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Abstract—In multi-hop wireless networks, designing dis-
tributed scheduling algorithms to achieve the maximal through-
put is a challenging problem because of the complex interference
constraints among different links. Traditional maximal-weight
scheduling (MWS), although throughput-optimal, is difficult
to implement in distributed networks. On the other hand, a
distributed greedy protocol similar to IEEE 802.11 does not
guarantee the maximal throughput. In this paper, we introduce
an adaptive CSMA scheduling algorithm that can achieve the
maximal throughput distributively. Some of the major advantages
of the algorithm are that it applies to a very general interference
model and that it is simple, distributed and asynchronous.
Furthermore, the algorithm is combined with end-to-end flow
control to achieve the optimal utility and fairness of competing
flows. Simulations verify the effectiveness of the algorithm.
Also, the adaptive CSMA scheduling is a modular MAC-layer
algorithm that can be combined with various protocols in the
transport layer and network layer. Finally, the paper explores
some implementation issues in the setting of 802.11 networks.

Index Terms—Cross-layer optimization, joint scheduling and
congestion control, maximal throughput, CSMA

I. I NTRODUCTION

In multi-hop wireless networks, it is important to efficiently
utilize the network resources and provide fairness to competing
data flows. These objectives require the cooperation of differ-
ent network layers. The transport layer needs to inject the right
amount of traffic into the network based on the congestion
level and the MAC layer needs to serve the traffic efficiently
to achieve high throughput. Through a utility optimization
framework [1], this problem can be naturally decomposed into
rate control at the transport layer and scheduling at the MAC
layer.

It turns out that MAC-layer scheduling is the bottleneck of
the algorithm [1]. In particular, it is not easy to achieve the
maximal throughput through distributed scheduling, whichin
turn prevents full utilization of the wireless network. Schedul-
ing is challenging since the conflicting relationships between
different links can be complicated.

It is well known that maximal-weight scheduling (MWS)
[18] is throughput-optimal. That is, that scheduling can support
any incoming rates within the capacity region. In MWS, time
is assumed to be slotted. In each slot, a set of non-conflicting
links (called an “Independent Set”, or “IS”) that have the
maximal weight are scheduled, where the “weight” of a set of

This work is supported by MURI grant BAA 07-036.18. Preliminary
versions of the paper appeared as [2] [3].

links is the summation of their queue lengths. (This algorithm
has also been applied to achieve 100% throughput in input-
queued switches [19].) However, finding such a maximal-
weighted IS is NP-complete in general and is hard even for
centralized algorithms. So its distributed implementation is not
trivial in wireless networks.

A few recent works proposed throughput-optimal algorithms
for certain interference models. For example, Eryilmaz et
al. [4] proposed a polynomial-complexity algorithm for the
“two-hop interference model”1. Modiano et al. [5] introduced
a gossip algorithm for the “node-exclusive model”2. The
extensions to more general interference models, as discussed
in [4] and [5], usually involves extra challenges. Sanghaviet al.
[6] introduced an algorithm that can approach the throughput
capacity (with increasing overhead) for the node-exclusive
model.

On the other hand, by using a distributed greedy proto-
col similar to IEEE 802.11, reference [9] shows that only
a fraction of the throughput region can be achieved (after
ignoring collisions). The size of the fraction depends on the
network topology and interference relationships. Reference
[10] studied the impact of such imperfect scheduling on
utility maximization in wireless networks. In [12], Proutiere et
al. developed asynchronous random-access-based scheduling
algorithms whose throughput performance is no less than
some maximal scheduling algorithms, e.g. Maximum Size
scheduling algorithms.

Our first contribution in this paper is to introduce adis-
tributed adaptive CSMA (Carrier Sensing Multiple Access)
algorithm for a general interference model. It is inspired by
CSMA but may be applied to more general resource sharing
problems (i.e., not limited to wireless networks). We show
that if packet collisions are ignored (as in some of the above
references), the algorithm can achieve maximal throughput.
The optimality in the presence of collisions is studied in
[26], [27]. The algorithm may not be directly comparable to
the throughput-optimal algorithms mentioned above since it
utilizes the carrier-sensing capability. But it does have afew
distinct features:

• Each node only uses its local information (e.g., its back-

1In this model, a transmission over a link from nodem to node n is
successful iff none the one-hop neighbors ofm andn is in any conversation
at the time.

2In this model, a transmission over a link from nodem to node n is
successful iff neitherm nor n is in another conversation at the time.
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log). No explicit control messages are required among
the nodes.

• It is based on CSMA random access, which is similar to
the IEEE 802.11 protocol and is easy to implement.

• Time is not divided into synchronous slots. Thus no
synchronization of transmissions is needed.

In a related work, Marbach et al. [11] studied a model of
CSMA with collisions. It was shown that under the “node-
exclusive” interference model, CSMA can be made asymp-
totically throughput-optimal in the limiting regime of large
networks with a small sensing delay. In [13], Rajagopalan and
Shah independently proposed a throughput-optimal algorithm
similar to ours in the context of optical networks. However,
there are some notable differences (e.g., the use of Proposition
1 here). Also, utility maximization (discussed below) was not
considered in [13].

Our second contribution is to combine the proposed
scheduling algorithm with end-to-end flow control using a
novel technique, to achieve fairness among competing flows
as well as maximal throughput (sections III, IV). The per-
formance is evaluated by simulations (section VI). We show
that the proposed CSMA scheduling is a modular MAC-
layer algorithm and demonstrate its combination with optimal
routing, anycast and multicast (Appendix F). Finally, we
considered some practical issues (e.g., packet collisions) in
the setting of 802.11 networks (section VII).

There is extensive research in joint MAC and transport-
layer optimization, for example [7] and [8]. Their studies
have assumed the slotted-Aloha random access protocol in the
MAC layer, instead of the CSMA-like protocol we consider
here. Slotted-Aloha does not need to consume power in carrier
sensing. On the other hand, CSMA is known to have a larger
capacity region. (In this paper, we are primarily interested
in the throughput performance.) Other related works assume
physical-layer models which are quite different from ours.For
example, [14] considered CDMA interference model; and [15]
focused on time-varying wireless channel.

II. A DAPTIVE CSMA FOR MAXIMAL THROUGHPUT

A. Interference model

First we describe the general interference model we will
consider in this paper. Assume there areK links in the
network, where eachlink is an (ordered) transmitter-receiver
pair. The network is associated with a link contention graph
(or “LCG”) G = {V , E}, whereV is the set of vertexes (each
of them represents a link) andE is the set of edges. Two
links cannot transmit at the same time (i.e., “conflict”) iffthere
is an edge between them. Note that this framework includes
the “node-exclusive model” and “two-hop interference model”
mentioned above as two special cases.

Assume thatG hasN different Independent Sets (“IS”, not
confined to “Maximal Independent Sets”). Denote thei’th IS
as xi ∈ {0, 1}K, a 0-1 vector that indicates which links are
transmitting in this IS. Thek’th element ofxi, xi

k = 1 if link
k is transmitting, andxi

k = 0 otherwise. We also refer toxi

as a “transmission state”, andxi
k as the “transmission state of

link k”.

B. An idealized CSMA protocol and the average throughput

We use an idealized model of CSMA as in [21], [22],
[23]. This model makes two simplifying assumptions. First,it
assumes that if two links conflict – because their simultaneous
transmissions would result in incorrectly received packets –
then either of the two links hears when the other one transmits.
Second, the model assumes that this sensing is instantaneous.
The first assumptions implies that there are no hidden nodes
(HN). This is possible if the range of carrier-sensing is large
enough [25].3 ) The second assumption is violated in actual
systems because of the finite speed of light and of the time
needed to detect a received power.

There are a few reasons for using this model in our con-
text, although it makes some simplifying assumptions about
collisions and the HN problem: (1) It is simple, tractable, and
captures the essence of CSMA/CA; (2) Even without con-
sidering collisions and hidden nodes, distributed scheduling
to achieve maximal throughput is not an easy problem, as
discussed in the Introduction section. In most of the paper,we
focus on the scheduling problem, without mixing it with the
other issues. Similar approaches have been taken in related
works, for example [9], [1]; (3) The scheduling algorithm we
propose here is inspired by CSMA, but it may be applied to
more general resource sharing problems4 (i.e., not limited to
wireless networks).

In [27], on the other hand, we have also developed a model
that explicitly considers collisions in wireless network without
HN. The distributed scheduling and rate control algorithms
proposed in this paper can be naturally extended to that model.
We will further discuss the issue in section VII.

In this subsection, assume that the links are always back-
logged. If the transmitter of linkk senses the transmission of
any conflicting link (i.e., any linkm such that(k, m) ∈ E),
then it keeps silent. If none of its conflicting links is trans-
mitting, then the transmitter of linkk waits (or backs-off)
for a random period of time that is exponentially distributed
with mean1/Rk and then starts its transmission5. If some
conflicting link starts transmitting during the backoff, then link
k suspends its backoff and resumes it after the conflicting
transmission is over. The transmission time of linkk is
exponentially distributed with mean 1. (The assumption on
exponential distribution can be relaxed [23].) Assuming that
the sensing time is negligible, given the continuous distribution
of the backoff times, the probability for two conflicting links

3A related problem that affects the performance of wireless networks is the
exposed-node (EN) problem. Reference [25] proposed a protocol to address
HN and EN problems in a systematic way. We assume in this paperthat the
HN and EN are negligible with the use of such a protocol. Note that however,
although EN problem may reduce the capacity region, it does not affect the
applicability of our model, since we can define an edge between two links
in the LCG as long as they can sense the transmission of each other, even if
this results in EN.

