (α, β) can be decomposed into 2k+ 1

intervals (β0, β1), {β1}, (β1, β2), {β2}, . . . , {βk}, (βk, βk+1), with β0 = α and βk+1 = β, such

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 91

that for all 0 ≤ i ≤ k, the set Hi = {ŝj + ∆ | βi < ∆ < βi+1} is a subset of a region R̂i,

and R̂i 6= R̂j, for i 6= j, and similar result hold for the singletons. Consider the counter

strategy π∗2 of player 2 in the region game graph for the player 1 moves to R̂1, . . . , R̂2k+1.

The counter strategy π2 at the j-th step is as follows.

• Suppose the strategy π∗2 allows player 1 moves to all R̂1, . . . , R̂2k+1. Then the strategy

π2 picks a move in a region R̂′ such that R̂′ is a counter move of player 2 against R̂2k+1

in π∗2 .

• Suppose the strategy π∗2 allows player 1 moves to R̂1, . . . R̂m, and not to R̂m+1. Let

the counter strategy π∗2 pick some region R̂′ (together with some action a2) against

the player 1 move to R̂m+1. The strategy π2 is specified considering the following

cases.

1. Suppose R̂′ is a closed region, then from ŝj there is an unique time move ∆j

such that ŝj + ∆j ∈ R̂′, and the strategy π2 of player 2 picks 〈∆j, a2〉 such that

ŝ+ ∆j ∈ R̂
′.

2. Suppose R̂′ is an open region. If R̂′ lies “before” R̂1, then π2 picks any move

to R̂′. Otherwise, let R̂′ = R̂2l+1 for some l with 2l + 1 ≤ m + 1. Then,

player 2 has some move 〈∆j, a2〉, such that 〈∆j, a2〉 will “beat” player 1 moves

to R̂m+1, · · · , R̂2k+1 with probability greater than 1 − εj and ŝj + ∆j ∈ R̂′, and

π2 picks the move (∆j , a2).

The player 2 strategy π2 ensures that some desired region sequence (complementary to

player 1’s objective) is followed with probability at least 1 − ε for some strategy of the

scheduler. This gives us the desired result.

Lemma 22 and Theorem 17 together imply that the sure winning set remains

unchanged in the presence of randomization.

Theorem 18. Let T be a timed automaton game and T̂ be the corresponding enlarged

game structure. Let Φ̂ be an ω-regular region objective of T̂. Then, PureWin
bT
1 (Φ) =

SureWin
bT
1 (Φ̂) = AlmostSureWin

bT
1 (Φ̂).

We now present a lemma that states for region ω-regular objectives region winning

strategies exist, and all strategies region-equivalent to a region winning strategy are also

winning.

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 92

Lemma 23. Let T be a timed automaton game and T̂ be the corresponding enlarged game

structure. Let Φ̂ be an ω-regular region objective of T̂. Then the following assertions hold.

1. There is a pure finite-memory region strategy π1 that is sure winning for Φ̂ from the

states in SureWin
bT
1 (Φ̂).

2. If π1 is a pure region strategy that is sure winning for Φ̂ from SureWin
bT
1 (Φ̂) and π′1 is

a pure strategy that is region-equivalent to π1, then π′1 is a sure winning strategy for

Φ̂ from SureWin
bT
1 (Φ̂).

3. If π1 is a pure sure winning region strategy from SureWinT
1 (Φ̂) and π′1 is a strategy

surely (or almost surely) region-equivalent to π1, then π′1 is a sure (resp. almost sure)

winning strategy for Φ̂ from SureWinT
1 (Φ̂).

Proof. Let πpure
1 be any pure winning strategy for player 1 when player 2 is also restricted

to pure strategies. Then, πpure
1 is also a winning strategy against all strategies of player 2

(see the proof of Lemma 22). The first two results then follow from Lemma 9.

We now prove the third part of the Lemma. Let π1 be a pure region sure win-

ning strategy for player 1 from SureWin
bT
1 (Φ̂), and let π′1 be surely region equivalent to π1.

Given a probability distribution D, let DistSpace(D) denote the state space of the distri-

bution. Consider any strategy π2 of player 2. We have Outcomes(s, π′1, π2) = {r | ∀ k ≥

0∃mk
1 ∈ DistSpace(π′1(r[0..k])) and r[k + 1] = δ̂jd(r[k],m

k
1 , π2(r[0..k]))}. We then have

Outcomes(s, π′1, π2) = {r | ∃π′′1 ∈ Πpure
1 ∀k ≥ 0π′′1 (r[0..k]) ∈ DistSpace(π′1(r[0..k])) and r[k +

1] = δ̂jd(r[k], π
′′
1 (r[0..k]), π2(r[0..k])) and π′′1 behaves like π1 on other runs.}. Now in the

above set, each π′′1 is region equivalent to π1, and hence is a winning strategy for player 1.

Thus, in particular, Outcomes(s, π′′1 , π2) ⊆ TimeDivBl1(Φ̂). Taking the union over all π′′1 , we

have that Outcomes(s, π′1, π2) is surely a subset of SureWin
bT
1 (Φ̂).

Now we prove the result for almost sure equivalence. Let π′1 be almost surely re-

gion equivalent to π1. Consider any strategy π2 of player 2. We have Outcomes(s, π′1, π2) =

{r | ∀ k ≥ 0∃mk
1 ∈ DistSpace(π′1(r[0..k])) and r[k + 1] = δ̂jd(r[k],m

k
1 , π2(r[0..k]))}.

Consider the strategy π∗1 which is such that for the run r, for all k ≥ 0 we have

DistSpace(π∗1(r[0..k]) = DistSpace(π1(r[0..k])∩DistSpace(π′1(r[0..k]), and otherwise the mea-

sure behaves as π′1, that is for all sets A ⊆ DistSpace(π1(r[0..k]), we have π∗1(r[0..k])(A) =

π′1(r[0..k])(A). On runs other than r, π∗1 behaves like π1. Note that π∗1(r[0..k]) is a

probability measure as we have only taken out a null set. Now, π∗1 is surely region

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 93

equivalent to π1. Thus, Outcomes(s, π∗1 , π2) ⊆ Φ̂. Observe that the measure of the set

Outcomes(s, π′1, π2) \Outcomes(s, π∗1 , π2) is 0. Hence, we have that Outcomes(s, π∗1 , π2) ⊆ Φ̂

almost surely.

Note that there is an infinitely precise global clock z in the enlarged game structure

T̂. If T does not have such a global clock, then strategies in T̂ correspond to strategies in

T where player 1 (and player 2) maintain the value of the infinitely precise global clock in

memory (requiring infinite memory).

6.3 Safety Objectives: Pure Finite-memory Receptive

Strategies Suffice

In this section we show the existence of pure finite-memory sure winning strategies

for safety objectives in timed automaton games. Given a timed automaton game T, we

define two functions P>0 : C 7→ {true, false} and P≥1 : C 7→ {true, false}. For a clock

x, the values of P>0(x) and P≥1(x) indicate if the clock x was greater than 0 or greater

than or equal to 1 respectively, during the last transition (excluding the originating state).

Consider the enlarged game structure T̃ with the state space S̃ = S × {true, false} ×

{true, false}C × {true, false}C and an augmented transition relation δ̃. A state of T̃ is

a tuple 〈s, bl1, P>0, P≥1〉, where s is a state of T, the component bl1 is true iff player 1 is to

be blamed for the last transition, and P>0, P≥1 are as defined earlier. The clock equivalence

relation can be lifted to states of T̃ : 〈s, bl1, P>0, P≥1〉 ∼= eA
〈s′, bl ′1, P

′
>0, P

′
≥1〉 iff s ∼=T s′,

bl1 = bl ′1, P>0 = P ′
>0 and P≥1 = P ′

≥1.

Lemma 24. Let T be a timed automaton game in which all clocks are bounded (i.e., for all

clocks x we have x ≤ cx, for a constant cx). Let T̃ be the enlarged game structure obtained

from T. Then player 1 has a receptive strategy from a state s iff 〈s, ·〉 ∈ SureWin
eT
1 (Φ), where

Φ = 23(bl1 = true) →
(
∧

x∈C 23(x = 0)) ∧




(∨
x∈C 23((P>0(x) = true) ∧ (bl1 = true))

)

∨
(∨

x∈C 23((P≥1(x) = true) ∧ (bl1 = false))
)





 .

Proof. We prove inclusion in both directions.

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 94

1. (⇐). For a state s̃ ∈ SureWin
eT
1 (Φ), we show that player 1 has a receptive strategy from

s̃. Let π1 be a pure sure winning strategy: since Φ is an ω-regular region objective

such a strategy exists by Lemma 23. Consider a strategy π′1 for player 1 that is region-

equivalent to π1 such that whenever from a state s̃′ the strategy π1 proposes a move

〈∆, a1〉 such that s̃′ + ∆ satisfies (x > 0), then π′1 proposes the move 〈∆′, a1〉 such

that Reg(s̃′ + ∆) = Reg(s̃′ + ∆′) and s̃′ + ∆′ satisfies (x > 0) ∧ (∨y∈C y > 1/2). Such

a move always exists; this is because, if there exists ∆ such that s̃+∆ ∈ R ⊆ (x > 0),

then there exists ∆′ such that s̃ + ∆′ ∈ R ∩ ((x > 0) ∧ (∨y∈C y > 1/2)). Intuitively,

player 1 jumps near the endpoint of R. By Lemma 23, π′1 is also sure-winning for Φ.

The strategy π′1 ensures that in all resulting runs, if player 1 is not blameless, then all

clocks are 0 infinitely often (since for all clocks 23(x = 0)), and that some clock has

value more than 1/2 infinitely often. This implies time divergence. Hence player 1

has a receptive winning strategy from s̃.

2. (⇒). For a state s̃ /∈ SureWin
eT
1 (Φ), we show that player 1 does not have any receptive

strategy starting from state s̃. Let ¬Φ =

(23(bl1 = true)) ∧
(
∨

x∈C 32(x > 0)) ∨



∧

x∈C 32




(bl1 = true → (P>0(x) = false))

∧

(bl1 = false → (P≥1(x) = false))








 .

The objective of player 2 is ¬Φ. Consider a state s̃′ of T̃. Suppose player 2 has some

move from s̃′ to a region R′′, against a move of player 1 to a region R′, then (by

Lemma 7) it follows that from all states in Reg(s̃′), for each move of player 1 to R′,

player 2 has some move to R′′. Since the objective ¬Φ is a region objective, only the

region trace is relevant. Thus, for obtaining spoiling strategies of player 2, we may

construct a finite-state region graph game, where the the states are the regions of the

game, and edges specifies transitions across regions. Note that for a concrete move

m1 of player 1, if player 2 has a concrete move m2 = (∆2, a2) with a desired successor

region R, then for any move m′
2 = (∆′

2, a2) with ∆′
2 < ∆2, the destination is R against

the move m1. The objective ¬Φ can be expressed as a disjunction of conjunction

of Büchi and coBüchi objectives, and hence is a Rabin-objective. Then there exists

a pure memoryless region-strategy for player 2 in the region-based game graph.

In our original game, for all player 1 strategies π1 there exists a player 2 strategy

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 95

π2 such that from every region the strategy π2 specifies a destination region, and

Outcomes(s̃, π1, π2)∩¬Φ 6= ∅. Consider a player 1 strategy π1 and the counter strategy

π2 satisfying the above conditions. Consider a run r ∈ Outcomes(s̃, π1, π2) ∩ ¬Φ. If

for some clock, we have 32(x > 0), then time converges (as all clocks are bounded in

T), and thus π1 is not a receptive strategy. Suppose we have ∧x∈C 23(x = 0), then
∧

x∈C 32 ((bl1 = true → (P>0(x) = false)) ∧ (bl1 = false → (P≥1(x) = false)))

holds. This means that after some point in the run, player 1 is only allowed to take

moves which result in all the clock values being 0 throughout the move, this implies

she can only take moves of time 0. Also, if player 2’s move is chosen, then all the

clock values are less than 1. Recall that in each step of the game, player 2 has a

specific region he wants to go to. Consider a region equivalent strategy π′2 to the

original player 2 spoiling strategy in which player 2 takes smaller and smaller times

to get into a region R. If the new state is to have ∧x∈C (P≥1(x) = false), then

player 2 gets there by choosing a time move smaller than 1/2j in the j-th step. Since

the destination regions are the same, and since smaller moves are always better, π′2 is

also a spoiling strategy for player 2 against π1. Moreover, time converges in the run

where player 2 plays with π′2. Thus, if a state s̃ /∈ SureWin
eT
1 (Φ), then player 1 does

not have a receptive strategy from s̃.

Lemma 24 is generalized to all timed automaton games in the following lemma.

Theorem 19 follows from Lemma 25

Lemma 25. Let T be a timed automaton game, and T̃ be the corresponding enlarged game.

Then player 1 has a receptive strategy from a state s iff 〈s, ·〉 ∈ SureWin
eT
1 (Φ∗), where Φ∗ =

23(bl1 = true) →
∨

X⊆C φX , and φX =

(∧
x∈X 32(x > cx)

)
∧

(
∧

x∈C\X 23(x = 0)) ∧




(∨
x∈C\X 23((P>0(x) = true) ∧ (bl1 = true))

)

∨(∨
x∈C\X 23((P≥1(x) = true) ∧ (bl1 = false))

)





 .

Proof. We give a proof sketch. This result is a generalization of Lemma 24. Note that

once a clock x becomes more than cx, then its actual value can be considered irrelevant

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 96

in determining regions. If only the clocks in X ⊆ C have escaped beyond their maximum

tracked values, the rest of the clocks still need to be tracked, and this gives rise to a sub-

constraint φX for every X ⊆ C. The rest of the proof is similar to that for Lemma 24.

Theorem 19. Let T be a timed automaton game and T̃ be the corresponding enlarged game.

Let Y be a union of regions of T. Then the following assertions hold.

1. SureWin
eT
1 (2Y) = SureWin

eT
1 ((2Y) ∧ Φ∗), where Φ∗ is as defined in Lemma 25.

2. Player 1 has a pure, finite-memory, receptive, region strategy that is sure winning for

the safety objective Safe(Y) at every state in SureWin
eT
1 (2Y).

Proof. We prove for the general case (where clocks might not be bounded).

