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Abstract

Information in the Local Field Potential:

Implications for Brain-Machine Interfaces

by

Gireeja Vishnu Ranade

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jose Carmena, Chair

The last decade has seen a surge in the development of brain-machine interfaces (BMIs)

as assistive neural devices for paralysis patients. BMIs are devices that decode neural ac-

tivity to provide control signals for external devices, computers or prostheses. Current

BMI research typically involves a subject playing a computer game or controlling a robotic

prosthesis through neural activity (brain control). The local field potential (LFP) is a low

frequency neural signal recorded from intra-cortical electrodes, and has been recognized as

one containing movement information. This thesis investigates time and frequency proper-

ties of the LFP from the perspective of developing upper limb neuroprosthetic BMIs, and

touches on three major topics.

First, the thesis considers LFP as a direct input for BMIs. The results in the thesis

confirm previous studies that established the modulation of LFP spectral power by limb

movement direction during manual control. However, in addition, it is observed that all

signals from an electrode array show similar direction modulation. Basic offline movement

prediction from only LFP information is also demonstrated. Second, the thesis explores

coherence between two LFP signals. Results note that LFP signals across regions of the

motor cortex are strongly coherent in the beta range (15 − 45 Hz) during stationary peri-

ods of manual control experiments. Some technical considerations for LFP-LFP coherence

calculations are presented. Finally, brain control experiments with single unit action po-

tentials controlling a computer cursor are considered. Findings in the thesis show that beta

band LFP activity during brain control tasks closely resembles beta activity during tasks
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involving direct limb movement. A last set of results indicate that the LFP beta band power

can predict the movement state of a brain controlled cursor.

In conclusion, this thesis demonstrates the utility of the LFP as a supplementary infor-

mation signal to develop the next generation of BMIs.
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Chapter 1

Introduction

About 200,000 patients in the United States suffer from total or partial body paralysis

(e.g. paraplegics or quadriplegics) [1]. Spinal cord injuries nationwide lead to about 11,000

cases of permanent paralysis [1]. In 1980 Schmidt proposed that patients could employ direct

interfaces to cortical centers to bypass an injured area (in the spinal cord, for instance) and

thus perform voluntary actions [2]. Groundwork for these ideas was established in 1973,

when Fetz and Baker demonstrated that given sensory feedback, a monkey could voluntarily

adjust the firing rate of a specific cortical neuron to receive a reward [3].

1.1 Brain-Machine Interfaces

Brain-machine interfaces (BMIs) are devices that decode neural activity to provide

control signals for external devices, computers or prostheses. A motor BMI system consists

of a recording technology (e.g. intra-cortical or scalp electrodes), a decoder and decoding

algorithm, a prosthetic limb and a visual feedback component. Neural signals are recorded

from a subject, and are fed to a signal processing station (computer or chip). A decoding

algorithm then computes a predicted movement trajectory for a robotic prosthetic arm,

which then performs the movement. As with any control system, feedback is a key asset

to a BMI system. Most current studies employ visual feedback to the subject for error

correction and algorithm learning. In the future, intra-cortical micro-stimulation could be

employed to provide this feedback. Finally, BMI studies have shown that neural plasticity
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and volitional control of neural activity plays and will continue to play a tremendous role in

the applicability of this technology [4]. Figure 1.1 shows a block diagram of this processing.

Figure 1.1. Schematic depiction of a BMI (Figure courtesy J. Carmena)

BMIs present not only an opportunity to drastically impact rehabilitation treatments

but also a platform to further understand the adaptability and functionality of and com-

munication mechanisms in the cortex. In 1999, Chapin et al. demonstrated rodent use of

a BMI to control a robotic arm to obtain water [5]. Recent work to develop brain machine

interfaces (BMIs) for neural prosthetics has tapped both noninvasive (electroencephalogram

(EEG) and electrocorticogram (ECoG)) and invasive (local field potential (LFP) and sin-

gle neuron action potentials) recordings as input to a movement decoder. More invasive

technologies (micro-electrode arrays) offer cleaner recordings than less invasive ones (e.g.

EEG) [6]. Single unit activity offers a high signal-to-noise ratio and can serve as an input

control signal with multiple degrees of freedom [7]. A few groups have demonstrated the use

of single unit activity to effectively control a computer cursor [8]–[10], as well as a robotic

arm [10], [11]. Simple linear decoding models [10] as well as models based on the direction

tuning of the single unit activity [11] have been used to predict motion of the cursor or

robotic arm with visual feedback provided. Hochberg et al. has shown preliminary results

for human BMI’s and a tetraplegic was able to perform rudimentary actions with a robotic

arm [12]. Other BMI systems solve classification or communication problems, by immedi-
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ately identifying target position or choice (e.g. such as letters from a keyboard) eliminating

the need to trace out a trajectory [13].

Numerous studies [14]–[16] have demonstrated the use of EEG signals in humans for ap-

plications ranging from the control computer cursors to rudimentary control of a wheelchair.

The EEG signal on one electrode represents the activity of thousands of neurons record-

ings and can only resolve low frequencies of neural activity. The recrodings suffer from

a low signal-to-noise ratio and have very low spatial resolution [6]. ECoG signals are a

more robust and noise-free alternative to EEG recordings, and have also been used for BMI

applications [17], [18]. However, both EEG and ECoG may not be practical solutions for

BMIs, since normal activities such as blinking or talking may cause high noise artifacts in

both signals.

Despite the many promising results in the realm of intra-cortical invasive BMI, sin-

gle unit recordings can be difficult to maintain for long periods of time. Micromotion

of implanted micro-electrodes affects recording stability and insertion injury, chronic in-

flammation and glial encapsulation increases electrode impedance and limits the ability to

record spikes over time [6]. LFP can be recorded from intra-cortical electrodes even under

low impedance conditions, and could be used to supplement single unit decoders. Kennedy

et al. used the LFP to control a computer cursor in one dimension and a virtual finger,

with each LFP channel controlling one degree of freedom [19]. Mehring et al. [20] used a

support vector machine to predict movement trajectories using LFP and showed that the

discriminatory power of the signal for a 2-D task was similar to that of single-unit data.

This thesis explores the information content in LFPs, as a potential input to the next

generation of BMIs.

1.2 Local Field Potential

Neural recordings from intracortical extracellular microelectrodes consist of two com-

ponents superimposed on each other: action potentials from single and multi unit activity

(spikes) , and slow varying field potentials [21] (see figure 1.2). The high frequency spikes

occur in between the 400-3000 Hz band of the signal, while the lower frequency record-

ings between 1-250 Hz are called the local field potential (LFP). The LFP relates well to

sub-threshold integrative processes in dendrites and may reflect the synaptic activity in

a ‘listening sphere’ around the tip of an implanted electrode [22]. It is also thought to

3



Figure 1.2. Neural recordings consist of spikes and local field potentials.

represent the summation of excitatory and inhibitory dendritic signals and other types of

slow activity such as voltage dependent membrane oscillations or spike afterpotentials [21],

[23]–[25].

The LFP signal is traditionally broadly divided into frequency bands. The division is

not standard across the literature but mainly arises from characteristic oscillatory behaviors

observed at the specific frequencies. Based on references and the data set, we defined the

bands as shown in table 1.1

Table 1.1. LFP Bands

Band Frequency Range Thesis Definition
Theta 4-10 Hz [23], 4-8 Hz [26] 4-10 Hz [23]
Beta 10-30 Hz [23], 15-45 Hz [27], 20-40 Hz [28] 15-45 Hz [27]

Gamma 30-80 Hz [23], 40-70 Hz [29], 25-90 Hz [30] 60-100 Hz

It is observed that the power frequency (f) of the LFP (and EEG) is inversely propor-

tional to f . Thus widespread slow events may modulate faster local events and small changes

at the lower frequencies can lead to a cascade of energy dissipation in higher bands [23].

Our knowledge about the information content in LFPs is limited compared to the cur-

rent understanding of neural spiking patterns. Recent work has shown many correlations

between oscillations in the LFP bands and behavior, and new properties of the signal have

been discovered. Some interesting results that help us understand the LFP follow, and this

thesis builds on them from the BMI perspective.

1. The origin of LFP: The origin and functionality of the LFP signal are largely

debated in the community. One theory suggests that the LFP mostly represents
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the inputs to a particular brain region and local processing taking place around the

recording electrode, while the spikes represent the outputs generated by the region.

