Quantitative Analysis of Embedded Software Using
Game-Theoretic Learning

Sanjit A. Seshia
Alexander Rakhlin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-130
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-130.html

September 22, 2009

Copyright © 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Quantitative Analysis of Embedded Software Using
Game-Theoretic Learning

Sanijit A. Seshia Alexander Rakhlin
University of California, Berkeley University of Pennsylvania
sseshia@eecs.berkeley.edu rakhlin@wharton.upenn.edu
Abstract

The analysis of quantitative properties, such as timingmowder, is central to the design of reliable
real-time embedded software and systems. However, thiica¢ion of such properties on a program is
made difficult by their heavy dependence on the program’s@mment, such as the processor it runs on.
Modeling the environment by hand can be tedious, errorgrand time consuming. In this paper, we
present a new, game-theoretic approach to analyzing d¢atreiproperties that is based on performing
systematic measurements to automatically learn a modakoénvironment. We model the estimation
problem as a game between our algorithm (player) and the@maent of the program (adversary),
where the player seeks to accurately predict program ptieperhile the adversary sets environment
parameters to thwart the player. We present both theotatichexperimental evidence for the utility of
our game-theoretic approach. On the theoretical side, we it we can predict the program property
for all execution paths with probability greater thar ® by only making a number of measurements
that is polynomial in Iif1/d) and the program size. Experimental results for executioie tnalysis
demonstrate that our approach is efficient, effective, agllyportable.

1 Introduction

The main distinguishing characteristic of embedded compsystems is their tight integration with the
physical world. Consequently, the behavior of softwaretdiers of suchcyber-physicalsystems has a
major effect on physical properties of such systems. Thesggepties are quantitative, including constraints
on resources, such as timing and power, and specificativolving physical parameters, such as position
and velocity. The verification of such physical propertiéembedded software systems requires modeling
not only the software program but also the relevant aspddtseqprogram’s environment. However, only
limited progress has been made on these verification prabl€ne of the biggest obstacles is to create an
adequately accurate model of a complex environment.

Consider, for example, the problem of estimating the executme of a software task. This problem
plays a central role in the design of real-time embeddeasystto provide timing guarantees and for use in
scheduling algorithms. In spite of significant researchhimtbpic over the last 20 years (e.g. [14, 20]), this
problem remains far from solved. The complexity arises fthentwo dimensions of the problem: tpath
problem which is to find the worst-case path through the task, andttite problemwhich seeks to find the
worst-case environment state to run the task from. The enol$ particularly challenging because these
two dimensions interact closely: the choice of path afféleésstate and vice-versa. Significant progress
has been made on this problem, especially in the computafidounds on loops in tasks, in modeling
the dependencies amongst program fragments using (lieceastraints, and modeling some aspects of
processor behavior. However, as pointed out in recent pdpekee [12] and Kirner and Puschner [11], it

is becoming increasingly difficult to precisely model themgexities of the underlying hardware platform
(e.g., out-of-order processors with deep pipelines, brgrediction, caches, parallelism) as well as the
software environment. This results in timing estimate$ #na either too pessimistic (due to conservative
platform modeling) or too optimistic (due to unmodeled éeas of the platform). Industry practice typically
involves making random, unguided measurements to obtaingiestimates. As Kirner and Puschner [11]
write, a major challenge for measurement-based techniguie automatic and systematic generation of
test data.

In this paper, we present a neggame-theoreti@pproach to verifying physical properties of embedded
software by runningsystematic testsf the software in its target environment, aleérning an environ-
ment model The following salient features of our approach distingutsfrom previous approaches in the
literature:

e Game-theoretic formulation®we model the problem of estimating a physical quantity (saskime)
as a multi-round game between our estimation algorithrmyép)aand the environment of the program
(adversary). The physical quantity is modeled as the lenfjthe particular execution path the pro-
gram takes. In the game, the player seeks to estimate ththlehgny path through the program
while the adversary sets environment parameters to thivanplayer. Each round of the game con-
stitutes one test. Over many rounds, our algorithm learosigin about the environment to be able
to accurately predict path lengths with high probabilitp particular, we show how our algorithm
can be used to predict the longest path and thus predict hiegpsuch as worst-case execution time
(WCET).

e Learning an environment model key component of our approach is the use of statisticahlagr
to generate an environment model that is used to estimatphyrsical quantity of interest. The
environment is viewed as an adversary that selects weighelges of the program’s control flow
graph in a manner that can depend on the choice of the path tested. This path-dependency is
modeled as a perturbation of weights that can be introdugadebadversary. Our algorithm seeks to
estimate path lengths in spite of such adversarial setfimgemhts. The algorithm is robust not only
to adversarial choices made by the environment, but alsodesan measurement.

e Systematic and efficient testingnother central idea is to perforsystematic measuremerndkthe
physical quantity, by sampling only so-calledsis pathf the program. The intuition is that the
length of any program path can be approximated as a lineabioation of the observed lengths
of the basis paths. We use satisfiability modulo theoriesTB&blvers and integer programing to
generate feasible basis paths and to generate test inpdiivéca program’s execution down a basis
path.

Although our focus in this paper is on software analysis, elebe that the above concepts are also useful
for the analysis of physical properties of embedded systemgeneral.

We present both theoretical and experimental results dstradimg the utility of our approach. On the
theoretical side, we prove that if we run a number of tests ih@olynomial in the input size and %)
our algorithm can accurately estimate the length of any pathe program with probability + & (formal
statement in Section 4). In particular, we can use this résdstimate the length of the longest path — for
timing, this amounts to estimating the worst-case exenutime (WCET). More generally, we show that
our algorithm can estimate the length of all program patles {he “timing profile” of the program) and, for
anye, it can also be used to find paths of length withiof the longest.