1. If a state s̃ ∈ SureWin
eT
1 (2Y ∧Φ∗), then as in Lemma 25, there exists a receptive region

strategy for player 1, and moreover this strategy ensures that the game stays in Y .

If s /∈ s̃ ∈ SureWin
eT
1 (2Y ∧ Φ∗), then for every player-1 strategy π1, there exists a

player-2 strategy π2 such that one of the resulting runs either violates 2Y , or Φ∗. If

Φ∗ is violated, then π1 is not a receptive strategy. If 2Y is violated, then player 2

can switch over to a receptive strategy as soon as the game gets outside Y . Thus, in

both cases s /∈ SureWin
eT
1 (2Y).

2. Result similar to lemma 23 holds for the structure T̃. Since the objective Φ∗ can be

expressed as a Streett (strong fairness) objectives, it follows that player 1 has a pure

finite-memory sure winning strategy for every state in SureWin
eT
1 ((2Y) ∧ Φ∗). The

desired result then follows using the first part of the theorem.

6.4 Reachability Objectives: Randomized Finite-memory

Receptive Strategies Suffice

We have seen in Example 9 that pure sure winning strategies require infinite mem-

ory in general for reachability objectives. In this section, we shall show that uniform ran-

domized almost-sure winning strategies with finite memory exist. This shows that we can

trade-off infinite memory with uniform randomness.

We shall need the following Lemma from analysis.

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 97

Lemma 26 ([Pug02]). Let 1 ≥ ∆j ≥ 0 for each j. Then, limn→∞
∏n

j=1(1 − ∆j) = 0 if

limn→∞
∑n

j=1 ∆j = ∞.

Proof. Suppose ∆j = 1 for some j. Then, clearly limn→∞
∏n

j=1(1 − ∆j) = 0. Suppose

∆j < 1 for all j. We then have
∏n

j=1(1−∆j) > 0 for all n. Consider ln
(∏n

j=1(1 − ∆j)
)

=
∑n

j=1 ln(1−∆j). Let g(x) = x+ln(1−x). We have g(0) = 0 and dg
dx

= 1− 1
1−x

= −x
1−x

≤ 0 for

all 1 > x ≥ 0. Thus, g(x) ≤ 0 for all 1 > x ≥ 0. Hence, 0 ≤ ∆j < − ln(1 − ∆j) for every j.

Since limn→∞
∑n

j=1 ∆j = ∞, we must have limn→∞
∑n

j=1(− ln(1−∆j)) = ∞, which means

limn→∞
∑n

j=1 ln(1 − ∆j) = −∞. This in turn implies that limn→∞
∏n

j=1(1 − ∆j) = 0.

Let SR be the destination set of states that player 1 wants to reach. We only

consider SR such that SR is a union of regions of T. For the timed automaton T, consider

the enlarged game structure of T. We let ŜR = SR × IR[0,1] × {true, false}2. From the

reachability objective (denoted Reach(SR)) we obtain the reachability parity objective with

index function ΩR as follows: ΩR(〈s, z, tick , bl1〉) = 1 if tick ∨ bl1 = true and s 6∈ SR

(0 otherwise). We assume the states in SR are absorbing. We let ŜR = SR × IR[0,1] ×

{true, false}2.

Lemma 27. For a timed automaton game T, with the reachability objective SR, con-

sider the enlarged game structure T̂, and the corresponding reachability parity function

ΩR. Then we have that SureWin1(TimeDivBl(Reach(SR))) = SureWin1(Parity(ΩR)) =

µY. νX.
[
(Ω−1

R (1) ∩ CPre1(Y)) ∪ (Ω−1
R (0) ∩ CPre1(X))

]
.

Proof. We present the result that SureWin1(TimeDivBl(Reach(SR))) =

SureWin1(Parity(ΩR)). The characterization of the winning set by the µ-calculus formula is

a classical result. To show SureWin1(TimeDivBl(Reach(SR))) = SureWin1(Parity(ΩR)), we

prove inclusion in both directions.

1. Suppose player 1 can win for the reachability objective SR. Let π1 be

the winning strategy. Consider any player-2 strategy π2, and any run r̂ ∈

Outcomes(〈s, 0, false, false〉, π1, π2). Suppose r̂ visits ŜR. Then since SR is ab-

sorbing, and all states in ŜR have index 0, only the index 0 is seen from some point

on.

2. Suppose r̂ does not visit ŜR, and let r̂ be time-diverging. If the moves of player 1 are

chosen infinitely often in r̂, then the index 1 is visited infinitely often. If the moves of

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 98

player 1 are chosen only finitely often, then from some point on, the clock z is reset

only when it hits 1, and thus since time diverges, tick is true infinitely often. The

index 1 is again visited infinitely often in this case.

Suppose r̂ does not visit ŜR, and let r̂ be time-converging. If the moves of player 1 are

chosen infinitely often in r̂, then player 1 is to blame for blocking time. In this case 1

is visited infinitely often. If the moves of player 1 are only chosen finitely often, then

again from some point on, the clock z is reset only when it hits 1. Since time does

not diverge, tick is true only finitely often. Thus after some point, only the index 0 is

seen, in agreement with the fact that player 1 is blameless.

We first present a µ-calculus characterization for the sure winning set (using

only pure strategies) for player 1 for reachability objectives. The controllable prede-

cessor operator for player 1, CPre1 : 2
bS 7→ 2

bS , defined formally by s̃ ∈ CPre1(Z) iff

∃m1 ∈ Γ̂1(ŝ) ∀m2 ∈ Γ̂2(ŝ) . δ̂jd(ŝ,m1,m2) ⊆ Z. Informally, CPre1(Z) consists of the set

of states from which player 1 can ensure that the next state will be in Z, no matter what

player 2 does. From Lemma 27 it follows that the sure winning set can be described as the

µ-calculus formula: µY νX
[
(Ω−1(1) ∩ CPre1(Y)) ∪ (Ω−1(0) ∩ CPre1(X))

]
. The winning set

can then be computed as a fixpoint iteration on regions of T̂. We can also obtain a pure

winning strategy πpure of player 1 as in [dAHM01b]. Note that this strategy πpure corre-

sponds to an infinite-memory strategy of player 1 in the timed automaton game T, as she

needs to maintain the value of the clock z in memory.

To compute randomized finite-memory almost-sure winning strate-

gies, we will use the structure of the µ-calculus formula. Let Y ∗ =

µY νX
[
(Ω−1(1) ∩ CPre1(Y)) ∪ (Ω−1(0) ∩ CPre1(X))

]
. The iterative fixpoint

procedure computes Y0 = ∅ ⊆ Y1 ⊆ · · · ⊆ Yn = Y ∗, where Yi+1 =

νX
[
(Ω−1(1) ∩ CPre1(Yi)) ∪ (Ω−1(0) ∩ CPre1(X))

]
. We can consider the states in Yi \ Yi−1

as being added in two steps, T2i−1 and T2i(= Yi) as follows:

1. T2i−1 = Ω−1(1) ∩ CPre1(Yi−1). T2i−1 is clearly a subset of Yi.

2. T2i = νX
[
T2i−1 ∪ (Ω−1(0) ∩ CPre1(X))

]
. Note that (T2i \ T2i−1) ∩ Ω−1(1) = ∅.

Thus, in the odd stages, we add states with index 1, and in even stages, we add states with

index 0. The rank of a state ŝ ∈ Y ∗ is j if ŝ ∈ Tj \ ∪
j−1
k=0Tk. For a state of even rank j, we

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 99

have that player 1 can ensure that she has a move such that against all moves of player 2,

the next state either (a) has index 0 and belongs to the same rank or less, or (b) the next

state has index 1 and belongs to rank smaller than j. For a state of odd rank j, we have

that player 1 can ensure that she has a move such that against all moves of player 2, the

next state belongs to a lower rank (and has index either 1 or 0).

We now consider the rank sets for the reachability fixpoint in more detail. We

have that SR is a union of regions of T. T0 = T1 = ∅, and T2 consists of all the states in

ŜR together with the states where tick = bl1 = false, and from where player 1 can ensure

that the next state is either in ŜR, or the next state continues to have tick = bl1 = false;

formally T2 = νX(Ω−1(0) ∩ CPre1(X)). Henceforth, when we refer to a region R of T, we

shall mean the states R× IR[0,1] × {true, false}2 of T̂.

Lemma 28. Let T2 = νX(Ω−1(0)∩CPre1(X)). Then player 1 has a (randomized) memory-

less strategy πrand such that she can ensure reaching ŜR ⊆ Ω−1(0) with probability 1 against

all receptive strategies of player 2 and all strategies of the scheduler from all states ŝ of a

region R such that R ∩ T2 6= ∅. Moreover, πrand is independent of the values of the global

clock, tick and bl1.

We break the proof of Lemma 28 into several parts. For a set T of states, we shall

denote by Reg(T) the set of states that are region equivalent in T to some state in T . We

let πpure be the pure infinite-memory winning strategy of player 1 to reach ŜR. First we

prove the following result.

Lemma 29. Let T2 = νX(Ω−1(0) ∩CPre1(X)). Then, for every state in Reg(T2), player 1

has a move to ŜR.

Proof. Suppose T2 6= ŜR (the other case is trivial). Then player 1 must have a move from

every state in T2 \ ŜR to ŜR in T̂, for otherwise, for any state in T2 \ ŜR, player 2 (with

cooperation from the scheduler) can allow player 1 to pick any move, which will result in an

index of 1 in the next state, contradicting the fact that player 1 had a strategy to stay in

T2 forever (note all the states in T2 have index 0). Moreover, since ŜR is a union of regions

of T, we have that the states in T2 from which player 1 has a move to ŜR, consist of a union

of sets of the form T2 ∩R for R a region of T. This implies that player 1 has a move to ŜR

from all states in Reg(T2) (Lemma 6).

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 100

If at any time player 1’s move is chosen, then player 1 comes to ŜR, and from there

plays a receptive strategy. We show that player 1 has a randomized memoryless strategy

such that the probability of player 1’s move being never chosen against a receptive strategy

of player 2 is 0. This strategy will be pure on target left-closed regions, and a uniformly

distributed strategy on target left-open regions. We now describe the randomized strategy.

Consider a state ŝ in some region R′ ⊆ Reg(T2 \ ŜR) of T. Now consider the set

of times at which moves can be taken so that the state changes from ŝ to ŜR. This set

consists of a finite union of sets Ik of the form (αl, αr), [αl, αr), (αl, αr], or [αl, αr] where

αl, αr are of the form d or d − x for d some integer constant, and x some clock in C (this

clock x is the same for all the states in R′). Furthermore, these intervals have the property

that {ŝ + ∆ | ∆ ∈ Ik} ⊆ Rk for some region Rk, with Rl ∩ Rj = ∅ for j 6= l. From a

state ŝ, consider the “earliest” interval contained in this union: the interval I such that the

left endpoint is the infimum of the times at which player 1 can move to ŜR. We have that

{ŝ+ ∆ | ∆ ∈ I} ⊆ R1. Consider any state ŝ′ ∈ R′. Then from ŝ′, the earliest interval in the

times required to get to ŜR is also of the form I. Note that in allowing time to pass to get

to R1, we may possibly go outside T2 (recall that T2 is not a union of regions of T).

If this earliest interval I is left closed, then player 1 has a “shortest” move to ŜR.

Then this is the best move for player 1, and she will always propose this move. We call

these regions target left-closed. If the target interval is left open, we call the region target

left-open. Let the left and the right endpoints of target intervals be αl, αr respectively.

Then let player 1 play a probabilistic strategy with time distributed uniformly at random

over (αl, (αl +αr)/2] on these target left-open regions. Let us denote this player-1 strategy

by πrand.

Lemma 30. Let T2 = νX(Ω−1(0) ∩ CPre1(X)). Then, for every state in Reg(T2) the

strategy πrand as described above ensures that player 1 stays inside Reg(T2) surely.

Proof. Consider a state ŝ in T2 \ ŜR. Since {ŝ + t | t ∈ I} is a subset of a single region

of T, no new discrete actions become enabled due to the randomized strategy of player 1.

If player 2 can foil player 1 by taking a move to a region R′′ for the player 1 randomized

strategy, she can do so against any pure (infinite-memory) strategy of player 1. No matter

what player 2 proposes at each step, player 1’s strategy is such that the next state (against

any player 2’s moves) lies in a region R′′ (of T) such that R′′ ∩ T2 6= ∅. Because of this,

player 1 can always play the above mentioned strategy at each step of the game, and ensure

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 101

that she stays inside Reg(T2) (until the destination ŜR is reached).

Lemma 31. Consider the the player 1 strategy πrand and any receptive strategy π2 of

player 2. Let r ∈ Outcomes(s, πrand, π2) be a run with s ∈ Reg(T2). If there exists m ≥ 0

such that πrand(r[0..j]) is left-closed for all j ≥ m, then we have that r visits ŜR.

Proof. Consider a run r for the player 1 strategy πrand against any strategy π2 of player 2.

Note that we must have Reg(r[k]) ⊆ Reg(T2) for every k by Lemma 30. Let r[m] =

ŝ′ = 〈s′, z, tick , bl1〉 ∈ R′. Consider the pure winning strategy πpure from a state ŝ′′ =

〈s′, z′, tick ′, bl ′1〉 ∈ R
′ ∩ T2 (such a state must exist). The state ŝ′′ differs from ŝ′ only in the

values of the clock z, and the boolean variables tick and bl1. The new values do not affect

the moves available to either player. Consider ŝ′′ as the starting state. The strategy πpure

cannot propose shorter moves to ŜR, since πrand proposes the earliest move to ŜR. Hence,

if a receptive player 2 strategy π2 can prevent πrand from reaching ŜR from ŝ′, then it can

also prevent πpure from reaching ŜR from ŝ′′, a contradiction.

Lemma 32. Consider the the player 1 strategy πrand and any receptive strategy π2 of

player 2. Let r ∈ Outcomes(s, πrand, π2) be a run with s ∈ Reg(T2). There exists m ≥ 0 such

that for all j ≥ m, if πrand(r[0..j]) is left-open, then the left endpoint is αl = 0.

Proof. Let αl correspond to the left endpoints for one of the infinitely occurring target

left-open regions R.

