New Width Inference Algorithm for Ptolemy I

Ben Lickly
Bert Rodiers

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-13
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-13.html

January 26, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

New Width Inference Algorithm for Ptolemy II

Ben Lickly, Bert Rodiers
Center for Hybrid and Embedded Software Systems

University of California, Berkeley
{blickly,rodiers} @Qeecs.berkeley.edu

January 26, 2009

Abstract

In Ptolemy II, the widths of the relations between actors have an important role
in specifying the semantics of a model. In some situations, however, explicit relation
widths break the modularity of a model. In these cases, we would like to infer the
widths of relations from the widths of neighboring relations. There is an existing
implementation in Ptolemy, but it has some severe limitations.

In this paper, we present the general needs for width inference in Ptolemy II, as
well as the weaknesses of the current algorithm. We argue that a better algorithm is
necessary, present a possible new algorithm, and analyze its performance over variety
of metrics.

1 Introduction

A model of computation is a system for describing how computations can be performed.
Common models of computation include Turing machines, finite state machines, Kahn pro-
cess networks, and discrete event systems. In the domain of embedded systems, models of
computation less powerful than Turing machines are a useful object of study because they
may be more analyzable, and properties such as termination may be provable. Other mod-
els of computation may be useful to study because of the way they deal with concurrency,
composition, or scheduling.

1.1 Ptolemy II

Ptolemy I1[1] is a framework in which heterogeneous models of computation can be combined
and simulated.

Many of these models of computation are actor-based models. Here, the primitive com-
ponents of computation are called actors and they are able to communicate between each
other along explicitly defined channels. These actors are able to execute in a conceptually

Const AddSubtract

’ >+ Display
Const2 _
ST ":l WE]

Figure 1: Simple example of addition in the actor model, with two relations connected to
the add multiport. Notice that multiports are white and single width ports are black.

concurrent manner subject to certain constraints given by the model of computation. An-
other important feature of Ptolemy II is hierarchical composition of models of computation,
in which the specification of one actor may be a separate Ptolemy model operating under
a different model of computation. This allows for heterogeneous composition of models of
computation.

Unlike in object-oriented design, in which components interact by method calls, actors
interact through channels called relations. Data, encapsulated in tokens, can be sent between
actors along relations, from the input and output ports of an actor.

Some ports, called multiports may be connected to more than one relation, enabling
them to send or receive multiple tokens at a time. A simple example of a multiport is in
the AddSubtract actor, as shown in Figure 1. If multiple relations are connected to the Add
multiport, it will read tokens from all of the relations and add them together.

When hierarchical models are allowed, the existence of ports with a width greater than
1 also means that relations of width greater than 1 must be supported. For example, in
Figure 2 the relation between the port (which is a multiport) and the AddSubtract actor
should be 2 in order to carry the data from both constant actors to the AddSubtract actor.
The default width for relations is 1, so in order to create a width 2 relation the user must
manually change the width.

In order to send data from one actor to another, data encapsulated in tokens can be sent
along relations. Many actors are only able to produce one token at a time (single execution),
but in some cases an actor may produce multiple tokens conceptually concurrently. Relations
between actors may also specify their width, or the number of concurrent tokens that they
can accept. The width has no effect on the total number of tokens that a relation may hold,
but for a relation of width n, only n tokens may be concurrently placed on that relation.

1.2 Width Inference

One desirable feature would to be to have models that can determine the widths of their own
relations. For example, the creator of the AddSubtractCompositeActor in Figure 2 may not
know how many relations will be connected to its input port. In this case she may want to
have the width of the inside relation to be inferred by looking at the combined widths of the
relations connected to the outside of the port. The current release of Ptolemy II supports
just this type of width inference, in which the user is able to specify certain relations to be

AddSubtractCompositeActor

51O

port AddSubtract pijsplay
W]»—»a

> -

Figure 2: Example in which hierarchy necessitates a width 2 relation between the port and
the AddSubtract actor.

automatically inferred. The current algorithm is somewhat simple, however, in that it does
not try to deal with cases where more than relation connected to the same port tries to be
inferred. Unfortunately, the are many reasonable cases in which multiple relations connected
to the same port must be inferred, such as inferring across multiple levels of hierarchy, or
inferring multiple branches at a junction.

For example, while the current implementation works for the example shown in Figure 2,
it fails on the only slightly more complicated example in Figure 3. In this example, another
layer of hierarchy has been added, and the algorithm is asked to infer the lengths of the
two inner relations. This discrepancy arises because the first example requires only a single
relation to be inferred, whereas in the second example there are two relations both connected
to port2 that need to be inferred.

