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Abstract

Structured Tracking for Safety, Security, and Privacy: Algorithms for Fusing Noisy

Estimates from Sensor, Robot, and Camera Networks

by

Jeremy Ryan Schiff

Doctor of Philosophy in Computer Science

with a Designated Emphasis in New Media

University of California, Berkeley

Professor Ken Goldberg, Chair

Emerging developments in the speed, size, and power requirements of processors,

coupled with networking advances, enable new applications for networks of sensors,

cameras, and robots. However, we live in a world filled with uncertainty and noise,

which affects the sensors we use, the environments we model, and the objects we

observe. In this dissertation, we define Structured Tracking, where we apply novel

machine learning and inference techniques to leverage environmental and tracked-

object structure. This approach improves accuracy and robustness while reducing

computation.

We focus on three application areas of societal benefit: safety, security, and pri-

vacy. We apply Belief Propagation (BP)[148] algorithms to sensor networks, and de-

scribe our modular framework for the more general Reweighted-BP formulation[203].

To improve safety, we track pallets in warehouses. We apply Particle Filtering[162]

and model the cardiod-shaped response pattern of ultrasound between static beacons
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and mobile sensors to improve tracking accuracy by 11%. We also show using inter-

distance sensor readings, we can improve accuracy by 3-4x over the recent SMCL+R

formulation[46], while being more likely to converge. We use a generalization of Parti-

cle Filtering, Nonparametric-BP (NBP)[183], which can model multi-modal and ring-

shaped distributions found in inter-distance tracking problems. We develop a novel

tracking algorithm based on NBP to fuse dynamics and multi-hop inter-distance infor-

mation that increases accuracy, reduces computation, and improves convergence. For

security, we present a novel approach for intruder surveillance using a robotic cam-

era, controlled by binary motion sensors and use Particle Filtering to model intruder

dynamics and environment geometry. We also present a localization-free approach

to robot navigation using a distributed set of beacons, which emit a sequence of sig-

nals to direct a robot to the goal, modeling the robot’s dynamics uncertainty, with

up to 93.4% success rate. We introduce an approach to privacy for visual surveil-

lance, “Respectful Cameras,” that uses probabilistic Adaptive Boosting[68] to learn

an environment-specific 9-dimensional color model to track colored markers, which act

as a proxy for each face. We integrate probabilistic Adaptive Boosting with Particle

Filtering to improve robustness, and demonstrate a 2% false-negative rate.

Professor Ken Goldberg
Dissertation Committee Chair

2



To those who support me on my journey: my family, my friends, and my mentors.

i



Contents

Contents ii

List of Figures vii

List of Tables xiv

Acknowledgements xv

1 Introduction 1

1.1 Emergence of New Technologies . . . . . . . . . . . . . . . . . . . . . 2

1.2 Structured Tracking Design Principles . . . . . . . . . . . . . . . . . 3

1.3 Application Domains and Contributions . . . . . . . . . . . . . . . . 6

1.3.1 Safety: StatSense . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Safety: Perceptive Pallets . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Security: SNARES . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Security: Actuator Networks . . . . . . . . . . . . . . . . . . . 10

1.3.5 Privacy: Respectful Cameras . . . . . . . . . . . . . . . . . . . 12

2 Related Work 14

2.1 Tracking Sensors Attached to Objects . . . . . . . . . . . . . . . . . . 14

2.1.1 Primitives for Tracking Sensors Attached to Objects . . . . . . 14

2.1.2 Algorithms for Tracking with Sensors Attached to Objects . . 16

2.2 Tracking Objects Via External Sensors . . . . . . . . . . . . . . . . . 18

2.2.1 Vision-based Tracking . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ii



2.4 Probabilistic Modeling and Inference For Tracking . . . . . . . . . . . 26

2.4.1 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.4 Inference over Undirected Graphical Models . . . . . . . . . . 32

3 Safety: StatSense 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Mapping from graphical models to motes . . . . . . . . . . . . 43

3.2.2 Message updating . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Handling communication failure . . . . . . . . . . . . . . . . . 49

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 The Temperature Estimation Problem . . . . . . . . . . . . . 53

3.4.2 Resilience to Sensor Error . . . . . . . . . . . . . . . . . . . . 54

3.4.3 Resilience to Systematic Communication Failure . . . . . . . . 55

3.4.4 Resilience to Transient Failure . . . . . . . . . . . . . . . . . . 56

3.4.5 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.6 Deployment Experiment . . . . . . . . . . . . . . . . . . . . . 58

3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 61

4 Safety: Dense Perceptive Pallets 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Monitoring of Spatial Constraints for Warehouse Management 65

4.2.2 Pros and Cons of Cricket Motes . . . . . . . . . . . . . . . . . 66

4.2.3 Probabilistic Localization . . . . . . . . . . . . . . . . . . . . 67

4.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 System Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.3 System Output . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iii



4.4 Using Particle Filtering for Localization . . . . . . . . . . . . . . . . . 70

4.4.1 Deriving the Observation Model . . . . . . . . . . . . . . . . . 71

4.4.2 Using Experimental Data to Model Acoustic Sensitivity . . . . 71

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.2 Physical Experiment Results . . . . . . . . . . . . . . . . . . . 77

4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 80

5 Safety: Sparse Perceptive Pallets 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Input, Assumptions, and Output . . . . . . . . . . . . . . . . 85

5.2.2 Modeling System Properties . . . . . . . . . . . . . . . . . . . 86

5.2.3 Decomposing Gaussian Mixtures . . . . . . . . . . . . . . . . 87

5.3 Phase I: Localization Algorithm . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Message Update Schedules . . . . . . . . . . . . . . . . . . . . 92

5.4 Phase II: Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Message Update Schedules . . . . . . . . . . . . . . . . . . . . 94

5.4.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . 96

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Comparison with Range-Based SMCL . . . . . . . . . . . . . . . . . . 100

5.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 101

6 Security: SNARES 103

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Inputs and Assumptions . . . . . . . . . . . . . . . . . . . . . 105

6.2.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Characterization Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Deployment Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6 Tracking Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

iv



6.6.1 Tracking with Particle Filtering . . . . . . . . . . . . . . . . . 113

6.6.2 Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7.1 Baseline Naive Estimator . . . . . . . . . . . . . . . . . . . . . 117

6.7.2 Twenty-Two Perfect Optical Beam Sensors . . . . . . . . . . . 118

6.7.3 Fourteen Perfect Motion Sensors . . . . . . . . . . . . . . . . 119

6.7.4 Fourteen Imperfect Motion Sensors . . . . . . . . . . . . . . . 120

6.7.5 Varying Number of Sensors . . . . . . . . . . . . . . . . . . . 120

6.7.6 Errors over Time for Imperfect Motion Sensors . . . . . . . . . 120

6.8 In-Lab Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 122

7 Security: Actuator Networks 124

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2.2 Inputs and Output . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.3 Motion Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 Motion control using actuator networks . . . . . . . . . . . . . . . . . 130

7.3.1 Local control using actuators triplets . . . . . . . . . . . . . . 130

7.3.2 Global control using switching potential field . . . . . . . . . . 132

7.3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . 134

7.3.4 Implementation aspects . . . . . . . . . . . . . . . . . . . . . 135

7.4 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4.1 Varying Actuator Placement . . . . . . . . . . . . . . . . . . . 136

7.4.2 Varying Motion Uncertainty . . . . . . . . . . . . . . . . . . . 138

7.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 140

8 Privacy: Respectful Cameras 142

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2 Providing Visual Privacy . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.3 Our Motivation: Demonstrate Project . . . . . . . . . . . . . . . . . 145

v



8.4 System Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.5 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.6 System Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.7 Three Phases of System . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.7.1 Phase A: Offline Training of the Marker Classifier . . . . . . . 148

8.7.2 Phase B: Online Static Marker Detector . . . . . . . . . . . . 149

8.7.3 Phase C: Online Dynamic Marker Tracker . . . . . . . . . . . 150

8.8 Phase A: Offline Training of the Marker Classifier . . . . . . . . . . . 151

8.8.1 Review of AdaBoost . . . . . . . . . . . . . . . . . . . . . . . 151

8.8.2 Determining Marker Pixels . . . . . . . . . . . . . . . . . . . . 153

8.9 Phase B: Online Static Marker Detector . . . . . . . . . . . . . . . . 154

8.9.1 Clustering of pixels . . . . . . . . . . . . . . . . . . . . . . . . 155

8.10 Phase C: Online Dynamic Marker Tracker . . . . . . . . . . . . . . . 155

8.10.1 Marker Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.11 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.11.1 Lab Scenario Experiments . . . . . . . . . . . . . . . . . . . . 161

8.11.2 Construction Site Experiments . . . . . . . . . . . . . . . . . . 164

8.12 Machine Learning Discussion . . . . . . . . . . . . . . . . . . . . . . . 167

8.13 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 168

9 Conclusion And Future Work 171

9.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.1.1 Adding Control to Tracking With Nonparametric Belief Prop-
agation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.1.2 Identity vs. Position Accuracy in Multi-Object Tracking Prob-
lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.1.3 Deploy NBP Implementation and Alternative Observation Models180

Bibliography 182

vi



List of Figures

2.1 A graphical model of a Hidden Markov Model. The nodes in the graph
represent random variables, and a directed edge represents dependence
between random variables. Direct arrows denote which parent nodes
directly influence child nodes, which provides a graphical representa-
tion of how to decompose a joint distribution. For more details, please
see a summary on directed graphical models [162]. The arrows from
all timesteps from state X to observations O indicate the noisy obser-
vation of the true state. The arrows for the state from one timestep to
the next, for instance Xτ−1 to the next Xτ , capture the Markov property. 28

2.2 An overview of one iteration of Particle Filtering for tracking at time τ . 30

3.1 Graph of error versus iteration number for message-passing on a 9× 9
nearest-neighbor grid. Standard Belief Propagation (BP, green curve
with high error) vs. reweighted Belief Propagation (RBP, blue curve
with low error). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Illustration of the two layers of the graphical model (left-hand subplot)
and motes (right-hand subplot) used for simulation. Each node in the
graphical model is mapped to exactly one mote, whereas each mote
contains some number (typically more than one) of nodes. The red
angle-slashed dots denote observation nodes (i.e., locations with sensor
readings). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 The StatSense architecture as implemented in nesC. . . . . . . . . . . 50

3.4 Average error as the Gaussian error applied to the sensor observations
increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Average error as the number of dead motes increases. . . . . . . . . . 54

3.6 Average error as the number of dead symmetric links increases. . . . 54

3.7 Average error as the number of dead asymmetric links increases. . . . 54

3.8 Average error as the probability of sending in a single iteration for
SyncConstProb increases. . . . . . . . . . . . . . . . . . . . . . . . . 56

vii



3.9 Number of messages sent as the probability of sending in a single iter-
ation increases for SyncConstProb. . . . . . . . . . . . . . . . . . . . 56

3.10 Average error as the exponent of the total variation difference between
old and new messages increases for AsyncSmartProb. . . . . . . . . . 57

3.11 Number of messages sent as the exponent of the total variation differ-
ence between old and new messages increases for AsyncSmartProb. . 57

3.12 This figure illustrates the two layers of the Graphical Model (left) and
Motes (right) which we used for our in-lab experiment. The red angle-
slashed dots denote observation nodes, ie locations where we have sen-
sor readings, and the blue-horizontal nodes denote locations where we
logged unobserved temperature readings to determine error. . . . . . 59

3.13 This is the histogram of the inferred distribution on Node 8 of our
graphical model. The red bar is the bucket for the actual sensor reading. 60

3.14 This is the histogram of the inferred distribution on Node 11 of our
graphical model. The red bar is the bucket for the actual sensor reading. 60

3.15 This is the histogram of the inferred distribution on Node 22 of our
graphical model. The red bar is the bucket for the actual sensor reading. 60

4.1 Measured ultrasound response patterns overlaid with best fit asym-
metric (cardioid) response models. Rectangle and arrow depict the
orientation of the ultrasonic microphone. Measured position errors are
asymmetric and increase with angular distance from the positive x-axis. 64

4.2 Depiction of layout of sensors for monitoring the location of hazardous
materials in warehouses. The Cricket motes on the ceiling are referred
to as Beacons, while the Cricket motes affixed to the pallets on the
floor are referred to as Motes. . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Graphical User Interface of Particle Filter simulator. (a) Initial parti-
cle distribution of first iteration. (b) Estimated positions from of the
motes. The blue dots represent the actual poses of motes, red dots for
the estimated ones, squares for beacons and green dots for particles.
Though difficult to see, particles are present under the estimated po-
sitions in (b). The length of the line connecting the actual motes and
estimated nodes reflect the errors of estimation. . . . . . . . . . . . . 74

4.4 Estimation error against ceiling height. In this representative plot,
inter-beacon distance k = 180 and particle density is 5000. Average
error of all 10 nodes over 10 iterations is shown against each ceiling
height. Standard deviation is shown with vertical bars. A sharp thresh-
old is shown for h > 590. . . . . . . . . . . . . . . . . . . . . . . . . . 75

viii



4.5 Estimation error against beacon density. In this representative plot,
ceiling height h = 240 and particle density is 5000. Average error of all
10 nodes over 10 iterations is shown against each inter-beacon distance.
Standard deviation is shown with vertical bars. A sharp threshold is
shown for k > 330. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Estimation error along both dimensions studied for beacon configura-
tion. This plot depicts an “acceptable zone” for beacon configurations.
Any configuration with error less than 10 cm is deemed acceptable. . 76

4.7 Installed cricket motes at a uniform height of 274 cm (a). Ultrasonic
sensors are directed downward. Trajectory of the mote as steps are
marked on the floor and measured to get the actual location (b). Mote
to be localized is directed upward. . . . . . . . . . . . . . . . . . . . . 78

4.8 Top view of the lab floor. Lines indicate the actual versus estimated
trajectory in a portion of the lab of 450 cm x 250 cm. The observa-
tion model for this experiment is Asymmetric Polar. The plot depicts
one experimental run whose overall estimation error was closest to the
mean reported for the AP observation model. . . . . . . . . . . . . . 78

4.9 Comparison of the three observation models in this chapter. The pair-
wise distances of 33 iterations from the physical experiment are com-
pared over 9 experimental runs of 50 Particle Filter estimations each.
When angle is considered (AL and AP), error is shown to be strictly
less than a distance only observation model. . . . . . . . . . . . . . . 79

5.1 Tracking seventeen robots at first and fourth timestep. The top figures
depict inter-distance sensor connectivity: edges link pairs of robots that
share a distance reading. Three green discs denote fixed reference bea-
cons. True robot locations are indicated with red crosses. The bottom
figures overlay true robot locations with point estimates of robot loca-
tion generated by the NBP algorithm, shown as blue circles (variance
is not yet indicated). Note that although robots move substantially
between timesteps and few robots are in direct contact with beacons,
error in all cases is negligible. . . . . . . . . . . . . . . . . . . . . . . 83

5.2 This figure illustrates three ring-shaped distributions produced by
inter-distance readings between three beacons and a robot. We repre-
sent the location of the robot with a large black +. . . . . . . . . . . 86

ix



5.3 Illustration of dynamics model resolving bimodal position estimate for
a single robot with three beacons. Using the same notation as in
Figure 5.1, the upper figures show true locations of beacons and a
robot in lower right of each plot. Samples from the robot marginal
are indicated with black +s. Bottom figures show estimates of robot
position for the 4th timestep, using a localization-only approach on the
left, where there is substantial error, and using our tracking approach
using dynamics on right, where error is negligible. . . . . . . . . . . . 93

5.4 Tracking performance for datasets with varying levels of dynamics
noise, using either two NBP iterations per timestep (left) or four itera-
tions per timestep (right). We show performance over 20 timesteps on
the top plots, and zoom in and show 4 timesteps in the bottom plots.
The “sawtooth” shape of the mean error plot is due to a new timestep
every two (in left plot) and four (in right plot) iterations. Using more
iterations per timestep reduces localization errors, especially for noisier
(less predictable) dynamics models, because information from further
neighbors is incorporated (two hops in left, four hops in right). Our
NBP algorithm makes use of multi-hop inter-distance readings, inte-
grated over multiple iterations, to compensate for transition model
errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 NBP tracking performance in various conditions. In the left plot, we
use M = 500 samples, and vary the amount of inter-distance noise. In
the right plot, we use very accurate inter-distance sensors (σν = 10−3),
and vary the number of samples used to represent each NBP message. 98

5.6 A quantitative comparison of the range-based SMCL (SMCL+R) for-
mulation [46] to our NBP tracking algorithm. As our approach is more
computationally intensive, we used M = 5000 samples for SMCL+R,
and M = 500 samples for NBP. We present results with two inter-
distance sensor noise levels. In both cases, NBP is 3-4 times more
accurate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 True vs. estimated intruder path for one randomized simulator run.
Position and orientation of a network of fourteen motion sensors is in-
dicated with solid dots and arrows. The true intruder path is indicated
with hashed circles and dashed lines. The estimated intruder path is
indicated with grey circles and solid lines. The bold-edged circles in-
dicates the intruder’s estimated and true starting points. Error is the
spatial distance between true and estimated intruder position. In our
simulation experiments, we report the distribution of error values. . . 104

6.2 The left image depicts a two dimensional slice of a sensor’s charac-
terization, with the corresponding values at each point depicted in a
grid-overlay. The right image shows a slice where the points have been
transformed into worldspace. . . . . . . . . . . . . . . . . . . . . . . . 110

x



6.3 Error in estimated intruder position over time for the baseline Naive
Estimator that simply reports the intruder is stationary in the middle
of the room. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Baseline Naive Estimator: Distribution of error values. . . . . . . . . 118

6.5 Twenty-two Perfect Optical-Beam Sensors: Distribution of error val-
ues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6 Fourteen Perfect Motion Sensors: Distribution of error values. . . . . 119

6.7 Fourteen Imperfect Motion Sensors: Distribution of error values. . . . 120

6.8 Varying Number of Binary Motion Sensors: Distribution of error val-
ues for different number of binary motion sensors (each with 8 second
refractory period). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.9 Error in estimated intruder position over time for Fourteen Imperfect
Motion Sensors (each with 4 second refractory period). . . . . . . . . 121

6.10 Lab Experiment: A map of our lab (top), with intruder true path
indicated by a dashed line as in Fig 6.1. Estimated path indicated by
a solid line. Photos taken by a robotic camera (a-d) correspond to the
numbered solid blue dots and their respective locations in the room. . 123

7.1 An actuator network with sequentially activated actuators triplets
(shown as squares) driving a mobile robot toward an end location.
The robot is guided by creating locally convex potential fields with
minima at waypoints (marked by ×s). . . . . . . . . . . . . . . . . . 125

7.2 Examples of two different triangles and three different waypoints (de-
noted as circles) and their capture regions (shaded areas) for both
triangles. The incenter of each triangle is marked with a ’+’. . . . . . 131

7.3 Example of a triangle with its incenter. . . . . . . . . . . . . . . . . . 131

7.4 Simulation result averaging over 100 trials of an actuator network and
100 start-end location pairs, with n = 5 . . . 10 actuators and two place-
ment strategies: border placement and interior placement. Results for
each are shown with start and end locations chosen randomly across
the entire workspace or only within the convex hull of the actuators.
These simulations used 0.01 standard deviation polar motion uncertainty.137

7.5 Comparison of the results of varying Gaussian motion uncertainty for
a fixed set of actuator locations under two motion uncertainty mod-
els, with start and end locations chosen within the convex hull of the
actuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xi



7.6 Example of a simulation of the actuator-networks algorithm with n =
8 actuators and Cartesian motion uncertainty with σ = 0.01. The
actuators are placed randomly on the border of a square workspace,
the incenters of all possible triangles between them form vertices in a
roadmap with edges containing the probability of successful transition
by activation of an actuator triplet. . . . . . . . . . . . . . . . . . . . 139

8.1 A sample video frame is on left. The system has been trained to track
green vests such as the one worn by the man with the outstretched
arm. The system output is shown in the frame on the right, where an
elliptical overlay hides the face of this man. The remainder of the scene
including faces of the other two workers wearing orange vests, remain
visible. Note how the system successfully covers the face even when
the vest is subjected to a shadow and a partial occlusion. Please visit
“http://goldberg.berkeley.edu/RespectfulCameras” for more examples
including video sequences. . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Illustrates the state of a single bounding box (left) and the probability
mask used for the Particle Filter’s observation model (right). . . . . . 158

8.3 Example of a False Negative with the Respectful Cameras System: A
sample image frame input on left image, with output regions overlayed
on right image. This sample illustrates where an intense light from a
flashlight induced a specularity, causing the classifier to lose track of
the hat. As a result, the right image has no solid white ellipses overlaid
on the face as it should.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.4 Example of Crossing Markers and the Respectful Cameras System: A
sample image frame input on left image, with output regions overlayed
on right image. This sample illustrates tracking during a crossing,
showing how the Particle Filter grows to accommodate both hats. . 163

8.5 Example of the Respectful Cameras System: A sample image frame
input on left image, with output regions overlayed on right image. This
sample illustrates tracking after a crossing (one frame after Figure 8.4),
showing how the system successfully creates a second filter to best
model the current scene. . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.6 Sample image frame input on left image, with output regions overlayed
on right image. This sample illustrates how without Particle Filtering,
even with the nine dimensional color-space, partial occlusions segment
the visual marker, resulting in multiple small ellipses. . . . . . . . . 166

8.7 Sample image frame input on left image, with output regions over-
layed on right image. This sample illustrates how Particle Filtering
overcomes partial occlusions, when using the nine dimensional color-
space, yielding a single large ellipse. . . . . . . . . . . . . . . . . . . 166

xii



8.8 Input frames from the in-lab crossing experiment . . . . . . . . . . . 169

8.9 Output frames showing the Particle Filter with the nine-dimensional
colorspace performs well under dynamic obstructions . . . . . . . . . 169

8.10 Input frames from the CITRIS construction site . . . . . . . . . . . . 170

8.11 Output frames showing using only the RGB colorspace is insufficient 170

8.12 Output frames using the full nine-dimension colorspace, showing better
performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.1 Illustration of how different choices of robot control can affect tracking
accuracy. Using the same notation as Figure 5.1, subfigures (a)-(c)
show the connectivity where (a) shows the first timestep, and (b) and
(c) show how different controls yield different positions of the robot at
the second timestep. Subfigures (d)-(f) show the localization perfor-
mance, whereby (e) has poorer localization accuracy than (f) due to
the different control choice. . . . . . . . . . . . . . . . . . . . . . . . . 174

9.2 The graphical model of a Hidden Markov Model. The graph indicates
that we have direct, noisy observations of the state. Also, the next
state is determined only by a noisy transition model based only on the
previous state and noisy actions applied at the previous timestep. . . 175

9.3 This figure illustrates the graphical model for a Semi-Markovian
Model with an open-loop planner. It is semi-Markovian because each
timestep’s state depends only on the previous timestep’s state. Because
the next action does not depend on the previous state, it is an open-loop
planner. This representation uses both undirected undirected edges for
clarity, where undirected edges correspond to our observation model,
and directed correspond to our transition and action models. . . . . . 176

9.4 This figure illustrates the graphical model for a Semi-Markovian Model
with a closed-loop planner, where each timestep’s state depends only
on the previous timestep’s state. Because the next action depends on
the previous state, it is a closed-loop planner. This representation uses
both undirected undirected edges for clarity, where undirected edges
correspond to our observation model, and directed correspond to our
transition and action models. . . . . . . . . . . . . . . . . . . . . . . 177

xiii



List of Tables

3.1 Comparison between actual and inferred temperatures for three nodes
in the graphical model . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Dense Perceptive Pallet Notation . . . . . . . . . . . . . . . . . . . . 81

8.1 This tables shows the performance of in-lab experiments. To evaluate
the system, we place each frame into the category of correctly obscuring
all faces without extraneous ellipses, being a false negative but not false
positive, being a false negative but no a false positive, and being both
a false negative and false positive. We denote false negatives with FN
and false positives with FP. . . . . . . . . . . . . . . . . . . . . . . . 162

8.2 This tables shows the performance of experiments at the CITRIS con-
struction site. To evaluate the system, we place each frame into the
category of correctly obscuring all faces without extraneous ellipses,
being a false negative but not false positive, being a false negative but
no a false positive, and being both a false negative and false positive.
We denote false negatives with FN and false positives with FP. . . . . 165

xiv



Acknowledgements

I would like to thank my advisor and friend, Ken Goldberg for his many years of men-

torship. Whether it was the countless hours editing my papers, providing important

research insights, suggesting concrete, actionable advice on better ways to present my

research, or giving general advice about my career, you have always been there for

me, and that is something I will never forget.

I would like to thank everyone at the UC Berkeley Automation Lab for the end-

less research conversations, suggestions, and feedback and support, particularly Ron

Alterovitz, Ephrat Bitton, Vincent Duindam, Menasheh Fogel, Kris Hauser, Anand

Kalkarni, Dezhen Song and Jijie Xu. In addition, I would like to thank my coauthors

professors Max Meng, Deirdre K. Mulligan, Shankar Sastry, and Martin Wainwright,

graduate students and post docs Dominic Antonelli, Nathan Burkhart, David Chu,

Alex Dimakis, Siamak Faridani, Marci Meingast, Hongliang Ren, and Erik Sudderth

and undergraduates Shervin Javdani and Danny Bazo.

I would like to thank my Qualifying Exam and Dissertation Committee mem-

bers Joe Hellerstein, Sara McMains, Ruzena Bajcsy, and Deirdre Mulligan, for their

suggestions about directions for future research and experiments, as well as ways for

improving the presentation of my work.

I would also like to thank those who participated in the discussion and analysis of

the societal ramifications of my research including Jennifer King, Abigail De Kosnik,

Irene Chien, Kris Paulsen and Therese Tierney.

I would like to thank Panasonic for their donation of cameras, and NSF, AFOSR,

TRUST, and Bayer Health Care for their funding.

xv



xvi



Chapter 1

Introduction

There is an increasing societal need for security and safety. Advanced hardware is

emerging with increased performance and reduced price. It is impractical for humans

to monitor all of the information in real time. While there are many benefits to

security and safety, automated monitoring systems can also encroach on personal

privacy.

Technology can be part of the solution. In this dissertation, we develop new

tracking algorithms for sensor networks, camera networks, and robot networks,

that have the potential to provide some measure of privacy through masking and

anonymization, while also providing the necessary monitoring for safety and secu-

rity applications. These methods require new approaches to real-time tracking of

people and objects. We introduce the concept of Structured Tracking, where we

can leverage pre-existing structure or add additional application-specific structure

to lower false positive/negative rates or reduce computational complexity. This

dissertation advances the state of the art by proposing new algorithms that ad-

dress three major application areas of societal benefit: safety, security, and privacy.
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For more information including related news, updates, and live videos, please visit

http://goldberg.berkeley.edu/jschiff.

1.1 Emergence of New Technologies

Over the last decade, there have been significant advances in hardware, distributed

algorithms, probabilistic inference and machine learning techniques. These have pro-

vided the basis for the systems we designed and built as part of this dissertation that

make our goals more feasible. We use these advances to address real-world problems,

and in particular, design new algorithms to leverage technologies such as robot net-

works, and robotic cameras. Our new systems must work accurately and robustly in

real-time. The challenge is that this real-time tracking must be able to address sen-

sor noise, uncertain object dynamics, and environmental challenges such as changing

lighting conditions.

Recent advances in sensors, processors, wireless networks, and distributed algo-

rithms have resulted in new fields of research such as sensor, camera, and robot

networks. Examples of improvements include greater sensor and transmission ro-

bustness, smaller size, and lower power usage. For instance, chips can be bought

“off the shelf” from Dust Networks [1] that provide radio and robust wireless multi-

hop networking (99.99% end-to end for a 50 node network [47]) are 12mmx12mm.

These devices also have long battery lives due to efficient designs, allowing for 25

microamps when conserving energy, and below 200 microamps for typical heavy-duty

applications. However, as these sensor networks are used to are log noisy data, frame-

works for modeling and interpreting large amounts of probabilistic data have been a

topic of active interest [71, 204].

Since 9/11/2001, new robotic pan, tilt, and zoom (PTZ) cameras have come on
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the market with 42x zoom, built in web-servers for easy integration, and have dropped

in price from $20k, to under $1k [2]. These robotic cameras are much more powerful

than conventional static cameras. While static cameras have fixed resolution of the

entire area, the user can direct a robotic camera to focus in and gather much more

detailed information about a specific area of interest in the scene. However, our

algorithms must address that the camera can move, and does not always view the

scene from the same perspective.

Advances in probabilistic inference and machine learning algorithms, such as Par-

ticle Filtering [80], Adaptive Boosting [65], and Belief Propagation (BP) [148, 206],

have dramatically increased the performance of approaches addressing learning and

inference problems. These tools have shown promise in addressing detection, track-

ing, and classification problems in real-world environments with noisy sensing and dy-

namic environments. For instance, one of the most robust face-detection approaches

(Viola and Jones) is based upon an Adaptive Boosting formulation. On 23 images

with 149 faces, they achieved a detection rate of 77.8%, with 5 false positives on the

MIT test set [198]. Many of our approaches, most specifically those using Particle

Filtering, require the simulation of thousands of particles per second [168, 167]. Thus,

most of our methods have only recently become computationally tractable due to the

doubling of processor power every two years, as dictated by Moore’s law.

1.2 Structured Tracking Design Principles

In this dissertation, we use a set of design principles that we refer to as Structured

Tracking. Using these principles, we can improve reliability and robustness of our

systems as well as reducing algorithmic complexity, making these approaches feasible

for real-time tracking applications. These principles are:
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1. Make use of application-specific structure

2. Insert additional structure

3. Use machine learning and inference techniques based on application-specific

data

The concept of maximizing application-specific problem structure comes from re-

search in fields such as Active Vision and Sensorless Manipulation. The field of Active

Vision [106, 8, 187, 197] is based on insights that processing and interpreting of im-

ages does not need to be purely passive. By using streams of images coupled with

camera movement, or adapting to more environmentally specific conditions such as

modifying the iris to dynamically address brightness, we can provide more tractable

formulations with more robust, computationally efficient solutions. Goldberg applies

the idea of leveraging structure to the problem of orienting a part (up to symmetry),

using no sensing at all: just controlling the distance and orientation of parallel jaw

grippers [74]. Goldberg overcomes the need for sensing by using a priori knowledge

of the part’s geometry. In this dissertation, we introduce approaches which model

problem structure:

• Use floor-plan layouts to constrain transitions of tracked objects in our models

allowing for more accurate estimates

• Learn environment-specific lighting models for color-based tracking

• Model robot dynamics to improve static localization approaches

• Use spatial correlations between sensors learned for a specific environment

Researchers use the technique of Structured Lighting [165, 17], where structured

signals of light that are known to the algorithms are emitted onto a surface. The
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pattern of how this light is projected onto the surface provides more information to

the system when trying to accomplishtasks such as producing depth maps. We use

similar ideas, where we can introduce new structure to add additional constraints

to make our problems more tractable and robust. In this dissertation, we describe

approaches which introduce additional structure including:

• Put sensors on pallets to improve robustness for real-time tracking

• Place colored markers on people to improve robustness and reduce computa-

tional complexity for visual tracking

• Use active beacons to emit structured signals that reduces the computational

complexity on the robot for autonomous navigation

Our approaches model application-specific problem structure using machine learn-

ing and probabilistic inference techniques. Machine learning techniques such as Adap-

tive Boosting [65] allow us to set the parameters of our models based on empirical

observations. Probabilistic inference techniques such as Particle Filtering [162] and

Belief Propagation [148] are flexible. Inference techniques allow us to model problem-

specific structure including object dynamics, the environment, how sensor react to

objects (observation models), and correlation between sensors, all to address track-

ing applications. Because inference algorithms reason using probability distributions,

our approaches incorporate the uncertainty of each of our models into the estimate.

These methods provide more than just the most likely estimate, but rather provides

the entire distribution of our estimated state, which also gives information about the

confidence in our estimates. Our models are mostly nonparametric, where distribu-

tions are represented as samples, rather than assuming parameterized distributions

such as Gaussians. This allows our techniques to be more flexible, as we relax our as-

sumptions about the underlying distributions, allowing us to address problems where
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more standard, parameterized models cannot be used. For instance Gaussian models

cannot be used to model the ring-shaped distributions found in our sparse pallet track-

ing problem described in Chapter 5. This flexibility also makes our approaches well

suited for learning the distributions for our models, as we can reduce our assumptions

about fitting a pre-conceived model.

1.3 Application Domains and Contributions

Each of our three application areas of safety, security, and privacy, use the concept

of Structured Tracking to modify the problem formulations to assist in more accurate

localization and tracking by reducing false positives/false negatives, or reducing the

amount of necessary computation, making it feasible to our algorithms in real-time.

The major contribution of this dissertation is the advancement of the state of the

art in tracking, including both theoretical algorithmic improvements and practical

applications of our results.

