Combining Quantified Domains

Bill McCloskey
Mooly Sagiv

F i =

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-106
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-106.html

July 30, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Combining Quantified Domains (Full Version)

Bill McCloskey

U.C. Berkeley
billm@cs.berkeley.edu

Abstract

We develop general algorithms for reasoning about numerical prop-
erties of programs manipulating the heap via pointers. We auto-
matically infer quantified invariants regarding unbounded sets of
memory locations and unbounded numeric values. As an exam-
ple, we can infer that for every node in a data structure, the node’s
length field is less than its capacity field. We can also infer per-node
statements about cardinality, such as that each node’s count field is
equal to the number of elements reachable from it. This additional
power allows us to prove properties about reference counted data
structures and B-trees that were previously unattainable. Besides
the ability to verify more programs, we believe that our work sheds
new light on the interaction between heap and numerical reasoning.

Our algorithms are parametric in the heap and the numeric
abstractions. They permit heap and numerical abstractions to be
combined into a single abstraction while maintaining correlations
between these abstractions. In certain combinations not involving
cardinality, we prove that our combination technique is complete,
which is surprising in the presence of quantification.

1. Introduction

This paper presents a general mechanism for combining together
two abstract domains that may use quantification. The main appli-
cation of our technique is in verifying heap-based programs where
integer reasoning is required to prove invariants. Our combination
technique permits arbitrary predicates to be shared between the do-
mains as well as arbitrary forms of quantification between domains.
Besides presenting a useful program analysis technique, we believe
that our work helps to explain how integer and heap properties in-
teract in program verification.

Heap and integer reasoning are usually treated separately. How-
ever, many program invariants require simultaneous reasoning
about the two. We can divide these invariants into a number of
classes, depending on the complexity of reasoning involved.

1. Some invariants simply state integer properties that apply to a
class of heap objects. For example, if there are two integer fields
a and b, we can relate them, as in Vo. o.a < 0.b. Note that this
is a mixed formula: the quantifier quantifies over heap objects
(really locations), but the < predicate is over numbers.

2. It may also be necessary to quantify over both heap objects and
integers in a single predicate, particularly when dealing with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. .. $10.00

Mooly Sagiv
Tel-Aviv University
msagiv@post.tau.ac.il

object fields that are arrays. For example, we might state that
for every internal node in a complete n-ary tree, every element
of the array of child pointers is non-null.

3. Other invariants require cardinality reasoning. For example, we
may want to record the fact that a global variable holds the
number of elements in a list.

4. Cardinality reasoning may also be applied per-node. For exam-
ple, an n-ary tree may store its children in a linked list, while
keeping the number of children in a count field. This is a more
complex form of cardinality reasoning, since there is a different
set of objects being counted for each tree node, rather than a
single global set as above.

This space of invariants is clearly quite complex. Previous pro-
gram analysis algorithms have tackled some of these classes of in-
variants, but we are unaware of a single technique that handles them
all. For example, the methods in [11, 10, 13] handle some invariants
of class 1, although not all. A recent paper on cardinality reason-
ing [12] handles invariants from class 3, but not any of the other
classes.

In this paper we propose a domain construction that handles all
of these classes. Handling them all is important because, surpris-
ingly, some standard data structures require all these forms. For
example, the data structure invariants for B-trees require invariants
of type 1 to relate the number of keys in each tree node with the
number of children. Also, invariants of type 2 allow statements to
be made about each child pointer and invariants of types 3 and 4
permit statements about the tree being balanced.

Besides obtaining a more expressive analysis, handling a richer
set of invariants gives us a deeper understanding of the interaction
between heap and numerical reasoning. We found that some aspects
of the interaction, like quantification and predicate sharing, are
fundamental, while other aspects can be delegated to either the heap
or the numerical domain.

When combining two nontrivial reasoning procedures, there is
always information that can be shared between the domains to im-
prove the precision of both of them. Equality sharing in Nelson
Oppen-style cooperating decision procedures is a typical exam-
ple [19]. In deciding what information to share between our do-
mains, we asked two questions: (i) what are the “objects” under
consideration, and (ii) what properties are guaranteed about those
objects? (We use the word “objects” in the most abstract possible
sense.) In the case of Nelson-Oppen, the objects are variables and
the properties are equalities. For our combined domain, we chose a
different point in the space.

Objects Each domain controls a fixed universe of individuals: heap
objects for the heap domain and numbers for the numerical
domain. We could simply say that these are the “objects,” but
we want domains to be able to make statements about possibly
unbounded sets of individuals. Thus, we require each domain
to divide its individuals into a set of named classes. For the

numerical domain, a class might contain the integers between
5 and 10. The heap domain might have a class of all objects
reachable from a program variable.

At any time, an abstract element must have a finite number
of classes whose union contains all the individuals. However,
the set of classes may change over time as the individuals are
modified.

Classes from one domain are exposed to the other domain.
Information about the size of a class and how it intersects other
classes is also exposed if available. The other domain treats
these class as nothing more than names, since it is unaware of
which individuals are contained within them.

Properties Domains also expose a set of predicates. For exam-

ple, a numerical domain might define a predicate P(n) def

offset(n) < length(n). This definition is internal to the numer-
ical domain. However, the numerical domain does shares infor-
mation about where P holds using classes. If the heap domain
exposes a class C, then the numerical domain could expose the
fact that Vn € C. P(n). Even though predicates are “opaque” to
the other domain, they can still be useful. A domain may define
a predicate in terms of the other domain’s predicates.

To ensure termination, the set of predicates a domain exposes
must be finite and fixed ahead of time. Typically we expect
that the user will determine the set of predicates that are shared
based on the properties to be verified.

Thus, the interface between the domains is defined in terms of
classes and predicates. The domains share information about which
predicates hold over which classes. One benefit of this interface
is that two very useful features come “for free.” That is, although
they must be implemented by the base domains, no additional
complexity is required in the combined domain to support them.

Quantification Each domain exposes sufficient information about
its classes that the other can quantify over its individuals. Let
the two domains be called D1 and D5. Assume that an abstract
element of D; has classes named C' and C’, both of which
satisfy the unary predicate P over all their individuals. Then
D5 can infer that the property Vz : D1. P(x) holds without
ever consulting D;. (The notation means that z quantifies over
all of D;’s individuals.) Similarly, since domains expose size
information, D2 can check an existential quantifier by finding a
non-empty class where P holds.

Cardinality Since rudimentary size information is shared about
classes, a numerical domain can inductively track relation-
ships between local variables and the sizes of a heap domain’s
classes. For example, it might preserve the invariant that integer
variable n is equal to the size of all the classes that are reachable
from a given pointer variable. Reachability itself is tracked by
a shared heap domain predicate. The numerical domain simply
needs to record the fact that as each new node becomes reach-
able (or unreachable), n is incremented (or decremented) by
one.

The combination of predicates, classes, inter-domain quantifi-
cation, and cardinality reasoning allow some very powerful facts to
be proved. Consider an example where the heap domain exposes
a shared binary predicate E that goes from a parent node in a tree
to all the children. The numerical domain can use this predicate to
count the number of children a parent has. It may realize that the
number of children is equal to the parent node’s nchild field, and it
may expose this equality via a shared predicate C. The heap domain
may then determine that all tree nodes reachable from the root sat-

isfy C, meaning that every node has the correct number of children.
We know of no other domain that can reason in this way.

The remainder of the paper describes how predicates and classes
are shared, and how the shared information is propagated through
operations like join and assignment. It should be fairly clear that
the amount of sharing (that is, the expressiveness of the language
used to share facts between domains) determines the precision
of the combined domain. We describe a form of sharing that is
fairly simple and easy for the subdomains to implement. Despite
this, we prove that our combination is complete in some common
circumstances as long as cardinality reasoning is excluded.

In summary, this paper presents two contributions. First, we
describe algorithms for combining abstract domains for heap ob-
jects and for integer reasoning into a single domain. This domain
proves properties about examples like B-trees, skip lists [21], and
reference counting implementations, that previous abstract inter-
preters could not handle. Second, besides proving that our domain
is sound, we prove it is complete in some useful cases.

The rest of this paper is organized as follows. Sect. 2 provides
an overview of our method using an example of analyzing B-tree
implementations. Sect. 3 discusses example heap and numeric do-
mains that can be combined with our construction. Sect. 4 shows
the result of applying the analysis to proving correctness of code
that uses reference counting for garbage collection. The basic al-
gorithms for combining abstractions are defined and explained in
Sect. 5. The semantics of our domain combination is defined in
Sect. 6. This semantics is used in Sect. 7 which provides algorithms
for computing transfer functions for executing atomic statements
on the combined domain and proves soundness. In Sect. 8 we prove
that our method is complete under certain requirements. Sect. 9 and
Sect. 10 include related work and preliminary conclusions.

2. Overview

We take a logical view of programs. We assume that all memory
locations can be addressed using uninterpreted functions. Variables
themselves are simply nullary functions. Pointer fields are written
as unary functions; for example, x.f is written f(z). Array fields
are binary functions, where the first argument is the object and
the second argument is the index. This, o.a[i] becomes a(o,1).
Programs consist of accesses and assignments to these functions,
as well as the normal control-flow structures. The following is an
example program that recursively searches through a B-tree for a
given key.

search(n, k):

i:=0

while i < numchild(n) and k > key(n, i):
i = i+1

if i < numchild(n) and k == key(n, i):
return (n, i)

if isleaf(n): return null

else: return search(child(n, i), k)

The first argument, a node, is assumed to have scalar fields
numchild and isleaf and array fields key and child. Note that
although isleaf is a boolean variable, we treat it as a number (as
is done in the C language) so we can use the numerical domain to
reason about it.

Be aware that uninterpreted functions are used only to describe
memory locations. Operations like + are interpreted in the standard
way; + is handled by the numerical domain.