Thus, the LFP and spikes recorded on the same electrode may represent information

from distinct sources [25]. Alternatively, Belitski et al. examined correlations between

the stimulus and, spikes and LFP recorded on the same electrode in the visual cortex

of an anesthetized macaque while presenting a color movie [21]. They found signal

and noise correlations between the high gamma band and spikes, however, LFP < 40

Hz showed little correlation with high frequency bands or with spikes, suggesting that

the processes generating the two signals are decoupled. This contrasts with Nicolelis

et al. who report correlations between spikes and the 8− 10 Hz LFP signal [31].

2. Gamma coherence relates to behavior and information transfer: Spike-field

coherence and oscillatory synchrony may subserve neuronal communication (for a

review, see [32]), and have been related to attentional states. Gamma band spike-

field coherence in the visual cortex has been shown to increase with attention to a

stimulus [33]. The degree of gamma synchronization prior to and during a behavioral

change was correlated with response times to that change [29]. Gamma frequency

oscillations may also predict spike response latency [34].

3. Propagating beta oscillations: During a motor task, oscillations in the beta range

propagate spatially across the motor cortex along dominant spatial axes [27], and may

assist inter- and intra- cortical information transfer.

4. LFP in parietal cortex: LFP in the posterior parietal cortex has a temporal struc-

ture that varies with behavior and can predict behavioral state (e.g. planning a reach

or a saccade) and the direction of the currently planned movement from single trial

information [22]. Power in the gamma band in the lateral intraparietal area increased

during a memory recall task, as did spike-LFP coherence [30].

5. Applications to BMI and direction tuning: As mentioned in section 1.1 the

LFP signal has potential for BMI applications. In addition, power in frequency bands

of the LFP and evoked potentials are modulated with movement direction [7], [35].

6. Beta oscillations are related to movement state: Changes in LFP oscillations

are coinstant with behavioral changes. In the motor cortex, LFP oscillations in the

beta range increase with posture hold and decrease with movement during a motor

task [27], [36], [37]. Murthy and Fetz observed strong beta oscillations during uncon-

strained exploration, when compared to rest periods [28].
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7. Computational models of information transfer in the brain: Computational

models suggest oscillation based synchrony may be the most energy efficient physi-

cal mechanism for temporal coordination in the brain [23]. Oscillations periodically

elevate the membrane potential, providing a preferential response period for neural

response [38]. Other models and data suggest that network oscillations may be useful

for (1) the representation of information (2) the regulation of information flow and

(3) information storage and retrieval [39].

These studies demonstrate the potential for LFPs as inputs to BMIs, and suggest low

frequency oscillations may play a critical role in inter- and intra- cortical communication

and synchronization. This thesis examines the information content and properties of LFP

signals in the contralateral and ipsilateral motor cortex, towards harnessing them as BMI

control signals and exploring the role of characteristic intra-cortical oscillations. To this

end, detailed data analysis techniques for spectrum and coherence estimation in neural

signals are discussed. The thesis is addressed to both neuroscientists who wish to explore

the properties of LFPs and spectral estimation techniques, as well as engineers who may

want an introduction to the science of BMIs and LFPs.
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Chapter 2

Preliminaries

This chapter describes the behavioral experiment, data collection and preliminary data

analysis. All results in this thesis used offline data. The author was not involved in the

data collection. All experimental data was collected by members the Carmena Lab.

2.1 Surgery and Electrophysiology

All procedures conducted for this research complied with the National Institute of Health

Guide for the Care and Use of Laboratory Animals. They were approved by the Institutional

Animal Care and Use Committee at the University of California, Berkeley. Two adult male

rhesus monkeys (Macaca mulatta) were chronically implanted in the primary motor cortex

(M1) with bilateral arrays of 64 teflon-coated tungsten microelectrodes (35 micrometers in

diameter, 500 micrometers separation between microwires) in an 8x8 array configuration

(CD Neural Engineering, Durham, NC). A 128-multichannel acquisition processor (Plexon

Inc., Dallas, Texas, United States) simultaneously recorded single neuron and multiunit

activity.

2.2 Animal Behavior and Task

The subjects were trained to perform a center-out task to eight targets while seated

in a KINARM exoskeleton (BKIN Technologies, Ontario, Canada). This center-out task
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involved reaching to one of eight peripheral targets from a center hold point, and was

presented as a video game on a horizontal computer screen.

Figure 2.1. Structure of center-out task with variable hold period. (Figure courtesy K.
Ganguly)

Figure 2.1 shows the task structure, and figure 2.2 is a cartoon of the subject performing

the task. To initiate a trial, the subject would bring the cursor to the center target, which

led to the appearance of the peripheral targets. Following a random hold period (HP)

between 500 − 1500 ms, the go cue was presented by the center target changing color.

Failure to hold the cursor in the center for the hold period caused an error. After the go

cue, the subject reached for the indicated target (called the movement period (MP)) and

held the cursor at that position for 500 ms (called target hold period (THP)) to receive a

juice reward. The non-task arm was held in place during the task by a splint.

Figure 2.2. Center-out task: Seated in a KINARM, the subject must reach from the center
target to indicated peripheral target upon presentation of the go cue.

Subjects performed the task under two settings: manual control (MC) mode and brain

control (BC) mode. Under MC subjects could move their hand directly underneath the

screen to move an on-screen cursor co-located with the hand. Under BC, a linear filter
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(see below) was used to predict cursor position based on neural ensemble activity. Hand

movements in this case could not directly affect cursor position.

Under manual control the subject could move his hand directly underneath the screen

to move an on-screen cusor that represented his hand and was located directly above it.

A linear filter (see below) was used to predict cursor position based on neural ensemble

activity under brain control mode. Hand movements in this case could not directly affect

cursor position and the subject’s hand remained stationary.

2.2.1 Linear Model

As in previous work [10], a Wiener filter was used to predict cursor position from the

activity of an ensemble in M1 during BC. Neural firing rates over 100 ms bins were used

as input to the model. The model parameters were trained and fixed using ten minutes of

data. Position was predicted based on the neural activity at that time and the history of

activity for the past second.

2.3 Data

Each recording session lasted about 2 − 3 hours per day, during which the subject

performed ∼ 100 − 200 trials in MC and BC modes. The subject was over-trained in the

MC task; a reach took ∼ 1 s. Reaches in the BC mode often did not follow the straight line

path to the target, had a stop-go structure as the animal attempted to reach the target and

took much longer (∼ 3− 10 s). Observations of the subject during task performance noted

no overt arm movements n BC mode.

LFPs between 0 − 150 Hz were recorded at a sampling frequency of 1 KHz on each

electrode. All algorithms for data analysis were implemented in MATLAB. Cursor position

in MC and BC was recorded in joint coordinates, which consists of the angles made by the

shoulder and elbow joint. Jacobian conversion was used to derive cartesian co-ordinates

from the shoulder and elbow angles.

The KINARM measured and recorded cursor position during both manual and brain

control modes. Instantaneous velocity of the cursor was calculated as the position differences

over a 20 ms window and smoothed with a 10 Hz lowpass filter.

9



2.4 Spectrum Estimation

Minimizing the noise in spectral estimates of the LFP signal is an essential prerequisite

to establish correlations between oscillations in specific frequency bands and behavior. Such

estimates are generally subject to two sources of errors - the first being noise inherent in

the recording and the second being errors introduced by the particular parameters of the

estimation technique (e.g. window size and finite signal length). A general analysis of

different spectral estimation techniques is found in [40], and specific commentary on these

techniques for neural data analysis is found in [41]. We chose the multitaper technique

for this thesis as a method to maximally de-correlate the finite-window size correlations

introduced in neighboring frequencies [41]. The technique averages independent estimates

of the spectrum, thereby reducing the recording noise. We compute the spectral estimates

of short data windows to construct spectrograms as detailed below.

Specifically, the problem set up is as follows: consider a signal x(t) of finite length N .