1.3.1 Safety: StatSense

In the fields of Robotics and Sensor Networks, we deal with distributed, noisy

information. However, we can use spatial and temporal correlation to compensate

for this noise and make our sensors more robust to false positives/negatives. In

particular, we envision that sensor networks will be installed in “smart”-buildings

for applications such as air-conditioning control or fire detection [209]. We explore

how a sensor network with noisy temperature readings can use spatial correlation to

compensate for faulty sensor readings, and particularly, experimented with inferring

the temperature of locations that are not directly observed by any sensor.

Using the concepts of Structured Tracking, we introduce sensors that can commu-
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nicate with one another, and share temperature readings. We also model and learn

an environmentally specific spatial correlation of sensors for temperature prediction.

To our knowledge, we were the first to implement Belief Propagation[148] on a

sensor network and provide real-world experimentation of our system. We demon-

strated that in-network performance of BP is computationally and algorithmically

viable. In particular, we show that BP is an ideal fit for distributed sensor, robot,

and camera network applications due to the distributed nature of the formulation.

BP also has the added benefit that because the algorithm provides distributions of

the state we infer, rather than the most likely result, we can deduce the confidence of

our estimates. We introduced and evaluated a modular architecture and framework

to simplify the implementation by programmers of Reweighted Belief Propagation,

a more general formulation of BP. We applied this framework to inferring the tem-

peratures at unobserved locations in our lab, with on average of 3 degrees accuracy

over a 45-degree temperature range, demonstrating the viability of BP for real-world

applications.

1.3.2 Safety: Perceptive Pallets

There are many applications where we want to track many moving objects as they

move around a confined, well-controlled space. For instance, at Bayer HealthCare

Pharmaceuticals, pallets containing expensive and reactive chemicals travel around

a warehouse. It is important to provide geometric guarantees about these chemicals

such as maintaining a minimum distance between acids and bases. Failing to do

so can result in $100,000 daily fines, $1,000,000 daily losses from plant closures, or

fires that will destroy the warehouse and can expose nearby neighborhoods to toxic

chemicals.

In the Perceptive Pallets project, we explore how to track pallets in a warehouse.
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We experiment with two different architectures. In the first, we use a dense-beacon

architecture, and the pallets are tracked only using sensor-readings between beacons

and pallets. The beacons must be dense because the inter-distance sensors have

limited range, and the pallets must receive information from at least three beacons to

localize themselves. In the sparse-beacon architecture, we fuse information in a more

distributed fashion, requiring only three beacons in the entire deployment, but also

using sensor-readings between pallets.

Using the concepts of Structured Tracking, for both architectures, we attach a sen-

sor to each pallet to remove the problem of identification and improve the robustness

of tracking. We use models of the dynamics to fuse information between timesteps,

and introduce beacons to reduce the complexity of our tracking algorithms. As our

two architectures vary the amount of structure we introduce into the problem by

having different assumptions about beacons, we are able to see how this structure

affects our algorithms. With a dense-beacon architecture, which may be infeasible

in some applications, we can use simpler, more computationally efficient algorithms.

With a sparse-beacon architecture, we need to use inter-sensor distance information,

requiring more sophisticated algorithms to compensate for noisy location estimates of

neighboring pallets, making the algorithms slower. Using noisy estimates of neighbor

locations, rather than precise beacon locations, also reduces the accuracy, as error

will propagate from nodes closer to beacons to nodes further away.

In Dense Perceptive Pallets, we leverage insights about the asymmetric, cardiod-

shaped response pattern of ultrasound-based distance information to improve tracking

accuracy. By modeling how the distance information provided by time difference of

arrival methods (TDOA) actually provides information about orientation as well as

position, we are able to formulate a Particle Filter that improves accuracy by 11% in

our deployment.

8



In Sparse Perceptive Pallets, we develop a novel algorithm, based on the non-

parametric Belief Propagation framework, for the tracking of distributed sensors with

inter-distance readings. This allows us to incorporate information in a purely dis-

tributed fashion, using limited range inter-distance readings between neighboring sen-

sors to localize and track all the sensors simultaneously. The use of a non-parametric

representation also allows us to model the noisy ring-shaped and multi-modal dis-

tributions intrinsic to inter-distance localization and tracking problems. We use this

framework to explicitly model inter-distance sensor error, the noisy robot dynamics,

and noisy network connectivity. We describe a novel tracking algorithm, extending

the localization approach of Ihler et al.[86] that intelligently decomposes the dynam-

ics model, allowing us to fuse the robot dynamics with information from robots that

are multiple hops away (in the graph where robots that directly receive inter-distance

information from one another are one-hop neighbors). This allows us to use dynamics

information to improve accuracy, as well as reduce computation and the number of

transmitted messages when compared to a localization approaches such as Ihler et

al.’s which treat each timestep independently. In addition, our inference algorithm

models additional constraints given by the dynamics allowing for improved robust-

ness when the sensors receive inter-distance readings from fewer than three neighbors.

We show a 3-4x improvement in accuracy over the recent SMCL+R algorithm[46],

and also demonstrate that our approach is more robust, as we do not assume the

unrealistic assumption of a unit-disk connectivity model[207]. In such a model, all

inter-distance readings are assumed to be received within a threshold distance, and

none are received beyond it. In contrast, we accommodate noisy connectivity models,

which we model formally using probability distributions.
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1.3.3 Security: SNARES

In our project on Sensor Networks for Robust Environment Security (SNARES),

we wish to monitor an environment to secure it from an intruder using a robotic

camera. The camera is controlled by incorporating information from a network of

cheap, binary passive infrared sensors.

Using concepts from Structured Tracking, we model the dynamics of the person,

and use a priori models of the room’s geometry to improve the accuracy of our tran-

sition models by preventing infeasible transitions such as traveling through walls.

Because we explicitly place the sensors within the space at known locations, we use

the spatial correlation between the sensors that trigger (and those nearby that do

not) to track the intruder.

The SNARES approach is a novel approach to security surveillance. In contrast to

the typical approach of observing a space with many static cameras, we use a single

robotic camera, which is controlled by a sensor network, and a Particle Filtering-

based tracking algorithm. We develop a novel mechanism for describing the spatial

response pattern of binary sensors, which allows us to characterize them once, and

then when deploying, automatically incorporate the information from each sensor’s

current status (of triggering or not) to track objects in the world-coordinate frame.

We also describe how to model a sensory refraction period, where after triggering, a

sensor is blind for a specified period, and during that time will not trigger again.

1.3.4 Security: Actuator Networks

In our Actuator Network project, we propose and evaluate a novel method for

robotic navigation. Instead of the robot localizing itself, and using that information to

determine the robot’s next move, we place a network of actuators that act as beacons
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in the environment, which guide the robot by actively changing their emitted fields.

By adding beacons to the environment, we reduce the complexity of technologies for

sensing and associated algorithms needed by the robot while also removing the need

for the robot to communicate with the beacons. The robot’s navigation sensor is

limited to the simplistic sensing of the local gradient it observes from the actuators

emitting a signal, such as light. The robot follows gradient descent of the sum of

emitted fields, and by varying the fields, the beacons direct the robot along the path

with greatest probability of reaching the goal. The control algorithm uses an open-

loop planner that does not observe the robot at intermediate timesteps.

We can use this framework to control beacons to covertly guide a robot. Because

the robot passively observes the sum of signals from the actuated beacons, rather

than communicating directly, it is difficult for adversaries to monitor the signals

to determine the path of the robot determined by the beacons. While we didn’t

experiment with the application and our current formulation only addresses two-

dimensional navigation problems, the Actuator Network framework could be extended

to guide a robotic fly [181] to a location within a space for covert surveillance.

Using the concepts of Structured Tracking, we place beacons in the space to

reduce the hardware and algorithmic complexity required for robot navigation, rather

than relying on navigation by detecting unique landmarks. By modeling the robot’s

movement, and structuring the schedule of the signals emitted by the beacons, we

are able to reduce the computation required by the robot for navigation. Also, we

use our models of robot dynamics, given different emitted signal configurations, to

maximize the probability of successfully directing the robot to a goal location.

Because our approach uses beacons to guide the robot to a goal without observing

it, we developed an open-loop planner to determine the set of fields that are most

likely to result in the robot successfully navigating to the goal, modeling the robot’s
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noisy dynamics. In other navigation approaches, which also model the problem as

gradient descent on a potential field, the fields are purely virtual, allowing them to

be emitted from any location with any shape. Because our planner is limited to

physical fields produced by actuators, we provide a different, novel solution whereby

robots travel along waypoints to the goal locations, determined by the incenters of

triangles formed by any three actuators. We achieve up to a 93.4% success rate in

our simulations.

1.3.5 Privacy: Respectful Cameras

In Respectful Cameras, our goal is to obscure faces of people in video in real-time

to provide the observed people with some measure of privacy through anonymity.

To more robustly address the face-detection problem, instead of directly determining

the location of each person or face, we use the novel approach of placing colored

markers on the people we wish to track. This helps compensate for limitations of

current facial/person detection approaches not having sufficient robustness for this

privacy problem. In particular, these approaches fail when addressing issues such as

arbitrary facial/body orientation, dynamic lighting, and partial obstructions. This

also compensates for background subtraction methods, which are difficult to apply to

scenes observed with robotic cameras.

Using concepts from Structured Tracking, we add additional structure to the

conventional face/person detection problem by detecting a marker instead. Using

this structure with models of people dynamics allows us to decrease the false positive

and false negative rates, especially when subject to environmental changes and partial

obstructions, while simplifying the algorithms allowing us to process the data in real-

time.

We provide an interface allowing a user to quickly train the system on a specific
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marker’s colors, as determined by the lighting for a specific environment. Our results

suggest that by using a 9-dimensional color space of RGB, HSV, and LAB, and

performing machine learning of each color-space independently, we can provide better

tracking accuracy than using only one-color space. We use a reformulation of the

Adaptive Boosting[199, 145] machine learning algorithm, providing the probability

that a pixel color corresponds to our marker (versus the background), so that it

can be used with a Particle Filter [162] for tracking. We extend our approach to

track multiple-objects simultaneously. We achieved a 2% false-negative rate in our

deployment at the CITRIS construction site at UC Berkeley.
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Chapter 2

Related Work

Many researchers have investigated how to accurately and robustly track objects,

but they often assume this tracking is purely passive, being unable to interact with or

modify the tracked object or the environment. To perform tracking we must first solve

the sub-problem of localization. Localization is the task of identifying the location

of an object at a single instant in time, using the information available only at that

timestep. Tracking, also referred to as dynamic localization, utilizes previous and/or

future location estimates and a dynamics model to make more informed estimates of

the current objects’ location.

2.1 Tracking Sensors Attached to Objects

2.1.1 Primitives for Tracking Sensors Attached to Objects

If the application domain permits the attachment of a device, such as a sensor

node, to the object being localized, then there are three main approaches to approxi-

mate distances information to the object. Once we select one technique, we can apply

tracking algorithm to compensate for sensor error and use information about robot
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dynamics and environment structure. These techniques are frequently discussed in

the sensor network literature, for tracking sensor motes. Motes are small devices

equipped with sensors, memory, processors, and wireless communication hardware

[70].

RSSI, or Received Signal Strength Indication is the received signal strength of the

wireless transmission. Lorincz and Welsh use an approach where they look at the

RSSI at multiple frequencies, and have a calibrated map of what the RSSI should be

on each frequency at many locations in the space. Thus, they can lookup, for a given

set of RSSI frequencies, the most likely location of the mote [121].

TDOA, or Time Difference of Arrival, is the localization system for systems such

as cricket motes [154]. This approach works by sending a radio and ultra-sound

pulse at the same time, and using the difference in arrival time to compute distance.

While most conventional TDOA approaches compare radio to ultrasound, a com-

pany Ubisense recently introduced a TDOA-based approach that uses ultra-wideband

which they claim has better performance due to reduced multi-path effects [4]. The

claim 15 cm accuracy, but their technology costs $14,950 for a 9-tag research kit.

RIP, or Radio Interferometric Positioning [123, 107], uses motes broadcasting

radio at slightly different frequencies. The resulting phase offsets as observed by

receiving motes are used to determine the inter-mote distance. Initially, they showed

3 cm accuracy with a range of up to 160 meters between motes, without addressing

multi-path effects. They extended this to do tracking, running at a rate of 1 sample

every 4 seconds.
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2.1.2 Algorithms for Tracking with Sensors Attached to Ob-

jects

There is a large body of literature related to algorithms for tracking with sen-

sors, which are placed on objects to be tracked, as we do in our Perceptive Pallets

applications (see Chapters 4 and 5). Thus, the problem formulation is for the sensors

to localize themselves, relative to the environment. Related Problems include simul-

taneous localization and mapping (SLAM), simultaneous localization and tracking

(SLAT), control of robotic swarms, and robot/sensor network localization.

In the classic SLAM problem, there is a single moving robot that produces a map

of the environment while simultaneously determining its location. Several recent

approaches allow SLAM problems to be efficiently solved with as many as 108 static

features where distributions are modeled as multivariate Gaussians. Many of these

methods are based on inference in an appropriate graphical model; for an overview,

see [191]. SLAM has also been extended to domains with multiple robots, often

under the assumption that the initial locations of the robots are known [30, 195]. In

these approaches, robots share and localize using a global map, rather than through

distributed observations of other robots as in our approach. Thrun and Liu [192]

investigate merging multiple maps when initial locations of robots are unknown, and

the landmarks are not uniquely identifiable. Howard [82] explores map merging when

robots do not know their initial locations.

The SLAT problem is a variant of SLAM in which static “robots”, which are

typically nodes in a sensor network, use distance and bearing readings from a moving

robot to localize themselves. The approach of Taylor et al. [189] avoids representing

ring-shaped or multi-modal posterior distributions by assuming sensors roughly know

their initial locations, and processing sets of distance measurements in batch. Funiak
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et al. [69] propose a more complex method focused on SLAT problems in camera

networks.

In the distributed control community, methods have been proposed for controlling

a swarm of robots to maintain a specified formation [216], or using several mobile

robots to localize a target [215]. In these approaches, sensors are assumed to observe

true locations plus Gaussian noise, resulting in posterior distributions which (unlike

those arising in inter-distance tracking) are well approximated as Gaussian. Like

these methods, however, we also seek to develop effective distributed algorithms for

multiple robots.

There has been a great deal of research on distance-based localization in sensor

networks; for a summary, see [207]. Most of these rely on technologies for measur-

ing inter-distance information described in Section 2.1.1. In these approaches, sensors

communicate distance information between one another, or with beacons, rather than

being used to interrogate an unknown environment. Localization techniques from this

literature can be applied at each timestep to determine the location of each robot, to

approximate tracking, but ignore dynamics. To address static localization problems,

researchers have applied techniques such as multidimensional scaling (MDS), in both

centralized [171] and distributed [92] implementations. Many localization methods

produce global solutions by incrementally stiching local sensor maps together [92],

for instance by recursively localizing new sensors with respect to previously localized

sensors [163]. Other approaches solve more global inference problems, computing

location estimates via iterative least squares [43, 136] or approximate marginal dis-

tributions via NBP [88].

In some applications of multi-robot tracking, a sufficient number of beacon nodes

(at least three) can be directly observed by all robots at all times [179, 158]. Other

approaches assume sensors measure both orientation and distance, allowing for simpli-
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fying Gaussian assumptions [161]. Previous approaches to the inter-distance tracking

problem include the work of Howard et al. [83], which formulates inter-distance track-

ing as numerical optimization; Park et al. [73], which solves a trilateration problem

using quadratic approximations of the motion of robots relative to one another; and

Dil et al. [46], which uses assumptions about maximum transmission radii to apply

Particle Filters [12].

There have also been research validating that applying tracking methods can im-

prove localization accuracy. Fogel et al. explore the use of a particle-filtered approach

for tracking, explicitly modeling angular dependency of an ultrasound-based time dif-

ference of arrival (TDOA) localization algorithm of the MIT Cricket mote [61]. Smith

et. al used an Extended Kalman Filter (EKF) to improve the tracking performance

of Cricket motes [178].

2.2 Tracking Objects Via External Sensors

There are other research problems associated with tracking objects using external

sensors which observe the objects that should be tracked. In contrast to placing

sensors on the objects to ease tracking, external sensors are placed statically in the

environment, and are used to observe nearby objects. Some of these sensors like

Passive Infrared (PIR) and Cameras are passive, and just collect incoming data from

the world, while others, like Laser Range Finders emit a signal to collect information.

As we cannot place sensors on the objects to track them, these problems are often

posed where the tracked objects are adversarial, and seek to avoid detection. We

explore this type of problem in Chapter 6.

For sensor-network applications, Oh et al. [143] explores the problem of efficiently

tracking multiple objects in a sensor network using a MCMC approach, with hier-
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archical fusion of sensor information (as opposed to purely distributed, or purely

centralized). Oh et al. explore a tracking of multiple objects with binary sensors,

using PIR in experiments. Other examples range from locating a stationary intruder

in an unknown room [52] to pursuit-evasion games, where a pursuing robot hunts a

mobile evader that intelligently works to avoid capture. Examples and surveys can

be found in [90], where the pursuer has a line of sight optical sensor, and [15], where

the pursuer must track the evader while avoiding being seen.

While these types of problem require less structure, as we do not have to place

a sensor on the object, there are ambiguities as to the identities of multiple objects

moving through the space, which require additional algorithms to resolve. The re-

search community refers to this issue as the data association problem, where the goal

is to associate object locations at one timestep, with object locations at another, when

no identity information is present. This results in uniquely identifying the paths of

a varying number of objects. One approach for this problem is to use dynamics to

resolve the ambiguities. An early approach to this problem is multiple hypothesis

tracking [155], where a set of hypothesis are used from all previous timesteps, and

integrated with the information at the current timestep, to generate a new set of

hypotheses. The hypothesis with the greatest posterior probability is assumed to be

the objects’ true location. This has been shown to be an effective solution, however,

the number of hypothesis grows exponentially as time progresses. As a result, new

approaches such as using Markov Chain Monte Carlo (MCMC) [142] have seen better

performance.

2.2.1 Vision-based Tracking

If the application requires passive observation, rather than attaching something

to the objects we wish to track, we can perform tracking with a camera network.
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The first step to tracking with a camera network is using object detection, where

we determine all of the instances of a specific object in an image. If we assume,

as is often the case, that the cameras are calibrated such that we know the camera

position and orientation, once we have detected the object in at least two cameras,

we can localize it. Due to the frequency of applications involving humans, there are

specialized algorithms for face [27, 196, 198, 26], and people detection [211] which we

can use for people tracking.

There are two major approaches to object detection: features that are pixel-

based and features that are region-based. In pixel-based, pixels are classified as

corresponding to the object or not, and then clustered together. In region-based,

groups of pixels are classified together, and no clustering is needed.

One common pixel-based method is the use of skin color as a mechanism for face

or people detection. For example, Lin et al. verify if each pixel satisfies a priori color

constraints [119], another approach uses machine learning [51] to model face color.

Others use multivariate Gaussians [213, 10] and Gaussians Mixture Models [76] to

represent the face colors. While each pixel in images from cameras are typically

represented using a Red, Green, and Blue (RGB) colorspace, most approaches trans-

form the image to another color space such as Hue, Saturation, Value (HSV), LAB

or YCrCB, but in contrast to our vision tracking work, few use more than a single

colorspace. These color-spaces are often chosen for explicit modeling advantages, for

instance HSV seeks to decouple color, namely hue and saturation, from brightness,

described by the value component which has the goal of making models more robust

to changing brightness. It is also common to use pixel color as a pre-processing step

to prune out image regions before using a more powerful intensity-based face detector

[213]. As these systems evolve and are used in industry, it is important that these

systems are trained over a wide variety of races and skin-tones so that the system

does not work for some, and not for others.
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Avidan describes the use of a pixel-based method [13] where each pixel’s initial

feature vector contains the RGB values, as well as two histograms of oriented gradients

similar to those used in Scale Invariant Feature Transform (SIFT) features [122].

These SIFT features are commonly used for problems such as the correspondence

between images or in image classification.

Typical region-based approaches explore applying features like Haar wavelets

which generate statistics about regions of pixel [199, 14], and therefore do not need a

clustering step.

Approaches to object detection frequently employ statistical classification methods

including AdaBoost [199, 145], Neural Networks [56], and Support Vector Machines

(SVMs) [146] to learn models for how the features statistics correspond to the objects

we wish to detect.

Object detection methods can be used with temporal models to perform camera-

based tracking. Most frequently, these apply to face [48, 149] and people tracking

[144, 212] using image processing and vision systems. These techniques have also

been extended to fuse detections across multiple views in a decentralized fashion

using a camera network [205]. Unfortunately, these methods have difficulty detecting

and tracking in real-time for domains with partial occlusions, arbitrary pose, and

changing lighting conditions [105, 214].

Alternatively, background subtraction methods, based on formulations such as

Gaussian mixture models [114], can be applied to detect foreground objects. These

methods generally assume that all moving objects are objects of interest, and are gen-

erally not designed to disambiguate between different moving objects. However, there

has been limited work that uses object models and filtering as a post-processing step

to disambiguate between objects and compensate for occlusions [169, 89, 210, 132].

Many background subtraction methods will eventually determine that a stationary
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object, is part of the background, which will cause the system to lose the location

of the tracked objects. For domains where always tracking the object is of utmost

importance, like privacy systems, where misplacing a person’s location for one frame

can result in the loss of anonymity for many future frames, these limitations can

be significant. Also, background subtraction techniques struggle with domains using

robotic cameras, as the system will have to build up a background-model for the

new perspective, and in the meantime, newly observed moving objects may not be

identified.

Some researchers, like Shet et. al [173], have explored how object detection can be

simplified by placing a unique near-infrared tags on each object. Others reduce the

computational requirements and improve robustness of object detection with visual

markers. Zhang et al. compared many of these methods [221]. Kohtake et al. applied

visual markers to reduce algorithmic complexity and improve robustness of object

classification to ease the user interaction problem of transferring data between digital

devices by pointing and selecting physical objects via an “infostick” [103].

Because of the limitations of background subtraction methods, and difficulties

with general object detection, our approach for preserving visual privacy described in

Chapter 8 makes the system’s tracking more robust by adding the additional structure

of a colored marker worn by those we wish to track. We use a form of AdaBoost

[65] to learn a environment-specific color model subject to the environment’s varying

lighting conditions. AdaBoost is a supervised learning approach that creates a strong

statistical classifier from labeled data and a set of weak hypotheses, which poorly

classify the labeled data. Rather than conventional AdaBoost that provides a binary

label, we use Probabilistic AdaBoost [68, 164], which provides the probability of an

input’s label that we use in our tracking algorithms based on Particle Filtering. In

contrast to other approaches, we use multiple color spaces simultaneously as our

feature vector, providing additional flexibility for improved learning robustness.
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The research closest to Respectful Cameras is the work of Okuma et al. [144]

and Lei et al. [116], who also use a probabilistic AdaBoost formulation with Particle

Filtering. However, both assume a classifier per tracked-object (region-based), rather

than classifier per-pixel. As our markers use pixel-based color, we do not need to clas-

sify at multiple scales, and we can explicitly model shape to help with robustness to

partial obstructions. Okuma’s group applies their approach of dynamic weighting be-

tween a Particle Filter and an AdaBoost Object Detector to tracking hockey players.

Rather than weighting, our approach directly integrates AdaBoost into the Particle

Filter’s observation model. Lei et al. uses a similar approach to ours, and performs

face and car tracking. However, unlike Lei, our formulation can track multiple objects

simultaneously.

2.3 Navigation

Once we are able to track objects, a natural next step is to explore robot nav-

igation. Many navigation problems are posed as determining a robot’s path by a

potential field.

There is a long history of investigation into the characteristics of potential fields

induced by physical phenomena and how objects are affected by these fields. Some of

the earliest work, related to the study of gravitational, electric and magnetic fields, as

well as topological properties of such fields, was pioneered by Newton, Gauss, Laplace,

Lagrange, Faraday, and Maxwell [98, 125].

Potential functions for robotic navigation have been studied extensively as tools

for determining a virtual field which a robotic element can follow to a goal while

avoiding obstacles. See Choset et al. [36] for an in-depth discussion. Khatib proposed

a model where a goal location is represented as an attractor, obstacles are represented
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as repulsers, and the overall field is determined by the superposition of these fields

[99, 100]. While these fields are typically referred to as potential fields, they are

actually treated as vector fields determining the movement vector for the robot at

any location in the space. While moving, the robot performs simple gradient descent

on this space, and the objective is to define attractive and repulsive fields such that the

robot will always end up at a local minimum created at the goal. Several extensions

exist to this classical approach, for example to prevent the robot from getting stuck

at a local minimum [39] and to deal with moving obstacles [140, 100].

Rimon and Koditschek addressed this problem by determining the attractive and

repulsive potential functions necessary to guarantee unique minima [156]. They ac-

complished this by defining functions over a “sphere world” where the entire space

and all obstacles were restricted to be n-dimensional spheres. They discovered a

mapping from this solution to other types of worlds such as “star-shaped worlds”,

allowing for a general solution to this problem. Connolly et al. [39] use harmonic

functions in the repulsive and attractive functions to avoid local minima.

The concept of distributed potential fields has also been studied in various con-

texts. Li et al. [118] examined how to directly apply potential functions in a dis-

tributed fashion over sensor networks, focusing on formulating the algorithm in a

distributed manner. Pimenta et al. [150] addressed the robot navigation problem

by defining force vectors at the nodes of a graph. Finally, research in distributed

manipulation has examined how to leverage many actuators to perform coordinated

manipulation, focusing primarily on the use of vibratory fields to place and orient

parts [23, 20, 184, 108, 201].

To actively construct potential fields to steer a mobile robot subject to uncertainty

in motion and sensing, we build on previous results in motion planning under uncer-

tainty [111]. Motion planners using grid-based numerical methods and geometric
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analysis have been applied to robots with motion and sensing uncertainty using cost-

based objectives and worst-case analysis [25, 112, 111]. Markov Decision Processes

have been applied to motion planning with uncertainty in motion, but these methods

generally require direct observation of the state as the robot moves [44, 57, 9, 111].

To address motion uncertainty, Alterovitz et al. introduced the Stochastic Motion

Roadmap (SMR), a sampling-based method that explicitly considers models of mo-

tion uncertainty to compute actions that maximize the probability that a robot will

reach an end location [9]. Lazanas and Latombe proposed a landmark-based ap-

proach to robot navigation in which the robot has improved sensing and actuation

inside landmark regions, reducing the complexity of the motion planning problem to

moving between these regions [113].

Our navigation work on Actuator Networks, described in Chapter 7 has two dis-

tinct fundamental differences from previous approaches. Firstly, Actuator Networks

do not require direct sensing of a robot’s location after the first timestep, however the

robot must always be able to sense the fields emitted from the actuators. Secondly,

whereas past research has focused on modeling a robot’s environment and navigation

instructions with potential fields or other virtual forces that can take on arbitrary

shape, our work considers a network of actuators where signals can only be generated

at the actuator locations. As the actuators emit physical signals, rather than virtual

ones, there is a limited class of fields which each actuator can emit. To overcome the

additional restrictions of our problem, the potential fields in our Actuator Network

formulation transition at discrete time steps, and problems related to local minima

are avoided by steering the robot through waypoints, rather than directly from start

to end location. As in SMR, we use the objective of maximizing probability of suc-

cess over a roadmap. But unlike SMR, which assumes perfect sensing, the maximum

probability path for an actuator network must be computed before plan execution is

begun since sensing feedback is not available.
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2.4 Probabilistic Modeling and Inference For

Tracking

To localize and track the various objects for our applications, we need a theoreti-

cally sound framework to model these problems. In our applications, we have noisy

sensor readings of the objects we track, and noisy information about how the objects

move over time. We model both of these types of information using probability dis-

tributions. Our approaches are methods of inference, where we use observations, and

noisy probabilistic models, to determine the posterior distributions over unobserved

random variables. As guided by principles of Structured Tracking, we use dynam-

ics models to improve the accuracy, robustness to difficult cases, and computational

complexity of our estimates. We refer to the model of how a sensor responds to the

stimulus of the object it observes as an observation model, and refer to the model of

how the object moves over time as a dynamics model.

There are a number of methods for inference when the sensors directly provide

a noisy estimate of the state of the object, and the object’s new state is determined

solely by the previous state. Distributions with this structure are Hidden Markov

Models (HMM) [162]. One widely-used method for inference in continuous state

HMMs, is Kalman Filtering [95], where distributions are limited to linear functions,

with additive Gaussian noise. The Extended Kalman Filter (EKF) [115] and the Par-

ticle Filter [162] are approximate methods which can be applied to broader classes of

models. The Extended Kalman Filter relaxes the linear and Gaussian constraints to

distributions that are differentiable. It linearizes the distribution around the current

estimate, and then uses the Kalman Filter’s approach. In the work of this Disserta-

tion, we focus on an alternative, non-parametric approach, Particle Filtering, where

distributions are represented with a set of samples, and the density of samples is

proportional to the probability density function (PDF) of the distribution it approx-
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imates. The distinction between parametric and non-parametric approaches is that

in parametric approaches, the parameters that describe a distributions do not scale

with the amount of data. For instance, in a Gaussian distribution, it always only has

two parameters, a mean and a standard deviation. In a non-parametric method, we

represent a distribution with samples. In our applications, we frequently choose Par-

ticle Filtering because the distribution of the sensor’s estimate of the tracked object’s

state is non-Gaussian, and thus methods like Kalman Filtering cannot be applied.

In some of our later localization and tracking work, we use different forms of Belief

Propagation algorithms [148], as a means of inference. One such method, Nonpara-

metric Belief Propagation (NBP) [183] can be viewed as a generalization of Particle

Filters to domains with richer, non-temporal structure, or more precisely, graphical

models that cannot be represented as an HMM. For example, we can use it to perform

inference over spatial, probabilistic constraints between pairs of random variables. To

make this more concrete, we can have random variables which represent object lo-

cations, and have noisy inter-distance sensor readings, which describe probabilistic

constraints about how far neighboring sensors can be positioned relative to one an-

other. We then can use these local constraints and Belief Propagation to determine

the most likely configuration of objects, and thus, their locations.

2.4.1 Hidden Markov Model

A Markov Model has the property that the state of a system is only dependent on

the previous state. More formally, the relations between all states have the property

for timesteps 0, . . . , τ :

P (Xτ |Xτ−1, . . . , X0) = P (Xτ |Xτ−1).

In a HMM, the state cannot be observed directly, and instead is performed indirectly

through some correlated observation. For instance, sensory information could provide
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Figure 2.1. A graphical model of a Hidden Markov Model. The nodes in the graph
represent random variables, and a directed edge represents dependence between ran-
dom variables. Direct arrows denote which parent nodes directly influence child nodes,
which provides a graphical representation of how to decompose a joint distribution.
For more details, please see a summary on directed graphical models [162]. The ar-
rows from all timesteps from state X to observations O indicate the noisy observation
of the true state. The arrows for the state from one timestep to the next, for instance
Xτ−1 to the next Xτ , capture the Markov property.

a noisy estimate of an object’s true state. The canonical example of a graphical model

for an HMM is provided in Figure 2.1. More information about graphical models can

be found in Section 2.4.4, where we focus on undirected graphical models, while

Figure 2.1 uses a directed graphical model formulation.

2.4.2 Importance Sampling

Importance Sampling [49] is a fundamental technique used by both Particle Fil-

tering and NBP approaches. For many inference tasks, we wish to estimate the target

density function p(X) using samples. However, for many of these distributions, we

are unable to directly draw samples from p(X). Fortunately, because we are often

able to evaluate the contribution of a pdf at a specific state, which is often given in

closed form, we are able to use the importance sampling approach to estimate the ex-

pectation of any function of the pdf E(f(X)). We draw samples x(i) from a proposal

density function q(X), which is chosen by those designing inference algorithms to be

similar to the target density function. The more similar the functions, the fewer sam-

ples will be required to accurately estimate the expectation of the target density. As
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determined by importance sampling methods, we use the proposal density function

to assign a weight w(i) ∝ p(x(i))/q(x(i)) to each sample x(i). We can then estimate

the expectation of f(X) by weighting each state x(i) by w(i), which is referred to as

the importance weight. This specific weighting allows us to draw samples to estimate

the expectation of any function f(x) because

E(f(X)) =
∫
f(x)p(x)dx

=
∫
f(x)q(x)p(x)

q(x)
dx

=
∫
f(x)q(x)w(x)dx

.

Thus, these weighted samples describe all higher moments (or more generally signif-

icant statistics of any distribution). As the number of samples approaches infinity,

the weighted samples approach the true distribution. In many instances, including

Particle Filtering and NBP, these weighted samples are resampled with replacement,

so that we have a number of samples with uniform weight, which represent the dis-

tribution, and the more samples there are in a specific state, the greater the PDF at

that state.