4An example is the “task processing” problem described as follows. There
are K different types of tasks and a finite set of resourcesB. To perform a
type-k task, one needs a subsetBk ⊆ B of resources and these resources are
then monopolized by the task while it is being performed. Note that two tasks
can be performed simultaneously iff they use disjoint subsets of resources.
Clearly this can be accommodated in our model in section II-Aby associating
each type of tasks to a “link”.

5If more than one backlogged links share the same transmitter, the trans-
mitter maintains independent backoff timers for these links.
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(a) Link contention graph
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(b) CSMA Markov Chain

Fig. 1: Example: link contention graph and corresponding
Markov Chain.

to start transmission at the same time is zero. So in the model
of [21], [22], [23], collisions are ignored. (In section VII,
however, we will discuss adaptations of our algorithm which
consider collisions in an 802.11 network.)

It is not difficult to see that the transitions of the transmis-
sion states form a Continuous Time Markov Chain, which is
called theCSMA Markov Chain. Denote linkk’s neighboring
set byN (k) := {m : (k, m) ∈ E}. If in state xi, link k is
not active (xi

k = 0) and all of its conflicting links are not
active (i.e.,xi

m = 0, ∀m ∈ N (k)), then statexi transits to
state xi + ek with rate Rk, where ek is the K-dimension
vector whosek’th element is 1 and all other elements are 0’s.
Similarly, statexi+ek transits to statexi with rate 1. However,
if in state xi, any link in its neighboring setN (k) is active,
then statexi + ek does not exist.

Fig 1 gives an example network whose LCG is shown in
(a). There are two links, with an edge between them, which
means that they cannot transmit together. Fig 1 (b) shows the
corresponding CSMA Markov Chain. State (0,0) means that
no link is transmitting, state (1,0) means that only link 1 is
transmitting, and (0,1) means that only link 2 is transmitting.
The state (1,1) is not feasible.

Let rk = log(Rk). We callrk the “transmission aggressive-
ness” (TA) of linkk. For a given positive vectorr = {rk, k =
1, . . . , K}, the CSMA Markov chain is irreducible. Designate
the stationary distribution of its feasible statesxi by p(xi; r).
We have the following result.

Lemma 1: ([21], [22], [23]) The stationary distribution of
the CSMA Markov chain has the following product-form:

p(xi; r) =
exp(

∑K
k=1 xi

krk)

C(r)
(1)

where
C(r) =

∑
j exp(

∑K
k=1 xj

krk) . (2)

Note that the summation
∑

j is over all feasible statesxj .
Remark: The lemma holds as long as the ratio between the

mean transmission time and mean backoff time of linkk is
Rk = exp(rk), ∀k [21], [22], [23].

Proof: We verify that the distribution (1)-(2) satisfies the
detailed balance equations (see [20]). Consider statesxi and
xi + ek wherexi

k = 0 and xi
m = 0, ∀m ∈ N (k). From (1),

we have
p(xi + ek; r)

p(xi; r)
= exp(rk) = Rk

which is exactly the detailed balance equation between statexi

andxi + ek. Such relations hold for any two states that differ
in only one element, which are the only pairs that correspond
to nonzero transition rates. It follows that the distribution is
invariant.
Note that the CSMA Markov chain is time-reversible since the
detailed balance equations hold. In fact, the Markov chain is a
reversible “spatial process” and its stationary distribution (1)
is a Markov Random Field ([20], page 189; [24]). (This means
that the state of every linkk is conditionally independent of
all other links, given the transmission states of its conflicting
links.)

Later, we also writep(xi; r) aspi(r) for simplicity. These
notations are interchangeable throughout the paper. And let
p(r) ∈ RN

+ be the vector of allpi(r)’s. In Fig 1, for example,
the probabilities of state (0,0), (1,0) and (0,1) are1/(1+R1+
R2), R1/(1+R1+R2) andR2/(1+R1+R2) in the stationary
distribution.

It follows from Lemma 1 thatsk(r), the probability that
link k transmits, is given by

sk(r) =
∑

i[x
i
k · p(xi; r)] . (3)

Without loss of generality, assume that each linkk has a
capacity of 1. That is, if linkk transmits data all the time
(without contention from other links), then its service rate is 1
(unit of data per unit time). Then,sk(r) is also thenormalized
throughput (or service rate) with respect to the link capacity.

Even if the distributions of the waiting time and transmis-
sion time are not exponential distributed but have the same
means (1/Rk and 1), reference [23] shows that the stationary
distribution (1) still holds. That is, the stationary distribution
is insensitive.

C. Adaptive CSMA for maximal throughput

Assume i.i.d. traffic arrival at each linkk with arrival rate
λk. λk ≤ 1 is alsonormalizedwith respect to the link capacity
1, and thus can be viewed as the fraction of time when link
k needs to be active to serve the arrival traffic. And denote
the vector of arrival rates asλ ∈ RK

+ . Further assume that
λk > 0, ∀k without loss of generality, since the link(s) with
zero arrival rate can be removed from the problem. We say that
λ is feasibleif and only if λ =

∑
i p̄i ·x

i for some probability
distributionp̄ ∈ RN

+ satisfyingp̄i ≥ 0 and
∑

i p̄i = 1. That is,
λ is a convex combination of the IS’s, such that it is possible
to serve the arriving traffic with some transmission schedule.
Denote the set of feasibleλ by C̄. We say thatλ is strictly
feasibleiff it can be written asλ =

∑
i p̄i · xi where p̄i > 0

and
∑

i p̄i = 1. Denote the set of strictly feasibleλ by C.
Appendix A shows thatC is exactly the interior ofC̄.

Define the following function (the “log-likelihood function”
if we estimate the parameterr from the observation̄pi)

F (r; λ) :=
∑

i p̄i log(pi(r))

=
∑

i p̄i[
∑K

k=1 xi
krk − log(C(r))]

=
∑

k λkrk − log(
∑

j exp(
∑K

k=1 xj
krk))

whereλk =
∑

i p̄ix
i
k is the traffic arrival rate at linkk.
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Consider the following optimization problem

supr≥0 F (r; λ) . (4)

Since log(p(xi; r)) ≤ 0, we haveF (r; λ) ≤ 0. Therefore
supr≥0 F (r; λ) exists. Also,F (r; λ) is concave inr [28]. We
show that the following proposition holds.

Proposition 1: If supr≥0 F (r; λ) is attainable (i.e., there
exists finite r∗ ≥ 0 such thatF (r∗; λ) = supr≥0 F (r; λ)),
thensk(r∗) ≥ λk, ∀k. That is, the service rate is not less than
the arrival rate whenr = r∗.

Proof: Let d ≥ 0 be a vector of dual variables associated
with the constraintsr ≥ 0 in problem (4), then the Lagrangian
is L(r;d) = F (r; λ) + dT r. At the optimal solutionr∗, we
have

∂L(r∗;d∗)

∂rk
= λk −

∑
j xj

k exp(
∑K

k=1 xj
kr∗k)

C(r∗)
+ d∗k

= λk − sk(r∗) + d∗k = 0 (5)

wheresk(r), according to (3), is the service rate (at stationary
distribution) givenr. Sinced∗k ≥ 0, λk ≤ sk(r∗).
Equivalently, problem (4) is the same as minimizing the
Kullback–Leibler divergence (KL divergence) between the two
distributionsp̄ andp(r):

inf
r≥0

DKL(p̄||p(r)) (6)

where the KL divergence

DKL(p̄||p(r)) : =
∑

i[p̄i log(p̄i/pi(r))]
=

∑
i[p̄i log(p̄i)]− F (r; λ).

That is, we chooser ≥ 0 such thatp(r) is the “closest” to
p̄ in terms of the KL divergence.

The following condition, proved in Appendix B, ensures
that supr≥0 F (r; λ) is attainable.

Proposition 2: If the arrival rateλ is strictly feasible, then
supr≥0 F (r; λ) is attainable.
Combining Propositions 1 and 2, we know that for any strictly
feasibleλ there exists a finiter∗ such thatsk(r∗) ≥ λk, ∀k. To
see why strict feasibility is necessary, consider the network in
Fig. 1. If λ1 = λ2 = 0.5 (not strictly feasible), then the service
ratess1(r) = s2(r)→ 0.5 only whenr1 = r2 →∞, but they
cannot reach 0.5 for finite values ofr.

Since ∂F (r; λ)/∂rk = λk − sk(r), a simple gradient
algorithm to solve (4) is

rk(j + 1) = [rk(j) + α(j) · (λk − sk(r(j)))]+, ∀k (7)

wherej = 0, 1, 2, . . . , andα(j) is some (small) step size. The
algorithm is easy fordistributed implementation in wireless
networks, because linkk can adjustrk based on itslocal
information: arrival rateλk and service ratesk(r(j)). (If the
arrival rate is larger than the service rate, thenrk should
be increased, and vice versa.) Note that however, the arrival
and service rates are generally random variables in actual
networks, unlike in (7).

Let link k adjustrk at time tj , j = 1, 2, . . . . Let t0 = 0
and T (j) := tj − tj−1, j = 1, 2, . . . . Define “periodj” as

the time betweentj−1 and tj , and r(j) as the value ofr
set at timetj . Let λ′

k(j) be the average arrival rate between
time tj and tj+1, and lets′k(j) be the average service rate
betweentj and tj+1. That is,s′k(j) :=

∫ tj+1

tj
xk(τ)dτ/T (j +

1), wherexk(τ) ∈ {0, 1} is the state of linkk at time instance
τ . Note thatλ′

k(j) ands′k(j) are generally random variables.
We design the following distributed algorithm.