We demonstrate our approach for the problem of executioa #malysis of embedded software. Our
approach is implemented in a tool called @ TIME. We present experimental results comparingve-
TIME to existing state-of-the-art WCET estimation tools that based on combining static analysis and

2

integer programming. Results indicate that our approanlgeaerate@ven biggeexecution-time estimates
than these techniques, without incurring the difficultieglved in modeling complex processor behavior.
Since our approach is measurement-based, it is easy to fppdyied and complex platforms. Moreover,
as noted above, our approach can be used not just for wastazelysis, but also to prediztongest paths
and for predicting execution times of arbitrary programhgat

For concreteness, we focus the rest of the paper on exedimeranalysis. However, the theoretical
formulation and results in Section 4 are potentially apglile for estimatingany physical quantitpf em-
bedded software; we have therefore sought to present coretieal results in a general manner as relating
to the lengths of paths in a graph.

The outline of the paper is as follows. We begin with a surveyetated work in Section 2, mainly
focussed on execution time analysis. The basic formuladimh an overview of our approach is given in
Section 3. The algorithm and main theorems are given in @edti and experimental results in Section 5.
We conclude in Section 6.

A preliminary version of this work appeared in [22]. Thishetal report expands on both theoretical
and experimental results, describing the theoretical inadar greater detail.

2 Background and Related Work

We briefly review literature on estimating physical paraengbf software and relevant results from learning
theory.

2.1 Estimating Execution Time and Other Physical Quantities

There is a vast literature on estimation execution timegesly WCET analysis, comprehensively surveyed
by Li and Malik [14] and Wilhelm et al. [27, 20]. For lack of sp@ we only include here a brief discussion
of current approaches and do not cover all tools. Referaimcaisrrent techniques can be found in a recent
survey [20].

There are two parts to current WCET estimation methquisgram path analysigalso calledcontrol
flow analysi¥ andprocessor behavior analysisn program path analysis, the tool tries to find the program
path that exhibits worst-case execution time. In procelssbavior analysis (PBA), one models the details of
the platform that the program will execute on, so as to betaqdeedict environment behavior such as cache
misses and branch mis-predictions. PBA is an extremely-tiomsuming process, with several man-months
required to create a reliable timing model of even a simpbe@ssor design.

Current tools are broadly classified into those basedtatic analysis(e.g., aiT, Bounds-T, SWEET,
Chronos) and those that aneeasurement-baseg@.g., RapiTime, SymTA/P, Vienna M./P.). Static tools
rely on abstract interpretation and dataflow analysis topmgdm facts at program points that identify de-
pendencies between code fragments and generate loop bolrer static techniques use measurement
for estimating the time for small program fragments, andsuezment-based techniques rely on techniques
such as model checking to guide path exploration. Statlnigaes also perform implicit path enumeration
(termed “IPET"), usually based on integer linear programgni The state-of-the-art measurement-based
techniques [26] are based on generating test data by a catianirof program partitioning, random and
heuristic test generation, and exhaustive path enumerhagianodel checking.

Our technique isneasurement-basgtlence, it suffers no over-estimation and is easy to portrieva
platform. It is distinct from existing measurement-basezhhiques due to the novel game-theoretic formu-
lation, basis path-based test generation, and the useiotdehrning to infer an environment model. Our
approach does rely on some static techniques, in deriviog lmunds and using symbolic execution and

satisfiability solvers to compute inputs to drive the progmown a specific path of interest. In particular,
note that our approach completely avoids the difficultiepricessor behavior analysis, instead directly
executing the program on its target platform. Moreover quoraach applies not just to WCET estimation,
but also to estimating the entire execution time profile ofaypam.

While there have been several papers about quantitatiffecaéion of formal models of systems (e.qg. [9]),
these typically assume that the quantitative parametgosnoftive elements (such as execution time of soft-
ware tasks) are given as input. There is relatively littlekvan directly verifying non-timing properties on
software, with the exception of estimating the power useddstware-controlled embedded systems [24].

Adversarial analysis has been employed for problems sudystem-level dynamic power manage-
ment [10], but to our knowledge, the adversarial model aradyars used in this paper is the first for timing
estimation and for estimating quantitative parameterofifaire.

2.2 Learning Theory

Results of this paper build on thgame-theoretic predictiofiterature in learning theory. This field has
witnessed an increasing interest in sequentiabfwine learning, whereby an agent discovers the world by
repeatedly acting and receiving feedback. Of particularést is the problem of learning in the presence of
an adversary with aomplete absence of statistical assumptionghe nature of the observed data.

The problem of sequentially choosing paths to minimizerégget (the difference between cumulative
lengths of the paths chosen by our algorithm and the totgtteof the longest path aftd@rrounds) is known
as an instance dfandit online linear optimizationThe “bandit” part of the name is due to the connection
with the multi-armed bandiproblem, where only the payoff of the chosen “arm” (path)egealed. The
basic “bandit” problem was put forth by Robbins [21] in 195®&iehas been well-understood since then.
The recent progress comes from the realization that wefbpaing algorithms can be found (a) for large
decision spaces, such as paths in a graph, and (b) undeisadakconditions rather than the stochastic
formulation of Robbins. We are the first to bring these resialbear on the problem of quantitative analysis
of embedded software.

We refer the reader to a recent book [4] for a comprehensaadrtrent of sequential prediction. Some
relevant results can be found in [17, 9, 1].

2.3 Miscellaneous

Our algorithm uses the concepthmsis path®f a program, which has been explored before in the software
engineering community to compute thgclomatic complexitgf a program [16]; however, our theoretical
results rely on extracting a special basis callédgycentric spannefl]. Our approach heavily relies on ad-
vances in SMT solving for input test generation; these tieghas are surveyed in a recent book chapter [2].

3 Theoretical Formulation and Overview

We are concerned with estimating a physical property of ansoé task (program) executing in its target
platform (environment). The physical quantity of interigsh general a function of three things: the program
code, parameters of its environment, and the inputs to thgr@m. More concisely, we can express the
physical quantityq as the following function

a=fe(xw)

wherex denotes the inputs to the program (such as data read from memieceived over the network)
denotes the environment parameters (such as the contethiss cdiche or network delays), affg denotes
the program-specific function that mapandw to a value of the physical quantity.