As stated in the introduction, each domain exposes a set of pred-
icates. The definitions of these predicates use uninterpreted func-
tions to constrain program locations. Each domain may also use its
own symbols in the definition of its predicates, like + and < in the
numerical domain. There are very few restrictions on what a predi-

Intended Meaning

Formula
BT (n:H) isleaf(n) # 0 = numchild(n) = 0
BT2(n:H) isleaf(n) = 0 = 0 < M/2 < numchild(n) < M
BTs() numchild(r) # 0 = numchild (r) > 2
BT4(n:H) Vi:Z. 0 < i < numchild(n) = child(n,i) # nil
BT5(n:H) Vn'H. Vi, j:Z. 0 < i < numchild(n) A0 < j < numchild(n')
A child(n,i) = child(n/,j) = n=n'Ai=
E(ni:H, no:H) | 34:Z. child(n1,i) = na
BTes(n:H) RTC(E,r,n) (transitive closure of E from r to n)
BT, (n:H) ViZ.0 < i < numchild(n) = child(n,q) # r

Leaves have no children

Internal nodes have right number of children

The root has at least two children if it is not a leaf
Children are non-null

No sharing

Edge predicate (not an invariant)
Every node is reachable from the root
No incoming pointers to the root

Table 1. Data structure invariants for a B-tree.

cate can express since the domain is responsible for interpreting the
predicate. Some sample predicates describing invariants of a B-tree
are shown in Table 1. This table assumes that the subdomains are
the canonical abstraction [23] and polyhedra [5].

For example, we might like to check is the fact that when

isleaf is true, numchild is zero. We write this predicate as

BT (n :H) % isleaf(n) # 0 = numchild(n) = 0. This predi-

cate needs to hold on every node in the data structure.

Recall from the introduction that each domain controls a set of
individuals. We write the individuals of the numerical domain as Z
and those of the heap domain as H. In general, for subdomains D,
and D» we call the individuals A, and As.

Notice that each of the predicates in Table 1 has its parameters
annotated with H. This is because the parameters of these predi-
cates are heap nodes. In general, it is possible for predicates to have
parameters that range over the individuals of either domain. Thus,
as in a many-sorted logic, we can give each predicate a signature,
such as H x Z.

If its defining subdomain supports it, a predicate may quantify
over individuals of either domain. Thus, we annotate the variables
in each quantifier with a sort.

Predicate BT may require some additional explanation. The
predicate E holds between n1 and n2 when ns is a child of nq (that
is, when it appears in n,’s array of children). BT¢ uses a reflexive
transitive closure operation, which is supported by the canonical
abstraction domain [23]. BT holds of every heap node that is
reachable from the root via a series of child edges. As long as this
predicate holds of every heap node, we can guarantee that there are
no memory leaks.

Like predicates, functions also have a signature. For example,
the child function maps a heap node an an integer to another
heap node, so its signature is H x Z — H. Unlike predicates,
functions are hidden within a particular domain. This domain can
use the function within its shared predicate definitions, but the other
domain cannot directly reference the function in any way. Note that,
like predicates, the signature of the function has nothing to do with
which domain controls it.

If we need to define a predicate in one domain that uses the other
domain’s functions, there is usually a solution. Since predicates
from different subdomains may refer to each other, it is possible to
normalize a given predicate definition into one that uses only func-
tions from its own domain. As an example, consider predicate BT~
from Table 1. Assume that numchild belongs to the numerical do-
main while child and r belong to the heap domain. We can create an
auxiliary predicate Aux(n:H, ¢:Z) def) < ¢ < numchild(n). Then

we can rewrite BT?% (n:H) e viz. Aux(n, i) = child(n,i) # r.

Now both predicates are normalized: Aux only uses functions from
the numerical domain (numchild) and BT%(n) only uses symbols
from the heap domain (child and r). Even though it is an integer, ¢

does not affect normalization because it is a quantified variable and
not a function symbol.

3. Example Domains

In this section we describe some useful subdomains. We use them
as examples throughout the paper.

Canonical abstraction. The canonical abstraction domain im-
plemented in TVLA [23] fits well into our framework because
it already supports quantification and predicates. The classes of
a TVLA domain element are the abstract heap nodes, which are
maintained by the canonical abstraction.

TVLA classes are always disjoint and their cardinality is always
> 1. Non-summary nodes have cardinality exactly 1.

Although TVLA uses three-valued logic, we can adapt it to a
two-valued setting by having both a positive and a negative version
of every predicate. For example, if P = 0, then we say that —-P
holds.

Support for functions is not built into TVLA; it normally han-
dles only predicates. However, we can construct predicates corre-
sponding to each function and keep the two synchronized.

TVLA is not designed to handle quantification over other sorts,
such as integers. However, we can treat classes from the other
domain as additional TVLA nodes. We use two special TVLA
unary predicates, TypeH and TypeZ, to differentiate between the
two kinds of nodes. TypeH applies to all normal TVLA nodes and
TypeZ applies to nodes representing the other domain’s classes.
Then we translate quantifiers in formulas as follows. A formula
Vn :H. ¢ becomes Vn. TypeH(n) = ¢. The formula Vn:Z. ¢
is transformed to Vn. TypeZ(n) = ¢. Existentials are converted
similarly, so 3n:H. ¢ becomes In. TypeH(n) A ¢.

Separation logic domain. A separation logic domain breaks the
heap into pieces. Each piece is typically a list segment, written
Is(z,y) for a segment from z to y, or a single list node, written
[x — y]. Additional facts may track equalities or disequalities
between variables. We place each heap component (list segment or
node) into a class. These classes are necessarily disjoint, and like
in canonical abstraction, some information about their cardinality
is available.

We track nullary functions as variables in the separation do-
main. Since arrays are not supported, there is no need to consider
non-nullary functions.

The theoretical framework of separation logic permits arbitrary
predicates. Typically only a fixed set are supported (primarily s
for linked lists). However, it would be possible to generate new
predicates, such as ls(z, y, P), which would denote a list segment
where all elements satisfy a property P. If P is a shared predicate,
then numerical statements could be made about heap elements.

Polyhedra. Simple support for numerical reasoning is possible
without any modifications to the standard polyhedra domain. The

domain simply ignores all information from the other domain. It is
only able to reason about program variables, since reasoning about
fields of objects would require it to understand the heap domain’s
classes.

However, it is possible to expose numerical predicates to the
heap domain. These predicates will only be over program variables,
and will thus be nullary predicates. However, they do provide a
small measure of interaction between the domains.

Polyhedra with quantification. Reasoning about the fields of
objects requires extending the polyhedra domain to understand
classes from the heap domain. The challenge is to take a domain
that understand facts like z < 10 and transform it into a domain
that understands Vo € C. z < 10.

Summarizing numerical domains offer a solution to this prob-
lem [11]. They treat each class as its own variable, so that the fact
above becomes C' < 10. This approach permits domains like poly-
hedra to reason about universal quantifiers almost unchanged (two
additional operations are required, but they are already provided by
polyhedra implementations like Parma [1]).

Support for existential quantifiers is not available, but it can
be simulated by taking advantage of the fact that an existential
quantifier over C' is equivalent to a universal quantifier when |C| =
1. Support for empty classes also requires some additional effort.

Polyhedra with cardinality reasoning. Any kind of cardinality
reasoning requires the polyhedra domain to track a cardinality vari-
able for each heap class. This variable holds the cardinality of the
class. When a new class comes into existence, it typically has car-
dinality 1. Each time one class is merged with another, we treat
the new class’s cardinality as the sum of the merged cardinalities.
This allows us to track relationships between local integer variables
and class cardinalities as data structures are constructed and main-
tained.

Cardinality variables allow us to compute quantities like [{n :
P(n)}|. We assume that the predicate P is shared between the
heap and polyhedra domains. Thus, the other domain will inform
polyhedra of the classes over which P holds. This information can
be stored separately from normal polyhedra information, since it
is uninterpreted. To evaluate the cardinality, we sum up the sizes
of the classes where P holds using their cardinality variables. We
must take into account the fact that these classes may overlap.

4. Reference Counting Examples

In this section we use the combination of the canonical abstraction
domain and a polyhedra domain augmented with cardinality rea-
soning to check the correctness of code that uses reference count-
ing for garbage collection. Reference counting is widespread both
in the implementation of interpreted languages like Perl and Python
as well as in systems code, where it is sometimes managed with
wrappers like C++’s shared _ptr.

In a basic reference counting system, every object has a refcount
field. When an object is allocated, this field is initialized to 1. Each
time a new reference is created to the object, the field is incre-
mented (an incref). When a reference is destroyed (by assigning
over it, say), the reference count is decremented (a decref). If the
count reaches 0, the object is deallocated.

Efficient reference counting systems such as the ones supported
in Python interpreters minimize the number of incref and decref
operations by classifying some references as being “owners” and
others as “borrowers.” Only an owning reference causes the count
to increment or decrement. For simplicity, we ignore this aspect,
although it can be supported in our system.

Each object in a reference counted system must describe which
of its fields should be reference counted. In our example, we as-
sume that each object has a single field ptr that is counted. We will

incref(x, y): // ptr(x) == null
1 ptr(x) :=y
refcount(y) := refcount(y) + 1

N

decref(x): // ptr(x) !'= null
y := ptr(x)
ptr(x) := null
if refcount(y) ==
free(y)
else:
refcount(y) := refcount(y) - 1

DO WN -

Figure 1. Reference counting example.

analyze two pieces of code, both shown in Figure 1. The first func-
tion, incref, takes pointers x and y to objects. It assigns y into the
ptr field of = (which is assumed to be null before the assignment)
and increments the reference count of y.

The second function, decref, is responsible for eliminating a
reference through the ptr field of its argument. Let y be the object
originally pointed to, which should not be null. If x is the only
pointer to y, then y is freed. Otherwise, the reference is eliminated
and y’s count is decremented.

It is assumed that incref and decref will be used throughout
a system whenever a reference is created or destroyed in the heap.
To track references from local variables, we can treat each local
variable as a heap object, much as one has to do in C anyway due
to the address-of (&) operator. One can think of the variables x and
y above as mere temporaries.

Our goal is to check that once an object is freed, it will never
be referenced again. We do this in two steps. First, we prove that
each incref operation preserves the invariant that the number of
heap references to an object via the ptr field is equal to its reference
count. Second, we use this invariant to prove that when an object
is freed, there are no heap references to it (so it will never be used
again). We summarize these two steps as “verifying incref” and
“verifying decref.”

4.1 Verifying incref

The invariant that we are interested in tracking can be written as
follows.

RC(n:H) def refcount(n) = |{n":H | ptr(n’) = n}|

That is, the reference count of an object is equal to the number of
objects whose ptr field points to it. To state this invariant in the
language of the previous section, we will assume that the heap do-
main tracks the ptr, x, and y functions while the integer domain
tracks refcount. Additionally, we will assume that the heap domain

exposes a predicate Ptr(n,n’) def ptr(n) = n' that is accessi-
ble from the integer domain. Then, assuming that the integer do-
main has been instrumented for cardinality reasoning (as will be
described later), we can define the predicate RC in the integer do-
main in normal form as follows.