2 Problem Statement

This project concerned a more powerful algorithm for width inference. This will likely need to
balance the desire for a more capable functionality against the requirements of performance
and backward compatibility.

2.1 Constraints

The following constraints must be addressed in design of the new width inference algorithm.

Ports of non-matching width In Ptolemy II it is considered valid for a model to have
ports in which the width of the input relations is not equal to the width of the output
relations. In this case, the number of tokens that get written on a firing is the smaller
of the two relations. This makes width inference much more difficult because this

Const

OutsideCompositeActor
3T i
Const2 > S}D
> 1)
AddSubtractCompositeActor
port

o>—f B

port2 AddSubtract Display

+
. >—D|§|

Figure 3: Example in which current inference algorithm fails.

means that a relation may have multiple different widths that would both produce a
valid model. An inference algorithm will need to allow these types of relations, and
may have to determine which width assignments are preferred over others.

Performance Constraints Ptolemy II is used to create and run complex models with

thousands of actors, and it is very important that the performance does not degrade
significantly even on these very large models. The current width inference algorithm,
while lacks ability to make complicated inferences, does have the property that it is
able to infer quickly, partially because it runs incrementally as the model is being built.
One undesirable result of this approach is that it may introduce errors that are false
positives while the model is being built. A width inference algorithm that runs at run
time, rather than incrementally at model run time has the potential to handle more
cases by taking a global view, but it also means that running the model would incur
additional overhead.

Infer by Default While the current default width for newly-created relations is 1, it may

3

be preferable to have the default be to infer the widths. In order for this to be possible,
the new algorithm must be powerful enough to infer widths for most reasonable graphs
and give useful errors in the cases where it is not able to infer widths. It will also be
important that the performance of a model in which most relations are inferred does
not significantly degrade over a model with explicitly declared relations.

Resulting Algorithm

There are many ways to clearly describe a desired inference behavior, such as an integer linear
programming or a system of linear equations. Some formulations are even able to handle

4

ambiguities in which more than one assignment (for example by favoring smaller widths in
the objective function). Unfortunately, our performance constraints force us to choose a
faster algorithm over a slower, more full-feature one. Rather than choosing a possibly slower
algorithm that is able to make global decisions, we chose an approach that can make all its
decisions based on the local state of adjacent relations. The pseudocode of this algorithm is

as follows: !

inferWidths()

unspect fiedSet < all relations that need to be inferred
workingSet < all known relations connected to a relation that needs to be inferred
while |workingSet| > 0 A |unspeci fiedSet| > 0 do
relation «— workingSet.pop()
unspeci fiedSet < unspeci fiedSet \ {relation}
for port € multiports connected to relation do
updatedRelations «— updateRelationsAt(port)
workingSet «— workingSet U updatedRelations
end for
end while
if |unspecifiedSet| > 0 then
Error: Could not infer relations remaining in unspeci fredSet
end if

updateRelationsAt(port)

if all relations connected to one side of port have known width then
s «— that side
s" « the other side (with unknown width relations)
dif ference < widths of known relations at s — widths of known relations at s’
if dif ference < 0 then
Error: This model would infer negative widths
else if dif ference = 0 then
the widths of all relations at s" «— 0
else if there is only one unspecified relation at s’ then
That relation has a width equal to dif ference
end if
end if
return Set of inferred relations

The algorithm starts with the known relations that border relations that need to be
inferred, and works its way inward by locally inferring the widths at multiports that it
encounters. Due to the local nature of the algorithm, it is not able to deal with ambiguous

!The final Ptolemy implementation is slightly more complicated than this. In particular, to allow more
flexible inference, there is a special case when dif ference is equal to the number of remaining relations.
Since this causes the width inference to be non-deterministic for certain pathological cases, that special case
is not included in the algorithm used here.

Algorithm Comparison
200

New Algorithm +——+—

180 n(x

Old Algorithm --x---!
o(x)

160

Time (ms)

.
0 1000 2000 3000 4000 5000 6000 7000
Relations to infer

Figure 4: Run times of the new and old width inference algorithm.

inference situations. This means that it can only solve inference graphs for which the shape of
inferred relations is a tree. This is because any (non-directed) cycle introduces ambiguities.

We have preserved backwards compatibility for ports to have non-matching width by ig-
noring relations that are specified explicitly. The inferred ports are required to have matching
width, but most existing models with non-matching widths have the widths set explicitly,
so this requirement should not break them.

3.1 Results

Since each multiport can only be considered once for each relation, and each relation is only
considered once, this algorithm should be linear in the number of inferred relations. To test
this hypothesis, we use the model transformation domain [2] to generate models with large
numbers of inferred relations, and examine how long it takes to infer the widths of these
models.

