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Abstract—In multi-hop wireless networks, designing dis-
tributed scheduling algorithms to achieve the maximal thraugh-
put is a challenging problem because of the complex interfence
constraints among different links. Traditional maximal-weight
scheduling (MWS), although throughput-optimal, is difficult
to implement in distributed networks. On the other hand, a
distributed greedy protocol similar to IEEE 802.11 does not
guarantee the maximal throughput. In this paper, we introduce
an adaptive CSMA scheduling algorithm that can achieve the
maximal throughput distributively. Some of the major advantages
of the algorithm are that it applies to a very general interference
model and that it is simple, distributed and asynchronous.
Furthermore, the algorithm is combined with end-to-end flow
control to achieve the optimal utility and fairness of compéing
flows. Simulations verify the effectiveness of the algoritim.
Also, the adaptive CSMA scheduling is a modular MAC-layer
algorithm that can be combined with various protocols in the
transport layer and network layer. Finally, the paper explores
some implementation issues in the setting of 802.11 netwak

Index Terms—Cross-layer optimization, joint scheduling and
congestion control, maximal throughput, CSMA

. INTRODUCTION
In multi-hop wireless networks, it is important to efficignt

utilize the network resources and provide fairness to cdimge
data flows. These objectives require the cooperation o¢mdiff

ent network layers. The transport layer needs to injectitjte r

amount of traffic into the network based on the congesti

links is the summation of their queue lengths. (This aldponit
has also been applied to achieve 100% throughput in input-
queued switches [19].) However, finding such a maximal-
weighted IS is NP-complete in general and is hard even for
centralized algorithms. So its distributed implementat®not
trivial in wireless networks.

A few recent works proposed throughput-optimal algorithms
for certain interference models. For example, Eryilmaz et
al. [4] proposed a polynomial-complexity algorithm for the
“two-hop interference modeY’ Modiano et al. [5] introduced
a gossip algorithm for the “node-exclusive modelThe
extensions to more general interference models, as detuss
in [4] and [5], usually involves extra challenges. Sanglel.

[6] introduced an algorithm that can approach the throughpu
capacity (with increasing overhead) for the node-exchisiv
model.

On the other hand, by using a distributed greedy proto-
col similar to IEEE 802.11, reference [9] shows that only
a fraction of the throughput region can be achieved (after
ignoring collisions). The size of the fraction depends oa th
network topology and interference relationships. Refegen
[10] studied the impact of such imperfect scheduling on
utility maximization in wireless networks. In [12], Proeie et
al. developed asynchronous random-access-based scigeduli
algorithms whose throughput performance is no less than

Pme maximal scheduling algorithms, e.g. Maximum Size

level and the MAC layer needs to serve the traffic efficientlgchedu"ng algorithms.
to achieve high .throughput. Through a utility optimizatipn Our first contribution in this paper is to introducedis-
framework [1], this problem can be naturally decomposed infii, ted adaptive CSMA (Carrier Sensing Multiple Access)

rate control at the transport layer and scheduling at the MAG,

gorithm for a general interference model. It is inspirgd b
CSMA but may be applied to more general resource sharing

It turns out that MAC-layer scheduling is the bottleneck 0ySrobIems (i.e., not limited to wireless networks). We show
the algorithm [1]. In particular, it is not easy to achieve thy,. it nacket collisions are ignored (as in some of the above

maximal throughput through distributed scheduling, which
turn prevents full utilization of the wireless network. $clul-

ing is challenging since the conflicting relationships bestw
different links can be complicated.

references), the algorithm can achieve maximal throughput
The optimality in the presence of collisions is studied in
[26], [27]. The algorithm may not be directly comparable to
the throughput-optimal algorithms mentioned above sirice i

It is well known that maximal-weight scheduling (MWS),jjize5 the carrier-sensing capability. But it does haview

[18] is throughput-optimalThat is, that scheduling can suppor}
any incoming rates within the capacity region. In MWS, time
is assumed to be slotted. In each slot, a set of non-confictin

links (called an “Independent Set”, or “IS”

istinct features:
« Each node only uses its local information (e.g., its back-

) that have the 1In this model, a transmission over a link from node to noden is

maximal weight are scheduled, where the “weight” of a set @éficcessful iff none the one-hop neighborsnefand is in any conversation

This work is supported by MURI grant BAA 07-036.18. Prelirin
versions of the paper appeared as [2] [3].

at the time.
2|n this model, a transmission over a link from node to noden is
successful iff neithern nor n is in another conversation at the time.



log). No explicit control messages are required amorig} An idealized CSMA protocol and the average throughput

the nodes. S We use an idealized model of CSMA as in [21], [22],
o Itis based on CSMA random access, Whl_ch is similar tf23]_ This model makes two simplifying assumptions. Fitst,
the IEEE 802.11 protocol and is easy to implement.  45sumes that if two links conflict — because their simultaseo
« Time is not divided into synchronous slots. Thus ngansmissions would result in incorrectly received pasket
synchronization of transmissions is needed. then either of the two links hears when the other one traissmit
In a related work, Marbach et al. [11] studied a model decond, the model assumes that this sensing is instantaneou
CSMA with collisions. It was shown that under the “nodeThe first assumptions implies that there are no hidden nodes
exclusive” interference model, CSMA can be made asym{HN). This is possible if the range of carrier-sensing igéar
totically throughput-optimal in the limiting regime of & enough [25F ) The second assumption is violated in actual
networks with a small sensing delay. In [13], Rajagopalash agystems because of the finite speed of light and of the time
Shah independently proposed a throughput-optimal algorit needed to detect a received power.
similar to ours in the context of optical networks. However, There are a few reasons for using this model in our con-
there are some notable differences (e.g., the use of Ptapositext, although it makes some simplifying assumptions about
1 here). Also, utility maximization (discussed below) wax n collisions and the HN problem: (1) It is simple, tractablagda
considered in [13]. captures the essence of CSMA/CA; (2) Even without con-
Our second contribution is to combine the proposesidering collisions and hidden nodes, distributed schiegul
scheduling algorithm with end-to-end flow control using & achieve maximal throughput is not an easy problem, as
novel technique, to achieve fairness among competing flodiscussed in the Introduction section. In most of the paper,
as well as maximal throughput (sections Ill, IV). The perfocus on the scheduling problem, without mixing it with the
formance is evaluated by simulations (section VI). We showther issues. Similar approaches have been taken in related
that the proposed CSMA scheduling is a modular MAGworks, for example [9], [1]; (3) The scheduling algorithm we
layer algorithm and demonstrate its combination with optimpropose here is inspired by CSMA, but it may be applied to
routing, anycast and multicast (Appendix F). Finally, wenore general resource sharing probléris., not limited to
considered some practical issues (e.g., packet collisioms wireless networks).
the setting of 802.11 networks (section VII). In [27], on the other hand, we have also developed a model
There is extensive research in joint MAC and transporthat explicitly considers collisions in wireless networkhvout
layer optimization, for example [7] and [8]. Their studiesdN. The distributed scheduling and rate control algorithms
have assumed the slotted-Aloha random access protoca in pnoposed in this paper can be naturally extended to that mode
MAC layer, instead of the CSMA-like protocol we consideie will further discuss the issue in section VII.
here. Slotted-Aloha does not need to consume power in carrieln this subsection, assume that the links are always back-
sensing. On the other hand, CSMA is known to have a largdegged. If the transmitter of link senses the transmission of
capacity region. (In this paper, we are primarily interdsteany conflicting link (i.e., any linkm such that(k,m) € &),
in the throughput performance.) Other related works assutien it keeps silent. If none of its conflicting links is trans
physical-layer models which are quite different from otisr  mitting, then the transmitter of linkk waits (or backs-off)
example, [14] considered CDMA interference model; and [15br a random period of time that is exponentially distrilite

focused on time-varying wireless channel. with mean1/R; and then starts its transmissforlf some
conflicting link starts transmitting during the backoffethlink
I1. ADAPTIVE CSMA FORMAXIMAL THROUGHPUT k suspends its backoff and resumes it after the conflicting

transmission is over. The transmission time of lidkis
exponentially distributed with mean 1. (The assumption on

First we describe the general interference model we widknonential distribution can be relaxed [23].) Assumingtth
consider in this paper. Assume there ake links in the the sensing time is negligible, given the continuous distion
network, where eaclink is an (ordered) transmitter-receiveiof the backoff times, the probability for two conflicting ks
pair. The network is associated with a link contention graph
(or “LCG") G = {V’ 5}, whereV is the set of vertexes (each 3A related problem that affects the performance of wireleztsvarks is the
of them represens a link) antl is the set of edges. Two Feo5e 0 (1) proble. Refrence [29) poposed aamblo e
links cannot transmit at the same time (i.e., “conflict”)tlfilere HN and EN are negligible with the use of such a protocol. Nog& however,
is an edge between them. Note that this framework includ&tough EN problem may reduce the capacity region, it dagsafiect the
the ‘node-exclusive model” and “two-hop interference mibde3PRICAY of ur mocel, snce we car dene e b ke
mentioned above as two special cases. this results in EN.