RC(n:H) def refcount(n) = |{n":H | Ptr(n,n)}|

We assume that when incref begins, the ptr field of x is null
and that y points to an object satisfying RC. In order to allow both
domains to make statements about the objects pointed to by x and
y, we assume the heap domain exposes singleton classes C, and
Cy containing only these objects. We write the invariants stored in
the heap and numeric domains separately. Thus, the invariants at

line 1 are as follows.

IlH :Cy = {z} ANCy = {y} A ptr(z) = nil A =Ptr(z,y) A RC(y)

Z.vwy e C,. refcount(y') = |{n":H | Ptr(n/,y")}|
A Vz' € Cu,y' € Cy. —Ptr(z’,y")

Note that the numerical domain is aware that the predicate Ptr is
false between C, and C,, since that predicate is shared.

Executing the statement at line 1 happens in several steps. First,
the heap domain is updated to reflect the new value of ptr(z). Be-
sides the direct fact about ptr(z), the heap domain also recognizes
that Ptr(z, y) now holds.

"¢, = {z} AC, = {y} Aptr(z) = y A Ptr(z,y) A RC(y)

Since the Ptr predicate is shared between the heap and the nu-
merical domain, the numerical domain needs to be informed. Shar-
ing predicate values between the two domains is an important as-
pect of the combined domain. The heap domain tells the numer-
ical domain that Vz' € C,,y" € C,. Ptr(z,y’) has gone from
false to true. The numerical domain then realizes that the value of
[{n’:H | Ptr(n’,y")}| has now increased by 1, the size of Cy;. Thus,
the numerical portion is updated as follows.

:Vy' € Cy. refcount(y') = |[{n":H | Ptr(n',3')}| — 1
A V2' € Cyp,y' € Cy. Pr(z’,y)
Finally, the numerical domain must inform the heap domain that

Vy' € Cy. RC(y') no longer holds. Thus, we get the following
invariants at the beginning of statement 2.

I : Co ={x} AN Cy = {y} A ptr(z) = y A Ptr(z,y)
I vy € Cy. refeount(y') = |{n:H | Ptr(n',y/)}| — 1
A V2’ S C},y S C@.Ptda:,y)

The assignment operation in statement 2 is handled by the
numerical domain. It gives us this new invariant.

:Vy' € Cy. refcount(y') = |[{n:H | Ptr(n',3')}|
A Vz' € Cyp,y’ € Cy. Pr(z’,y")

This, of course, contains the fact Vy' € C,. RC(Cy). Since RCis a
shared predicate, we transmit this information to the heap domain,
which is updated to give the following final invariants.

Ié’ :Cp = {2z} A Cy = {y} Aptr(z) = y A Ptr(z,y) ARC(y)
Yy € Cy. refcount(y') = |{n/H | Ptr(n,y)}]
A Vz' € Cyy' € Cy. Ptr(z’,y")

We have proved that the RC invariant is maintained by incref,
which was our goal.

4.2 Verifying decref

In this function our goal is to ensure that if an object is freed it is
never accessed again. Assuming that all accesses happen through
ptr fields of other objects, we need only ensure that no other objects
can point to the one being freed. Thus, when verifying decref, we
track “ghost objects” that abstract all other objects that might be in
the system. We will prove that the ghost objects do not point to the
object being freed.

Consider the invariant before statement 3 executes. We assume
that the heap invariant maintains three classes. Two classes, Cy,
and C'y, are the same as before. The other class, Cy, holds all the
ghost objects (it may have arbitrary cardinality). We assume that

Saturate(E1l, E2):

F := empty

repeat:
FO :=F
F := F union Consequences1(E1) union Consequences2(E2)
E1 := Assumel(El, F)
E2 := Assume2(E2, F)

until FO = F

return (E1, E2)

Figure 2. Saturation algorithm.

the object pointed to by y satisfies RC.

Ié’ :Co = {z} ACy = {y} A ptr(z) = y A Ptr(z,y) ARC(y)
Z vy € Cy. refcount(y') = |{n/:H | Ptr(n/,y)}|
A Vz' € Cyy' € Cy. Ptr(z’,y")

Executing statement 3 allows us to assume that refcount(y) =
1. This fact is added to the numerical domain.

2.y € Cy. refcount(y') = 1 A |[{n"H | Ptr(n/,y)}| = 1
A Va' € Cyp,y' € Cy. Pr(z’,y)

Since Ptr is a shared predicate, the numerical domain knows
where it holds. In particular, it knows that Vo' € C.,y" €
Cy. Ptr(z’,y’). Since |C;| = 1, this accounts for one node in
the set of nodes with Ptr edges into Cy. The numerical domain
knows that the total number should be one, meaning that no other
classes can have edges into C'. Thus, the numerical domain infers
that Vz' € Cy,g" € Cy4. =Ptr(z’,¢'). It passes this fact to the
heap domain. Thus, the combined domain recognizes that none of
the ghost objects can possibly point to y, the object to be freed.

5. Basic Operations

Much of the reasoning power of the combined domain is in the base
domains. However, the combined domain implements two features
of its own: shared predicates and classes. In this section we describe
how these features are implemented.

5.1 Saturation

The utility of shared predicates is made manifest only when they
are shared. We call the sharing process saturation. Saturation is
called semantic reduction in [4] as it allows the analysis to convert
an abstract element into a more precise one as long as they both
represent the same set of states. For example, one domain may
discover that a shared predicate is true, which may trigger further
inferences in the other domain. The saturation process tries to
trigger as many inferences as possible until a fixed point is reached.

The predicate information passed between domains must be
expressed in a language that both domains understand. We choose a
relatively simple language. A fact is a set of quantifiers followed by
a single predicate. The quantifiers can be V or 3 and they quantify
over all the individuals in a given class. Arguments to the predicate
must be quantified variables; no function applications are allowed.
The predicate is either a predicate from one domain or the other, or
one of the built-in predicates: =, or #. An example fact might be
Vo € Cy. 3y € Cs. P(y,).

The built-in predicates = and # are interpreted by both do-
mains. We use them to express cardinality information about
classes. To express C' = (), we write Yn € C. n # n. The nega-
tion, C # (), is In € C. n = n. If we want to say, |C| < 1, we
write Vn,n’ € C. n = n’. To say C1 and C are disjoint, we write
Vni1 € Ch1.Vng € Ca. n1 # ne. Finally, to say C1 C Ca, we
write Vni € Cy. Ing € Ca. n1 = na.

Repartition((E1, E2), R, F):
El := Repartitionl(El, R, F)
E2 := Repartition2(E2, R, F)
return (E1, E2)

Figure 3. Repartitioning algorithm.

To permit facts of this form to be exchanged, each domain
is required to expose an Assume function and a Consequences
function. Assume takes a domain element £’ and a fact f of the form
above and returns an element approximating E'A f. Consequences
takes a domain element and returns all the set of facts of the form
above that it implies.

The code is shown in Figure 2. The variable ' stores a
set of facts of the form described. They are accumulated via
Consequences and then passed to the domains with Assume. Since
there is a bounded number of predicates and a bounded number of
classes in a given element, this process is guaranteed to terminate.

5.2 Repartitioning

Classes are the mechanism by which a domain describes it indi-
viduals and the predicates that hold over them to the other do-
main. They allow a domain to finitely describe properties of an
unbounded number of individuals. Class names themselves are ar-
bitrary and ephemeral, like variable names in the lambda calculus.
Thus, when two elements are merged together in some way (for a
join or meet operation, for example), we need to relate the classes
of the two elements.

Consider this example, where D; is a separation logic domain
and D3 is a polyhedron domain with quantification. The bracket
notation allows us to name the class in which a list segment

By :[ls(z,nil)]* E> :¥n € A. val(n) = 10
E' :[ls(z,ni1)]? E} :Yn € B. val(n) = 10

Imagine that we want to join these two elements. The first one
describes a list where all the elements fall into class A and the
val field of each list entry equals 10. The second one describes the
same but using a different class name, B.

We break the operation into two steps. First, the separation
domain must decide on what classes to use in its new element and
how those classes relate to the old classes—we describe this step
later. Then, all four subdomain elements must be remapped. The
mapping is described by a relation R. Assume for now that the
separation domain decides to map A and B to a new class C. Then
the relation R would be {(A,C)} for the unprimed element and
{(B, C)} for the primed element.

To actually perform the renaming, each domain exposes a func-
tion Repartition. Both of the subdomains’ elements must be
repartitioned, since they both make reference to A and B. When
we repartition, we get the following.

E; : [Is(z,nil)]° B2 :¥n € C. val(n) = 10
E : [ls(z,nil)] E} :¥n € C. val(n) = 10

Now it is easier to see how a join might be performed. We describe
the join in detail later.

The code for repartitioning is shown in Figure 3. Given a re-
lation R, this function simply calls Repartition on both subdo-
mains. The F' parameter is explained below. Note that repartition
is called only once on each subdomain. This is unlike saturation,
which iterates to a fixed point. As a consequence, the subdomains
should make their repartitioning decisions independent of the other
domain’s partitioning.

We describe a way that a subdomain might implement the
Repartition operation. Imagine that R = {(C1,C), (C2,C)}.

Perhaps we know that all the elements of C are equal to 10 and all
those of C equal 20. To determine what is true of the new class C,
we realize that any individual from C; or C2 may now belong to
C' Thus, any property that applied to both C; and Cs is true of C'.
So we take the least upper bound, meaning that in the repartitioned
result, the elements of C' are between 10 and 20. More information
on how to repartition polyhedra is available in Gopan et al. [11].
Repartitioning heap domains is usually trivial; see, for example,
Sagiv et al. [23].

The parameter F' is a set of facts about the newly created
classes. These facts have the same syntax as the ones in saturation.
Typically F' will contain information about the cardinality of the
new partitions or how they overlap. This can make repartitioning
more precise.

Example. Consider an integer domain that tracks the cardinalities
of another domain’s classes. In this case, it may need information
about class overlap. For example, assume that we track the fact
that n = |C| and we repartition according to {(C, C1), (C,C2)},
where F' tell us that C'; and C» are disjoint. Then the Repartition
function will rewrite to n = |C1| 4 |Ca|.

6. Semantics

We assume that semantics of the subdomains are given by two
predicates, 1 and 2. Each of these is invoked as follows. S is
a program state.