In generalx andw vary over time, and so doeg However, the functiorfp is typically constant over
time. We will make the variation with time explicit by addiagsubscript:

G = fp(x, W)
Some sample physical properties of interest are as follows:

¢ Global worst-case estimationn this case, we want to estimate the largest value of thetiqyanfor
all values ofx andw:
max fp(X,w) @
X,W

e Worst-case estimation over a time horizorThis is a similar problem as above, except that the worst
case is to be computed over a finite time horizpformally specified as follows:

f 2
max max P (X, W) (2)

e Average-case estimation over a time horizon against a wearsé environmentn this case, we want
to estimate, for a time horizonand for any sequence of environment parametersvs, ..., W, the
following quantity:

1 T
max i; fp (X, W) 3)

e Can the system consume R resources at any point over a tinzehoft: The question we ask here is
whetherg; exceedsR for any choice of, x, andw;. For example, a concrete instance of this problem
is to ask whether a software task can take more Baaconds to execute.

For concreteness, in the remainder of this section, we wili$ on a single quantitgxecution timge
and on a single representative problem, namelywibist-case execution tinfg/CET) estimation problem.
However, our theoretical formulation and algorithms cawer to estimating any physical quantity and to
problems other than worst-case analysis.

The WCET estimation problem can be defined as follows:

Given a terminating software taSliand a platfornrM on whichSexecutes, estimate the longest
time Stakes to terminate ohl.

Moreover, we will focus on WCET estimation over a finite timerizon 1. If we let T go to o, this
problem reduces to the true WCET estimation problem. Farityreve will simply refer to finite-horizon
WCET estimation as WCET estimation; however, our expertaigesults compare against techniques for
the true WCET estimation problem.

The main ideas in our theoretical formulation are elabakr&ow.

Game-theoretic formulation: We model the WCET estimation problem as a game between theTWCE
estimation toolr and the environmert of S

The game proceeds over multiple rountss 1,2,3,.... In each roundz picks the inputsx to S.
These inputs determine the path taken through the programpicks, in a potentially adversarial fashion,
environment parametevg This choice bye can depenan the inputs selected hy.

At the end of each round 7 receives as feedback the execution timef Sfor its chosen path under
the parameters chosen lay Note that we assume that only receives the overall execution time of the
task, not a more fine-grained measurement of (say) eachlidasicin the task along the chosen path. This
enables us to minimize any skew from instrumentation iesetd measure time. Based on the feeddgck
7 can modify its input-selection strategy.

After some number of rounds we stop:7 must output its prediction of the longest execution time of
Sthat could have been exhibited during rounds 1,2,...,T. 7 wins the game if its prediction is correct;
otherwise,z wins. The goal of7 is thus to select a sequence of inputs so that it can accuealadugh
data to identify, with high probability, the longest exaonttime of S during &= 1,2, ... 1.

Note that this longest execution time need not be due to snibiatt have been already tried outby

By permitting £ to select environment parameters basedrdsmchoice of path, we can model path-
dependent timing as well as perturbation in execution tifresingle path due to variation in environmental
conditions or measurement error. The more predictableithiag behavior of the platform, the smaller
this perturbation will be. For theoretical analysis, we mldthe perturbation as a random variable whose
mean is bounded by a paramefgix If a platform has predictable timing, such as the PRET msae
proposed by Edwards and Lee [6], it would mean that is small. (Theunax parameter will play a role in
determining the rate of convergence of our proposed ahyar)t

Formulation as a graph problem: An additional aspect of our model is that the game operateth@n
control-flow graphGs of the taskS, with loops unrolled to a pre-determined safe upper bound.

In this setting, the game described above works as followsng round, the playerr selects a patik
through the grapls from a designatedource nodd€entry point of the function) to a designatsihk node
(exit point/return statement of the function). This is penied by generating input values f8rto drive
execution down patlt, using standard constraint-based test generation tagmigsing SMT solverse
selects lengths for all source-sink path&ig where this selection can depend on the choicg.dflowever,
£ only reveals the length of the chosen patk.

The goal of7 is thus toselect pathso that within a time horizom it can accumulate enough data to
identify, with high probability, the longest path s during rounds = 1,2, ...,T.

Next, we formalize the above problem definition.

3.1 Theoretical Formulation

Consider a directed acyclic grah—= (V, E) derived from the control-flow graph of the task with all loops
unrolled. We will assume that there is a single source nogled single sink nodein G; if not, then dummy
source and sink nodes can be added.

Let # denote the set of all paths (& from sourceu to sinkv. We can associate each of the paths with
a binary vector withm = |E| components, depending on whether the edge is present dnraiher words,
each source-sink path is a vectoin {0,1}™, where theth entry of the vector for a patkhcorresponds to
edgei of G, and is 1 if edge is in x and O otherwise. The setis thus a subset dfo, 1}™.

The path prediction interaction is modeled as a repeated d¢mtween our algorithmrz() and the pro-
gram environment%). On each round, 7 chooses a path € # betweenu andv. Concurrent with this
choice, the adversary picks a table of non-negative path lengths given by the fanct, : 2 — R=°.
Then, the total length of the chosen patk is revealed, wherg = 2(x). The game proceeds for some
number of rounds=1,2,...,1.

At the end of roundt, the goal of7 is to accurately estimate the worst-case execution timetalue

environment states in rountls= 1,2,...,T. This can be expressed as the following quantity:

Lmax=Max max Ly(X) (4)
xer t=12,..71

Moreover, we would also like to identify the worst-case path given by

X' =argmaxc, Mmax Ly(X) (5)

We make a few remarks on the above theoretical model.