Assume thaty has N different Independent Sets (“IS”, not “*An example is the “task processing” problem described devisl There

confined to “Maximal Independent Sets“) Denote tHb IS are K different types of tasks and a finite set of resoureslo perform a
) type+ task, one needs a subggt C B of resources and these resources are

asz’ € {0,1}*, a 0-1 vector that indicates which links ar@pen monopolized by the task while it is being performed.etbt two tasks
transmitting in this IS. Th&'th element ofz?, xz =1 if link can be performed simultaneously iff they use disjoint stsbeé resources.
k is transmitting, andr}, = 0 otherwise. We also refer to’ ecéi?]”t{/ggsoﬁgsi‘; accomimoxiated in our madel in section by/associating
E_‘S a “transmission state”, am% as the “transmission state of 51f more than one backlogged links share the same transiittertrans-
link &". mitter maintains independent backoff timers for thesedink

A. Interference model



which is exactly the detailed balance equation betweean stat

R1 andz’ + e;. Such relations hold for any two states that differ
in only one element, which are the only pairs that correspond
! to nonzero transition rates. It follows that the distribatiis
R invariant. [ |
Note that the CSMA Markov chain is time-reversible since the
Link 1 Link 2 ! @ detailed balance equations hold. In fact, the Markov chan i
) , _ reversible “spatial process” and its stationary distiitout(1)

() Link contention graph () CSMA Markov Chain is a Markov Random Field ([20], page 189; [24]). (This means
Fig. 1: Example: link contention graph and correspondinat the state of every link is conditionally independent of
Markov Chain. all other links, given the transmission states of its cofifig

links.)

o o . Later, we also writep(z%;r) asp;(r) for simplicity. These
to start transmission at the same time is zero. So in the mogglations are interchangeable throughout the paper. And le
of [21], [22], [23], collisions are ignored. (In section VII (r) € Rf be the vector of alp;(r)’s. In Fig 1, for example,
however, we will discuss adaptations of our algorithm Whicﬁ1e probabilities of state (0,0), (1,0) and (0,1) &yél + R, +

cons_ider col_lis_ions in an 802.11 netwo_rlf.) "Rs), Ri/(1+R1+R2) andRy/(1+ R1 + R») in the stationary
It is not difficult to see that the transitions of the transmisyisiribution.

sion states form a Continuou_s Time Mz?\rkov Chgin, Which IS |t follows from Lemma 1 thats (r), the probability that
called theCSMA Markov ChalnDenott_a linkk’s naghbormg link & transmits, is given by
set by N (k) := {m : (k,m) € &}. If in statez’, link &k is
not active ¢}, = 0) and all of its conflicting links are not sp(r) =Y, [z - p(at;r)] . (3)
active (i.e.,z, = 0,vm € N (k)), then stater’ transits to . ]
statez’ + e with rate Ry, wheree, is the K-dimension  Without loss of generality, assume that each linkas a
vector whoseé:'th element is 1 and all other elements are o'$apacity of 1. That is, if linkk transmits data all the time
Similarly, stater +e, transits to state’ with rate 1. However, (Without contention from other links), then its serviceeré 1
if in state z¢, any link in its neighboring set/(k) is active, (unit of data per unllt time). Thgrsk(r) is also then(?rmallzed.
then stater’ + e, does not exist. throughput (or service rate) with respect to the link cayaci

Fig 1 gives an example network whose LCG is shown in Evep if the distributions o]‘ thg ngting time and transmis-
(a). There are two links, with an edge between them, whi&P" time are not exponential distributed but have thg same
means that they cannot transmit together. Fig 1 (b) shows {Rgans {/ Ry and 1), reference [23] shows that the stationary
corresponding CSMA Markov Chain. State (0,0) means thglls_trlbutm_)r_] (2) still holds. That is, the stationary distrtion
no link is transmitting, state (1,0) means that only link 1 i§ INsensitive.
transmitting, and (0,1) means that only link 2 is transmgti
The state (1,1) is not feasible. C. Adaptive CSMA for maximal throughput

Let 7, = log(Ry). We callry, the “transmission aggressive-
ness” (TA) of link k. For a given positive vectar = {ry, k =
1,..., K}, the CSMA Markov chain is irreducible. Designat
the stationary distribution of its feasible statésby p(z¢;r).
We have the following result.

Lemma 1:([21], [22], [23]) The stationary distribution of
the CSMA Markov chain has the following product-form:

Assume i.i.d. traffic arrival at each link with arrival rate

e’\k‘ Ar < 1is alsonormalizedwith respect to the link capacity

1, and thus can be viewed as the fraction of time when link
k needs to be active to serve the arrival traffic. And denote
the vector of arrival rates as € R. Further assume that
Ar > 0,VE without loss of generality, since the link(s) with
zero arrival rate can be removed from the problem. We say that

; exp(szzl Ty \ is feasibleif and only if A = Y, p; - * for some probability
p(z"r) = — Cn) (1) distributionp € RY satisfyingp; > 0 andy>, p; = 1. That s,
A is a convex combination of the IS’s, such that it is possible
where _ to serve the arriving traffic with some transmission schedul
C(r) =3, exp(S e, wlrg) - (2) Denote the set of feasible by C. We say that\ is strictly
) _ i : feasibleiff it can be written as\ = Y, p; - = wherep; > 0
Note that the summatloEj is over all feasible states’. and Y, p; = 1. Denote the set of strictly feasible by C.

Remark The lemma holds as long as the ratio between ﬂN‘ppendix A shows tha€ is exactly the interior of’.
mean transmission time and mean backoff time of linis  pefine the following function (the “log-likelihood functits

Ry, = exp(ry), vk [?1]’ [22], [23_]' o o if we estimate the parameterfrom the observatior;)
Proof: We verify that the distribution (1)-(2) satisfies the
detailed balance equations (see [20]). Consider steitemd F(r;A) = 32, pilog(pi(r))
z' + e wherez! = 0 andz!, = 0,Ym € N (k). From (1), = B whry, — log(C(r))] _
we have . = Y e — log(3; exp(Y4L, @)
p(z’ + ey;r)
—————~ =exp(r) = By

p(xi;r) where), = >, p;at is the traffic arrival rate at link.



Consider the following optimization problem the time betweert;_; and¢;, andr(j) as the value ofr
set at timet;. Let A} (j) be the average arrival rate between
time ¢; andt;,1, and lets,(j) be the average service rate
Sincelog(p(zi;r)) < 0, we haveF(r; \) < 0. Therefore betweent; andt; . Thatis, s} (j) := fttj"“ zp(T)d7 /T (5 +
sup,sq F(r; \) exists. Also,F(r; \) is concave inr [28]. We 1), wherex;,(7) € {0, 1} is the state of link: at time instance
show that the following proposition holds. 7. Note that\, (j) and s} (j) are generally random variables.
Proposition 1: If sup,~, F(r;)\) is attainable (i.e., there We design the following distributed algorithm.
exists finite r* > 0 such thatF(r*; \) = sup,~, F(r; ), Algorithm 1: Adjusting the TA (transmission aggressive-
thens, (r*) > Az, k. That is, the service rate is not less thaness) in CSMA
the arrival rate whem = r*. At time t;41 wherej =0,1,2,..., let
Proof: Letd > 0 be a vector of dual variables associated . . . ;. J .
with the constraints > 0 in problem (4), then the Lagrangian ' * G +1) =1[r0)+a@) N() = s()lp, Yk (8)
is L(r;d) = F(r;\) + d"r. At the optimal solutionr*, we wherea(j) > 0 is the step size, anid , means the projection

Sup,>o F(r; A) . 4)

have to the setD := [0, ra.] Wherer,,q, > 0. We allowr,,q, =
j K _j. o« +o00, in which case the projection is the same[4s.° In the
*oqd* . I“] ex _ IJ r 3 . . .
% = M\ — ZJ b g((zil ") +dj, next section and Appendix C, we will discuss the convergence
Tk r*

and stability property of Algorithm 1 under different sats

= M —sp(r*)+di=0 ®G) o a(j),T() andrmas.
wheres(r), according to (3), is the service rate (at stationary
distribution) givenr. Sinced;, > 0, \; < s(r*). B D. Convergence and stability