Let (−W,W ) , 0 < W < 1
2 , be the frequency resolution we want to achieve. Window-

size in the time domain and frequency resolution are the fundamental tradeoff parameters

in spectral estimation. Sharp concentration in frequency (a delta function) requires an

infinite sequence length in the time domain. Finite time sequences are thus inherently

limited in their spectral concentration. The discrete prolate spheriodal sequences (DPSS),

Uk(N,W ; f) with k = {0, 1, 2 ... K−1}, for the bandwidth-time product NW are orthogonal

windowing functions (and thus of finite length) that have the greatest energy concentration

in (−W,W ) [42]. Spectral concentration of a frequency domain function H in the window

(−W,W ) is defined as

λ =

∫W
−W |H(f)|2df∫∞
−∞ |H(f)|2df

(2.1)

For fixed NW , at most 2 ·NW windows can have a concentration (λ) close to 1, which

limits k < 2 ·NW , and thus the amount of smoothing we can achieve [42]. Each windowing

sequence Uk(N,W ; f) is called a taper. Details of this can be found in [42] and [43], which

also plots some sample plots of sequences. We use the DPSS as an orthogonal basis to

decompose x(t) and calculate independent spectral estimates. The spectrum is calculated

using K tapers as

Xk(ω) =
N−1∑
t=0

x(t)Uk(N,W ; f)e−jωt (2.2)
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X(ω) =
1
K

K−1∑
k=0

Xk(ω), (2.3)

and the power spectral density (PSD) is

Sxx(ω) = X(ω) ·X∗(ω). (2.4)

This technique for spectal estimation is also known as the Slepian taper or multi-taper

method. We used the MATLAB functions dpss and pmtm to implement the algorithm, with

time-bandwidth product NW = 5
2 and K = 2 · NW = 5 tapers. The maximum value of

NW generally used is 4, however, increasing NW increases computation time and we did

not find significant improvements by going beyond NW = 5
2 . (Note: The Chronux toolbox

also provides functions to implement multi-taper spectral analysis [44], [45]). Following

this, spectrograms were calculated every 50 ms using a sliding window of 200 ms, thus the

spectral decomposition at time t was calculated using the signal between [t− 100, t+ 100]

ms. Average spectrograms were computed aligned to the go cue and the movement onset.

Figures in this thesis are referenced to the movement onset and presented on a logarithmic

scale with arbitrary but uniform power units across figures. However, we observed similar

results with respect to go cue.

In order to remove the effects of any common noise that may be recorded on the ground

reference electrode, we examined two conditions: (1) spectrograms of the recorded raw LFP

signals and (2) spectrograms of each LFP signal re-referenced to the average over all LFP

signals. However, this re-referencing does not make a significant qualitative difference to

the spectral estimates, and spectrograms in this thesis do not use re-referenced signals.

Figure 2.3 shows a representative spectrogram of a single trial, as well as the average

spectrogram over all trials in the session. The gamma band contains the least power, as

expected from the 1
f power characteristic of the LFP. Power in the beta band decreases

with movement onset consistent with results from [36], [37]. This phenomenon is further

explored in chapter 5. Power in the theta band shows some oscillatory behavior, but we

did not investigate this further.
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Figure 2.3. Representative spectrograms delineated by task structure. Go cue was presented
at 1000 ms. Top: Average spectrogram over ∼ 900 trials. Bottom: Single trial spectrogram.
Subject enters target on second black line.

12



Chapter 3

Neural coherence

Oscillatory behavior in neural recordings has been widely observed across recording

technologies and frequency bands since Berger in 1929 described the 8− 12 Hz alpha oscil-

lation in electroencephalogram (EEG) recordings [46]. Some functional interpretations of

these oscillatory behaviors include higher order sensory processing, inter- and intra-cortical

communication, facilitation of synaptic plasticity and long-term information consolidation;

however, given the difficulty in connecting the oscillations with behavior, these interpreta-

tions are debated [23], [39], [47]. In-vitro experiments establish the physiological impact of

oscillations. For instance, a sinusoidal current imposed on an axon affects both its output

and its sensitivity to input spikes [38], [48].

Signal coherence has been used with EEG signals as an effective tool for the study

of synchronous oscillatory behavior [49]. Coherence can be thought of as a measure of

the linear coupling between two signals. Recent work has focused on spike-LFP coherence

as a measure of the phase coupling between spike timing and LFP oscillation [29], [50],

[51]. Coherence between field potential oscillations and electromyogram (EMG) activity

has been investigated as a mechanism for communication [52]. However no results thus far

have investigated coherence between LFP signals.

Spike-field coherence and oscillatory synchrony may subserve neuronal communication

(for a review, see [32]) and may also be related to attentional state. In a visual change-

detection task, gamma band spike-field coherence in the visual cortex was higher for an

attended stimulus than an unattended one [33]. The degree of gamma synchronization in

the cortex prior to and during a behavioral change was correlated with response time to
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that change [29]. Gamma frequency oscillations may predict spike response latency [34].

Gamma band coherence between the motor cortex and the spinal cord neurons during a

change-detection task is correlated with modulations in a subject’s readiness to respond [52].

Characteristic coherent beta rhythms are observed in field potential activity during posture

hold and exploratory activity. These beta rhythms can be synchronized with limb EMG

activity [28], [37], [53].

Low frequency delta band (0.5-4 Hz) oscillations in the visual cortex entrain to visual

stimuli presented in a rhythmic stream. The high excitability phases tend to coincide with

events of the attended stream. The phase of the delta oscillation also determines momentary

power in higher frequencies [54]. Similarly, the phase of the theta band can be coupled with

the power in the high gamma band and the coupling between the two bands changes with

subject behavior [26]. These results both suggest a functional importance for oscillations

in effective communication during cortical processing.

Murthy and Fetz observed that units in the ipsilateral and contralateral cortices synchro-

nize during oscillatory periods [55]. Movement related desynchronization has been observed

in both hemispheres even though only one limb was moved [49].

In this chapter we set the groundwork to explore cortical LFP coherence as means

of communication in the brain. The first section deals with technical considerations for

coherence calculations, while the latter gives examples of cortical coherograms and explores

changes in coherence with behavior.

3.1 LFP-LFP Coherence: A technical discussion

The coherence (Cxy) between two signals x(t) and y(t) is defined as the product of their

cross spectral density (Sxy) normalized by square root of the product of their power spectral

densities (Sxx, Syy) as in equation 3.1

Cxy(ω) =
Sxy(ω)√

Sxx(ω) · Syy(ω)
(3.1)

We assume that x(t) and y(t) are stationary for the remainder of this discussion. Cxy

is a complex quantity such that 0 < |Cxy|2 < 1 [56]. Cxy(ω) = 0 for every ω if x and y

are linearly independent. If the signals are linearly related, i.e. y(t) = h(t) ∗ x(t), such that

H(ω) = A(ω) · e−jθ(ω), then Cxy(ω) = ejθ(ω). As shown in [56], the coherence can also be
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interpreted as a measure of the relative linearity of the two signals. Thus, if Ho(ω) is the

optimal linear predictor for y(t) based on x(t), then Cxy(ω) = Ho(ω)
√

Sxx(ω)
Syy(ω) .

The correlation coefficient of two zero mean random variables X and Y is given by

ρXY =
E[XY ]√

E[X2] · E[Y 2]
, (3.2)

where E[·] is the expectation operator. Observing the similarity of equations 3.1 and 3.2,

we see that Cxy can be interpreted as the correlation coefficient of the Fourier components

of x(t) and y(t) at ω. Thus, it is meaningless to calculate the coherence between two finite

length signals over only one window. To circumvent this issue we may divide each signal

into smaller segments and calculate coherence over these pairs of segments. Alternatively,

repeated trials of the experiment under identical conditions can provide a set of finite

length signals over which we may calculate the coherence (note that the stationarity of

signals across trials is an important assumption).