2.4.3 Particle Filtering

While there are many types of Particle Filters, our approaches use the Sampling

Importance Resampling (SIR) Filter as described in [12, 162]. It is a non-parametric

method for performing state estimation of HMMs over discrete time. The state at

the timestep τ is represented as a random variable xτ and the evidence of the hidden

state, in our case the sensor model, is represented as zτ . There are three distributions

needed for SIR Particle Filtering: the prior probability distribution of the object’s

state P (x0), the dynamics model (also referred to as a transition model) P (xτ |xτ−1),

and the observation model (also referred to as a sensor model) P (zτ |xτ ). These de-

scribe the probability distributions for the edges in the graphical model illustrated
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in Figure 2.1. The prior describes the initial distribution of the object’s state. The

transition model describes the distribution of the object’s state at the next itera-

tion, given the current object state. The observation model describes the distribution

of observations resulting from a specific object’s state. Particle Filtering uses a set

of samples of the state, or “particles.” At each iteration, each particle is advanced

according to the transition model, and then assigned a probability according to its

likelihood using the observation model. After all particles have a new likelihood, they

are resampled with replacement using the relative probabilities determined via the

observation model. This weighting and resampling makes use of importance sampling,

where the proposal distribution, q(x), is the observation model. The result of this

approach is a distribution of new particles which have integrated all previous observa-

tions and are distributed according to their likelihood. After performing this form of

inference, the samples are distributed proportionally with the posterior distribution

P (xτ |z0:τ ). Thus, the more samples that are within a specific state, the more likely

that the indirectly observed object is actually in that state. A visual depiction of the

algorithm is presented in Figure 2.2.

Collect Sensor 

Information

zt

Generate Samples From 

Transition Model 
Resample According to 

Weights

Use generated samples 

representing 

P(xt|z0:t)

Transition Model 

P(xt|xt-1)

Weight Samples with 

Observation Model 

P(zt|xt)

Weights

Figure 2.2. An overview of one iteration of Particle Filtering for tracking at time τ .
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Derivation of Particle Filtering

Now that we have established importance sampling, we can illustrate how Particle

Filtering is derived using importance sampling. In most Particle Filtering applica-

tions, it is possible to draw samples for the next timestep from an object’s transition

model, as the transition model describes what objects’ new state will be given its

previous state. We can achieve this because the object dynamics directly describes

how the object might evolve over time. However, it is natural to describe an observa-

tion model in terms of a PDF. Therefore, we will use importance sampling where we

transition the samples from the previous timestep to get our proposal distribution,

and then weight these samples by the observation model to achieve the posterior

distribution P (xτ |z0:τ ) that we would like to estimate.

We have a set of samples drawn from P (xτ |z1:τ ) from the previous iteration. We

transition these samples according to the transition model P (xτ+1|xτ ), which results

in a new distribution of samples distributed according to P (xτ+1|z1:τ ). We then weight

each newly transitioned sample by the observation model P (zτ+1|xτ+1). According

to importance sampling, because the weight w(i) = p(x(i))/q(x(i)), we know that the

target distribution p(x(i)) = w(i)q(x(i)). By weighting and resampling the transi-

tion model, the samples are distributed proportionally with P (zτ+1|xτ+1)P (xτ+1|z1:τ )

which is also equal to P (xτ+1|z1:τ+1), as shown in Proposition 1. The α term in Propo-

sition 1 is a normalizing constant, as P (zτ+1|xτ+1)P (xτ+1|z1:τ ) does not describe a

probability without ensuring that the sum of the probabilities of all states equals 1.

This is accomplished implicitly in the reweighting step, as we make sure that the sum

of the weights of all samples equals 1. Thus, the weighting and resampling step gives

us the distribution we wish to estimate P (xτ+1|z1:τ+1).

Proposition 1.

αP (zτ+1|xτ+1)P (xτ+1|z1:τ ) = P (xτ+1|z1:τ+1),
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Proof.

P (xτ+1|z1:τ+1)

= P (xτ+1|z1:τ , zτ+1)

(using Bayes rule)

= P (xτ+1,z1:τ ,zτ+1)
P (z1:τ ,zτ+1)

= P (zτ+1|xτ+1,z1:τ )P (xτ+1|z1:τ )P (z1:τ )
P (zτ+1|z1:τ )P (z1:τ )

= P (zτ+1|xτ+1,z1:τ )P (xτ+1|z1:τ )
P (zτ+1|z1:τ )

= αP (zτ+1|xτ+1, z1:τ )P (xτ+1|z1:τ )

(by the Markov Property of the Evidence Model)

= αP (zτ+1|xτ+1)P (xτ+1|z1:τ )

(2.1)

2.4.4 Inference over Undirected Graphical Models

Graphical modeling theory allows us to describe problems that are more general

than HMMs. As shown in Figure 2.1, HMMs can be described by a specific graphical

model. Inference techniques over graphical models allow us to address a broader class

of problems. We begin by providing background on graphical models, and then turn

to discuss message-passing algorithms, including the standard and reweighted sum-

and max-product algorithms, and a non-parametric sum-product algorithm.

Undirected Graphical Models

We model the relationships among the random variables in some of our track-

ing problems using an undirected graphical model, or pairwise Markov random field

(MRF) [93]. This is in contrast to directed models, such as those used to illustrate
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an HMM in Figure 2.1. This model is specified via an undirected graph G, with

vertex set V = {1, . . . , n} and edge set E. Each node s ∈ V is associated with a

random variable xs representing (for our purposes) some type of sensor measure-

ment or a quantity of interest, such as the temperature in a particular location or a

pallet’s location. These random variables can take values in a discrete space (e.g.,

X = {0, 1, . . . ,m− 1}), or in some continuous space (e.g., X = R). The distributions

of discrete random variables are typically represented by histograms, and distribu-

tions of continuous random variables are often represented either with a small number

of parameters (like a Gaussian), or using a non-parametric approach (such as sam-

ples). For notational simplicity, when we discuss algorithms that involve only a single

timestep, like in Section 5.3 on static localization, we denote node variables as xs. For

the tracking problems considered in Section 5.4, they become temporal states xs,τ .

The graph G specifies a factorization of the joint distribution of these random

variables into a product of local, non-negative compatibility functions. In particular,

for the collection of random variables ~X = (X1, . . . , Xn), we associate with each

vertex s a function ψs : X → R+ (called single-site compatibility function), and with

each edge (s, t) a function ψst : X ×X → R+ (called edgewise compatibility function).

Under the MRF assumption, the joint distribution of ~X factorizes as

p(~x) =
1

Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E

ψst(xs, xt) (2.2)

Here, Z is a normalization constant, and the compatibility functions encode the

information provided by dynamics models and observed sensor readings. Although it

can be convenient to also define compatibility functions on larger subsets |S| > 2 of

nodes, there is no loss of generality in making the pairwise assumption (2.2).
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Statistical inference in MRFs

Given an MRF of the form (2.2), it is frequently of interest to compute marginal

probabilities at a particular node (or over some subset of nodes). Such marginalization

problem involves summing over (subsets of) configurations, to determine marginal

probability distributions. In our problem, this would result in the marginal distribu-

tions of the locations of each robot at each timestep given the observed inter-distance

readings. This problem is computationally challenging because the number of terms

in the summation grows exponentially in the size of the network (more specifically,

|X |n for a discrete MRF). For graphs with special structure—in particular, trees and

more generally graphs of bounded treewidth1—the marginalization problem can be

solved exactly with the junction tree algorithm [110], albeit with exponential com-

plexity in treewidth. Paskin et al. [147] developed and implemented a robust architec-

ture for the junction tree algorithm, suitable for performing exact inference in sensor

networks. However, many connectivity graphs topologies commonly used to model

sensor networks, including grid-based graphs and random geometric graphs, have un-

bounded treewidth, so the corresponding graphical models have cycles. Because the

junction tree inference algorithm is exponential in treewidth, approximate algorithms

are needed in practice.

Belief Propagation Algorithms

Belief Propagation algorithms (BP) [148] are a general class of inference algo-

rithms for graphical models. BP algorithms perform inference via message passing,

where each node s in the MRF iteratively integrates information via a local compu-

tation, and then transmits a summary message to each neighbor t ∈ Γ(s), hence, the

belief propagates from random variable to random variable. In general, this message

1In loose terms, a graph of bounded treewidth is one which consists of a tree over clusters of
nodes; see the paper [110] for further details.
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Mst(xt) encodes the sufficient statistics from node s needed for node t to perform the

next round of computation. There are different variants of Belief Propagation algo-

rithms for inference, including the sum-product updates for approximate marginal-

ization, and the max-product updates for approximate maximization (or MAP). For

tree-structured graphs (and with modifications for junction trees), both forms of

these message-passing algorithms are dynamic programming algorithms, which ex-

actly compute the posterior marginal distributions ps(xs) for all nodes s ∈ V . The

same updates are widely applied to general graphs with cycles, in which case they

provide approximate solutions to inference problems. When executed on graphs with

cycles as approximation algorithms, they are often called “loopy” Belief Propagation.

In our approaches, our formulations and experiments use the sum-product algorithm,

but other Belief Propagation approaches like max-product could just as easily be

applied.

In 1988, loopy BP was suggested by Pearl[148] (see [138] for historical discussion)

as part of the artificial intelligence community. However, there was limited adoption

of the technique, due to concerns that it was just an approximation algorithm, and no

formal guarantees could be provided about the algorithm’s convergence or accuracy

on graphs with cycles. In 1993, turbo codes were independently discovered [18], and

provided decoding performance near the Shannon limit. This was a dramatic advance-

ment, as previous codes were unable to achieve similar performance. In the following

years, researchers showed the equivalence between turbo codes and loopy BP applied

to a specific graphical model [67, 127]. The large improvement of turbo codes over

previous algorithms has led to the application of loopy BP in a broad range of other

machine learning and statistical inference problems [40, 64, 66, 138, 157, 185, 218].

Due to its distributed nature, BP has also been applied to many sensor network ap-

plications [88, 34, 41, 137, 120]. The recent survey paper by Cetin et al. [31] (and

references therein) provides further discussion of the issues that arise with BP in sen-
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sor networks. BP’s general framework and effectiveness at solving inference problems

has spurred research into understanding why the algorithm works so effectively, and

ways of augmenting the algorithm to get better convergence and accuracy guarantees,

which we summarize in the Reweighted Belief Propagation subsection of Section 2.4.4.

The BP algorithm begins by initializing all messages Mst(xt) to constant vectors,

and then updates the messages along each edge according to the following recursion:

Mst(xt)←
∫
xs

ψs(xs)ψst(xs, xt)
∏

u∈N(s)\t

Mus(xs) dxs (2.3)

For discrete variables xs, messages are represented by finite vectors, and the integral

in Equation (2.3) becomes a summation. This BP algorithm is then iterated until

the set of messages converges to some fixed point. The order in which the messages

are updated is a design parameter, and various schedules exist. These schedules can

affect the speed of convergence and can possibly result in different fixed points. Upon

convergence, the algorithms can be used to compute approximations to the marginal

distributions at each node:

p̂s(xs) ∝ ψs(xs)
∏

t∈N(s)

Mts(xs) (2.4)

Nonparametric BP: Distributions as Samples

The computation of the Belief Propagation is straight-forward for formulations us-

ing discrete or Gaussian potential functions. However, in domains such as localization

and tracking with only inter-distance estimates, Gaussian models are too restrictive

to correctly model the distributions. Discrete distributions have issues with scalabil-

ity, and we compare discrete BP versus NBP in more detail in Section 5.1. Given

the limitations of previous approaches, we employ Nonparametric Belief Propagation

(NBP) [183], which directly approximates the marginal distributions of continuous

states via a collection of M sample points. Because we use importance sampling, as
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described in Section 2.4.2, to incorporate the information from incoming messages

to compute marginals, we need a way of determining a PDF from incoming message

samples. We accomplish this by smoothing each sample, turning each into a Gaussian.

Thus, messages Mst from node s to node t in our graphical model are represented via

a weighted mixture of M Gaussian distributions

Mst(xt) =
M∑
i=1

w
(i)
st N(xt | x(i)

st ,Σst) (2.5)

Mixture components are centered on samples x
(i)
st from the underlying, continuous

message function, with weights w
(i)
st set via importance sampling principles as de-

tailed below. By choosing a number of samples M , we can tradeoff accuracy versus

computational cost.

A variety of methods are available for choosing the covariance Σst used to smooth

message samples [175] for importance sampling. In many cases, we use the com-

putationally efficient “rule of thumb” estimate Σst = ROT({x(i)
st , w

(i)
st }), which is

proportional to the weighted covariance of the observed samples:

Σst = M
−2
δ+4

M∑
i=1

w
(i)
st (x

(i)
st − x̄st)(x

(i)
st − x̄st)T (2.6)

Here, x̄st =
∑

iw
(i)
st x

(i)
st is the weighted sample mean, and δ = dim(xt). However,

for ring-shaped messages as occur in inter-distance sensor distributions, which are

far from unimodal, the rule of thumb estimator performs poorly, significantly over-

smoothing the estimated density. In such cases, we hardcode Σst as a function of our

noise and our number of samples. For instance in our Sparse Perceptive Pallets prob-

lem, we set Σst = σ2
νξMI, where σ2

ν is the variance of the noise added to inter-distance

sensor readings of neighbors. ξM is a constant calibrated offline to the number of

samples M .
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Reweighted Belief Propagation

In this section, we first describe the family of Reweighted Belief Propagation (RBP)

algorithms, and then illustrate how a particular choice of edge weights yields the

standard Belief Propagation algorithm. Various researchers have studied and used

such reweighted algorithms for the sum-product updates [117, 202], generalized sum-

product [208], and max-product updates [203, 104, 129, 217]. RBP is a larger family

of algorithms, which includes as special cases the standard BP and max-product

algorithms for general networks with cycles. Each algorithm in this family is specified

by a vector ~ρ = {ρ, (s, t) ∈ E} of edge weights. The choice ρst = 1 for all edges

(s, t) ∈ E corresponds to standard Belief Propagation; different choices of ~ρ yield

distinct algorithms with convergence, uniqueness, and correctness and robustness to

message error guarantees for RBP [202, 203] and correctness as well as convergence

guarantees for reweighted max-product [104, 217, 203]. These properties are not

shared by the standard BP algorithm for general networks. Indeed, as illustrated

in Figure 3.1, for certain network structures, the standard BP algorithm can yield

highly inaccurate and unstable solutions to inference problems. In contrast to this

instability, appropriately designed RBP algorithms are theoretically guaranteed to

be robust to both message errors, and model mis-specification. For any fixed set of

edge weights ~ρ, the associated reweighted BP algorithm begins by initializing all of

the messages Mst to constant vectors; the algorithm then operates by updating the

message along each edge according to the recursion

Mst(xt)←
∫
xs

ψs(xs) [ψst(xs, xt)]
1
ρst

∏
u∈N(s)\t

[Mus(xs)]
ρus

[Mts(xs)]
1−ρst . (2.7)

These updates are repeated until the vector of messages ~M = {Mst,Mts | (s, t) ∈ E}

converge to some fixed vector ~M∗. The order in which the messages are updated is

a design parameter, and various schedules (e.g., parallel, tree-based updates, etc.)

exist. These schedules affect the speed of convergence and can possibly result in
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different fixed points. Upon convergence, the message fixed point ~M∗ can be used to

compute approximations to the marginal distributions at each node and edge via

qs(xs) ∝ ψs(xs)
∏

t∈N(s)

[Mts(xs)]
ρst , (2.8)

and also to generate an approximation to the normalization constant. The up-

date (2.7) corresponds to the sum-product algorithm; replacing the summation
∑

xs

by the maximization maxxs yields the reweighted form of the max-product algorithm.

For the special setting of unity edge weights ρ = 1, the update equation (2.7) cor-

responds to the standard Belief Propagation algorithm (2.3). For any tree-structured

graph, this algorithm is exact, and can be derived as a parallel form of dynamic

programming on trees. On graphs with cycles, neither standard Belief Propagation

(nor its reweighted variants) are exact. In this context, one interpretation of Belief

Propagation is as a Lagrangian method for solving the so-called Bethe variational

problem (see [219] for more details). This interpretation has proven to be a useful

method for understanding properties about Belief Propagation such as convergence,

and understanding why it works so frequently in practice.

Algorithmic stability and robustness

In the case of standard BP (ρst = 1 for all edges (s, t)), there can be many fixed

point solutions for the updates (2.7), and the final solution can depend heavily on the

initialization. In contrast, for suitable settings of the weights [202] different from ρst =

1, the updates are guaranteed to have a unique fixed point for any network topology

and choice of compatibility functions. Moreover, such reweighted BP algorithms are

known to be globally Lipschitz stable in the following sense [202]. Suppose that q(ψ)

denotes the approximate marginals when a RBP algorithm is used for approximate

inference with data (compatibility functions) ψ. Then there is a global constant L,

depending only on the MRF topology, such that ‖q(ψ)− q(ψ′)‖ ≤ L‖ψ − ψ′‖, where
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‖·‖ denotes any norm. In loose terms, this condition guarantees that bounded changes

to input yield bounded output changes, which is clearly desirable when applying an

algorithm to statistical data. For special choices of compatibility functions (but not all

choices), the standard BP updates are also known to be stable in this sense [188, 86].

Our experimental results described in Section 3.4 confirm the desirability of such

stability.
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Chapter 3

Safety: StatSense

3.1 Introduction

Recent advances in hardware and software are leading to sensor network appli-

cations with increasingly large numbers of motes. In such large-scale deployments,

the straightforward approach of routing all data to a common base station may no

longer be feasible. Moreover, such an aggregation strategy—even when feasible—can

be wasteful, since it ignores which aspects of the data are relevant (or irrelevant)

to addressing a given query. Consequently, an important research challenge is the

development and practical implementation of distributed algorithms for performing

data fusion in an in-network manner, thereby leading to useful statistical summaries

of sensed measurements [222, 31].

Various problems that arise in sensor network applications, ranging from es-

timation and regression (e.g., predicting a “smoothed” version of a temperature

gradient) to hypothesis testing (e.g., determining whether or not a fire has oc-

curred), are particular instances of statistical inference. Past work on sensor net-

works [34, 31, 41, 120, 137, 147] has established the utility of formulating such in-
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Figure 3.1. Graph of error versus iteration number for message-passing on a 9 × 9
nearest-neighbor grid. Standard Belief Propagation (BP, green curve with high error)
vs. reweighted Belief Propagation (RBP, blue curve with low error).

ference problems in terms of Markov random fields, a type of graphical model in

which vertices represent variables of interest and edges correspond to probabilistic

constraints between them. Moreover, given such a graphical model, it is possible to

define simple message-passing algorithms for performing inference, specifically vari-

ants of Belief Propagation, in which any given node passes “messages” to its neighbors

that represent statistical summaries of local information relevant to a global compu-

tation. In a sensor network scenario, each mote is assigned a subset of variables of

the Markov random field and we use the distributed wireless network of motes to

execute the message-passing algorithm. The fact that Belief Propagation algorithms

for graphical models require no global coordination translates to very simple and ro-

bust message passing algorithms for the sensor motes. The mapping of the graphical

model to sensor motes and related issues are discussed in subsequent sections.

For statistical inference, a number of researchers [41, 137, 120] have studied the

use of standard BP for sensor networks at both the theoretical and simulation level.

However, the work described here is (to the best of our knowledge) the first to ac-

tually implement a class of loopy message-passing algorithms—including BP as one

exemplar—for sensor motes. More specifically, we design and implement an architec-
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ture for implementing RBP algorithms in real sensor networks. Our design does not

rely on infrastructure such as reliable messaging, time synchronization and routing.

We present simulation results evaluating algorithm performance under the real-world

problems of failing motes and communication problems of failing links, asymmetric

links, and dropped messages. We also show that intelligent scheduling, with greater

communication between nodes on the same mote than nodes across motes, can make

the algorithms converge with much less communication. We present experimental

results from a prototype implementation using Mica2 motes where we infer the tem-

perature at unobserved locations within 3 degrees, over a 45 degree temperature

range. Our nesC implementation is modular and can be easily adapted for any mes-

sage passing algorithm and scheduling policy, which as we show, is useful for numerous

applications.

3.2 Proposed Architecture

In the following section, we present StatSense, an architecture for implementing

RBP algorithms in sensor networks. Our primary focus is the challenges that arise

in implementing message-passing algorithms over unreliable networks with severe

communication and coordination constraints.

3.2.1 Mapping from graphical models to motes

As described in Section 2.4.4, any Markov random field (MRF) consists of a

collection of nodes, each representing some type of random variable, joined by edges

that represent statistical correlations among these random variables. Any sensor

network can also be associated with a type of communication graph, which in general

may be different than the MRF graph, in which each vertex represents a mote and
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Figure 3.2. Illustration of the two layers of the graphical model (left-hand subplot)
and motes (right-hand subplot) used for simulation. Each node in the graphical model
is mapped to exactly one mote, whereas each mote contains some number (typically
more than one) of nodes. The red angle-slashed dots denote observation nodes (i.e.,
locations with sensor readings).

the links between motes represent communication links. As we discuss here, there are

various issues associated with the mapping between the MRF graph and the sensor

network graph [31].

For sensor network applications, some MRF random variables will be associated

with measurements, whereas other variables might be hidden random variables (e.g.,

temperature at a room location without any sensor, or an indicator variables for the

event “Room is on fire”). Any observable node may be associated with multiple

measurements, which can be summarized in the form of a histogram representing a

probability distribution over the data. In this context, the role of message-passing

is to incorporate this partial information in order to make inferences about hidden

variables.

We assume that each node s in the MRF is mapped to a unique mote Γ(s) in the

sensor network; conversely, each mote A is assigned some subset Λ(A) of MRF nodes.

For any node s ∈ Λ(A), the mote A is responsible for handling all of its computation

and communication with other nodes t in the MRF neighborhood N(s). Each node

t ∈ N(s) might be mapped either to a different mote (requiring communication across

motes) or to the same mote (requiring no communcation). Figure 3.2 illustrates one

example assignment for a sensor network with 81 motes, and an MRF with 729 nodes.
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For instance, in this example, mote A is assigned nodes 1,2,3,26,27,28, 55, 56 and 57,

so that Λ(A) = {1, 2, 3, 26, 27, 28, 55, 56, 57}, and Γ(1) = A etc. The sensor associated

with each mote corresponds to an evidence node in the MRF; for instance, {1, 4, . . . ,

82, . . . , 673} are evidence nodes in this example and we represent them as hashed

nodes in Figure 3.2. Similar to previous work [128, 147], we assume a semi-static

topology in creating the mote communication graph, so that we place an edge in this

graph if there is a high-quality wireless communication link between these two motes.

Note that the assignment of MRF nodes to motes may have a substantial impact

on communication costs, since only the messages between nodes assigned to different

motes need be transmitted. There is an additional issue associated with the node-

mote assignment: in particular, the following property is necessary to preserve the

distributed nature of message-passing when implemented on the sensor network link

graph: for any pair (s, t) of nodes joined by the edge in the MRF, we require that the

associated motes Γ(s) and Γ(t) are either the same (Γ(s) = Γ(t)), or are joined by an

edge in the mote communication graph. We refer to this as the no-routing property,

since it guarantees that message-passing on the MRF can be implemented in motes

with only nearest-neighbor mote communication, and hence no routing. Thus, for

a given MRF and mote communication graph, a question of interest is whether the

no-routing property holds, or can be made to hold. It is straightforward to construct

MRFs and mote graphs for which it fails. However, the following result guarantees

that it is always possible to modify the MRF so that this property holds:

Proposition 2. Given any MRF model and connected mote communication graph, it

is always possible to define an extended MRF, which when mapped onto the same mote

communication graph, satisfies the no-routing property, and that message-passing on

the mote communication graph yields equivalent inference solutions to the original

problem.
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Proof. Our proof is constructive in nature, based on a sequence of additions of nodes

to the MRF model such that: (a) the final extended model satisfies the no-routing

property, and (b) running message-passing on the mote communication graph yields

identical inferences to message-passing with routing in the original model. Through-

out the proof, the set of motes A,B,C, . . . and the associated mote communication

graph remains fixed. The number of nodes and compatibility functions in the MRF

as well as the mapping from nodes to motes are quantities that vary. Given any

MRF model with variables (X1, . . . , Xn) and mote assignments (Γ(1), . . . ,Γ(n)), sup-

pose that the no-routing property fails for some pair (s, t), meaning that pair of

motes Γ(s) and Γ(t) are distinct, and not joined directly by an edge in the mote link

graph. Since the mote communication graph is connected, we can find some path

P = {Γ(s), A2, . . . , Ap−1,Γ(t)} in the mote communication graph that joins Γ(s) and

Γ(t). Now for each mote Ai, i = 2, . . . (p − 1), we add a new random variable Yi to

the original MRF; each random variable Yi is mapped to mote Ai (i.e., Γ(Yi) = Ai)).

Moreover, let us remove the compatibility function ψst(xs, xt) from the MRF factor-

ization (2.2), and add to it the following compatibility functions

ψ̃s 2(xs, y2) = I [xs = y2]

ψ̃k (k+1)(yk, yk+1) = I [yk = yk+1] , for k = 2, . . . , (p− 2).

ψ̃(p−1) t(yp−1, xt) = ψst(yp−1, xt).

Here the function I(a, b) is an indicator for the event that {a = b}. The basic

idea is that the variables (Y2, . . . , Yp−2) represent duplicated copies of Xs that are

used to set up a communication route between node s and t. By construction, the

communication associated with each of the new compatibility functions ψ̃ can be

carried out in the mote graph without routing. Moreover, the new MRF has no

factor ψst(xs, xt) that directly couples Xs to Xt, so that edge (s, t) no longer violates

the no-routing property. To complete the proof, we need to verify that when message-
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passing is applied in the mote graph associated with the new MRF, we obtain the

same inferences upon convergence (for the relevant variables (X1, . . . , Xn)) as the

original model. This can be established by noting that the indicator functions I

collapse under summation/maximization operations, so that the set of message-fixed

points for the new model are equivalent to those of the original model.

Thus, we have shown that an edge (s, t) which fails the no-routing property can

be disposed of, without introducing any additional links. The proof is completed by

applying this procedure recursively to each troublesome MRF pair (s, t).

Note that while one can design MRF models and corresponding communication

graphs that contain a quadratic number of problematic edges, in practically inter-

esting models, this transformation will only be rarely required, as discussed in Sec-

tion 3.5.

3.2.2 Message updating

As mentioned previously, the message update scheme is a design parameter. The

most common message update scheme is one in which all nodes update and communi-

cate their messages at every time step according to (2.7), and proceed synchronously

to new iterations. We term this scheme SyncAllTalk.

Unfortunately, several factors discourage the direct application of SyncAllTalk to

sensor networks. First, radio transmission and reception on embedded hardware de-

vices consume nontrivial amounts of energy. Passing messages inter-mote is expensive

and may overburden the already resource-constrained network. On the other hand,

passing messages intra-mote incurs no significant energy cost because it is entirely

local. This dichotomy indicates that we should limit messaging across motes when

possible. Second, the SyncAllTalk protocol relies on synchronous message passing
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that inherently exhibits “bursty” communication patterns. For shared communica-

tion channels such as wireless, burstiness results in issues such as the hidden terminal

problem, which further exacerbates the cost of radio transmission and reception. Last,

for many situations, we expect sensor informativeness to vary greatly. For example,

in a building monitoring scenario, the first sensor to detect a fire will generate much

more informative messages than other sensors. Other scenarios have also resulted in

similar observations [147]. Thus, evidence nodes, which often correspond directly to

sensors, vary greatly in informativeness. We would like to favor more informative

messages and thereby accelerate the rate of convergence.

We have investigated a number of schemes which take advantage of these factors.

The first scheme, SyncConstProb, exchanges all intra-mote messages at each time

step as before, but only exchanges each inter-mote message with probability p at

each time step. This means there is a direct decrease in the average period of inter-

mote message transmission from once every time step to once every 1/p time steps.

This scheme can trade convergence time for communication overhead. Probabilistic

sending also reduces the burstiness that causes the hidden terminal problem.

We can further decrease burstiness by relaxing the global time constraint. Instead,

each mote proceeds at its own local start time and clock rate. As an additional benefit,

this scheme does not rely on any time synchronization service. We refer to this scheme

as AsyncConstProb.

Our last scheme, AsyncSmartProb, makes the message transmission probability

proportional to the informativenss of the message. Rather than reference a global

constant probability of sending, p, each host sends with probability determined by

some measure of distance between the old and new messages (cf. [31] for related

ideas). One possible metric that we explore here is total variation distance raised to
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power η between the old and new messages:

psend(M
′
st) =

(
1

2

∑
xt

|M ′
st(xt)−Mst(xt)|

)η

∈ [0, 1]. (3.1)

Here M ′
st denotes a new message that we may want to send from node s to node t,

Mst denotes the previously sent message from node s to node t and η is a tunable

“politeness” factor. Note that if η ≈ 0, then p ≈ 1 so that messages are almost always

sent, whereas for very large η, only the most informative messages have a substantial

probability of being transmitted.

All of the message passing schemes we investigate are extremely simple to imple-

ment, requiring no additional service infrastructure and operating exclusively with

local computation. The traditional BP literature has proposed more sophisticated

schemes in which all nodes exchange messages along graph overlays in organized se-

quence e.g. from the root of the overlay breadth-first. Unfortunately, these schemes

typically require global coordination and are thus not as readily applicable in a sensor

network context.

3.2.3 Handling communication failure

In general, when adapting algorithms to run on sensor networks, one must deal

with network problems such as unreliable or asymmetric network links and mote

failure. In the case of RBP, however, little adaptation is required. When a mote

fails, the system simply ends up solving a perturbed inference problem on a reduced

graphical model with all the nodes that belonged to that mote removed. If a network

link fails, the resulting computation is equivalent to removing the corresponding edges

from the graphical model. For both the case of mote and edge removals, we find

empirically that the resulting increase in inference error remains localized near the

removed nodes (or edges). The boundedness and localization of the error is again
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consistent with theoretical results on the Lipschitz stability of RBP algorithms [202,

159] (see also the Algorithmic Stability and Robustness subsection of Section 2.4.4 ),

in that perturbations cause bounded changes in the algorithm output. We also see in

our evaluation (see Section 3.4) that causing links to be asymmetric induces limited

error.

3.3 Implementation

In order to provide a robust and easily extensible system for performing RBP on

sensornets, we implemented a general Belief Propagation framework in TinyOS/nesC.

A diagram of our system is shown in Figure 3.3.
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Figure 3.3. The StatSense architecture as implemented in nesC.

The core component of our design is the inference module. It receives incoming

messages from other motes via the network interface module, new sensor readings

via the sensor scheduler module, and instructions on when to compute new messages

from the inference scheduler module. When instructed to, it uses the incoming mes-

sages and sensor data to compute its outgoing messages and sends any inter-mote
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message to their destination via the network interface module. It handles intra-mote

communication via loopback.

The network module provides very simple networks services such as buffering,

marshalling and unmarshalling for incoming and outgoing messages. As a result of

the robustness of RBP, we do not need any reliabile delivery. It is also the natural

place to extend to more advanced network services such as data-centric multi-hop

routing for cases of sophisticated node-to-mote mappings.

The sensor scheduler determines how often sensor readings are taken. Likewise,

the inference scheduler determines when the inference module computes new messages

according to one of the scheduling scheme detailed in Section 3.2.2. The inference

scheduler also provides marginals of the graphical model, wrapping the functionality

of the inference module.

We permit the user to input graphical models via configuration files. We created

a pre-processor that converts this file into a nesC header file that contains all the

data that the inference module needs to perform inference such as the compatability

functions and node to mote mappings. Thus, it is straightforward for any StatSense

user to build new graphical models and to use the outputs (marginals) of this model

in her application.

We also architected the system in a modular fashion such that users are free to de-

sign new functional pieces independently. For example, the inference module, which

currently supports BP, is easy to swap out for different message passing algorithms

such as Max-Product, Min-Sum, etc. This allows those with a backgrounds in graphi-

cal modeling to test new algorithms without familiarity with sensornet systems issues.

Likewise, it is easy to explore different scheduling schemes by replacing the inference

scheduler and sensor scheduler.
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3.4 Evaluation

In this section, we evaluate the performance of StatSense and RBP, the main

message-passing algorithm investigated in the StatSense framework. We are primarily

interested in understanding: (1) the impact of sensor noise on inference results; (2)

the resilience of inference in the face of changing network conditions; and (3) inference

convergence under different scheduling schemes.

We used both simulation and a Mica2 mote testbed for our experimental plat-

form. We define error to be the average over all nodes of the difference between the

ground-truth reading and the mean of the distribution described by the correspond-

ing random variable. In all places where appropriate, we use a confidence interval of

95%. For simulation, we determine that our system has converged when the average

L1 distances between the old and the new outgoing message over all edges in the

graphical model drops below a threshold. In our experiements, we used the threshold

of 0.005. For our deployment, we ran inference for 30 iterations.

As a summary of our evaluation, we highlight:

(a) StatSense with RBP shows resiliency to many types of network failures. As

failures increase, error grows linearly with no sharp increases, and maintains

a low absolute value. This empirical behavior is consistent with the theoreti-

cal stability guarantees discussed in the Algorithmic Stability and Robustness

subsection of Section 2.4.4 .

(b) Improved scheduling schemes offer substantial, and in some cases, up to 50%

fewer messages over naive scheduling schemes.