Equivalently, problem (4) is the same as minimizing the peference [35] provides some stability results of the follo
Kullback-Leibler divergence (KL divergence) between e t i,y 5150rithm extended from Algorithm 1. The intuition isath

distributionsp and p(r): one can make change slowly (i.e., “quasi-static”) to allow the

inf Dy (p||p(r)) (6) CSMA Markov chain to approach its stationary distribution
r>0 (and thus obtaining good estimation ef(r)). This allows
where the KL divergence the separation of time scales of the dynamics@f and the

_ B B CSMA Markov chain. The extended algorithm is
Dgr(pllp(r)) : = 3 ;[pilog(pi/pi(r))]
= >.[pilog(pi)] — F(r;A). ri(+1) = [re(§) +a(5) - (N () + ~(rx(5)) = s1:.(7)]p (9)

where D := [0, rmq,] @nd the functiom(-) > 0. If A(-) =0,
then algorithm (9) reduces to Algorithm 1. &f(-) > 0, then
algorithm (9) “pretends” to serve some arrival rates higher
. . . . than the actual ones. In Appendix C, we state some results in
The following and't'on’ proved in Appendix B, ensure&i35] (which includes the detailed proofs). In summary, (i)hw
thatsup,>, F'(r; A) is attainable. , properly-chosen decreasing step sizes and increasingtadju
Proposition 2 If thg arrival rate) is strictly feasible, then .. periods (e.ga(j) = 1/[(j+2)log(j+2)], T(j) = j+2)
sup,> £°(r; A) is attainable. __and functionh(-), and with r,,,,, = +o0, the vectorr(j)
Combining Propositions 1 and 2, we know that for any St”CtIé{onverges and the algorithm is throughput-optimal; (iithwi

feasible) th(_ere exis_t; _afinite* such thats’“(rf) 2 A, Vk. To properly-chosen constant step sizeg) = «, V4, adjustment
see why strict feasibility is necessary, pon3|der the nd(wp periodsT'(j) = T,Vj, one can arbitrarily approximate the
Fig. 1. If Ay = A2 = 0.5 (not strictly feasible), then the service o vimal throughput.

ratess: (r) :hSQ(r)f—) ?5 onlylwhen? =72 — o0, butthey 3 velated work [17], Liu et al. carried out a convergence
cannot reach 0.5 for finite values of analysis, using a differential-equation method, of a tytili

Since OF(r;A)/0rk. = Av — si(r), @ simple gradient 5 yimization algorithm extended from [2] (see also section
algorithm to solve (4) is IV for the algorithm).

re(j+1) =[re(j) + a(j) - (e = se(r(i)]+. Yk (7)
E. Discussion

wherej = 0,1,2,..., anda(j) is some (small) step size. The

algorithm is easy fodistributed implementation in wireless (1) Since optimal scheduling is NP complete with the
networks, because link can adjustr, based on itslocal general interference model in this paper, the complexity is
information arrival rate\, and service ratey(r(j)). (If the reflected in the convergence time of CSMA Markov chain. In
arrival rate is larger than the service rate, thenshould [35], the worst case upper-bound used to quantify the time fo
be increased, and vice versa.) Note that however, the hrrite CSMA Markov chain to approach its stationary distributi
and service rates are generally random variables in act(i#-, the mixing time) is exponential ifX. Typical wireless

networks, unlike in (7) A subtle point: If in periodj +1 (for any j), the queue of linke’ becomes
: : : , : b 7),
Let link & adjustr, at timet;, j = 1, 2_a ceen Le.t to = 0 empty, then linkk’ still transmits dummy packets with TA () until i1
andT(j) == t; —tj—1,j = 1,2,.... Define “period;” as This ensures that the (ideal) average service rate issgifit(;)) for ali k.

That is, we choose > 0 such thatp(r) is the “closest” to
p in terms of the KL divergence.



networks, however, may not be the worst case. For exampleProposition 3: Given some (finite) TAs of the links (that

in a network where all links conflict, the CSMA Markov chairis, given the dual variable of problem (11)), the stationary

can be shown to mix fast. distribution of the CSMA Markov chain maximizes the partial
(2) There is some resemblance between the above algagrangianl(u;r) = — " u;log(u;) + >, 6 (>, ui - ), —

rithm (in particular the CSMA Markov chain) and simulated\;,) over all possible distributionsm. Also, Algorithm (7)

annealing (SA) [16]. SA is an optimization technique thatan be viewed as a subgradient algorithm to update the dual

utilizes time-reversible Markov chains to find a maximum o¥ariabler in order to solve problem (11).

a function. SA can be used, for example, to find the Maximal- Proof: Given some finite dual variables, a partial

Weighted IS (MWIS) which is needed in Maximal-Weight.agrangian of problem (11) is

Scheduling. However, note that our algorithm does not try

to find the MWIS via SA. Instead, the stationary distribution £ (% T) Z“l log(ui) + Zm Z“l z), = M) (12)

of the CSMA Markov chain with a properly-chosati is

sufficient to support any vector of strictly feasible artives ~ Denoteu™(r) = arg maxuﬁ(u;r)- whereu is a distribu-

(Proposition 1). tion. Since} ", u; = 1, if we can find somev, andu*(r) > 0

(i.e., in the interior of the feasible region) such that

ll. THE PRIMAL -DUAL RELATIONSHIP OL(u*(r);r) _ ~log(uf (1) — 1+ 3 raa = w, Vi,
In the previous section we have described the adaptive Ou; k

CSMA algorithm to support any strictly-feasible arrivat@s. then u*(r) is the desired distribution. The above conditions
For joint scheduling and flow control, however, directly usy e

ing the above expression of service rate (3) will lead to a _

non-convex problem. This section gives another look at thet; (r) = GXP(Z iz, —w — 1),Vi. and ZU?(T) =1

problem and also helps to avoid the difficulty. k
Rewrite (4) as By solving the two equations, we find thavy =
AV
maXr z {Zk AkTE — log(Z exp(hj))} 1og[2j eXP(Zk Tkxk)] Hand .
S.t. h = Zk 1 xk"’kvv] (10) us_ﬁ(r _ exp(Zk Tkx}%c). i (13)
ri > 0, VEk. ’ Zj exp(}_y, TrTy,)

Foreachj = 1,2,..., N, associate a dual variablg to the satisfy the conditions.
constraint; = Zk 1 Ikrk Write the vector of dual variables Note that in (13)u} (r) is exactly the stationary probability
asu € RN Then it is not difficult to find the dual problem of state: in the CSMA Markov chain given the T of all
of (10) as foIIows. (We omit the computation here due to thiks. That is, u}(r) = p(z%;r),Vi (cf. (1)). So Algorithm

limit of space.) (7) is a subgradient algorithm to search for the optimal dual
variable. Indeed, givem, ;(r) maximizesL(u;r); then,r
maxy — >, u;log(u;) can be updated by the subgradient algorithm (7), which is the
st Do (ui - wh) > Mg, VE (11) deterministic version of Algorithm 1. The whole system is
u; >0, u; = 1. trying to solve problem (11) or (4). [ ]

Letr* be the optimal vector of dual variables of problem (11).
From the above computation, we see thafr*) = p(r*), the
optimal solution of (11), is a product-form distributionlsa,
p(r*) can support the arrival rateésbecause it is feasible to
lg.l). This is another way to look at Proposition 1.

where the objective function is the entropy of the distridwit
u, H(u) == -, u;log(u;). *

Also, if for eachk, we associate a dual variabtg to the
constraintd_, (u; - xi) > A; in problem (11), then one can
compute that the dual problem of (11) is the original proble
maxy>o F'(r; A) (This is shown in Appendix B as a by-product
of the proof of Proposition 2). This is not surprising, sirine
convex optimization, the dual problem of dual problem ignft Now, we combine end-to-end rate control with the CSMA
the original problem. scheduling algorithm to achieve fairness among competing

What is interesting is that botm and u have concrete flows as well as maximal throughput. Here, the input rates
physical meanings. We have seen thats the TA of link k.  are distributedly adjusted by the source of each flow.

Also, u; can be regarded as the stationary probability of state

i in the CSMA Markov chain given the dual variabte This A, Formulation

observation will be useful in later sections. A convenieayw
to guess this is by observing the constrainf(u; - ) > k.

If u; is the probability of state, then the constraint simply
means that the service rate of likk >, (u; - %), is larger
than the arrival rate.