~i(E;, S, M, P) def “S satisfies F; with classes M, predicates P”

More formally, S is a triple (A1, A2, F'). Ay and A, give the
set of individuals for each domain. F' gives an interpretation to
each function. The intention is that F'(f)(a1,a2) = as means
f(a1,az2) = as. All functions should be total.

M is a mapping from class names to sets of individuals. P is an
interpretation for predicates. Its meaning is that if P(P)(a1,a2),
then P(a1, a2) holds.

i is responsible for checking that all the statements made by E;
are true in S, M, P and also that all the predicate interpretations
in P make sense according to their definition. For brevity, we
define 7' (E1, E2, S, M, P) to mean that both 1 and -2 hold over
S, M, P. Thus, we can define the concretization as follows.

v(E1,E2) = {S:3M, P.~'(E1, E2, S, M, P)}

We also define a predicate MOK; (E;, S, M). This predicate
ensures that three conditions hold: it checks that every class of E; is
in the domain of M, that if C belongs to D; then M (C') C A;, and
that Ucep, M (C) = A;. We assume that -y; automatically checks
that MOK; holds, so in most cases there is no need to use it. Like
with v/, we define MOK' that holds if both MOK; and MOK> hold.

Throughout, we use the predicate v to interpret facts of the
kind that appear in saturation. Assume F' is a set of facts, as would
be returned by Consequences. Let v¢(F, S, M, P) hold if all the
facts in F" are true according to their interpretation in S, M, P. We
can define 7y as follows. (Note that [-] g, which interprets function
applications, is also used throughout the paper.)

"}/f(F,S,M,P):VfEF.’Yf(f,S,M,P)

vr((Vz € C. f),S,M,P) =Va € M(C).v¢(f,S, M, P)
v5(Bz € C. f),S,M,P) =3a € M(C).v¢(f,S, M, P)
~vr(P(ew,...,ex), S, M, P) = P(P)([ei]s, - - -, [ex]s)
[z]s =z
[f(e1,...,ex)]s = S)([e1]s,---,[ex]s)

Using these formulas we can define conditions that each of the
subdomains’ operations must satisfy. These conditions will in turn
allow us to verify the soundness of the combined domain.

Saturation. The conditions for the Consequences function are
fairly clear.

VS, M, P.~;(E;, S, M, P) = ~¢(Consequences,(FE;), S, M, P)

That is, if a given state satisfies a domain element, then all the facts
returned by Consequences must be true in the state.

We can define similar conditions for Assume. For any set of
facts F', the following must hold.

VS, M, P.~;(E;,S,M,P) Nv¢(F,S, M, P) =
~vi(Assume;(E;, F), S, M, P)

Using these properties, we can prove the following property of
the Saturate algorithm in Figure 2. Here, the inputs are (E1, E-)
and the outputs are (E7, E3).

VS7M7P' 7/(E17E2757M7P) :>’YI(E£7EQ7S7M7P)

Repartition. The correctness condition for Repartition is
somewhat unintuitive. We tend to think of classes as having an
interpretation, so it might seem reasonable that some mappings
R between classes are illegal because they break our intuitive in-
terpretation. In fact, any R is legal as long as it does not “lose”
individuals. For example, an R that fails to map an original class to
any new classes is illegal, since it does not account for all individ-
uals.

We formalize this notion here. Let Repartition(E;, R, F) =
E|.Ifastate S, M, P satisfies I;, then we require that any new par-
titioning M’ that “conforms” to R and F (in a sense to be defined
later) must satisfy E. We can write this logically as follows.

VS, M, P,M’. (vi(E;, S, M, P) NROK;(E;, R, S, M, M")
Avi(F, S, M', P)) = ~i(E;, S, M', P)
We can think of R as describing which original classes the
individuals of a new class can be drawn from. This motivates the
definition of ROK: M’ conforms to R if M’(C) contains only

individuals that from classes C' where R(C,C"). We also check
MOK, since we want to ensure M’ doesn’t lose any individuals.

ROK,(E, R, S, M, M") Eve m'(cyc | M(©)

C:R(C,C")
AMOK; (E;, S, M")
As before, we assume that ROK’ checks ROK; and ROKGs.
With these pieces, we can prove the following fact about the
combined domain’s Repartition function.
VS, M,P,M'. (v (E:, E2, S, M, P)
AROK'(E1, E2, R, S, M, M")
ANy (F, S, M', P)) =
' (E1, E5, S, M', P)

7. Combined Domain

In this section we present the partial order and transfer functions
for the combined domain. Generally, the transfer functions are split
into two pieces. One pieces performs any repartitioning that may be
necessary and the other piece applies the actual transfer function.
In practice a combined domain would be used disjunctively, as is
done in virtually all shape analyses.

Implies((E1l, E2), (E1’, E2°)):
(E1, E2) := Saturate(El, E2)

(R1, F1)
(R2, F2)

MatchClasses1(E1, E1’)
MatchClasses2(E2, E2’)

(E1°’, E2’’) := Repartition((E1l, E2), R1 union R2,
F1 union F2)

return (Implies1(E1’’, E1’) and Implies2(E2’’, E2’))

Figure 4. Implies algorithm.

7.1 Implication Pre-Order

The main difficulty in defining a partial order is that the two el-
ements may use different partitionings. Thus, we require each
domain to expose a function, MatchClasses, which maps the
classes of the right-hand element to the classes of the left-hand
element. See Figure 4. MatchClasses returns R and F’ that are
used to repartition (E1, E2). After repartitioning, the sub-domains’
Implies tests are invoked.

Soundness. The soundness requirements on MatchClasses mir-
ror the assumptions needed to apply Repartition. They are fairly
lax, meaning that MatchClasses can choose almost any R as
every class maps to something. Let MatchClasses(E;, E;) =
(R, F). Then we require the following.

VS, M, P.~;(E;,S,M, P) =
IM'.ROK;(E;, R, S, M, M") A v4(F, S, M', P)
Note that E/ does not even appear!

Using this statement, we can prove the soundness of the implies
algorithm. First, suppose we are given state S so that

aM, P.y'(E1, E2, S, M, P).
Then after the saturate step, we continue to have
aM, P.~'(E1, E», S, M, P).
After calling MatchClasses, we get the following.
M, P.~'(E1, E2, S, M, P)
AIM'.ROK:(E1, R1,S, M, M') A ~v;(F1,S,M', P)
A3IM'.ROKz(E2, Ra, S, M, M') Av;(F, S, M', P)

These statements make the call to Repartition valid, yielding
states that are still valid.

IM, P.~(E{,EY,S, M, P)

We can state correctness conditions for the subdomains’ Implies
functions as well. We write C; for Implies,.

VS, M, P. EZ‘ Ez E: = (’yi(Ei,S,]\/f7 P) = %(E;,&]\47 P))

Thus, if Implies; and Impliesy return true, then S satisfies
(E},).

In total, we have proved that if a state satisfies (E1, E2) and
Implies returns true, then the state satisfies (F7, F5). Thus,
Implies is sound.

Transitivity. To ensure that Implies is transitive, we need some
restrictions. Assume that A, B, and C are elements of the combined
domain. Let A = (A1, A2) and the same for B and C. Let
A’ = saturate(A1, A2) and the same for the others.

To begin, we need to restrict MatchClasses. Assume that
MatchClasses(A, B) = Mug
MatchClasses(B,C) = Mgc

MatchClasses(A4,C) = Mac.
We define the notation that M(E) = Repartition(E, R, F)
when M = (R, F'). We also define the notation that A C, B
when A1 E1 B1 and A2 EQ BQ.
Our first requirement is that for any A, B, and C, the results of
MatchClasses, when fed to Repartition, are transitive.

Muac(A) Ty Mpc(Map(A)).

Additionally, we place a monotonicity requirement on repartition-
ing, that for any M,

AC, B= M(A)C, M(B).

Another pair of monotonicity properties is also needed. For any F,

BLC. C = Map(E) Csx Mac(E)

AL« B= Mac(F) B« Mpco(E).
We also need saturation to commute with repartitioning. To ensure
this, we require,

M(Assume(E, F)) = Assume(M(E), F).

Here we abuse notation so that Assume applies Assume; and

Assume; to a combined domain element. Finally, we need a mono-
tonicity condition on Assume and Consequences.

A; C; B; = Consequences,(B;) C Consequences,(A;)
A; 5y BiANF C F' = Assume;(A;, F') T, Assume;(B;, F)
We begin by proving a lemma, thatif A’ C, B, then A’ C, B’.
We first note the following.
A} = Assume; (A], Consequences,(45))
By the monotonicity of Consequences, Consequences,(B2) C
Consequences,(A5). The by the monotonicity of Assume,
Assume; (A’, Consequences,(A5)) C1
Assume; (B1, Consequences, (Bs)).
Therefore,
A} T Assume; (Bi, Consequences,(B2)).

We can prove a similar fact about A5. Let B! be the result of one
round of saturating B. Then A’ T, B'. We can use a similar
argument to prove that if A’ T, B°, then A’ T, B! So by
induction, A’ C, B’.

Now we can prove transitivity. We start knowing that A C B
and B C C, which we can rewrite as Ma/g(A’) C. B
and Mp/c(B') C. C. We know that B’ T, B by mono-
tonicity of Assume. Therefore, by monotonicity of matchings,
Mg (A") Ex Marg(A"). If we use monotonicity of reparti-
tioning and apply M g/ to both sides of this, we get

Mpre(Marp/(A)) Ex Mpre(Marp(A)).
By transitivity of matchings, we know
Muc(A) Ew Mpre(Marp (A)).
Combining this with the last fact (since C is transitive),
Murc(A) Ex Mprag(Myrp(A)).

Now we take the fact M 4/p(A’) C. B and apply commutativ-
ity of saturation and repartitioning to get M 4/5(A)" C. B. By
the lemma we proved above, M 4 5(A)’ C. B’. Applying com-
mutativity again, M 4/5(A") C,. B’. Finally, we apply Mp/¢ to

Prepare((E1l, E2), (E1’, E2°)):
(E1, E2) := Saturate(El, E2)
(E1’, E2’) := Saturate(E1’, E2’)

(R1, R1’, F1) := MergeClasses1(El, E1’)
(R2, R2’, F2) := MergeClasses2(E2, E2’)

(E1°’, E2’’) := Repartition((El, E2),

R1 union R2, F1 union F2)
(E1°°>, E2°’’) := Repartition((El, E2),

R1’ union R2’, F1 union F2)

return ((E1’’, E2°°), (E1’’’, E2°’?))