It is important to consider the effect of finite window size when calculating coherence,

as illustrated in the following calculation. Let x[n] and y[n] (sampled versions of x(t) and

y(t) be finite length discrete time signals of length N , with support on 0 to N − 1. Then

the Fourier transforms of X(ω) and Y (ω), the cross-correlation rxy[n] and Sxy are given as

(see [40])

X(ω) =
∞∑

n=−∞
x[n]e−jωn =

N−1∑
n=0

x[n]e−jωn (3.3)

Y (ω) =
∞∑

n=−∞
y[n]e−jωn =

N−1∑
n=0

y[n]e−jωn (3.4)

rxy[n] = Em [x[n+m] · y[m]] , m uniform over 0 to 2N − 1 (3.5)

Sxy(ω) =
∞∑

n=−∞
rxy[n]e−jωn =

2N−1∑
n=0

rxy[n]e−jωn (3.6)

where Em[·] is the expectation operator over m. Note that the definition of rxy in

equation 3.5 uses the fact that both x[n] and y[n] have finite support. Using equation 3.5

and 3.6,

Sxy(ω) =
∞∑

n=−∞
Em [x[n+m] · y∗[m]] e−jωn (3.7)

=
∞∑

n=−∞
Em

[
x[n+m] · y∗[m]e−jωn

]
(3.8)
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=
∞∑

n=−∞
Em

[
x[n+m]e−jω(n+m) · y∗[m]ejωm

]
(3.9)

= Em

[ ∞∑
n=−∞

{x[n+m]e−jω(n+m)}y∗[m]ejωm
]

(3.10)

= Em
[
X(ω) · y∗[m]ejωm

]
(3.11)

= X(ω) · Em
[
y∗[m]ejωm

]
(3.12)

= X(ω) · 1
2N

N∑
n=0

y∗[m]ejωm (3.13)

= X(ω) · 1
2N

∞∑
n=−∞

y∗[m]ejωm (3.14)

= X(ω) · 1
2N
· Y ∗(ω) (3.15)

3.10 goes through because of the linearity of expectation, 3.11 uses the definition of the

Fourier transform. To get 3.13 we use the fact that y[n] has finite support, and use this

again to get 3.14. Thus the window size N affects Sxy at every frequency ω.

Now,

X(ω)Y ∗(ω) =
√
Sxx(ω) · Syy(ω) · e−θ(ω), (3.16)

where φ(ω) is the phase of X(ω)Y ∗(ω), which gives

Cxy =
1

2NX(ω)Y ∗(ω)√
Sxx(ω) · Syy(ω)

(3.17)

=
1

2N
· eθ(ω). (3.18)

Thus even for signals that may be linear transformations of each other, as noted above

the coherence will be affected by the 1
2N factor related to the finite window size.

Figures 3.1(a) - 3.1(f) investigate the coherence between the signal on two electrodes

AD180 and AD136 with window sizes varying from 50 ms to 1000 ms. The effect of the

window scaling factor of 1
2N is apparent. At the same time, within each figure, certain

prominent features still stand out, such as the increase in coherence around 1000 ms. This

analysis and the figures suggest that performing analysis with different window sizes for

different frequencies may introduce artifacts in the coherence values obtained. Coherence

calculations using different windows should be normalized before they can be compared.

Care must be taken in re-referencing signals to a common average signal for coherence
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(a) 50 ms window with 25 ms overlap (b) 100 ms window with 50 ms overlap

(c) 200 ms window with 150 ms overlap (d) 500 ms window with 450 ms overlap

(e) 750 ms window with 700 ms overlap (f) 1000 ms window with 950 ms overlap

Figure 3.1. Coherence between electodes AD180 and AD136 using different window sizes
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calculations. Common noise in both signals could directly affect the coherence between

them, and thus it is important to remove this signal. However re-referencing a signal to

the common average in the absence of a common noise signal could introduce an artifactual

coherence due to the added components from the average. There is no obvious method

to determine if there is noise on a reference electrode, and thus we compared coherence

estimates with and without re-referencing. All coherograms in this chapter use re-referenced

signals.

3.1.1 Methods

The multitaper method can be used to estimate the cross spectral density, Sxy, exactly

as the power spectral density, Sxx, was estimated in section 2.4, using the relationship

Sxy(ω) = X(ω) · Y ∗(ω) (3.19)

in place of equation 2.4; further details can be found in [43]. This was implemented based

on software developed by Huybers [57] using the dpss function from MATLAB. As noted

in [41], [43] the coherence estimate is subject to a bias offset, which was also considered

in the estimation. Time-bandwidth product, number of tapers for coherence calculation

and the sliding window parameters remain as used in section 2.4. Other considerations for

coherence estimation are given in section 3.1. We fixed the window size as 200 ms for all

analysis other than the comparison of window sizes shown in figure 3.1.

3.2 Coherence Results

From figure 3.1 we can see that coherence is maximal in the beta range just prior to

movement onset during the hold period, but no significant coherence in the gamma or theta

ranges is seen. (Strong coherence around 60 Hz for larger window sizes is due to electrical

noise.)

Coherence between two electrodes from M1 varied with the separation between them.

Figures 3.2 and 3.3 plot coherograms across the entire M1 array with respect to a single

electrode as noted. Coherence is very high in all frequency ranges for proximal electrodes.

As the distance between electrodes increases, coherence is observed only during strong beta

oscillations.
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Figure 3.2. Coherence across the entire implanted M1 array, with respect to AD164 (blank
rectangle).

Figure 3.3. Coherence across the entire implanted M1 array, with respect to AD180 (blank
rectangle).
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We found that LFP recordings from the motor cortex of the right hemisphere (ipsilateral

M1) are similar to recordings from the left hemisphere (contralateral M1) during tasks

performed with the right hand, which is consistent with the results of [55]. Indeed, the trial-

spectrogram of the ipsilateral cortex is qualitatively the same as that for the contralateral

(figure not shown). A wiener filter allowed predictions of the ipsilateral LFP during beta

oscillations from the contralateral with correlations as high as 0.7. Prediction accuracy was

lower during the execution period.

Figure 3.4. Coherence between M1 and M1 ipsilateral, with a 200 ms window.

Figure 3.4 shows the coherence between signals from the contralateral and ipsilateral

cortices. Once again, the coherence pattern resembles the coherence between two of the

further contralateral electrodes. The coherence between the two hemispheres is maximum

in the beta band during oscillatory activity, reinforcing the widespread nature of these

oscillations.

3.3 Discussion

Our analysis shows the highest coherence in the beta range just prior to movement

onset. The drop in coherence coincides with the drop in beta power in the LFP signal.

Technically, the amplitude of two signals should not affect the coherence between them,

since our calculations involve normalizing by the PSDs of each signal. However, a finite

window size may introduce some artifacts in the calculation. We did not quantify the

relationship between the drop in beta power and the drop in coherence, and these may or

may not be related.

Compared to the beta range, there is very little coherence observed in the gamma range.
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It is well known that spikes phase lock to to beta oscillations during a task hold period [28],

[37]. We observe beta coherence during the hold period in M1 as well as across hemispheres.

Could this coherence serve as a mechanism for spike synchronization? Spikes may phase

lock to local oscillations in either hemisphere allowing them to synchronize with each other.

The beta oscillations act as a clocking mechanism for the spikes. However, the causality

between the spike-synchronization and coherence is unclear. Alternatively, it is possible

that synchronized spiking may be the cause for widespread beta coherence.

We observed widespread synchronous beta oscillations during the hold period. These

oscillations extended to both the ipsilateral cortex and the PMd (results for PMd not

shown). Is this oscillation used to synchronize spike timing across brain regions? It is well

known that spikes phase lock to beta oscillations [28], [37]. It is interesting to note that

even LFPs on very distant electrodes show beta coherence during the hold period, when no

other frequencies are coherent at such long distances. Alternatively, is the beta just an idle

oscillation of the brain - a default low energy resting state?

This chapter develops some techniques to calculate LFP-LFP coherence. However, the

significance of this measurement or potential implications for understanding LFP function-

ality are yet to be fully investigated.
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Chapter 4

Local field potentials as an input

to brain machine interfaces

As described in the introduction to this thesis, time and frequency analyses of the

LFP attest to the abundance of information contained in this signal. Given the difficulties

associated with single-unit recordings of spike data [6], it is natural attempt to directly

utilize the LFP for BMI applications. In this light, this section explores the use of LFP for

BMI.

Previous work by Kennedy used LFPs for one-dimentional control of a computer cursor

and virtual finger [19]. Mehring and colleagues were able to use a support vector machine to

predict movement trajectories from LFP recordings with the average correlation coefficient

around 0.7 [20]. In addition to direct trajectory prediction, it is important to harvest

all possible information from the signal. Given the directional tuning observed in spike

data [58], an obvious question is: is the LFP modulated by direction?

Georgopoulos et al. [58] found that limb movement direction can be predicted by the

activity of a population of motor neurons. They found that some neurons modulate their

firing rate in accordance with the direction of movement; the direction that elicits maximal

firing rate relative to a baseline is called the preferred direction of the neuron. The neuron

is said to be tuned to that direction. Georgopoulos found that different neurons are tuned

to different directions and thus the instantaneous firing rates of a neural ensemble could

be used to decode the direction of the current movement. The direction indicated by the
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ensemble is called the population vector and is calculated as the vector sum of the preferred

directions of each cell, weighted by the instantaneous firing rate.