IV. JOINT SCHEDULING AND RATE CONTROL

Assume there ar@/ flows, and letm be their index f» =
., M). Define a,,;; = 1 if flow m uses linkk, and
Ak = 0 otherwise. Letf,, be the rate of flown, andv,, (f.)
be the “utility function” of this flow, which is assumed to be
increasing and strictly concave. Assume all links have émees
7in fact, there is a more general relationship between MLmemton PHY data rates (it is easy to extend the algorithm to differen
problem such as (4) and Maximal-Entropy problem such as [@d]) PHY rates).



Assume that each link maintains a separate queue for eacban be obtained from a one-hop neighbor, this algorithm is

flow that traverses it. Then, the service rate of flemby link

distributed.

k, denoted bysg,,, should be no less than the incoming rate Plug the solution of (16) back into (15), we get

of flow m to link k. For flowm, if link k is its first link (i.e.,

the source link), we say(m) = k. In this case, the constraint

iS Skm > fm. If k # 8(m), denote flowm’s upstream link of
link & by up(k,m), then the constraint iy, > Sup(k,m),m>
where s, ,m),m 1S equal to the incoming rate of flow to
link k. We also haved, u; - aj, > >, .. _; Skm, Yk, i.€.,

[ Zi:}&“i log(u;) 4 35 (21)+ (O, wi - )]
"’[ﬂ Zm:l vm(fm) - Zm,k:k:é(m) kafm]
where z; == max;.a,,,=1(qkm — down(k,m),m) 1S the max-
imal back-pressure at link. So a distributed algorithm to
solve (14) is as follows. For simplicity, assume thgt(0) <

L(u,f;q)

the total service rate of link is not less than the sum of allV < oo, Vm, i.e., the derivative of all utility functions at 0 is

flow rates on the link.
Then, consider the following optimization problem:

— 3, wilog(ui) + By vm(fim)

Skm = 0,Vk,m @ amp = 1

Skm = Sup(k,m),ms VM, K 2 @y = 1,k # 6(m)
Skm > fm, Ym,k k= 0(m)

Zi Ui - ‘r;c Z Zm:amkzl Skm7Vk

(7 2 O,Ziui =1.

maXy,s,f
s.t.

(14)
where > 0 is a weighting factor.

Notice that the objective function is not exactly the total

utility, but it has an extra term- ), u; log(u;). As will be
further explained in section IV-B, whef is large, the “im-
portance” of the total utility dominates the objective ftino
of (14). (This is similar in spirit to the weighting factorecsin
[15].) As a result, the solution of (14) approximately acleie
the maximal utility. Associate dual variableg,, > 0 to

the 2nd and 3rd lines of constraints of (14). Then a partial

Lagrangian (subject tey,,, >0, >, w; - Tl > Zm:amkzl Skm
andu; >0, u; =1)is

L(u,s,f;q)

- Zl u; log(u;) + 3 Z%:l VU (fm)

+ Zm,k:amkzl,k;éé(m) ka(Skm - Sup(k.,m),m)
+ Zm,k:,k:6(m) qkm(skm - fm)

+8 o mer V(i) = X iks(m) Gom fro

+ Zk,m:amk:1 Skm[(ka - qdown(k,m),m)]

(15)
wheredown(k,m) means flowm’s downstream link of link
k (Note thatdown(up(k,m),m) = k). If k is the last link of
flow m, then defin€aouwn (k,m),m = 0-

Fix the vectorsu andq first, we solve forsy,, in the sub-
problem

maXs Zk,m:amkzl Skm[(ka - Qdown(k,m),m)]
St Skm >0, Ve,m :ami =1

Zm:amkzl Skm < Zz(ul : ‘T}q)a Vk.

(16)

The solution is easy to find (similar to [1] and related refe

ences therein): at link, denotez;, := maxy.q,,,=1(qkm —

bounded by som& < oc.

Algorithm 2: Joint scheduling and rate control

Initially, assume that all queues are empty, angjet(0) =
0,Vk, m. Here we usex(j) = «, T(j) = T,Vj. The variables

q,f,r are iteratively updated at timg, j = 0,1,2,...: Let

a(4),£(4), () be the values set at tinte. Denote bys,,, (5)

the empirical average service rate of flawat link & in period

j+1 (i.e., the time between; andt;;1).

o Scheduling: In periodj + 1, link & lets its TA be
k() [2£(j)]+ In the CSMA operation, where
Zk(.]) = maXm:ameI(qkm(j) - qdown(k,m),m(j))' (ThlS
is because, giver(j), the optimalu (that maximizes
L(u,f;q(j)) overu) is the stationary distribution of the
CSMA Markov Chain withry(j) = [2x£(4)]+, similar
to the proof of Proposition 3.) When link gets the
opportunity to transmit, (i) ifzx(j) > 0, it serves a flow
m’ S argmaxm:amkzl(qkm(j) - Qdown(k,m),m(j)) ; (”)
if z;(j) < 0, then it transmits dummy packets (which are
not counted when computing, (5)).

« Rate control: For each flow, if link % is its source link,
the transmitter of linkk lets the flow rate in periog + 1
be f,,,(j) = argmaxy, cjo,1{B" v (f1n) = @em (F) - fr }-
(This maximizesC(u, f;q(j)) overf.)

o The dual variableg;,, (maintained by the transmitter of

each link) are updated by a sub-gradient algorithm. At
timet;1, 1€t grm (j+1) = [grm (4) +O‘(5;p(;g,m)7m(j) -
St ()] i & # (m); and g (7 + 1) = [gkm () +
& fn ()~ S5 (7)) If & = 8(m). (By doing this,ge,,, o
Qwm roughly, whereQy.,,, is the queue length of flown
at link k.)

Remark 1:As T' — oo anda — 0, Algorithm 2 approximates

the “ideal” algorithm that solves (14), due to the convergen

of the CSMA Markov chain in each period. A bound of the
achievable utility of Algorithm 2, compared to the optimal
total utility W defined in (17) is given in Appendix E. The
bound, however, is not very tight, since our simulation show
good performance without a very largéor a very small.
Remark2: In Appendix F, we show that by using similar

}9chniques, the adaptive CSMA algorithm can be combined

with optimal routing, anycast or multicast. So it is a modula

Qdown(k,my,m). (@) 1f 2z, > 0, then for a m' €
arg maxm:amk:l(qkm_qdown(k,m),m)a let Skm/ = Zz(ulx;c)
and letsy,, = 0,Vm # m’. In other words, linkk serves the
flow with the maximal back-pressutg.. — qaown (k,m),m- (ii)
If 2 <0, then letsk,,(j) = 0,Vm, i.e., link k does not serve

B.

MAC-layer protocol which can work with other protocols in
the transport layer and the network layer.

Approaching the maximal utility
Notice that— )", u; log(u;), the entropy of the distribution

any flow (and transmit dummy packets instead when it has is bounded. Indeed, since there &fe< 2 possible states,

the opportunity to transmit). Since the value @f,.,.(x,m),m

one has) < — 3, u;log(u;) < log N < log2® = K -log2.



Therefore, as mentioned earlier, whénis large, the “im- Sincer = y, we have the following localized algorithm at
portance” of the total utility dominates the objective ftion link & to updater,. Notice its similarity to Algorithm 1.

of (14). So the solution of (14) approximately achieves the
maximal utility. Denote the highest total utility achievalas
W, ie.,

Algorithm 3: Enhanced Algorithm 1 to reduce queueing
delays

W = maxass St (fn) (17) At time ¢;41 wherej =0,1,2,..., let

subject to the same constraints as in (14). Assumeuthata r(j+1) = [re()+a(i)- (N (7) +min{e/ri(j), w}=si.(5))] o
when (17) is solved. Also, assume that in the optimal satutio (21)

of (14), f = £ andu = &. We prove the following bound in T0F &ll k. wherea(j) is the step size, and = [.O’T,m“””]
Appendix D. wherer,,.. can be+oco. As before, even when link’ has

Proposition 4: The difference between the total utility"® Packlog (i.e., zero queue length), we let it send dummy
(Zﬁf:l vm(fm)) resulting from solving (14) and the maximalPacket with its current aggressiveness. This ensures that

total utility W is bounded. The bound of difference decreasélge _average sgrwce rf’}te of I'ﬂ‘kyfs sk(r(5)) for all k. )
with the increase off. In particular Since Algorithm 3 “pretends” to serve some arrival rates