1. We show that we cannot have αl to be of the form d for some integer d > 0.

We prove by contradiction. Suppose αl is of the form d > 0. Then player 2 could

always propose a time blocking move of duration d, this would mean that if the

scheduler picks the move of player 2 (as both have the same delay), the next state

would have tick = true, no matter what the starting value of the clock z in R,

contradicting the fact that R ∩ T2 6= ∅ (T2 = νX(Ω−1(0) ∩ CPre1(X))). We have a

contradiction, as player 1 had a pure winning strategy πpure from every state in T2.

Take any ŝ ∈ R ∩ T2. Then πpure must have proposed some move to ŜR, such that all

the intermediate states (before the move time) had tick = false. The strategy πrand

picks the earliest left most endpoint to get to ŜR. This means that πpure must also

propose a time which is greater than or equal to the move proposed by πrand. Hence

αl cannot be d for d > 0 (otherwise the player 2 counter strategy to πpure can take

the game out of T2 by making tick = true).

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 102

2. We show that we cannot have αl to be of the form d− x for some integer d > 0.

We prove by contradiction. Suppose αl = d− x for some some clock x for the target

constraint. Let player 2 counter with any strategy.

Suppose clock x is not reset infinitely often in the run r. Then the fact that the clock

x has not progressed beyond d at any time in the run without being reset implies time

is convergent, contradicting the fact that player 2 is playing with a receptive strategy

(note that only player 2’s moves are being chosen). Thus, this situation cannot arise.

Suppose x is reset infinitely often. Then between a reset of x, and the time at which

player 1 can jump to ŜR, we must have a time distance of more than d. Suppose R′

is one of the infinitely occurring regions in the run with the value of x being 0 in it.

So player 2 has a strategy against our player 1 strategy such that one of the resulting

runs contains a region subsequence R′
 R. If this is so, then she would have a

strategy which could do the same from every state in R′∩T2 against the pure winning

strategy of player 1 (since the randomized strategy πrand does not enable player 2 to

go to more regions than against πpure, as πrand proposes moves to the earliest region

in ŜR). But, if so, we have that tick will be true no matter what the starting value

of z in R′ ∩ T2, before player 1 can take a jump to ŜR from R ∩ T2, taking the game

outside of T2. Since player 1 can stay inside T2 at each step with the infinite memory

strategy πpure, this cannot be so, that is, we cannot observe the region subsequence

R′
 R for the randomized strategy of player 1. Thus the case of αl = d− x cannot

arise infinitely often.

The only remaining option is αl = 0, and we must have that the only randomized

moves player 1 proposes after a while are of the form (0, αr/2].

Lemma 33. Consider runs r with r[0] ∈ Reg(T2) for the player 1 strategy πrand against

any receptive strategy π2 of player 2 and a scheduler strategy πsched. Let E be the set of runs

such that for all m ≥ 0 there exists j ≥ m such that πrand(r[0..j]) is left-open, with the the

left endpoint being αl = 0. Then, we have Prπrand,π2,πsched

r[0] (Reach(SR) |E) = 1.

Proof. Let one of the infinitely often occurring player 1 left-open moves be to the region

R. Player 1 proposes a uniformly distributed move over (0, αr/2] to R. Let βi be the

duration of player 2’s move for the ith visit to R Suppose αr = d. Then the probability of

player 1’s move being never chosen is less than
∏∞

i=1(1 − 2βi

d
), which is 0 if

∑∞
i=1 βi = ∞

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 103

by Lemma 26. A similar analysis holds if player 2 proposes randomized moves with a time

distribution D(βi,·],D[βi,·],D(βi,·) or D[βi,·). Suppose αr = d − x. Again, the probability of

player 1’s move being never chosen is less than
∏∞

i=1(1−
2βi

(d−κi(x))), and since βi

(d−κi(x)) >
βi

d
,

this also is 0 if
∑∞

i=1 βi = ∞ by Lemma 26 . Finally, we note that if player 2 does not

block time from T2, then for at least one region, she must propose a βi sequence such that
∑∞

i=1 βi = ∞, and we will have that for this region, player 1’s move will be chosen eventually

with probability 1.

Proof of Lemma 28. Lemmas 29, 30, 31, 32 and 33 together imply that using the random-

ized memoryless strategy πrand, player 1 can ensure going from any region R of T such that

R∩ T2 6= ∅ to ŜR with probability 1, without maintaining the infinitely precise value of the

global clock.

The following lemma states that if for some state s ∈ T, we have (s, z, tick , bl1) ∈

T2i+1, for some i, then for some z′, tick ′, bl ′1 we have (s, z′, tick ′, bl ′1) ∈ T2i. Then in Lemma 35

we present the inductive case of Lemma 28. The proof of Lemma 35 is similar to the base

case i.e., Lemma 28. The proofs can be found in the appendix.

Lemma 34. Let R be a region of T such that R ∩ T2i+1 6= ∅. Then R ∩ T2i 6= ∅.

Proof. Consider a state 〈s, z, tick , bl1〉 ∈ T2i+1 and let s ∈ R. All the states in T2i+1 have the

property that player-1 can always guarantee that the next state has a lower rank, no matter

what the move of player 2. Consider the player-2 move of 〈0,⊥〉 at state 〈s, z, tick , bl1〉 ∈

T2i+1. The next state is then going to be 〈s, z, tick ′ = false, bl ′1 = false〉. Since tick ∨ bl1 =

false, the index of 〈s, z, tick ′ = false, bl ′1 = false〉 is 0, and hence it must belong to an

even rank which is lower than 2i+ 1. Finally, we note that ∪2i−1
k=0 Tk ⊂ T2i.

Lemma 35. Let R be a region of T such that R∩T2i 6= ∅, and R∩Tj = ∅ for all 2 ≤ j < 2i.

Then player 1 has a (randomized) memoryless strategy πrand to go from R to some R′ such

that R′∩Tj 6= ∅ for some j < 2i with probability 1 against all receptive strategies of player 2

and all strategies of the scheduler. Moreover, πrand is independent of the values of the global

clock, tick and bl1.

Proof. The proof follows along similar line to that of Lemma 28. Let A = {ŝ′ | ŝ′ ∈

R′ and R′ ∩ Tj 6= ∅ for some j < 2i}. Note that A ⊆ Reg(T2i). We show player 1 can

reach A, without encountering a region R′ such that R′ ∩ (T2i ∪ A) = ∅. Let ŝ ∈ R, with

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 104

R ∩ T2i 6= ∅, and R ∩ Tj = ∅ for all 2 ≤ j < 2i. The result follows from Lemmas 36, 37,

38, 39, and 40.

Lemma 36. Let R be a region of T such that R∩T2i 6= ∅, and R∩Tj = ∅ for all 2 ≤ j < 2i.

Then, player 1 has a move from every state in R to A.

Proof. Note that according to πpure, player 1 always propose a move from T2i ∩ R to A as

the destination of the move of player 1 must be in rank 2i − 1 or lower (note that a move

of player 1 being chosen makes the index 1). Thus, since player 1 has a move from T2i ∩R

to A according to πpure, he must have a move from every ŝ ∈ R to A by Lemma 6.

Consider a state ŝ in some region R′ ⊆ Reg(T2i) of T. Now consider the set of

times at which moves can be taken so that the state changes from ŝ to A. This set consists

of a finite union of sets Ik of the form (αl, αr), [αl, αr), (αl, αr], or [αl, αr] where αl, αr are

of the form d or d − x for d some integer constant, and x some clock in C (this clock x

is the same for all the states in R′). Furthermore, these intervals have the property that

{ŝ + ∆ | ∆ ∈ Ik} ⊆ Rk for some region Rk, with Rl ∩ Rj = ∅ for j 6= l. From a state

ŝ, consider the “earliest” interval contained in this union: the interval I such that the left

endpoint is the infimum of the times at which player 1 can move to A. We have that

{ŝ+ ∆ | ∆ ∈ I} ⊆ R1. Consider any state ŝ′ ∈ R′. Then from s′, the earliest interval in the

times required to get to A is also of the form I. Note that in allowing time to pass to get

to R1, we may possibly go outside T2i (recall that T2i is not a union of regions of T).

If this earliest interval is left closed, then player 1 has a “shortest” move to A.

Then, this is the best move in our strategy for player 1, and she will always propose this

move. Let the left and the right endpoints of target intervals be αl, αr respectively. Then, if

the target interval is left open, let player 1 play a probabilistic strategy with time distributed

uniformly at random over (αl, (αl + αr)/2]. Let us denote this player-1 strategy by πrand.

Also note that the z, tick and the bl1 components play no role in determining the availability

of moves.

Lemma 37. Let R be a region of T such that R∩T2i 6= ∅, and R∩Tj = ∅ for all 2 ≤ j < 2i.

Then, the strategy πrand ensures that from any state in R, the game stays in Reg(T2i) surely

till A is visited.

Proof. Let R be a region of T such that R ∩ T2i 6= ∅, and R ∩ Tj = ∅ for all

2 ≤ j < 2i. Consider a state ŝ ∈ R ∩ T2i. In πpure, player 1 proposes a move

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 105

to A from each state in R ∩ T2i. By Lemma 7, we have a unique set M2i
2 = {R′ |

player-2 moves to R′ from R beat player-1 moves to A}. Since {ŝ+ t | t ∈ I} constitutes a

single region of T, and I is the earliest interval that can land player 1 in A, no new discrete

actions become enabled due to the randomized strategy of player 1 — if player 2 can foil the

randomized strategy of player 1 by taking a move to a region R′ such that R′∩Reg(T2i) = ∅,

she can do so against πpure. Thus, by induction using Lemma 7, we have that player 1 can

guarantee with the randomized strategy that the game will stay in Reg(T2i) starting from a

state in R∩T2i. Since the values z, tick and the bl1 components play no role in determining

the availability of moves, player 1 can ensure that the game states within Reg(T2i) starting

from any state in a region R such that R ∩ T2i 6= ∅, and R∩ Tj = ∅ for all 2 ≤ j < 2i till A

is visited.

If at any time the move of player 1 is chosen, then player 1 comes to A. We show

that when player 1 uses the randomized memoryless strategy πrand, the probability of the

move of player 1 being never chosen against a receptive strategy of player 2 is 0.

Lemma 38. Let R be a region of T such that R∩T2i 6= ∅, and R∩Tj = ∅ for all 2 ≤ j < 2i.

Consider any receptive strategy π2 of player 2, and a run r ∈ Outcomes(s, πrand, π2) with

s ∈ R. Suppose there exists m ≥ 0 such that for all k ≥ m, if r[0..k] has not visited A, then

we have πrand(r[0..k]) to be left-closed. Then, we have that r visits A.

Proof. Note that if a move of player 1 is chosen at any point, then A is visited. Suppose

the moves of player 1 are never chosen. Consider a run r against any strategy of player 2.

Let us consider the run from r[m] onwards. Only target left-closed regions occur form this

point on. Let r[m] = ŝ′ = 〈s′, z, tick , bl1〉 ∈ R′. Consider the pure winning strategy πpure

from a state ŝ′′ = 〈s′, z′, tick ′, bl ′1〉 ∈ R′ ∩ T2i (such a state must exist). The state ŝ′′ differs

from ŝ′ only in the values of the clock z, and the boolean variables tick and bl1. The new

values do not affect the moves available to either player. Consider ŝ′′ as the starting state.

The strategy πpure cannot propose shorter moves to A ∩ (∪2i−1
i=2 Tj), since πrand proposes

the earliest move to A. Hence, if a receptive player-2 strategy π2 can prevent πrand from

reaching A from ŝ′, then it can also prevent πpure from reaching A ∩ (∪2i−1
i=2 Tj) from ŝ′′, a

contradiction.

Lemma 39. Let R be a region of T such that R∩T2i 6= ∅, and R∩Tj = ∅ for all 2 ≤ j < 2i.

Consider any receptive strategy π2 of player 2, and a run r ∈ Outcomes(s, πrand, π2) with

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 106

s ∈ R. There exists m ≥ 0 such that for all k ≥ m if (a) r[0..k] has not visited A, and

(b) πrand(r[0..k]) is left-open with left-endpoint being αl, then we have αl = 0.

Proof. Let αl correspond to the left endpoint for one of the infinitely often occurring target

left-open interval region R′.

1. We show that we cannot have αl to be of the form d for some integer d > 0.

We prove by contradiction. Suppose αl is of the form d for some integer d > 0 for a

region R′. Then, player 2 can always propose a time blocking move of d, this would

mean that if the scheduler picks the move of player 2 (as both have the same delay),

the next state will have tick true, no matter what the starting value of the clock z is.

Now consider any state in R′ ∩ T2i. The strategy πpure always proposes some move

to A, and the time duration must be greater than d. Because of the d time-blocking

move of player 2 new state will then be not in A, and have tick = true, hence, it will

actually have an index of more than 2i, contradicting the fact that πpure ensured that

the rank never decreased. Thus, d > 0 can never arise.

2. We show that we cannot have αl to be of the form d− x for some integer d > 0 and

clock x.

We prove by contradiction. Suppose clock x is not reset infinitely often in the run r.

Then, the fact that the clock x has not progressed beyond d after some point in the run

without being reset implies time is convergent, contradicting the fact that player 2 is

playing with a receptive strategy (note that only moves of player 2 are being chosen).

Thus, this situation cannot arise. Suppose x is reset infinitely often. Then, between

a reset of x, and the time at which player 1 can jump to A, we must have a time

distance of more than d. Suppose R′′ is one of the infinitely occurring regions in the

run with the value of x being 0 in it. So player 2 has a strategy against our player-1

strategy such that one of the resulting runs contains a region subsequence R′′
 R′.

If this is so, then she would have a strategy which could do the same from every

state in R′′ ∩ T2i against the pure winning strategy of player 1 (since the randomized

strategy πrand does not enable player 2 to go to more regions than against πpure, as

πrand proposes moves to the earliest region in A). But, if so, we have that tick will

be true no matter what the starting value of z in R′′ ∩ T2i, before player 1 can take a

jump to A from R′ ∩ T2i, taking the game outside of A∪ T2i. Since player 1 can stay

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 107

inside T2i, or visit A at each step with the infinite memory strategy πpure, this cannot

be so, that is, we cannot observe the region subsequence R′′
 R′ for the player-1

randomized strategy. Hence the case of αl = d− x cannot arise infinitely often.

The only remaining option is αl = 0, and we must have that the only randomized

moves player 1 proposes after a while are of the form (0, αr/2].