First, we stress that, in the above formulation, the goal fsd the WCETdue to environment states in
roundst=1,2,...,T. In order to find the true WCET, for all possible environmdates, we need to assume
that the worst-case state occurs at some time betiveeh andt = 1. We contend that this formulation is
useful in spite of this assumption because it serves to giedie path dimension of the WCET estimation
problem from the state dimension. In our experience, foryrapplications, the worst-case environment
state does appear at some time during testing — the problératigesting may not pick the worst-case path
at that same time. With our formulation, the goal is to ac@lyaestimate the WCET even if we do not
sample the worst-case path when the worst-case state edcurr

Second, the definition of our estimation targgt.x assumes that the timing of a program depends only
on the control flow through that program. In general, thergnian also depend on characteristics of input
data that do not influence control flow. We believe that théddfasmework we describe here also applies to
the case of data-dependent timing, and leave an exploratithris aspect to future work.

Overall, we believe that decoupling the path problem from dtate problem in a manner that can be
applied easily to any platform is in itself a significant deabe. This paper mainly focuses on solving this
problem. In future work, we plan to address the limitatiohthe model identified above.

The third and final remark we make is about the “size” of thetbtical model. Since a DAG can have
exponentially-many paths in the number of nodes and edbgesidmain of the functiom; is potentially
exponential, and can change at each rounth the worst case, the strategy sets of botland £ in this
model are exponential-sized, and it is impossible to exdetrn . for everyt without sampling all paths.
Hence, we need to approximate the above model with anothéelrtitat, while being more compact, retains
enough accuracy to generate useful results in practice.

Below, we present a more compact model, which our algoriththen based upon. We will present this
model in two steps.

3.1.1 Modeling with Weights and Perturbation

We model the selection of the table of lengthsby the environment as a two-step procedure.

(i) First, £ chooses a vector of non-negatigdge weightsw; € R™, for G. These weights represent
path-independendelays of basic blocks in the program.

(i) Then, after observing the path selected byr, £ picks a distribution from which it draws a pertur-
bation vector (%). The functional notation indicates that the distributisraifunction ofx;.

The vectorr (%) models the path-specific changes tlaapplies to its original choice;. We will
abbreviaterg (%) by 1. In cases where we wish to denatgx’) for X’ that could be different from
X, we will explicitly write T (x) or 1§ (X').

The only restriction we place ap(x), for anyx, is that||mg (x)||1 < N, for some finiteN. The parameter
N is arbitrary, but places the constraint that the pertuobadif any path length cannot be unbounded.

Thus, the overall path length observeddbys
le =X - (W +T0%) = X" (W +)

Now let us consider how this model relates to the originaifiaiation we started with.

First, note that, in the original modet, picks the functionz; that defines the lengths of all paths. To
relate to that model, here we can assume, without loss ofrglégethat £ draws a-priori the perturbation
vectorstt(X) for all x € 2, but only T (%) plays a role in determining.

Second, equating the observed lengths, we see that

Lt (%) = X (W + TT%)

The main constraint on this equation is the requirement [fi§t|s < N, which implies thatx/ ;| < N.

In effect, by using this model we require thatpick £, by first selecting path-independent weightsand

then, for each source-sink path, modifying its length by dypbation of at most-N. Note, however, that

the model places absolutely no restrictions on the valug of how it changes with (from round to round).
The goal for7 in this model is to estimate the following quantity

Lmax=Mmax max X (W +1%) (6)
xer t=12..71

Moreover, we would also like to identify the worst-case path given by

X = argmaxc, _max_ X" (W + TT%) (7)

3.1.2 Simplified Model without Perturbation

To more easily introduce the key concepts in our algorithma,will initially assume that the perturbation
vectors at all time points are identically 0, vize} (x) = O for all t andx.

Clearly, this is an unrealistic idealization in practisecs in this model the length of an edge is inde-
pendent of the path it lies on. We stress that our main theatetsults are for the more realistic model
defined in Section 3.1.1.

We next give an overview of our approach in the context of allssrample.

3.2 Overview of Our Approach

We describe the working of our approach using a small program an actual real-time embedded system,
the Paparazzi unmanned aerial vehicle (UAV) [18]. Figuredwss the C source code for thgétitude_control_task
in the Paparazzi code, which is publicly available openaur

Starting with the source code for a task, and all the libsaaied other definitions it relies on, we run the
task through a C pre-processor and the CIL front-end [8] attichet the control-flow graph (CFG). In this
graph, each node corresponds to the start of a basic blockdgets are labeled with the basic block code
or conditional statements that govern control flow. Figuslh@ws the CFG for the code shown in Figure 1.
Note that we assume that code terminates, and bounds arenlorowall loops. Thus, we start with code
with all loops (if any) unrolled, and the CFG is thus a dirécéeyclic graph (DAG). We also pre-process the
CFG so that it has exactly one source and one sink. Each éxethtough the program is a source-to-sink
path in the CFG.

An exhaustive approach to program path analysis will needitmnerate all paths in this DAG. However,
it is well-known that a DAG can have exponentially many pdthghe number of vertices/edges). Thus, a
brute-force enumeration of paths is not efficient.

#define PPRZ_MODE_AUTO2 2
#define PPRZ_MODE_HOME 3

#define VERTICAL_MODE_AUTO_ALT 3
#define CLIMB_MAX 1.0

void altitude_control_task(void) {
if (pprz_mode == PPRZ_MODE_AUT02
|| pprz_mode == PPRZ_MODE_HOME) {

if (vertical_mode == VERTICAL_MODE_AUTO_ALT) {

/* inlined below: function altitude_pid_run(); */
float err = estimator_z - desired_altitude;
desired_climb = pre_climb + altitude_pgain * err;
if (desired_climb < -CLIMB_MAX)

desired_climb = —-CLIMB_MAX;
if (desired_climb > CLIMB_MAX)
desired_climb = CLIMB_MAX;

13
Figure 1:Source code foraltitude_control_task

Our approach is to sample a set lmdisis paths Re-
call that each source-sink path can be viewed as a vector 1? x1=(1,1,1,0,0,1,1,0,0,
in {0,1}™, wherem is the number of edges in the unrolled X2 = (100110011
CFG. The set of all valid source-sink paths thus forms a sub- 72N S
set? of {0,1}™. We compute the basis far in which each %\ ﬁ x3=(11,10000.1.1,
element of the basis is also a source-sink path. 3 5 x4=(1,0,0,1,1,1,1,0,0,