- . - higher than the actual arrival rates (due to the positiventer
W —(K-log2)/B <>, vm(fm) <W. (18)  min{c/r1(j),w}, Qk is not only stable, but also tends to be
small. The convergence and stability properties of Aldonit3
V. REDUCING THE QUEUEING DELAY whenr,,., = oo are discussed in (i) of Appendix C.itf, 4. <
Consider a strictly feasible arrival rate vectarin the oo, the properties are similar to those in (i) of Appendix C.
scheduling problem in section Il. With Algorithm 1, the long For the end-to-end utility maximization (without a given
term average service rates are in general not strictly higrarival rate vector), a simple way to reduce the delay, simil
than the arrival rates, so traffic suffers from queueing yeldo [37], is as follows. In item 2 (“rate control”) of Algorith 2,
when traversing the links. To reduce the delay, considerlet the actual flow rate be- f,,(j) wherep is slightly smaller
modified version of problem (11): than 1, and keep other parts of the algorithm unchanged., Then
each link provides a service rate higher than the actualarri
maxyw — 3., ulog(us) + ¢ Y, log(wy,) rate. So the delay is reduced with a small cost in the flow

S.t. Sl - ah) > N + wi, Vk (19) rates.
u; >0, u; =1
0<wy<w,Vk VI. SIMULATIONS

where0 < ¢ < 1 is a small constant. Note that we have added. CSMA scheduling: i.i.d. input traffic with fixed average
the new variablesv, € [0,w] (wherew is a constant upper rates

bound), and requirg_; u; - xj, > Ax + wy. In the objective  |n our C++ simulations, the transmission time of all links is

function, the termc - log(wy,) is a penalty function to avoid exponentially distributed with mean 1ms, and the backaféti

wy, being too close to 0. of link k is exponentially distributed with meahy/ exp(ry)
Since\ is in the interior of the capacity region, there is gns. Assume that the capacity of each link is 1(data unit)/ms.

vector)\” also in the interior and satisfying > A component- nitially, all queues are empty, and the initial valuergfis 0

wise. So there existv’ > 0 andu’ (such thaty_; uiz}, = forall k., is then adjusted using Algorithm 1 once evéty-

Al 1= Ax +wy, Vk) satisfying the constraints. Therefore, in the,,s (i.e.,T(5) = T, V), with a constant step size(j) = o =

optimal solution, we havey; > 0, Vk (otherwise the objective ( 23, v;.

function is —oo, smaller than the objective value that can be There are 6 links in “Network 1”, whose LCG is shown

achieved byu’ andw’). Thus 3=, u; - @, > A +wj; > M. in Fig. 2 (a). (Each link only needs to know the set of
This means that the service rate is strictly larger thanthiesd  |inks that conflict with itself.) Define0 < p < 1 as

rate, bringing the extra benefit that the queue lengths tendife “load factor”, and letp = 0.98 in this simulation.
decrease to 0. The arrival rate vector is set ta=p*[0.2%(1,0,1,0,0,0) +
Similar to section I, we form a partial Lagrangian (withg 3%(1,0,0,1,0,1) + 0.2%(0,1,0,0,1,0) + 0.3%(0,0,1,@), =
y > 0 as dual variables) £*(0.5,0.2,0.5,0.3,0.5,0.3) (data units/ms). We have ipligt
Llu,w;y) = —>uilog(u;) + ¢, log(wg)+ by p a convex combination of some maximal IS’s to ensure
S lun (0, wi - 2k — A — wy)] that A is in the interior of the capacity region. Fig. 2 (b)
= [= 3 uilog(uy) + 3 (yr o, wi - )]+ shows the evolution of the queue lengths using Algorithm 1
Sple - log(wy) — yrwr] — S (ykr)- with r,,.. = 8. They are stable despite some oscillations.

(20) The vectorr is not shown since in this simulation, it is/T
Note that the only difference from (12) is the extra terrtimes the queue lengths. Fig. 2 (c) shows the evolution of
>ople - log(wy) — yrwy]. Giveny, the optimalw is w, = queue lengths using Algorithm 3 with = 0.01, w = 0.02
min{c/yi, w}, Vk, and the optimalu is the stationary distri- andr,,... = 8, which drives the queue lengths to around zero,
bution of the CSMA Markov Chain withr = y. Therefore thus significantly reducing the queueing delays.
the (sub)gradient algorithm to updageis yi — yr + a(Ax + Fig 3 shows the results of Algorithm 3 with(j) =
wg — sk(y))- 0.46/[(245,/1000) log(247,/1000)] andT' () = (2+45,/1000)
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and the distance between two adjacent nodes (horizontally o
vertically) is 1. Assume that the transmission range is 1, so
that a link can only be formed by two adjacent nodes. Assume
that two links cannot transmit simultaneously if there ave t
nodes, one in each link, being within a distance of 1.1 (InBEE
(¢) Queue lengths (with Algorithm 3) 802.11, for example, DATA and ACK packets are transmitted
Fig. 2: Adaptive CSMA Scheduling with fixed input ratedn opposite directions. This model considers the interfeee
(Network 1) among the two links in both directions). The paths of 3 multi-
hop flows are plotted. The utility function of each flow is
VUm(fm) = log(fm + 0.01). The weighting factor is3 = 3.
ms, which satisfy the conditions for convergence in [35]eTh(Note that the input rates are adjusted by the flow control
constantsc = 0.01, @ = 0.02, and r,,.. = oo. To show algorithm instead of being specified as in the last subsegtio
the negative drift of queues, assume that initially, allwgie Fig 4 (b) shows the evolution of the flow rates, using
lengths are 300 data units in Fig 3. We see that the TA vecwlgorithm 2 with 7' = 5ms and o« = 0.23. We see that
r converges (Fig 3 (a)), and the queues tend to decrease Hrgy become relatively constant after an initial conveogen
are stable (Fig 3 (b)). However, there are more oscillatians By directly solving (17) centrally, we find that the theoosili
the queue lengths than the case with constant step size. Tigimal flow rates for the three flows are 0.11, 0.134 and 0.134
is because when(j) becomes smaller whenis large,r(j) (data unit/ms), very close to the simulation results. Theugu
becomes less responsive to the variations of queue lengthdengths are also stable but not shown here due to the limit on
space.

time (ms)

B. Joint scheduling and rate control
. . VII. | MPLEMENTATION CONSIDERATIONS IN802.11
In Fig 4, we simulate a more complex network (“Network NETWORKS
2"). We also go one step further than Network 1 by givin% o
the actual locations of the nodes, not only the LCG. Fig 4 Packet Collisions
(a) shows the network topology, where each circle representin the idealized CSMA model we used, the distribution of
a node. The nodes are arranged in a grid for convenienbagckoff times is continuous and there is no collision. This



only occur in the control phase, but not in the data phase. The
same product-form distribution (1) can be obtained for thatad
phase, which is then used to achieve the maximal throughput.
Meanwhile, the overhead of the control phase can be easily
quantified.

In the following, we discuss how to use algorithms in this
paper with collisions in mind.

1) Relationship of TA and the contention window in 802.11:
Assume that for linkk the average transmission time 1%
Then the average backoff time ¥/ Ry. Denote byW, the
contention window (CW) that gives the same average backoff
time. (Recall that the distribution of the backoff time istno
(@) Network 2 and flow directions important, as long as it has the correct mean.) Since a random

number is uniformly picked from 0 té7;, — 1, the average

backoff time ist,, - (W) — 1)/2, wheret,, is the length of
Pz a mini-slot. (For simplicity, we do not consider the Binary
—— Flows Exponential Backoff, or “BEB”, in this calculation.) Eqirad)
the two quantities gives

T 2
Wi = —— +1. (22)

m

Flow rates

o
IS

o
w
a

o
w

o
N
a

We know that larger CW's lead to lower collision probabil-
ities. By equation (22), for giveR’s, small mini-slott,, or
large transmission tim&' can lead to large CW. (If,, — 0
or T — +oo, then collisions can be ignored and we return
‘ ‘ ‘ ‘ ‘ ; to the previous model.) However,, is limited by the speed
° ey M T of light and the sensing time. The mean transmission fime
can be made large, but should not be too large in practice
since that will increase access delays. So, here we impose
Fig. 4: Flow rates in Network 2 (Grid Topology) with Jointan upper boundy,,.., to all r;’s. This givesW}’s a lower
scheduling and rate control bound:W;, > 2T/ (exp(rmaz) - tm) + 1. FOr example, assume
T = 1ms. Recall that a mini-slot in 802.11ais, := 9us. If
we require thaty, < r;,q.. = 2, thenWy, > 31. These values
allows us to focus on the scheduling problem without woresult in reasonably low collision probabilities if the nber
rying about the contention resolution problem. The resglti of nodes in a collision domain is not too high [33].
performance can serve as a benchmark. However in practiceAlthough the upper bound,,,.. = 2 seems small, it can ac-
the backoff time is usually a multiple of mini-slots, wherdually achieve a large portion of the capacity region. Cdesi
each mini-slot cannot be arbitrarily small because theisgnsthe simple network in Fig. 1, where the throughput of the two
time is not zero. Therefore collisions occur given the diger links ares; (r) = R1/(1+R1+Ry) andsa(r) = Ro/(1+R1+
distribution of backoff times. In this section we consideist R2) (for simplicity, here we temporarily assume that colligon
practical issue and discuss alternative algorithms (f&.BD are negligible due to the large CW's). The capacity region is
networks) which are related to the above algorithms with = {(A1, A2)[A\1 + A2 < 1} If 1 = ro = 74,44, then the
idealized CSMA. total throughput i - exp(2)/[1 4 exp(2) + exp(2)] ~ 0.937,
As mentioned earlier, we have recently studied a tractaplét far from the maximal total throughput 1. _
model in [27] that explicitly considered collisions in wiess ~ 2) A condition that ensures bounded Th the following,
network without hidden nodes. Moreover, similar algorithm€ Show that by properly choosing the weighting fagtoof
(with probe packets such as RTS/CTS) were proposed tma_total utility in Algorithm 2, it can.be guqranteeq .thaeW/
[27] that can approach the maximal throughput and utility by 1S smaller tharr,,., at all time, if certain conditions are