Algorithm 1: Adjusting the TA (transmission aggressive-
ness) in CSMA

At time tj+1 wherej = 0, 1, 2, . . . , let

rk(j + 1) = [rk(j) + α(j) · (λ′
k(j)− s′k(j))]D, ∀k (8)

whereα(j) > 0 is the step size, and[·]D means the projection
to the setD := [0, rmax] wherermax > 0. We allow rmax =
+∞, in which case the projection is the same as[·]+.6 In the
next section and Appendix C, we will discuss the convergence
and stability property of Algorithm 1 under different settings
of α(j), T (j) andrmax.

D. Convergence and stability

Reference [35] provides some stability results of the follow-
ing algorithm extended from Algorithm 1. The intuition is that
one can maker change slowly (i.e., “quasi-static”) to allow the
CSMA Markov chain to approach its stationary distribution
(and thus obtaining good estimation ofsk(r)). This allows
the separation of time scales of the dynamics ofr(j) and the
CSMA Markov chain. The extended algorithm is

rk(j +1) = [rk(j)+α(j) · (λ′
k(j)+h(rk(j))− s′k(j))]D (9)

whereD := [0, rmax] and the functionh(·) ≥ 0. If h(·) = 0,
then algorithm (9) reduces to Algorithm 1. Ifh(·) > 0, then
algorithm (9) “pretends” to serve some arrival rates higher
than the actual ones. In Appendix C, we state some results in
[35] (which includes the detailed proofs). In summary, (i) with
properly-chosen decreasing step sizes and increasing adjust-
ment periods (e.g.,α(j) = 1/[(j+2) log(j+2)], T (j) = j+2)
and functionh(·), and with rmax = +∞, the vectorr(j)
converges and the algorithm is throughput-optimal; (ii) with
properly-chosen constant step sizesα(j) = α, ∀j, adjustment
periodsT (j) = T, ∀j, one can arbitrarily approximate the
maximal throughput.

In a related work [17], Liu et al. carried out a convergence
analysis, using a differential-equation method, of a utility
maximization algorithm extended from [2] (see also section
IV for the algorithm).

E. Discussion

(1) Since optimal scheduling is NP complete with the
general interference model in this paper, the complexity is
reflected in the convergence time of CSMA Markov chain. In
[35], the worst case upper-bound used to quantify the time for
the CSMA Markov chain to approach its stationary distribution
(i.e., the mixing time) is exponential inK. Typical wireless

6A subtle point: If in periodj+1 (for anyj), the queue of linkk′ becomes
empty, then linkk′ still transmits dummy packets with TArk′ (j) until tj+1.
This ensures that the (ideal) average service rate is stillsk(r(j)) for all k.
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networks, however, may not be the worst case. For example,
in a network where all links conflict, the CSMA Markov chain
can be shown to mix fast.

(2) There is some resemblance between the above algo-
rithm (in particular the CSMA Markov chain) and simulated
annealing (SA) [16]. SA is an optimization technique that
utilizes time-reversible Markov chains to find a maximum of
a function. SA can be used, for example, to find the Maximal-
Weighted IS (MWIS) which is needed in Maximal-Weight
Scheduling. However, note that our algorithm does not try
to find the MWIS via SA. Instead, the stationary distribution
of the CSMA Markov chain with a properly-chosenr∗ is
sufficient to support any vector of strictly feasible arrival rates
(Proposition 1).

III. T HE PRIMAL -DUAL RELATIONSHIP

In the previous section we have described the adaptive
CSMA algorithm to support any strictly-feasible arrival rates.
For joint scheduling and flow control, however, directly us-
ing the above expression of service rate (3) will lead to a
non-convex problem. This section gives another look at the
problem and also helps to avoid the difficulty.

Rewrite (4) as

maxr,z {
∑

k λkrk − log(
∑

j exp(hj))}

s.t. hj =
∑K

k=1 xj
krk, ∀j

rk ≥ 0, ∀k.

(10)

For eachj = 1, 2, . . . , N , associate a dual variableuj to the
constrainthj =

∑K
k=1 xj

krk. Write the vector of dual variables
asu ∈ RN

+ . Then it is not difficult to find the dual problem
of (10) as follows. (We omit the computation here due to the
limit of space.)

maxu −
∑

i ui log(ui)
s.t.

∑
i(ui · xi

k) ≥ λk, ∀k
ui ≥ 0,

∑
i ui = 1.

(11)

where the objective function is the entropy of the distribution
u, H(u) := −

∑
i ui log(ui). 7

Also, if for eachk, we associate a dual variablerk to the
constraint

∑
i(ui · xi

k) ≥ λk in problem (11), then one can
compute that the dual problem of (11) is the original problem
maxr≥0 F (r; λ) (This is shown in Appendix B as a by-product
of the proof of Proposition 2). This is not surprising, sincein
convex optimization, the dual problem of dual problem is often
the original problem.

What is interesting is that bothr and u have concrete
physical meanings. We have seen thatrk is the TA of link k.
Also, ui can be regarded as the stationary probability of state
i in the CSMA Markov chain given the dual variabler. This
observation will be useful in later sections. A convenient way
to guess this is by observing the constraint

∑
i(ui ·xi

k) ≥ λk.
If ui is the probability of statei, then the constraint simply
means that the service rate of linkk,

∑
i(ui · x

i
k), is larger

than the arrival rate.

7In fact, there is a more general relationship between ML estimation
problem such as (4) and Maximal-Entropy problem such as (11)[29].

Proposition 3: Given some (finite) TA’s of the links (that
is, given the dual variabler of problem (11)), the stationary
distribution of the CSMA Markov chain maximizes the partial
LagrangianL(u; r) = −

∑
i ui log(ui) +

∑
k rk(

∑
i ui · xi

k −
λk) over all possible distributionsu. Also, Algorithm (7)
can be viewed as a subgradient algorithm to update the dual
variabler in order to solve problem (11).

Proof: Given some finite dual variablesr, a partial
Lagrangian of problem (11) is

L(u; r) = −
∑

i

ui log(ui) +
∑

k

rk(
∑

i

ui · x
i
k − λk). (12)

Denoteu∗(r) = arg maxu L(u; r), whereu is a distribu-
tion. Since

∑
i ui = 1, if we can find somew, andu∗(r) > 0

(i.e., in the interior of the feasible region) such that

∂L(u∗(r); r)

∂ui
= − log(u∗

i (r)) − 1 +
∑

k

rkxi
k = w, ∀i,

then u∗(r) is the desired distribution. The above conditions
are

u∗
i (r) = exp(

∑

k

rkxi
k − w − 1), ∀i. and

∑

i

u∗
i (r) = 1.

By solving the two equations, we find thatw =
log[

∑
j exp(

∑
k rkxj

k)]− 1 and

u∗
i (r) =

exp(
∑

k rkxi
k)

∑
j exp(

∑
k rkxj

k)
, ∀i (13)

satisfy the conditions.
Note that in (13),u∗

i (r) is exactly the stationary probability
of statei in the CSMA Markov chain given the TAr of all
links. That is, u∗

i (r) = p(xi; r), ∀i (cf. (1)). So Algorithm
(7) is a subgradient algorithm to search for the optimal dual
variable. Indeed, givenr, u∗

i (r) maximizesL(u; r); then, r
can be updated by the subgradient algorithm (7), which is the
deterministic version of Algorithm 1. The whole system is
trying to solve problem (11) or (4).
Let r∗ be the optimal vector of dual variables of problem (11).
From the above computation, we see thatu∗(r∗) = p(r∗), the
optimal solution of (11), is a product-form distribution. Also,
p(r∗) can support the arrival ratesλ because it is feasible to
(11). This is another way to look at Proposition 1.

IV. JOINT SCHEDULING AND RATE CONTROL

Now, we combine end-to-end rate control with the CSMA
scheduling algorithm to achieve fairness among competing
flows as well as maximal throughput. Here, the input rates
are distributedly adjusted by the source of each flow.

A. Formulation

Assume there areM flows, and letm be their index (m =
1, 2, . . . , M ). Define amk = 1 if flow m uses linkk, and
amk = 0 otherwise. Letfm be the rate of flowm, andvm(fm)
be the “utility function” of this flow, which is assumed to be
increasing and strictly concave. Assume all links have the same
PHY data rates (it is easy to extend the algorithm to different
PHY rates).
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Assume that each linkk maintains a separate queue for each
flow that traverses it. Then, the service rate of flowm by link
k, denoted byskm, should be no less than the incoming rate
of flow m to link k. For flow m, if link k is its first link (i.e.,
the source link), we sayδ(m) = k. In this case, the constraint
is skm ≥ fm. If k 6= δ(m), denote flowm’s upstream link of
link k by up(k, m), then the constraint isskm ≥ sup(k,m),m,
wheresup(k,m),m is equal to the incoming rate of flowm to
link k. We also have

∑
i ui · xi

k ≥
∑

m:amk=1 skm, ∀k, i.e.,
the total service rate of linkk is not less than the sum of all
flow rates on the link.