Join((E1l, E2), (E1’, E27)):
((E1, E2), (E1’, E2’)) := Prepare((E1l, E2), (E1’, E2’))
return (Joini1(E1l, E1’), Join2(E2, E2’))

Meet ((E1, E2), (E1’, E2°)):
((E1, E2), (E1’, E2’)) := Prepare((El, E2), (E1’, E2’))
return (Meet1(E1, E1’), Meet2(E2, E2’))

Figure 5. Join and meet algorithms.

both sides, getting Mpgrc(Mag(A’)) T Mpio(B'). Then
using transitivity of C, along with the initial assumption that
Mpic(B') Ex C, we get Mpioc(Map(A')) Ex C.

Reflexivity. We need only one condition on MatchClasses to
guarantee reflexivity: Maa(A) = A. Then since A’ C.. A, we
use monotonicity to get M 4/ 4(A) C. A. Then we use a different
monotonicity property to get M 4(A’) C. A, which is the
desired result.

7.2 Join and Meet

Join and meet are similar to implies checking. The main difference
is that instead of matching the classes of the left input to the classes
of the right input, we allow both inputs to be repartitioned into a
new set of classes that may be more precise. Thus, we require that
base domains to expose a MergeClasses operation that returns a
mapping from either element’s classes to new classes. The code is
given in Figure 5.

Example. Consider joining the following elements. We use as
our subdomains the separation logic domain and an integer domain
instrumented with cardinality reasoning. The superscripts are used
to name classes.

Ey = [z — nil]® * [Is(y,nil)]?
E,=|Al=1A|Bl=n—-1A|B|>1
E; = [Is(z,ni1)]¢ * [y — nil]”
Ey=|Cl=n—1A|D|=1A|C|>1
The calls to MergeClasses yield these results.
R ={(A,G),(B,H)} Ry =0 Fi=10
Ry = {(C,G), (D, H)} Ry =0 F =10
Next, we call the Repartition function.
E; =[x — nil]% * [Is(y,ni1)]"
E,2=|G|=1A|H|=n—-1A|H|>1
E; = [ls(x,ni1)]¢ * [y — nil]"
Ey=|Gl=n—1A|H|=1A|G|>1

Finally, we do the second join step, which yields the results below.
[ls(z,ni1)]? % [Is(y,ni1)]"
|Gl + [H| =n A |G| 2 1A H| > 1

Soundness. We first need to place conditions on MergeClasses.
They are similar to the conditions on MatchClasses.

VS,M,P. ’Yl(El,S,M,P) =
IM'.ROK;(E;, R, S, M, M") A~ (F,S, M', P)

VS, M, P. v(E;, S, M,P) =
IM'.ROK;(E;, R, S, M, M') A~ (F, S, M', P)
Assume we are given a state S so that
AM, P. v/ (E1, E2, S, M, P).
Then after the saturate step, we continue to have
M, P.4'(E1, E», S, M, P)
After calling MergeClasses, we get the following.
aM, P. v (E1, Es, S, M, P)
AIM'.ROK:(E1, R1,S, M, M') Av;(F1,S,M', P)
A IM'.ROK2(Es, R2, S, M, M') A v;(F», S, M', P)

These statements make the call to Repartition valid, yielding
states that are still valid.

M, P.~'(E{,E3,S, M, P)

We can state the correctness conditions for the subdomains’
Join functions as well. We write LJ; for Join;.

VS, M, P. ~i(E;, S, M, P) = ~i(E; U; E;, S, M, P)

(A similar fact holds for E.) Using this property on both domains,
we realize that S satisfies (E7 Uy EY’, E5 Us E5").

In total, we have proved that if a state satisfies (E1, E2) then the
state satisfies the result of the combined Join function. We could
easily prove the symmetric property starting with (E7, E%), which
means that Join is sound.

7.3 Assume

There are two steps to processing an assume statement. First, we
translate the given predicate into a formulas understood by each
subdomain, and then these formulas are then passed to Assume;.

This section expands the language of facts that can be passed
to Assume. Previously every argument to a predicate had to be a
quantified variable. Now we allow function applications as well, as
long as the subdomain controls the given function. Function appli-
cations can be mixed with quantified variables. Thus, the following
fact can be passed to Assume;, given that f and ¢ are functions
from D;: Vx € C. P(f(f(x)), c).

We explain the code for Assume, shown in Figure 6, with an
example. Imagine that function f belongs to D1, that nullary func-
tion ¢ belongs to D2, and that P is a unary predicate. We proceed
through the execution of Assume((E1, E2), P(f(c))). First, we call
the function TranslateTerm; on f(c) with an empty environment.
Since f is in Dy, we recurse on the argument c. This time, c is in
D>. There are no subterms so we do not recurse. Imagine we se-
lect the variable name z for x. D> is required to expose a function
Translate, which we call.

The purpose of Translate is to map a function application into
some class that the function result belongs to. We can always return
a single class, since we can require there to exist a class equal to
the union of any set of classes. Some of the arguments to a function
application passed to Translate; will be applications of other

TranslateTerm1(El, E2, env, f(el, ., ek)):
if f in D1:
for i in [1..k]:
(ei’, env) := TranslateTerm1(El, E2, env, ei)
return (f(el’, ., ek’), env)
else:
for i in [1..k]:
(ei’, env) := TranslateTerm2(E1l, E2, env, ei)
X := some var not in env
env := env[x -> Translate2(E2, env, f(el’, ., ek’))]
return (x, env)
// TranslateTerm2 is defined similarly
AddExistentials(env, fact):
foreach [x -> C] in env:
fact := (exists x in C. fact)
return fact
Assume ((E1, E2), P(el, ., ek)):
envl := []
for i in [1..k]:
(eli, envl) := TranslateTerml(E1l, E2, envil, ei)

factl := AddExistentials(envl, P(ell, ., elk))
// fact2 := ...similar...

return (Assumel(E1l, factl), Assume2(E2, fact2))

Figure 6. Assume algorithm.

functions from D;. The remaining arguments will be variables from
the environment env, which maps the variables to classes from the
other domain.

Returning to the example, imagine Translate> maps c to class
C.. Then the current environment becomes [z — C.] and we
return the expression z. Popping up the stack, we are done with
arguments to f so we return the expression f(z). Assume calls
AddExistentials, which turns P(f(2)) into 3z € C.. P(f(z))
using env. This fact is passed to D1’s Assume.

We perform similar steps upon calling TranslateTerms. The
execution eventually leads to a call to Translate; on f(z’), with
an environment mapping z’ to C.. Assuming this returns a class
Cy, we end up calling Assume, on 32" € Cy. P(2").

Soundness. To prove soundness, we first need to define the se-
mantics of Translate. To do so, we define an auxiliary pred-
icate, TOK, that determines whether two expressions containing
variables can be equal when their variables are interpreted in an en-
vironment. (The first argument to TOK is an environment mapping
mito(jb)

TEQ([z1 +— C1,...,2n +— Cy], M, e, ') <
Jz1 € M(Ch). -3z, € M(Cr). e = e

Now we can put conditions on Translate. Assume that C' =
Translate;(E;,env, f(e},...,e;)). Let env be an environment
and z any variable not in env.

VS, M, P.~;(E;, S, M, P) AVj. TEQ(env, M, [e;]s, [e}]s) =
TEQ(env[z — C|, M, [f(e1,...,ek)]s,x)

We prove the following. Assume that TranslateTerm;(E1, E2,env,e)

returns (e’, env’). Then
VS, M, P.~'(E1, E2, S, M, P) = TEQ(env', M, [¢]s, [¢]5)
Additionally, we need to restrict the variables that appear in ¢€’.

If FV(e') = Vi and dom(env) = Vh, then Vi1 N Vo = () and
dom(env') = Vi U Va.

Assign((E1, E2), f(el, ..., ek), e):
(E1, E2) := Saturate(El, E2)

if £ in D1:
(1v, env) := TranslateTermi(E1l, E2, [], f(el, ..., ek))
(rv, env) := TranslateTerml(El, E2, env, e)
(E1’, U, D) := Assignl(El, env, lv, rv)
E2’ := E2
else:
(lv, env) := TranslateTerm2(E1l, E2, [], f(el, ..., ek))
(rv, env) := TranslateTerm2(E1l, E2, env, e)
(E2°, U, D) := Assign2(E2, env, lv, rv)
E1’ := E1
j =1
repeat:
(E1’, U, D) = PostAssigni(E1’, U, D, j)
(E2°, U, D) = PostAssign2(E2’, U, D, j)
joi= 341

until j = num_strata

(R1, F1) := EliminateClasses1(E1’)
(R2, F2) := EliminateClasses2(E2’)
return Repartition((E1’, E2’), R1 union R2, F1 union F2)

Figure 7. Assignment algorithm.

First consider the case that f € D,. Then we make a recursive
call on each of the subterms. We can use the invariant we are trying
to prove about TranslateTerm here, inductively. It tells us that for
all arguments j, TEQ(env, M, [e;]s, [€)]s), and additionally, each
invocation on e; adds a distinct set of variables to env. Thus, we
can merge all of these statements under a single set of quantifiers
to obtain

TEQ(env, M, [f(e1,...,ex)ls, [f(el,...,€eL)]s).

The properties on variables from the recursive calls imply the
variable properties for the main call.

Now assume f ¢ D;. We get the same properties of the argu-
ments e’; as before. Then we can use the property of Translate to
get

TEQ(env[z — C|, M, [f(e1,...,ex)]s,),

assuming C' is the result of Translate. Since the variable proper-
ties are also satisfied, we have proved the goal for TranslateTerm.

Now we prove the soundness of Assume. Our goal is to show
the following.

VS, M, P. 7/(E17E27 S7 M, P) A P(P)([el]s7 e, [ek]s) =
v'(E1, E3, S, M, P)

The calls to TranslateTerm generate an environment and set of
expressions such that TEQ(env;, M, [ei;]s, [ei;]s). TranslateTerm
uses each variable at most once, so we can combine the quantified
equalities together to get the following (assuming env; = [z1 —
Ci, ... xn — Cy)).

3z1 € M(CL).---3xn € M(Cy). P(P)(leir]s, - -, [elk]s)

Thus, the fact that we get in return from AddExistentials satis-
fies ¢ (fact;, S, M, P). Then the soundness condition on Assume;
shows that the goal holds.

7.4 Assignment

Figure 7 has the code to perform assignment. The first step is to
translate the expressions involved into a form that the domain can
understand. The domain that performs the assignment is the one
that understand the function on the left-hand side.