(c) Online inference in our testbed deployments exhibit accurate estimates of the

ground truth.
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3.4.1 The Temperature Estimation Problem

In order to evaluate our system, we examine RBP’s application to temperature

monitoring. In simulation, we model the room as a 27x27 node grid, similar to

Figure 3.2. For each of the 100 training and 10 test runs, we randomly choose a “hot”

and “cold” source placed as a 2x2 cell on this grid. We use the standard discretized

heat diffusion process to calculate realistic steady-state temperatures which act as

ground-truth. Since temperature has strong spatial correlations, our graphical model

is a lattice, where each of the discrete locations in the room has a corresponding node

in the graphical model. The edges in the model connect each node to its four nearest

neighbors in a grid pattern. We discretize the temperature which ranges from 0 to

100 degrees into an eight bucket histogram.

Denote the ith observed temperature reading at location s to be y
(i)
s . Then, given

M i.i.d. samples y(i) = {y(i)
1 , . . . , y

(i)
M }, we determine the compatibility functions

empirically according to the following procedure. We first compute the empirical

marginal distributions

µ̄st(xs, xt) =
1

M

M∑
i=1

δ(xs = y(i)
s )δ(xt = y

(i)
t ). (3.2)

We then estimate the compatibility functions via the equations

ψ̂s(xs) =
1

M

M∑
i=1

δ(xs = y(i)
s ) (3.3)

ψ̂st(xs, xt) =

(
µ̄st(xs, xt)

ψ̂s(xs)ψ̂t(xt)

)ρst

(3.4)

These compatibility functions correspond to the closed-form maximum-likelihood es-

timate for tree-structured graphs, and have an interpretation as a pseudo-maximum-

likelihood estimate for general graphs [202]. For both simulated and deployed experi-

ments, we used the weights ρst for the torus topology which very closely approximate

the weights for a grid.
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We arrange our motes in a 9x9 grid-pattern, and perform a straightforward map-

ping of each 3x3 subgraph of the graphical model onto the corresponding motes.

Each mote is physically located at the top left of its subgraph and is responsible for

computation of messages for the other eight nodes assigned to it (as in Figure 3.2).
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Figure 3.4. Average error as the Gaus-
sian error applied to the sensor observa-
tions increases.
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Figure 3.5. Average error as the number
of dead motes increases.

3.4.2 Resilience to Sensor Error

We begin our tests by evaluating how sensor reading error affects inference per-

formance. We induce unbiased Gaussian error to each temperature reading, with

increasing standard deviation. We observe in Figure 3.4 that the algorithm performs

well as error increases linearly, exhibiting no sharp threshold of breakdown. This is
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Figure 3.6. Average error as the number
of dead symmetric links increases.
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Figure 3.7. Average error as the number
of dead asymmetric links increases.
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because RBP fuses data using correlation across many sensor readings, producing

more robust results.

3.4.3 Resilience to Systematic Communication Failure

In order to test our algorithm’s resilience to various types of failure, we ran several

experiments where we systematically increase the number of such failures. We ran

three different experiments: Host Failure, Bidrectional Link Failure, and Unidrec-

tional Link Failure. In all experiments, the we added Gaussian error with a standard

deviation of 20 percent of the total size of the temperature range to each sensor read-

ing. We select this error model to illustrate the ability for our Graphical Modeling

framework to compensate for extreme reading error caused by both the sensor itself

and external properties imposed by the environment.

In the Mote Failure experiment, we increase the number of motes that are unable

to communicate with all other motes. This removes all nodes in the graphical model

owned by any ”dead” hosts. We limit our error computation to nodes that are on

live hosts. The results for the Mote Failure experiment are shown in Figure 3.5. The

figure illustrates that while error grows gradually as hosts die, the standard deviation

of error increases dramatically. As more motes die, they become much more reliant

on their own readings, and thus are more susceptible to unreliable readings.

In the Bidirectional Link Failure experiment, we gradually sever an increasing

number of links in the network connectivity graph. We currently restrict an edge in

the graphical model to require a link in the network connectivity graph. Potentially,

multicast routing and dynamic detection of link failures could overcome these errors,

at the cost of more messages. Instead, severing a link between two hosts removes all

edges in the graphical model for nodes on the first host that are connected to nodes to
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Figure 3.8. Average error as the proba-
bility of sending in a single iteration for
SyncConstProb increases.
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Figure 3.9. Number of messages sent as
the probability of sending in a single it-
eration increases for SyncConstProb.

the other host, and vice versa. We show the results for this experiment in Figure 3.6,

which shows that the error increases linearly as we sever links.

In the Unidrectional Link Failure experiment, we gradually cause more links in

the network graph to only allow communication in one direction. This reflects asym-

metric communication problems which are experienced in typical sensor-network de-

ployments. The results in Figure 3.7 are nearly identical to those in Figure 3.6.

Therefore, we conclude that our algorithm is resilient to unidirectional link failure.

Note that this robustness is not a consequence of the smoothness and uniformity of

the temperature estimation problem. Preliminary experiments with non-smooth and

non-uniform MRFs where some edges correspond to much higher correlations com-

pared to others, indicate similar behavior and graceful degradation under random

link failures.

3.4.4 Resilience to Transient Failure

The proposed algorithm is very resilient to transient failures. We induce the

equivalent of transient failures in the AsyncConstProb scheduling algorithm, whereby

motes randomly do not transmit at every iteration. The magnitude of transience will
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Figure 3.10. Average error as the expo-
nent of the total variation difference be-
tween old and new messages increases for
AsyncSmartProb.
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Figure 3.11. Number of messages sent as
the exponent of the total variation differ-
ence between old and new messages in-
creases for AsyncSmartProb.

just modify the number of iterations required before convergence. Thus, the algorithm

does not need to rely on any robust messaging protocols. If a transmission does not

get through, resending later will be sufficient for correctness.

3.4.5 Scheduling

For scheduling, we experiment with AsyncConstProb and AsyncSmartProb, eval-

uating the average error over all differences between the mean of the inferred random

variable and the corresponding value of the diffusion process ground truth. We also

evaluate how these algorithms affect the number of transmissions required for con-

vergence.

As was previously discussed in the Section 3.4.4, and as illustrated in Figure 3.8,

the error is not affected by changes in the probability that inter-mote messages are

sent (or get through). Interestingly, the number of messages sent does not monoton-

ically increase as the probability of sending increases. For very low probabilities, the

important messages, which are needed for convergence, do not get transmitted often

enough, and the number of iterations needs to be increased for the algorithm to con-

verge. Therefore, even though the number of messages per iteration monotonically

57



decreases, the number of iterations increases at a rate that ends up increasing the

total number of messages as can be observed in Figure 3.9. It is exactly this idea

of identifying and favoring the important messages that accelerate convergence that

leads to the investigation of AsyncSmartProb.

By changing the politeness constant η for AsyncSmartProb as described in Equa-

tion (3.1), we control the likelihood of transmission as a function of how informative

the message is, as defined by the total variation distance. Setting η = 0, causes

the algorithm to degenerates to AsyncAllTalk. As we increase η, we decrease the

likelihood that the message will be transmitted for the same difference in messages

between the last-sent and current message. Figure 3.10 illustrates that the amount of

error incurred is minimal, while Figure 3.11 shows that we save approximately 50%

of the messages, even compared to the minimum value of AsyncConstProb. Another

interesting property is that the number of messages seems to be monotonically de-

creasing, as opposed to simple AsyncConstProb, which seems to get eventually send

more messages even when decreasing the probability of sending. An advantage of

AsyncConstProb is that modifying the politeness constant η directly trades time to

convergence for the number of messages sent, while a sufficiently small choice of the

probability p to send in AsyncConstProb can increase convergence time while also

increasing messages sent.

3.4.6 Deployment Experiment

In our testbed, we inferred the temperature of a room in unobserved locations

through RBP. We reduced the size of our graphical model to be a 6x6 node lattice,

with each 2x2 section assigned to a host and the mote’s true location again corre-

sponding to the top-left node of its section. This setup yielded a deployment of 9

motes in a 3x3 grid where each mote was 6 inches apart from its closest neighbors
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Figure 3.12. This figure illustrates the two layers of the Graphical Model (left) and
Motes (right) which we used for our in-lab experiment. The red angle-slashed dots
denote observation nodes, ie locations where we have sensor readings, and the blue-
horizontal nodes denote locations where we logged unobserved temperature readings
to determine error.

as we show in Figure 3.12. To create temperature gradients, we used two 1500 watt

space heaters. To calculate our initial compatibility functions, we used the same 9

motes, but at a distance of 3 inches.

Similarly to the simulated experiments, we placed the heaters in 10 different se-

tups, and used the collected temperature data to determine the compatibility func-

tions according to equations (3.2), (3.3), and (3.4). We then ran our test by placing

both space-heaters in the top right corner of our lab, and running Belief Propagation

to infer the temperatures of the unobserved nodes. We compare the inferred temper-

atures at unobserved locations with the temperatures determined using 3 additional

”spying” motes that collected direct measurements during the experiment, but were

not involved in any information provided to the 9 Belief Propagation motes.

We plot the distributions of the nodes at the locations of the three spying motes in

Figures 3.13, 3.14, and 3.15, which are discretized as histograms. We can see that the

confidence of motes in their unobserved variables varies greatly, for instance there is

very low variance in Node 8 (Figure 3.13), while significantly more variance in Node

11 (Figure 3.14). The red bar indicates the bucket in which the ground truth lies.

The figures illustrate that the mean of this distribution well approximates the actual

sensor reading. Interestingly, the distribution for Node 11 is bimodal. This is because
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Figure 3.13. This is the histogram of
the inferred distribution on Node 8 of
our graphical model. The red bar is the
bucket for the actual sensor reading.
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Figure 3.14. This is the histogram of
the inferred distribution on Node 11 of
our graphical model. The red bar is the
bucket for the actual sensor reading.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

Temperature Bucket

P
ro

b
a
b
ili

ty

Figure 3.15. This is the histogram of
the inferred distribution on Node 22 of
our graphical model. The red bar is the
bucket for the actual sensor reading.

when learning the model, the system never observed adjacent nodes both resolving

to a temperature bucket of three. In this test, one of the readings next to Node 11

was 3, which resulted in the bimodal distribution. Table 3.1 shows the actual and
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Node actual temp mean of marginal
8 24.5◦C 23.2◦C
11 43.6◦C 41.4◦C
22 27.5◦C 25.3◦C

Table 3.1. Comparison between actual and inferred temperatures for three nodes in
the graphical model

inferred temperatures for these three nodes. The inference is correct to within 2.2◦C

for the three ”spy” nodes. Lastly, we ran experiments to validate our simulations.

We ran inference on the mote deployment with the model we learned from the real

temperature readings. We then ran inference in simulation using the same graphical

model and the sensor readings obtained from the motes. The results were identical

to four significant figures.

3.5 Conclusions and Future Work

We presented a general architecture for using message passing algorithms for in-

ference in sensor networks, using reweighted Belief Propagation. We demonstrate

that RBP is robust to communication and node failures and hence constitutes an

effective fit for sensor network applications. The robustness of our architecture is

demonstrated in simulations and real mote deployment. An important feature of the

proposed scheme is that it does not rely on a network layer to provide multi-hop

routing and that our architecture provides meaningful results even when the motes

experience severe noise in measurements or link failures. Note that, even though we

show theoretically that any graphical model can be mapped to motes without re-

quiring routing, in practice, some long-range correlations might introduce additional

variables. This can be circumvented by simply ignoring the long-range links. In our

temperature experiments, we found that no such long-range correlation edges existed.
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We therefore believe that our architecture will be useful for many applications that

involve statistical inference or data uncertainty in sensor networks.

Currently, our architecture does not consider dynamic models that exploit time-

correlations. This extension could be useful for applications such as tracking and

our work can be extended to exploit such temporal correlations. Addressing mote

mobility is another issue we plan to explore especially the implications it might have

in the dynamic mapping of nodes to motes.
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Chapter 4

Safety: Dense Perceptive Pallets

4.1 Introduction

Effectively managing materials stored in warehouses is a multi-billion dollar global

challenge. Known methods monitor entry and exit of materials, but do not monitor

locations of materials. Often, materials are subject to regulatory requirements in

terms of volumetric and spatial constraints. For example, US regulations for bio-

pharma production require more than 1000 gallons of liquid corrosive (acid) material

cannot be stored in one warehouse, and that an acid cannot be stored within 20 feet

of a base and a flammable material cannot be stored within 20 feet of an oxidizer.

Maintaining these constraints during transit and storage is a major challenge.

We consider the use of wireless sensor networks to automatically track “perceptive

pallets” of materials in a warehouse to monitor such constraints. The system is

required to operate dynamically in real-time, so that whenever a constraint violation

is detected, the system can inform human operators, for instance by sounding an

alarm. We use simulation to study the effects of mote placement: position error as
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Figure 4.1. Measured ultrasound response patterns overlaid with best fit asymmet-
ric (cardioid) response models. Rectangle and arrow depict the orientation of the
ultrasonic microphone. Measured position errors are asymmetric and increase with
angular distance from the positive x-axis.

a function of ceiling height and beacon density. We then perform experiments to

characterize the effectiveness of asymmetric observation models.

One form of wireless sensor technologies for localization combine ultrasound bursts

(chirps) with radio, and compare the time difference of arrival (TDOA) of the signals

to estimate distances. Currently off-the-shelf commercially available motes include

Cricket [134][152], Mica2 [81], and Telos [151]. However, the distance measurements

produced by these motes are noisy due to hardware limitations and environmental

effects.

In our initial study [42], we evaluated the ranging capability of the Cricket Mote,

and discovered that the accuracy of the sensors greatly depends on relative angle

between the transmitting microphone and listening ultrasonic sensor. The experi-

mental results of that study are illustrated in Figure 4.1. In this chapter, we use

the measured sensitivity pattern to develop new statistical observation models that

take into account this angular bias, and show that they reduce spatial uncertainty

64



in position estimates. Experiments suggest that asymmetric observation models can

improve position estimates by as much as 11%.

4.2 Related Work

While distributed sensor tracking is a topic of much research, as discussed in

Chapter 2, we feel it is prudent to highlight specific work relating to supply chain

management and the properties of the Cricket Motes used in our experiments.

4.2.1 Monitoring of Spatial Constraints for Warehouse Man-

agement

Research of warehouse management has mostly focused on optimal deployment

and efficient retrieval [45] according to the principles of supply chain management.

One of the promising technologies is Radio-Frequency Identification (RFID), which

has been introduced to inventory management and storage tracking [131]. Paper [78]

discusses the possibility of using RFID tags to improve the localization of mobile

robots, where the robot carries two overhead RFID antennas to get distance readings

relative to pre-deployed RFID tags and then estimates its location from maps of the

environment. An operational RFID system consists of smart-chip tags embedded

with product information coupled with RFID readers. The system must be centrally

operated with state-of-the-art technologies.

A similar constraint-based distance estimation method has been proposed in [21],

where a spatial distance graph is constructed by labeling nodes with distance con-

straints. Distance intervals were derived by performing a modified Floyd-Warshall

shortest path iteration algorithm for all edges. This could be a promising approach

for distance violation in warehouse management, since it does not involve a com-
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plicated localization algorithm. However, perfect ranging results were assumed to

implement the method, and each node must have enough memory to store the global

graph and distance constraints information.

4.2.2 Pros and Cons of Cricket Motes

The Cricket location system [153] developed at MIT utilizes two types of signals,

radio and ultrasound, and infers distance using the time difference of arrival of these

two signals. The Cricket system implements compensation for the effects of temper-

ature on the speed of sound, interference avoidance for arrival of radio signal and

ultrasonic signals received from different transmitters, communication scheduling to

avoid collision, and Kalman filtering for discarding incorrect distance samples.

In the Cricket localization algorithm, trilateration is utilized to derive the position

of sensor nodes in [153], where a robust quadrilateral is introduced as a clique to avoid

flip ambiguities. Additionally, signal processing in static environments using a least-

square-error trilateration algorithm is used to infer position from multiple sensor

readings. For a mobile environment, Kalman filters were used to derive the location.

However, the selective directional sensitivity patterns of ultrasonic sensor motes make

the measurements too biased, so that trilateration may be inconsistent if some of the

distance readings are too noisy. Although the effects on accuracy caused by distance

and angle were observed in [153], along with the existence of a cardioid sensitivity

pattern, the authors did not explicitly compensate for these observations.

The most commonly recognized type of sensitivity beam patterns seen in ultra-

sonic sensors has one main lobe and several side lobes [37][124]. For the purposes of

this chapter, we abstract the sensitivity pattern to a cardioid shape without side lobes.

In [16] an observation model that accounts for the sensitivity pattern of ultrasonic

receivers is presented. The model incorporates angle and distance measurements;
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however, the sensitivity pattern does not account for received signal behind the mi-

crophone, as observed in a cardioid sensitivity pattern.

We extend the previous research on localization using Cricket motes by explicitly

modeling the effect of the directional sensitivity pattern of ultrasonic sensors and

making use of a probabilistic localization algorithm to derive consistent positions

from noisy distance measurements.

4.2.3 Probabilistic Localization

Localization within a Bayesian probabilistic framework has found widespread ap-

plications in robotics [193], and has been shown to have good performance. More-

over, in some recent studies [166, 182, 189, 109, 50], methods based on a probabilistic

framework have been introduced to localize within a sensor network. Probabilistic

inference is made by observing multiple sets of noisy evidence. It has been shown in

[84], that mobile seeds can be exploited to improve the accuracy of localization, by

using Sequential Monte Carlo localization method.

Kalman filtering (KF) and Extended Kalman filtering (EKF) have been shown

to be effective tools in the context of localization. However, Kalman filtering is

known to be optimal only when both the transition and observation models are linear

Gaussian distributions. This makes Kalman filtering infeasible for pallet monitoring,

since there exist non-Gaussian components in the measurement due to the ultrasonic

sensitivity pattern as illustrated in Section 4.1. As opposed to Kalman and Extended

Kalman filtering, Particle Filtering explicitly approximates a probability distribution

as a sample set. The advantage of Particle Filtering is its capability to represent an

arbitrary probability model and its flexibility in dealing with dynamic and distributed

systems.

Particle Filtering is an implementation of Bayesian filtering based on a Sequential
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Monte Carlo (SMC) method [194]. The features of the method are a probabilistic

transition model between each state and a probabilistic observation model to esti-

mate state by observed evidence. The key of Particle Filtering is the representation

of the posterior distribution by a set of weighted samples (or particles), so that it can

approximately represent any probability distribution. In [166], a Particle Filtering

approach is used to track intruders by a number of infrared sensors with binary out-

puts. The authors equipped the room with an array of binary sensors, characterized

the firing probability and refractory period of these sensors by conditional probability

distributions (CPDF), and derived the posterior probability by observing the firing

events.

It has been shown that the accuracy of Particle Filtering is related to the number

of samples. Therefore, the computation complexity of Particle Filter is directly related

to the number of samples, and the optimal number of particles is difficult to determine.

A computational complexity analysis of Particle Filters can be found in [24]. In our

experience, however, we have found the trade-off between these convergence times

and accuracy to be more than acceptable for the proposed application.

4.3 Problem Statement

The objective of our system is to monitor the location of Cricket sensor motes

in a room of known dimensions. This tracking must operate in real time, and it

must accurately localize both mobile and stationary sensors. In our proposed global

architecture, envisioned in [42], Cricket motes (referred to as Beacons) are statically

mounted in known locations on the ceiling, facing downward. Cricket motes (referred

to as Motes) are also affixed to pallets placed on the floor, facing upward. Refer to

Figure 4.2 for a visual depiction of the described setup.
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Figure 4.2. Depiction of layout of sensors for monitoring the location of hazardous
materials in warehouses. The Cricket motes on the ceiling are referred to as Beacons,
while the Cricket motes affixed to the pallets on the floor are referred to as Motes.

Each Mote broadcasts both an ultrasound pulse and a radio message containing

a unique Mote identifier and a monotonically increasing message number at a pre-

determined rate managed by an internal timer. The message number is used by

the Beacons to differentiate between messages and thus no global synchronization is

required. Every Beacon that receives a radio message and ultrasound pulse computes

its estimated distance from the Mote based on the difference in arrival time of the two

signals. The distance estimates computed by all Beacons are centrally aggregated,

and our algorithm uses these estimates to localize the Motes in discrete time.

4.3.1 Assumptions

It is assumed that the floor and ceiling are both flat and relatively level, and

that all pallets are flat and of a uniform height. Other than the Beacons, Motes,

and pallets, there are no other objects in the room. There is a central computer

that is able to communicate directly with each ceiling-mounted Beacon; this is where

the algorithm is run. It is also assumed that all pairwise distance estimates are

probabilistically independent of each other.
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4.3.2 System Input

The system is initialized with the Euclidean coordinates of each Beacon. The

dimensions of the room are also specified by length, width, and height. The system

collects pairwise distance estimates between some subset of all existing {Beacon,

Mote} pairs at a predefined rate.

4.3.3 System Output

The system computes the estimated Euclidean coordinates of each Mote, with the

objective of minimizing error defined as Euclidean distance between estimated and

true position.

4.4 Using Particle Filtering for Localization

Table 4.1 contains important notation that will be used in the following sections.

In our framing of the localization problem, we run a separate Particle Filter for each

individual Mote. An object’s state at time t, xit, refers to the true Euclidean co-

ordinates of mote i. The observations collected at time t, zit, refer to a vector of

distance estimates computed by the beacons between time t − 1 and time t, rela-

tive to mote i. Our transition model, P(x̂ist|x̂is(t−1)), adds Gaussian noise to the

Euclidean coordinates of x̂is(t−1). The initial distribution of samples, P(x̂is0), places

sample states uniformly at random within the defined space. Our observation model,

P(zit|x̂ist), gives the likelihood of the computed distance estimates based on empirical

data gathered about the sensitivity pattern of the Cricket motes.
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4.4.1 Deriving the Observation Model

It was demonstrated in [42] that the pairwise distance estimates produced by

Cricket motes vary based on the relative angle of the two motes. By the independence

assumption of distance estimates, the observation model is expressed as the following:

P(zit|x̂ist) =
m∏
j=1

P(zijt|x̂ist) (4.1)

Because the locations of all Beacons B are known, given a sample state x̂ist we

can compute the Euclidean distance and relative angle to each individual Beacon j.

Let (xi, yi) represent the state x̂ist, let (xj, yj) represent the Euclidean coordinates of

Beacon j, and let h represent the height of the ceiling to which j is mounted. For

each pair {x̂ist, j}, we can compute d̂ijst and θ̂ijst as follows:

d̂ijst =
√

(xi − xj)2 + (yi − yj)2 + h2 (4.2)

θ̂ijst = arccos

(
h

d̂ijst

)
(4.3)

Using these two aspects of a Mote’s state, we can now express our observation

model as the following:

P(zit|x̂ist) =
m∏
j=1

P(zijt|d̂ijst, θ̂ijst) (4.4)

4.4.2 Using Experimental Data to Model Acoustic Sensitiv-

ity

During the calibration phase, we fit the observation model to the underlying truth

from experimental data. Calibration is performed once before the Particle Filtering
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algorithm is executed. From the results in [42], we can examine the distance estimate

zij produced between a Mote i and Beacon j based on their true relative distance dij

and angle θij. In these experiments, the distance estimates zij were collected for a

variety of {dij, θij} pairs.

Because the acoustic sensitivity pattern of the ultrasound signal exhibits a cardioid

shape, as depicted in Fig 4.1, we assume that the mean, µ, and the variance, σ2 can

be reasonably approximated as a polar function of any arbitrary distance and angle

pair {d, θ}. We refer to this observation model as Asymmetric Polar (AP):

µ(d, θ) = ad cos θ + bd sin θ + c (4.5)

σ2(d, θ) = pd cos θ + qd sin θ + r (4.6)

Using linear regression, we computed the specific values for the coefficients

a, b, c, p, q, r that provided the least squared error over all pairs {dij, θij} for which

there was available experimental data. By preprocessing these coefficients, much of

the computation is implicitly performed by the formulation, rather than at run time.

Given these coefficients, we can compute µ(d, θ) and σ2(d, θ) for any {d, θ}. These

µ and σ2 functions can then be substituted into the standard Gaussian probabil-

ity density function. Thus, the probability distribution given in Equation (4.4) can

be approximated using the following function, instantiated with actual {d̂ijst, θ̂ijst}

values:

P(zijt|d̂ijst, θ̂ijst) =

1√
2πσ2(d̂ijst,θ̂ijst)

exp
{
− (µ(d̂ijst,θ̂ijst)−zitj)2

2σ2(d̂ijst,θ̂ijst)

}
(4.7)

To compare the formulation as a polar function, we constructed a similar observation

model with µ, and σ2 formulated as linear functions of d and θ. This observation

model is referred to as Asymmetric Linear (AL). For this model, Equations (4.5) and
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(4.6) are formulated as follows:

µ(d, θ) = ad+ bθ + c (4.8)

σ2(d, θ) = pd+ qθ + r (4.9)

We then computed this set of coefficients a, b, c, p, q, r using the same approach

as described above. Using these coefficients and the functions in Equations (4.8)

and (4.9), µ, and σ2 can be used in Equation (4.7) without additional modification.

Finally, to test the effect of the relative angle of mote poses when computing

distance estimates, we also constructed an observation model with µ, and σ2 formu-

lated as linear functions of only distance d. This observation model is referred to

as Symmetric Linear (SL). For this model, Equations (4.5), and (4.6) are formulated

as follows:

µ(d, θ) = ad+ 0θ + c (4.10)

σ2(d, θ) = pd+ 0θ + r (4.11)

Again, this set of coefficients a, b, c, p, q, r was computed using linear regression

with b = q = 0. Using these coefficients and the functions in Equations (4.10)

and (4.11), µ, and σ2 can be used in Equation (4.7) without additional modification.

The accuracy with which each of these models localized the Motes is evaluated in

Section 4.5.2.

4.5 Experimental Results

We evaluate the performance of our algorithm with simulator and physical ex-

periments. The objective of the simulator experiments is to determine an acceptable
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physical beacon configuration. To determine which configurations are acceptable, we

look for a layout suitable for a warehouse environment that has estimation error less

than 10 cm. We define estimation error (|xit − x̂it|,∀i ∈M, t ∈ T ) as an objective in

Section 4.3.3.

4.5.1 Simulation Results

(a) Initial Distribution (b) After Convergence

Figure 4.3. Graphical User Interface of Particle Filter simulator. (a) Initial particle
distribution of first iteration. (b) Estimated positions from of the motes. The blue
dots represent the actual poses of motes, red dots for the estimated ones, squares for
beacons and green dots for particles. Though difficult to see, particles are present
under the estimated positions in (b). The length of the line connecting the actual
motes and estimated nodes reflect the errors of estimation.

To describe the best physical configuration of beacons, we visualize estimation

error according to the dimensions of ceiling height and beacon density. We constructed

a simulator that was capable of performing many trials in a short amount of time.

Performance was measured as distance estimation error for various ceiling heights

h (reported in cm) and inter-beacon (beacon to beacon) distances k (reported in

cm). Beacons are evenly spaced at the inter-beacon distance in a grid. Our objective

was to determine an appropriate beacon configuration in order to minimize total

computation expense, total number of needed beacons at a reasonable ceiling height

while still maintaining an acceptable measure of error.

The simulator is implemented in a Java 1.5 environment with an Applet Graphical

74



User Interface (GUI) used to visualize the actual positions, estimated positions, and

particle locations of Beacons and Motes (shown in Figure 4.3). At initialization, a

set of particles for each node is generated with a uniform distribution as shown in

Figure 4.3(a). After computing the observed measurements, the posterior probability

is calculated and the particles converge to an estimated position as shown in Fig-

ure 4.3(b). Each mote is given a random trajectory of (xt, yt) pairs. The trajectory

is generated at each time step by perturbing the current, true position with a sample

drawn from a Gaussian distribution with (µ = 0, σ = 10).

The observation model used for the experiments is Asymmetric Linear. Exper-

iments were run on IBM xSeries 330 machines equipped 1.0 GHz Intel Pentium III

CPUs and 1.5GB ECC PC133 SDRAM. Each experiment consisted of 10 motes, over

10 iterations, with 5000 particles per mote. These experiments had an average run

time of 1.25 minutes.

Figure 4.4. Estimation error against ceiling height. In this representative plot, inter-
beacon distance k = 180 and particle density is 5000. Average error of all 10 nodes
over 10 iterations is shown against each ceiling height. Standard deviation is shown
with vertical bars. A sharp threshold is shown for h > 590.

For our first experiment, we evaluate ceiling height with moving nodes. Ten

motes are placed in the simulator space of 1000x1000 cm size room. Beacon density

is held constant and ceiling height is varied from h = 120, . . . , 640 with a linear step
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Figure 4.5. Estimation error against beacon density. In this representative plot,
ceiling height h = 240 and particle density is 5000. Average error of all 10 nodes
over 10 iterations is shown against each inter-beacon distance. Standard deviation is
shown with vertical bars. A sharp threshold is shown for k > 330.

Figure 4.6. Estimation error along both dimensions studied for beacon configuration.
This plot depicts an “acceptable zone” for beacon configurations. Any configuration
with error less than 10 cm is deemed acceptable.

size of 10. This measurement is evaluated for all beacon densities as described in

the next experiment. As shown in Figure 4.4, distance estimation error increases

proportionally with ceiling height and is sharply thresholded for heights above 590

cm.

In the next experiment, we evaluate beacon density with moving nodes. Again,

ten motes are placed in a simulator space of an 1000x1000 cm size room. Ceiling
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height is held constant while inter-beacon distance is varied from k = 120, . . . , 350

with a linear step size of 10. This measurement is evaluated for all ceiling heights

evaluated in the previous experiment. As shown in Figure 4.5, distance estimation

error increases proportionally with inter-beacon distance and is sharply thresholded

for distances above 330 cm.

Both ceiling height and inter-beacon density are plotted in Figure 4.6. This plot

depicts an “acceptable zone” of inter-beacon density and ceiling height. We define

acceptable to be configurations where the error is less than 10 cm.

4.5.2 Physical Experiment Results

Using the configuration results of the simulator, we installed the motes in our

lab to test performance. The model of the mote was MCS410CA (or Cricket mote

v2), running TinyOS 1.1.7. Using the MIB510CA programming board, the Cricket

software (release 2.3.0) was modified to transmit pairwise distances to a bay station.

None of the on-board distance calculations were modified.

The primary metric of our experiment was again distance estimation error |xit −

x̂it|,∀i ∈ M, t ∈ T . We installed six Cricket motes in beacon mode at a uniform

height of 274 cm with an approximate inter-beacon distance of 198 cm. Beacons were

installed parallel to the floor with ultrasonic sensors directed downward. Rotation

parallel to the floor plane is not explicitly controlled, whereas tilt and yaw are avoided.

A trajectory was then marked on the floor with the same x-y coordinate plane as the

beacons. One cricket was configured as a listener and then moved along the trajectory

on the floor.

In order to apply our algorithm to the sensor evidence, the motes were pro-

grammed to send pairwise distance estimates at a set interval to the bay station.

The experiment is designed to control specific locations at specific iterations. Ac-
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(a) Beacon installation (b) Tracked Mote

Figure 4.7. Installed cricket motes at a uniform height of 274 cm (a). Ultrasonic
sensors are directed downward. Trajectory of the mote as steps are marked on the
floor and measured to get the actual location (b). Mote to be localized is directed
upward.

Figure 4.8. Top view of the lab floor. Lines indicate the actual versus estimated
trajectory in a portion of the lab of 450 cm x 250 cm. The observation model for
this experiment is Asymmetric Polar. The plot depicts one experimental run whose
overall estimation error was closest to the mean reported for the AP observation
model.

cordingly, each iteration is 10 seconds long. To process the algorithm, the recorded

pairwise distances are passed into the simulator to analyze and visualize the esti-

mated positions of the motes. A comparison of actual and estimated trajectory of

the experimental run is shown in Figure 4.8.

We compare the effect on estimation error for the three observation models Asym-
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Figure 4.9. Comparison of the three observation models in this chapter. The pair-
wise distances of 33 iterations from the physical experiment are compared over 9
experimental runs of 50 Particle Filter estimations each. When angle is considered
(AL and AP), error is shown to be strictly less than a distance only observation
model.

metric Polar (AP), Asymmetric Linear (AL), and Symmetric Linear (SL). Using the

same experimental data from the physical experiments, the three observation mod-

els are compared in Figure 4.9. It is shown that an asymmetric observation model

(AL and AP) is strictly better than an observation model that does not consider an-

gle (SL). Moreover, this experiment demonstrates that a linear approximation with

angular dependence of the empirical data of the ultrasonic sensors (AL) has perfor-

mance that is very close to that of an approximation that considers the polar model

of the cardioid sensitivity pattern (AP). The estimation error for each model over all

physical experiments is SL: µ = 4.40, σ = 4.50, AL: µ = 4.01, σ = 4.06, and AP:

µ = 3.91, σ = 4.05. These experiments suggest that asymmetric observation models

can improve position estimates by as much as 11%.
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4.6 Conclusion and Future Work

We consider the use of wireless sensor networks to automatically track “perceptive

pallets” of materials in warehouses for the purpose of monitoring volumetric and spa-

tial constraints. We measure and characterize the ultrasound response from standard

“Cricket” wireless sensor motes and beacons. We develop a non-parametric Parti-

cle Filtering approach to estimate trajectories of moving motes and introduce two

asymmetric observation models that incorporate measured cardioid-shaped response

patterns of ultrasound. We use simulation to study the effects of mote placement:

position error as a function of ceiling height and beacon density, and then perform

physical experiments to evaluate the effectiveness of asymmetric vs. symmetric ob-

servation models for pallet tracking.