Then, consider the following optimization problem:

maxu,s,f −
∑

i ui log(ui) + β
∑M

m=1 vm(fm)
s.t. skm ≥ 0, ∀k, m : amk = 1

skm ≥ sup(k,m),m, ∀m, k : amk = 1, k 6= δ(m)
skm ≥ fm, ∀m, k : k = δ(m)∑

i ui · xi
k ≥

∑
m:amk=1 skm, ∀k

ui ≥ 0,
∑

i ui = 1.
(14)

whereβ > 0 is a weighting factor.
Notice that the objective function is not exactly the total

utility, but it has an extra term−
∑

i ui log(ui). As will be
further explained in section IV-B, whenβ is large, the “im-
portance” of the total utility dominates the objective function
of (14). (This is similar in spirit to the weighting factor used in
[15].) As a result, the solution of (14) approximately achieves
the maximal utility. Associate dual variablesqkm ≥ 0 to
the 2nd and 3rd lines of constraints of (14). Then a partial
Lagrangian (subject toskm ≥ 0,

∑
i ui ·xi

k ≥
∑

m:amk=1 skm

andui ≥ 0,
∑

i ui = 1) is

L(u, s, f ;q)

= −
∑

i ui log(ui) + β
∑M

m=1 vm(fm)
+

∑
m,k:amk=1,k 6=δ(m) qkm(skm − sup(k,m),m)

+
∑

m,k:,k=δ(m) qkm(skm − fm)

= −
∑

i ui log(ui)

+β
∑M

m=1 vm(fm)−
∑

m,k:k=δ(m) qkmfm

+
∑

k,m:amk=1 skm[(qkm − qdown(k,m),m)]
(15)

wheredown(k, m) means flowm’s downstream link of link
k (Note thatdown(up(k, m), m) = k). If k is the last link of
flow m, then defineqdown(k,m),m = 0.

Fix the vectorsu andq first, we solve forskm in the sub-
problem

maxs

∑
k,m:amk=1 skm[(qkm − qdown(k,m),m)]

s.t. skm ≥ 0, ∀k, m : amk = 1∑
m:amk=1 skm ≤

∑
i(ui · xi

k), ∀k.
(16)

The solution is easy to find (similar to [1] and related refer-
ences therein): at linkk, denotezk := maxm:amk=1(qkm −
qdown(k,m),m). (i) If zk > 0, then for a m′ ∈
arg maxm:amk=1(qkm−qdown(k,m),m), let skm′ =

∑
i(ui ·xi

k)
and letskm = 0, ∀m 6= m′. In other words, linkk serves the
flow with the maximal back-pressureqkm− qdown(k,m),m. (ii)
If zk ≤ 0, then letskm(j) = 0, ∀m, i.e., link k does not serve
any flow (and transmit dummy packets instead when it has
the opportunity to transmit). Since the value ofqdown(k,m),m

can be obtained from a one-hop neighbor, this algorithm is
distributed.

Plug the solution of (16) back into (15), we get

L(u, f ;q) = [−
∑

i=1 ui log(ui) +
∑

k(zk)+(
∑

i ui · xi
k)]

+[β
∑M

m=1 vm(fm)−
∑

m,k:k=δ(m) qkmfm]

wherezk := maxm:amk=1(qkm − qdown(k,m),m) is the max-
imal back-pressure at linkk. So a distributed algorithm to
solve (14) is as follows. For simplicity, assume thatv′m(0) ≤
V <∞, ∀m, i.e., the derivative of all utility functions at 0 is
bounded by someV <∞.

Algorithm 2: Joint scheduling and rate control
Initially, assume that all queues are empty, and letqkm(0) =

0, ∀k, m. Here we useα(j) = α, T (j) = T, ∀j. The variables
q, f , r are iteratively updated at timetj , j = 0, 1, 2, . . . : Let
q(j), f(j), r(j) be the values set at timetj . Denote bys

′

km(j)
the empirical average service rate of flowm at link k in period
j + 1 (i.e., the time betweentj andtj+1).

• Scheduling: In periodj + 1, link k lets its TA be
rk(j) = [zk(j)]+ in the CSMA operation, where
zk(j) = maxm:amk=1(qkm(j) − qdown(k,m),m(j)). (This
is because, givenz(j), the optimalu (that maximizes
L(u, f ;q(j)) overu) is the stationary distribution of the
CSMA Markov Chain withrk(j) = [zk(j)]+, similar
to the proof of Proposition 3.) When linkk gets the
opportunity to transmit, (i) ifzk(j) > 0, it serves a flow
m′ ∈ arg maxm:amk=1(qkm(j) − qdown(k,m),m(j)) ; (ii)
if zk(j) ≤ 0, then it transmits dummy packets (which are
not counted when computings

′

km(j)).
• Rate control: For each flowm, if link k is its source link,

the transmitter of linkk lets the flow rate in periodj +1
befm(j) = argmaxf ′

m∈[0,1]{β · vm(f ′
m)− qkm(j) · f ′

m}.
(This maximizesL(u, f ;q(j)) over f .)

• The dual variablesqkm (maintained by the transmitter of
each link) are updated by a sub-gradient algorithm. At
time tj+1, let qkm(j +1) = [qkm(j)+α(s

′

up(k,m),m(j)−

s
′

km(j))]+ if k 6= δ(m); and qkm(j + 1) = [qkm(j) +
α(fm(j)−s

′

km(j))]+ if k = δ(m). (By doing this,qkm ∝
Qkm roughly, whereQkm is the queue length of flowm
at link k.)

Remark 1:As T →∞ andα→ 0, Algorithm 2 approximates
the “ideal” algorithm that solves (14), due to the convergence
of the CSMA Markov chain in each period. A bound of the
achievable utility of Algorithm 2, compared to the optimal
total utility W̄ defined in (17) is given in Appendix E. The
bound, however, is not very tight, since our simulation shows
good performance without a very largeT or a very smallα.

Remark2: In Appendix F, we show that by using similar
techniques, the adaptive CSMA algorithm can be combined
with optimal routing, anycast or multicast. So it is a modular
MAC-layer protocol which can work with other protocols in
the transport layer and the network layer.

B. Approaching the maximal utility

Notice that−
∑

i ui log(ui), the entropy of the distribution
u, is bounded. Indeed, since there areN ≤ 2K possible states,
one has0 ≤ −

∑
i ui log(ui) ≤ log N ≤ log 2K = K · log 2.
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Therefore, as mentioned earlier, whenβ is large, the “im-
portance” of the total utility dominates the objective function
of (14). So the solution of (14) approximately achieves the
maximal utility. Denote the highest total utility achievable as
W̄ , i.e.,

W̄ := maxu,s,f

∑
m vm(fm) (17)

subject to the same constraints as in (14). Assume thatu = ū

when (17) is solved. Also, assume that in the optimal solution
of (14), f = f̂ andu = û. We prove the following bound in
Appendix D.

Proposition 4: The difference between the total utility
(
∑M

m=1 vm(f̂m)) resulting from solving (14) and the maximal
total utility W̄ is bounded. The bound of difference decreases
with the increase ofβ. In particular,

W̄ − (K · log 2)/β ≤
∑

m vm(f̂m) ≤ W̄ . (18)

V. REDUCING THE QUEUEING DELAY

Consider a strictly feasible arrival rate vectorλ in the
scheduling problem in section II. With Algorithm 1, the long-
term average service rates are in general not strictly higher
than the arrival rates, so traffic suffers from queueing delay
when traversing the links. To reduce the delay, consider a
modified version of problem (11):

maxu,w −
∑

i ui log(ui) + c
∑

k log(wk)
s.t.

∑
i(ui · xi

k) ≥ λk + wk, ∀k
ui ≥ 0,

∑
i ui = 1

0 ≤ wk ≤ w̄, ∀k

(19)

where0 < c < 1 is a small constant. Note that we have added
the new variableswk ∈ [0, w̄] (wherew̄ is a constant upper
bound), and require

∑
i ui · xi

k ≥ λk + wk. In the objective
function, the termc · log(wk) is a penalty function to avoid
wk being too close to 0.

Sinceλ is in the interior of the capacity region, there is a
vectorλ′ also in the interior and satisfyingλ′ > λ component-
wise. So there existw′ > 0 and u′ (such that

∑
i u′

ix
i
k =

λ′
k := λk+w′

k, ∀k) satisfying the constraints. Therefore, in the
optimal solution, we havew∗

k > 0, ∀k (otherwise the objective
function is−∞, smaller than the objective value that can be
achieved byu′ andw′). Thus

∑
i u∗

i · x
i
k ≥ λk + w∗

k > λk.
This means that the service rate is strictly larger than the arrival
rate, bringing the extra benefit that the queue lengths tend to
decrease to 0.

Similar to section III, we form a partial Lagrangian (with
y ≥ 0 as dual variables)

L(u,w;y) = −
∑

i ui log(ui) + c
∑

k log(wk)+∑
k[yk(

∑
i ui · xi

k − λk − wk)]
= [−

∑
i ui log(ui) +

∑
k(yk

∑
i ui · xi

k)]+∑
k[c · log(wk)− ykwk]−

∑
k(ykλk).

(20)
Note that the only difference from (12) is the extra term∑
k[c · log(wk) − ykwk]. Given y, the optimalw is wk =

min{c/yk, w̄}, ∀k, and the optimalu is the stationary distri-
bution of the CSMA Markov Chain withr = y. Therefore
the (sub)gradient algorithm to updatey is yk ← yk + α(λk +
wk − sk(y)).

Sincer = y, we have the following localized algorithm at
link k to updaterk. Notice its similarity to Algorithm 1.

Algorithm 3: Enhanced Algorithm 1 to reduce queueing
delays

At time tj+1 wherej = 0, 1, 2, . . . , let

rk(j+1) = [rk(j)+α(j)·(λ′
k(j)+min{c/rk(j), w̄}−s′k(j))]D

(21)
for all k, where α(j) is the step size, andD = [0, rmax]
wherermax can be+∞. As before, even when linkk′ has
no backlog (i.e., zero queue length), we let it send dummy
packet with its current aggressivenessrk′ . This ensures that
the average service rate of linkk is sk(r(j)) for all k.