The translated expressions are passed to the domain’s Assign
operation. This operation updates the function being assigned to
and returns a new domain element. Additionally, since the assign-
ment may cause some false predicates to become true and other true
predicates to become false, the function returns a set of “up” pred-
icates and “down” predicates. The up predicates are standard facts,
like the ones returned by Consequences. The down predicates are
simpler: they are tuples of the form P(C4, ..., Ck). If such a tuple
belongs to D, it means that P(a1, ..., ax) if each a; € C;.

The up and down predicates are shared with the other domain
via its PostAssign operation. This operation may expand the set
of up and down predicates. The termination condition of the loop
is described below.

Note that assignment can change the partitioning of either base
domain element, which must then be reflected in the other base do-
main. To simplify the issue, we require that the domains’ Assign
and PostAssign functions not repartition at all. Instead, partition-
ing changes must be delayed until all facts have been propagated.
Then the EliminateClasses function returns a relation from old
classes to new classes and Repartition is called.

Example. Again consider the case of the combination of a sepa-
ration logic domain and an integer domain with cardinality.

By = [Is(z, 2)]* * [Is(z,ni1)]®
E,=|A|>1A|B|>1A|Al=nA|Bl=k
We assign z := nil. Since z belongs to the separation logic
domain, we generate F{ = z = nil A [Is(x,nil)]C. The
Repartition function relates A and B to C, knowing that A

and B are disjoint. Therefore it can infer that |C| = |A| + |B],
which generates the repartitioned elements below.

E! =z =nil A [ls(2,ni1)]¢
Ey=|Cl=n+kAn>1Ak>1

Example. Assume we have a TVLA domain and a numerical
domain. The numerical domain is equipped with the predicate

Zero(n) % fld1 (n) = 0. The TVLA domain is equipped with

a predicates Init(n) def 5. Zero(n) A fld2(n) = n'. Consider
the following elements.

E; = Zero(N) A nit(N) A fld2(N) = N’
E> = fldI(N) = 0 A Init(N)

Now imagine that we need to assign fldl (N) := 1. Doing so
generates the following initial results.

Ey=fdI(N)=1AIit(N); U=0; D ={Zero(N)}

Next we propagate the invalidated predicates P to the TVLA do-
main, which generates:

Ei =fld2(N)=N'; U=10; D= {Zero(N),Init(N)}
Finally we propagate back to the numerical domain, yielding:
Ej = True; U = 0; D = {Zero(N), Init(N)}

Soundness. We prove that if a state initially satisfies (E1, E2),
then the same state, updated via f(e1,...,e;) := e, satisfies the
result of Assign.

The main requirement is that the shared predicates must be
ordered. We assume that they are divided into numbered strata,
written 7. Each stratum 7; should include all the predicates from
previous strata before j. For convenience we define Ty = (). We
assume that there is some 5 such that all predicates are contained in
T}, and we let num_strata = j.

Intuitively, 77 is the set of predicates that are interpreted cor-
rectly after a call to PostAssign, (E;, U, D, j). We expect that D;

is responsible for defining T; — 71 and that the definitions of
these predicates depend only on predicates in T;_1. The ordering
requirement thus means that we cannot have predicates that are de-
fined recursively. However, the possibility for constructs like tran-
sitive closure mostly negates the need for recursively defined pred-
icates.

To begin, we make an addendum to the definition of ~;. We
allow the set of predicates passed to ~; to be a partial function. If
~; requires some predicate P to have a particular truth value, and
if P is not defined by P, then the requirement should be treated as
if it were satisfied. We can state this more formally as follows, for
any F;.

VS, M, P, P'. (VP € dom(P). P(P) = P'(P))
ANvi(E;, S, M, P,) = v (E;, S, M, P)
That is, if P’ is an extension of P, and ~y; holds over P’, then it
must hold over P as well.

An unusual facet of the proof is that we also require each
subdomain to provide an invariant, I;(E;, Ej, j), which describes
how E; changes as it is updated by PostAssign. Typically, this
invariant will say that E! makes the same statements as F; about
predicates that have not been considered yet (those not in 7).

We define some additional notation as well. We write 7 ; to
mean 7; N Preds(D;), where Preds(D;) is the set of predicates
that D; is responsible for defining. For a given interpretation of
predicates P, we write P | S to mean P with its domain restricted
to the set of predicates S. Thatis, (P | S)(P) = P(P)ifP € S
and otherwise is undefined. Finally, we write Similar(P, P’, D)

to mean that P and P’ are equal except over D. More formally,
Similar(P, P’, D) holds when

VP. Val,...,ak.
(ACi,...,Ck. \ai € M(Ci) AP(Ch,...,Ck) € D) =

P(P)(a1,...,axr) & P'(P)(ai,...,ax)

To begin, we make some assumptions about Assign. We use
the notation A(.S) to model how the assignment changes the state.
If S = (A1, Az, F), then A(S) = (A1, Aa, F') where

F'=F[f = F(f)[([er]s, - - [ex]s) — [e]s]]-

We require the subdomain to provide an Assign operation satisfy-
ing the following.

VS, M, P.~;(E;, S, M, P) AN TEQ(env, M, [e]s, [rv]s)
ATEQ(env, M, [f(e1,. .., er)]s, [Iv]s) =
3P vi(E;, A(S), M, P") A I,(E;, Ej, 1)
A Similar(P, P', D) A v¢ (U, A(S), M, P")
ATy C dom(P")
The PostAssign operation must satisfy these conditions. Let
(E{,U’,D") = PostAssign(F;,U, D, j). Then,
VS, M, P, Py. vi(E;, S, M, Po) Avi(E;, A(S), M, P | Tj_1)
Avf(U, A(S), M, P) A Similar(Py, P, D)
ATy C dom(P) A I;(E;, Ef,) =
3P yi(E!, A(S),M,P") N1;(Ei,E],j + 1)
Avg(U', A(S), M, P") A Similar(P,, P', D")
ATj41,; C dom(P')
AP =P | (dom(P') — Tji1,)

With these conditions in place, soundness follows directly.

Widen((E1, E2), (E1’, E27)):
(E1’, E2’) := Saturate(E1’, E2’)

(R1, F1)
(R2, F2)

MatchClasses1(E1’, E1)
MatchClasses2(E2’, E2)

(E1°’, E2’’) := Repartition((E1’, E2’), R1 union R2,
F1 union F2)

return (Widen(E1, E1’’), Widen(E2, E2’’))

Figure 8. Widening algorithm.

7.5 Widening

Although the set of shared predicates is finite, the subdomains may
require widening to terminate. Thus, we need a widening algorithm
for the combined domain. Figure 8 presents this algorithm. Given
combined elements E and E’, it saturates E’, rewrites the class
names of E’ to match those of E, and then performs the widening
operations provided by the subdomains.

Example. Consider the case of the combination of a separation

logic domain and an integer domain with cardinality.
Ey = [z +— nil]*
Ef = [Is(z,ni1)]®

Ey2=|Al=1Ai=1Ai<n

Ey=|B|>1A|B|<2Ai=|B|Ai<n
Saturation does nothing. When we call MatchClasses, it tells

us that class B in E’ should be mapped to class A in E. Repar-

titioning E’ in this way yields the following element, which has
simply been renamed.

EY = [ls(z,nil)]*
Ey =|A| > 1AJA|<2Ai=|A|Ai<n
Performing a widening operation between E; and EY yields
EY as aresult. Widening on E> and EY is similar to a join except

that the upper bound on | A| is dropped to ensure termination. Thus,
we get the following result.

Eff = [Is(z,nil)]* Ef =|A|>1Ai=|A|Ai<n

Soundness. To prove soundness, we really just need to show that
widening is an upper bound operator. First, assume we are given
a state S so that element (E1, F>) is satisfied. Since E1 and E»
are passed to the subdomains’ widening operators unchanged, it is
clear that we S also satisfies the result of our widening.

Assume we are given a state S so that

AM, P. v/ (E1, E3, S, M, P).
Then after the saturate step, we continue to have
aM, P.~'(E1,E3, S, M, P).
After calling MatchClasses, we get the following.
aM, P.+/(E1, E5, S, M, P)
AIM'.ROK:(E1, R1,S, M, M') Av;(F1,S, M’ P)
A3IM'.ROKz(E3, Ra, S, M, M) N~s(F2,S,M', P)

These statements make the call to Repartition valid, yielding a
state that is still valid.

3M, P.~/(E{,EY, S, M, P)

Since the subdomains’ widening operators are upper bound opera-
tors, we know that S must satisfy the result, which proves our goal.

8. Completeness

This section describes requirements on the subdomains that, when
met, guarantee the relative completeness of the partial order, the
join operation, and assignment. These requirements can be met in
practice, as we describe below.

8.1 Requirements

We first describe the restrictions informally.

¢ (Disjointness) The classes of each domain should be pairwise
disjoint.
e (Emptiness) None of the classes of the domain should be empty.

e (Uniformity) Any statements made by D; about individuals of
D> should state properties of whole classes of D2, rather than
individual elements. Thus, D1 mandate that a predicate P hold
for all elements of a class C, but it cannot say that P must hold
for some element of C'.

e (No Shared Predicates) Neither subdomain should expose any
shared predicates.

The disjointness and emptiness restrictions are not very limit-
ing. If we have a set of overlapping classes, we can always form
the boolean combination of these classes via conjunction and nega-
tion; this set will always be disjoint. To deal with emptiness, we
can use the disjunctive completion of the combined domain, as is
done in TVLA.

Stated syntactically, the uniformity restriction means that all
constraints on shared predicates should be universally quantified
over a given class. As we noted earlier in the paper, cardinality
reasoning cannot be expressed this way: it requires existential rea-
soning in some cases. Thus, our completeness result does not apply
when either base domain reasons about cardinality. In exploring the
subject, we have found cardinality reasoning to be the most difficult
aspect of heap/numerical combination.

The lack of shared predicates does not forbid domains from
tracking predicate information internally. Also, domains are per-
mitted to expose their classes; the other domain may track proper-
ties of these classes, but the properties must be managed internally.
Below, we give futher details about what domains satisfy this re-
striction.

The restrictions above can be formalized in terms of ~.

e (Disjointness) For any state (S, M, P) and any element F; such
that v; (E;, S, M, P), if C and C’ are classes, then M (C) U
M(C") =0.