The key contribution of our research is to measure the effects of spatial asymmetry

in ultrasonic sensors and to incorporate these sensitivity patterns into the Particle

Filtering observation model.

In future work, we will incorporate the fact that we usually have a precise map

of the warehouse interior. Since ultrasound requires line of sight communication, this

map can account for some of these challenges by explicitly considering known obsta-

cles, known transportation routes, and known storage areas. We will combine this

information with the Particle Filter to further improve position estimates and de-

velop fast algorithms for automatic monitoring of volumetric and spatial constraints.

Additionally, we will expand the physical experimentation to an actual warehouse

environment using the techniques and configurations recommended by this research.
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Table 4.1. Dense Perceptive Pallet Notation

M The set of Motes, i ∈M .

B The set of Beacons, j ∈ B.

S The set of Samples, s ∈ S.

T The set of Particle Filter iteration Times, t ∈ T .

h The height of a mounted beacon, assumed to be a uniform con-
stant.

xit The true state of Mote i at time t. State is defined by Euclidean
(x, y) coordinates.

zij The distance estimate between Mote i and Beacon j during cal-
ibration.

dij The true Euclidean distance between Mote i and Beacon j dur-
ing calibration.

θij The true relative angle between Mote i and Beacon j during
calibration.

zit The vector [zi1t, . . . , zijt, . . . , zimt] of computed distance esti-
mates relative to Mote i at time t, relative to each Beacon j,
where m is the number of Beacons.

x̂it The estimated state of Mote i at time t.

x̂ist The state of sample s representing a possible state of Mote i at
time t.

d̂ijst The Euclidean distance between the sample state x̂ist and Bea-
con j.

θ̂ijst The relative angle between the sample state x̂ist and Beacon j.

a, b, c, p, q, r Coefficients used for experimental data fitting.
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Chapter 5

Safety: Sparse Perceptive Pallets

5.1 Introduction

Collaborative self-localization and tracking using wireless sensors has many ap-

plications such as tracking vehicles on roadways, or firefighters is burning buildings.

These techniques can also be directly applied to our Perceptive Pallets project de-

scribed in Chapter 4, tracking pallets in warehouses, as a mechanism for ensuring

safety. In this chapter, we consider the problem of tracking multiple moving robots

using noisy sensing of inter-robot and inter-beacon distances. In contrast to the dense

perceptive pallets formulation in Chapter 4, the sparse perceptive pallets formulation

in this chapter uses inter-distance readings between pallets (or more generally robots),

as opposed to just using pallet communications with beacons. In our problem, sensing

is local: there are three fixed beacons at known locations, so distance and position

estimates propagate across multiple robots.

Consider a graph where nodes correspond to beacons or mobile robots, and edges

link pairs of nodes for which distance measurements are available. Robots may be

multiple hops away from beacons. This chapter relaxes the requirement from dense
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Figure 5.1. Tracking seventeen robots at first and fourth timestep. The top figures
depict inter-distance sensor connectivity: edges link pairs of robots that share a dis-
tance reading. Three green discs denote fixed reference beacons. True robot locations
are indicated with red crosses. The bottom figures overlay true robot locations with
point estimates of robot location generated by the NBP algorithm, shown as blue
circles (variance is not yet indicated). Note that although robots move substantially
between timesteps and few robots are in direct contact with beacons, error in all cases
is negligible.

Perceptive Pallets described in Chapter 4, where we assumed that beacons were placed

with dense enough spacing such that beacon-only localization was possible, and robots

did not need to communicate directly with one another. The inter-distance tracking

problem is illustrated in Figure 5.1. Inter-distance tracking is also closely related to
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simultaneous localization and mapping (SLAM) problems [191], in which each robot

is treated as a uniquely identifiable, but mobile, landmark.

We formalize the inter-distance tracking problem using a probabilistic graphi-

cal model, which integrates prior estimates about beacon locations, sensor models,

and robot dynamics. In contrast with previous localization methods for networks of

mobile robots, our distributed tracking algorithm is formulated as a variant of the

Belief Propagation (BP) [148] algorithm, known as nonparametric Belief Propagation

(NBP) [183], for performing inference over the graphical model. It is used to infer

globally consistent estimates of robot location from noisy, local distance measure-

ments. We demonstrated the feasibility of running BP in a real network of MICA2

motes for static sensor fusion in Chapter 3. NBP approximates posterior distributions

of unobserved variables by sets of representative samples. It can be seen as a gen-

eralization of Particle Filters [191] to domains with richer, non-temporal structure.

NBP does not require linear or Gaussian models [95] and can model multi-modal and

ring-shaped distributions produced by distance sensors.

In principle, discretized approximations of BP based on a regular spatial grid are

also possible. For an M×M grid and n robots, however, storage and communications

requirements scale as O(nM2), and computation as O(nM4) assuming a maximum

number of neighbors. Efficiency improvements have been suggested in certain special

cases [55, 215], but cannot be directly applied to the graphical model underlying inter-

distance tracking. In contrast, NBP directly leads to a distributed, message-passing

algorithm which can efficiently scale to large spatial domains.

The algorithm runs in two phases. In phase I, we localize robots at the first

timestep, using a similar formulation to the static localization algorithm of Ihler

et al. [88] and described in Section 5.3. Section 5.4 describes phase II, in which a

dynamics model is used to combine inter-distance measurements over time.
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Our tracking algorithm uses dynamics models to improve accuracy, while reducing

computation and communication requirements by up to 3 times when compared to

a localization-only approach for a 20 robot network. In our experiments, we demon-

strate examples where our tracking algorithm determines the location of the robot,

while an approach processing each timestep independently fails to do so. Other ap-

proaches, for example those based on directly weighting temporal samples by inter-

distance likelihoods, failed to localize the robots. Our approach, based on a novel

decomposition of the temporal dynamics model, allows us to integrate multi-hop

inter-distance readings in a single timestep and track the robots. We also show how

NBP message updates should be scheduled to achieve robust, reliable convergence.

In the Experiments section, we compare our algorithm to a Monte-Carlo approach

developed by Dil et al. [46]. We find that our algorithm is slower but 3x to 4x times

more accurate, and more robust to noisy inter-distance sensor readings.

5.2 Problem Formulation

5.2.1 Input, Assumptions, and Output

Our models supports tracking applications where n robots move around a space for

T timesteps. The location of robot s at time τ is denoted by xs,τ ∈ R2. We currently

model the space as a 1x1 unit square, but our approach can be easily relaxed to

support other geometries. Each robot is equipped with sensors for inter-distance

measurement. We denote the (noisy) distance estimate between robots s and t at

time τ as dst,τ . As distance estimates are based on signals emitted by nearby robots,

the likelihood a sensor will detect a nearby sensor diminishes with distance. We refer

to the subset of robots which receive distance readings from robot s at time τ as the

neighbors of s, and denote them by Γ(s, τ).
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Our objective is to determine position estimates x̂s,τ which minimize the mean

squared error of each robot’s location estimates, averaged over all time steps:

L(x, x̂) =
1

nT

T∑
τ=1

n∑
s=1

||x̂s,τ − xs,τ ||2 (5.1)

The NBP algorithm provides non-parametric distributions at each time step that

can be used to quantify confidence based on variance. A multi-modal distribution

can be resolved in a variety of ways, as discussed in the Future Work section.

5.2.2 Modeling System Properties
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Figure 5.2. This figure illustrates three ring-shaped distributions produced by inter-
distance readings between three beacons and a robot. We represent the location of
the robot with a large black +.

The state of each robot s at time τ is represented by its position and velocity

χs,τ = (xs,τ , ẋs,τ ). We model errors in the estimated distance between robots s and t
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as follows:

dst,τ = ||xs,τ − xt,τ ||+ νst,τ νst,τ ∼ N(0, σ2
ν) (5.2)

To unambiguously localize a robot, inter-distance readings from at least three other

localized robots or beacons are required. We demonstrate three ring-shaped distribu-

tions from exact beacons, used to localize a single robot in Figure 5.2. For localization

at the first timestep, the network must thus contain at least three beacons, and all

robots must have at least three inter-distance readings.

Following [136], we model the decay in a robot’s probability Po of measuring the

distance to another robot as follows:

Po(xs,τ , xt,τ ) = exp

{
−1

2
||xs,τ − xt,τ ||2/R2

}
(5.3)

Here, R is a parameter specifying the range of the transmitter used for distance

estimation. More elaborate models could be used to capture environmental factors

or multi-path effects.

Each robot moves over time according to a dynamics model P (χs,τ+1 | χs,τ ) defined

as follows:

xs,τ+1 = xs,τ + ẋs,τ+1 (5.4)

ẋs,τ+1 = ẋs,τ + ωs,τ ωs,τ ∼ N(0, σ2
ω) (5.5)

In practice, these velocities are often unobserved variables used to explain the typically

smooth character of real robotic motion. Alternatively, sensors such as accelerometers

could provide more precise dynamics information.

5.2.3 Decomposing Gaussian Mixtures

In the tracking algorithm developed in Section 5.4, it is necessary to decom-

pose a Gaussian mixture p(χ) = p(x, ẋ) into marginal and conditional distributions
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p(x)p(ẋ | x). Because the conditional distribution of a subset of jointly Gaussian

variables is Gaussian, conditional distributions of Gaussian mixtures are mixtures

of lower-dimensional Gaussians. We now derive formulas for the marginal and con-

ditional portions of each mixture component. As the same formulas apply to all

components, we drop the ·(i) notation.

Consider a Gaussian mixture component with weight wχ, and mean vector and

covariance matrix

µχ =

 µx

µẋ

 , Σχ =

 Σx,x Σx,ẋ

Σẋ,x Σẋ,ẋ

 . (5.6)

The marginal p(x) has weight wχ, mean µx, and covariance matrix Σx. The condi-

tional density p(ẋ | x = a) then has the following mean, covariance, and weight:

µẋ|x = µẋ + Σẋ,xΣ
−1
x,x(a− µx) (5.7)

Σẋ|x = Σẋ,ẋ − Σẋ,xΣ
−1
x,xΣx,ẋ (5.8)

wẋ|x ∝ wχ

(
|Σẋ|x|
|Σχ|

)1
2

exp

{
−1

2
σT0 Σ−1

χ σ0

}
(5.9)

The transformations from a single joint multivariate Gaussian to a single conditional

multivariate Gaussian, transforming the mean and standard deviation, are determined

by standard formulas[85]. Our formulas look slightly different, as we have computed

P (ẋ|x), and the direct application of the transform would compute P (x|ẋ). The

weight wẋ|x depends on a centered observation vector:

σ0 =

 a− µx

µẋ|x − µẋ

 (5.10)

We use this decomposition to factorize dynamics messages sent between the same

robot at subsequent timesteps. By first integrating distance readings via the smaller

position-only marginals, and then drawing appropriately reweighted velocity samples,

we can integrate multi-hop inter-distance information over time.
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Proposition 3. The conditional of a multi-modal Gaussian should be weighted by

wẋ|x ∝ wχ

(
|Σẋ|x|
|Σχ|

)1
2

exp
{
−1

2
σT0 Σ−1

χ σ0

}
Proof.

P (X, Ẋ) = P (Ẋ|X)P (X)

Because P (X) is just a normalizing factor relating the conditional to the joint, we

can rewrite the distribution as

P (X, Ẋ) = P (Ẋ|X)w

Because w will vary only as a function of a, we can simplify our equations by solving

for w at [µẋ|x, a]T for the joint and just µẋ|x for the conditional, as we already condition

that that position is at state a.

w = P (X, Ẋ)/P (Ẋ|X) (5.11)

= N


 a

µẋ|x

 , µχ,Σχ

 /N
(
µẋ|x, µẋ|x,Σẋ|x

)
(5.12)

By expanding the equations out, we see

w =

1
(2π)2|Σχ|1/2

exp

−1
2


 a

µẋ|x

− µχ

T

Σ−1
χ


 a

µẋ|x

− µχ



1
(2π)|Σẋ|x|1/2

exp{−1
2
(µẋ|x − µẋ|x)TΣ−1

ẋ|x(µẋ|x − µẋ|x)}
(5.13)

=
|Σẋ|x|1/2

(2π)|Σχ|1/2
exp

−1

2

 a− µx

µẋ|x − µẋ


T

Σ−1
χ

 a− µx

µẋ|x − µẋ


 (5.14)

alternatively,

w =
|Σẋ|x|1/2

(2π)|Σχ|1/2
exp

−1

2

 a− µx

Σẋ,xΣ
−1
x,x(a− µx)


T

Σ−1
χ

 a− µx

Σẋ,xΣ
−1
x,x(a− µx)


(5.15)
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5.3 Phase I: Localization Algorithm

The goal of the inter-distance localization sub-problem is to infer the location of

each node using only information from a single timestep (the first). Our formulation

closely follows the algorithm proposed by Ihler et al. [88]. Since we consider a single

timestep, we drop the τ notation and velocity state variables, and denote the posi-

tion of robot s by xs. The NBP algorithm alternates between sending messages to

neighboring nodes, and computing marginals at nodes which received messages. We

refer to each pair of steps, in which all messages are updated once, as an iteration.

To compute new outgoing messages, we use the marginal estimate p̂n−1
s (xs) from

the previous iteration, which is represented by a set of samples. The inter-distance

sensor model of Equation (5.2) implies that message samples are most easily generated

in polar coordinates, with random orientation and radius perturbed from the noisy

inter-distance reading:

θ
(i)
st ∼ U (0, 2π) ν

(i)
st ∼ N

(
0, σ2

ν

)
(5.16)

x
(i)
st = x(i)

s + (dst + ν
(i)
st )[sin(θ

(i)
st ); cos(θ

(i)
st )] (5.17)

When the BP algorithm sends a message from s to t, the incoming message product

(as in Equation (2.3)) avoids double-counting by excluding the message sent from t

to s. To account for this in our NBP implementation, we use an importance sampling

framework [183, 88]. Each sample x
(i)
st is reweighted by 1/mn−1

ts (x
(i)
s ), where mn−1

ts (xs)

is the preceding iteration’s message (a Gaussian mixture). Also accounting for the

effects of distance on the probability of receiving a measurement, the overall sample

weight is

w
(i)
st = Po(x

(i)
st )/mn−1

ts (x(i)
s ). (5.18)

More generally, given a proposal density q(x) from which we can draw samples x(i),
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and a target density p(x) we would like to approximate, importance sampling meth-

ods [49] assign a weight w(i) ∝ p(x(i))/q(x(i)) to each sample x(i).

Importance sampling methods are also used to approximate the marginal up-

date of Equation (2.4). Recall that incoming messages mts(xs) are mixtures of M

Gaussians. With d = |Γ(s)| neighbors, the exact message product of Equation (2.4)

will produce an intractable mixture with Md components. To construct a proposal

distribution, we instead take an equal number of samples x
(i)
s ∼ mts(xs) from each

incoming message. Combining these d groups of samples into a single set, they are

then assigned importance weights

w(i)
s =

∏
t∈Γ(s) mts(x

(i)
s )∑

t∈Γ(s) mts(x
(i)
s )

. (5.19)

To reduce importance sampling variance, Alg. 2 introduces a parameter k > 1. First,

kM samples are drawn from the messages, and then M samples are drawn with

replacement from the weights assigned to the kM samples.

Algorithm 1 Phase 1, Compute Messages for Localization: Given M samples {x(i)
s }

representing marginal p̂n−1
s (xs), compute outgoing messages mn

st(xt) for neighbors
t ∈ Γ(s)

1. Draw θ
(i)
st ∼ U (0, 2π) , ν

(i)
st ∼ N (0, σ2

ν)

2. Means: x
(i)
st = x

(i)
s + (dst + ν

(i)
st )[sin(θ

(i)
st ); cos(θ

(i)
st )]

3. Weights: w
(i)
st = Po(x

(i)
st )/mn−1

ts (x
(i)
s )

4. Variance: Σst = σ2
νξMI

Algorithm 2 Phase 1, Compute Marginals for Localization: Use incoming messages
mn
ts = {x(i)

ts , w
(i)
ts ,Σts} from neighbors t ∈ Γ(s) to compute marginal p̂ns (xs)

1. for Neighbor u ∈ Γ(s) do

2. Draw kM
|Γ(s)| samples {x(i)

s } from each message mn
ts

3. Weight each sample by
w

(i)
s =

∏
u∈Γ(s) m

n
us(x

(i)
s )/

∑
u∈Γ(s) m

n
us(x

(i)
s )

4. end for
5. Resample with replacement from these kM samples, producing M equal-weight

samples.
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5.3.1 Message Update Schedules

The convergence behavior of NBP depends on the order in which messages are

transmitted between robotic nodes. In initial experiments, we found that a naive serial

schedule, which iterates through each node one by one, performed poorly even with

dozens of iterations and thousands of samples per message. Because sample-based

density approximations cannot effectively populate large areas, biases introduced by

poor initial message approximations can overwhelm informative messages sent by

other robots. To resolve this, we devised an alternative schedule in which a node

only transmits an outgoing message if it has received an incoming message from at

least three neighbors. In situations where no node has three incoming messages, the

threshold drops to two messages, and then finally to one.

5.4 Phase II: Tracking Algorithm

Phase I provides estimates of the locations of each robot at a single timestep. We

then use phase II to incorporate the dynamics of the robot, allowing us to determine

robot locations at subsequent timesteps more quickly, and improve accuracy by re-

solving ambiguities. Figure 5.3 provides an example with one robot that illustrates

how the dynamics model can compensate for ambiguities.

In addition to sending messages between robots in the same timestep as the lo-

calization formulation does, our tracking formulation relates robots at the timestep

τ with the same robot from the previous timestep τ − 1, and the next timestep τ + 1

when available. Given a sample of the node’s current state χ
(i)
s,τ , the message sent

to the next timestep is simulated from the dynamics model χ
(i)
s,τ+1 ∼ p(χs,τ+1 | χ(i)

s,τ ).

Because ψ(xs,τ+1, xs,τ ) = p(xs,τ+1 | xs,τ ), when we send messages to a node at the

previous timestep we fix x
(i)
s,τ+1 and sample x

(i)
s,τ ∼ αp(x

(i)
s,τ+1 | xs,τ ), where α is a nor-
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Figure 5.3. Illustration of dynamics model resolving bimodal position estimate for a
single robot with three beacons. Using the same notation as in Figure 5.1, the upper
figures show true locations of beacons and a robot in lower right of each plot. Samples
from the robot marginal are indicated with black +s. Bottom figures show estimates
of robot position for the 4th timestep, using a localization-only approach on the left,
where there is substantial error, and using our tracking approach using dynamics on
right, where error is negligible.

malization constant. Concretely, the update becomes

x
(i)
s,τ = x

(i)
s,τ+1 − ẋ

(i)
s,τ+1

ẋ
(i)
s,τ = ẋ

(i)
s,τ+1 − ωs,τ ωs,τ ∼ N(0, σ2

ω)
(5.20)

Our algorithm for computing marginals in phase II integrates temporal messages

from the same robot at different timesteps, and spatial messages from neighbors at
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the same timestep. We initially tested a simpler algorithm which propagates samples

from the previous timestep according to the dynamics model, and then performs

weighted resampling to account for new inter-distance readings. However, after more

than four timesteps, this approach degraded to near-random estimates, even with

thousands of samples M for each message. We hypothesize that this issue arises

because the simpler formulation effectively only allows information to travel a single

hop per time-step.

The more sophisticated approach of Algs. 3-4 overcomes these limitations

by communicating multi-hop inter-distance information in a single timestep. Let

ms,τ,τ+1(χs,τ+1) denote the forward-time message sent by robotic node s at timestep τ ,

and ms,τ,τ−1(χs,τ−1) the corresponding reverse-time message. As described in Sec-

tion 5.2.3, we first decompose these messages into the marginal robot position distri-

bution, and the conditional distribution of velocity given position; both are Gaussian

mixtures. Using a generalized NBP message-passing algorithm, we then integrate the

information provided by temporal dynamics and distance measurements at time τ .

The resulting improved position estimates are then transferred to velocity estimates

via the previously computed conditional densities. As summarized in the pseudocode,

several stages of importance sampling with resampling are included to convert sets of

message samples into the message products required by NBP, and ensure that samples

(and hence computational resources) are efficiently utilized.

5.4.1 Message Update Schedules

Our tracking scheduler applies the phase II algorithms, after first initializing loca-

tion estimates for each robot using phase I. Because we assume somewhat informative

dynamics models, the uncertainty in robot locations at the next timestep is sufficiently

peaked to allow a serial message update schedule. Our tracking framework is suffi-
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Algorithm 3 Phase 2, Compute Messages for Tracking: Given M samples χ
(i)
s,τ =

{x(i)
s,τ , ẋ

(i)
s,τ} from marginal p̂n−1

s,τ (χs,τ ), compute messages mn
st,τ (xt,τ ) for neighbors t ∈

Γ(s, τ), ms,τ,τ+1(χs,τ+1), and ms,τ,τ−1(χs,τ−1)

1. Draw θ
(i)
st ∼ U (0, 2π) , ν

(i)
st ∼ N (0, σ2

ν)

2. Means: x
(i)
st,τ = x

(i)
s,τ + (dst,τ + ν

(i)
st )[sin(θ

(i)
st ); cos(θ

(i)
st )]

3. Weights: w
(i)
st,τ = Po(x

(i)
st,τ )/m

n−1
ts,τ (x

(i)
s,τ )

4. Variance: Σst,τ = σ2
νξMI

5. Means: χ
(i)
s,τ+1 ∼ p(χs,τ+1 | χ(i)

s,τ )

6. Weights: w
(i)
s,τ+1 = 1/mn−1

s,τ+1,τ (χ
(i)
s,τ )

7. Variance: Σs,τ+1 = ROT({χ(i)
s,τ+1, w

(i)
s,τ+1})

8. Means: χ
(i)
s,τ−1 ∼ αp(χ

(i)
s,τ | χs,τ−1)

9. Weights: w
(i)
s,τ−1 = 1/mn−1

s,τ−1,τ (χ
(i)
s,τ )

10. Variance: Σs,τ−1 = ROT({χ(i)
s,τ−1, w

(i)
s,τ−1})

Algorithm 4 Phase 2, Compute Marginals for Tracking Use incoming messages
mn
ts,τ = {x(i)

ts,τ , w
(i)
ts,τ ,Σts,τ}, mn

s,τ−1,τ = {χ(i)
s,τ−1, w

(i)
s,τ−1,Σs,τ−1}, and mn

s,τ+1,τ =

{χ(i)
s,τ+1, w

(i)
s,τ+1,Σs,τ+1} to compute marginal p̂ns,τ (χs,τ )

1. Let mn
s,τ−1,τ (χs,τ ) = mn

s,τ−1(xs,τ )m
n
s,τ−1(ẋs,τ | xs,τ )

2. Let mn
s,τ+1,τ (χs,τ ) = mn

s,τ+1(xs,τ )m
n
s,τ+1(ẋs,τ | xs,τ )

3. Draw kM
3

samples {x(i)
s,τ} from mn

s,τ−1(xs,τ )

4. Draw kM
3

samples {x(i)
s,τ} from mn

s,τ+1(xs,τ )
5. for Neighbor t ∈ Γ(s, τ) do

6. Draw kM
3|Γ(s,τ)| samples {x(i)

s,τ} from each mn
ts,τ (xs,τ )

7. end for
8. Weight each of the kM samples by

w
(i)
s,τ =

mns,τ−1(x
(i)
s,τ )·mns,τ+1(x

(i)
s,τ )·

∏
t∈Γ(s,τ) m

n
ts(x

(i)
s,τ )

mns,τ−1(x
(i)
s,τ )+mns,τ+1(x

(i)
s,τ )+

∑
t∈Γ(s,τ) m

n
ts(x

(i)
s,τ )

9. Resample with replacement from these kM samples, producing M equally
weighted samples {x(i)

s,τ}.
10. Draw kM

2
samples ẋ

(i)
s,τ ∼ mn

s,τ−1(ẋs,τ | x(i)
s,τ ), producing samples χ

(i)
s,τ = {x(i)

s,τ , ẋ
(i)
s,τ}

from the joint marginal
11. Draw kM

2
samples ẋ

(i)
s,τ ∼ mn

s,τ+1(ẋs,τ | x(i)
s,τ ), producing samples χ

(i)
s,τ = {x(i)

s,τ , ẋ
(i)
s,τ}

from the joint marginal
12. Weight each of the kM joint samples by

w
(i)
s,τ =

mns,τ−1(ẋ
(i)
s,τ |x

(i)
s,τ )·mns,τ+1(ẋ

(i)
s,τ |x

(i)
s,τ )

mns,τ−1(ẋ
(i)
s,τ |x

(i)
s,τ )+mns,τ+1(ẋ

(i)
s,τ |x

(i)
s,τ )

13. Resample with replacement from these kM samples, producing M equally
weighted samples {χ(i)

s,τ}.
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ciently general to perform smoothing, and use information from future timesteps to

update location estimates for the current timestep. While alternative schedules are

subjects for future work, we focus here in a filtering schedule which only propagates

messages forward in time. We perform one tracking iteration following localization

in timestep 1, and then a constant number of iterations at subsequent times.

5.4.2 Computational Complexity

The most computationally demanding portion of our tracker requires O(kM2|E|)

operations per timestep, where |E| is the number of observed inter-distance mea-

surements. The parameters k and M correspond to the number of samples used to

represent distributions as described in the Nonparametric Belief Propagation subsec-

tion of Section 2.4.4. Our experiments use k = 3 and M varies from 100-500.

Most time is spent either sampling from Gaussian mixtures, or evaluating Gaus-

sian mixtures at a particular location. Using a naive approach, both operations re-

quire O(M) operations for an M -component mixture. Binary search algorithms can

be used to more efficiently draw samples in O(log(M)) time; our simulator imple-

ments this technique. We can improve the speed of Gaussian mixture evaluation by

constraining estimated covariance matrices to be diagonal. Multiscale, KD-tree rep-

resentations can also be used to accelerate evaluation and sampling for large M [87].

5.5 Experiments

We implemented a simulator to explore the performance of our algorithms. It

is written in Java, and simulates all robots on a single core of a 2.2 GHz Pentium

Core Duo. While we simulate all robots on a single machine, as our algorithms are

distributed, we interpret the runtime per robot. Our experiments using M = 100
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Figure 5.4. Tracking performance for datasets with varying levels of dynamics noise,
using either two NBP iterations per timestep (left) or four iterations per timestep
(right). We show performance over 20 timesteps on the top plots, and zoom in and
show 4 timesteps in the bottom plots. The “sawtooth” shape of the mean error plot
is due to a new timestep every two (in left plot) and four (in right plot) iterations.
Using more iterations per timestep reduces localization errors, especially for noisier
(less predictable) dynamics models, because information from further neighbors is
incorporated (two hops in left, four hops in right). Our NBP algorithm makes use of
multi-hop inter-distance readings, integrated over multiple iterations, to compensate
for transition model errors.
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Figure 5.5. NBP tracking performance in various conditions. In the left plot, we use
M = 500 samples, and vary the amount of inter-distance noise. In the right plot, we
use very accurate inter-distance sensors (σν = 10−3), and vary the number of samples
used to represent each NBP message.

samples took approximately 0.65 seconds per robot per timestep. With M = 500

samples, this grows to 16.0 seconds per robot per timestep. As described in Sec 5.4.2,

there are a number of remaining improvements which could be applied to improve

effiency, and thereby allow real-time operation on mobile robots.

For each experiment, we use n = 20 robots and 3 stationary beacons, the minimum

required for the tracking problem to be well posed. We generate the initial locations

at t = 0 by randomly placing each robot in a 1x1 unit area. We then simulate

each robot’s movements according to the dynamics model p(χs,τ+1 | χs,τ ), producing

locations at times τ = 2, . . . , T . Finally, we determine if robot s receives a distance

reading from robot t according to Po(xs,τ , xt,τ ), and if so sample a noisy observation

d
(i)
st,τ ∼ p(dst,τ | xs,τ , xt,τ ).

As described in Section 5.4.1, we first apply phase I to localize robots at time

τ = 1, and then use phase II to track motion over time. Weighted marginal samples

are used to produce estimates x̂s,τ , which are used to evaluate our average estimation
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error. We run each experiment 10 times, and plot the mean of our error metric across

these trials. In Figure 5.1, we illustrate the connectivity from timesteps 1 and 4 for

one trial, and the resulting discrepancy between the simulated (ground-truth) and

inferred robot locations.

In Figure 5.4, we plot mean error over each iteration and vary the amount of noise

in the dynamics model, allowing either two or four NBP iterations per timestep.

The “sawtooth” shape of the mean error plot is due to a new timestep every two

or four iterations, depending on the experiment. The error is worst at the first

iteration of the new timestep, and then lessens as more iterations, providing more

inter-distance information refine the estimate. With only two iterations per timestep,

there is more error and variability than with four iterations per timestep. Extra

iterations incorporate spatial information from robots further away, and compensate

for unpredictable dynamics models. However, when the dynamics model is very

accurate, and need fewer iterations per timestep to converge to accurate estimates.

While localization of the first timestep takes six iterations, for more precise dynamics

models, we only need two iterations of our tracking algorithm, resulting in a 3x savings

in computation and communication.

In Figure 5.5, we vary the amount of noise in the inter-distance sensors, and test

how estimation accuracy varies when many samples (M = 500) are available. Note

that NBP’s location estimates degrade gracefully as noise increases, with errors ap-

proximately proportional to the amount of sensor noise. The right panel of Figure 5.5

uses inter-distance sensors with low noise levels (σν = 10−3), and examines how errors

vary with the number of samples M . As desired, using additional samples does indeed

lead to more accurate estimates.
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Figure 5.6. A quantitative comparison of the range-based SMCL (SMCL+R) formu-
lation [46] to our NBP tracking algorithm. As our approach is more computationally
intensive, we used M = 5000 samples for SMCL+R, and M = 500 samples for NBP.
We present results with two inter-distance sensor noise levels. In both cases, NBP is
3-4 times more accurate.

5.6 Comparison with Range-Based SMCL

We compare our NBP tracker to the range-based, sequential Monte Carlo local-

ization (SMCL+R) tracking formulation of Dil et al. [46]. In the SMCL+R approach,

distances are approximated by the shortest path distance on the connectivity graph

from each beacon to each mobile robot. Hop distances are computed from each bea-

con to each robot, and all beacon locations are communicated to each robot. To

localize robots at each timestep, they use a polar model similar to ours. Samples

are drawn at uniformly random angles around each beacon, but using a deterministic

distance as determined by the shortest path to the robot of interest. A subset of these

samples are then rejected, if they are either too far from the previous iteration’s es-

timate (based on a maximum velocity model), or violate knowledge about the range

of inter-distance sensors. More specifically, if a robot was a single-hop away, then

samples should be within the maximum range, and if they were i hops away, the
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samples must be within i times the maximum range. Samples are iteratively drawn

at each timestep, for each robot, until M samples have not been rejected. For further

implementation details, see [46].

As shown in Figure 5.6, the NBP tracker is 3-4 times more accurate than

SMCL+R. However, the SMCL+R algorithm is faster, with a complexity of O(nb2M)

per timestep, if there are n robots and b beacons. We suspect our superior accuracy

is in part due to our explicit modeling of sensor errors, rather than just using mea-

sured distances. We also avoid the approximations inherent in hop-based estimates

of distances to beacons.

In some experiments, due to the hop-based distance approximation, and rejection

of samples based on maximum transmission range, it was not possible to generate

acceptable samples. As the approach assumes a unit-disk connectivity model [207],

this was exacerbated by probabilistic connectivity and inter-distance measurement

models. For example, with a probabilistic connectivity model Po, if a robot is within

the maximum transmission range from a beacon, but is two hops away, the correct

samples for the robot will always be rejected. Thus, the experiment in Figure 5.6 used

a unit-disk model for both approaches. By modeling probabilistic connectivity and

inter-distance measurements, our approach is more robust as it does not experience

to these problems.

5.7 Conclusion and Future Work

We present a new algorithm for collaborative robotic self-localization and track-

ing using nonparametric Belief Propagation (NBP). We compare the NBP dynamic

tracking algorithm with SMCL+R, a sequential Monte Carlo algorithm [46]. Whereas

NBP currently requires more computation, it converges in more cases and provides
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estimates that are 3x to 4x more accurate. We are now working to reduce the com-

putation time of the NBP algorithm.