Lemma 40. Let R be a region of T such that R∩T2i 6= ∅, and R∩Tj = ∅ for all 2 ≤ j < 2i.

Consider any receptive strategy π2 of player 2, and a strategy πsched of the scheduler. Let

E denote the set of runs containing runs r ∈ Outcomes(s, πrand, π2) with s ∈ R. such that

there exists m ≥ 0 and for all k ≥ m (a) r[0..k] has not visited A, and (b) πrand(r[0..k]) is

left-open with left-endpoint being αl = 0. Then, we have Prπrand,π2,πsched

r[0] (Reach(A) |E) = 1.

Proof. Let R′ be one of the infinitely often occurring regions in r with the target left-

endpoint being αl = 0. Let βi be the duration of the move of player 2 for the ith visit to

R′ Suppose αr = d. Then the probability of a move of player 1 being never chosen is less

than
∏∞

i=1(1 − 2βi

d
), which is 0 if

∑∞
i=1 βi = ∞ by Lemma 26. A similar analysis holds if

player 2 proposes randomized moves with a time distribution D(βi,·],D[βi,·],D(βi,·) or D[βi,·).

Suppose αr = d − x. Suppose αr = d − x. Again, the probability of a move of player 1

being never chosen is less than
∏∞

i=1(1−
2βi

(d−κi(x))), and since βi

(d−κi(x)) >
βi

d
, this also is 0 if

∑∞
i=1 βi = ∞ by Lemma 26. Finally, we note that if player 2 does not block time from T2i,

then for at least one region, she must propose a βi sequence such that
∑∞

i=1 βi = ∞, and we

will have that for this region, a move of player 1 will be chosen eventually with probability

1.

Once player 1 reaches the target set, she can switch over to the finite-memory

receptive strategy of Lemma 25. Thus, using Lemmas 25, 28, 34, and 35 we have the

following theorem.

Theorem 20. Let T be a timed automaton game, and let SR be a union of regions of T.

Player 1 has a randomized, finite-memory, receptive, region strategy π1 such that for all

states s ∈ SureWin1(Reach(SR)), and for all scheduler strategies πsched, the following asser-

tions hold: (a) for all receptive strategies π2 of player 2 we have Prπ1,π2,πsched
s (Reach(SR)) =

1; and (b) for all strategies π2 of player 2 we have Prπ1,π2,πsched
s (TimeDivBl1(Reach(SR))) = 1.

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 108

6.5 Parity Objectives: Randomized Finite-memory Recep-

tive Strategies Suffice

In this section we show that randomized finite-memory almost-sure strategies exist

for parity objectives. Let Ω : S 7→ {0, . . . , k} be the parity index function. We consider the

case when k = 2d for some d, and the case when k = 2d−1, for some d can be proved using

similar arguments. If k = 2d − 1, then we will will look at the dual odd parity objective:

Parityodd(Ω
′) = {r | max(InfOften(r)) is odd }, with Ω′ = Ω + 1 : S 7→ {1, . . . , 2d}. If we get

an odd parity objective with Ω′ : S 7→ {1, . . . , 2d− 1}, then we can map it back to an even

parity objective with Ω = Ω′ − 1.

Given a timed game structure T, a set X (S, and a parity function Ω : S 7→

{0, . . . , 2d}, with d > 0, let 〈T′,Ω′〉 = ModifyEven(T,Ω,X) be defined as follows: (a) the

state space S′ of T′ is {s⊥}∪S\X, where s⊥ /∈ S; (b) Ω′(s⊥) = 2d−2, and Ω′ = Ω otherwise;

(c) Γ′
i(s) = Γi(s) for s ∈ S \X, and Γ′

i(s
⊥) = Γi(s

⊥) = IR≥0 ×⊥; and (d) δ′(s,m) = δ(s,m)

if δ(s,m) ∈ S \ X, and δ′(s,m) = s⊥ otherwise. We will use the function ModifyEven to

play timed games on a subset of the original structure. The extra state, and the modified

transition function are to ensure well-formedness of the reduced structure. We will now

obtain receptive strategies for player 1 for the objective Parity(Ω) using winning strategies

for reachability and safety objectives. We consider the following procedure.

1. i := 0, and Ti = T.

2. Compute Xi = SureWin
Ti

1 (3(Ω−1(2d))).

3. Let 〈T′
i,Ω

′〉 = ModifyEven(Ti,Ω,Xi); and let Yi = SureWin
T′

i

1 (Parity(Ω′)). Let Li =

Si \ Yi, where Si is the set of states of Ti.

4. Compute Zi = SureWinTi

1 (2(Si \ Li)).

5. Let (Ti+1,Ω) = ModifyEven(T,Ω, S \ Zi) and i := i+ 1.

6. Go to step 2, unless Zi−1 = Si.

Consider the sets S \ Zi that are removed in each iteration. For every Li, the

probability of player 1 winning in T is 0. This is because, from Li, player 1 cannot visit

the index 2d with positive probability, thus we can restrict our attention to T′, and in

this structure, Li is not winning for player 1 almost surely. This in turn implies that

CHAPTER 6. TRADING MEMORY FOR RANDOMNESS IN TIMED GAMES 109

S \ SureWin
Ti

1 (2(S \ Li)) is a losing set for player 1 almost surely in the structure T.

Thus, at the end of the iterations, we have SureWinT
1 (Parity(Ω)) ⊆ Zi. Hence, we have

(S \ Zi) ∩ SureWinT
1 (Parity(Ω)) = ∅. We now exhibit randomized, finite-memory, receptive,

region almost-sure winning strategies to show that the set Zi is almost-sure winning.

The set Zi on termination has two subsets: (a) Xi = SureWinTi

1 (3(Ω−1(2d))); and

(b) Yi = Si\Xi such that player 1 wins in the structure T′
i for the parity objective Parity(Ω).

Let πY be a randomized, finite-memory, receptive, region almost-sure winning strategy for

player 1 in T′
i; since the range of Ω T′

i is {0, 1, . . . , 2d − 1}, by inductive hypothesis such

a strategy exists. Consider any receptive strategy of player 2. If the game is in Yi, then

player 1 use the strategy πY , using the the run suffix rY , where rY is the largest suffix of the

run such that all the states of rY belong to Yi . Moreover, player 1 is never to blame if time

converges (since πY is a receptive strategy). Suppose the game hits Xi. Then, player 1 uses

a randomized, finite-memory, receptive, region almost-sure winning strategy πX to visit the

index 2d, and as soon as 2d is visited, she switches over to a pure, finite-memory, receptive,

region safety strategy for the objective 2(Zi) to allow a fixed amount of time ∆ > 0 to pass.

This can be done similar to the receptive strategies of Theorem 19 with an imprecise clock

(in the imprecise clock the time elapse between any two ticks is at least ∆). Once time more

than ∆ has passed, player 1 switches over to πX or πY , depending on whether the current

state is in Xi or Yi, respectively, and repeats the process. This is a receptive strategy which

ensures that the maximal priority that is visited infinitely often is even almost-surely. The

strategy also requires only a finite amount of memory.

Theorem 21. Let T be a timed automaton game, and let Ω be a region parity index function.

Suppose that player 1 has access to imprecise clock events such that between any two events,

some time more than ∆ passes for a fixed real ∆ > 0. Then, player 1 has a randomized,

finite-memory, receptive, region strategy π1 such that for all states s ∈ SureWin1(Parity(Ω)),

and for all scheduler strategies πsched, the following assertions hold: (a) for all receptive

strategies π2 of player 2 we have Prπ1,π2,πsched
s (Parity(Ω)) = 1; and (b) for all strategies π2 of

player 2 we have Prπ1,π2,πsched
s (TimeDivBl1(Parity(Ω))) = 1.

110

Chapter 7

Robust Winning of Timed Games

7.1 Introduction

In the winning strategies presented in Chapter 3 for timed automaton games, there

are cases where a player can win by proposing a certain strategy of moves, but where moves

that deviate in the timing by an arbitrarily small amount from the winning strategy moves

lead to her losing. If this is the case, then the synthesized controller needs to work with

infinite precision in order to achieve the control objective. As this requirement is unrealistic,

we propose two notions of robust winning strategies. In the first robust model, each move of

player 1 (the “controller”) must allow some jitter in when the action of the move is taken.

The jitter may be arbitrarily small, but it must be greater than 0. We call such strategies

limit-robust. In the second robust model, we give a lower bound on the jitter, i.e., every

move of player 1 must allow for a fixed jitter, which is specified as a parameter for the game.

In addition, the game specifies a nonzero lower bound on the response time, which is the

minimal time between a discrete transition and an action of player 1. We call these strategies

bounded-robust. The strategies of player 2 (the “plant”) are left unrestricted (apart from

being receptive). We show that these types of strategies are in strict decreasing order in

terms of power: general strategies are strictly more powerful than limit-robust strategies;

and limit-robust strategies are strictly more powerful than bounded-robust strategies for

any lower bound on the jitter, i.e., there are games in which player 1 can win with a limit-

robust strategy, but there does not exist any nonzero bound on the jitter for which player 1

can win with a bounded-robust strategy. The following example illustrates this issue.

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 111

a1
2, x > 2

l0

l3

a2
1, y > 1 → y := 0

l1

a2
2, y > 2

a1
1, x ≤ 1 → x := 0

l2

a4
1, x < 1

a3
1, x < 1

a3
2, x > 2

Figure 7.1: A timed automaton game T.

Example 11. Consider the timed automaton T in Fig. 7.1. The edges denoted ak
1 for

k ∈ {1, 2, 3, 4} are controlled by player 1 and edges denoted aj
2 for j ∈ {1, 2, 3} are controlled

by player 2. The objective of player 1 is 2(¬l3), ie., to avoid l3. The important part of the

automaton is the cycle l0, l1. The only way to avoid l3 in a time divergent run is to cycle in

between l0 and l1 infinitely often. In addition player 1 may choose to also cycle in between

l0 and l2, but that does not help (or harm) her. Due to strategies being receptive, player 1

cannot just cycle in between l0 and l2 forever, she must also cycle in between l0 and l1; that

is, to satisfy 2(¬l3) player 1 must ensure (23l0) ∧ (23l1), where 23 denotes “infinitely

often”. But note that player 1 may cycle in between l0 and l2 as many (finite) number of

times as she wants in between an l0, l1 cycle.

In our analysis below, we omit such l0, l2 cycles for simplicity. Let the game start

from the location l0 at time 0, and let l1 be visited at time t0 for the first time. Also, let tj

denote the difference between times when l1 is visited for the j + 1-th time, and when l0 is

visited for the j-th time. We can have at most 1 time unit between two successive visits to

l0, and we must have strictly more than 1 time unit elapse between two successive visits to

l1. Thus, tj must be in a strictly decreasing sequence. Also, for player 1 to cycle around l0

and l1 infinitely often, we must have that all tj ≥ 0. Consider any bounded-robust strategy.

Since the jitter is some fixed εj, for any strategy of player 1 which tries to cycle in between

l0 and l1, there will be executions where the transition labeled a1
1 will be taken when x is

less than or equal to 1 − εj, and the transition labeled a2
1 will be taken when y is greater

than 1− εj. This means that there are executions where tj decreases by at least 2 · εj in each

cycle. But, this implies that we cannot having an infinite decreasing sequence of tj’s for any

εj and for any starting value of t0.

With a limit-robust strategy however, player 1 can cycle in between the two locations

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 112

infinitely often, provided that the starting value of x is strictly less than 1. This is because

at each step of the game, player 1 can pick moves that are such that the clocks x and y are

closer and closer to 1 respectively. A general strategy allows player 1 to win even when the

starting value of x is 1. The details will be presented later in Example 13 in Section 7.3.

In this chapter, we show that timed automaton games with limit-robust and

bounded-robust strategies can be solved by reductions to general timed automaton games

(with exact strategies). The reductions differentiate between whether the jitter is controlled

by player 1 (in the limit-robust case), or by player 2 (in the bounded robust case). This is

done by changing the winning condition in the limit-robust case, and by a syntactic trans-

formation in the bounded-robust case. These reductions provide algorithms for synthesizing

robust controllers for real-time systems, where the controller is guaranteed to achieve the

control objective even if its time delays are subject to jitter. We also demonstrate that

limit-robust strategies suffice for winning the special case of timed-automaton games where

all guards and invariants are strict (i.e., open). The question of the existence of a lower

bound on the jitter for which a game can be won with a bounded-robust strategy remains

open.

Outline. In Section 7.2, we obtain robust winning sets for player 1 in the presence of non-

zero jitter (which are assumed to be arbitrarily small) for each of her proposed moves. In

Section 7.3, we assume the the jitter to be some fixed εj ≥ 0 for every move that is known.

The strategies of player 2 are left unrestricted. In the case of lower-bounded jitter, we also

introduce a response time for player-1 strategies. The response time is the minimum delay

between a discrete action, and a discrete action of the controller. We note that the set of

player-1 strategies with a jitter of εj > 0 contains the set of player-1 strategies with a jitter

of εj/2 and a response time of εj/2. Thus, the strategies of Section 7.2 automatically have

a response time greater than 0. The winning sets in both sections are hence robust towards

the presence of jitter and response times. In both sections, we show how the winning sets

can be obtained by reductions to general timed automaton games. The results of Chapter 3

can then be used to obtain algorithms for computing the robust winning sets and strategies.

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 113

7.2 Robust Winning of Timed Parity Games

There is inherent uncertainty in real-time systems. In a physical system, an action

may be prescribed by a controller, but the controller can never prescribe a single timepoint

where that action will be taken with probability 1. There is usually some jitter when the

specified action is taken, the jitter being non-deterministic. The model of general timed

automaton games, where player 1 can specify exact moves of the form 〈∆, a1〉 consisting of

an action together with a delay, assume that the jitter is 0. In this section, we model games

where the jitter is assumed to be greater than 0, but arbitrarily small in each round of the

game for player 1. The strategies of player 2 are left unrestricted. For ease of modeling, we

also allow player 1 to relinquish control in a round of the game to player 2. We do this by

letting the move of player 2 determine the next state whenever player 1 proposes a simple

timed move. Formally, we define the joint destination function δjd : S ×M1 ×M2 7→ 2S by

δjd(s, 〈∆1, a1〉, 〈∆2, a2〉) =





{δ(s, 〈∆1, a1〉)} if ∆1 < ∆2 and a1 6= ⊥1;

{δ(s, 〈∆2, a2〉)} if ∆2 < ∆1 or a1 = ⊥1;

{δ(s, 〈∆2, a2〉), δ(s, 〈∆1, a1〉)} if ∆2 = ∆1 and a1 6= ⊥1.