Figure 3 illustrates the ideas using a simple “2-diamond” 6,/®\8
example of a CFG. In this example, pathsx, andxs form ﬁ ¥4 = x1 + X2 - X3
a basis andy can be expressed as the linear combination NFO
X1+ Xo — X3. 10

Our algorithm, described in detail in Section 4, ran- 3

domly samples basis paths of the CFG and drives program

execution down those paths by generating tests using OBgyure 3:lllustration of Basis Paths. An edge
straint solving. From the observed lengths of those patfige| indicates the position for that edge in the vector
we estimate edge weights on the entire graph. This estimaigesentation of a path.

accumulated over several rounds of the game, is then used

to predict the longest source-sink path in the CFG. Themakguarantees on performance are proved in
Section 4 and experimental evidence for its utility is giveisection 5.

4 Algorithm and Theoretical Results

Recall that, in the model introduced in the previous sectioa path prediction interaction is modeled as a
repeated game between our algorithm (Player) and the prognaironment (Adversary). On each round

we choose a source-sink paghe » C {0,1}™. The adversary chooses the lengths of paths in the graph. We
assume that this choice is made by the following two stagegss first, the adversary chooses the worst-

FunctionCall()

pprz_mode — 2)

(err = estimator_z - desired_altitude;
desired_climb = pre_climb + altitude_pgain * err;}

(desired_climb < -(1.0))

(desired_climb >= -(1.0)) °

(desired_climb = -(1.0);)

ppiz_mode = 3)

(vertical_mode 1= 3)

desited_climb > 1.0)

(desired_climb <= 1.0) Q

(desited_climb=1.0;)

Figure 2:Control-flow graph for altitude_control_task

caseweights w; € R™, on the edges dB independently of our choicg, and then skews these weights by
adding a random perturbatiart;, whose distribution depends an (We will also refer to edge weights and
path lengths as “delays”, to make concrete the link to tinginglysis.)

In the simplified model, which we consider first, we suppos the perturbation is zero; thus, we
observe the overall path length= x'w;. In the general model, only = X' (w; + 17%) is observed. No
other information is provided to us; not only do we not know lbngths of the paths not chosen, we do not
even know the contributions of particular edges on the ahpsgh. It is important to emphasize that in the
general model we assume that the adversary is adaptivetimgtlaad ™, can depend on the past history of
choices by the player and the adversary.

Suppose that there is a single fixed pathwhich is the longest one on each round. One possible
objective is to findx*. In the following, we exhibit an efficient randomized algbm which allows us to
find it correctly with high probability. In fact, our resulése more general: if no single longest path exists,
we can provably find a batch of longest paths. We describeHate our theoretical approach paves the way
for analyzing worst-case execution time given a range afraptions at hand.

10

Before diving into the details of the algorithm, let us sketow it works:
e First, compute a representative set of basis paths, cabbatyaentric spannefsee section 4.1)

e For a specified number of iteratiomsdo the following:
* pick a path from the representative set
* observe its length
* construct an estimate of edge weights on the whole graphtiherobserved length

¢ Find the longest path or a set of longest paths based on thegavef the estimates oveiterations.

It might seem mysterious that we can re-construct edge use(glelays, for the case of timing analysis) on
the whole graph based a single number, which is the totathewigthe path we chose. To achieve this, our
method exploits the power of randomization and a carefuicehof a representative set of paths. The latter
choice is discussed next.

4.1 Focusing on a Barycentric Spanner

It is well-known in the game-theoretic study of path predictthat any deterministic strategy against an
adaptive adversary will fail [4]. Therefore, the algorithee present below is randomized. As we only
observe the entire length of the path we choose, we are bauseldct from the set of patlteveringthe
whole graph or else we risk missing a highly time-consumidgee However, simply covering the graph is
not enough — note that such coverage corresponds to “statemerage” in the program, without covering
all ways of getting to a statement. Indeed, a key featureehtborithm is the ability to exploit correlations
between paths to guarantee that we find the longest. Hencageg abarycentric spannefintroduced

by [1]), a set of up tam paths with two valuable properties: any path in the graphlmnvritten as a
linear combination of the paths in the spanner, and the c@fiis in this linear combination are bounded
in absolute value. The first requirement says that the spasmaegood representation for the exponentially-
large set of possible paths; the second says that lengthsrad ef the paths in the spanner will be of the
same order of magnitude as the length of the longest patlselprperties enable us to repeatedly sample
from the barycentric spanner and reconstruct delays on ti@engraph. We then employ concentration
inequalitied to prove that these reconstructions, on average, converie true delays of the paths. Once
we have a good statistical estimate of the true weights dhekdges, it only remains to run a longest-path
algorithm for weighted directed acyclic graph®{GEST-PATH), subject to path feasibility constraints.

The existence of a barycentric spanner has been shown irb&aleand Kleinberg [1]. In particular, the
authors provide the following procedure to find a 2-baryderspanner set (where coefficients are bounded
in absolute value by 2)b, ..., by} € 2 (see also [17]).

In Algorithm 1,B = (by,...,by) andB_; = (by,...,bi_1,bi11,...,bm). The output of the algorithm is
the final value 0B, a 2-barycentric spanner; i.e., any path# can be written as= S ; a;b; with |o;| < 2.
Theith iteration of the for-loop in lines 2-4 repeatedly repkdteeith element of the standard basis with
a path that is orthogonal to the previous 1 paths identified so far and with all remaining standardsbasi
vectors and also spans the path-spackine 3 of the algorithm corresponds to maximizing a lineardtion
over the sefr, and can be solved usingNGesT-paTH.? At the end of the for-loop, we are left with a basis
of # that is not necessarily a 2-barycentric spanner. Lines 5{fhealgorithm refine this basis into a
2-barycentric spanner using the sar&GesT-PATH optimization oracle that is used in the for-loop.