Since Algorithm 3 “pretends” to serve some arrival rates
higher than the actual arrival rates (due to the positive term
min{c/rk(j), w̄}, Qk is not only stable, but also tends to be
small. The convergence and stability properties of Algorithm 3
whenrmax =∞ are discussed in (i) of Appendix C. Ifrmax <
∞, the properties are similar to those in (ii) of Appendix C.

For the end-to-end utility maximization (without a given
arrival rate vector), a simple way to reduce the delay, similar
to [37], is as follows. In item 2 (“rate control”) of Algorithm 2,
let the actual flow rate beρ ·fm(j) whereρ is slightly smaller
than 1, and keep other parts of the algorithm unchanged. Then,
each link provides a service rate higher than the actual arrival
rate. So the delay is reduced with a small cost in the flow
rates.

VI. SIMULATIONS

A. CSMA scheduling: i.i.d. input traffic with fixed average
rates

In our C++ simulations, the transmission time of all links is
exponentially distributed with mean 1ms, and the backoff time
of link k is exponentially distributed with mean1/ exp(rk)
ms. Assume that the capacity of each link is 1(data unit)/ms.
Initially, all queues are empty, and the initial value ofrk is 0
for all k. rk is then adjusted using Algorithm 1 once everyT =
5ms (i.e.,T (j) = T, ∀j), with a constant step sizeα(j) = α =
0.23, ∀j.

There are 6 links in “Network 1”, whose LCG is shown
in Fig. 2 (a). (Each link only needs to know the set of
links that conflict with itself.) Define0 ≤ ρ < 1 as
the “load factor”, and letρ = 0.98 in this simulation.
The arrival rate vector is set toλ=ρ*[0.2*(1,0,1,0,0,0) +
0.3*(1,0,0,1,0,1) + 0.2*(0,1,0,0,1,0) + 0.3*(0,0,1,0,1,0)] =
ρ*(0.5,0.2,0.5,0.3,0.5,0.3) (data units/ms). We have multiplied
by ρ a convex combination of some maximal IS’s to ensure
that λ is in the interior of the capacity region. Fig. 2 (b)
shows the evolution of the queue lengths using Algorithm 1
with rmax = 8. They are stable despite some oscillations.
The vectorr is not shown since in this simulation, it isα/T
times the queue lengths. Fig. 2 (c) shows the evolution of
queue lengths using Algorithm 3 withc = 0.01, w̄ = 0.02
andrmax = 8, which drives the queue lengths to around zero,
thus significantly reducing the queueing delays.

Fig 3 shows the results of Algorithm 3 withα(j) =
0.46/[(2+j/1000) log(2+j/1000)] andT (j) = (2+j/1000)
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(b) Queue lengths, with constant step size. The vectorr is not
shown since it is proportional to the queue lengths.
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(c) Queue lengths (with Algorithm 3)

Fig. 2: Adaptive CSMA Scheduling with fixed input rates
(Network 1)

ms, which satisfy the conditions for convergence in [35]. The
constantsc = 0.01, w̄ = 0.02, and rmax = ∞. To show
the negative drift of queues, assume that initially, all queue
lengths are 300 data units in Fig 3. We see that the TA vector
r converges (Fig 3 (a)), and the queues tend to decrease and
are stable (Fig 3 (b)). However, there are more oscillationsin
the queue lengths than the case with constant step size. This
is because whenα(j) becomes smaller whenj is large,r(j)
becomes less responsive to the variations of queue lengths.

B. Joint scheduling and rate control

In Fig 4, we simulate a more complex network (“Network
2”). We also go one step further than Network 1 by giving
the actual locations of the nodes, not only the LCG. Fig 4
(a) shows the network topology, where each circle represents
a node. The nodes are arranged in a grid for convenience,
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(b) Queue lengths

Fig. 3: Decreasing step sizes

and the distance between two adjacent nodes (horizontally or
vertically) is 1. Assume that the transmission range is 1, so
that a link can only be formed by two adjacent nodes. Assume
that two links cannot transmit simultaneously if there are two
nodes, one in each link, being within a distance of 1.1 (In IEEE
802.11, for example, DATA and ACK packets are transmitted
in opposite directions. This model considers the interference
among the two links in both directions). The paths of 3 multi-
hop flows are plotted. The utility function of each flow is
vm(fm) = log(fm + 0.01). The weighting factor isβ = 3.
(Note that the input rates are adjusted by the flow control
algorithm instead of being specified as in the last subsection.)

Fig 4 (b) shows the evolution of the flow rates, using
Algorithm 2 with T = 5ms and α = 0.23. We see that
they become relatively constant after an initial convergence.
By directly solving (17) centrally, we find that the theoretical
optimal flow rates for the three flows are 0.11, 0.134 and 0.134
(data unit/ms), very close to the simulation results. The queue
lengths are also stable but not shown here due to the limit on
space.

VII. I MPLEMENTATION CONSIDERATIONS IN802.11
NETWORKS

A. Packet Collisions

In the idealized CSMA model we used, the distribution of
backoff times is continuous and there is no collision. This
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Fig. 4: Flow rates in Network 2 (Grid Topology) with Joint
scheduling and rate control

allows us to focus on the scheduling problem without wor-
rying about the contention resolution problem. The resulting
performance can serve as a benchmark. However in practice,
the backoff time is usually a multiple of mini-slots, where
each mini-slot cannot be arbitrarily small because the sensing
time is not zero. Therefore collisions occur given the discrete
distribution of backoff times. In this section we consider this
practical issue and discuss alternative algorithms (for 802.11
networks) which are related to the above algorithms with
idealized CSMA.

As mentioned earlier, we have recently studied a tractable
model in [27] that explicitly considered collisions in wireless
network without hidden nodes. Moreover, similar algorithms
(with probe packets such as RTS/CTS) were proposed in
[27] that can approach the maximal throughput and utility by
adjusting the mean transmission times with fixed mean backoff
times.

In [17] [2], etc, it is noted that by using small transmission
probability in each minislot (which increases the backoff
times), and correspondingly increasing the transmission times,
the collision probability becomes small, in which case the
actual CSMA with collisions can be approximated by the
idealized CSMA.

In [30], a new protocol is proposed to deal with collisions.
The protocol has control phases and data phases. Collisions

only occur in the control phase, but not in the data phase. The
same product-form distribution (1) can be obtained for the data
phase, which is then used to achieve the maximal throughput.
Meanwhile, the overhead of the control phase can be easily
quantified.

In the following, we discuss how to use algorithms in this
paper with collisions in mind.

1) Relationship of TA and the contention window in 802.11:
Assume that for linkk the average transmission time isT .
Then the average backoff time isT/Rk. Denote byWk the
contention window (CW) that gives the same average backoff
time. (Recall that the distribution of the backoff time is not
important, as long as it has the correct mean.) Since a random
number is uniformly picked from 0 toWk − 1, the average
backoff time istm · (Wk − 1)/2, wheretm is the length of
a mini-slot. (For simplicity, we do not consider the Binary
Exponential Backoff, or “BEB”, in this calculation.) Equating
the two quantities gives

Wk =
T

Rk

2

tm
+ 1. (22)

We know that larger CW’s lead to lower collision probabil-
ities. By equation (22), for givenRk ’s, small mini-slottm or
large transmission timeT can lead to large CW. (Iftm → 0
or T → +∞, then collisions can be ignored and we return
to the previous model.) However,tm is limited by the speed
of light and the sensing time. The mean transmission timeT
can be made large, but should not be too large in practice
since that will increase access delays. So, here we impose
an upper bound,rmax, to all rk ’s. This givesWk ’s a lower
bound:Wk ≥ 2T/(exp(rmax) · tm)+1. For example, assume
T = 1ms. Recall that a mini-slot in 802.11a istm := 9µs. If
we require thatrk ≤ rmax = 2, thenWk ≥ 31. These values
result in reasonably low collision probabilities if the number
of nodes in a collision domain is not too high [33].

Although the upper boundrmax = 2 seems small, it can ac-
tually achieve a large portion of the capacity region. Consider
the simple network in Fig. 1, where the throughput of the two
links ares1(r) = R1/(1+R1+R2) ands2(r) = R2/(1+R1+
R2) (for simplicity, here we temporarily assume that collisions
are negligible due to the large CW’s). The capacity region is
C = {(λ1, λ2)|λ1 + λ2 < 1}. If r1 = r2 = rmax, then the
total throughput is2 · exp(2)/[1 + exp(2) + exp(2)] ≈ 0.937,
not far from the maximal total throughput 1.

2) A condition that ensures bounded TA:In the following,
we show that by properly choosing the weighting factorβ of
the total utility in Algorithm 2, it can be guaranteed that every
rk is smaller thanrmax at all time, if certain conditions are
satisfied. (In [34], a similar approach is used to control the
amount of backlog in the network.)

Proposition 5: Assume that the utility functionvm(fm)
(strictly concave) satisfiesv′m(0) ≤ V <∞, ∀m. Denote byL
as the largest number of hops of a flow in the network. Then
by settingβ = [rmax − (2L − 1) · α]/V in Algorithm 2, we
haverk ≤ rmax, ∀k at all time.