We give this special power to player 1 as the controller always has the option of letting

the state evolve in a controller-plant framework, without always having to provide inputs

to the plant. We also need to modify the boolean predicate blamei(s,m1,m2, s
′) indicates

whether player i is “responsible” for the state change from s to s′ when the moves m1 and

m2 are proposed. The time elapsed when the moves m1 = 〈∆1, a1〉 and m2 = 〈∆2, a2〉 are

proposed is given by delay(m1,m2) = min(∆1,∆2). Denoting the opponent of player i by

∼i = 3 − i, for i ∈ {1, 2}, we define

blamei(s, 〈∆1, a1〉, 〈∆2, a2〉, s
′) =

(
∆i ≤ ∆∼i ∧ δ(s, 〈∆i, ai〉) = s′

)
∧ (i = 1 → a1 6= ⊥1) .

These modifications are not necessary, but they are useful as they lead to a reduction in

model size, and the formulae to be model checked.

Given a state s, a limit-robust move for player 1 is either the move 〈∆,⊥1〉

with 〈∆,⊥1〉 ∈ Γ1(s); or it is a tuple 〈[α, β], a1〉 for some α < β such that for every

∆ ∈ [α, β] we have 〈∆, a1〉 ∈ Γ1(s).
1 Note that a time move 〈∆,⊥1〉 for player 1

implies that she is relinquishing the current round to player 2, as the move of player 2

1We can alternatively have an open, or semi-open time interval, the results do not change.

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 114

will always be chosen, and hence we allow a singleton time move. Given a limit-robust

move mrob1 for player 1, and a move m2 for player 2, the set of possible outcomes is

the set {δjd(s,m1,m2) | either (a) mrob1 = 〈∆,⊥1〉 andm1 = mrob1; or (b) mrob1 =

〈[α, β], a1〉 and m1 = 〈∆, a1〉 with ∆ ∈ [α, β]}. A limit-robust strategy πrob
1 for player 1 pre-

scribes limit-robust moves to finite run prefixes. We let Πrob
1 denote the set of limit-robust

strategies for player-1. Given an objective Φ, let RobWinTimeDivT
1 (Φ) denote the set of

states s in T such that player 1 has a limit-robust receptive strategy πrob
1 ∈ ΠR

1 such that

for all receptive strategies π2 ∈ ΠR
2 , we have Outcomes(s, πrob

1 , π2) ⊆ Φ. We say a limit-

robust strategy πrob
1 is region equivalent to a strategy π1 if for all runs r and for all k ≥ 0,

the following conditions hold: (a) if π1(r[0..k]) = 〈∆,⊥1〉, then πrob
1 (r[0..k]) = 〈∆′,⊥1〉

with Reg(r[k] + ∆) = Reg(r[k] + ∆′); and (b) if π1(r[0..k]) = 〈∆, a1〉 with a1 6= ⊥1, then

πrob
1 (r[0..k]) = 〈[α, β], a1〉 with Reg(r[k] + ∆) = Reg(r[k] + ∆′) for all ∆′ ∈ [α, β]. Note that

for any limit-robust move 〈[α, β], a1〉 with a1 6= ⊥1 from a state s, we must have that the

set {s+ ∆ | ∆ ∈ [α, β]} contains an open region of T.

We now show how to compute the set RobWinTimeDivT
1 (Φ). Given a timed au-

tomaton game T, we have the corresponding enlarged game structure T̂ which encodes

time-divergence as presented in Chapter 3. We add another boolean variable to T̂ to obtain

another game structure T̂rob. The state space of T̂rob is Ŝ × {true, false}. The transition

relation δ̂rob is such that δ̂rob(〈ŝ, rb1〉, 〈∆, ai〉) = 〈δ̂(ŝ, 〈∆, ai〉), rb
′
1〉, where rb ′1 = true iff

rb1 = true and one of the following hold: (a) ai ∈ A⊥
2 ; or (b) ai = ⊥1; or (c) ai ∈ A1 and

s+ ∆ belongs to an open region of T̂.

We first need the following Lemma.

Lemma 41. Let T be a timed automaton game and T̂ be the corresponding enlarged game

structure. Let Φ̂ be an ω-regular region objective of T̂. If π1 is a region strategy that is

winning for Φ̂ from Win
bT
1 (Φ̂) and πrob

1 is a robust strategy that is region-equivalent to π1,

then πrob
1 is a winning strategy for Φ̂ from Win

bT
1 (Φ̂).

Proof. Consider any strategy π2 for player 2, and a state ŝ ∈ Win
bT
1 (Φ̂). We have

Outcomes(s, πrob
1 , π2) to be the set of runs r such that for all k ≥ 0, either a) πrob

1 (r[0..k]) =

〈∆,⊥1〉 and r[k + 1] = δ̂jd(r[k], 〈∆,⊥1〉, π2(r[0..k])) or,

πrob
1 (r[0..k]) = 〈[α, β], a1〉 and r[k + 1] = δ̂jd(r[k], 〈∆, a1〉, π2(r[0..k])) for some

∆ ∈ [α, β]. It can be observed that Outcomes(s, πrob
1 , π2) =

⋃
π′

1
Outcomes(ŝ, π′1, π2) where

π′1 ranges over (non-robust) player-1 strategies such that for runs r ∈ Outcomes(ŝ, π′1, π2)

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 115

and for all k ≥ 0 we have π′1(r[0..k]) = 〈∆,⊥1〉 if πrob
1 (r[0..k]) = 〈∆,⊥1〉, and π′1(r[0..k]) =

〈∆, a1〉 if πrob
1 (r[0..k]) = 〈[α, β], a1〉 for some ∆ ∈ [α, β]; and π′1 acts like π1 otherwise (note

that the runs r and the strategies π′1 are defined inductively with respect to k, with r[0] = ŝ).

Each player-1 strategy π′1 in the preceeding union is region equivalent to π1 since πrob
1 is

region equivalent to π1 and hence each π′1 is a winning strategy for player 1 by Lemma 9.

Thus, Outcomes(s, πrob
1 , π2) =

⋃
π′

1
Outcomes(ŝ, π′1, π2) is a subset of Φ̂, and hence πrob

1 is a

winning strategy for player 1.

Theorem 22. Given a state s in a timed automaton game T and an ω-regular region

objective Φ, we have s ∈ RobWinTimeDivT
1 (Φ) iff 〈s, ·, ·, ·,true〉 ∈ Win

bTrob
1 (Φ ∧ 2(rb1 =

true) ∧ (32(tick = false) → (32(bl1 = false)))).

Proof. 1. (⇒) Suppose player-1 has a limit-robust receptive strategy winning strategy

π1 for Φ. starting from a state s in T. we show 〈s, ·, ·, ·,true〉 ∈ Win
bTrob
1 (Φ ∧ 2(rb1 =

true) ∧ (32(tick = false) → (32(bl1 = false)))).

We may consider π1 to be a strategy in T̂. Since π1 is a limit-robust strategy, player-1

proposes limit-robust moves at each step of the game. Given a state ŝ, and a limit-

robust move 〈[α, β], a1〉, there always exists α < α′ < β′ < β such that for every ∆ ∈

[α′, β′], we have that ŝ+∆ belongs to an open region of T̂. Thus, given any limit-robust

strategy π1, we can obtain another limit-robust strategy π′1 in T̂, such that for every

k, (a) if π1(r[k]) = 〈∆,⊥1〉, then π′1(r[k]) = π1(r[k]); and (b) if π1(r[k]) = 〈[α, β], a1〉,

then π′1(r[k]) = 〈(∆, a1〉 with ∆ ∈ [α′, β′] ⊆ [α, β], and {r[k]+∆′ | ∆′ ∈ [α′, β′]} being

a subset of an open region of T̂. Thus for any strategy π2 of player-2, and for any run

r ∈ Outcomes(〈s, ·, ·, ·,true〉, π′1, π2), we have that r satisfies 2(rb1 = true). Since

π1 was a receptive winning strategy for Φ, π′1 is also a receptive winning strategy for

Φ. Hence, r also satisfies Φ ∧ 32(tick = false) → (32(bl1 = false).

2. (⇐) Suppose 〈s, ·, ·, ·,true〉 ∈ Win
bTrob
1 (Φ ∧ 2(rb1 = true) ∧ (32(tick = false) →

(32(bl1 = false)))). We show that player-1 has a limit-robust receptive winning

strategy from state s. Let π1 be a winning region winning strategy for player-1 for

the objective Φ ∧ 2(rb1 = true) ∧ (32(tick = false) → (32(bl1 = false))). For

every run r starting from state 〈s, ·, ·, ·,true〉, the strategy π1 is such that π1(r[0..k]) =

〈∆k, ak
1〉 such that either ak

1 = ⊥1, or r[k]+∆k belongs to an open region R̂ of Ŝ Since

R is an open region, there always exists some α < β such that for every ∆ ∈ [α, β],

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 116

we have r[k] + ∆ ∈ R. Consider the strategy πrob
1 that prescribes a limit-robust

move 〈[α, β], ak
1〉 for the history r[0..k] if π1(r[0..k]) = 〈∆k, ak

1〉 with ak
1 6= ⊥1, and

πrob
1 (r[0..k]) = π1(r[0..k]) otherwise. The strategy πrob

1 is region-equivalent to π1,

and hence is also winning for player-1 by Lemma 41. Since it only prescribes limit-

robust moves, it is a limit-robust strategy. And since it ensures 32(tick = false) →

(32(bl1 = false), it is a receptive strategy.

We say a timed automaton T is open if all the guards and invariants in T are open.

Note that even though all the guards and invariants are open, a player might still propose

moves to closed regions, e.g., consider an edge between two locations l1 and l2 with the

guard 0 < x < 2; a player might propose a move from 〈l1, x = 0.2〉 to 〈l2, x = 1〉. The

next theorem shows that this is not required of player 1 in general, that is, to win for an

ω-regular location objective, player 1 only needs to propose moves to open regions of T. Let

Constr∗(C) be the set of clock constraints generated by the grammar

θ ::= x < d | x > d | x ≥ 0 | x < y | θ1 ∧ θ2

for clock variables x, y ∈ C and nonnegative integer constants d. An open polytope of T

is set of states X such that X = {〈l, κ〉 ∈ S | κ |= θ} for some θ ∈ Constr∗(C). An open

polytope X is hence a union of regions of T. Note that it may contain open as well as closed

regions. We say a parity objective Parity(Ω) is an open polytope objective if Ω−1(j) is an

open polytope for every j ≥ 0.

Theorem 23. Let T be an open timed automaton game and let Φ = Parity(Ω) be an ω-

regular location objective. Then, WinTimeDivT
1 (Φ) = RobWinTimeDivT

1 (Φ).

Proof. We present a sketch of the proof. We shall work on the expanded game structure

T̂rob, and prove that 〈s, ·, ·, ·,true〉 ∈ Win
bTrob
1 (Φ ∧ 2(rb1 = true) ∧ (32(tick = false) →

(32(bl1 = false)))) iff 〈s, ·, ·, ·,true〉 ∈ Win
bTrob
1 (Φ ∧ (32(tick = false) → (32(bl1 =

false)))). The desired result will then follow from Theorem 22.

Consider the objective TimeDivBl1(Φ) = Φ ∧ (32(tick = false) → (32(bl1 =

false))). Let Ω̂ be the parity index function such that Parity(Ω̂) = TimeDivBl1(Φ). Since Φ

is a location objective, and all invariants are open, we have Ω̂−1(j) to be an open polytope

of T̂rob for all indices j ≥ 0 (recall that a legal state of T must satisfy the invariant of the

location it is in).

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 117

The winning set for a parity objective Parity(Ω̂) can be described by a

µ-calculus formula, we illustrate the case for when Ω̂ has only two priorities.

The µ-calculus formula is then: µY νX
[
(Ω̂−1(1) ∩ CPre1(Y)) ∪ (Ω̂−1(0) ∩ CPre1(X))

]
.

This set can be computed from a (finite) iterative fixpoint procedure. Let

Y ∗ = µY νX
[
(Ω−1(1) ∩ CPre1(Y)) ∪ (Ω−1(0) ∩ CPre1(X))

]
. The iterative fixpoint

procedure computes Y0 = ∅ ⊆ Y1 ⊆ · · · ⊆ Yn = Y ∗, where Yi+1 =

νX
[
(Ω−1(1) ∩ CPre1(Yi)) ∪ (Ω−1(0) ∩ CPre1(X))

]
. We claim that each Yi for i > 0 is a

union of open polytopes of T̂rob. This is because (a) the union and intersection of a union of

open polytopes is again a union of open polytopes, and (b) νX(A ∪ (B ∩ CPre1(X))) is an

open polytope provided A,B are open polytopes, and T is an open timed automaton game.

We can consider the states in Yi \ Yi−1 as being added in two steps, T2i−1 and T2i(= Yi) as

follows:

1. T2i−1 = Ω̂−1(1) ∩ CPre1(Yi−1). T2i−1 is clearly a subset of Yi.

2. T2i = νX
[
T2i−1 ∪ (Ω̂−1(0) ∩ CPre1(X))

]
. Note (T2i \ T2i−1) ∩ Ω̂−1(1) = ∅.

Thus, in odd stages we add states with index 1, and in even stages we add states with index

0. The rank of a state ŝ ∈ Y ∗ is j if ŝ ∈ Tj \ ∪j−1
k=0Tk. Each rank thus consists of states

forming an open polytope. A winning strategy for player 1 can also be obtained based on

the fixpoint iteration. The requirements on a strategy to be a winning strategy based on

the fixpoint schema are:

1. For a state of even rank j, the strategy for player 1 must ensure that she has a move

such that against all moves of player 2, the next state either (a) has index 0 and

belongs to the same rank or less, or (b) the next state has index 1 and belongs to

rank smaller than j.

2. For a state of odd rank j, the strategy for player 1 must ensures that she has a move

such that against all moves of player 2, the next state belongs to a lower rank.