1Concentration inequalities are sharp probabilistic gu@es on the deviation of a function of random variables fitsrmean.
2In practise, to compute feasible basis paths one must adstraomis that rule out infeasible paths, as is standardtager
programming formulations for timing analysis [14]; in tidse, the longest-path computation is solved as an integer program.

11

Algorithm 1 Finding a 2-Barycentric Spanner
L (b1>"'7bm) N (elv"'7em)'
for i =1 tomdo {{Compute a basis af } }
bj « argmaxc, [detx,B_)|
end for
while Ix € 2, i € {1,...,m} satisfying
|det(x,B_;)| > 2|det(b;,B_;)| do {{TransformB into a 2-barycentric spanngr
bj +— X

7: end while

o

Algorithm 2 GAMETIME with simplified environment model
1 Inputt € N
: Compute a 2-barycentric spanrid, ..., by}
:fort=1totdo
. Environment chooses;.

2
3
4
5. We choosé; € {1,...,b} uniformly at random.

6: We predict the patl = b;, and observe the path length= b; w;

7. Estimatef € RP asv; = b, -@,, Wwhere{g } denotes the standard basis.

8: Compute estimated weightg = B™

9: end for

10: Use the obtained sequeneeg.”. W, to find a longest path(s). For example, for Theorem 4.2, wexcien

X = argmaXes X' S_q Wk,

One can intuitively view the determinant computation as gotimg the volume of the corresponding
polytope. Maximizing the determinant amounts to spreatliregvertices of the polytope as far as possible
in order to obtain a “diverse” set of basis paths.

It is shown [1] that the running time of Algorithm 1 is only giratic inm. Gyorgy et al. [9] extend
the above procedure to the case where the set of paths sgaresledimensional subspace &™ (where
b < m), a scenario which is more realistic for our setting. Sliglabusing notation, leB be theb x m
matrix with b’s as rows. We define the Moore-Penrose pseudo-invergeasB* = BT(BB") 2. It holds
thatBB' = I,. For theoretical analysis, |& be any upper bound on the length of any basis path.

Since we have assumed an adaptive adversary that produbased on our previous choices .. x;_1
as well as the random factors; ... %% _1, we should take care in dealing with expectations. To thik ket
us denote the conditional expectatiBjA] = E[Ai1,...,it_1,Tt,...,T0¢_1], keeping in mind that random-
ness at time in the general model stems from our random chaiae the basis patland the adversary’s
random choicat; giveni;. In the simplified model, all randomness is due to our chofdh® basis path,
and this makes the analysis more transparent. We stresth¢éhativersary can vary the distribution o
according to the path chosen by the Player.

4.2 Analysis under the Simplified Model

We now analyze the effectiveness oABETIME under the simplified model presented in Section 3. We
begin by proving some key properties of the algorithm.

Preliminaries
The following Lemma is key to proving that Algorithm 2 penfios well. It quantifies the deviations of

12

our estimates of the delays on the whole graghfrom the true delays, which we cannot observe.
Lemma 4.1 With probability at leastL— 9, forall x € 2,

<1 Y2¢,/2b+2In(25-1), (8)

(W — W) "X

|
-

=

where c= 4bM.

Proof: We will show thatExx = wx for anyx € 2, i.e. the estimates are unbiadazh the subspace
spanned byb;,...,by}. By working directly in the subspace, we obtain the requpegbabilistic statement
and will have the dimensionality of the subspdéc@otm, entering the bounds.

Definev; = Bw just asv;f = BW. Taking expectations with respectitpconditioned ony,...,i;_1,

Ei¥% = [(tht at =5 Zlb (bTw) - 6 = Bw = w.

Fix any o € {—2,2}°. We claim that the sequend,...,Z;, whereZ, = o™ (% —v) is a bounded
martingale difference sequence. IndeBdZ; = 0 by the previous argument. A bound on the range of the
random variableg; can be computed by observing

|a"%| = [a" [b(bjw)ey]| < 2bbyw| < 2bM

and
|C(Tvt| < 2bM7

implying
|Z;| < 4bM =c.

An application of Azuma-Hoeffding inequality (see Appexndior a martingale difference sequence

yields, for the fixed,
T
Pr(let > c\/ZTIn(Z(Zb)6—1)> <3/2°
t=

Having proved a statement for a fixeg we would like to apply the union boufdo arrive at the
corresponding statement for aaye [—2 2|°. This is implausible as the set is uncountable. However,
applying a union bound over theerticesof the hypercube{—2,2}° is enough. Indeed, ify i1 =
a7 ST, (% —w)| < & for all vertices of{—2,2}P, then immediatelys{_;Z| < & for anya € [—2,2]° by
linearity. Thus, by union bound,

ioﬁ(\% —\)
t=

Any pathx can be written as’™ = a"B for somea € [—2,2°. Furthermorew{ = B*¥% implies that
X'W = a"BBt% = a™% andx™w; = a™v;. We conclude that

Pr(VO(e [-2,2P, < c\/ZTb+ 2r|n(261)> >1-20.

3For random variableX andX, X is said to be an unbiased estimateXaf E[X —X] = 0.
4Also known as Boole’s inequality, the union bound says thatrobability that at least one of the countable set of avent
happens is at most the sum of the probabilities of the evergsP(AUB) < Pr(A) + Pr(B).

13

Ict T
T 2t=1W X

number of paths

It g7
T 2t=1 W X

Y

‘ P
€+2¢
path length

Figure 4:lllustration of the second inclusion in Lemma 4.2. The set ofe-longest paths, the object of interest, is
contained in the set dE + 2§)-longest paths w.r.t. to the sequeneg.”., ;. Under a margin assumption, equality between the
two sets can be shown, as exhibited by Theorem 4.2.

Jin-wrs

and the statement follows by dividing oy
O

Estimating the Set of Longest Paths

With the help of Lemma 4.1, we can now analyze how the longestlnost-longest) paths with respect
to the estimatedy’s, where path lengths are averaged over all rounds, conipaine true averaged longest
paths.