The graphical modeling framework underlying our approach is very rich and we

anticipate several extensions and generalizations. For example, we hope to explore

how orientation estimates can improve localization accuracy. NBP can easily incor-

porate such information by appropriate modifications to the proposal distribution of

Equation (9.3). Similarly, knowledge of environment geometry could be used to prune

trajectory estimates that pass through obstacles. We are also working on ”active”

tracking where multi-modal estimates of robot position can be resolved by directing

robots to move in directions that will reduce uncertainty.
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Chapter 6

Security: SNARES

6.1 Introduction

Many new technologies for automated security, wireless networks, and sensing

have emerged since the terrorist attacks of 9/11. Automation of security systems is

an active area of research that also raises fundamental privacy concerns. In this chap-

ter we consider the problem of automatically documenting an intruder’s movements

with a robotic camera, controlled by a sensor network’s detections. We contrast this

approach with the more conventional approach of using many static cameras, which

would be significantly more expensive, and would require more space to store and

effort to search through as there is significantly more footage.

New robotic cameras can be servoed to observe high-resolution detailed images

of activity over a wide field of view. For example, the Panasonic KX-HCM280 pan-

tilt-zoom camera (commercially available for under $1000.00) can capture up to 500

Mpixels per steradian. We are exploring how these cameras can be automatically

controlled for security applications using a new class of inexpensive binary sensors

with built-in wireless communications.
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Figure 6.1. True vs. estimated intruder path for one randomized simulator run.
Position and orientation of a network of fourteen motion sensors is indicated with
solid dots and arrows. The true intruder path is indicated with hashed circles and
dashed lines. The estimated intruder path is indicated with grey circles and solid
lines. The bold-edged circles indicates the intruder’s estimated and true starting
points. Error is the spatial distance between true and estimated intruder position. In
our simulation experiments, we report the distribution of error values.

Commercially available passive infrared (PIR) motion sensors (available for under

$25.00 from x10.com) cover a field of view of 120 degrees. Wireless motion sensors

like these are subject to two significant drawbacks: (1) they are binary and (2) after

being triggered by motion in their field of view, they suffer from a refractory period of

several seconds during which they are unresponsive. Since these and related sensors

provide only coarse information about the presence or absence of an intruder, we pro-

pose a probabilistic tracking model based on Particle Filtering, where many sampled

estimates (“particles”) based on distributions of sensor response and intruder state

are simultaneously estimated and fused to produce an aggregate point estimate of

intruder position. Recent advances in computer processing make Particle Filtering

feasible in real time. Using the estimate of the intruder’s location the robotic camera

actuates to document the intruder’s movements for later analysis.
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6.2 Problem Statement

In this section we formalize our problem. Our goal is to track (and document)

the progress of an intruder moving through a known room using a sequence of binary

sensor readings.

6.2.1 Inputs and Assumptions

Setup: polygonal room geometry, probabilistic sensor model, position and orienta-

tion of each sensor, probabilistic model of intruder movements, dimensions of intruder

bounding prism. Input: time sequence of firing patterns from binary sensors. Output:

estimate of intruder path.

Setup occurs once during initialization, while input is information that the sys-

tem processes in real-time. Error is the spatial distance between estimated intruder

position and actual intruder position. We report on the distribution of error values.

Room Geometry

The geometry of the room is described as a polygon represented by a set of vertices

and edges. We denote all points in the room by the set R. We require that the room

is star shaped so that a single robotic camera can be placed to have direct line of

sight to any potential area the intruder may occupy. For now, we assume that there

are no obstacles in the room.
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Robotic Camera

Our system uses a single, robotic camera with a fixed base that focuses on specific

areas within the observable space. The camera has three degrees of freedom: pan,

tilt, and zoom.

Sensor Modeling

We have a set of N = {1 . . . n} binary sensors, where each sensor i is modeled by

two conditional probability density functions (CPDFs), each with a convex polygonal

detection region Ri. Every point in the room must be covered by the region of at

least one sensor:

R ⊆
n⋃
i=1

Ri

We use subset instead of equals because the union of the sensor region can exceed the

room.

Each sensor i has a refractory period, whereby after triggering, it usually becomes

unable to trigger again for another fi seconds. The X10 PIR sensors we used for our

experiments exhibit this problem.

We denote the generated sensor data by the set:

D =

(i, t) :
i ∈ N, t ∈ R+,

sensor i triggers at time t


We process the sensor data generated from the intruder every tP seconds, and

thus we discretize time into iterations that are tP seconds apart. Formally, the time

tτ of the τ ’th iteration is defined as :

∀τ ∈ N : tτ = τ · tP
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We use a world-coordinate system to integrate data across sensors. We overlay a

uniform three-dimensional grid which discretizes the world into cells j ∈ {1 . . .m}.

We define three indicator variables which are defined for each iteration. The

event that an intruder fully occupied some world-space cell between the previous and

current iteration:

Oj,τ =


1 if ∃t :

an intruder fully occupies cell

j at time t, tτ−1 < t ≤ tτ

0 otherwise

The event that the sensor is triggered between the previous and current iteration:

Si,τ =


1 if ∃t : (i, t) ∈ D, tτ−1 < t ≤ tτ

0 otherwise

The event that the sensor experiences a refractory period between the previous and

the current iteration:

Bi,τ =

 1 if ∃t : (i, t) ∈ D, tτ−1 − fi < t ≤ tτ

0 otherwise

Each cell in the grid corresponds to entries in two CPDFs. The first describe the

probability that a sensor is not experiencing a refractory period and triggers, provided

a sensor stimulus fully occupies only that cell:

P (Si,τ |Oj,τ = 1, Bj,τ = 0).

The second is the probability that a sensor is not experiencing a refractory period

and triggers, provided no sensor stimulus occupies any part of that cell:

P (Si,τ |Oj,τ = 0, Bj,τ = 0).

Also, we need to compute the probability that a sensor fires, given that it is

undergoing a refractory period:

P (Si,τ |Bj,τ = 1)
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With these three distributions, we completely describe for any iteration and sensor,

the probability that a sensor fires.

Sensor Modeling Assumptions

For our particular sensor models, we make a number of important simplifying

assumptions. We assume that the triggering of all sensors is independent given the

intruder’s state Xτ :

P (S1,τ , . . . , Sn,τ |Xτ ) =
n∏
i=1

P (Si|Xτ )

We assume that the probability that an intruder’s complete occupancy of a single cell

causes a sensor to trigger equals the probability that the intruder only occupies that

cell:

P (Si,τ |Oj,τ = 1, Bi,τ = 0) =

P (Si,τ |O1,τ = 0, . . . , Oj,τ = 1, . . . , Om,τ = 0, Bi,τ = 0)

We assume that the probability of the occupancy of any cell causing the sensor to

trigger is independent of any other cells causing the sensor to trigger:

P (Si,τ |O1,τ , . . . , Om,τ , Bi,τ = 0) =∏m
j=1 P (Si,τ |Oj,τ , Bi,τ = 0)

We assume that during the sensor’s refraction period, the distribution does not vary

in the presence of any stimulus:

P (Si,τ |O1,τ , . . . , Om,τ , Bi,τ = 1) = P (Si,τ |Bi,τ = 1)

We assume that the distributions of sensor’s likelihood of firing given a sensor’s posi-

tion P (Si,τ |O1,τ , . . . , Om,τ , Bi,τ = 0), smoothly changes between values over the detec-

tion region. When modeling a sensor type, we pick any sensor and view its parameters

to be representative of all other sensors of the same type.
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Intruder Modeling

We assume that we know the times the intruder enters and exits the room. We

model our intruder by position, speed, orientation, and size. At each timestep, we

add a sample from a zero-mean Gaussian to the intruder’s speed and bound it by

both the intruder’s maximum speed vMAX as well as the geometric constraints of

the room. The orientation is also modeled by adding a sample from a zero-mean

Gaussian, however the variance changes over time and is inversely proportional to

the current speed of the intruder. We discuss this in more detail in the Intruder

Model subsection of Section 6.6.1. To model size, we use a bounding rectangular

prism, with given width, depth, and height. We model the path of the intruder as

lines between samples, as is shown by the dashed line in Figure 6.1.

6.2.2 Outputs

The system uses the set of sensor firings to infer the intruder’s path as illustrated

in Figure 6.1. The objective is to minimize the error between the intruder’s actual

location x, and the system’s estimation x̂. It uses this information to generate a set

of images represented by a unique tuple of pan, tilt, zoom, and time.

6.3 Framework

Our system involves three phases. In the Characterization Phase, we build a

probabilistic model for the sensor. In the Deployment Phase, we place the sensors at

the surveillance location and transform the distributions accordingly. Finally in the

Tracking Phase, the system uses these sensor instantiations, in conjunction with firing

information, to estimate the presence and location of an intruder traveling around
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Figure 6.2. The left image depicts a two dimensional slice of a sensor’s characteri-
zation, with the corresponding values at each point depicted in a grid-overlay. The
right image shows a slice where the points have been transformed into worldspace.

a room. We use this information to direct a robotic camera to take photos of the

intruder.

6.4 Characterization Phase

In this phase, we represent the properties of the sensor according to our sensor

model. We begin by finding the duration of the sensor’s refractory period fi by

continuously stimulating the sensor, and determine the rate at which it provides data.

This sampling rate is determined by how often we will process the sensor data tP . By

comparing the differences between times the sensor transmits data of the stimulus,

we compute fi. In order to compute the probability that the sensor triggers while

undergoing a refractory period, P (Si,τ = 1|Bi,τ = 1), we stimulate the sensor and

then monitor how often it signals an intruder for each iteration during its refractory

period.

To calculate the CPDFs for each sensor-type, we perform a characterization ac-

cording to a single sensor’s coordinate space and overlay a three dimensional uniform

grid over this space. By repeatedly stimulating the sensor restricted locally to the

location of each index in the grid, we can calculate for each index the probability that

a stimulus at only that location causes the sensor to fire. For index j, call this value
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ηj. We depict a two-dimensional slice of sampling locations, which results in a grid of

values Figure 6.2 (left). Each sample tests the sensor’s response patterns to learn the

empirical sensitivity of the sensor and how this sensitivity changes with respect to

the location of the stimulus. In a PIR sensor, the stimulus might be a small amount

of movement centered at the sample point. It is important to ensure that the samples

are not taken during the sensor’s refractory period and that the stimuli not overlap

with the stimulus at another point on the grid. We describe in Section 6.5 how each

sample point maps to an independent random variable, and avoiding stimulus overlap

makes this independence assumption more reasonable.

6.5 Deployment Phase

Once we have a sensor type’s characterization, we use a sensor’s position, orienta-

tion and type to transform it into the shared world coordinate frame. A 2-dimensional

layer of an example is shown in Figure 6.2 (right). We approximate the conversion by

placing the center of the sample rotated from the sensor i’s space into the containing

cell j in world space; we use this as the value for P (Si,τ = 1|Oj,τ = 1, Bi,τ = 0). To

sufficiently characterize a sensor such that all m world-space cells have readings, we

would need to sample all permutations of occupancies of cells, namely

P (Si,τ |O1,τ = o1,τ , . . . , Om,τ = om,τ , Bi,τ = 0)

Acquiring all 2m assignments is not feasible, so we make the assumptions described in

Sensor Modeling Assumptions subsection of Section 6.2.1. We determine the values of

all world-space cells within the convex hull of the cells containing non-zero ηjs using

Inverse Distance Weighting [174] and all other cells have a value of zero.

Because we do not have samples for all permutations for occupancies of cells,

we also cannot calculate P (Si,τ |Oj,τ = 0, Bi,τ = 0). This again leads us to the as-
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sumptions described in the Sensor Modeling Assumptions subsection of Section 6.2.1

, which allow us to determine P (Si,τ |Oj,τ = 0, Bi,τ = 0) by using the frequency of

sensor false positives. Let this rate be h, the number of world-space cells where

P (Si,τ |Oj,τ = 1, Bi,τ = 0) > 0 be ξ, and these cells be independent. Then

P (Si,τ = 1|Oj,τ = 0, Bi,τ = 0) = 1− (1− h)1/ξ

Taking the convex hull of cells with non-zero values mapped to them yields the sensor

shape’s convexity requirement.

6.6 Tracking Phase

A state is a set of information that describes the relevant properties of an object

that evolves over time, such as position and velocity. The probabilistic model of

how states transition over time is referred to as the transition model. Because our

state estimation is tracking of the intruder, we refer to this as our intruder model. A

probabilistic model of the observable evidence, given some unobservable state, is the

observation or sensor model. If the system can be described by these two models,

it can be represented as a Dynamic Bayesian Network (DBN) [162]. If the intruder

model and sensor model are linear functions of Gaussians, where the new state is a

linear function of the previous state plus Gaussian noise, then a Kalman Filter can

be used to provide the optimal solution to the state estimation problem.

While our intruder model, which is presented in Section 6.6.1 is a linear function

of Gaussians, our sensor model is not. Because our sensor model is only restricted

to a convex-shaped CPDF, there are two options: an Extended Kalman Filter or a

Particle Filter. We can use a function to estimate our sensor model, for instance a

spline, and then we can use an Extended Kalman Filter. Instead, we choose Particle

Filtering because it can be used directly by sampling the CPDFs.
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6.6.1 Tracking with Particle Filtering

To use Particle Filtering, we need to define the state of our system at every iter-

ation xi,τ and the observed evidence zτ . By using previous phases of the system, we

derive the distributions for P (X0), P (Xτ |Xτ−1), and P (Zτ |Xτ ) using Particle Filter-

ing.

Intruder Model

The state of our system for each sample is represented by a 5 tuple of x-position,

y-position, orientation, speed, and if the sensor is experiencing a refractory period.

While the rest of our system uses three-dimensions, the intruder model does not

change its location along the z-axis. This is because the placement of the sensors and

the camera will not necessarily be in the same plane, but it is reasonable to assume

the intruder will remain on the floor.

Because we are using Particle Filtering, the intruder model is a function that

maps from the old state and yields some new state. The transition model we chose

P (Xτ |Xτ−1) determines position by Euler Integration. The standard deviation of

the Gaussian added to current speed is determined according to typical properties

of our intruder. The Gaussian added to the orientation has a standard deviation

that is inversely proportional to the current speed because the faster our intruder is

traveling, the more likely it is that the intruder’s path will not deviate significantly

from the current one.

Define βi,τ as deterministic variables, timestamped every time their respective Si,τ

is true. If there sensor is triggering, we set βi, τ to be the blind time. Otherwise, the

βi,τ for sensor i subtracts off tP from the previous timestep, and is restricted to be at
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least 0. Formally:

βi,τ =

 fi if Si,τ = 1

max(0, βi,τ−1 − tP ) else

The random variable Bi,τ = 1 iff βi,τ = 0.

We define P (X0) for our system as uniform at random for position, orientation

and speed. This is sufficient because the system converges fast enough to the right

distribution that no pre-seeding is necessary. Whenever the system begins, it sets

βi,0 = 0,∀i ∈ N so that all sensors are defined as not undergoing a refractory period.

As the transitions discussed above have no knowledge of the room geometry,

we need to impose the room’s constraints on the transition model. To add these

constraints, we use rejection sampling, first presented in [200]. We propose an update

to our state according to our transition model. If the position is within the room and

the speed is between 0 and vMAX , then we accept this sample. If our proposal does

not fit within these bounds, we continue to try new updates to the old state until we

find one that satisfies these constraints.

Sensor Model

Denote the set of evidence among all sensors by:

zτ = {S1,τ = s1,t, . . . , SN,τ = sN,τ}

Because any sensor triggering is independent of all others given the location of the

intruder:

P (Zτ |Xτ ) = P (S1,τ , . . . , SN,τ |Xτ )

=
∏N

i=1 P [Si,τ |Xτ ]

In order to compute the probability that a specific sensor i fires at iteration τ , due to

an intruder of state x we use two different distributions. If the sensor is undergoing
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a refractory period, we use:

P (Si,τ = 1|Xτ = xτ )

= P (Si,τ = 1|Bi,τ = 1)

Otherwise, we use:

P (Si,τ = 1|Xτ = xτ )

= 1−
∏m

k=1 L


P (Si,τ = 0|Ok,τ = 0, Bi,τ = 0),

P (Si,τ = 0|Ok,τ = 1, Bi,τ = 0),

V(Ok,τ , xτ )


We use L(a, b, c) to mean the linear interpolation of percentage c between a and b.

V(a, b) is the volume percentage of cell a occupied by intruder with state b for a given

bounding prism size.

6.6.2 Estimator

The Particle Filter gives us a mechanism to determine our confidence that an

intruder is in a specific region. After the resampling step, the samples of the state

space have been distributed according to the likelihood of the state being correct. The

higher the density of particles in a region, the more likely that area is occupied by the

intruder. Because the intruder’s dimensions are approximated by a prism that bounds

the size of the intruder, to determine the intruder’s location at each timestep τ , we

iterate through each world-space cell and count the number of samples of our state

that reside within the bounding prism centered at the cell’s position. We choose the

cell that maximizes the number of samples as the estimated location of the intruder.

Once we estimate the location of the object in world space, we calculate the pan,

tilt, and zoom necessary for the camera to take a photo. Because we bound the

intruder with a rectangular prism, we pick the parameters that make the camera

view the entire bounding prism, but no more. To determine pan and tilt, we find
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the center of the intruder bounding box, and then convert from cartesian to spherical

coordinates, where the origin in spherical coordinates is the location of the camera.

Next, we project the intruder bounding prism onto an image plane orthogonal to

the viewing plane and determine the correct zoom to view just the projection, but

no more. There is a direct mapping between the location of the bounding prism

in world-space and a specific pan, tilt, and zoom for the camera that maps to this

location.

6.7 Simulation Results

We implemented a simulator to evaluate our estimator. First, it generates random

intruder paths and probabilistic sensor models to compute corresponding sets of sensor

data. Second, it processes this data to generate estimates of the intruder’s location.

We compare the true positions with the estimated intruder positions over time and

compute error based on Euclidean distance. The simulator runs on a 1.6 Gigahertz

Pentium M with 768 Megabytes of RAM using 1000 state samples (particles).

We performed simulation experiments for three sensor types: (1) perfect optical

beams, (2) perfect motion sensors, and (3) imperfect motion sensors. For each, we

considered refractory periods of length 0, 4, 8, and 16 seconds. We also consider the

effect of varying the number of binary sensors in the network.

In all simulations, we use a square room of size 10 x 10 x 10 cells of unit size. We

defined our intruder bounding prism of 1 cell height and 2 cell width and length. We

use the parameters: tP = 2 seconds, vMAX = 4 cells per second and velocity Gaussian

standard deviation is 1.5 cells per second, and P (S = 1|B = 1) = 10−6. We generated

10 3-minute trajectories evaluated at every 2 seconds according to this model, which

we then use across all tests. The locations of the intruder at each iteration xτ is

116



0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

E
rr

o
r 

E

Time (Seconds)

Figure 6.3. Error in estimated intruder position over time for the baseline Naive
Estimator that simply reports the intruder is stationary in the middle of the room.

used to determine which sensors trigger. We send this set to the server, which then

responds with its estimate x̂τ . We determine our error E by the Euclidian distance

between the estimation and the true state |xτ − x̂τ |.

6.7.1 Baseline Naive Estimator

As a baseline for comparison, we consider the naive estimator that simply reports

that an intruder is stationary in the center of the room. We compute the error values

for this estimator on a simulated intruder path and compare them with those from

our estimator.

First, we plot the point error values over time in Figure 6.3. Over the entire path,

the Baseline Naive Estimator has an average error of 2.9 cells. The error is fairly well

dispersed over the domain, with a slight trend of high error staying high, and low

error staying low. This is because if the intruder is in a corner at one timestep, it is

likely to remain near the corner in the next timestep. Next we present the distribution

of error over all runs in Figure 6.4 and see that 55% of particles are less than 4 cells

away.
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Figure 6.4. Baseline Naive Estimator: Distribution of error values.
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Figure 6.5. Twenty-two Perfect Optical-Beam Sensors: Distribution of error values.

6.7.2 Twenty-Two Perfect Optical Beam Sensors

Next we consider a set of binary optical beam sensors. These sensors have perfect

detection, with no false positives or negatives. Their region of detection is 10 x 1 x

1 cells. We place these sensors at height (z value) 0, with one set of sensors going

along the floor in the x direction for each cell index of y. We do the same in the y

direction for each cell index in x, yielding a criss-crossing pattern of these sensors.

Thus, if exactly one in the x set, and one in the y set trigger, we know within 1

world-space cell where the intruder is. We placed the intruder at height 0 and found

the distributions illustrated in Figure 6.5.

This test illustrates a sanity check for a 0 second refractory period, as with perfect

sensors, all estimations should be within two world-space cells. We also can see that

we degrade gracefully as we increase our refractory period, and even with a 16 second

refractory period, we still get 64% within two cells.
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Figure 6.6. Fourteen Perfect Motion Sensors: Distribution of error values.

6.7.3 Fourteen Perfect Motion Sensors

We then performed a setup with 14 perfect motion sensors sensors with a char-

acterization of η where for cells of height 0, ηi = 1 in the form of a isosceles triangle,

with a resolution of a reading every two world-space cells. For all other heights, ηj =

0.

We present the sensor placement, orientation and an example run, with values

shown for every 10 seconds for a perfect motion sensor with no refraction in Fig-

ure 6.1. This configuration generates a large number of intersections, allowing for

higher quality localization. We present the distributions of error in Figure 6.6.

As we would expect due to the lower number of sensors, with more complicated

form of intersection, this setup produces poorer quality localization of the intruder,

even with no refractory period. It was interesting to note that there is little difference

in localization between 4 and 8 second refractory periods. This is because there

is sufficient overlap to compensate for the sensors experiencing refractory periods.

However, the compensation is less robust in this simulation, as the change from a 0

to 4 second refractory period was much more significant.
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Figure 6.7. Fourteen Imperfect Motion Sensors: Distribution of error values.

6.7.4 Fourteen Imperfect Motion Sensors

Next, we modeled a sensor which becomes less sensitive as we stimulate it further

away. We then ran the same tests with the new characterization that had false neg-

atives which increased as a function of distance from the sensor, and a false negative

rate P (Si,τ = 1|O1,τ = 0, . . . , Om,τ = 0, Bi,τ = 0) = 0.25.

These distributions are very close to those observed with the perfect sensor over

all refractory periods, though as expected the perfect sensors perform slightly better.

6.7.5 Varying Number of Sensors

By varying the number of sensors, it becomes evident that increasing the number

of sensors, and thereby allowing more overlap for sensors to compensate one another,

helps accommodate for the refractory period. While 4 Sensors does not do much

better than our baselines, 8 sensors does better, and 14 does significantly better. We

present this in Figure 6.8.

6.7.6 Errors over Time for Imperfect Motion Sensors

We display the error in estimated intruder position over time for the imperfect

motion sensors with a 4 second refractory period in Figure 6.9. Note that there is
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Figure 6.8. Varying Number of Binary Motion Sensors: Distribution of error values
for different number of binary motion sensors (each with 8 second refractory period).
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Figure 6.9. Error in estimated intruder position over time for Fourteen Imperfect
Motion Sensors (each with 4 second refractory period).

high variance in the error values. High values result when all sensors are blind in

the region where the intruder is. However, the estimator quickly compensates, and is

able to recover.

6.8 In-Lab Experiment

For the in-lab experiment, we ran tests on 8 X10 PIR sensors, which have an

8 second refraction time. The lab is 8 x 6 meters, and we use world-space cells of

size .3 meters. Here, we present a sample of photos from our system. We used the

parameters: tP = 2 seconds, vMAX = 4 feet per second and velocity Gaussian standard

deviation is 1.5 feet per second. Again, we used 1000 samples of the distributions.

In our test shown in Figure 6.10, we had an intruder walk around the room, and

121



compare photos of the estimated path with the real path. This example shows that

our system performs well in securing the lab.

6.9 Conclusion and Future Work

We have described a system that uses a network of binary motion sensors to track

an intruder. We begin by defining probabilistic sensor models that include refractory

periods. We develop a new method for processing noisy sensor data based on Particle

Filtering that incorporates a model of intruder velocity. We report experiments with

this method using a new simulator and using physical experiments with X10 sensors

and a robotic pan-tilt-zoom camera in our laboratory.

In the future, we will experiment with different sensor models and different spatial

arrangements of sensors, and set up the camera system to run over extended duration

in our lab. An interesting open problem optimal sensors placement, which can be

considered a variant of the Art Gallery problem. We will also investigate methods

that can simultaneously track multiple intruders. We are also interested in ways to

decentralize the algorithm by moving processing onto a network of smart sensors. We

would like to investigate how altering parameters, such as the number of samples, or

data processing frequency affects performance. Lastly, we would like to use vision

processing techniques to utilize information gathered from the camera to enhance our

system.
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(a) (b)

(c) (d)

Figure 6.10. Lab Experiment: A map of our lab (top), with intruder true path
indicated by a dashed line as in Fig 6.1. Estimated path indicated by a solid line.
Photos taken by a robotic camera (a-d) correspond to the numbered solid blue dots
and their respective locations in the room.
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Chapter 7

Security: Actuator Networks

7.1 Introduction

As robots become smaller and simpler and are deployed in increasingly inaccessible

environments, we need techniques for accurately guiding robots in the absence of

localization by external observation. We explore the problem of observation- and

localization-free guidance in the context of actuator networks, distributed networks

of active beacons that impose guiding forces on an unobserved robot. Because our

approach does not have the robot directly communicate with beacons, the approach

can also be used to guide a tiny robot for covert surveillance.

In contrast to sensor networks, which passively observe their environment, ac-

tuator networks actively induce a physical effect that influences the movement of

mobile elements within their environment. Examples include light beacons guiding

a robot with an omni-directional camera through the dark, electric fields moving a

charged nano-robot through a fluid within a biological system, and radio transmitters

on sensor motes guiding a robot with a single receiver. We consider a network of bea-

cons which exert a repellent force on a moving element. This repellent effect models
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Figure 7.1. An actuator network with sequentially activated actuators triplets (shown
as squares) driving a mobile robot toward an end location. The robot is guided by
creating locally convex potential fields with minima at waypoints (marked by ×s).

many systems for which purely attractive models for beacon-assisted navigation are

not realistic or practical. The repulsive effect of an actuator network permits the

guided element to pass through specific points in the interior of a region while avoid-

ing contact with the actuators themselves, unlike traditional attractive models for

beacon-assisted navigation. Due to their simple structure, actuators can be low-cost,

wireless, and in certain applications low-power.

In this chapter, we consider a specific application of actuator networks: guiding a

simple mobile robot with limited sensing ability, unreliable motion, and no localization

capabilities. A motivating scenario for such a system emerges from the potential use of

low-cost robots in hazardous-waste monitoring and cleanup applications, such as the

interior of a waste processing machine, nuclear reactor, or linear accelerator. Robots

in these applications must execute cleanup and monitoring operations in dangerous,

contaminated areas where, for safety or practical reasons, it is impossible to place

human observers or cameras, or to precisely place traditional navigational waypoints.

In this scenario, an actuator network of radio or light beacons may be semi-randomly

scattered throughout the region to aid in directing the robot from location to location

through the region. By shifting responsibility for navigation to a network of actuators
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which directs a passive robot, smaller and more cost-effective robots may be used in

these applications.

We consider the 2D case, where the actuator network consists of beacons at differ-

ent locations in a planar environment. The actuator network is managed by control

software that does not know the position of the robot, but it is aware of the posi-

tions of all of the actuators. Such software may be either external to the system, or

distributed across the actuators themselves, as in the case of a sensor network. We

assume only that the robot’s sensor is able to detect and respond consistently to the

strength and direction of each actuation signal. Such a general framework accurately

represents a wide variety of real-world systems in use today involving deployed navi-

gational beacons, while significantly reducing the technical requirements for both the

beacons and the robots.

We present an algorithm that sequentially switches between sets of actuators to

guide a robot through a planar workspace towards an end location as shown in Fig-

ure 7.1. Using three non-collinear actuators, each one generating a repellent force

field with intensity falling off inversely proportional to the square of the distance, we

generate potential fields that drive the robot from any position within the convex hull

of the actuators to a specific position within the interior of the triangle formed by the

actuators (the local minimum of the potential field). The optimal sequence of poten-

tial fields to move the robot to a specific point within the interior of the workspace

is determined using a roadmap that incorporates the possible potential fields as well

as uncertainty in the transition model of the robot. Despite this uncertainty and the

absence of position measurement, the locally convex nature of potential fields ensures

that the robot stays on track. We present results from simulated actuator networks of

small numbers of beacons in which a robot is successfully guided between randomly

chosen locations under varying models of motion uncertainty. With as few as 10 ac-

tuators in a randomly-placed actuator network, our algorithm is able to steer a robot
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between two randomly selected positions with probability 93.4% under motion un-

certainty of 0.2% standard deviation Gaussian Polar motion uncertainty (perturbing

the robot’s magnitude and angle with additive Gaussian motion uncertainty).

7.2 Problem Formulation

7.2.1 Assumptions

We consider the control of a single mobile robot in a planar environment, in-

fluenced by an actuator network. The n actuators are located at known positions

xi ∈ R2. Each actuator can be controlled independently to produce a signal with

piece-wise constant amplitude ai(t) ≥ 0. Each actuator generates a radially symmet-

ric potential field Ui of the form

Ui(x) =
ai

|x− xi|
(7.1)

The direction and magnitude of the gradient of this field can be observed from any

location x ∈ R2 and are given by the vector field Fi

Fi(x) =
∂Ui
∂x

= −ai(x− xi)

|x− xi|3
(7.2)

i.e. the signal strength |Fi(x)| is inversely proportional to the square of the distance

to the actuator, as is common for physical signals.

The aim of the actuator network is to guide a mobile robot along the direction

of steepest descent of the combined potential field U(x) =
∑

i Ui(x). The position of

the robot as a function of time is denoted by p(t) ∈ R2, and the robot is assumed

to have sufficient local control to be able to move approximately in a given direction

vector v (relative to its own coordinate frame). The desired motion direction v is

equal to the direction of steepest descent of the combined potential field U and is
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hence given by the vector sum

v = −
∑
i

Fi(x) =
∑
i

ai(x− xi)

|x− xi|3
(7.3)

Under this control strategy, each of the actuators serves effectively as a “robot re-

pulser”, causing the robot’s direction of motion to be determined by the total com-

bined force from all actuators. We only assume that the robot can continuously

measure the direction and strength of the superimposed actuator signals. In par-

ticular, no global position sensors or odometry is required. Its motion is described

by a general model ṗ = R(v), which may include stochastic components to repre-

sent sensor and actuator uncertainty, or general uncertainty in movement across the

workspace due to viscosity in a fluid environment, uneven terrain causing wheel slip,

or simply unreliability in the robot’s design.

The design of a suitable sensor for the robot to measure the actuator signals

depends on the type of actuation used. For light-based actuation, one could use

an omni-directional camera. Each actuator signal from a certain direction causes a

specific spot in the image to light up with a brightness depending on the actuator

strength and distance. The desired motion vector v can then be computed simply

by adding the force directions corresponding to all image pixels, weighted by their

brightness.

A centralized controller is assumed to know the location of the actuators and to

be able to control the actuator amplitudes in a time-discrete manner. It does not

have other sensing information; in particular, it cannot measure the robot’s position.

7.2.2 Inputs and Output

The inputs of the control algorithm are the initial location p0 = p(0) ∈ R2, the

end location pe ∈ R2 of the robot, and the locations of each actuator xi ∈ R2. The
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actuator locations can either be determined a priori, or via some localization scheme.

The key aspect is that the actuators will not observe or track the robot.

The proposed algorithm returns a sequence of actuator amplitudes {ai(tj)} at

discrete time instants tj that maximizes the probability that the robot successfully

moves from the start location p0 to the end location pe. If no path from p0 to pe can

be found, the algorithm returns the empty sequence. Each set of amplitudes contains

exactly three nonzero values corresponding to a particular triangle of actuators and

an associated start and destination location. The use of only three actuators at a time

has the advantage of simplifying the analysis of the system and potentially reducing

power consumption of the network by limiting the number of active actuators at any

time. To conserve power, all idle actuators can go into a low-power state. Each

time instance is separated by a sufficiently large duration that a robot starting at

the associated start location will by this time either have migrated to the associated

target location moving at minimum velocity or will be outside the actuator triangle

and get progressively farther away. This time is determined by the minimum speed

of the robot.