adjusting the mean transmission times with fixed mean back8ftisfied. (In [34], a similar approach is used to control the
times. amount of backlog in the network.)

Flow rates (data units/ms)
o
=~ o
o o
ol
~

o
[

o
=}
@

o

o
NS
IS

(b) Flow rates

In [17] [2], etc, it is noted that by using small transmission Proposition 5: Assume that the utility functiorv,, (f.,)
probability in each minislot (which increases the backofktrictly concave) satisfies), (0) < V < oo, Vm. Denote byL
times), and correspondingly increasing the transmissines, as the largest number of hops of a flow in the network. Then
the collision probability becomes small, in which case thigy setting3 = [rpe: — (2L — 1) - @]/V in Algorithm 2, we
actual CSMA with collisions can be approximated by theaver; < r,..., Vk at all time.
idealized CSMA. Proof: According to Algorithm 2, the source of flow

In [30], a new protocol is proposed to deal with collisionssolvesf,,(j) = argmaxys {3 v (f),) = ds(m),m(J) - fra }- It
The protocol has control phases and data phases. Collisigheasy to see thatifyi,  (j) > 5-V, thenf,.(j) =0, i.e., the
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source stops sending data. Th;g%m) G+1) < qum) (). If ' Discretized TA

Gty (G) < BV, theng, \ (j+1) < g, () +a < B-V+a. Flow 1
Since initially g, (0) = 0,Vk, m, by induction, we have g o2 ~ — Flows
2
@iy (7) < BV + @, ¥j,m. (23) £ 01\ A e s A e
Denotebim () := qrm (J) — ddown(k,m)m(3)- IN Algorithm % 2 4 s T_ s 10 12 u fe
2, no matter whether flown has the maximal back-pressure cone ) x10
at link k, the actual average service rai'gm(j) = 0 if 03 Fow
b{m(j) < 0. That is, s, (j) > 0 only if by, (j) > 0. Since 3 02| w2
Skm (-]) <1, by item 3 of Algorlthm Z!Qdown(k,m),m(j"— 1) < g
Qaown(k,m),m(J) + & @NA G (7 + 1) = qrm (7) — a. Then, if £ 01f e s
bim (3) > 0, we havebyy, (j + 1) > brm (7)) — 200 > —2a. If . ‘ ‘ ‘ ‘ ‘ ‘ : :
bem () < 0, thenbg, (j + 1) > b (j). Sinceby,(0) = 0, N
Ime (ms, XlOA

by induction, we have
Fig. 5: Flow rates in Network 2 (Grid Topology) with dis-

b (j) = =20, ], kym. (24)  cretized or continuous TA

Since ;.. —1bkm(j) = 4§(,,)(j), combined with (23)
and (24), we havéy,,(j) < 8-V +a+2a- (L —1). Since
5 = [rmam - (2L - 1) : CY]/V, bkm(]) < rmamavja kam' u Vil ConeLusion

In this paper, we have proposed a distributed CSMA
scheduling algorithm, and showed that, under the modelmf pe
fect CSMA, it is throughput-optimal in wireless networkghwi

Although 7 is continuous in our model, one may find ita general interference model. We have utilized the product-
convenient to quantize, into a set of discrete values in a reaform stationary distribution of CSMA networks in order to
implementation. Each discrete value corresponds to ardiffe obtain the distributed algorithm and the maximal throughpu
contention window (a smallet, corresponds to a larger CW), Furthermore, we have combined that algorithm with end-to-
and this can be easily mapped to the “service classes” in IEERd flow control to approach the optimal utility, and showed
802.11e. Note that here the prioritization is based on tl&-bathe connection with maximal backpressure scheduling. The
pressure instead of service type originally defined in 802.1 algorithm is easy to implement, and the simulation resuks a
Indeed, in [36], a similar protocol is implemented with 80Pe  encouraging.
hardware and it shows superior performance compared torhe adaptive CSMA algorithm is a modular MAC-layer
normal 802.11. (Different from our work, however, [36] onlyprotocol that can work with other algorithms in the transpor
focuses on implementation study. Also, the CW’s there are $gyer and network layer. For example, it can be combined with
in a more heuristic way.) optimal routing, anycast and multicast (Appendix F).

In the following simulation, we set the discrete TA (denoted We also considered some practical issues when implement-
by p k(7)) as follows by quantizing the continuous TA,(j), ing the algorithm in an 802.11 setting. Since collisionsurda
computed by Algorithm 2: actual 802.11 networks, we discussed a few recent algosithm

o If 74(5) > Tnax, then letrp ,(j) = rmae. This corre- which explicitly consider collisions and can still apprbac

sponds to the first class. Then, for= 2,3,...,n., if throughput-optimality.

Tmaz — (1 — 1)G < 1i(§) < Tmax — (1 — 2)G, then let  Our current performance analysis of Algorithm 1 and 2
rD.k(4) = Tmaz — (i — 1)G, whereG is the granularity is based on a separation of time scales, i.e., the vector
between adjacent classes, ands the number of classes.r is adapted slowly to allow the CSMA Markov chain to

B. Discrete TA and a real-world implementation

In the simulation, we letr,,,. = 2, n. = 6, and closely track the stationary distributigs(r). The simulations,
G = log(2) (thus, the CW of clasg + 1 is roughly however, indicate that such slow adaptations are not always
twice the CW of clasg). necessary. In the future, we are interested to understamel mo

« Define the minimal TA7.in = Tmae — (ne — 1)G. If  about the case without time-scale separation.
rk(j) < Tmin, then do not transmit packets at all. This
is a goc_)d approximation since t_he Cw Wou_ld _be quite REFERENCES
large with r,,;, (about 1000). Since transmissions are _ _ ‘ o
suspended, the back—pressure tends to increase. The ”H]( X Lin, N.B. Shroff, R. Srikant, “A Tutorial on Cross-La&y Optimization

. .. . in Wireless Networks,"JEEE Journal on Selected Areas in Communi-
will resume transmission aftet,(j) goes above,,;, . cations 2006.

The upper figure in Fig. 5 shows that the resulting flow rate&] L. Jiang and J. Walrand, "A Distributed CSMA Algorithmifd hrough-
put and Utility Maximization in Wireless Networksthe 46th Annual

and their fluctuations are similar to those with continu®us  Ajierton ConferenceSep. 23-26, 2008.

(lower figure). (Collisions and BERre simulated here.) This [3] L. Jiang and J. Walrand, “A Distributed Algorithm for Mamal

indicates that the algorithm is robust to the discretizaii Throughput and Optimal Faimess in Wireless Networks wittben-
. . « . . . eral Interference Model,” EECS Technical Report, UC Bexkel

r. So using a few prioritized “classes” with different CW's is  Ap. 2008 (nttp:/iwww.eecs.berkeley.edu/Pubs/TechRpRS/EECS-

enough to provide good performance. 2008-38.html).
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feasible region is closed and convex. The objective functi€C. Convergence and stability properties of Algorithm (9)
(the entropy) is bounded in the feasible region. So, thewgiti g following are some main results in [35], which includes

value is bounded. . the detailed proofs.