Rickert et al. [35] reported that movement direction (for a 2D center out task) is encoded

in the LFP in both the time and frequency domains. They also found that the amplitude of

the peaks of movement evoked potentials (mEPs) and cue evoked potentials (cEPs) varied

with direction. A characteristic waveform that appears in an LFP signal time locked to

an event is called an evoked potential. Evoked potentials are calculated by averaging LFP

signals over trials time aligned to the event of interest (see [59]); this reveals any consistent

modulation or activity. Rickert et al. reported two positive (P1, P2) and two negative

(N1, N2) peaks in the mEP and cEP, and found that across all 419 LFP recordings over

all sessions in the contralateral and ipsilateral hemispheres, 16% of the mEP’s were tuned

during P1, 38% during N1, 48% during P2 and 50% during N2. They also found that the

three frequency bands (≤ 4, 6−13 and 63−200 Hz) were directionally modulated [35]. The

spectra of the individual LFP signals were very similar on average in all of the frequency

bands. However, they did not report the percentage of LFP signals tuned in the frequency

domain, or the distribution of preferred directions in either the frequency or time domains.

Heldman et al. also reported directional modulation in the 18−26, 30−80 and 60−200

Hz bands (10.5%, 12.5% and 14.9% of recorded M1 LFP’s were significantly tuned), in

a 3D reach task. Scherberger et al. showed that LFP’s in the posterior parietal cortex

modulated with the direction of reaches and saccades prior to execution [22]. Richardson

also reported that power in both the beta and gamma bands varied with the direction of

movement [60]. Tuning in the beta band was largely bimodal, while gamma tuning was

largely unimodal. Preferred directions for beta oscillations were not uniformly distributed

and clustered around certain values.

After this, O’Leary and Hatsopoulous [61] reported tuning in mEP’s and cEP’s of LFP’s

calculated separately for three frequency bands: < 10, 10−25 and 25−45 Hz. Interestingly,

they also reported that within a given cortical area and data set, the preferred directions

for each of these three groups were clustered in few (and often just one) groups. Different

data sets and recording sessions had their preferred directions clustered around different

points.

This chapter explores the use of LFP from the contralateral and ipsilateral hemispheres

as a direct BMI input to predict movement. The first section of this chapter delves into

directional modulation in LFP signals from an implanted micro-electrode array, and par-
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ticular issues that may arise from the strong correlations between the signals. The second

section details and tests an algorithm for LFP based offline movement prediction.

4.1 Direction Modulation

We investigated the directional modulation of the power of the LFP signal in the 0−10

Hz, 15− 45 Hz (beta) and 60− 100 Hz (gamma) bands, as well as in the mEP and cEPs.

4.1.1 Modulation Methods

The animal behavior, data collection and data analysis were performed as described in

Chapter 2. We considered directional modulation of power in the 0 − 10 Hz, 15 − 45 Hz

(beta) and 60 − 100 Hz (gamma) bands during the hold period (HP), defined as 500 ms

prior to movement onset, movement period (MP) and target hold period (THP). Trials were

classified based on the direction of movement. In order to be able to compare modulation

across days of recording, we subtracted the mean of all LFP signals from each LFP signal

prior to evaluating the spectra. Using the LFP signal on one electrode, we calculated the

average power in each band during HP, MP and THP for each direction.

We used an ANOVA (p < 0.05) to test the significance of any modulation observed.

Similar to tuning curves for spike data, we normalized the tuning curves and fit these to a

cosine curve as in [58], to calculate the preferred direction.

To calculate the mEPs and cEPs we averaged the raw LFP signal aligned with the go cue

and movement onset [59]. While the timestamp for the go cue was recorded by the Plexon

software, movement onset was calculated using the hand’s velocity profile. For this chapter,

the movement onset was recorded when the velocity crossed a predetermined threshold (1

cm/sec). To calculate separate evoked potentials for each direction, we classified trials based

on the direction of movement and then averaged the LFP signals. We used the peak-to-

valley depth, peak height, valley height or area under the peak of the evoked potential as

metrics to calculate tuning.
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4.1.2 Modulation Results

Tuning in Frequency Domain

Results in this section use data under the MC paradigm. The data from monkey P

showed significant modulation of power in the beta band during the hold period, consis-

tent with the results of [61]. Figure 4.1 shows averaged spectrograms for each movement

direction. Beta power during the hold period (500 ms prior to movement onset at 1000 ms)

varies with direction, and is maximized during reaches to 225◦ and 270◦. The 0 − 10 Hz

band is high during THP, but was not significantly tuned to one direction. Spectrograms

did not show significant modulation in the gamma band. The results in the gamma band

conflicts with the results of Rickert and Heldman, and are further explored in the discussion

section.

Figure 4.1. Session-average spectrograms for each movement direction. Beta power during
the hold period varies with direction, but there are no apparent changes in the gamma band.
The directions represented are: anti-clockwise from middle-right: 0◦ − 315◦ in increments
of 45◦.

Power on each electrode varied almost identically with direction - most signals had

maximum power in the beta band for reaches to 225◦ and 270◦, and thus preferred directions

in this range. This modulation also remained constant across days. This raises questions

regarding the validity of the tuning observed. Is this a reflection of the high correlation of
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the LFP signals? If so, does the difference in preferred direction change as distance between

electrodes increases? This remains to be investigated.

Does this constant modulation arise from a common noise signal or noise reflected in

the common reference for each electrode? To test this, we considered the mean of all LFP

signals over electrodes, which would reveal any common noise signal in the reference. We

subtracted the mean of LFP signals across electrodes from each signal before calculating

tuning curves to eliminate this possibility. Preferred directions for signals remained the

same both with and without the common mean subtracted.

Figure 4.2 shows the tuning curves and the cosine fit for each curve for all 64 electrodes

in M1 (with mean subtracted) on six days: Day 1 and Day 30 − 34. The tuning curves of

some electrodes on which signals were known to be noisy are not shown. Note the outlier

on Day 15 whose preferred direction does not cluster with the other signals. We could not

identify this electrode as noisy and could not explain why it does not cluster with the other

electrodes. We accounted for the larger standard deviation this leads to while analyzing the

clustering of the signals in table 4.1.

A large percentage of the 64 electrodes showed significant (ANOVA) direction tuning.

Table 4.1 shows the percentage of the 64 signals that were tuned each day, as well as the

distribution of preferred directions across electrodes and recording sessions. The last column

shows that large percentage of the tuned signals each day cluster around a mean preferred

direction.This suggests that the preferred directions of LFP beta tuning also cluster in a

group, similar to the observations by O’Leary and Hatsopoulous [61]. However, they also

report a change in clustering over days, which we do not observe in our data. Also, while

we compute the average power in a band, [61] looks at evoked potentials arising in the

frequency band.

Preliminary analysis in monkey R also showed similar clustering of LFP beta tuning.

We do not believe that the clustering in our LFP data is due to a common noise source, but

it is difficult to conclusively eliminate this possibility without extensive further experiments.

This could be the basis for a set of future experimental research. In addition, we observed

that the tuning in the ipsilateral cortex was very similar to that in the contralateral cortex.

The precise direction tuning in the ipsilateral cortex also remains to be further investigated.
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(a) Day 1 (b) Day 13

(c) Day 14 (d) Day 15

(e) Day 16

Figure 4.2. Tuning curves for beta power in M1 in the LFP during hold period. Tuning
curves remain similar over a period of thirty days, as well as over five continuous days. Each
subfigure plots the normalized beta power v/s the direction of movement (blue curves) for
all 64 electrodes in the M1 array. The red curves are the best sinusoidal fit to each curve.
Thus tuning remains constant over days and over electrodes.
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Table 4.1. Distribution of LFP preferred directions across electrodes and days

Day % significnatly Mean PD (deg) PD Std Dev (deg) % tuned within
tuned 1 std of mean

Day1 86 266.81 19.37 83
Day 13 58 280.4 13.40 81
Day 14 87 261.50 17.60 75
Day 15 76 269.98 43.66 91

(outlier fig 4.2(d)) within ±15 = 86
Day 16 64 234.73 18.58 68

Tuning in Evoked Potentials

We observed cue and movement evoked potentials (cEP and mEP), similar to those

in [35]. Since the precise time of movement onset was hard to determine (see 4.1) the cEP

was much cleaned than the mEP. Nevertheless, some directional modulation was visible

in the shape of the cEP and the mEP (figures 4.3 and 4.4). Using the peak-to-valley

depth, peak height, valley height or area under the peak as metrics we were unable to find

significant unimodal tuning in the cEP or mEP. Decomposition of the evoked potential into

different frequency bands as in [61] may lead to unimodal tuning; and could be investigated

as future work.
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Figure 4.3. Cue evoked potentials for reaches to targets in each of eight directions. The
red circle represents the peak of the evoked potential and the green circle the valley. The
directions represented are: anti-clockwise from middle-right: 0◦−315◦ in increments of 45◦.