7.2.3 Motion Uncertainty

To investigate the utility of actuator networks in steering robots with uncertain

motion, we considered two uncertainty models R(v): one using additive random

Gaussian noise on the robot’s Cartesian coordinates, and one using additive ran-

dom Gaussian noise on the robot’s polar coordinates. In other words, the Cartesian

motion uncertainty model describes the uncertain motion of the robot asṗx
ṗy

 = ṗ = R(v) =

N (vx, σ
2)

N (vy, σ
2)

 (7.4)
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while the polar motion uncertainty model is given byṗx
ṗy

 = ṗ = R(v) =

r cos(θ)

r sin(θ)

 (7.5)

where r and θ are drawn from Gaussian distributions as

r = N
(
|v|, σ2

)
θ = N

(
atan2(vy, vx),

σ2

4π2

)

7.3 Motion control using actuator networks

To solve the problem of finding a valid actuation sequence (if one exists), the

algorithm first generates all possible
(
n
3

)
triangles that can be formed using the n

actuators. Then, it computes the incenters of these triangles (as discussed in Sec-

tion 7.3.1) to be used as local minima of the potential fields. These incenters define

the vertices in a graph, and the next step of the algorithm is to determine the weights

of all possible edges between the vertices. We define the weight of an edge to be the

probability that the robot successfully navigates from one vertex to the other, as de-

fined by the robot motion model R(v). The resulting graph defines a roadmap for the

robot, and the last step of the algorithm is to insert the start and end locations into

the roadmap and determine the path between them that maximizes the probability

of successfully reaching the end location.

7.3.1 Local control using actuators triplets

The following assumes the actuators we choose are not collinear. Consider a

potential field U generated by an actuators triplet i, j, and k (and all the other

actuators in the network set to zero amplitude). If the amplitudes of the actuator

triplet is strictly positive, the potential field will have a local minimum at some point

130



Figure 7.2. Examples of two different triangles and three different waypoints (denoted
as circles) and their capture regions (shaded areas) for both triangles. The incenter
of each triangle is marked with a ’+’.

Figure 7.3. Example of a triangle with its incenter.

inside the triangle. This location is called the waypoint of the potential field. In

our global algorithm, we may traverse many waypoints to get from the start to the

end location. The final waypoint is defined to be the end location. For a given

triangle structure, we define the feasible region as the set of locations that can be

made waypoints, that is, local minima of the potential field. The feasible region is

clearly strictly smaller than the triangle defined by the active actuators.

For a given waypoint x, C(x) is the capture region of a waypoint as the set of all

points x ∈ R2 such that, when following the direction of steepest descent from x, one

will eventually arrive at x. Some examples of capture regions for various triangles

and waypoints are given in Figure 7.2.

For a point x̄ to be a local minimum of the potential field, the gradient ∂U
∂x

at x̄

should be zero, and the Hessian matrix ∂2U
∂x2 should be positive definite. This means
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that the actuator amplitudes ai, aj, ak > 0 must be chosen such that

∂U

∂x
(x̄) =

[
xi−x̄
|x̄−xi|3

xj−x̄

|x̄−xj|3
xk−x̄
|x̄−xk|3

]
ai

aj

ak

 = 0 (7.6)

The space of ai satisfying Equation (7.6) is a one-dimensional vector space, but since

both Equation (7.6) and the signature of the Hessian are scale invariant, checking

whether x̄ is in the feasible region reduces to 1) checking whether the elements of

any solution vector ai of Equation (7.6) have equal sign (all positive or all negative),

and if so 2) checking whether for a choice of positive ai the Hessian at x̄ is positive

definite.

In the global control law described in the following section, we choose a specific

point in each triangle to be the waypoint, namely the incenter. The incenter of a

triangle is the center of its inscribed circle, or equivalently, the intersection of the

three angle bisectors of the triangle’s vertices (Figure 7.3). In extensive simulation of

many different triangles shapes, the incenter was always found to be in the feasible

region, and when chosen as the waypoint, the capture region of the incenter was found

to generally be larger than other centers, including the centroid. While the incenter

has performed well, other ways of determining waypoints can be considered. A formal

proof of these favorable properties of the incenter is the subject of future work.

7.3.2 Global control using switching potential field

To extend the previously described static local control law from an actuator triplet

to a full actuator network, we define a roadmap that robustly guides the robot from

its start location, via the incenters of successive triangles defined by actuator triplets

in the network, to its end location. The steps in the algorithm are as follows (Algo-

rithm 5):
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1. Compute all
(
n
3

)
triangles that can be generated by the n actuators in the

network.

2. Compute the incenters of the triangles and designate these incenters as vertices

in a graph.

3. For every pair of vertices (v1, v2) in the graph, add a directed edge from v1 to

v2 if v1 is in the capture region of the potential field with local minimum at v2.

Use the robot motion model R(v) to compute the probability P (v2|v1) that the

robot moves from v1 to v2 in this potential field. Set the edge weight to be the

negative log of this probability: − logP (v2|v1).

4. The weighted graph forms a roadmap for the robot. Add the start location

and end location to the graph and run Dijkstra’s algorithm [111] to obtain the

optimal path from start to goal, or, if no such path exists, the empty sequence.

The resulting shortest path is a sequence {vi} of vertices, or, with the exception of

the start and end location, a sequence of incenters. We can robustly drive the robot

from incenter to incenter by successively switching the amplitudes such that the next

incenter vi+1 in the path becomes the new waypoint. Since the point vi is in the

capture region of vi+1, the robot will be driven to the end location. Even though no

position sensing mechanism for the robot is used, and even though the robot model

contains stochastic components, the convergent nature of the potential fields will

ensure that the position motion uncertainty does not grow unbounded. As long as

the actuators do not move, step 4 can be repeated using the same roadmap to solve

multiple queries for different start and end locations.
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Algorithm 5 The Actuator Network Algorithm

1. triangles ← computeTriangles(actuatorLocations)

2. vertices ← computeIncenterLocations(triangles)

3. graph ← computeEdgeWeights(vertices)

4. path ← computePath(startVertex, endVertex, graph)

7.3.3 Computational Complexity

In step 1 with n actuators, we explore O(n3) triangles. For step 2, it takes O(1)

time to compute an incenter location and associated actuator amplitudes, thus it

takes O(n3) to complete this step. For step 3 with m rejection samples per edge,

there is an edge for each pair of incenters, thus this step will take O(mn6). For

step 4, there are O(n3) vertices and O(n6) edges. Because Dijkstra’s algorithm takes

O(|E|+ |V | log |V |), step 4 takes O(n6). Thus, the total runtime is O(mn6).

While this result is polynomial in m and n, for certain applications requiring very

fast construction of actuation strategies for very large actuator networks, it may be

desirable to further reduce this runtime. The most immediate way to reduce the

runtime is to not consider all possible
(
n
3

)
triangles. Instead, we can modify step 1

in Section 7.3.2 only use triangles of reasonable size (not too small or too large) or

discard triangles for which the capture region is fully contained in the capture region

of other triangles.

It is also important to note that the computation of the roadmap is an offline

procedure that must be carried out only once during the preparation of the roadmap

for a given actuator network. In addition, many implementations of an actuator

network may self-correct for an increased number of actuators by providing additional

resources for computation along with each actuator. The (notably parallel) problem

of computing edge weights could be solved using distributed computation across the

computation elements.
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7.3.4 Implementation aspects

To compute the motion probabilities for the edge weights in step 3 of the algo-

rithm, we perform rejection sampling with m samples. For an edge from v1 to v2, we

compute the robot motion from v1 by integrating the robot velocity R(v) using Euler

integration. If, after a certain integration interval τ the robot is within some small

distance ε of v2, we consider the motion successful, and failure otherwise. Thus, each

edge’s weight is determined by the percentage of successful transitions from v1 to v2.

Valid values for ε depend on the specific robot’s size relative to the workspace and

sensitivity to motion uncertainty, while τ depends strictly on the size of the region

and the natural velocity of the robot. For instance, τ may be defined as the maxi-

mum amount of time required for a robot to move linearly between any two points

in the planar region at its minimum velocity with no motion uncertainty, and ε may

be set to 1% of the minimum distance between any two actuators. Tighter bounds

are possible for faster movement. Even though v1 may be in the capture region of v2,

sensor and actuator uncertainty (as captured by R(v)) can cause the robot to move

temporarily outside the capture region, after which it will diverge and not succeed

in reaching the current waypoint. The probability of success is determined by the

fraction of the samples that successfully reach the waypoint.

The weights of the edges are taken to be the negative logarithm of the probability

of success. The probability of successfully reaching the end location along a certain

path is equal to the product of the probabilities of successfully moving along the edges

of the path. Since multiplying probabilities Pi is equivalent to adding log-probabilities

logPi, maximizing the probability of success along a path is equivalent to minimizing

the sum of the negative logs of the probabilities along a path. Thus, we can efficiently

compute the path with the maximum probability by using Dijkstra’s algorithm from

p0 to pe using the negative log of the probability at each edge.
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7.4 Simulation experiments

All simulation experiments were implemented in Matlab and executed on PCs

with a 2.0GHz Intel processor and 2GB of RAM.

We fixed the workspace to be 5× 5 units, and used m = 10 rejection samples. We

explored the algorithm’s effectiveness under a variety of actuator location distribu-

tions (Section 7.4.1) and motion uncertainty models (Section 7.4.2). For every choice

of actuator network and robot uncertainty model, we randomly chose k = 100 start

and end locations in the workspace, computed the optimal paths using Algorithm 5,

and simulated the motion of the robot in the actuator network.

For a given actuator network topology, we compute the average probability of the

robot successfully traveling from a random start location to a random end location.

7.4.1 Varying Actuator Placement

We randomly placed n ∈ {5, . . . , 10} actuators throughout the workspace accord-

ing to two distribution models. In the bordered distribution strategy, each actuator

was placed at a location chosen uniformly at random on the border of the workspace.

In the interior distribution strategy, actuators were scattered uniformly at random

throughout the entire workspace. For each actuator placement model and for each

possible number of actuators from 5 to 10, 100 random actuator geometries were

produced. The robot motion model was set to have zero motion uncertainty and a

probabilistic roadmap was constructed according to the above algorithm.

The results are shown in Figure 7.4. We examine the two cases where 1) the start

and end locations are within the convex hull of the actuators and 2) the start and

end locations are anywhere in the workspace. In the first case, the data suggests that

the border selection strategy performs just as well as the interior selection strategy.

136



Figure 7.4. Simulation result averaging over 100 trials of an actuator network and
100 start-end location pairs, with n = 5 . . . 10 actuators and two placement strategies:
border placement and interior placement. Results for each are shown with start and
end locations chosen randomly across the entire workspace or only within the convex
hull of the actuators. These simulations used 0.01 standard deviation polar motion
uncertainty.

Because the convex-hull eliminates start/end locations that are outside the convex hull

and therefore impossible to reach, we can see that there is no robustness advantage for

one method over another. As the algorithm performs comparably in the convex-hull

restricted test, the border-selection method is better in the full-workspace experiment,

because on average, its convex hull will cover a larger area, which in turn means more

start/end locations will be reachable.

As would be expected, increasing the number of actuators increases the probability

of success with the workspace model. We can see that the probability of success

also improves as we increase actuators for the convex-hull method. We discuss this

property further in Section 7.4.2.

The simulation results suggest lower bounds on the effectiveness of smart actuator

placement strategies. Better results can be obtained by (deterministically) optimizing

the placement of actuators to 1) maximize the area of the workspace that falls into

the capture region of at least one triangle, and 2) maximize the connectivity between

points in the workspace, particularly when likely start and end locations are known in

advance. Such an optimal-placement algorithm will be the subject of future research.
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(a) Average success rate under Cartesian

motion uncertainty.

(b) Average success rate under polar mo-

tion uncertainty.

Figure 7.5. Comparison of the results of varying Gaussian motion uncertainty for a
fixed set of actuator locations under two motion uncertainty models, with start and
end locations chosen within the convex hull of the actuators.

7.4.2 Varying Motion Uncertainty

For networks of n ∈ {5, . . . , 10} actuators, we examined how the probability of suc-

cessful completion varied for both the Cartesian motion uncertainty model described

in Equation (7.4) and the polar motion uncertainty model described in Equation (7.5).

We experiment with different errors (standard deviations σ ∈ {0, 0.01, 0.05, 0.1, 0.2}).

The results are summarized in Figure 7.5, and Figure 7.6 shows an example of the

roadmap generated by the algorithm.

The figure shows that increasing the motion uncertainty will result in reduced

probability of success, for both motion uncertainty models and any number of actu-

ators. Under large motion uncertainty, the robot is more likely to drift outside the

capture region, resulting in failure to reach the next waypoint and hence to success-

fully complete the path to the end location.

Because these examples are only of start/end locations within the convex hull,

adding actuators has two effects. As we increase the number of actuators, the area

of the convex hull will become larger, which means that the average path length be-
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(a) Triangles and corresponding incenters

(denoted ∗) generated from 8 randomly

placed actuators.

(b) Roadmap showing edges between in-

centers and an example path (thick line)

through the network.

Figure 7.6. Example of a simulation of the actuator-networks algorithm with n = 8
actuators and Cartesian motion uncertainty with σ = 0.01. The actuators are placed
randomly on the border of a square workspace, the incenters of all possible triangles
between them form vertices in a roadmap with edges containing the probability of
successful transition by activation of an actuator triplet.

tween start/end goals in the convex hull increases, making the effects of the motion

uncertainty more significant. More actuators also means more flexibility in the num-

ber of paths, due to an increased number of incenters and overlapping triangles. As

we increase the number of actuators, the incremental addition to the convex hull will

decrease, and the number of additional waypoints will grow quadratically with the

number of new actuators. Thus, for larger motion uncertainty models, the probability

of success first decreases and then increases. This effect is more extreme depending

on how significant the motion uncertainty is.

For 10 actuators, standard deviations of 0.0, 0.01, 0.05, 0.1, and 0.2, and Cartesian

motion uncertainty, the average probabilities of success are 94.5%, 93.4%, 82.5%,

49.6%, and 19.8%. For Polar motion uncertainty, the average probabilities of success

are 93.3%, 91.0%, 49.8%, 32.4%, and 12.2%.
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7.5 Conclusions and Future Work

We consider the problem of localization-free guidance of a robot using an actuator

network of beacons for use in steering simple, low-cost robots. The Actuator Networks

system and algorithm steer unmonitored robots between points using an external

network of actuators and a probabilistic roadmap. Our algorithm was able to produce

relatively high probabilities of successful navigation between randomly-selected points

even in the presence of motion uncertainty.

The low number of actuators necessary for successful steering in our technique has

important consequences for the robustness of these methods in practice. An inexpen-

sive way to guarantee continuous operation of an actuator network is to use more

than the minimum number of actuators required for high-probability performance;

as an example, with 20 actuators under border placement and 1% Cartesian motion

uncertainty, even if half of the actuators eventually fail, the probability of completion

would not drop significantly.

We plan to explore several extensions in future work. The technique of actuator

networks can be extended to consider obstacles in the workspace. An obstacle can

affect an Actuator Network in three ways: (1) the obstacle restricts the motion of the

mobile robot in the workspace, (2) the obstacle blocks the signal from an actuator,

and (3) the obstacle causes multi-path effects as the signals from the actuators reflect

off the obstacles. To model case 1, we can represent obstacles implicitly in the graph

via the edge weights encoding transition success probabilities. As discussed in Section

7.3.4, we estimate the probability P (v2|v1) of successfully moving from vertex v1 to

vertex v2 by simulating the robot’s motion as it follows the gradient of the signal

generated by the actuators. If the mobile robot’s motion intersects an obstacle during

a simulation, we determine that a failure has occurred in our rejection sampling step.

For case 2, we can modify the simulation so the gradient used by the mobile robot
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does not include signal from a particular actuator if a line segment between that

actuator and the mobile robot’s current location intersects an obstacle. Since the

probability of success for edges in the graph will decrease when obstacles are present,

the number of actuators necessary in order to find a feasible plan will increase. Case

3 is known to be difficult to model effectively, and is a significant problem for certain

domains such as RSSI localization. As future work, we can also evaluate how different

multi-path models will affect the robot by including this in the determination of the

edge-weights in a similar fashion as case 2.

We would also like to explore the alternative problem of designing an algorithm

for placement of actuators.
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Chapter 8

Privacy: Respectful Cameras

8.1 Introduction

Since September 11, 2001, security concerns have led to increasing adoption of

surveillance systems, raising concerns about “visual privacy” in public places. New

technologies allow for the capture of significantly more detailed information than

the human eye can perceive. Surveillance technologies are additionally empowered by

digital recording, allowing footage to be stored indefinitely, or processed and combined

with additional data sources to identify and track individuals across time and physical

spaces. Robotic cameras can be servoed to capture high resolution images over a

wide field of view. For example, the Panasonic KX-HCM280 pan-tilt-zoom camera

costs under $750 and has a built-in web-server and a 21x optical zoom (500 Mpixels

per steradian). The applications of these surveillance technologies extends beyond

security, to industrial applications such as traffic monitoring and research applications

such as observing public behavior.

McCahill et al. estimate that there are approximately 4 million public surveillance

cameras deployed in the UK [126]. The U.S. has also deployed a number of camera
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Figure 8.1. A sample video frame is on left. The system has been trained to track
green vests such as the one worn by the man with the outstretched arm. The system
output is shown in the frame on the right, where an elliptical overlay hides the face
of this man. The remainder of the scene including faces of the other two workers
wearing orange vests, remain visible. Note how the system successfully covers the
face even when the vest is subjected to a shadow and a partial occlusion. Please
visit “http://goldberg.berkeley.edu/RespectfulCameras” for more examples including
video sequences.

systems in cities such as New York, Chicago, and San Francisco for public monitoring

[11, 139, 135, 101]. Deployments of such large-scale government-run security systems,

in conjunction with numerous smaller-scale private applications, raise fundamental

privacy concerns.

In this chapter, we explore an approach we call “Respectful Cameras”, that allows

monitoring of activity but hides the faces of people who choose to wear recognizable

markers such as hats or vests that are made available. We show an example of the

Respectful Cameras system’s output in Fig 8.1. The system allows human actions

to be observable so that people can monitor what is going on (i.e., at a construction

site or airport terminal) for security or public relations purposes. We envision such a

system being made widely available, as these markers would be cheap, unobtrusive,

and easily mass-produced. For example, we could provide inexpensive hats of a

particular color or pattern at the border of the space where cameras are present,

similar to the respectful hats or leg-coverings that are made available at the entrance

of churches and synagogues.

Existing face and people tracking methods have difficulty tracking in real-time un-
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der moving backgrounds, changing lighting conditions, partial occlusions and across

facial orientations. We investigate a new approach that uses markers worn by indi-

viduals to improve the robustness of face or person detection required for obscuring

individual identity, providing a method for individuals to opt-out of observation.

These markers provide a visual cue for our system by having the features of the

marker such as color, size, and shape to be distinguishable from the background. We

use the location of the marker to infer the location of the faces of individuals who

wish to “opt-out” of observation.

Recent advances in computer processing have made our algorithms utilizing Adap-

tive Boosting (AdaBoost) and Particle Filtering feasible for real-time applications.

Our approach learns a visual marker’s color-model over a 9-dimensional RGB HSV

LAB color space and uses Adaptive Boosting to detect a marker in a single image.

We then extend this approach using a probabilistic reformulation of AdaBoost so that

we can apply Particle Filtering to integrate temporal information. Results suggest

that our implementation can track markers and keep false negative rates below 2%.

8.2 Providing Visual Privacy

Protecting the privacy of individuals has become increasingly important as cam-

eras become more ubiquitous and have greater capabilities, particularly resolution

and zoom. Examples of this interest includes The National Science Foundation (NSF)

funding of TRUST [3], a research center for security and privacy, and privacy has been

the subject of recent symposia such as Unblinking [5].

Changes in surveillance ubiquity and capabilities raise questions about the fair

balance of police power (the inherent authority of a government to impose restrictions

on private rights for the sake of public welfare, order, and security) to monitor public
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places versus the citizens’ freedom to pass through public spaces without fear of

government monitoring. According to Gavison, a loss of privacy occurs through visual

surveillance by the extent we are known by others and subject to their attention [72].

He discusses our expectation that our actions are observable only by those we see

around us, and thus we can judge how we should act. Nissenbaum describes how the

high-resolution and zooming capabilities of cameras applied to visual surveillance also

violate the contextual expectations of how people will be perceived in public [141].

This places the burden upon an individual to conduct himself or herself as if every

move could be recorded and archived. Finally, it should be noted that it is not just

surveillance that threatens privacy, but also the ability to be identified [172].

Researchers such as Hampapur et al. have analyzed the system architecture re-

quirements of surveillance systems and built such a system [79]. Chen et al. built

a system for people detection, tracking and recognition [32] using gait analysis, face

detection and face recognition. As visual privacy is a significant concern of such

systems, a number of researchers have explored how to integrate privacy systems

into these surveillance systems [170, 220, 33, 29, 58]. Others such as Chinomi et al.

have evaluated different methods for obscuring people in video data [35]. Google has

started experimenting with automated face blurring in Google Street View [75].

8.3 Our Motivation: Demonstrate Project

Prior to the work in this Chapter, in the Fall of 2004, to commemorate the 40th

anniversary of the Free Speech Movement, many researchers in Berkeley’s Automation

Lab, placed a robotic camera on top of the Martin Luther King Building overlooking

Sproul Plaza, the center of Berkeley’s campus. The camera was made publicly ac-

cessible over the internet at demonstrate.berkeley.edu. Visitors to the website could

instruct the camera to pan, tilt and zoom in on any region of the plaza and then, if
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desired, view a live video feed, take photos of particularly interesting scenes and com-

ment on them. These photos and initial comments often sparked further discussion

through follow up comments. The goals of the project was two fold. Firstly, it was to

produce an art piece that spread public awareness about the capabilities of robotic

cameras and about what surveillance technologies are available and in use in public

spaces today. Secondly, it was to publicize and stress-test the dissertation project of

Dr. Song [180], which was concerned with new ways for simultaneous collaborative

control of a shared robotic camera by many users.

When the project started, we had no idea of the privacy concerns and debate

that the project would unleash. The day before the project was supposed to launch,

the camera mysteriously was unavailable. After some quick analysis, we deduced

that the wire transmitting the video was sabotaged, snipped and carefully concealed.

The problem was promptly corrected, and launched as scheduled. The project quickly

became an object of debate and concern among university administrators, even though

the camera surveilled a very public space that formed the center of Berkeley’s campus.

We were happy with the results of the project, as we had achieved our goal of starting

conversations between diverse groups such as students, administrators and lawyers,

who all started to analyze the ramifications of surveillance and lack of visual privacy.

These discussion lead to the technical problem of providing automated privacy in

surveillance systems, which we describe in this chapter.

8.4 System Input

Our system relies on visual markers worn by individuals who wish to have their

face obscured. Our input is the sequence of images from a video stream. Let i be the

frame number in this sequence. Each image consists of a pixel array where each pixel

has a red, green, and blue (RGB) component.
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8.5 Assumptions

We use the location and form-factor of each visual marker as a proxy for a location

and form-factor of a corresponding human head. Thus, we assume there is an offset

between the marker’s location and the estimated face’s location. Similarly, we assume

the face’s size will be proportional to the size of the visual marker. Intuitively, this

means that as the marker’s size shrinks, the face will shrink proportionally.

We make the following additional assumptions:

• Whenever a person’s face is visible, then the visual marker worn by that person

is visible.

• In each frame, all visible markers have a minimum number of visible, adjacent

pixels

8.6 System Output

Our objective is to place solid ellipses to obscure the face of each individual wearing

a marker, while minimizing the overlay area to allow observation of actions in the

scene.

For each frame in the input stream, the system outputs a set of axis-aligned

elliptical regions. These regions should completely cover all faces of people in the

input image who are wearing markers. The ith output image has a set of elliptical

regions Ei associated with it. Each element in Ei is defined by a center-point, denoted

by an x and y position, and major and minor axis rx and ry:

Ei = {(x, y, rx, ry)} (8.1)
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The ith output video frame is the same as the ith input frame with the corresponding

regions Ei obscured via solid ellipses.

Failing to detect a marker when one is present (false negative) is worse than

placing an ellipse where there is no face (false positive).

8.7 Three Phases of System

Our solution consists of three phases: (A) offline learning of a statistical classifier

for markers, (B) online marker detection and (C) online marker tracking.

8.7.1 Phase A: Offline Training of the Marker Classifier

We train a classifier offline, which we then use in the two online phases. For

classification, we use the statistical classifier, AdaBoost, which performs supervised

learning on labeled data.

Input and Output

A human “supervisor” provides the AdaBoost algorithm with two sets of samples

as input, one for pixels colors corresponding to the marker T+ and one for pixels

colors corresponding to the background T−. Each element of the set has a red value

r, a green value g, a blue value b and the number of samples with that color m. Thus,

the set of colors corresponding to marker pixels is

T+ = {(r, g, b,m)} (8.2)

and the sample set of pixels that correspond to background colors

T− = {(r, g, b,m)} (8.3)
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As we are using a color-based method, the representative frames must expose

the system across all possible illuminations. This includes maximum illumination,

minimal illumination, the object under a shadow, and any potential hue effects caused

by lighting phenomena such as a sunset. We discuss the AdaBoost formulation in

more detail in Section 8.8.1.

We use a Probabilistic AdaBoost formulation that produces a strong classifier

η : {0, . . . , 255}3 7→ [0, 1]. This classifier provides our output, a prediction of the

probability that the RGB color of any pixel corresponds to the marker color.

8.7.2 Phase B: Online Static Marker Detector

For static detection, each frame is processed independently. This phase can be

used on it’s own to determine marker locations, or can be used as input to a dynamic

method such as what we describe in Phase C.

Input and Ouput

The Marker Detector uses as input the model generated from AdaBoost, as well

as a single frame from the video stream.

We can use the marker detector without tracking to infer the locations of faces.

This would produce for the ith image, a set of regions Ei as defined in Section 8.6,

to obscure each face. We represent the state of each marker in the ith image as

a bounded rectangle. We denote the set of rectangular bounding regions for each

marker in image i as Ri. Each rectangular region is represented by a center-point,

denoted by an x and y position, and it’s size, denoted by a width ∆x and a height

∆y:

Ri = {(x, y,∆x,∆y)} (8.4)
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There is an explicit mapping between the size and location of the bounding regions

Ri and the sizes and locations of elliptical overlays Ei. The rectangles in Ri are

restricted by the assumptions described in Section 8.5, but have the flexibility to

change its shape as the marker moves around the observed space. When used as a

component of a marker tracker, the detector supplies the same set of rectangles for

initializing the tracker, but also determines for each pixel the probability P (Ii(u, v))

that each pixel (u, v) corresponds to the visual marker in image Ii.

8.7.3 Phase C: Online Dynamic Marker Tracker

The dynamic marker tracker uses temporal information to improve the Online

Detector. We do this by using information from the Static Detector along with a

Particle Filter for our temporal model.

Input and Output

The dynamic marker tracker uses both the classifier determined in the training

phase and output from the static image recognition phase. We process a single frame

per iteration of our Particle Filter. Let the time between the previous frame and the

ith frame be ti ∈ R+, and the ith image be Ii. We discuss Particle Filtering in more

depth in Section 2.4.3, but it requires three models as input: a prior distribution, a

transition model, and an observation model. We use the Static Marker Detector to

initialize a Particle Filter for each newly-detected marker. We also use the probabil-

ities P (Ii(u, v)), supplied by the Static Marker Detector, to determine the posterior

distribution of a marker location for each Particle Filter, given all previously seen

images.

The output for the ith frame is also the set of regions Ei as defined in Section 8.6.
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8.8 Phase A: Offline Training of the Marker Clas-

sifier

To train the system, a human “supervisor” left-clicks on pixels in a sample video

to add them to the set T+, and similarly right-clicks to add pixels to set T−.

In this phase, we use the two sets T+ and T− to generate a strong classifier η, which

assigns the probability that any pixel’s color corresponds to the marker, providing

P (Ii(u, v)). Learning algorithms are designed to generalize from limited amounts of

data. For instance, with the AdaBoost algorithm, we needed a thousand labeled

training samples. Also, as our classification algorithm is linear in the number of

dimensions of our dataset (9 in our formulation) and number of hyperplanes used as

weak hypotheses in the model (20 in our experiments), we can evaluate this classifier

in realtime.

8.8.1 Review of AdaBoost

AdaBoost uses a set of labeled data to learn a classifier. This classifier will predict

a label for any new data. AdaBoost constructs a strong classifier from a set of weak

hypotheses.

Let X be a feature space, Y ∈ {−1, 1} be an observation space and {h : X → Y }

be a set of weak hypotheses. AdaBoost’s objective is to determine a strong classifier

H : X 7→ Y by learning a linear function of weak hypotheses that predicts Y given

X. At each iteration from t = (1 . . . T ), AdaBoost incrementally adds a new weak

hypothesis ht to the strong classifier H:

f(x) =
T∑
t=1

αtht(x) (8.5)
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and

H(x) = sign (f(x)) (8.6)

Let η(x) = P (Y = 1|X = x), and define AdaBoost’s loss function φ(x) = e−x.

The objective of AdaBoost is to minimize the expected loss or

E(φ(yH(x))) = inf
H

[η(x)φ(H(x)) + (1− η(x))φ(−H(x))] (8.7)

This is an approximation to the optimal Bayes Risk, minimizing E[l(H(X), Y )] with

loss function

l(Ŷ , Y ) =

 1 if Ŷ 6= Y

0 otherwise
(8.8)

To determine this function, we use a set of training data {(xi, yi)|xi ∈ X, yi ∈ Y }

sampled from the underlying distribution.

AdaBoost is an iterative algorithm where at each step, it integrates a new weak

hypothesis into the current strong classifier, and can use any weak hypothesis with

error less than 50%. However, we use the greedy heuristic where at each iteration,

we select a weak hypothesis that minimizes the number of incorrectly labeled data

points [199]. We use a standard AdaBoost classifier of this form in Phase B, trained

on our labeled data.

Recasting Adaboost to Estimate Probabilities

Typically, as described in [164], AdaBoost predicts the most likely label that an

input will have. Friedman et. al describe how to modify the AdaBoost algorithm

to produce a probability distribution, rather than a binary classification[68]. The

modified strong classifier determines the probability that an input corresponds to a

label of 1 (as opposed to -1) and is defined by

η(x) = P (Y = 1|X = x) =
e2f(x)

1 + e2f(x)
(8.9)

152



We use this probabilistic formulation to determine the probability that each pixel

corresponds to a marker, as η(x) = P (Ii(u, v)), in Phase C.

8.8.2 Determining Marker Pixels

We begin by applying Gaussian blur with standard deviation σI to the image,

which enhances robustness to noise by integrating information from nearby pixels.

We use these blurred pixels for T+ and T−. We then project our 3 dimensional

RGB color space into the two additional color spaces, Hue, Saturation, Value (HSV)

[63] and LAB [91] color-spaces. HSV performs well over varying lighting conditions

because Value changes over varied lighting intensities, while Hue and Saturation do

not. LAB is designed to model how humans see color, being perceptually linear,

and is particularly well suited for determining specularities. This projection of RGB

from T+ and T− into the nine-dimensional RGBHSVLAB color space is the input to

AdaBoost.

For weak hypotheses, we use axis-aligned hyperplanes (also referred to as decision

stumps),each of which divides the space along one of the nine dimensions into two

sets. These hyperplanes also have a +/- direction, where all 9-dimensional tuples that

are in the direction and above the hyperplane are labeled as visual marker pixels, and

all other tuples are non-marker pixels. The hyperplane separating dimension d at a

threshold j is described by:

hd,j(X) =

 1 if X[d] ≥ j

−1 otherwise
(8.10)

Our set of weak hypotheses also includes the complement of these hyperplanes

hd,j(X) = −hd,j(X). By projecting the initial RGB space into the additional HSV

and LAB spaces, we provide more classification flexibility as we have more weak

classifiers. For the weak hypothesis, AdaBoost chooses the dimension and threshold
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at each round that minimizes the remaining error. The algorithm terminates after

running for some constant number, n, iterations. There are many ways to set n, for

instance splitting the data into a learning set and a validation set. In this technique,

learning is applied to the learning set, and the generalization accuracy is evaluated

on the validation set. Thus, we can observe how our model performs not on the data

it is exposed to, but at predicting other unobserved data.

Rather than using the learning set and validation set directly, we went through a

calibration process where we recorded video, exposing the marker to all areas in the

viewing range of the camera and over varied lighting conditions and marker orienta-

tions. We went through the process of collecting an initial set of 100 marker pixels

and 100 background pixels, and varied n from 5 to 50. If there were still patches of

the background or marker that were misclassified, we would add these mistakes to

the model, and repeat the learning. For instance, if a portion of the background was

misclassified as the marker, we would add some of those pixels to the background set,

and repeat the learning. This iterative approach provided an intuitive way for the

user to distinguish between the marker and the background.

8.9 Phase B: Online Static Marker Detector

This section describes our marker detection algorithm, using only the current

frame. Once we have the strong classifier from AdaBoost, we apply the following

steps: (1) Apply the same Gaussian blur to the RGB image as we did for training.

(2) Classify each pixel in the image (3) Cluster marker pixels (4) Select all clusters

that satisfy the constraints.
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8.9.1 Clustering of pixels

To determine the pixels to marker correspondence, we apply the connected-

component technique [160]. The connected component algorithm is applied to an

image with two types of pixels, foreground and background pixels, or in our case,

marker and non-marker. Connected component will recursively group adjacent fore-

ground pixels into the same cluster. We assign a unique group id to each cluster’s

pixels. Thus, a connected group of marker pixels would be determined to correspond

to the same marker as they have the same group id. This yields a set of marker pixels

for each visual marker in the frame.