We now check whether the Slater condition [28] (pages (i). Let 7mae = 400, i.€., We impose no upper bound on
2_26—227) is satisfied. Since all the constramts in (_11) a;%(j). If {a(j)} and {T'(j)} meet certain conditions (which
linear, we only need to check whether there existeasible ;.o catisfied by(j) = 1/[(j+2) log(j+2)] andT(j) = j+2),

u which is in the relative interior [28] of the domai of the 4 h(rs(j)) = min{c/ri(j), @} where c,@ > 0 (see
objective function—3_; u; log(us), Vg’h'Ch isD = {ului > gection V for an explanation of the function), then for any
0, ;ui = 1}. SinceA = 3, p; - «* wherep; > 0,Vi and  gyictiy feasible) € C, r(;j) converges with probability 1 to
> i = 1, letting u = p satisfies the requirement. Thereforg, o .+ \which satisfiessy (r**) > Ay, Vk. It then follows
the Slater condition is satisfied. As a result, there existefin o+ the queues are “rate-stable” [35]. (With time-varying

dual variablegy; > 0,w; = 0, 2" such that the Lagrangian ;) 7(;), the system is not time-homogeneous, in which case
R the “positive Harris recurrence” of system Markov chainds n
Llwy™, w",2") . : usually defined. Therefore we use the notion of “rate-stable
+25 (0w — 1) + >, wi (i) Let 7pae < +oo and h(ri(j)) = € > 0. Define the

is maximized by the optimal solution*, and the maximum capacity region

is attained. C'(Fmasr€): = {MNA+e-1€C, and
We first claim that the optimal solution satisfigs > 0, Vi. K

. ’ F(r;A+e€-1) €0, rmaq
Supposeu; = 0 for all i's in a non-empty setZ. For argrfgé( (At € 1) € [0, rmaz] "}

convenience, denotp as the vector ofp;’s. Since bothu* , . N
and p are feasible for problem (11), any point on the Iinelzf A € C'(7maa, ), then there exist constant step sig) = a

segment between them is also feasible. Then, if we slighf’sil?d adjustment /perlo(T(]) = T such that all queues are
8 S _ N able. Note that’ (rq4, €) — C @STmqes — +00 ande — 0.
move u from u* along the direction op — u*, the change

o . _ ‘ ‘ « i So the maximal throughput can be arbitrarily approximated.
0'; Othg r;’gg\i‘ftl‘c’)e functiorfi(u) := =3 uslog(ui) @EW) IS i r o cace withi(r()) = 0 (i.6., Algorithm 1): Similar
prop to (i), for any A € C, With 70y = +o00 anda(j), T(j) in
(i), r(j) converges with probability 1 te*, the solution of

= gk T *
(p — u’)" Vh(u’) (4), which satisfies;(r*) > A, Vk, and the queues are rate-

= Y (i — u})[-log(u;) — 1] stable. Similar to (i), Withr,,e. < 400 and assume that
i A € C'(Tmax,0), then one can choose constanj) = «

= Z(ﬁi —ul)[—log(ul) — 1] + Zﬁi[— log(u}) —1]. andT(j) = T such that the long-term average service rates
i¢T i€z are arbitrarily close to the arrival rates. (A$,.. — o0,

C'(rmaz,0) — C.)
Fori ¢ 7, uj > 0, 803 ,.7(pi — uj)[—log(uy) — 1] is
bounded. But fot € Z, u} = 0, so that—log(u}) —1 = +oc. -
Also, sincep; > 0, we have(p — u*)"Vh(u*) = +o0c. This D. Proof of Proposition 4
means that:(u) increases when we slightly moue away  Since in the optimal solution of problem (14),= f and
from u* towardsp. Thus,u* is not the optimal solution. u = . we have
Thereforeu} > 0,Vi. By complementary slackness; =

M
0. So the term), wfu; in (26) is 0. Sinceu* maximizes _ N™: 1o0(i I o () > =S i log(i;) - 3-W
L(wy*, w", "), it follows that ZZ. ilog (@) ﬂmzzl m(fm) 2 ZZ. ilog(@:) +

OL(u*;y*, w*, 2*) Therefore,

Bui

——log(ui)—1+Xk:ykxk+z—0,w. y
ﬁ[z Vi (fn) = W] > — Zﬂ/z log(u;) + Zﬁi log(;).

Combining these identities and, u; = 1, we have m=1 i i

. Notice that| — >, @; log(u;) + ), 4 log(u,;)| < K -log 2,

Ut = exp(Q_p Yity) Vi, (27) SO

CY exp(X, v

Plugging (27) back into (26), we have

B> vm(fm) = W] > —K -log2.

NE

1

3
Il

maxy L(w;y*, w*, 2*) = —F(y*;\). Since u* and the = M ;

dual szlriabIes y* s)olves (15), y*) is the solution of Also, clearlyW = 3y, vm(fm), SO
ming>o{—F(y;\)} (and the optimum is attained). So, K -log?2 M . -

sup,sq F(r; A) is attained byr = y*. The above proof also —< U (fm) = W <0. (28)
shows that (4) is the dual problem of (11). B m=1
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E. Analysis of Algorithm 2

Regard each period (with lengf) as a “time slot” in [15].
Using the proof of Proposition 3y, (j) < 8-V +a+ 2a- Using derivations similar to section IV-A, our CSMA
(L —1),Vk,m,j. Sincery(j) = [maxy, bkm(j)]+, We have algorithm can serve as a modular “MAC-layer scheduling
0<rk(j) <C:=3-V+a+2a- (L-1). Thus, the mixing component” in cross-layer optimization, combined withesth
time of the CSMA Markov chain in any period is boundedomponents in the transport layer and network layer, with

F. Extensions: Adaptive CSMA scheduling as a modular MAC-
layer protocol

[35]. So

B[ (7)) — se(r()] < 2 (29)

where the constar(f’l depends o and K ([35]), and E; (-)

variables up to time;.

Since u} =

Sl () S

the proof of Proposition 4, we have

> [ Y (k- uf)]

k i

Z[m(y’) sk (x(7)
> maxz ri(j )] -

pnel

K -log(2)

where( is the set of feasible service rates (includifgnd
its boundary).
By this inequality and (29),

2_{re()

Ny = maerk ()]

-K- log() K.-C-Cy/T.

gueue lengths as the shared information. For example, we
demonstrate in this section its combination with optimal-nu
tipath routing, multi-channel selection, anycast, andtivast.

1) Anycast To make the formulat|0n more general Iets

with multipath routing as a special case. ) Assume that there

pi(r(j)), Vi maximizes H(u) + 37 flows. Each flown has a sourcé(m) (with some abuse of
- u;)] (see Proposition 3), similar to notation) which generates data and a set of destinafigns)

which receive the data. “Anycast” means that it is sufficient
for the data to reach any node in the g2tm). However,
there is no specific “path” for each flow. The data generated
by the source is allowed to split and traverse any link before
reaching the destinations (i.e., multipath routing). Tdllsws
better utilization of the network resource by routing théada
through less congested parts of the network. (For simplicit
we don't consider the possibility of physical-layer mudist
here, i.e., the effect that a node’s transmission can beveste
by multiple nodes simultaneously.)

In this case, it is more convenient to use a “node-based”
formulation [1], [14]. Denote the number of nodes By For
each nodej, let Z(j) := {k|(k,j) € L}, whereL is the set
of links (it is also the seV in the link contention graph), and
let O(j) := {k|(j, k) € L}. Denote the rate of flown on

Define 71 (j) := rx(j)/a (then 7 (j) corresponds to the link (j,7) by s7j. Then the (approximate) utility maximization
maximal differential backlogV;: (j) in [15], since the change problem, similar to (14), is
of r,(j) has been scaled by the step sige we have

27

Ny = maxz T (J U]

pnel

—[K - log(2) +K-C-C/T]/«.

Now, using Corollary 1 in [15], it follows that

Y

liminf ) v (Fn ()

- 2[K-log(2)+ K-C-C,/T)/a+5K
W= 28/«

W [K-log(2)+K-C-Cl/T]+5a-K/2(3O)

g

— 4,,0ut — mazr j
= Uoazx = 1, Where R is

- . o - ;- t
the max!mal flow input rate at link, L andu%‘%k are
the maximal rate the link can receive or transmit.

As expected, wheffl’ — oo anda — 0, this bound matches

the bound in Proposition 4. Also, & — oo, « — 0, and
T — oo in a proper way (sinc&” and C; depend onﬁ)
minfy oo >, Vm (fin(J)) — W.

The above bound (30), however, is not very tight. Ouate ), u; - x

simulation shows good performance without a very |asg&
or a very smallo.

where f,,(J) := Y720 E[fm(j)]/J is the expected average
rate of flowm up to theJ — 1's period. We have used the

fact thatR*** = 1, pi"

— S uilog(ui) + 8- XM v (fm)
fn+ Xieziy 51 < Ticow) S5 Ym. j = 6(m)
1ez) 515 < 2ieow) Sii> Y,
j#6(m),j ¢ D(m)
S wly =2, 8 V() € £

maXy,s,f
s.t.