Since the rank sets are all open polytopes, and T is an open timed automaton, we have that

there exists a winning strategy which from every state in a region R̂, either proposes a pure

time move, or proposes a move to an open region (as every open polytope must contain

an open region). Hence, this particular winning strategy also ensures that 2(rb1 = true)

holds. Thus, this strategy ensures TimeDivBl1(Φ)∧2(rb1 = true). The general case of an

index function of order greater than two can be proved by an inductive argument.

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 118

7.3 Winning with Bounded Jitter and Response Time

The limit-robust winning strategies described in Section 7.2 did not have a lower

bound on the jitter: player 1 could propose a move 〈[α,α + ε], a1〉 for arbitrarily small α

and ε. In some cases, the controller may be required to work with a known jitter, and also a

finite response time. Intuitively, the response time is the minimum delay between a discrete

action and a discrete action of the controller. We note that the set of player-1 strategies with

a jitter of εj > 0 contains the set of player-1 strategies with a jitter of εj/2 and a response

time of εj/2. Thus, the strategies of Section 7.2 automatically have a response time greater

than 0. The winning sets in both sections are hence robust towards the presence of jitter

and response times. We model these known jitter and response times by allowing player 1

to propose moves with a single time point, but we make the jitter and the response time

explicit and modify the semantics as follows. Player 1 can propose exact moves (with a

delay greater than the response time), but the actual delay in the game will be controlled

by player 2 and will be in a jitter interval around the proposed player-1 delay. The moves

and strategies of player 2 are again left unrestricted.

Given a finite run r[0..k] = s0, 〈m
0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . , sk, let

TimeElapse(r[0..k]) =
∑k−1

j=p delay(mj
1,m

j
2) where p is the least integer greater than or equal

to 0 such that for all k > j ≥ p we have mj
2 = 〈∆j

2,⊥2〉 and blame2(sj,m
j
1,m

j
2, sj+1) = true

(we take TimeElapse(r[0..k]) = 0 if p = k). Intuitively, TimeElapse(r[0..k]) denotes the time

that has passed due to a sequence of contiguous pure time moves leading upto sk in the

run r[0..k]. Let εj ≥ 0 and εr ≥ 0 be given bounded jitter and response time (we assume

both are rational). Since a pure time move of player 1 is a relinquishing move, we place no

restriction on it. Player 2 can also propose moves such that only time advances, without

any discrete action being taken. in this case, we need to adjust the remaining response

time. Formally, an εj-jitter εr-response bounded-robust strategy π1 of player 1 proposes a

move π1(r[0..k]) = mk
1 such that either

• mk
1 = 〈∆k,⊥1〉 with 〈∆,⊥1〉 ∈ Γ1(S), or,

• mk
1 = 〈∆k, a1〉 such that the following two conditions hold:

– ∆k ≥ max(0, εr − TimeElapse(r[0..k])), and,

– 〈∆′, a1〉 ∈ Γ1(s) for all ∆′ ∈ [∆k,∆k + εj].

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 119

Given a move m1 = 〈∆, a1〉 of player 1 and a move m2 of player 2, the set of result-

ing states is given by δjd(s,m1,m2) if a1 = ⊥1, and by {δjd(s,m1 + ǫ,m2) | ǫ ∈ [0, εj]}

otherwise. Given an εj-jitter εr-response bounded-robust strategy π1 of player 1, and a

strategy π2 of player 2, the set of possible outcomes in the present semantics is denoted

by Outcomesjr (s, π1, π2). We denote the winning set for player 1 for an objective Φ given

finite εj and εr by JRWinTimeDiv
T,εj,εr

1 (Φ). We now show that JRWinTimeDiv
T,εj,εr

1 (Φ) can

be computed by obtaining a timed automaton Tεj,εr from T such that WinTimeDivT
εj,εr

1 (Φ) =

JRWinTimeDiv
T,εj,εr

1 (Φ).

Given a clock constraint ϕ we make the clocks appearing in ϕ explicit by denoting

the constraint as ϕ(−→x) for −→x = [x1, . . . , xn]. Given a real number δ, we let ϕ(−→x +δ) denote

the clock constraint ϕ′ where ϕ′ is obtained from ϕ by syntactically substituting xj + δ for

every occurrence of xj in ϕ. Let f εj : Constr(C) 7→ Constr(C) be a function defined by

f εj (ϕ(−→x)) = ElimQuant (∀δ (0 ≤ δ ≤ εj → ϕ(−→x + δ))), where ElimQuant is a function that

eliminates quantifiers (this function exists as we are working in the theory of reals with

addition [FC75], which admits quantifier elimination). The formula f εj(ϕ) ensures that ϕ

holds at all the points in {−→x + ∆ | ∆ ≤ εj}.

We now describe the timed automaton Tεj,εr . The automaton has an extra clock

z. The set of actions for player 1 is {〈1, e〉 | e is a player-1 edge in T} and for player 2 is

A2 ∪ {〈a2, e〉 | a2 ∈ A2 and e is a player-1 edge in T} ∪ {〈2, e〉 | e is a player-1 edge in T}

(we assume the unions are disjoint). For each location l of T with the outgoing player-1

edges e11, . . . , e
m
1 , the automaton Tεj,εr has m + 1 locations: l, le1

1
, . . . , lem

1
. Every edge of

Tεj,εr includes z in its reset set. The invariant for l is the same as the invariant for l in T.

All player-2 edges of T are also player-2 edges in Tεj,εr (with the reset set being expanded

to include z). The invariant for lej
is z ≤ εj. If 〈l, a2, ϕ, l

′, λ〉 is an edge of T with a2 ∈ A2,

then then 〈lej
, 〈a2, ej〉, ϕ, l

′, λ ∪ {z}〉 is a player-2 edge of Tεj,εr for every player-1 edge ej of

T. For every player-1 edge ej = 〈l, aj
1, ϕ, l

′, λ〉 of T, the location l of Tεj,εr has the outgoing

player-1 edge 〈l, 〈1, ej〉, f
εj
(
γT(l)

)
∧ (z ≥ εr) ∧ f εj(ϕ), lej

, λ ∪ {z}〉. The location lej
also

has an additional outgoing player-2 edge 〈lej
, 〈2, ej〉, ϕ, l

′, λ ∪ {z}〉. The automaton Tεj,εr

as described contains the rational constants εr and εj. We can change the timescale by

multiplying every constant by the least common multiple of the denominators of εr and εj

to get a timed automaton with only integer constants. Intuitively, in the game Tεj,εr , player 1

moving from l to lej
with the edge 〈1, ej〉 indicates the desire of player 1 to pick the edge ej

from location l in the game T. This is possible in T iff the (a) more that εr time has passed

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 120

since the last discrete action, (b) the edge ej is enabled for at least εj more time units, and

(c) the invariant of l is satisfied for at least εj more time units. These three requirements

are captured by the new guard in Tεj,εr , namely f εj
(
γT(l)

)
∧ (z ≥ εr)∧f

εj(ϕ). The presence

of jitter in T causes uncertainty in when exactly the edge ej is taken. This is modeled in

Tεj,εr by having the location lej
be controlled entirely by player 2 for a duration of εj time

units. Within εj time units, player 2 must either propose a move 〈a2, ej〉 (corresponding

to one of its own moves a2 in T, or allow the action 〈2, ej〉 (corresponding to the original

player-1 edge ej) to be taken. Given a parity function ΩT on T, the parity function ΩT
εj,εr

is given by ΩT
εj,εr

(l) = ΩT
εj,εr

(lej
) = ΩT(l) for every player-1 edge ej of T. In computing

the winning set for player 1, we need to modify blame1 for technical reasons. Whenever an

action of the form 〈1, ej〉 is taken, we blame player 2 (even though the action is controlled

by player 1); and whenever an action of the form 〈2, ej〉 is taken, we blame player 1 (even

though the action is controlled by player 2). Player 2 is blamed as usual for the actions

〈a2, ej〉. This modification is needed because player 1 taking the edge ej in T is broken down

into two stages in Tεj,εr . If player 1 to be blamed for the edge 〈1, ej〉, then the following could

happen: (a) player 1 takes the edge 〈1, ej〉 in Tεj,εr corresponding to her intention to take

the edge ej in T (b) player 2 then proposes her own move 〈a2, ej〉 from lej
, corresponding

to her blocking the move ej by a2 in T. If the preceeding scenario happens infinitely often,

player 1 gets blamed infinitely often even though all she has done is signal her intentions

infinitely often, but her actions have not been chosen. Hence player 2 is blamed for the

edge 〈1, ej〉. If player 2 allows the intended player 1 edge by taking 〈2, ej〉, then we must

blame player 1. We note that this modification is not required if εr > 0.

Example 12 (Construction of Tεj,εr). An example of the construction is given in Figure 7.2,

corresponding to the timed automaton of Figure 7.1. The location l3 is an absorbing location

— it only has self-loops (we omit these self loops in the figures for simplicity). For the

automaton T, we have A1 = {a1
1, a

2
1, a

3
1, a

4
1} and A2 = {a1

2, a
2
2, a

3
2}. The invariants of the

locations of T are all true. Since T at most a single edge from any location lj to lk, all

edges can be denoted in the form ejk. The set of player-1 edges is then {e01, e02, e20, e10}.

The location l3 has been replicated for ease of drawing in Tεj,εr . Observe that f εj(x ≤ 1) =

x ≤ 1 − εj and f εj(y > 1) = y > 1 − εj.

The construction of Tεj,εr can be simplified if εj = 0 (then we do not need locations

of the form lej
). Given a set of states S̃ of Tεj,εr , let JStates(S̃) denote the projection of

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 121

l3

l1e10

z ≤ εj

z ≤ εj

z ≥ εr → z := 0
〈1, e10〉, f

εj (y > 1)∧

l0e01
〈2, e01〉, x ≤ 1 → x := z := 0

〈a1
2, e01〉, x > 2 → z := 0

〈1, e01〉, f
εj (x ≤ 1) ∧ z ≥ εr → z := 0

a2
2, y > 2 → z := 0

y > 1 → y := z := 0

〈2, e10〉

l2 a3
2, x > 2 → z : −0

z ≥ εr → z := 0

〈a3
2, e20〉, x > 2 → z := 0

〈a1
2, e10〉, y > 2 → z := 0

l1

l3

〈2, e20〉, x ≤ 1 → z := 0 z ≤ εj

〈1, e02〉, f
εj (x ≤ 1)∧

〈2, e02〉, x ≤ 1 → z := 0

〈1, e20〉, f
εj (x ≤ 1)∧
z ≥ εr → z := 0

l0

l0e02

z ≤ εj

a1
2, x > 2 → z := 0

l2e20

〈a3
2, e02〉, x > 2 → z := 0

Figure 7.2: The timed automaton game Tεj,εr obtained from T.

states to T, defined formally by JStates(S̃) = {〈l, κ〉 ∈ S | 〈l, κ̃〉 ∈ S̃ such that κ(x) =

κ̃(x) for all x ∈ C}, where S is the state space and C the set of clocks of T.

Theorem 24. Let T be a timed automaton game, εr ≥ 0 the response time of

player 1, and εj ≥ 0 the jitter of player 1 actions such that both εr and εj are ra-

tional constants. Then, for any ω-regular location objective Parity(ΩT) of T, we have

JStates
(
[[z = 0]] ∩ WinTimeDivT

εj,εr

1 (Parity(ΩT
εj,εr

))
)

= JRWinTimeDiv
T,εj,εr

1 (Parity(ΩT)),

where JRWinTimeDiv
T,εj,εr

1 (Φ) is the winning set in the jitter-response semantics, Tεj,εr is

the timed automaton with the parity function ΩT
εj,εr

described above,and [[z = 0]] is the set

of states of Tεj,εr with κ̃(z) = 0.

Example 13 (Differences between various winning modes). Consider the timed automaton

T in Fig. 7.1. Let the objective of player 1 be 2(¬l3), ie., to avoid l3. The important part

of the automaton is the cycle l0, l1. The only way to avoid l3 in a time divergent run is to

cycle in between l0 and l1 infinitely often. In additional player 1 may choose to also cycle

in between l0 and l2, but that does not help (or harm) her. In our analysis, we omit such

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 122

l0, l2 cycles. Let the game start from the location l0. In a run r, let tj1 and tj2 be the times

when the a1
1-th transition and the a2

1-th transitions respectively are taken for the j-th time.

The constraints are tj1 − tj−1
1 ≤ 1 and tj2 − tj−1

2 > 1. If the game cycles infinitely often in

between l0 and l1 we must also have that for all j ≥ 0, tj+1
1 ≥ tj2 ≥ tj1. we also have that if

this condition holds then we can construct an infinite time divergent cycle of l0, l1 for some

suitable initial clock values. Observe that tji = t0i + (t1i − t0i)+ (t2i − t1i)+ · · ·+ (tji − tj−1
i) for

i ∈ {1, 2}. We need tm+1
1 −tm2 = (tm+1

1 −tm1)+
∑m

j=1

{
(tj1 − tj−1

1) − (tj2 − tj−1
2)

}
+(t01−t

0
2) ≥ 0

for all m ≥ 0. Rearranging, we get the requirement
∑m

j=1

{
(tj2 − tj−1

2) − (tj1 − tj−1
1)

}
≤

(tm+1
1 − tm1) + (t01 − t02). Consider the initial state 〈l0, x = y = 0〉. Let t01 = 1, t02 =

1.1, tj1 − tj−1
1 = 1, tj2 − tj−1

2 = 1 + 10−(j+1). We have
∑m

j=1

{
(tj2 − tj−1

2) − (tj1 − tj−1
1)

}
≤

∑∞
j=1 10−(j+1) = 10−2 ∗ 1

0.9 ≤ 1 − 0.1 = (tm+1
1 − tm1) + (t01 − t02). Thus, we have an infinite

time divergent trace with the given values. Hence 〈l0, x = y = 0〉 ∈ WinTimeDivT
1 (2(¬l3)).

It can also be similarly seen that 〈l0, x = y = 1〉 ∈ WinTimeDiv1(2(¬l3)) (taking t01 = 0 and

t02 = 0.1).