Pr(Vxe P,

< c\/ZTb+ZrIn(26—1)> >1-3

Definition 4.1 Define the set af-longest paths with respect to the actual delays

1‘[
Sf=<xeer:= wtx>max wtx—e
T & Xep

and with respect to the the estimated delays

SE={xecer: wtx>max WX —€y.
Xer T &

In particular, 59 is the set of longest paths.

The following Lemma makes our intuition precise: with enodigalst, the set of longest paths, which
we can calculate after running Algorithm 2, becomes alnabesttical to the true set of longest paths. We
illustrate this point graphically in Figure 4: In a histograf average path lengths, the set of longest paths
(the right “bump”) is somewhat smoothed when considerirggath lengths under the estimateds.” In
other words, paths might have a slightly different averaath fength under the estimated and actual weights.
However, we can still guarantee that this smoothing becaregBgible for large enougi, enabling us to
locate the longest paths.

14

Lemma 4.2 For anye > 0 and for§ = 1-%/24bM,/2b+2In(25-1),

e+2¢ ~e+28

SEC st and S; C ¢

with probability at leastl — d.
Proof: Letx € 3{9 andy € s2. Suppose that we are in tiig — 8)-probability event of Lemma 4.1. Then

i 1T E>max leth’—s i

>}ti\7vty e—&> = lety €—2¢

Fm—\
f-lI

—max— ZWtTX' €— 28,

Xer T

where the first and fourth inequalities follow by Lemma 4tk third inequality is by definition of maximum,
and the second and fifth are by definitionsséfand s?, resp. Since the sequence of inequalities holds for

anyx e Ef, we conclude thata - ST+ZE The other direction of inclusion is proved analogously.

Note that§ — 0 ast — . To compute the set?, we can instead compute the sé(E that contains
it. If \STE\ < k, for some parametds, then we can use an algorithm that computeskttengest paths (see,
e.g., [7]) to find this set.

Results under Unique Longest Path Assumption

While Lemma 4.2 is very general, we now give one interestinglication for finding a longest path
under the following assumption.

Assumption 4.1 There exists a single path that is the longest path on any round with a certain (known)
marginp:
VX e P X#£X, v, (X' —x)"w > p

Note that if there is a unique longest path (for any mapgin 0), then we can see that

X —argmax— WtX =ag maxmaxvvtx
XeP xer t=1..1

Thus, under the above margin assumption, we can, in fadyeethe longest path, as shown in the next
Theorem.

Theorem 4.2 Suppose Assumption 4.1 holds with- 0. We run the Algorithm 2 for = (8bM)?p~?(2b+
2In(2671)) iterations. Then with probability at leadt— &, Algorithm 2 outputs

T
X i=argmax” y W
XeP t=

and X is equal to X.

15

Proof:
Let Xt = argmaxe, Xy {1 W. We claim that, with probability * 9§ it is equal tox*. Indeed, suppose
X; #X*. By Lemma 4.2x; € STO - 535 with probability at least + . Thus,

14 14
- leth;‘ > = ZthTX* —2¢.
T T

t= t=

Assumption 4.1, however, implies that

1T T ¥ 1T T %
— W, — W, X —
Tt; tXr<TtZl k Y

leading to a contradiction whenever> 28 = 1-1/28bM,/2b+2In(25-1)). Rearranging the terms, we
arrive att > (8oM)2p~2(2b+2In(2571)), as assumed. We conclude that with probability at leas®]l
Xt = x* and{x*} = 50 = sZ&.

O

The following weaker assumption also has interesting ioaions.

Assumption 4.2 There exists a path*e 2 such that it is the longest path on any round
vxe P, vt, (X —x)'w >0

If, after running Algorithm 2 for enough iterations, we fint2€-longest paths (the séfz), Lemma 4.2
guarantees that, under Assumption 4.2, the longestyaths? is one of them with high probability. As
discussed earlier, we can use an efficiefingest paths computation to find a set containilg We can
then use this information to repeatedly test the candidatiespin this set to find the worst-case path and
estimate its length.

4.3 Analysis under General Weights-Perturbation Model

We now present an analysis ofa@ETIME under the general weight-perturbation model given in Sec. 3
For easy reference, we give theaGBETIME algorithm again below but with the new environment model
Algorithm 3.

As before, letM be any upper bound on the length of any basis path (where tigghléncludes the
perturbation).

In the general model, the environmentpicks a distribution with meap®; € R™, which depends on the
algorithm’s chosen patk From this distributionz draws a vector of perturbatioms; € R™. The vector
¢ satisfies the following assumptions:

e Bounded perturbation:
IT¢]|1 < N, whereN is a parameter.

e Bounded mean perturbation of path length:
For any pathx € 2, X" | < Hmax

Note thaty; is a function of the chosen path, and th&tdepends ompt;.
We now state the main lemma for our general model. In this,s@sealculater; as an estimate of the
sumwy + Tt.

16

Algorithm 3 GAMETIME with general environment model
1 Inputt € N
2: Compute a 2-barycentric spanrién, ..., by}
3: fort=1totdo
Environment chooses;.
We choose; € {1,...,b} uniformly at random.
Environment chooses a distribution from which to drat, where the meap; and support of the
distribution satisfies the assumptions given above.
7: We predict the patlxt bi, and observe the path length= by (w + 17%)
8. Estimatevf € RP asv; = bt - e,, where{e } denotes the standard basis.
9: Compute estimated weightg = B
10: end for
11: Use the obtained sequeneeg. .. W; to find a longest path(s). For example, for Theorem 4.4, wexcien

X; 1= argmaxep X' ¥ {_q W.

2SI

Lemma 4.3 With probability at leastL— 9, forall x € 2,
T
Zw&\m %) "X

+Tv2% 2b+2In(45-1) +d 2m+2m451})

where c= 2b(2M + pYnax) @and d= N + Hmax.