Associate a dual variablg" > 0 to the 2nd and 3rd lines of
constraints (for eacim andj ¢ D(m)), and defmeqj =0if
j € D(m). (Note that there is no flow-conservation constraint
for flow m at each node irD(m).) Then similar to section
IV-A, a partial Lagrangian is

L(u,s,f;q)
= — 2 uilog(u;)
155 v (i) = S Gy fo GV
+Z(] l)eL,m gl [(q - qzn)]
First fix u and q, consider maximizingC(u ,f:q) over
s, subject tos”; > 0 and >, u; - z(, ;) = >_,, 7. Clearly,

for each Iink(g, ), the flow with the maximal back-pressure
zj = Inaxm(qj — ¢;") should be served (with the whole
) ). Plug this solution ofs back to (31), the
rest derlvatlon |s the same as in section IV-A. Therefore the
distributed algorithm is as follows.



Initially, assume that all queues are empty, and get=
0,V4, m. Then iterate:

Link (4,1) chooses to serve a flow with the maximal
back-pressure; ;) = max,,(q;* — ¢;") when it gets the
opportunity to transmit. (Note that there is no replication
of packets.)

Link (4,1) letsr(; ;) = 2(;,;) in the CSMA operation.
Rate control: For each flown, if node j is its source,
then it setsf,,, = argmaxy, {8 - v (f;,) — ¢} fr. }-

The dual variablesq;” are updated by a sub-gradient
algorithm:¢i" «— [¢" + (3175 ST} — 2icoq) S5+

it j # 6(m) andj ¢ D(m); and g} — [q]" + a(fm +
Yez() Sl — 2ico() i)+ i j = d(m). (By doing
this, ¢;* oc Q" where Q" is the corresponding queue
length.) Always letg;* = 0 if j € D(m).

Furthermore, the above algorithm can be readily extended
to channel selection imulti-channel wireless networksvith
each “link” defined by a tripletj,; ¢), which refers to the
logical link from nodej to [ on channek. In this scenario,
the link contention graph is defined on the set of lifikd; ¢).

To give a numerical example (with a single channel), we
simulate two flows in a grid topology in Fig. 6 (a). The trans-
mission range and the interference relationships are tme sa
as the grid network in Fig. 4 (a). For flow 1, the source node is
S1 and the two destination nodes are labeled by D1. For flow
2, the source node is S2, and the destination node is D2. (Note
that the dashed lines only mean the abstract directionsdiut n
the real paths of the flows.) Let,(-) =log(-),m = 1,2, and
8 = 3. The resulting flow rates are shown in Fig. 6 (b).

Flow rates (data units/ms)

2) Multicast with network codingAssume that there aref
multicast sessions. Each sessianhas a sourcé(m) which
generates data and a set of destinatibs:) which receive
the data. Different from “anycast”, here the data must reach
all nodes in the seD(m). There are two possible designs
for multicast. (1) Fixed multicast tree, where the routes of
each multicast session is fixed. (2) Multicast combined with
multipath routing and network coding. Case (1) is straight-
forward, but the routing may not be optimal. In case (2),
[31] demonstrates an algorithm which achieves the optimal
utility, which however, requiresentralizedMaximal-Weight

maXy,s,f
s.t.
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Fig. 6: Anycast with multipath routing

maximization problem is

H(u) + - er\r/le VU (fm)

ST > 0,Y(j,1) € £,¥m,¥p € D(m)

fm + ez 815 < 2ieo) St s
VYm,j = d(m),p € D(m

Yz Sty < Dieow) Sii o

Vm,p € D(m),j # d(m),j #p
syt < S;’Z,Vp € D(m),V(j,1) € £

Z Ui - T 7[) ZmSﬁ,V(_],Z)GE

u; > 0, Z u; = 1.

scheduling at the MAC layer. In this section, we show that Associate a dual variablg™” > 0 to the 2nd and 3rd lines
CSMA scheduling can be combined with it, leading téutly —Of constramts (for eacm,p € D(m) andj # p), and define
distributedalgorithm. To facilitate network coding, we let allg;"~ = 0 if j = p. Then a partial Lagrangian is

the packets have the same size (Note that our results are

insensitiveto the distribution of the transmission time, i.e., L(u,s,f;q)
packet size, if the transmission time and waiting time are no = H(u)
both constant [23]). +B8-3, vm(fm) Z (ZpGD(m) quﬁz))fm

According to the theory of network coding [32], a certain +Z(j.z)eg,m,pep(m) jl [(q7 —q").

flow rate for a multicast session can be supported if and dnly i (32)
it can be supported separately for each destination node. LeWe first Optimize L(u,s,f;q) over {s;"}, subject
sy” be the information flow rate on linkj,7) in multicast to 0 < sy’ < sj. A solution is as follows:
sessionm destined for nodep € D(m), and s7; be the s3;” 0 Vp sat|sfy|ngq — ¢ < 0, and 53"
“capacity” for sessionm on link (j,1). The above condition s7}, Vp satlsfylngq —q i > 0. Define the “back- pressure

is that s lp < s7,Vp € D(m). Then, the approximate utility of sessionn on Ilnk (J: 1) asWj := Zpep(m)(qj —q;")+.



By plugging the above solution to (32), we have .

L(u,s,f:q)
= H(u)
+ 2 Gnecm SV
J g (33)
Now we optimize it over{s7} }, subject to)_; u; - :vz('j_’l) =
>om s. One can find that the following is similar to previous
derivations. To void repetition, we directly write down the
algorithm.
Initially, assume that all queues are empty, andq§é’i =

Flow rates (data units/ms)
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Flow rates

Flow 1

0,Vj, m,p. Then iterate: o T é( ) 25 3 35 4

ime (ms, X 1 4

« Link (5,1) chooses to serve a sessienwith the maximal ’
back-pressurez(; ;) = max,, Wji' when it gets the Fig. 7: Multicast with multipath routing and network coding

ogportunity to transmi.t, wherd/; = > penm) (@ —
q,"")+. To serve sessiom/, nodej performs a random

linear combinatiof of the head-of-line packets from they
queues of sessiom’ with destinationp € D(m’) which

satisfiesy" ¥ —¢;" ¥ > 0, and transmits the coded packe
(similar to [31]). The coded packet, after received by  PLACE
nodel, is replicated and put into corresponding queues PHHEC;IS

of sessionn’ at nodel (with destinatiorp € D(m’) such

that q;.”/” - ql’”/p > 0). The destinations can eventually

decode the source packets [31].

o Link (j,1) letsr(;;) = z(;,y in the CSMA operation.

o Rate control: For each flown, if node j is its
source, then it sety,, = argmaxy {8 - vm(f;,) —
(ZPG'D(m) qugl))frln}

« The dual variableg;" are updated by a sub-gradient algo-
rithm: g5 — [¢7" + a(Piez(5) 515 — Lieo) $it” N+
if 5 # d6(m) andj # p wherep € D(m); and
4" — ;" + a(fm + Zlez(_j) sil = Zleo(j) si”)]+
if 7 = o(m). (Note that each packet generated by the
sourcej = d(m) is replicated and enters the queues at
the source for all destinations of session) By doing
this, ¢;*” oc Q7*" whereQ’™ is the corresponding queue
length. Always letg;"” = 0 if j = p wherep € D(m).

We simulate the same topology as in the “anycast” case,

where the two flows (or “sessions”) have the same sourges
and destinations as before. The difference is that in the fifs
session we have to send the data to both of its destinatigns.

PLACE
Let v, () =log(-),m = 1,2, and3 = 3. The result is shown PHOTO
in Fig. 7. HERE

8We briefly explain how to perform a “random linear combinatiof these
packets. For more details, please refer to [31]. (Note dbatmain focushere

is to show how to combine CSMA scheduling with other networtgcols,
instead of network coding itself.) Initially, each packengrated by the source
in each session is associated with an ID. Assume that ea&etdacomposed
of many “blocks”, where each block hashits. So, each block can be viewed
as a number in a finite field>~ which has2” elements. For each packét

to be combined here, randomly choose a coefficigate Fa~. Denote the
¢'th block of packetP as P(3). Then the corresponding block in the code
packetZ is computed asZ (i) = > » ap P(i), where the multiplication and
summation is on the field>~, and the summation is over all the packets to
be combined.

Clearly, each packet in the network is a linear combinatidnsame
source packets. The ID's of these source packets and thespomding
coefficients are included in the packet header, and are egdafter each
linear combination along the path (such that the destinatitan decode the
source packets).
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