Proof: According to Algorithm 2, the source of flowm
solvesfm(j) = arg maxf ′

m
{β · vm(f ′

m)− qδ(m),m(j) · f ′
m}. It

is easy to see that ifqm
δ(m)(j) ≥ β ·V , thenfm(j) = 0, i.e., the
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source stops sending data. Thusqm
δ(m)(j + 1) ≤ qm

δ(m)(j). If
qm
δ(m)(j) < β ·V , thenqm

δ(m)(j+1) ≤ qm
δ(m)(j)+α < β ·V +α.

Since initially qkm(0) = 0, ∀k, m, by induction, we have

qm
δ(m)(j) ≤ β · V + α, ∀j, m. (23)

Denotebkm(j) := qkm(j)− qdown(k,m),m(j). In Algorithm
2, no matter whether flowm has the maximal back-pressure
at link k, the actual average service rates

′

km(j) = 0 if
bkm(j) ≤ 0. That is,s

′

km(j) > 0 only if bkm(j) > 0. Since
s

′

km(j) ≤ 1, by item 3 of Algorithm 2,qdown(k,m),m(j+1) ≤
qdown(k,m),m(j) + α andqkm(j + 1) ≥ qkm(j)− α. Then, if
bkm(j) > 0, we havebkm(j + 1) ≥ bkm(j) − 2α > −2α. If
bkm(j) ≤ 0, then bkm(j + 1) ≥ bkm(j). Sincebkm(0) = 0,
by induction, we have

bkm(j) ≥ −2α, ∀j, k, m. (24)

Since
∑

k:amk=1 bkm(j) = qm
δ(m)(j), combined with (23)

and (24), we havebkm(j) ≤ β · V + α + 2α · (L − 1). Since
β = [rmax − (2L− 1) · α]/V , bkm(j) ≤ rmax, ∀j, k, m.

B. Discrete TA and a real-world implementation

Although rk is continuous in our model, one may find it
convenient to quantizerk into a set of discrete values in a real
implementation. Each discrete value corresponds to a different
contention window (a smallerrk corresponds to a larger CW),
and this can be easily mapped to the “service classes” in IEEE
802.11e. Note that here the prioritization is based on the back-
pressure instead of service type originally defined in 802.11e.
Indeed, in [36], a similar protocol is implemented with 802.11e
hardware and it shows superior performance compared to
normal 802.11. (Different from our work, however, [36] only
focuses on implementation study. Also, the CW’s there are set
in a more heuristic way.)

In the following simulation, we set the discrete TA (denoted
by rD,k(j)) as follows by quantizing the continuous TA,rk(j),
computed by Algorithm 2:

• If rk(j) ≥ rmax, then letrD,k(j) = rmax. This corre-
sponds to the first class. Then, fori = 2, 3, . . . , nc, if
rmax − (i − 1)G ≤ rk(j) < rmax − (i − 2)G, then let
rD,k(j) = rmax − (i − 1)G, whereG is the granularity
between adjacent classes, andnc is the number of classes.
In the simulation, we letrmax = 2, nc = 6, and
G = log(2) (thus, the CW of classj + 1 is roughly
twice the CW of classj).

• Define the minimal TArmin := rmax − (nc − 1)G. If
rk(j) < rmin, then do not transmit packets at all. This
is a good approximation since the CW would be quite
large with rmin (about 1000). Since transmissions are
suspended, the back-pressure tends to increase. The link
will resume transmission afterrk(j) goes abovermin.

The upper figure in Fig. 5 shows that the resulting flow rates
and their fluctuations are similar to those with continuousr

(lower figure). (Collisions and BEBare simulated here.) This
indicates that the algorithm is robust to the discretization of
r. So using a few prioritized “classes” with different CW’s is
enough to provide good performance.
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Fig. 5: Flow rates in Network 2 (Grid Topology) with dis-
cretized or continuous TA

VIII. C ONCLUSION

In this paper, we have proposed a distributed CSMA
scheduling algorithm, and showed that, under the model of per-
fect CSMA, it is throughput-optimal in wireless networks with
a general interference model. We have utilized the product-
form stationary distribution of CSMA networks in order to
obtain the distributed algorithm and the maximal throughput.
Furthermore, we have combined that algorithm with end-to-
end flow control to approach the optimal utility, and showed
the connection with maximal backpressure scheduling. The
algorithm is easy to implement, and the simulation results are
encouraging.

The adaptive CSMA algorithm is a modular MAC-layer
protocol that can work with other algorithms in the transport
layer and network layer. For example, it can be combined with
optimal routing, anycast and multicast (Appendix F).

We also considered some practical issues when implement-
ing the algorithm in an 802.11 setting. Since collisions occur in
actual 802.11 networks, we discussed a few recent algorithms
which explicitly consider collisions and can still approach
throughput-optimality.

Our current performance analysis of Algorithm 1 and 2
is based on a separation of time scales, i.e., the vector
r is adapted slowly to allow the CSMA Markov chain to
closely track the stationary distributionp(r). The simulations,
however, indicate that such slow adaptations are not always
necessary. In the future, we are interested to understand more
about the case without time-scale separation.
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IX. A PPENDICES

A. Proof of the fact thatC is the interior ofC̄

Definition: The interior of C̄ is defined as int̄C := {λ ∈
C̄|B(λ, d) ⊆ C̄ for somed > 0}, whereB(λ, d) = {λ′| ||λ′ −
λ||2 ≤ d}.

Proposition 6: λ is strictly feasible if and only ifλ ∈ int C̄.
(In other words,C = int C̄.)

Proof: (i) If λ is strictly feasible, then it can be written
as λ =

∑
i p̄ix

i where p̄i > 0, ∀i and
∑

i p̄i = 1. Let
p̄0 be the probability corresponding to the all-0 IS, and
p̄k be the probability of the ISek, k = 1, 2, . . . , K. Let
d0 = min{p̄0/K, mink p̄k} > 0. We claim that for anyλ′

that satisfies
|λ′

k − λk| ≤ d0, ∀k, (25)

we haveλ′ ∈ C̄. Indeed, ifλ′ satisfies (25), we can find another
probability distributionp̄′ such that

∑
i p̄′ix

i
k = λ′

k, ∀k. p̄′

can be constructed as follows: letp̄′0 = p̄0 −
∑

k(λ′
k − λk),

p̄′k = p̄k + (λ′
k −λk), and let the probabilites of all other IS’s

be the same as those in̄p. By condition (25), we havēp′ ≥ 0.
Also,

∑
i p̄′ix

i
k = λ′

k, ∀k.
Therefore,B(λ, d0) ⊆ C̄ whered0 > 0. So λ ∈ int C̄.
(ii) Assume thatλ ∈ int C̄. We now construct ap > 0 such

that λ =
∑

i pix
i. First, choose an arbitrarypI > 0 (such

that
∑

i pI,i = 1) and letλI :=
∑

i pI,ix
i. If it happens to

be thatλI = λ, then λ is strictly feasible. In the following
we assume thatλI 6= λ. Sinceλ ∈ int C̄, there exists a small-
enoughd > 0 such thatλII := λ + d · (λ − λI) ∈ C̄. So
λII can be written asλII =

∑
i pII,ix

i wherepII ≥ 0 and∑
i pII,i = 1.
Notice thatλ = α·λI +(1−α)·λII whereα := d/(1+d) ∈

(0, 1). Soλ =
∑

i pix
i wherepi := α ·pI,i+(1−α) ·pII,i, ∀i.

Sinceα > 0, 1 − α > 0 andpI,i > 0, pII,i ≥ 0, ∀i, we have
pi > 0, ∀i. Thereforeλ is strictly feasible.

B. Proof the Proposition 2

Consider the convex optimization problem (11), whereλ is
strictly feasible (i.e.,λ =

∑
i p̄i · x

i for some p̄i > 0, ∀xi

and
∑

i p̄i = 1). Problem (11) is clearly feasible and the
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feasible region is closed and convex. The objective function
(the entropy) is bounded in the feasible region. So, the optimal
value is bounded.

We now check whether the Slater condition [28] (pages
226-227) is satisfied. Since all the constraints in (11) are
linear, we only need to check whether there exists afeasible
u which is in the relative interior [28] of the domainD of the
objective function−

∑
i ui log(ui), which is D = {u|ui ≥

0,
∑

i ui = 1}. Sinceλ =
∑

i p̄i · xi where p̄i > 0, ∀i and∑
i p̄i = 1, letting u = p̄ satisfies the requirement. Therefore

the Slater condition is satisfied. As a result, there exist finite
dual variablesy∗

k ≥ 0, w∗
i ≥ 0, z∗ such that the Lagrangian

L(u;y∗,w∗, z∗)
= −

∑
i ui log(ui) +

∑
k y∗

k(
∑

i ui · xi
k − λk)

+z∗(
∑

i ui − 1) +
∑

i w∗
i ui

(26)

is maximized by the optimal solutionu∗, and the maximum
is attained.

We first claim that the optimal solution satisfiesu∗
i > 0, ∀i.

Supposeu∗
i = 0 for all i’s in a non-empty setI. For

convenience, denotēp as the vector of̄pi’s. Since bothu∗

and p̄ are feasible for problem (11), any point on the line
segment between them is also feasible. Then, if we slightly
moveu from u∗ along the direction of̄p − u∗, the change
of the objective functionh(u) := −

∑
i ui log(ui) (at u∗) is

proportional to

(p̄− u∗)T∇h(u∗)

=
∑

i

(p̄i − u∗
i )[− log(u∗

i )− 1]

=
∑

i/∈I

(p̄i − u∗
i )[− log(u∗

i )− 1] +
∑

i∈I

p̄i[− log(u∗
i )− 1].