(Emptiness) For any state (S, M, P) and any element E; such
that y; (E;, S, M, P), if C is a class, then M (C') # (.

(Uniformity) We say (S1, M1, P1) ~2 (S2, M2, P») when the
following conditions are satisfied. Assume S1 = (A11, A12, F1)
and S2 = (Az1, Aso, F2). We require A11 = A21. We define
an auxiliary relation a1 ~ a2 that is true when either of the
following occur: (1) a1 € Ai11, a2 € A1, and a1 = az, or (2)
a1 € A1, a2 € Aso, and Mfl(al) = M;l(ag).

For ~3, we require two main conditions. First, for every pred-
icate P of arity k, and all individuals a1,...,ag,al,...,a},
if each a; ~ a;, then we have that P, (P)(a1,...,a5) <
P>(P)(at,...,ay). Second, we require for all functions f and
all individuals a1, . .., ak, a’, ..., ay, if each a; ~ a}, then we
have Fi(f)(a1,...,ar) ~ Fa(f)(al, ..., ay).

We require that if (S1, M1, P1) ~2 (S2, M2, P2) holds, then
v (E, S1, M1, P1) & y1(FE, S2, Ma, P>). We define a similar
relation ~1 as well. For it, we require that if (S1, M1, P1) ~1
(SQ, Mz, PQ), then ’VQ(E, Sl, Ml, Pl) == ’}/Q(E, SQ, MQ, Pz).

® (No Shared Predicates) The Consequences function must not
return any facts.

8.2 Basic Construction

Assume we have S1, M1, and P; so that 1 (F1, S1, M1, P1). And
we have Sz, Mo, and P» so that v2(FE2, S2, M2, P»2). We wish to
define a function, g1, that converts these inputs into S, M, P such
that v1(E1, S, M, P) Av2(Es2, S, M, P). We assume that both F
and F)> have already been saturated.

Additionally, we wish to define a function g2. Given S, M, P
so that v1(E1, S, M, P) A v2(E3, S, M, P), as well as S; and
Ss, it returns Ml,Pl,MQ,Pz so that ’71(Ei,S1,M1,P1) and
72(E57 Sa, Ma, P2)

First, we describe gi1. We construct S = (A1, A2, F) as fol-
lows. A; comes from S; and Ay from S,. Similarly, for a given
class C, M(C) = M;(C) if C is a class of D; and otherwise

M(C) = M2(C).
We construct a new F'. Given a function f with arity k and ele-
ments a1, . . ., ak, we need to define a value for F'(f)(ax,...,ar).

Without loss of generality, assume that f is from D;. We construct
an alternate set of parameters a,...,aj. If argument i comes
from D; (according to the signature of f) then let a, = a;. Oth-
erwise, let C be the class of a; according to M;. We let a be
some element of M2 (C) (such an element exists because classes
are non-empty). Now we use r = Fy(f)(al,...,a}) to deter-
mine the value of F(f)(a1,...,ax). If r is an individual from D1,
then F(f)(a1,...,ar) = r. Otherwise, let C be the class of r ac-
cording to M. Let 7’ be some element of M2 (C). Then we let
F(f)(ai,...,ax) =7

By assumption, there are no shared predicates, so the definition
of P is trivial.

We need to show v1 (E1, S, M, P) holds. Recall that 1 (E1, S1, M1, P1).

We prove the fact simply by showing that (S, M, P) ~2 (S1, M1, P1)
and applying the uniformity assumption. The reader can verify that
all the conditions of ~» are satisfied by the construction. Using a
symmetric argument, 2 (E1, S, M, P) also holds.

The construction and proof of the function g» are similar to
those for g .

8.3 Completeness of Implication

As a notational convenience, we use C to denote Implies and C;
to denote Implies,.

We require the implication operation for the subdomain to be
complete (we are proving relative completeness). Formally, this
means the following.

VS. (3M, P. 7i(E:, S, M, P)) = (3M, P. %(E}, 5, M, P))]

= E:C; B

The condition that we seek to prove for the combined domain is
similar.

[vS. (M, P. ~'(E1, E2, S, M, P))
= (3M, P.~'(E}, E3, S, M, P))]
= (E1, E2) C (EY, E3)

We will assume the antecedent for the condition on the com-
bined domain holds. Our goal is to prove that Implies, and
Implies, hold for each S.

First, we need to deal with the issue of repartitioning. We make a
fairly strong requirement on the Repartition function: that it not

affect precision. Without this requirement, it is difficult to make any
statements at all about completeness. We can state the requirement

formally as follows, with R and F’ being arbitrary.
(3M, P. v;(Repartition,(Es, R, F'), S, M, P))

This property allows us to ignore repartitioning when checking
completeness.

The saturation step, however, is quite important. In the construc-
tion of g1 and g2 above, we had to assume that both input elements
are saturated.

Now the proof. Assume arbitrary S. We do case analysis de-
pending on whether M and P exist so that v1(E1, S, M, P) and
~v2(E2,S, M, P) hold. If both hold, then we use g; to find a sin-
gle S, M, P where ~'(E1, E2,S’, M, P) hold. Then we use the
assumption from Implies to obtain +'(E1, E5,S’, M’, P') for
some M’ and P’. Finally, we use g2 to obtain M1, P, M2, P2 so
that v1 (E1, S, M1, P1) and y2(E5, S, M2, P2). These allow us to
prove that the conditions for Implies, and Implies, are satisfied
atS.

Now consider the case where only one of +;(FE;, S, M, P)
holds. Without loss of generality, assume it’s v1(E1, S, M, P).

Then there are two cases, depending on whether there exist S, M’, P’

so that y2(E2, S’, M’, P') holds. If not, then E» is equivalent to
False, which we expect to be propagated by Saturate to F;, mak-
ing it also unsatisfiable, which is a contradiction. So assume we
have 2 (FE2,S’, M’', P'). Then we use g1. to find S”, M", P"”
so that v'(F1, F2,S"”,M",P"). Then we use the assumption
from Implies to obtain '(E7, F5, 8", M'" P""). Finally, we
use go to obtain My, Py, Ma, Ps so that 1 (E1, S, M1, P1) and
v2(E3, S', Ma, P>). The first allows us to prove that the condi-
tions for Implies, are satisfied at S. The conditions for Implies,
are trivially satisfied at S, since the antecedent is false.

Finally, we consider the case where ~(E1,S, M, P) and
~v2(E2, S, M, P) are both unsatisfiable for S. In this case, the con-
ditions for Implies, and Implies, are both trivially satisfied at

S.
8.4 Completeness of Join

As above, we will assume that the subdomains’ join procedures are
complete.

EaLiENEpLi E= (FaUER) L E
We want to prove the same fact for our combined domain.
(Ea1,Ea2) C (E1, E2) A (EB1, Ep2) C (E1, E2) =
((Ea1, Ea2) U (EB1, Ep2)) E (Er, E2)

As in the previous proof, it is safe to ignore the effects of
repartitioning. We denote the effect of saturating an element E
as E’. In that case, we can simplify the assumptions above to the
following.

Exm E1 B Ep C1 B
E4s C1 Ey Epy Ty B
The fact that we have to prove is as follows.
(Ea1 U Epy) 1 Ex
(Eaz U Es) o E»

Using the assumptions, as well as the fact that the subdomains’ join
operations are complete, we can prove the following.

(Ex Ui E1) C1 B4
(El2 Ui Es) Co B

Since saturation can’t make an element any less precise (due to the
completeness of Assume), we have proved our goal.

8.5 Completeness of Assignment

Since there are no shared predicates, the completeness of assign-
ment depends on two conditions: (1) the Assign, functions must be
complete, and (2) the Translate; functions must return classes of
cardinality 1. Guaranteeing the second conditions requires that the
locations used in an assignment operation be brought into “focus”
before the assignment takes place, which is outside of the scope of
this paper.

To formalize these conditions, we define some auxiliary predi-
cates. The first predicate, Exact, tells us when two states S and S’
differ at exactly one place (that is, at one point in the range of one
function). We define it as follows.

Exact(S, S") défﬂf, ai,...ar.Vg,ay,---ay.
f#£gVa #aiV...Var #aj, =
Fs(g)(ah,...,ar) = Fs(g)(ah,. .., ai)

We define a second auxiliary predicate that tells us when an
expression interpreted in a given environment maps to a class
whose cardinality is one.

Single(env, M, e) v e FV(e). |M(env(v))| <1
We formalize the first condition as follows. We require that if
(Ei,U,D) = Assign,(E;,env,lv,rv), then the following must
hold.
VS, M, P. v;(E;, S, M, P) =
Single(env, M, lv) A Single(env, M, rv)] =
VS, M, P. v;(E;, S, M, P) =
(HS(), Moy, Py. Exact(So, S) A ’yi(Ei, So, Mo, PO))]

This condition tells us that as long as lv and rv are singleton
classes, Assign will return an element that differs from the original
one in exactly one place. In truth, this place will be lv, but we do not
state this because doing so would require us to incorporate some of
the soundness proof.

We also place conditions on Translate. They essentially say

that it must return a singleton class. Assume that Translate;(E;, env, f(eq, . .

C and that z ¢ dom(env). Then we require the following.
VS, M, P.v;(E;, S, M, P) AVj. Single(env, M, e;) =
Single(env]z — C], M, x)

Finally, we place some simple conditions on PostAssign.
Since there are not shared predicates, we simply require that it
preserve the semantics of the input element.

VS? M? P' ’Y’L(E'L?S’ M7 P)) @ ’YZ(E;’ S7 M7 P)

We begin by proving the following fact about TranslateTerm
by induction. Assume that TranslateTerm returns (e’, env’).

VS, M, P.~' (E1, E2, S, M, P) = Single(env’, M, e")

We will lazily make the same assumptions about variable scoping
as we have done previously. There are two cases to the proof. First
assume that f € D;. Then, by the induction hypothesis, Single
holds of each e;. Clearly, then, Single also holds of f(el, ..., e}).
In the second case, f € D;. Again, Single holds of each e} by the
induction hypothesis. Therefore, the conditions of Translate are
satisfied, meaning that Single also holds of x, as desired.

Now we can assemble a completeness proof for the combined
Assign operation. We prove the following about it.

VS. (3M, P./(E1, E5, S, M, P)) =
(3S0, Mo, Po. ¥ (E1, B2, So, Mo, Po) A Exact(So, S))

Since there are no shared predicates, Consequences returns
the empty set and therefore Saturate is the identity function. In
TranslateTerm, let S, M, P be a state that satisfies (F1, E2).
Then we know that Single(env, M, lv) and Single(env, M, rv)
both hold. These allow us to apply the condition for Assign, which
essentially gives us exactly what we need. Neither the PostAssign
or Repartition function are semantically meaningful, so we have
proven the goal.