Figure 4.4. Movement evoked potentials for reaches to targets in each of eight directions.
The red circle represents the peak of the evoked potential and the green circle the valley.
The directions represented are: anti-clockwise from middle-right: 0◦ − 315◦ in increments
of 45◦.
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4.2 Offline Movement Prediction

Using the spectral decomposition of the LFP signal, and a simple lagged linear model,

we predicted cursor position under MC, using signals from M1 and ipsilateral M1 separately.

Thus, there was no feedback (visual or otherwise) signal provided to allow any adaptation

by the linear model.

4.2.1 Prediction Methods

We recorded the position of the cursor (and hand) in joint coordinates (shoulder and

elbow angle) using the KINARM. A linear model (wiener filter), similar to the filter used

in [10] was trained and used to predict movement.

The offline prediction algorithm used the spectral decomposition of the LFP signal as

input to a Wiener filter to predict movement. For this we calculated the power of the LFP

in 10 Hz blocks i.e., 1 − 10 Hz to 90 − 100 Hz, using the multi-taper spectral estimation

technique, as described in the Methods section. We calculated a power estimate every 50

ms, using a window of ±100 ms, and K = 5.

We generated time series of powers in the five bands (sampled at 20 Hz, i.e. one point

every 50 ms). We also allowed the use of 500 ms of history (10 lags). For completeness,

we included the raw LFP time series as an input; however, it must be noted that results

without the time domain information were slightly better than those including time domain

information. This may be due to the additional noise introduced by the time series. Thus,

one LFP signal led to 50 + 1 = 51 input signals to a Wiener filter. We used information

from 6 electrodes chosen uniformly from the array, since results using fewer and more than

six electrodes were worse. The filter was trained on 8− 12 minutes of data (depending on

the session) and was used to predict the last 2000 ms of movement over 4 days.

4.2.2 Prediction Results

Figures 4.5 and 4.6 plot the actual and predicted movement from one session in joint

co-ordinates for the predictions using M1 and ipsilateral M1 respectively. The correlation

coefficients of the predicted and actual movement traces in these figures are given in table

4.2. These coefficients are lower than those typically observed for spike data, and the we

can see the prediction noise in figures 4.5 and 4.6. The prediction scheme showed consistent
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Figure 4.5. Movement prediction using spectral decomposition of contralateral M1 LFP.

Figure 4.6. Movement prediction using spectral decomposition of ipsilateral M1 LFP.
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results over days for both Monkey P and Monkey R. Tables 4.3 and 4.4 shows the average

correlation coefficient obtained over days for Monkey P and Monkey R respectively.

Table 4.2. Correlation coefficients between predicted and actual movement

Shoulder Elbow
M1 0.59 0.61

M1 Ipsi 0.49 0.50

Table 4.3. PACO: Correlations coefficients for predictions of Shoulder and Elbow angles
and X & Y positions and velocities using LFP electrodes in the contralateral and ipsilateral
hemispheres respectively, using 6 LFP signals in the time and frequency domain.

Variable Day 1 Day 2 Day 3 Day 4 Day 5 Mean Std Dev
Shoulder Contra 0.6462 0.5275 0.6236 0.6641 0.4966 0.5916 0.0748

Ipsi 0.4716 0.3542 0.4343 0.4824 0.4442 0.4374 0.0504
Elbow Contra 0.6068 0.6195 0.6425 0.6376 0.5230 0.6059 0.0485

Ipsi 0.4744 0.4303 0.4840 0.5052 0.5102 0.4808 0.0318
X position Contra 0.5861 0.4365 0.3188 0.4629 0.4859 0.4581 0.0962

Ipsi 0.2520 0.4786 0.1811 0.4378 0.0808 0.2861 0.1691
Y position Contra 0.6011 0.5863 0.6437 0.6059 0.5095 0.5893 0.0494

Ipsi 0.4461 0.3828 0.5027 0.4748 0.4812 0.4575 0.0464
X velocity Contra 0.0555 0.0246 0.0156 0.0568 -0.0534 0.0198 0.0449

Ipsi 0.1523 0.0521 -0.1297 0.1970 -0.0414 0.0461 0.1347
Y velocity Contra -0.0713 0.0918 -0.0623 0.1848 0.0103 0.0307 0.1083

Ipsi 0.2081 0.2074 0.1118 0.0166 0.0899 0.1268 0.0819
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Table 4.4. RICO: Correlations coefficients for predictions of Shoulder and Elbow angles
and X & Y positions and velocities using LFP electrodes in the contralateral and ipsilateral
hemispheres respectively, using 6 LFP signals in the time and frequency domain.

Variable Day 1 Day 2 Day 3 Mean Std Dev
Shoulder Contra - - 0.4170 0.4170 -

Ipsi 0.3188 0.4272 0.3724 0.3728 0.0542
Elbow Contra - - 0.4140 0.4140 -

Ipsi 0.4470 0.5286 0.3908 0.4555 0.0693
X position Contra - - 0.3633 0.3633 -

Ipsi 0.2410 0.4075 0.2471 0.2985 0.0944
Y position Contra - - 0.4050 0.4050 -

Ipsi 0.4280 0.5236 0.3965 0.4494 0.0662
X velocity Contra - - 0.2504 0.2504 -

Ipsi 0.0375 0.0895 -0.0038 0.0411 0.0467
Y velocity Contra - - -0.0444 -0.0444 -

Ipsi 0.0432 -0.1224 -0.2612 -0.1134 0.1524

4.3 Discussion

The recorded LFP signal shows directional modulation, supporting the results of [35].

The results did not show tuning in the gamma band. This conflicts with the results of

Rickert and Heldman. However, Rickert did not report numbers on how many LFPs were

tuned, and ony 14.9% of the signals from the Heldman paper were significantly tuned in the

gamma band. Based on purely ANOVA significance testing, some of the LFPs were tuned

in the gamma band i.e. there was significant difference in the gamma powers for different

directions. However, very few of the signals were thus tuned, and they did not show clean

tuning curves, and hence we dismissed these as chance.

The preferred direction was fairly constant across multiple electrodes and recording

days. Single unit activity recorded from the same electrodes did not show any clustering

of preferred directions (unpublished observations). This similarity of preferred directions is

not surprising given the high correlations between LFP signals, in the time and frequency

domains, as suggested in chapter 3. [61] and [60] have recorded similar clustering of LFP

preferred directions. [61] suggests that this correlation may be due to the volume conduction

of synchronous post-synaptic potentials from neighboring neural populations. Another hy-

pothesis to explain preferred direction clustering might be that the direction tuning in LFP

represents a bias in the direction tuning of single units. We did not find any relationship
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between the average population vector over a session of the single unit activity and the

preferred direction of the LFP.

Does the similarity of preferred directions across LFP signals simply reflect that limb

movements are anisometric, instead of revealing LFP information content? The anisometric

nature of movements has been previously noted in this context [58], [60]. Given the similarity

of preferred directions across electrodes, we cannot calculate an analogue of the population

vector for LFP signals, i.e. different electrodes cannot be used (as different cells might be)

to encode for movements in different directions. Can we still use LFP a BMI control on

a single trial basis? We may still be able to harness the observed modulation to predict

the direction of moment in a BMI. The amplitude of beta oscillations could be used as

an 8-bit classifier to indicate the direction of movement. Also, our results in directional

modulation are limited to the MC mode. It would be interesting to see if similar patterns

in the preferred direction are found during BC mode as further work.