We now show 〈l0, x = y = 0〉 ∈ RobWinTimeDiv1(2(¬l3)). Consider t01 ∈

[0.9, 1], tj1 − tj−1
1 ∈ [1 − 10−(j+1), 1], t02 ∈ [1.05, 1.1], tj2 − tj−1

2 ∈ [1 + 0.5 ∗ 10−(j+1), 1 +

10−(j+1)]. We have
∑m

j=1

{
(tj2 − tj−1

2) − (tj1 − tj−1
1)

}
≤
∑m

j=1 10−(j+1) − (−10−(j+1)) ≤

2 ∗
∑∞

j=1 10−(j+1) = 2 ∗ 10−2 ∗ 1
0.9 . We also have (tm+1

1 − tm1) + (t01 − t02) ≥ 1 − 10−(m+2) +

(0.9 − 1.1) ≥ 0.7. Thus, we have
∑m

j=1

{
(tj2 − tj−1

2) − (tj1 − tj−1
1)

}
< 2 ∗ 10−2 ∗ 1

0.9 < 0.7 ≤

(tm+1
1 − tm1) + (t01 − t02). This shows that we can construct an infinite cycle in between

l0 and l1 for all the values in our chosen intervals, and hence that 〈l0, x = y = 0〉 ∈

RobWinTimeDiv1(2(¬l3)). Observe that 〈l0, x = y = 1〉 /∈ RobWinTimeDiv1(2(¬l3))

We next show that 〈l0, x = y = 0〉 /∈ JRWinTimeDiv
εj,εr

1 (2(¬l3)) for any εj > 0.

Observe that for any objective Φ, we have JRWinTimeDiv
εj,εr

1 (Φ) ⊆ JRWinTimeDiv
εj,0
1 (Φ).

Let εj = ǫ and let εr = 0. Consider any player-1 ǫ-jitter 0-response time strategy π1 that

makes the game cycle in between l0 and l1. Player 2 then has a strategy which “jitters”

the player-1 moves by ǫ. Thus, the player-1 strategy π1 can only propose a1
1 moves with the

value of x being less than or equal to 1 − ǫ (else the jitter would make the move invalid).

Thus, player 2 can ensure that tj1− t
j−1
1 ≤ 1− ǫ for all j for some run (since x has the value

tj1 − tj−1
1 when a1

1 is taken for the j-th time for j > 0). We then have that for any player-1

ǫ-jitter 0-response time strategy, player 2 has a strategy such that for some resulting run,

we have tj1− t
j−1
1 ≤ 1− ǫ and tj2− t

j−1
2 > 1. Thus,

∑m
j=1

{
(tj2 − tj−1

2) − (tj1 − tj−1
1)

}
> m∗ǫ,

CHAPTER 7. ROBUST WINNING OF TIMED GAMES 123

which can be made arbitrarily large for a sufficiently large m for any ǫ and hence greater

than (tm+1
1 −tm1)+(t01−t

0
2) ≤ 1+(t01−t

0
2) for any initial values of t01 and t02. This violates the

requirement for an infinite l0, l1 cycle. Thus, 〈l0, x = y = 0〉 /∈ JRWinTimeDiv
ǫ,0
1 (2(¬l3))

for any ǫ > 0.

Theorem 25. Let T be a timed automaton and Φ an objective. For all εj > 0 and εr ≥ 0,

we have JRWinTimeDiv
εj,εr

1 (Φ) ⊆ RobWinTimeDiv1(Φ) ⊆ WinTimeDiv1(Φ). All the subset

inclusions are strict in general.

Sampling semantics. Instead of having a response time for actions of player 1, we can

have a model where player 1 is only able to take actions in an εj interval around sampling

times, with a given time period εsample. A timed automaton can be constructed along similar

lines to that of Tεj,εr to obtain the winning set.

124

Chapter 8

Conclusions

This thesis has presented solutions for certain problems on timed automata from a

game theoretic viewpoint. In Chapter 2 we computed similarity and bisimilarity metrics by

considering a game between two players. We showed that these metrics could be computed

to within any desired degree of accuracy for timed automata. The problem of computing

the exact metrics remains open. We note that if we consider the similarity and bisimilarity

games, we can define k-step bounded similarity and bisimilarity metrics, where we only

consider games upto k steps, where the goal of player 1 is to match the moves of the

opponent only upto k steps. For each k, we can define k-step bounded similarity and

bisimilarity metrics in the theory of reals with addition [FC75], and hence the bounded

metrics are computable. We have however not been able to show that the metric functions

reach a fixpoint. We suspect that they do. Note that we can detect if the value of a

metric is going to escape to infinity using Theorem 1 and Lemma 1 of Chapter 2. We

showed that these metrics provide a robust refinement theory for timed systems by relating

the metrics to TCTL specifications. We also defined the quantitative discounted logic

dCTL and provided a model checking algorithm for a subset of the logic. The problem

in obtaining a model checking algorithm for the full logic is that the value of a formula

depends on the the (uncountable) set of paths that exist, and all the states in that path.

We observe here that it is not even known whether the maximum time that can elapse while

avoiding a state s′ starting from a state s can be computed. If this maximum time is t,

then the value of the dCTL formula ∀3s′ is βt where β is the discount factor. In general,

for computing ∀3ϕ, where ϕ is another dCTL formula, we need to be able to obtain the

maximum time that can be spent avoiding visiting states s′, which leads to problems. Note

CHAPTER 8. CONCLUSIONS 125

that the maximum time problem is typically presented (as in Chapter 5) as the maximum

time possible avoiding a region R starting from a state s, and this maximum time can be

computed. The computation of dual minimum time problem for two exact states is known

to be decidable via a complicated reduction to the additive theory of real numbers [CJ99].

That paper in fact shows that even the simple binary reachability problem for two states

of a timed automaton is highly nontrivial.

In Chapter 3, we presented improved algorithms for solving timed games with

ω-regular objectives in the framework of [dAFH+03] where we do not need to put any syn-

tactic restriction on the structure of the game to ensure time divergence in the resulting

plays. There is nothing unsound about working with a syntactic restriction, such as the

strong non-zeno hypothesis which ensures that an integer amount of time passes in every

cycle of the region graph, but the problem arises when systems do not satisfy this restric-

tion. For example, we may be given a system where the lower bound on two successive

input events may not be known. Our generalized approach is able to handle such cases.

This generalization has a cost: (a) the number of parities in the corresponding finite state

games increases by two, and (b) the semi-concurrent nature of the games leads to more

complicated algorithms with a higher computational complexity than other algorithms in

the literature which ensure that the timed games are inherently non-zeno by various syn-

tactic restrictions. While the increase in the number of parities is unavoidable, we believe

that further improvements in algorithms for solving timed games are possible which do not

incur any penalty due to the concurrent nature of our games. This is because we use only

a very restricted form of concurrency, which is used only to determine which player gets to

determine a state in a round by proposing a move first.

In Chapter 4 we defined the game logics TATL and TATL
∗, which extend the

untimed game logics ATL and ATL
∗, and showed that while model checking for TATL

∗

was undecidable, model checking for TATL (in the timed game setting of Chapter 3) can

be done in EXPTIME. These game logics capture the fact that control modules must

achieve their objectives irrespective of the behavior of the environment. The undecidability

of model checking for TATL
∗ is due to the presence of timing constraints in path formulae.

We still have decidability for classes of logics that subsume TATL but which do not add

any new timing constraints in path formulae. For example, the work in [BLMO07] presents

a model checking algorithm for a logic that consists of TATL together with ATL
∗.

In Chapter 5 we showed that the minimum time required by player 1 to satisfy a

CHAPTER 8. CONCLUSIONS 126

proposition irrespective of what player 2 does is computable in EXPTIME, and moreover

that this time is given by a simple function over regions. The dual problem of the maximum

time that player 1 can spend avoiding a particular proposition can also be solved in a similar

fashion, with the maximum time having the same functional form over regions.

In Chapter 6 we introduced randomization to reduce the memory requirements

for controllers. We showed that we have to be careful when introducing extra clocks in the

system for solving games, for that equates in some cases to giving the controller infinite

memory. We used uniform randomization, but many other probability distributions can

be used. The controller need not even know the exact probability distribution, all that is

required is a known bound that is greater than zero for the probability distribution function.

We note that if there is no such bound, the strategy presented in the chapter for player 1

might in fact fail. For example, if the probability distribution function is triangular, and

starts from zero, then it can be shown that player 2 has a receptive strategy that wins against

the presented player 1 strategy with probability 1− ε for every ε > 0. We also showed that

pure finite memory strategies suffice for player 1 for safety objectives. We conjecture that

in fact memoryless pure strategies suffice for safety objectives. We observe here that our

solution to model checking TATL in chapter 4 proceeded by introducing extra clocks (to

measure global time and to measure time till the timing constraints expire) in an enlarged

game structure. This reduction suffers from the same problem, and a future direction is

to explore model checking TATL and other game logics when player 1 is restricted to use

only finite memory. The solution presented in Chapter 5 to determine the minimum time

required by player 1 to satisfy a proposition suffers from the same shortcoming.

In Chapter 7 we presented two models for robust winning in timed games. In

the first model, each move of player 1 must allow some jitter in when her proposed move

is taken. The jitter may be arbitrarily small, but it must be greater than 0. We called

such strategies limit-robust. In the second robust model, we are given a lower bound on

the jitter, i.e., every move of player 1 must allow for a fixed jitter, which is specified as a

parameter for the game. We called these strategies bounded-robust. We showed that winning

sets under both models are computable, and that limit-robust strategies are strictly more

powerful than bounded-robust strategies. Limit-robust strategies are of practical interest

in addition to being of theoretical concern because of computational reasons. To compute ε

bounded-robust winning sets (where ε is a rational constant), we first constructed another

timed game where ε appeared as an explicit constant in the game, and used the standard

CHAPTER 8. CONCLUSIONS 127

trick of multiplying every constant in the system by the denominator of ε to get an integer

valued timed automaton. If the denominator of ε is even moderately large, then the size of

the region graph blows up (by a factor of d|C|, where d is the denominator of ε) from the

original region graph, making the algorithms on the graph intractable. The solution under

limit-robust strategies does not involve this multiplication process, and hence may be used

to compute an over-approximation of ε bounded-robust winning sets in such cases.

We just scratched the surface of robust timed games in Chapter 7. The question of

existence of winning bounded-robust strategies in timed games remains open. Note that the

union of bounded-robust player 1 strategies is strictly contained in the union of limit-robust

strategies. This is because player 1 chooses the jitter in each round of the game in limit-

robust strategies, and this jitter might converge to 0 over the sequence of proposed moves;

and in bounded-robust strategies, the sequence of jitters must be bounded from below by

some constant greater than 0. The problem of existence of winning limit-robust strategies

is the dual problem (in a game theoretic framework) to the work in [Pur98, WDMR04,

Dim07] which explore the set of reachable states (in the one player case) when (roughly)

the constants to which clocks are compared to are increased by ε for some ε (which remains

fixed for the game). In our case, we (roughly) work on the problem where the constants are

decreased by ε. Formally, let Reachε+ denote the set of states that are reachable in a timed

automaton when the constants to which clocks are compared to are increased by ε; and let

Winε−(Φ) denote the winning set when player 1 uses ε bounded-robust strategies (for the

objective Φ). Then, the works of [Pur98, WDMR04, Dim07] compute
⋃

ε>0 Reachε+; and we

are interested in
⋂

ε>0 Winε−(Φ). A better approximation to bounded-robust winning sets

is provided by
⋂

ε>0 Winε−(Φ) than by the limit-robust winning sets. The work in [Pur98,

WDMR04, Dim07] also relates the presence of jitters in the clock rates (where clocks may

increase at rates other than one) to increasing the system constants. We did not explore this

relationship in timed games. A robust winning strategy needs to be robust towards (1) jitters

in proposed player 1 delays, (2) jitters in clock rates, (3) observation delays, (4) finite

precision in observations of clock values, (5) delays in observations, and (6) jitters in the

constants to which the clocks are compared. It turns out that many of robustness factors are

reducible to one another. The work of [Pur98, WDMR04] explores the interrelationships

between 1-4 in the single player case in determining reachable sets. The discrete time

behavior of hybrid automata with observation delays, finite precision and action delays was

explored in [AT04, AT05]. Controlled systems are also typically sampled, with the controller

CHAPTER 8. CONCLUSIONS 128

only being able to observe the plant state at the sampled time-points. It has been shown

in [CHR02] that the problem of determining the existence of a sampling controller for some

sampling rate is undecidable in general. It however remains to be seem if the problem

is still undecidable when the controller must also take into account the robustness factors

mentioned above. The work in Chapters 4, 5 and 6 can also be redone in a robust framework.

We have not explored weighted timed games where each location is given a cost

rate together with a discrete cost on transitions in the thesis. For examples, the objective

of player 1 might be to minimize the cost incurred in reaching a particular location. This

problem is decidable under the strong non-zenoness assumption [BCFL04, BBL04], but

undecidable in the general case [BBBR07]. The proof for the undecidability of the problem

uses a very precise reduction. Two directions to explore are (1) whether an approximation to

the desired value is computable in weighted timed games in the general case, and (2) whether

the values can be computed when player 1 is restricted to use robust receptive strategies.

129

Bibliography

[ACD93] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time.

Inf. Comput., 104(1):2–34, 1993.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,

126(2):183–235, 1994.

[AdAF05] B. Adler, L. de Alfaro, and M. Faella. Average reward timed games. In

FORMATS: Formal Modeling and Analysis of Timed Systems, Lecture Notes

in Computer Science 3829, pages 65–80. Springer, 2005.

[AH94] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM,

41:181–204, 1994.

[AH97] R. Alur and T. A. Henzinger. Modularity for timed and hybrid systems. In

CONCUR: Concurrency Theory, Lecture Notes in Computer Science 1243,

pages 74–88. Springer, 1997.

[AHK02] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.

Journal of the ACM, 49:672–713, 2002.

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifica-

tions of reactive systems. In ICALP: Automata, Languages, and Programming,

Lecture Notes in Computer Science 372, pages 1–17. Springer, 1989.

[AM99] E. Asarin and O. Maler. As soon as possible: Time optimal control for timed

automata. In HSCC: Hybrid Systems—Computation and Control, Lecture

Notes in Computer Science 1569, pages 19–30. Springer, 1999.

BIBLIOGRAPHY 130

[AM04] R. Alur and P. Madhusudan. Decision problems for timed automata: A survey.

In SFM, pages 1–24, 2004.

[AT04] M. Agrawal and P. S. Thiagarajan. Lazy rectangular hybrid automata. In

HSCC: Hybrid Systems—Computation and Control, Lecture Notes in Com-

puter Science 2993, pages 1–15. Springer, 2004.