For i 6/∈ I, u∗
i > 0, so

∑
i/∈I(p̄i − u∗

i )[− log(u∗
i ) − 1] is

bounded. But fori ∈ I, u∗
i = 0, so that− log(u∗

i )−1 = +∞.
Also, sincep̄i > 0, we have(p̄− u∗)T∇h(u∗) = +∞. This
means thath(u) increases when we slightly moveu away
from u∗ towardsp̄. Thus,u∗ is not the optimal solution.

Thereforeu∗
i > 0, ∀i. By complementary slackness,w∗

i =
0. So the term

∑
i w∗

i ui in (26) is 0. Sinceu∗ maximizes
L(u;y∗,w∗, z∗), it follows that

∂L(u∗;y∗,w∗, z∗)

∂ui
= − log(u∗

i )− 1 +
∑

k

y∗
kxi

k + z = 0, ∀i.

Combining these identities and
∑

i u∗
i = 1, we have

u∗
i =

exp(
∑

k y∗
kxi

k)
∑

j exp(
∑

k y∗
kxj

k)
, ∀i. (27)

Plugging (27) back into (26), we have
maxu L(u;y∗,w∗, z∗) = −F (y∗; λ). Since u∗ and the
dual variables y∗ solves (11), y∗ is the solution of
miny≥0{−F (y; λ)} (and the optimum is attained). So,
supr≥0 F (r; λ) is attained byr = y∗. The above proof also
shows that (4) is the dual problem of (11).

C. Convergence and stability properties of Algorithm (9)

The following are some main results in [35], which includes
the detailed proofs.

(i). Let rmax = +∞, i.e., we impose no upper bound on
rk(j). If {α(j)} and {T (j)} meet certain conditions (which
are satisfied byα(j) = 1/[(j+2) log(j+2)] andT (j) = j+2),
and h(rk(j)) = min{c/rk(j), w̄} where c, w̄ > 0 (see
section V for an explanation of the function), then for any
strictly feasibleλ ∈ C, r(j) converges with probability 1 to
somer∗∗ which satisfiessk(r∗∗) > λk, ∀k. It then follows
that the queues are “rate-stable” [35]. (With time-varying
α(j), T (j), the system is not time-homogeneous, in which case
the “positive Harris recurrence” of system Markov chain is not
usually defined. Therefore we use the notion of “rate-stable”
here.)

(ii) Let rmax < +∞ and h(rk(j)) = ε > 0. Define the
capacity region

C′(rmax, ε) : = {λ|λ + ε · 1 ∈ C, and

arg max
r≥0

F (r; λ + ε · 1) ∈ [0, rmax]K}

If λ ∈ C′(rmax, ε), then there exist constant step sizeα(j) = α
and adjustment periodT (j) = T such that all queues are
stable. Note thatC′(rmax, ε)→ C asrmax → +∞ andε→ 0.
So the maximal throughput can be arbitrarily approximated.

(iii) The case withh(rk(j)) = 0 (i.e., Algorithm 1): Similar
to (i), for any λ ∈ C, with rmax = +∞ and α(j), T (j) in
(i), r(j) converges with probability 1 tor∗, the solution of
(4), which satisfiessk(r∗) ≥ λk, ∀k, and the queues are rate-
stable. Similar to (ii), withrmax < +∞ and assume that
λ ∈ C′(rmax, 0), then one can choose constantα(j) = α
and T (j) = T such that the long-term average service rates
are arbitrarily close to the arrival rates. (Asrmax → ∞,
C′(rmax, 0)→ C.)

D. Proof of Proposition 4

Since in the optimal solution of problem (14),f = f̂ and
u = û. we have

−
∑

i

ûi log(ûi)+β

M∑

m=1

vm(f̂m) ≥ −
∑

i

ūi log(ūi)+β · W̄ .

Therefore,

β[

M∑

m=1

vm(f̂m)− W̄ ] ≥ −
∑

i

ūi log(ūi) +
∑

i

ûi log(ûi).

Notice that| −
∑

i ūi log(ūi) +
∑

i ûi log(ûi)| ≤ K · log 2,
so

β[

M∑

m=1

vm(f̂m)− W̄ ] ≥ −K · log 2.

Also, clearlyW̄ ≥
∑M

m=1 vm(f̂m), so

−
K · log 2

β
≤

M∑

m=1

vm(f̂m)− W̄ ≤ 0. (28)
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E. Analysis of Algorithm 2

Regard each period (with lengthT ) as a “time slot” in [15].
Using the proof of Proposition 5,bkm(j) ≤ β · V + α + 2α ·
(L − 1), ∀k, m, j. Sincerk(j) = [maxm bkm(j)]+, we have
0 ≤ rk(j) ≤ C := β · V + α + 2α · (L− 1). Thus, the mixing
time of the CSMA Markov chain in any period is bounded
[35]. So

|Ej [s
′
k(j)]− sk(r(j))| ≤

C1

T
(29)

where the constantC1 depends onC andK ([35]), andEj(·)
means the expectation conditioned on the values of all random
variables up to timetj .

Since u∗
i := pi(r(j)), ∀i maximizes H(u) +∑

k[rk(j)
∑

i(x
i
k · ui)] (see Proposition 3), similar to

the proof of Proposition 4, we have
∑

k

[rk(j)
∑

i

(xi
k · u

∗
i )]

=
∑

k

[rk(j) · sk(r(j))]

≥ max
µ∈C̄

∑

k

[rk(j) · µk(r(j))]−K · log(2)

where C̄ is the set of feasible service rates (includingC and
its boundary).

By this inequality and (29),
∑

k

{rk(j) · Ej [s
′
k(j)]} ≥ max

µ∈C̄

∑

k

[rk(j) · µk(r(j))]

−K · log(2)−K · C · C1/T.

Define r̃k(j) := rk(j)/α (then r̃k(j) corresponds to the
maximal differential backlogW ∗

k (j) in [15], since the change
of rk(j) has been scaled by the step sizeα), we have

∑

k

{r̃k(j) ·Ej [s
′
k(j)]} ≥ max

µ∈C̄

∑

k

[r̃k(j) · µk(r(j))]

−[K · log(2) + K · C · C1/T ]/α.

Now, using Corollary 1 in [15], it follows that

lim inf
J→∞

∑

m

vm(f̄m(J))

≥ W̄ −
2[K · log(2) + K · C · C1/T ]/α + 5K

2β/α

= W̄ −
[K · log(2) + K · C · C1/T ] + 5α ·K/2

β
(30)

where f̄m(J) :=
∑J−1

j=0 E[fm(j)]/J is the expected average
rate of flow m up to theJ − 1’s period. We have used the
fact thatRmax

k = 1, µin
max,k = µout

max,k = 1, whereRmax
k is

the maximal flow input rate at linkk, µin
max,k andµout

max,k are
the maximal rate the linkk can receive or transmit.

As expected, whenT →∞ andα→ 0, this bound matches
the bound in Proposition 4. Also, asβ → ∞, α → 0 , and
T → ∞ in a proper way (sinceC and C1 depend onβ),
lim infJ→∞

∑
m vm(f̄m(J))→ W̄ .

The above bound (30), however, is not very tight. Our
simulation shows good performance without a very largeβ, T
or a very smallα.

F. Extensions: Adaptive CSMA scheduling as a modular MAC-
layer protocol

Using derivations similar to section IV-A, our CSMA
algorithm can serve as a modular “MAC-layer scheduling
component” in cross-layer optimization, combined with other
components in the transport layer and network layer, with
queue lengths as the shared information. For example, we
demonstrate in this section its combination with optimal mul-
tipath routing, multi-channel selection, anycast, and multicast.

1) Anycast: To make the formulation more general, let’s
consider anycast with multipath routing. (This include unicast
with multipath routing as a special case.) Assume that thereare
M flows. Each flowm has a sourceδ(m) (with some abuse of
notation) which generates data and a set of destinationsD(m)
which receive the data. “Anycast” means that it is sufficient
for the data to reach any node in the setD(m). However,
there is no specific “path” for each flow. The data generated
by the source is allowed to split and traverse any link before
reaching the destinations (i.e., multipath routing). Thisallows
better utilization of the network resource by routing the data
through less congested parts of the network. (For simplicity,
we don’t consider the possibility of physical-layer multicast
here, i.e., the effect that a node’s transmission can be received
by multiple nodes simultaneously.)

In this case, it is more convenient to use a “node-based”
formulation [1], [14]. Denote the number of nodes byJ . For
each nodej, let I(j) := {k|(k, j) ∈ L}, whereL is the set
of links (it is also the setV in the link contention graph), and
let O(j) := {k|(j, k) ∈ L}. Denote the rate of flowm on
link (j, l) by sm

jl . Then the (approximate) utility maximization
problem, similar to (14), is

maxu,s,f −
∑

i ui log(ui) + β ·
∑M

m=1 vm(fm)
s.t. sm

jl ≥ 0, ∀(j, l) ∈ L, ∀m
fm +

∑
l∈I(j) sm

lj ≤
∑

l∈O(j) sm
jl , ∀m, j = δ(m)∑

l∈I(j) sm
lj ≤

∑
l∈O(j) sm

jl , ∀m,

j 6= δ(m), j /∈ D(m)∑
i ui · xi

(j,l) =
∑

m sm
jl , ∀(j, l) ∈ L

ui ≥ 0,
∑

i ui = 1.