To remove false positives, we enforce additional constraints about each identified

marker cluster. We verify there are at least ζ1 pixels in the cluster, and that ratio of

width (∆x) to height (∆y) falls within a specified range from ζ2 to ζ3:

ζ2 ≤
∆x

∆y
≤ ζ3 (8.11)

Requiring at least ζ1 pixels per cluster prunes out false positives from small areas of

color in the background that do not correspond to the marker. We also found that

in some backgrounds, there would be long vertical or horizontal strips similar to our

marker color, which would be incorrectly labeled as a marker as it was the same color.

However, our markers have a bounded ratio between width and height. Using this

knowledge helps remove these false positives.

8.10 Phase C: Online Dynamic Marker Tracker

We use Particle Filtering to incorporate temporal information into our models,

improving robustness to partial occlusions. Particle Filtering requires a probability

distribution for the likelihood of the state given the current, indirect observations.
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We provide this Observation Model by extending the theory from our Static Marker

Detector from Phase B, using the probability that each pixel corresponds to a marker

that is provided by the Probabilistic Adaboost formulation described in Section 8.8.1.

8.10.1 Marker Tracking

In this section, we define our transition models and our observation models for

our Particle Filter. We also describe how to track multiple markers simultaneously.

Marker Model

The state of a marker is defined with respect to the image plane and is represented

by a 6 tuple of a bounding box’s center x and y positions, the height and width of

the bounding box, orientation, and speed. As can be seen in Figure 8.2 this yields:

z = (x, y,∆x,∆y, θ, s) (8.12)

We model the marker in image coordinates, rather than world coordinates to improve

the speed of our algorithms.

Transition Model

The transition model describes the likelihood of the marker being in a new state,

given its state at the previous iteration, or P (Zi|Zi−1 = zi−1). Our model adds

Gaussian noise to the speed, orientation, bounding-box width, and bounding box

height and determines the new x and y position via Euler integration. Let W ∼

N(0, 1) be a sample from a Gaussian with mean zero and standard deviation of one.

The mean µ and standard deviation σ for each portion of our model are set a priori.
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Formally:

xi = xi−1 + si · cos(θi) · ti

yi = yi−1 + si · sin(θi) · ti

∆xi = ∆xi−1 +
√
ti · (σ∆x ·W + µ∆x)

∆yi = ∆yi−1 +
√
ti · (σ∆y ·W + µ∆y)

si = max(0,min(smax, si−1 +
√
ti · σs ·W ))

θi = θi−1 + σθ ·
√
ti ·W

(8.13)

At each iteration, we enforce the width and height constraints for each particle de-

scribed in Section 8.9.1. The sample from the Gaussian, after being scaled by µ and

σ, must be rescaled according to
√
ti (as defined in Section 8.7.3) to compensate for

changing frame rates.

We modify the variance of the noise added to the distributions by
√
ti is because

of the following proposition.

Proposition 4. Define r1 and r2 as the rates of waiting times before adding in new

samples from N(0, 1) Gaussians into the current state, and c ∈ N+, with r1 = c ·

r2. We must sample
√

r2
r1
N(0, 1) at rate r2 to preserve the same variance over time

N(0, 1) at rate r1.

Proof. Define i.i.d. random variables W0, . . . ,Wc with distribution N(0, 1). Over a

single waiting time of r1, we have c additions of Gaussians of rate r2. Because the

W s are linearly independent:

Var[W0] = Var[h
∑c

i=1 Wi]

1 = h2
∑c

i=1 Var[Wi]

1/
√
c = h

Therefore, sampling from distribution N(0, 1) at the rate r1 has the same variance as

sampling from
√

r2
r1
N(0, 1) at rate r2.
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Figure 8.2. Illustrates the state of a single bounding box (left) and the probability
mask used for the Particle Filter’s observation model (right).

Observation Model

The observation model describes the distribution of the marker’s state given an

image, but our formulation gives a probability per pixel, rather than per marker

state. We use an objective function as a proxy for the observation model, which has a

probability of 1 if the bounding box tightly bounds a rectangular region of pixels with

high probability. Let bounding box R1 be the marker’s state and bounding box R2

have the same midpoint as R1 but have size
√

2∆x×
√

2∆y. R1 and R2 are disjoint.

The
√

2 scaling factor makes the areas of R1 and R2 be equal. Then:

R1 =

{
(u, v)

∣∣∣∣ |x− u| ≤ ∆x
2
, |y − v| ≤ ∆y

2

}
(8.14)

R2 =

{
(u, v)

∣∣∣∣ |x− u| ≤ ∆x√
2
, |y − v| ≤ ∆y√

2
, (u, v) /∈ R1

}
(8.15)

P1(Zi = zi|Ii) =
1

∆x∆y

 ∑
(u,v)∈R1

P (Ii(u, v))

 (8.16)

P2(Zi = zi|Ii) =
1

2∆x∆y

 ∑
(u,v)∈R1

P (Ii(u, v))+∑
(u,v)∈R2

1− P (Ii(u, v))

 (8.17)

Our final metric used as our observation model is:

P (Z|Et = et) = (1− P1)P1 + P1P2 (8.18)
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This metric has the essential property that there is an optimal size for the bounding

box, as opposed to many other metrics which quickly degenerate into determining

the marker region to consist of all the pixels in the image or just a single pixel. For

intuition, assume the projection of the visual marker produces a rectangular region.

If a particle’s bounding region is too large, its objective function will be lowered in

region R1, while if it is too small, then the objective function would be lowered in

region R2. This function yields a probability of 1 for a tight bounding box around a

rectangular projection of the marker, yields the probability of 0 for a bounding box

with no pixels inside that correspond to the marker, and gracefully interpolates in

between (according to the confidence in R1). We illustrate the two areas in Figure 8.2.

Multiple-Object Filtering

Our formulation uses one Particle Filter per tracked marker. To use multiple

filters, we must address the problems of: (1) markers appearing, (2) markers disap-

pearing and (3) multiple filters tracking the same marker. We make no assumptions

about where markers can be obstructed in the scene.

For markers appearing, we use the output of the Marker Detection algorithm to

determine potential regions of new markers. We use an intersection over minimum

(IOM) metric, defined for two regions R1 and R2 is:

IOM(R1, R2) =
Area(R1 ∩R2)

min(Area(R1),Area(R2))
(8.19)

If a Marker Detection algorithm has an IOM of more than a specified overlap γ1 with

any of Particle Filter’s most likely location, then a Particle Filter is already tracking

this marker. If no such filter exists, we create a new marker at this region’s location

by creating a new Particle Filter with the location and size of the detection region.

We choose an orientation uniformly at random from 0 to 2π, and choose speed from

0 to the maximum speed smax that is chosen a priori.
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To address disappearing markers, we require that the probability of the state of

at least one particle for a filter exceeds γ2, otherwise the filter is no longer confident

about the marker’s location, and is deleted.

Multiple Particle Filters can become entangled and both track the same marker.

If the IOM between two Particle Filters’ exceeds the same threshold as appearing

filters γ3, we remove the filter that was created most recently. We remove the most

recent to maximize the duration a Particle Filter tracks its marker.

8.11 Experiments

We ran two sets of experiments to evaluate performance. We experimented in

our lab where we could control lighting conditions and we could explicitly setup

pathological examples. We then monitor performance on video from a construction

site as we vary model parameters. All tests involved video from a Panasonic KX-

HCM280 robotic camera, transmitting an mJPEG stream of 640x480 images. We

ran all experiments on a Pentium(R) CPU 3.4 GHZ.

Currently, the system has not been optimized, and we could easily extend our

formulation to incorporate parallelism. The rate that we can process frames is about

3 frames per second, which is approximately 3x slower than the maximum incoming

frame rate of 10fps.

For both the Lab Scenario and Construction Site, we trained the AdaBoost algo-

rithm on 2 one-minute video sequences specific to the environment, using the method

described in Section 8.7.1, exposing the system to many potential backgrounds, loca-

tion and orientations of the visual markers, and over all lighting conditions that the

experimental data experiences. After training AdaBoost, we used the same sequences

160



to calibrate our parameters. In our experiments we used:

σ∆x = 25 pixels σ∆y = 25 pixels

σs = 100 pixels σθ = 3
2
π radians

µ∆x = 12.5 pixels µ∆y = 12.5 pixels

smax = 300 pixels σI = 3.7pixels

ζ1 = 300 pixels ζ2 = 1
5

ζ3 = 5 γ1 = 0.2

γ2 = 0.4 γ3 = 0.2

# Particles = 2000 # Weak Hypotheses = 20

We define an image to be a false negative if any part of any face is visible and to

be a false positive if there is an obscuring region in Ei that does not touch any of the

faces in image i. These metrics are independent of the number of people in the scene.

To determine the statistics for each experiment, we processed each video with

our system and then went through each image, frame by frame, and hand labeled

each for false positives and false negatives. We then went through the same sequence

twice more to help ensure quality results. This required approximately 30 seconds

per frame, or nearly 60 hours of manual labeling for the experiments presented.

8.11.1 Lab Scenario Experiments

Within the lab, where we can control for lighting changes, we explore scenarios

that challenge our system. Our marker is a yellow construction hat, and we assume

the face is at the bottom-center of the bounding box and the same size as the hat.

We evaluate how the system performs when 1) there are lighting conditions that the

system never was trained on, and 2) two individuals (and their respective markers)
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Figure 8.3. Example of a False Negative with the Respectful Cameras System: A
sample image frame input on left image, with output regions overlayed on right
image. This sample illustrates where an intense light from a flashlight induced a
specularity, causing the classifier to lose track of the hat. As a result, the right image
has no solid white ellipses overlaid on the face as it should.

cross. Lab experiments were run on 51 seconds of data acquired at 10 frames per

second (fps). We summarize our results in the following table:

Lab Scenario Experiments
Experiment # Frames Correct FPs FNs FP+FNs
Lighting 255 96.5% 0.0% 3.5% 0.0%
Crossing 453 96.9% 0.0% 3.1% 0.0%

Table 8.1. This tables shows the performance of in-lab experiments. To evaluate the
system, we place each frame into the category of correctly obscuring all faces without
extraneous ellipses, being a false negative but not false positive, being a false negative
but no a false positive, and being both a false negative and false positive. We denote
false negatives with FN and false positives with FP.

Lighting

In this setup, there is a single person, who walks past a flashlight aimed at the

hat during two different lighting conditions. We experiment with all lights being

on, and half of the lab lights on. In the brighter situation, the flashlight does not

cause the system to lose track of the hat. However, in the less bright situation, the

hat gets washed out with a specularity and we fail to detect the hat during this

lighting problem. An explanation for why the specularity only was visible in the less

bright situation is that our camera dynamically modifies the brightness of the image
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Figure 8.4. Example of Crossing Markers and the Respectful Cameras System: A
sample image frame input on left image, with output regions overlayed on right image.
This sample illustrates tracking during a crossing, showing how the Particle Filter
grows to accommodate both hats.

Figure 8.5. Example of the Respectful Cameras System: A sample image frame
input on left image, with output regions overlayed on right image. This sample
illustrates tracking after a crossing (one frame after Figure 8.4), showing how the
system successfully creates a second filter to best model the current scene.

depending on the scene it observes. Thus, in the darker scene, the specularity would

have been perceived to be brighter than in the brighter scene. We show one of the

failing frames in Figure 8.3. In general, the system performs well at interpolating

between observed lighting conditions, but fails if the lighting is dramatically brighter

or darker than the range of lighting conditions observed during training.

Crossing Markers

In this test, two people cross paths multiple times, at different speeds. Figure 8.4

shows how the system merges the two hats into a single-classified hat when they are

connected, while still covering both faces. We are able to accomplish this via the

biasses in our transition model, µ∆x and µ∆y, which reduces false-negatives when

163



multiple faces are in a scene. At the following frame in Figure 8.5, the system suc-

cessfully segments what it determined to be a single hat in the previous frame into

two two hats by creating a new Particle Filter.

8.11.2 Construction Site Experiments

The construction site data was collected from footage recorded in March, 2007 at

the CITRIS construction site at the University of Berkeley, California, under UCB

Human Subjects Protocol #2006-7-11. Because we needed to respect the privacy

of the construction workers and restrictions in the protocol, we limited our data

acquisition to a one-week period. The video sequence presented contains a number of

difficult challenges, particularly partial obstructions of the marker, significant changes

in the background due to the tracking of the moving person with a robotic camera,

and lighting differences including sharp changes from shadows. Also, the system

observes areas of the scene it was not trained on, as the robotic camera moved 10

times to track the construction worker as he walked throughout the construction site.

For the construction site, our marker is a green construction vest and we assume

the face is located at the top-center of the vest, as we show in Figure 8.1. We first

evaluate the performance of the system as we use different color-spaces used for input

to AdaBoost. We then evaluate the differences in performance between the Particle

Filtered approach from Phase C and the Static Marker Detector from Phase B. All

experiments were run on data acquired at 6 fps, simulating that the system can process

at this speed, rather than the current capability of 3fps. This diminished recording

speed (the max is 10 fps) was caused by requiring us to view the video stream to

move the camera to follow a person during recording, while having the system store a

secondary video stream to disk for later experimentation. The data suggests that our

1To contact UCB Human Subjects, refer to http://cphs.berkeley.edu/content/contact.htm.
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system can perform with a 6.0% false positive rate, and 1.2% false negative rate for

this real-world application. We summarize our results over a 76 second (331 frame)

video sequence from a typical day at the construction site in the following table:

Construction Site Experiments
Experiment % Correct FPs FNs FP+FNs
Only RGB 19.4% 68.6% 5.1% 6.9%
Only HSV 86.1% 11.5% 1.2% 1.2%
Only LAB 84.3% 10.9% 3.6% 1.2%
All 9 (RGB+HSV+LAB) 93.4% 5.4% 0.6% 0.6%
Static Marker Detector 82.8% 16.3% 0.0% 0.9%
Dynamic Marker Tracker 93.4% 5.4% 0.6% 0.6%

Table 8.2. This tables shows the performance of experiments at the CITRIS construc-
tion site. To evaluate the system, we place each frame into the category of correctly
obscuring all faces without extraneous ellipses, being a false negative but not false
positive, being a false negative but no a false positive, and being both a false negative
and false positive. We denote false negatives with FN and false positives with FP.

Color Models

In this test, we investigate how our system performs by using different color spaces,

specifically because we are only using simple axis-aligned hyperplanes as our weak

hypotheses. We compare the algorithm’s performance when just using RGB, just

HSV, just LAB, and then the “All 9” dimensional color space of RGB+HSV+LAB.

We determined that using all nine is superior in both false positive and false negative

rates. This data suggests that color-spaces that explicitly decouple the brightness

from the color (LAB and HSV) perform better than those that do not (RGB). This is

probably exacerbated by our choice of weak hypotheses that decouple each dimension.

Particle Filtered Data

In this test, we evaluated performance between a non-Particle Filtered approach,

where we just use each frame independently as described in Phase B, and using
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Figure 8.6. Sample image frame input on left image, with output regions overlayed
on right image. This sample illustrates how without Particle Filtering, even with the
nine dimensional color-space, partial occlusions segment the visual marker, resulting
in multiple small ellipses.

Figure 8.7. Sample image frame input on left image, with output regions overlayed
on right image. This sample illustrates how Particle Filtering overcomes partial oc-
clusions, when using the nine dimensional color-space, yielding a single large ellipse.

Particle Filtering as described in Phase C. We can see that the system significantly

reduces the number of false-positives from 17.2% to 6.0%, while inducing slightly more

false-negatives from 0.9% to 1.2%. There were two extra false-negatives induced by

the Particle Filter, one from the shirt being cropped at the bottom of the scene, and

one where the previous frame experienced extreme motion blur. We were very strict

with our definitions of false-negatives as the face’s visible region due to the partially

cropped shirt is only 8 pixels wide.

Examples of input and output data can be found in Figures 8.8, 8.9, 8.10, 8.11,

and 8.12.

166



8.12 Machine Learning Discussion

There are a number of other machine learning techniques other than AdaBoost

that can be explored. Other machine-learning based classification approaches include

K-Nearest Neighbors, Neural Networks and Support Vector Machines. AdaBoost was

a good fit to our problem as our formulation has a fairly low dimensional space (our

problem only has nine dimensions). Also, as we wanted our system to run in real-time,

we wanted a lightweight classification approach. We explicitly chose weak hypotheses

that were very fast to evaluate, and axis-aligned hyperplanes require only a lookup

for the particular dimension, and a comparison with each selected weak hypothesis.

This approach is similar to Viola and Jones’ [199] motivation of using simple features

that are fast to evaluation. A significant advantage of using the greedy selection

method for the next weak hypothesis is that the formulation can be thought of as

performing a form of feature selection aswell. If the H dimension in HSV has poor

prediction performance, the weak hypotheses associated with H will not be chosen,

making the system more robust. This is possible because our weak hypotheses treat

each color dimension independently. Feature selection methods such as wrapping

[102] have shown to improve classification performance. The motivation of feature

reduction approaches follows the principle Occam’s Razor. We are searching for the

”simplest” way to predict the classification. This AdaBoost formulation implicitly

uses feature selection in the step which chooses the next weak hypothesis according

to the greedy heuristic in [199]. Exploration of a very high dimensional space (like

10,000 dimensions) is computationally very difficult for our approach, as it would

require we explore all weak hypotheses, for each step of the weak hypothesis selection

process.

Additionally, we project the RGB space into the HSV and LAB spaces. The orig-

inal images are provided in RGB, giving us the features in that color-space with no

167



needed computation. As discussed earlier, HSV is more robust to changing lighting

conditions, and LAB is better at handling specularities and is designed to be per-

ceptually linear. As shown in our experiments, using this redundant formulation as

well as the implicit feature reduction of AdaBoost, effectively utilizes the additional

colorspaces. If all of the best predictive powers were just in the RGB colorspace, then

the hyperplanes for HSV and LAB would never be selected. We found the chosen

weak hypotheses spanned all of the colorspaces. Projecting into the other two color

spaces gives us 3x the features to explore at each step, improving performance, as

we show in our experiments. We also chose to use colorspace projections rather than

other types of projections as we know they were designed to give robust properties

such as attempts at being invariant to lighting conditions.

8.13 Conclusion and Future Work

We have discussed the Respectful Cameras visual privacy system which tracks

visual markers to robustly infer the location of individuals wishing to remain anony-

mous. We discuss a static-image classifier which determines a marker’s location using

pixel colors and an AdaBoost statistical classifier. We then extended this to marker

tracking, using a Particle Filter which uses a Probabilistic AdaBoost algorithm and

a marker model which incorporates velocity and interframe information.

It may be possible to build a Respectful Cameras method directly into the camera

(akin to the V-chip) so that faces are encrypted at the hardware level and can be

decrypted only if a search warrant is obtained.

While a 1.2% false negative rate for the CITRIS construction is encouraging, we

would like it to be even lower to better address privacy applications. One encourag-

ing idea is to run the Respectful Cameras system from multiple cameras, and cross
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reference the results. Assuming that the false negative rates of multiple cameras is

independent, with three cameras, the false-negative rate would be 0.0002%.

Figure 8.8. Input frames from the in-lab crossing experiment

Figure 8.9. Output frames showing the Particle Filter with the nine-dimensional
colorspace performs well under dynamic obstructions
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Figure 8.10. Input frames from the CITRIS construction site

Figure 8.11. Output frames showing using only the RGB colorspace is insufficient

Figure 8.12. Output frames using the full nine-dimension colorspace, showing better
performance
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Chapter 9

Conclusion And Future Work

In this dissertation, we describe the concept of Structured Tracking, where we can

introduce new structure, or leverage existing structure to improve the accuracy and

robustness, of tracking problems, while reducing the computational complexity of the

algorithms. We show that principled probabilistic inference and machine learning

techniques such as Adaptive Boosting, Particle Filtering, and Belief Propagation can

improve upon previous methods.

We address the problems of autonomous monitoring using recent technological ad-

vances in hardware, distributed algorithms, and machine learning, particularly using

sensor networks, camera networks, and robot networks to address societal problems

in safety, security, and privacy. For safety, we explore the StatSense Project, where

we use spatial correlation between noisy temperature sensors to infer temperatures

at unobserved locations. In the Perceptive Pallets project, where we track sensors

mounted on pallets to ensure sufficient distance between pallets containing reactive

chemicals. For Security, we built the SNARES system, where binary passive infrared

sensors tracked the movements of an intruder, and then recorded the intruder’s activi-

ties with a robotic camera. In Actuator Networks, we explore the algorithms for using
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open-loop control of a simple robot by modifying the fields emitted by beacons. For

privacy, we develop the Respectful Cameras system, where we track colored markers

and use these markers as proxies for people’s faces. We then automatically obscure

these tracked faces to help preserve their privacy.

This dissertation describes a number of key contributions, but we would like to

reiterate the most important.

1. To our knowledge we were the first to implement a Belief Propagation algorithm

in a sensor network.

2. We describe an innovative inference algorithm using nonparametric Belief Prop-

agation for real-time tracking of pallets, and using an novel decomposition of the

dynamics allowing us to extend a localization approach [86]. When compared to

the localization approach, our algorithm has better accuracy, reduced computa-

tion, and improved robustness, particularly when pallets are unable to receive

at least three inter-distance sensor readings from neighboring pallets. Our ap-

proach has 3-4x better accuracy when compared to the SMCL+R method [46].

It is also more robust to noisy connectivity and inter-distance readings because

our approach does not assume a unit-disk connectivity model[207].

3. We developed a novel security system which uses a robotic camera and many

binary sensors, rather than using many static cameras. We control the cam-

era using a novel Particle Filtering formulation which allowed us to model the

spatial response, the object dynamics, and the structure of the environment.

4. We also developed a novel open-loop navigation algorithm which uses robot

dynamics and beacons which modify emitted fields such as light or sound to

direct a single robot to a goal location.

5. We illustrated how by using colored markers, we can reduce computational com-
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plexity and improve tracking robustness to overcome limitations of person and

face tracking and show a 2% false negative rate at our CITRIS construction site

deployment. We accomplish this with a novel algorithm coupling a probabilistic

Adaptive Boosting formulation with a Particle Filter and using a 9-dimensional

color space which learns a environment-specific color model.

There are a number of exciting future directions to explore leveraging the insights

and methods developed in this dissertation.

9.1 Future Directions

9.1.1 Adding Control to Tracking With Nonparametric Be-

lief Propagation

In the tracking approaches described in this dissertation, we assume the object’s

movements are observed, but cannot be controlled. However, a major advantage of our

Particle Filtering and Belief Propagation approaches is that our inference algorithms

do not just provide a value for the most likely state, but incorporate uncertainty

models to provide a measure of confidence in our estimate. We can add control into

our tracking algorithms, based on our knowledge of this confidence, to more reliably

achieve tracking tasks. If we just wish to model the effect the control we have, we can

apply standard Kalman Filtering [95] or Particle Filtering [162] techniques. However,

if we pose the problem as robustly guiding a robot to a goal location, this becomes a

path-planning problem [176, 22, 130, 62]. In some situations, where localization noise

varies with location, we need a formulation to address the seemingly antagonistic

relationship: at each timestep, do we control each object to move toward a goal

location, or do we move the robot to reduce uncertainty?
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Two key formulations that model similar theoretical tradeoffs are exploration vs.

exploitation [97, 94, 28, 7] and dual control theory [53, 54, 59]. In both of these

formulations, the algorithm chooses between control that allows the algorithm to

learn more about how control affects the unknown parameters of the system, vs using

the estimated parameters to achieve an objective. Note that estimating parameters

that affect the system, for instance how a specific control input transitions an object

from one state to another, is a slightly different problem from estimating the state of

a tracked object.
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Figure 9.1. Illustration of how different choices of robot control can affect tracking
accuracy. Using the same notation as Figure 5.1, subfigures (a)-(c) show the connec-
tivity where (a) shows the first timestep, and (b) and (c) show how different controls
yield different positions of the robot at the second timestep. Subfigures (d)-(f) show
the localization performance, whereby (e) has poorer localization accuracy than (f)
due to the different control choice.

One specific example is in work such as Perceptive Pallets, where the distributions
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of inferred states give us a measure of our confidence in the location of each tracked

pallet. Thus, for a pallet that is poorly localized, rather than moving it to it’s next

step to achieve some objective (like being placed on a shelf), as we do not yet have

precise enough estimate of the pallet’s location, we are better off moving it in a specific

way to increase the likelihood that it receives quality inter-sensor distance estimates

from enough neighbors, to properly localize itself in the next timestep. Using the

Sparse Perceptive Pallets framework, we provide a motivating example in Figure 9.1

illustrating how different control choices can affect the tracking accuracy.

Figure 9.2. The graphical model of a Hidden Markov Model. The graph indicates
that we have direct, noisy observations of the state. Also, the next state is determined
only by a noisy transition model based only on the previous state and noisy actions
applied at the previous timestep.

One method for performing path planning is Markov Decision Processes [19, 186],

which assumes transitions between locations are probabilistic, but assume that lo-

cation of the robot is directly observable (ie. subject to no noise). When we can-

not directly observe the location of the robot, as in Perceptive Pallets, and instead

have noisy observations for instance from sensor data, we can formulate this problem

as a Partially Observable Markov Decision Processes (POMDPs) [6]. Conventional

POMDP formulations are over discrete states, but there has been work, for instance

by that of Thrun [190], to address continuous states using Monte Carlo methods.

They use some of the more recently developed probabilistic machinery, for instance
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directly using a Particle Filter in their POMDP observation model formulation to

expand beyond discrete models.

Figure 9.3. This figure illustrates the graphical model for a Semi-Markovian Model
with an open-loop planner. It is semi-Markovian because each timestep’s state de-
pends only on the previous timestep’s state. Because the next action does not de-
pend on the previous state, it is an open-loop planner. This representation uses both
undirected undirected edges for clarity, where undirected edges correspond to our
observation model, and directed correspond to our transition and action models.

We can formulate the types of optimal tracking and control problems we described

as POMDPs, but if we would like to apply the ideas to problems such as the Percep-

tive Pallets described in Chapters 4 and 5, we would like to generalize POMDPs to

more complex, semi-Markovian structure. For example, as we can see in Figure 9.2,

conventional POMDPs can be described as HMMs, where there are noisy observa-

tions of the state, noisy transitions from the state at one timestep to state at the next,

and noisy actions which affect the transition. However, we would like to explore how

POMDPs can be used for optimal control in environments where observation models

are more complicated, requiring models using graphical models with cycles, as de-

picted in Figures 9.3 and 9.4. This is consistent with the type of observation model

presented in Chapter 5 on Sparse Perceptive Pallets. It is important to note that our
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Figure 9.4. This figure illustrates the graphical model for a Semi-Markovian Model
with a closed-loop planner, where each timestep’s state depends only on the previous
timestep’s state. Because the next action depends on the previous state, it is a closed-
loop planner. This representation uses both undirected undirected edges for clarity,
where undirected edges correspond to our observation model, and directed correspond
to our transition and action models.

formulation is semi-Markovian. By semi-Markovian, we mean that while the obser-

vation model has cycles, the transition model only requires knowledge of the previous

state allowing us to make use of Markov assumptions. In addition, if we model all

objects at a single timestep as a single state vector, then the process can be directly

described by an HMM.

We would like to extend Thrun’s work on POMDPs, where we can use Belief Prop-

agation (particularly NBP) as our observation model. This could be accomplished

by performing NBP for the observation model to determine the distributions of the

states of the object, in our case robot locations, and representing this distribution as

samples as is done in their more restrictive particle-filtered implementation. We could

then use the rest of the framework, with the same reward functions and transition

models, thereby adding the ability to control the robot to the problem to our Sparse

Perceptive Pallets.
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As an alternative approach for solving these noisy path-planning problems, though

not formulated for navigation, Grimes et. al [77] has explored a non-parametric

inference formulation. This approach is accomplished by defining a graphical model,

and modifying the model such that the goal state is set as an observed random

variable, and then performing inference. The rationale is that the most likely actions

that are determined by inference are those used as control inputs, as they are the most

likely to result in the goal state. They use this for learning how to control a robot,

and repeatedly uses the best action, as determined by the inference, to iteratively

refine learning and control. We could apply these sorts of methods to the variant

of Perceptive Pallets for path planning we just described, performing inference on

the models illustrated in Figures 9.3 and 9.4 depending on if we have an open, or

closed-loop planner.

9.1.2 Identity vs. Position Accuracy in Multi-Object Track-

ing Problems

There are many scenarios where we have noisy identity information when trying

to track the movements of multiple objects. In most tracking frameworks, researchers

typically assume one of two extremes regarding identity information. In the first, sen-

sors know exact identity information, as we assume in Perceptive Pallets, because the

sensors are placed on the objects that are tracked. Alternatively, other formulations

involve sensors that provide spatial information, but no identity information. Instead,

other mechanisms for distinguishing the objects like dynamics information must be

used [143, 155]. There has been more limited work, particularly in the vision com-

munity, that involves uncertain identity information based on models of the objects

that are tracked, particularly color models [96, 133]. For instance, Fleuret et al. [60]

use background subtraction to determine which locations are people, and then use
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color information to determine the most likely mapping between people in one frame

to people in another, by examining the consistency of the color models.

We would like to explore how our inference formulations can be extended to also

model probabilistic identity information. This would allow for sensors types with

different localization vs. identity profiles to be used together to compensate for weak-

nesses of the other type. For example, we could use a sensor-network and a camera

network for tracking pallets in a warehouse. While cameras can be used to precisely

localize pallets indoors, we might use color-based tracking but be limited in the num-

ber of different colors we could paint the pallets. Thus, the camera-network would

have poor identity information because it could not identify the pallet exactly, but

could prune out many unlikely pallets it observed. With a sensor on each pallet, as

in Perceptive Pallets, we would know exact identity information, as the sensor would

know the pallet’s identity, but especially in indoor environments, inter-distance lo-

calization is poorer than can be achieved by cameras, particularly due to multipath

effects. We would like a single formulation that could leverage the identity advan-

tages of the sensor network, and the localization advantages of the cameras to provide

a better localization and identity estimate than using these two systems separately.

While other mechanisms exist to determine the identity of objects with vision sys-

tems such as by using barcodes, other problems such as being able to determine the

identity from the barcode on the pallet from any orientation would still need to be

addressed. In addition, for domains such as visual tracking of people, we hypothesize

a theoretically clean graphical-modeling based inference formulation would perform

well with uncertain identity information, even with a single class of sensor.
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9.1.3 Deploy NBP Implementation and Alternative Obser-

vation Models

As described in Chapter 3 for the StatSense project, we developed a cohesive

framework and ran experiments for formulating Belief Propagation on sensor net-

works using discrete random variables. We have not yet run physical experiments

with the NBP framework. We would like to explore extending our StatSense frame-

work and implementation to accommodate NBP while also experimenting with how

additional approximations, such as those described in Section 5.4.2 can be used to

reduce the computation time of our algorithms to help address the slower processors

typically found in sensor-network applications. As NBP can be computationally ex-

pensive, we would also like to experiment with hierarchical formulations like in [143],

so that a fewer number of high-performance nodes (perhaps in ratios of 20 to 1)

can assist with computation, but still in a distributed way. To ease implementation

and debugging, declarative sensor-network frameworks like Chu et al. [38] should be

explored in addition to directly extending our StatSense Framework. For instance,

Singh et al. [177] used the declarative framework for implementing HMMs on sensor

networks.

For a physical experiment, any modality with inter-distance readings can be ap-

plied, but as we have experience with the MIT cricket motes from the Dense Per-

ceptive Pallets project, that would likely be the type we would use. For our first

experiment, we would place 3 beacons in a lab, and then have multiple people hold

a mote, and walk around a pre-defined path so that we could compare the system’s

estimates with ground truth. We would suggest just collecting the data and feeding

it into our Java simulator for debugging. Once that was confirmed to work, we would

implement a version on the motes and compare accuracy, as well as determine which

approximations would be necessary to get this form of NBP running on the motes.
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Once these issues were resolved, they could be applied to a real-world application, for

instance placing motes on pallets for inventory management.

Depending on the types of information provided by our sensor, we might want to

incorporate additional information. For instance, as discussed in the Dense Perceptive

Pallets project, there is an angular bias in the inter-distance readings from the cricket

motes. We can accomplish this by augmenting the NBP formulation by modifying

the observation model in Equations 9.3 and 9.4. If the sensor also provides angular

information, we would modify Equation 9.3 to directly use the reading from the

sensor, rather than drawing a sample uniformly. For the inter-angle sensor reading

Θst between robot s and robot t, accounting for additive Gaussian error with standard

deviation σΘ, we would change our model to be:

θ
(i)
st = Θs + ξ

(i)
st ξ

(i)
st ∼ N

(
0, σ2
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)
(9.1)
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(i)
st )[sin(θ

(i)
st ); cos(θ

(i)
st )] ν

(i)
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(
0, σ2

ν
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(9.2)

If we have a sensor that gives angular information, but no distance information beyond

a maximum distance dmax, for instance using a led and a camera, we can also modify

the observation model accordingly:
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