First we constructed a simple type of model that has no two inferred relation sharing
a port. This configuration is simple enough that the old inference algorithm would work,
and allows us to compare the performance of the old and new algorithms. We should expect
that the new algorithm will be slower, since it is more powerful, and comparing with the
old algorithm gives us a baseline to compare with. Figure 4 shows the inference time for
both width inference algorithms on these simple models. Even though the new algorithm is
slower for large models, it still appears to be proportional to the number of relations to be
inferred.

In addition to the simple example that could be inferred by both algorithms, we also

%H%H%H%H%j

Figure 5: Example of Spider pattern with the number of iterations set to five. In larger
graphs, more relations are connected to the input port of B1.

looked at the performance of more complicated examples designed to be more difficult to
infer. The two types of examples are the Spider pattern, as seen in Figure 5, and the Ladder
pattern, as seen in Figure 6. At the center of the Spider pattern, there is one port that has
many inferred relations connected to it, and the Ladder pattern is specifically constructed
so that there is only one port at a given time which can successfully be inferred from. In
Figure 7 we can see how the runtime of the width inference algorithm grows as the size of
the Spider and Ladder graphs grow. Since the algorithm simply looks through relations in
the working set until it finds a port that it can infer from, the Ladder models should be a
pathological case for the new algorithm. In effect, the Ladder graphs have many false leads
in their working sets, which explains why they take longer to run width inference.

One caveat is that although the algorithm itself has a running time that is linear in the
number of relations to be inferred, it also requires proper initialization in order to know
which relations are to be inferred. In order to properly initialize unspecifiedSet before
the algorithm begins, the algorithm searches through all the relations in the graph, which
is linear in the total number of relations in the graph. This means that models with few
inferred relations suffer a performance penalty over the old algorithm. This problem can be
visualized easily in Figure 8, which shows the run time of both the initialization and the
width inference for a model with no inferred relations. Even though the actual algorithm
run time does not increase as uninferred relations are added, the initialization time does.

Const4

port port2

Al CompositeActor

510

il

A2

CompositeActor2

510

il

A CompositeActor3

5o

CompositeActor4

5o

A

7| |7

&S Display

(=

il

Const5

Figure 6: Example of Spider pattern with the number of iterations set to five. Note that the
relation connected to the display is specified, allowing width inference to proceed from the
bottom up.

250 T T
Ladder Pattern +——+—i
I

v } ,

Time (ms)
it

50 { ,

0 ! ! ! ! ! ! ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Relations to infer

Figure 7: Run times of the Spider models and the Ladder models with respect to the number
of relations to infer.

920 T

Initialization runtime +——+—
80 |- i(x) === { |
Inference runtime :--x---:

60 1

40 - E

Time (ms)

30 B

10 | ¥ 1

.10 I I I I I
0 5000 10000 15000 20000 25000 30000

Uninferred Relations

Figure 8: Comparison of the initialization time and run time for a model in which no relations
need to be inferred.

4 Conclusion

The new algorithm has the main advantage over the old algorithm that it is able to success-
fully infer widths in many more cases. Compared to other possible choices of replacement
algorithms, it also has the advantage that its performance is still linear in the number of
relations to infer. The new algorithm does run slower than the old algorithm, but this is to
be expected given its greater expressiveness. Since the new algorithm is unable to deal cor-
rectly with cycles, there are still models for which it can not infer all widths. It is probably
not feasible to infer by default with the new algorithm, although it would work much more
effectively than the previous algorithm.

The main disadvantage over the old algorithm is the initialization time penalty, which
causes unnecessary slowdown for models with few inferred relations. This could be addressed
by removing the initialization phase and only only inferring widths on demand. When a
width is inferred, the algorithm could check all of the connected inferred relations and infer
them together. This is further work.

One other area to investigate further would be the behavior of the algorithm for even
larger models. The model transformation domain allows large parametric models to be
expressed very succinctly, but the performance limitations made generating models a bot-
tleneck. This ruled out testing with models of more than a few thousand actors. It is likely
that another method of generating models would be able to produce larger models. This
may be able to produce graphs which give us more confidence that the algorithm is linear.

Acknowledgments

This paper would not have been possible with out the help of Thomas Feng, who gave advice,
quick fixes, and general pointing in the right for everything in the model transformation
domain.

References

[1] J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Yuhong Xiong. Taming heterogeneity - the Ptolemy approach. Proceedings
of the IEEE, 91(1):127-144, Jan 2003.

[2] Thomas Huining Feng and Edward A. Lee. Scalable models using model transforma-
tion. Technical Report UCB/EECS-2008-85, EECS Department, University of California,
Berkeley, Jul 2008.

10