Associate a dual variableqm
j ≥ 0 to the 2nd and 3rd lines of

constraints (for eachm andj /∈ D(m)), and defineqm
j = 0 if

j ∈ D(m). (Note that there is no flow-conservation constraint
for flow m at each node inD(m).) Then similar to section
IV-A, a partial Lagrangian is

L(u, s, f ;q)
= −

∑
i ui log(ui)

+β ·
∑

m vm(fm)−
∑

m qm
δ(m)fm

+
∑

(j.l)∈L,m sm
jl [(q

m
j − qm

l )].

(31)

First fix u and q, consider maximizingL(u, s, f ;q) over
s, subject tosm

jl ≥ 0 and
∑

i ui · xi
(j,l) =

∑
m sm

jl . Clearly,
for each link(j, l), the flow with the maximal back-pressure
zjl := maxm(qm

j − qm
l ) should be served (with the whole

rate
∑

i ui · xi
(j,l)). Plug this solution ofs back to (31), the

rest derivation is the same as in section IV-A. Therefore the
distributed algorithm is as follows.
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Initially, assume that all queues are empty, and setqm
j =

0, ∀j, m. Then iterate:

• Link (j, l) chooses to serve a flow with the maximal
back-pressurez(j,l) = maxm(qm

j − qm
l ) when it gets the

opportunity to transmit. (Note that there is no replication
of packets.)

• Link (j, l) lets r(j,l) = z(j,l) in the CSMA operation.
• Rate control: For each flowm, if node j is its source,

then it setsfm = arg maxf ′

m
{β · vm(f ′

m)− qm
j f ′

m}.
• The dual variablesqm

j are updated by a sub-gradient
algorithm:qm

j ← [qm
j + α(

∑
l∈I(j) sm

lj −
∑

l∈O(j) sm
jl )]+

if j 6= δ(m) and j /∈ D(m); and qm
j ← [qm

j + α(fm +∑
l∈I(j) sm

lj −
∑

l∈O(j) sm
jl )]+ if j = δ(m). (By doing

this, qm
j ∝ Qm

j whereQm
j is the corresponding queue

length.) Always letqm
j = 0 if j ∈ D(m).

Furthermore, the above algorithm can be readily extended
to channel selection inmulti-channel wireless networks, with
each “link” defined by a triplet(j, l; c), which refers to the
logical link from nodej to l on channelc. In this scenario,
the link contention graph is defined on the set of links(j, l; c).

To give a numerical example (with a single channel), we
simulate two flows in a grid topology in Fig. 6 (a). The trans-
mission range and the interference relationships are the same
as the grid network in Fig. 4 (a). For flow 1, the source node is
S1 and the two destination nodes are labeled by D1. For flow
2, the source node is S2, and the destination node is D2. (Note
that the dashed lines only mean the abstract directions but not
the real paths of the flows.) Letvm(·) = log(·), m = 1, 2, and
β = 3. The resulting flow rates are shown in Fig. 6 (b).

2) Multicast with network coding:Assume that there areM
multicast sessions. Each sessionm has a sourceδ(m) which
generates data and a set of destinationsD(m) which receive
the data. Different from “anycast”, here the data must reach
all nodes in the setD(m). There are two possible designs
for multicast. (1) Fixed multicast tree, where the routes of
each multicast session is fixed. (2) Multicast combined with
multipath routing and network coding. Case (1) is straight-
forward, but the routing may not be optimal. In case (2),
[31] demonstrates an algorithm which achieves the optimal
utility, which however, requirescentralizedMaximal-Weight
scheduling at the MAC layer. In this section, we show that
CSMA scheduling can be combined with it, leading to afully
distributedalgorithm. To facilitate network coding, we let all
the packets have the same size (Note that our results are
insensitiveto the distribution of the transmission time, i.e.,
packet size, if the transmission time and waiting time are not
both constant [23]).

According to the theory of network coding [32], a certain
flow rate for a multicast session can be supported if and only if
it can be supported separately for each destination node. Let
smp

jl be the information flow rate on link(j, l) in multicast
sessionm destined for nodep ∈ D(m), and sm

jl be the
“capacity” for sessionm on link (j, l). The above condition
is that smp

jl ≤ sm
jl , ∀p ∈ D(m). Then, the approximate utility

S1

D1

D1S2

D2

(a) Network topology (S1, S2 are
sources; D1, D2 are destinations)
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Fig. 6: Anycast with multipath routing

maximization problem is

maxu,s,f H(u) + β ·
∑M

m=1 vm(fm)
s.t. smp

jl ≥ 0, ∀(j, l) ∈ L, ∀m, ∀p ∈ D(m)

fm +
∑

l∈I(j) smp
lj ≤

∑
l∈O(j) smp

jl ,

∀m, j = δ(m), p ∈ D(m)∑
l∈I(j) smp

lj ≤
∑

l∈O(j) smp
jl ,

∀m, p ∈ D(m), j 6= δ(m), j 6= p
smp

jl ≤ sm
jl , ∀p ∈ D(m), ∀(j, l) ∈ L∑

i ui · xi
(j,l) =

∑
m sm

jl , ∀(j, l) ∈ L

ui ≥ 0,
∑

i ui = 1.

Associate a dual variableqmp
j ≥ 0 to the 2nd and 3rd lines

of constraints (for eachm, p ∈ D(m) and j 6= p), and define
qmp
j = 0 if j = p. Then a partial Lagrangian is

L(u, s, f ;q)
= H(u)

+β ·
∑

m vm(fm)−
∑

m(
∑

p∈D(m) qmp
δ(m))fm

+
∑

(j.l)∈L,m,p∈D(m) smp
jl [(qmp

j − qmp
l )].

(32)
We first optimize L(u, s, f ;q) over {smp

jl }, subject
to 0 ≤ smp

jl ≤ sm
jl . A solution is as follows:

smp
jl = 0, ∀p satisfyingqmp

j − qmp
l ≤ 0, and smp

jl =
sm

jl , ∀p satisfyingqmp
j − qmp

l > 0. Define the “back-pressure”
of sessionm on link (j, l) asWm

jl :=
∑

p∈D(m)(q
mp
j −qmp

l )+.
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By plugging the above solution to (32), we have

L(u, s, f ;q)
= H(u)

+β ·
∑

m vm(fm)−
∑

m(
∑

p∈D(m) qmp
δ(m))fm

+
∑

(j.l)∈L,m sm
jl W

m
jl .

.

(33)
Now we optimize it over{sm

jl}, subject to
∑

i ui · xi
(j,l) =∑

m sm
jl . One can find that the following is similar to previous

derivations. To void repetition, we directly write down the
algorithm.

Initially, assume that all queues are empty, and setqmp
j =

0, ∀j, m, p. Then iterate:

• Link (j, l) chooses to serve a sessionm′ with the maximal
back-pressurez(j,l) := maxm Wm

jl when it gets the
opportunity to transmit, whereWm

jl :=
∑

p∈D(m)(q
mp
j −

qmp
l )+. To serve sessionm′, nodej performs a random

linear combination8 of the head-of-line packets from the
queues of sessionm′ with destinationp ∈ D(m′) which
satisfiesqm′p

j −qm′p
l > 0, and transmits the coded packet

(similar to [31]). The coded packet, after received by
node l, is replicated and put into corresponding queues
of sessionm′ at nodel (with destinationp ∈ D(m′) such
that qm′p

j − qm′p
l > 0). The destinations can eventually

decode the source packets [31].
• Link (j, l) lets r(j,l) = z(j,l) in the CSMA operation.
• Rate control: For each flowm, if node j is its

source, then it setsfm = arg maxf ′

m
{β · vm(f ′

m) −
(
∑

p∈D(m) qmp
δ(m))f

′
m}.

• The dual variablesqm
j are updated by a sub-gradient algo-

rithm: qmp
j ← [qmp

j + α(
∑

l∈I(j) smp
lj −

∑
l∈O(j) smp

jl )]+
if j 6= δ(m) and j 6= p where p ∈ D(m); and
qmp
j ← [qmp

j + α(fm +
∑

l∈I(j) smp
lj −

∑
l∈O(j) smp

jl )]+
if j = δ(m). (Note that each packet generated by the
sourcej = δ(m) is replicated and enters the queues at
the source for all destinations of sessionm.) By doing
this, qmp

j ∝ Qmp
j whereQmp

j is the corresponding queue
length. Always letqmp

j = 0 if j = p wherep ∈ D(m).

We simulate the same topology as in the “anycast” case,
where the two flows (or “sessions”) have the same sources
and destinations as before. The difference is that in the first
session we have to send the data to both of its destinations.
Let vm(·) = log(·), m = 1, 2, andβ = 3. The result is shown
in Fig. 7.

8We briefly explain how to perform a “random linear combination” of these
packets. For more details, please refer to [31]. (Note thatour main focushere
is to show how to combine CSMA scheduling with other network protocols,
instead of network coding itself.) Initially, each packet generated by the source
in each session is associated with an ID. Assume that each packet is composed
of many “blocks”, where each block hasγ bits. So, each block can be viewed
as a number in a finite fieldF2γ which has2γ elements. For each packetP
to be combined here, randomly choose a coefficientaP ∈ F2γ . Denote the
i’th block of packetP as P (i). Then the corresponding block in the code
packetZ is computed asZ(i) =

P
P aP P (i), where the multiplication and

summation is on the fieldF2γ , and the summation is over all the packets to
be combined.

Clearly, each packet in the network is a linear combination of some
source packets. The ID’s of these source packets and the corresponding
coefficients are included in the packet header, and are updated after each
linear combination along the path (such that the destinations can decode the
source packets).
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Fig. 7: Multicast with multipath routing and network coding
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