[AT05] M. Agrawal and P. S. Thiagarajan. The discrete time behavior of lazy lin-

ear hybrid automata. In HSCC: Hybrid Systems—Computation and Control,

Lecture Notes in Computer Science 3414, pages 55–69. Springer, 2005.

[ATM05] R. Alur, S. L. Torre, and P. Madhusudan. Perturbed timed automata. In

HSCC: Hybrid Systems—Computation and Control, 3414, pages 70–85, 2005.

[BBBR07] P. Bouyer, T. Brihaye, V. Bruyère, and J. F. Raskin. On the optimal reachabil-

ity problem of weighted timed automata. Formal Methods in System Design,

31(2):135–175, 2007.

[BBL04] P. Bouyer, E. Brinksma, and K. G. Larsen. Staying alive as cheaply as possi-

ble. In HSCC: Hybrid Systems—Computation and Control, Lecture Notes in

Computer Science 2993, pages 203–218. Springer, 2004.

[BCFL04] P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced

timed game automata. In FSTTCS: Foundations of Software Technology and

Theoretical Computer Science, Lecture Notes in Computer Science 3328, pages

148–160. Springer, 2004.

[BDMP03] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with

partial observability. In CAV: Computer-Aided Verification, Lecture Notes in

Computer Science 2725, pages 180–192. Springer, 2003.

[BGNV05] A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Play to test. In FATES:

Formal Approaches to Testing of Software, 2005.

[BHPR07a] T. Brihaye, T. A. Henzinger, V. S. Prabhu, and J.-F. Raskin. Minimum-time

reachability in timed games. In ICALP: Automata, Languages, and Program-

ming, Lecture Notes in Computer Science 4596, pages 825–837. Springer, 2007.

BIBLIOGRAPHY 131

[BHPR07b] T. Brihaye, T. A. Henzinger, V. S. Prabhu, and J.F. Raskin. Minimum-time

reachability in timed games. UC Berkeley Tech. Report, UCB/EECS-2007-47,

2007.

[BLMO07] T. Brihaye, F. Laroussinie, N. Markey, and G. Oreiby. Timed concurrent game

structures. In CONCUR: Concurrency Theory, Lecture Notes in Computer

Science 4703, pages 445–459. Springer, 2007.

[BMR06] P. Bouyer, N. Markey, and P. A. Reynier. Robust model-checking of linear-

time properties in timed automata. In LATIN: Theoretical Informatics, Lecture

Notes in Computer Science 3887, pages 238–249. Springer, 2006.

[BMR08] P. Bouyer, N. Markey, and P. A. Reynier. Robust analysis of timed automata

via channel machines. In FoSSaCS: Foundations of Software Science and Com-

putation Structures, LNCS 4962, pages 157–171. Springer, 2008.

[Büc62] J. R. Büchi. On a decision method in restricted second-order arithmetic. In

E. Nagel, P. Suppes, and A. Tarski, editors, Proceedings of the First Interna-

tional Congress on Logic, Methodology, and Philosophy of Science 1960, pages

1–11. Stanford University Press, 1962.

[CB02] P. Caspi and A. Benveniste. Toward an approximation theory for computerised

control. In EMSOFT: Embedded Software, Lecture Notes in Computer Science

2491, pages 294–304. Springer, 2002.

[CDF+05] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly

algorithms for the analysis of timed games. In CONCUR: Concurrency Theory,

Lecture Notes in Computer Science 3653, pages 66–80. Springer, 2005.

[Cer92] K. Cerans. Decidability of bisimulation equivalences for parallel timer pro-

cesses. In CAV: Computer-Aided Verification, Lecture Notes in Computer

Science 663, pages 302–315. Springer, 1992.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of

finite-state concurrent systems using temporal logic specifications. ACM Trans.

Program. Lang. Syst., 8(2):244–263, 1986.

BIBLIOGRAPHY 132

[CGP00] E. M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,

2000.

[Cha07] K. Chatterjee. Stochastic Omega-Regular Games. PhD thesis, EECS Depart-

ment, University of California, Berkeley, Oct 2007.

[CHP08a] K. Chatterjee, T. A. Henzinger, and V. S. Prabhu. Timed parity games: Com-

plexity and robustness. In FORMATS: Formal Modeling and Analysis of Timed

Systems, Lecture Notes in Computer Science. Springer, 2008.

[CHP08b] K. Chatterjee, T. A. Henzinger, and V. S. Prabhu. Timed parity games: Com-

plexity and robustness. CoRR, abs/0805.4167, 2008.

[CHP08c] K. Chatterjee, T. A. Henzinger, and V. S. Prabhu. Trading infinite memory for

uniform randomness in timed games. In HSCC: Hybrid Systems—Computation

and Control, Lecture Notes in Computer Science 4981, pages 87–100. Springer,

2008.

[CHP08d] K. Chatterjee, T. A. Henzinger, and V. S. Prabhu. Trading infinite memory

for uniform randomness in timed games. Technical Report UCB/EECS-2008-4,

EECS Department, University of California, Berkeley, Jan 2008.

[CHR02] F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of control problems

for timed and hybrid systems. In HSCC: Hybrid Systems—Computation and

Control, Lecture Notes in Computer Science 2289, pages 134–148. Springer,

2002.

[Chu62] A. Church. Logic, arithmetic, and automata. In Proceedings of the Interna-

tional Congress of Mathematicians, pages 23–35. Institut Mittag-Leffler, 1962.

[CJ99] H. Comon and Y. Jurski. Timed automata and the theory of real numbers.

In CONCUR: Concurrency Theory, Lecture Notes in Computer Science 1664,

pages 242–257. Springer, 1999.

[CY92] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems

in real-time systems. Formal Methods in System Design, 1(4):385–415, 1992.

BIBLIOGRAPHY 133

[dAFH+03] L. de Alfaro, M. Faella, T A. Henzinger, R. Majumdar, and M. Stoelinga.

The element of surprise in timed games. In CONCUR: Concurrency Theory,

Lecture Notes in Computer Science 2761, pages 144–158. Springer, 2003.

[dAFH+05] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga.

Model checking discounted temporal properties. Theoretical Computer Science,

345:139–170, 2005.

[dAFS04] L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching metrics for

quantitative transition systems. In ICALP: Automata, Languages, and Pro-

gramming, Lecture Notes in Computer Science3142, pages 97–109, 2004.

[dAH01] L. de Alfaro and T. A. Henzinger. Interface theories for component-based

design. In EMSOFT: Embedded Software, Lecture Notes in Computer Science

2211, pages 148–165. Springer, 2001.

[dAHM00] L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Detecting errors before

reaching them. In CAV: Computer-Aided Verification, Lecture Notes in Com-

puter Science 1855, pages 186–201. Springer, 2000.

[dAHM01a] L. de Alfaro, T. A. Henzinger, and R. Majumdar. From verification to control:

Dynamic programs for omega-regular objectives. In LICS: Logic in Computer

Science, pages 279–290. IEEE Computer Society Press, 2001.

[dAHM01b] L. de Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic algorithms for

infinite-state games. In CONCUR: Concurrency Theory, Lecture Notes in

Computer Science 2154, pages 536–550. Springer, 2001.

[dAHM03] L. de Alfaro, T. A. Henzinger, and R. Majumdar. Discounting the future in

systems theory. In ICALP: Automata, Languages, and Programming, Lecture

Notes in Computer Science 2719, pages 1022–1037. Springer, 2003.

[DGJP04] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for

labelled markov processes. Theor. Comput. Sci., 318(3):323–354, 2004.

[Dil89] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-

independent Circuits. The MIT Press, 1989.

BIBLIOGRAPHY 134

[Dim07] C. Dima. Dynamical properties of timed automata revisited. In FORMATS:

Formal Modeling and Analysis of Timed Systems, Lecture Notes in Computer

Science 4763, pages 130–146. Springer, 2007.

[DM02] D. D’Souza and P. Madhusudan. Timed control synthesis for external speci-

fications. In STACS: Theoretical Aspects of Computer Science, Lecture Notes

in Computer Science 2285, pages 571–582. Springer, 2002.

[Eme90] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Com-

puter Science, Volume B: Formal Models and Sematics (B), pages 995–1072.

Elsevier, 1990.

[FC75] J. Ferrante and C.Rackoff. A decision procedure for the first order theory on

real addition with order. SIAM Journal of Computing, 4(1):69–76, 1975.

[Frä99] M. Fränzle. Analysis of hybrid systems: An ounce of realism can save an infinity

of states. In CSL: Computer Science Logic, Lecture Notes in Computer Science

1683, pages 126–140. Springer, 1999.

[Fre05] G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In

HSCC: Hybrid Systems—Computation and Control, pages 258–273, 2005.

[FTM02] M. Faella, S. La Torre, and A. Murano. Dense real-time games. In LICS: Logic

in Computer Science, pages 167–176. IEEE Computer Society, 2002.

[GHJ97] V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed automata. In

HART: Hybrid and Real-Time Systems, Lecture Notes in Computer Science

1201, pages 331–345. Springer, 1997.

[GJP06] V. Gupta, R. Jagadeesan, and P. Panangaden. Approximate reasoning for

real-time probabilistic processes. Logical Methods in Computer Science, 2(1),

2006.

[GJP08] A. Girard, A. A. Julius, and G. Pappas. Approximate simulation relations for

hybrid systems. Discrete Event dynamic Systems, 18(2):163–179, 2008.

[GP07a] A. Girard and G. Pappas. Approximate bisimulation relations for constrained

linear systems. Automatica, 43(8):1307–1317, 2007.

BIBLIOGRAPHY 135

[GP07b] A. Girard and G. Pappas. Approximation metrics for discrete and continuous

systems. IEEE Transactions on Automatic Control, 52(5):782–798, 2007.

[HHK95] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations

on finite and infinite graphs. In Proceedings of the 36th Annual Symposium

on Foundations of Computer Science, pages 453–462. IEEE Computer Society

Press, 1995.

[HHWT95] T. A. Henzinger, P .H. Ho, and H. Wong-Toi. A user guide to HyTech. In

TACAS: Tools and Algorithms for the Construction and Analysis of Systems,

volume 1019 of Lecture Notes in Computer Science, pages 41–71. Springer-

Verlag, 1995.

[HK99] T. A. Henzinger and P. W. Kopke. Discrete-time control for rectangular hybrid

automata. Theoretical Computer Science, 221:369–392, 1999.

[HKR02] T. A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. Informa-

tion and Computation, 173:64–81, 2002.

[HMP92] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In

ICALP: Automata, Languages, and Programming, Lecture Notes in Computer

Science 623, pages 545–558. Springer, 1992.

[HMP05] T. A. Henzinger, R. Majumdar, and V. S. Prabhu. Quantifying similarities be-

tween timed systems. In FORMATS: Formal Modeling and Analysis of Timed

Systems, Lecture Notes in Computer Science 3829, pages 226–241. Springer,

2005.

[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking

for real-time systems. Information and Computation, 111:193–244, 1994.

[HP06] T. A. Henzinger and V. S. Prabhu. Timed alternating-time temporal logic. In

FORMATS: Formal Modeling and Analysis of Timed Systems, Lecture Notes

in Computer Science 4202, pages 1–17. Springer, 2006.

[HR00] T. A. Henzinger and J.-F. Raskin. Robust undecidability of timed and hybrid

systems. In HSCC: Hybrid Systems—Computation and Control, Lecture Notes

in Computer Science 1790, pages 145–159. Springer, 2000.

BIBLIOGRAPHY 136

[HVG03] J. Huang, J. Voeten, and M. Geilen. Real-time property preservation in ap-

proximations of timed systems. In MEMOCODE: Formal Methods and Models

for Codesign, pages 163–171, 2003.

[HVG04] J. Huang, J. Voeten, and M. Geilen. Real-time property preservation in con-

current real-time systems. In RTCSA: Embedded and Real-Time Computing

Systems. Springer, 2004.

[Jur00] M. Jurdzinski. Small progress measures for solving parity games. In STACS:

Theoretical Aspects of Computer Science, Lecture Notes in Computer Science

1770, pages 290–301. Springer, 2000.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal: Status & developments. In

CAV: Computer-Aided Verification, volume 1254 of Lecture Notes in Computer

Science, pages 456–459. Springer, 1997.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers

for timed systems (an extended abstract). In STACS: Theoretical Aspects of

Computer Science, pages 229–242, 1995.

[PAMS98] A. Pnueli, E. Asarin, O. Maler, and J. Sifakis. Controller synthesis for timed

automata. In Proc. System Structure and Control. Elsevier, 1998.

[Pug02] C. C. Pugh. Real Analysis. Springer, 2002.

[Pur98] A. Puri. Dynamical properties of timed automata. In FTRTFT: Formal Tech-

niques in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer

Science 1486, pages 210–227. Springer, 1998.

[Sch04] K. Schneider. Verification of Reactive Systems. Springer, 2004.

[Sch07] S. Schewe. Solving parity games in big steps. In Proc. FST TCS. Springer-

Verlag, 2007.

[SGSAL98] R. Segala, R. Gawlick, J.F. Søgaard-Andersen, and N. A. Lynch. Liveness in

timed and untimed systems. Inf. Comput., 141(2):119–171, 1998.

BIBLIOGRAPHY 137

[Tas98] S. Tasiran. Compositional and Hierarchical Techniques for the Formal Verifi-

cation of Real-Time Systems. Dissertation, University of California, Berkeley,

USA, 1998.

[Tho97] W. Thomas. Languages, automata, and logic. In Handbook of Formal Lan-

guages, volume 3, Beyond Words, chapter 7, pages 389–455. Springer, 1997.

[VJ00] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for

solving parity games. In CAV: Computer-Aided Verification, Lecture Notes in

Computer Science 1855, pages 202–215. Springer, 2000.

[WDMR04] M. D. Wulf, L. Doyen, N. Markey, and J.F. Raskin. Robustness and imple-

mentability of timed automata. In FORMATS: Formal Modeling and Analysis

of Timed Systems, pages 118–133, 2004.

[WH91] H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event

systems. In Proc. of 30th Conf. Decision and Control, pages 1527–1528, 1991.

[WLR05] M. D. Wulf, L.Doyen, and J. F. Raskin. Almost asap semantics: from timed

models to timed implementations. Formal Asp. Comput., 17(3):319–341, 2005.