8.6 Complete Subdomains

The four requirements in Section 8.1 are restrictive. However, they
are satisfied by some of the domains in Section 3. We disregard
the disjointness and emptiness restrictions because they are easy
to satisfy. The separation logic domain and the polyhedra domain
with quantification satisfy the uniformity condition. The canonical
abstraction domain may satisfy the uniformity restriction if one is
careful about what predicates to expose as shared.

The lack of shared predicates is not an issue in combinations
where one of the domains cannot understand shared predicates,
such as the combination of a heap domain with the quantified
polyhedra domain.

Thus, the separation domain combined with the polyhedra do-
main with quantifiers satisfies our constraints. Of course, these do-
mains are not themselves complete. However, the relative com-
pleteness theorem for the combined domain means that if there is a
precision problem, the combined domain cannot be blamed. More
generally, the requirements on completeness give us some intuition
about what makes combining domains difficult. Namely, cardinal-
ity seems to be difficult to handle precisely.

9. Related Work
Combining Abstractions

The seminal paper by Cousot and Cousot in [4] introduces different
methods for combining abstract domains and [6] elaborates on do-
main constructors. Our combination of abstractions is a refinement
of the reduced product as it allows the partitions in the different
domains to refine each other. This increases the state space but pro-
vides further distinctions which are useful for verifying invariants
which quantify over both the heap and numeric individuals. Also,
we provide sound algorithms for computing transformers.

Combining Heap and Numerical Abstractions

The idea to combine numeric and pointer analysis for establish-
ing properties of memory was pioneered by Alain Deutsch [7, 8].
Deutsch’s abstraction deals with may-aliases in a rather precise way
but loses most of the information when the program performs de-
structive memory updates. Elaborations of Deutsch’s work appear
in [24]

In [15] a type and effect system is suggested for a variant of
ML that bounds the size of memory used by the program with
applications to embedded code. Their type system checks bounds
on memory usage while our analysis can be used to infer the
bounds. Furthermore, their type system is for a functional language
while our analysis is appropriate for an imperative languages with
destructive updates.

In [14] linear typing and linear programming-based inference
are used to statically infer linear bounds on heap space usage of
first-order functional programs running under a special memory
mechanism. In contrast, our method handles imperative programs
that use destructive updates.

In [25] an algorithm for inferring sizes of singly-linked lists
was presented. This algorithm uses the fact that the number of
uninterrupted list segments in singly-linked lists is bounded. This

limits the applicability of the method to showing specific properties
of singly-linked lists. Similar restrictions apply to [2, 17].

Rugina [22] presents a static analysis that can infer quantitative
properties (namely height and skewness) of tree-like heaps. Rugina
does not address the issue of sizes of data structures and is limited
to tree-like heaps.

In [3] a method is presented for analyzing a memory allocator
by interpreting memory segments as both raw buffers and struc-
tured data. Their method presents a limited way of treating sizes of
chunks of memory. However, they are limited to contiguous chunks
of memory and cannot handle sizes of recursive data structures.

In [10], a specialized canonical abstraction was applied to ana-
lyze properties of arrays. Arrays are partitioned into the parts be-
fore, at, and after a given index. This gives a way to track sizes
of specific partitions. it does so only in the special case of arrays.
Furthermore, it cannot track sizes of partitions other than the ones
formed by index variables.

In [13], a technique to reason about the contents of arrays,
and the relationship between array elements, is presented. This
technique infers many useful array properties, but it performs no
cardinality reasoning and it cannot reason about recursive data
structures.

A general method for combining numeric domains and canoni-
cal abstraction was presented in [11]. A general method for track-
ing partition sizes was recently presented in [12]. These are two
orthogonal methods; the former addresses the problem of abstract-
ing values of numerical fields and the latter addresses the problem
of inferring partition sizes. The work presented in this paper was
inspired by these two works and generalizes both of them in sev-
eral fundamental ways to establish a useful system. In contrast [11],
we support many kinds of partition based abstractions which makes
the result more accessible, general and allows more scalable heap
abstractions. Also, we prove that our reasoning is complete for nu-
meric fields and incomplete for partition sizes. This sheds some
light on the difficulties of these problems.

Reducing Pointer to Integer Programs

In [9, 2, 17] it was proposed to conduct pointer analysis in a pre-
pass and then to convert the program into an integer program
to allow integer analysis to check the desired properties. This
“reduction-based approach” uses different integer analyzers on the
resulting program. Furthermore, for proving simple properties of
singly-linked lists it was shown in [2] that there is no loss of pre-
cision. However, it may lose precision in cases where the heap
and integers interact in complicated ways. Also, the reduction may
be too expensive. Our transformers avoid these issues by iterat-
ing between the two abstractions and allowing information flow
in both directions. Furthermore, our framework allows for an arbi-
trary heap domain (it is not restricted to domains that can represent
only singly-linked lists). Finally, proving soundness in our case is
simpler.

Decision Procedures for Reasoning about Heap and
Arithmetic

One of the challenging problems in the area of theorem proving
and decision procedures is to develop methods for reasoning about
arithmetic and quantification.

In [16] an algorithm for combining Boolean algebra and quantifier-
free Presburger arithmetic is presented. Their approach presents a
complete decision procedure for their specific combined domain. In
contrast, our method supports set domains that go beyond Boolean
algebra formulas and can thus express more complicated invari-
ants. More significantly our approach provides an effective method
for computing transformers for performing abstract interpretation,
which their method does not. Fortunately, by careful design of the

interface between the abstract domains, we avoid solving the com-
plex constraints which their algorithm handles.

In [20] a logic-based approach that involves providing an en-
tailment procedure is presented. Their logic allows for user-defined
well-founded inductive predicates for expressing shape and size
properties of data-structures. They can express invariants that in-
volve other numeric properties of data structures such as height of
trees. However, their approach is limited to separation logic while
ours can be used in a more general context. In addition their ap-
proach does not infer invariants, requiring a heavy annotation bur-
den, while our approach is based on abstract interpretation and can
thus infer loop and recursive invariants.

10. Conclusion

In this paper we presented a technique for simultaneously reason-
ing about integers and the heap. Our combined domain is paramet-
ric in the heap domain and the numerical domain. The crux of our
approach is that we permit a great deal of sharing between the do-
mains via predicates and classes of individuals. At the same time,
the interface between the domains is very generic; although our in-
tended target is a combination of heap and numerical reasoning, our
technique supports arbitrary quantified reasoning over two disjoint
sorts.

We have implemented a limited form of our combined domain,
where predicates and classes are shared between a canonical ab-
straction and a domain of bounded difference constraints. We can
reason about simple properties, such as “all elements of an array
have been initialized to zero.” However, our results are limited be-
cause we have not yet implemented any cardinality reasoning.

References

[1] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems. Science
of Computer Programming, 2008. To appear.

[2] Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu losif, Pierre
Moro, and Tomds Vojnar. Programs with lists are counter automata.
In CAV, pages 517-531, 2006.

[3] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and
Hongseok Yang. Beyond reachability: Shape abstraction in the
presence of pointer arithmetic. In SAS, pages 182-203, 2006.

[4] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In POPL, pages 269-282, 1979.

[5] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of
linear restraints among variables of a program. In POPL, pages
84-96, 1978.

[6] A. Deutsch. On determining lifetime and aliasing of dynamically
allocated data in higher-order functional specifications. In POPL,
pages 157-168, 1990.

A. Deutsch. Operational Models of Programming Languages and

Representations of Relations on Regular Languages with Application
to the Static Determination of Dynamic Aliasing Properties of Data.
PhD thesis, LIX, The Comp. Sci. Lab of Ecole Polytechnique, 1992.

A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. In PLDI, pages 230-241, 1994.

[9] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool
for statically detecting all buffer overflows in C. In PLDI, pages
155-167, 2003.

[10] D. Gopan, T.W. Reps, and M. Sagiv. A framework for numeric
analysis of array operations. In POPL, pages 338-350, 2005.

[11] Denis Gopan, Frank DiMaio, Nurit Dor, Thomas W. Reps, and Mooly
Sagiv. Numeric domains with summarized dimensions. In TACAS,
pages 512-529, 2004.

[7

—

[8

=

[12] Sumit Gulwani, Tal Lev-Ami, and Mooly Sagiv. A combination
framework for tracking partition sizes. In POPL, pages 239-251,
2009.

[13] Nicolas Halbwachs and Mathias Péron. Discovering properties about
arrays in simple programs. In PLDI, pages 339-348, 2008.

[14] Martin Hofmann and Steffen Jost. Static prediction of heap space
usage for first-order functional programs. In POPL, pages 185-197,
2003.

[15] John Hughes and Lars Pareto. Recursion and dynamic data-structures
in bounded space: Towards embedded ML programming. In /CFP,
pages 70-81, 1999.

[16] Viktor Kuncak and Martin C. Rinard. Towards efficient satisfiability
checking for boolean algebra with presburger arithmetic. In CADE,
pages 215-230, 2007.

[17] Stephen Magill, Josh Berdine, Edmund M. Clarke, and Byron Cook.
Arithmetic strengthening for shape analysis. In SAS, pages 419-436,
2007.

[18] Bill McCloskey and Mooly Sagiv. Combining quantified do-
mains (full version). http://www.cs.berkeley.edu/~billm/
tr-combining.pdf, 2009.

[19] Greg Nelson and Derek C. Oppen. Simplification by cooperating
decision procedures. ACM Trans. Program. Lang. Syst., 1(2):245—
257, 1979.

[20] Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan

Chin. Automated verification of shape and size properties via
separation logic. In VMCAI, pages 251-266, 2007.

[21] William Pugh. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM, 33(6):668-676, 1990.

[22] Radu Rugina. Quantitative shape analysis. In SAS, pages 228-245,
2004.

[23] Mooly Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric
shape analysis via 3-valued logic. ACM TOPLAS, 24(3):217-298,
2002.

[24] Arnaud Venet. Automatic analysis of pointer aliasing for untyped
programs. Sci. Comput. Program, 35(2):223-248, 1999.

[25] Tuba Yavuz-Kahveci and Tevfik Bultan. Automated verification of
concurrent linked lists with counters. In SAS, pages 69-84, 2002.