The work in this thesis is a first attempt at using the spectral decomposition of LFP for

direct BMI prediction. Both the ipsilateral and contralateral LFP signal can be used for

open loop or offline movement prediction with consistent and high correlation coefficients.

An interesting observation is the similarity of the directional modulation of the ipsilateral

and cotralateral cortices, which is again not surprising given the highly correlated LFP in

both hemispheres, but suggests that LFP in both cortices may carry similar information.

Related work (to be published) [62] further discusses the importance of the ipsilateral cortex

towards BMI development.

It is important to note that LFP predictions perform significantly worse than predictions

from spike data from previous studies, for instance the offline predictions of [63]. However

the LFP performs better than EEG or ECoG control [14]–[18]. We have not conducted any

experiments to test online LFP control with visual feedback. Such an experiment would

help further understand the utility of the LFP.
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Chapter 5

Beta band oscillations

Oscillatory behavior in neural recordings have been related to higher order sensory

processing, inter- and intra-cortical communication, facilitation of synaptic plasticity and

long-term information consolidation [23], [47]. Beta and/or gamma synchronization could

mediate interactions and subserve long range functional coupling [51], [64]. Beta waves

propagate across the motor cortex as a traveling wave, supporting the hypothesis that these

oscillations are relevant to intra- and inter-cortical information transfer [27]. Oscillations

in the gamma band have been associated with attention during visual tasks such as change

detection and shape tracking [29], [65]. In this chapter, we investigate local field potential

(LFP) beta oscillations as control inputs for brain-machine interfaces (BMIs).

BMIs are devices that decode neural activity to control external devices such as com-

puter cursors or mechanical actuators. LFPs have been previously used in BMIs to control

a virtual finger and to predict movement trajectories through the control of a computer cur-

sor [19], [20]. We focus on LFP oscillations in the beta band (15-45 Hz [27]), which may be

particularly relevant to develop BMIs. Beta oscillations have been thought of as indicative

of movement preparation [36], attention to fine control [53], a correlate of ‘idling’ motor

neurons [66], or an indication that the motor cortex is performing a task of low complexity

(such as maintaining a posture) [37].

Previous works have reported LFP oscillations in the beta range prior to movement

initiation and during steady posture or grip hold for a motor task [27], [36], [37]. A drop

in beta power accompanies movement onset. Beta oscillations in human EEG recordings

during motor tasks note similar results [66]. However, Murthy and Fetz observed more
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prominent beta oscillations during unconstrained motor tasks and exploratory tasks in an

occluded area than during rest or over-trained movements [28], [53]. It has been observed

that beta power in EEG increases with practice across days in a task to control a hand

orthosis using EEG signals [67].

In this chapter, we investigate beta oscillations in the LFP signal recorded during a

motor task under two conditions: (1) the subject uses its arm to complete the task and (2)

the subject, without overt limb movement, completes the task by generating a control signal

based on its neural firing rates, similar to standard BMI paradigms used previously [10].

Ranade et al. discusses a chunk of the results presented here [68].

5.1 Methods

Experimental design, behavior and data collection methods are the same as described

in chapter 2. Figures in this chapter are referenced to the movement onset and presented

on a logarithmic scale with arbitrary but uniform power units across figures. However, we

observed similar results with respect to go cue. The beta power profile (15− 45 Hz) over a

trial gives the average power over the beta frequencies every 50 ms. The beta profile over

one trial was calculated as the average power over the beta frequencies (20-45 Hz) in a given

time window.

In this chapter, movement onset was recorded as the cursor left the center target. We

defined the hold period (HP) as the 500 ms immediately prior to movement onset and the

initial movement period (IMP) as the first 500 ms after movement onset.

5.1.1 Spike Triggered Averages

To calculate spike triggered averages (STAs) we averaged the LFP signal in a ±125 ms

window around each spike on an electrode, aligned to the spike time over the whole session.

Fourier transforms of the STAs the provide spike-field coherence [29] to clarify phase locking

to any frequency.
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5.1.2 Prediction algorithm

We used the power in the beta band across all electrodes in M1 to predict stationarity

of the BMI cursor in BC mode. Time along a trial was divided into 50 ms windows. If

the power in the beta band on an electrode in a window was greater than the average beta

power over the session, the algorithm predicted stationarity of the cursor for the following

200 ms.

5.2 Results

Figure 5.1. Manual Control: Average (left) and single trial (right) estimate of the PSD of
the LFP signal on one electrode on a logarithmic scale (arbitrary units). Movement onset
is at 1000ms. For most trials beta power increases during the hold period and drops after
movement onset.

Each recording session lasted about 2 hours per day, during which the subject performed

200 − 300 trials in MC and BC modes. The subjects were over-trained in the MC task; a

reach was 0.7 s. Reaches in the BC mode took longer on average ( 2 s) and followed a

stop-go structure as the animal attempted to reach the target. No overt arm movements

were observed in BC mode.

Figure 5.1 shows the trial average spectrogram estimates of the LFP over one session-

aligned to movement onset, as well as a representative single trial spectrogram in MC. As

noted in [27], [36], [37], there is sharp drop in beta power with movement onset in manual

control, which lasts the duration of the movement. Also, we often see an increase in the

beta power during the target hold period, indicated by the increase in beta power around

2000 ms in the average MC plot.

Notably, there is also a sharp drop in beta power immediately after movement onset
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Figure 5.2. Brain Control: Average (left) and single trial (right) estimate of the PSD of the
LFP signal on one electrode on a logarithmic scale (arbitrary units). Movement onset is at
1000ms. Similar to manual control, beta power increases during the hold period and drops
after movement onset.

in BC mode, which lasts for about 500 ms on average as seen in figure 5.2. The longer

reaches in BC mode and the stop-go nature of the reach lead to intermittent bursts of beta

power during individual trials. The change in beta power between the HP and the IMP was

significant at the 5% level across all five days examined under both MC and BC.

Figure 5.3. Beta power and velocity in MC. The cursor leaves the center target at 1000 ms.

We observe high beta power in MC (compared to the average power) only when cursor

velocity is close to zero. For each trial, beta power drops as the cursor leaves the center

target and velocity increases (at 1000 ms in figure 5.3). Beta power remains low throughout

the movement. We see from figure 5.4 that high beta power and high velocity do not occur

simultaneously across all trials in a session. Using a set threshold (10−4 units, see section

5.1) we classified points along the trial as high (blue) and low beta (green) power. The

mean velocity of the hand during high beta periods in a session was significantly smaller
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than the velocity during low beta power (p = 0.05). This significant difference was observed

even if we used the average beta power across the session as a threshold.

Figure 5.4. Hand velocity v/s beta power in MC. The points do not span the space and
high beta power and high velocity do not occur simultaneously.

Although the movements in BC mode have greater variance in their position and ve-

locity profiles, high velocity cursor movements rarely occur during periods of strong beta

oscillations. Velocity is zero at the same time as the beta power peak in figure 5.5, while the

beta power is low during high velocity cursor movement. There was a significant difference

(p = 0.05) between the mean velocities over the high and low beta conditions in BC mode

as well (threshold 10−4 units), as illustrated in figure 5.6. Similar results were observed for

a second subject.

Figure 5.5. Beta power and velocity in BC. The cursor leaves the center target at 1000 ms.

We observed that cursor velocity in both MC and BC modes was low for about 200

ms following peaks in the beta power and used this to design a simple offline algorithm to

predict cursor stationarity for 50 ms windows (described in Methods). Thus for each HP
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(and IMP) the algorithm predicts that the cursor is stationary for a certain percentage of

time.

Figure 5.6. Hand velocity v/s beta power in BC. As in figure 5.4, high velocity and high
beta power do not occur simultaneously.

For each trial, we calculated the percentage of time that the algorithm predicted station-

arity during the HP (and IMP). A prediction of stationarity during the HP was considered

a correct prediction, since the subject is expected to be stationary at this time, whereas a

prediction of stationarity during the IMP was considered a false alarm. For approximately

150 (of 214) trials, > 70% of the HP was predicted as stationary (figure 5.7(a)). We ob-

served significant false alarms for 60 (of 214) trials were false alarms, where > 70% of the

IMP was also predicted to be stationary (figure 5.7(b)), however for the majority of the

trials < 10% of the IMP was predicted as stationary.

5.2.1 Spike triggered averages

Spikes recorded on an electrode phase locked to the LFP beta oscillations recorded on

the same or different electrodes , consistent with previous observations by Murthy and Fetz,

and Baker et. al [28], [37]. We see prominent oscillations in the time domain and a peak

around 30 Hz in the spectra of the STA’s over the hold period of manual control (figure

5.8(a)). Spikes did not phase lock to any frequency during the movement period.

We also found spikes that phase locked to the beta oscillation during periods of high

beta in the BC mode. Figure 5.8(b) shows the STA for a neuron that was not involved as

one of the neurons controlling the BC cursor. Though the signal in time domain is not as

clean as in MC, we can see an underlying beta oscillation. The Fourier transform of the STA

shows a peak at 30 Hz as well as a lower frequency to which the spikes are phase locked.

If we assume that spikes are responsible for generating the LFP signal, the similarity of

phase locking in BC and MC could suggest that the underlying processes generating the
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(a) Hold Period

(b) Initial Movement Period

Figure 5.7. Algorithm analysis: (a) Histogram of stationarity predictions during the hold
period over all trials. (b) Histogram of stationarity predictions during the movement period
over all trials.
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(a) Manual

(b) BMI

Figure 5.8. Spikes phase lock to beta oscillations in MC and BC. (Electrode not involved
in BMI)
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beta oscillation are similar in both modes. If we assumed the opposite however, that the

LFP was in fact used as a timing device to synchronize spiking activity, we might be able

to conclude that beta oscillations share functionality in both modes. However, much work

needs to be done to further explore the generation of beta oscillations in LFP, before we

can understand this further.

5.3 Discussion

It is known that beta power in the motor cortex is high during stationary task periods

and decreases during movement periods for manual control [27], [36], [37]. We report that

the beta power follows a similar pattern even during brain-control. With this information

we can predict whether the BMI cursor should be stationary during a certain period. This

result has implications for the development of future BMIs. High beta power, as an indicator

of stationarity, could be used as a toggle switch for a BMI device.

The results presented in this paper also offer an insight into the nature of the beta

rhythm. Baker et al. suggest that regular beta oscillations form a highly predictable signal

of low entropy, and thus one which could not be used to convey much information [37]. They

argue that the cortex can only afford such oscillations during a low complexity task, such

as maintaining posture, as opposed to a more complex reach or grip task. This hypothesis

and the observed pattern of beta oscillations would suggest that movement in BC is a more

complex task than position maintenance. While the precise causal relationship between

firing patterns and limb movement during MC is unknown, a precise model is used to

control the cursor position under BC. In BC, holding a position requires maintenance of

a precise firing pattern, while a specific movement requires the generation of a different

pattern. Since the relative complexity of a change in firing rate compared to maintenance

of a certain firing rate is unclear, we cannot easily explain the differences in BC beta power

using Baker’s hypothesis.

Pfurtscheller et al. suggested that beta oscillations might be indicative of an idling

state [66]. This seems unlikely given the constancy of firing patterns the subject must

maintain during the hold and movement periods of BC. For instance, a specific firing pattern

is required throughout the hold period; even a small change could result in cursor movement.

Similarly, a specific firing pattern is required for movement in a specific direction. Sanes

and Donoghue suggested that beta oscillations may be “related to aspects of movement

preparation” [36]. However, it has been difficult to find relationships between beta power
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in the motor cortex and task performance or attentiveness, as opposed to visual tasks

where gamma oscillations correlate with these variables [29]. We did not find any obvious

correlations between beta power and reaction time (time between the go cue and movement

onset) or the time of reach, which agrees with the results presented in [36]. Instead of

planning functions, beta oscillations may serve as a low energy state that the cortex reverts

to in the absence of explicit movement.

In summary, we have shown that a basic algorithm can predict hold and movement

periods in a trial. Such an algorithm could be used to supplement a firing rate based BMI

to avoid unnecessary cursor noise during stationary periods, and thus improve the accuracy

of a BMI that is primarily based on spike information.
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Chapter 6

Conclusion

This thesis explores aspects of the LFP signal through the perspective of developing

the next generation of BMIs. As the low frequency component of intra-cortical recordings,

the LFP is noisier than, and not as effective as spike data when considered as a direct

input to a BMI. Not surprisingly, movement predictions using the LFP as the only input

to a BMI are far behind predictions using spike data. However, the results from this thesis

indicate the utility of the LFP as a supplementary input to a spike controlled BMI. For

instance, the direction tuning observed in the beta band of the LFP signal could be used as

an independent validation mechanism for the movement predicted by spike data. We also

found that the power in the beta oscillations of LFP is highly correlated with the movement

state (stationary or moving) of a BMI cursor during both MC and BC. A reliable prediction

of the stationarity of a BMI cursor could significantly reduce noisy movements during spike-

based movement prediction.

The results of this thesis confirm previous work about LFPs and also indicate the

significance of beta band of the LFP. We summarize them here:

1. Coherence calculations show that beta oscillations are pervasive in the cortex during

the hold period during MC.

2. The power in the beta band of the LFP is significantly modulated by direction during

MC. We find unimodal direction tuning (single peak in tuning curve) in the beta band,

as compared to bimodal tuning (two peaks in tuning curve) previously observed [60].

Preferred directions of the signals on different electrodes cluster together, similar to

the results of [60], [61].
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3. Previous studies had noted higher power in the beta band during the hold period and

lower power during the movement period in MC. The work in this thesis replicates

previous results. Additionally we observe that the change in beta power movement

during a BC task follow a pattern similar to MC. Even in BC, there is an increase in

beta power during the hold period followed by a decrease on movement onset.

4. Beta oscillations can be used to predict the stationarity of the task cursor in both MC

and BC.

5. Spikes phase-lock to beta oscillations during BC. Phase-locking during MC has been

widely observed previously [28], [37]. This could suggest a similar function and/or

origin for beta oscillations in BC and MC.

These results lead to many further questions and future projects to be pursued. Some

of them are discussed below.

1. This thesis makes some observations about LFP-LFP coherence in the context of

behavior. However, we still have no understanding of what coherence represents bi-

ologically. What are the implications of cortex wide beta coherence during the hold

period? What does it mean to have coherence at only select frequencies?

2. Finite window sizes introduce artifacts in coherence calculations, and these parameters

should be taken into consideration while comparing results across datasets and papers.

3. Similar to the results of Oleary and Hatsopoulos [61] and Richardson [60], we observed

that LFP preferred directions in the beta range cluster close together. Unlike spikes,

LFP signals may not be able to represent independent movement directions. Is the

LFP preferred direction well defined if this direction is the same throughout the motor

cortex? Is the constant direction tuning of the LFP signal purely a reflection of the

anisometric nature of limb movements [58], [60]?

4. A natural next step from this thesis might be to conduct closed-loop feedback exper-

iments using the LFP signal as a direct BMI controller. We hypothesize that this

would work better than the open loop results predicted, but not as good as results

using spike data. It has been observed that spike activity can be volitionally mod-

ulated [4], but volitional modulation of an LFP signal has yet to be observed. An

LFP-based BMI experiment may help shed light on whether the LFP signal can also

be volitionally modulated.
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5. We still lack a clear understanding of the functionality of beta oscillations. Results

from this thesis and other papers suggest that beta oscillations may serve as:

(a) idle oscillations, a default state that the cortex reverts to when no other impor-

tant events are happening

(b) a carrier wave for communication

(c) a timing signal for spike synchronization across brain regions

(d) a ‘planning’ oscillation

However, we have no conclusive evidence to favor any hypothesis over the others.

Based on the work in this thesis and elsewhere, we know that the LFP is an information

rich signal. However, we are fundamentally limited in our perspective during neural signal

analysis since we can only analyze signals we can record - EEG, ECoG, LFP or action

potentials. Our little understanding of brain functionality provides a limited understanding

of what the LFP represents biologically, and our observations may be a byproduct of other

underlying processes we are unaware of. There is much work to be done to gain a good

understanding of the functionality of the LFP.

Our results show that the LFP can provide valuable supplementary information for a

spike-based BMI. The direct use of LFP, as well as spike data, for BMI work is closely

related to the development of recording technologies. There are many advances to be

made in this field to achieve the goal of long-term stable recordings from electrodes that

are implanted in humans. In the meanwhile, BMI experiments may continue to help us

understand concepts like volition and plasticity, give us insight into the nature of brain

signals and finally understand how the brain works.
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