< (2b+ 1)Hmax

Proof: The proof is similar to that of Lemma 4.1, so we only highligjine differences here.

E% = Ei, {Er, [b(f W + b4 (%)) - & [it] }

b
- %i;b(b?\/\lt)-a+5i;b(b?ub‘)a

basis

= Bw + I

wherepPasisdenotes thé x 1 vector of means in which thigh element i and each entry is bounded
in absolute value bymax. _

Fix anya € {—2,21°. As before, the sequend, ..., Z;, wherez; = a™ (% — v — 29 is a bounded
martingale difference sequence. A bound on the range ofieiom variables can be computed by observ-
ing

|a"%| = |a"[b(by (w; +1T%))e;]| < 2bJbf (w + 1T¢)| < 2bM
and _
0T35S < 2bpmax, [aTw| < 2bM

implying
1Z4] < 2b(2M + pinax) = C.

17

Thus, using Azuma-Hoeffding inequality, we can concluds thr anyd, > 0, and for fixedx,

Pr(T > c\/ZTIn(Z(Zb)611)> < 8y /2°
t=

and (skipping a few intermediate steps involving the unioara as before), we finally get

T

Jia-wrs

Now consider any fixed € {0,1}™. We claim that the sequendg,...,Y;, whereY; = X"17% (x) — X"
is also a bounded martingale difference sequence. Clesnige E:[17:(X)] = 1, Et[Y;] = 0. Further, a
bound on the range of the random variables can be computeddaywing

Pr(Vxe P,

< 2BTHmax+ c\/ 2Tb+2r|n(2611)> >1-8;. (10)

X't ()| <N and |x"%| < Hmax-

Thus,
IYt| <N+ pmax=:d.

An application of Azuma-Hoeffding inequality for the fixacgind for anyd, > 0 yields,

Pr< ivt >d 2T|n(2(2m)651)> < 8y/2™.
t=

Taking the union bound over alle {0,1}™,

T

21 —KY)

Pr(Vx e {0,1}™ < d\/ZTm+ 2tIn(25,)) >1-9,.

Thus, we get

Pr<Vx e{0,1}™,

Zl XTT (X il (| +dy/2tm + 2in(25,)) >1-5,
t

and finally

Pr<Vx e {0,1}™

STlvlmaX"i‘d\/ZTm—i-Zﬂn(Zégl)) >1-9,. (1))

til X" (X)

Settingd; = & = g in Relations 10 and 11 above and dividing them throughout, e get that, for all
x € 7, each of the following two inequalities hold with probatyilat mostg:

T
ZXT(\TVt—Wt)‘ > 2bpmax+ 1 Y2cy/ 20+ 2In(45-1)
T |4

> Mmax+ T Y2dy/2m+2In(45-1)

18

1

1

= ti X% (X)

From the above relations, we can conclude that, fox allp, the following inequality holds with probability
at least - &

< (204 1) Mmaxt

i T

T
r1/2<c 2b+2In(45-1) +d4/2m+ 2In(48~ 1)> (12)

which yields the desired lemma.
O

Estimating Longest Paths

From Lemma 4.3, we can derive results on estimatingstlmngest paths and the longest path in a
manner similar to that employed in Section 4.2. The mairettffice is that now we viewy;_; % as an
estimate ofy{_; (W + 7%) rather than of simplyy{_; w.

Thus, we now define the sgf as

Definition 4.3 Define the set af-longest paths with respect to the actual delays
S = XET'} T(+TLX)Tx>max} T(+ 105 (X))"™X —¢
T 'Tt;Wt t " Xer Tt;Wt t

The definition of the setf stays unchanged. _
The lemma on approximating the sgtdy s now becomes the following:

Lemma 4.4 For anye > 0 and for

& = (204 D)pmax+ T2 {c\/ZbJr 2In(45-1) +d\/2m+2In(46—1)} ,

we have

e+2¢ ~e+28

SEC st and S; C ¢

with probability at leastl — 0.

Under the margin assumption (Assumption 4.1), we can redbedongest path in the general weight-
perturbation model, using an identical reasoning as before

Theorem 4.4 Suppose Assumption 4.1 holds with> (4b+ 2)pmax. We run Algorithm 3 fort = 8(p —
(4b+ 2)pmax) 2 (c?(b+1In(4371)) + d?(m+In(4371))) iterations.
Then with probability at least — 8, Algorithm 3 outputs
T

X =argmax’ y
XeP t=

and % is equal to X.

The proofs of Lemma 4.4 and Theorem 4.4 are virtually idahtio the corresponding results in Sec-
tion 4.2, so we omit them here. Also, as in that section, weatsa identify the longest path under the

weaker Assumption 4.2 by finding the sféf‘b”)“'"ax containings? and enumerating the paths in it.

19

5 Experimental Results

We have implemented and evaluated our approach for problemsecution time analysis. Our analysis
tool, called &METIME, can generate an estimate of the execution time profile ghtbgram as well as a
worst-case execution time estimate. This section detailshaplementation and results.

5.1 Implementation

GAMETIME operates in four stages, as described below.

1. Extract CFG. GAMETIME begins by extracting the control-flow graph (CFG) of thet@ak task whose
WCET must be estimated. This part oA@ETIME is built on top of the CIL front end for C [8]. Our CFG
parameters (numbers of nodes, edges, etc.) is thus spedifie CFG representations constructed by CIL.
In general, nodes correspond to the start of basic blocKsegptogram and edges indicate flow of control,
with edges labeled by a conditional or basic block. In ouregigmce, this phase is usually fast, taking no
more than a minute for any of our benchmarks.

2. Compute basis paths.The next step for GMETIME is to compute the set of basis paths and Bre
matrix. This is done essentially as discussed in Sectiorhérewe also ensure the feasibility of basis paths
by the use of integer programming and SMT solving. This pltasebe somewhat time-consuming; in our
experiments, the basis computation for the largest bendgh(atatemate) took about 15 minutes.

3. Generate program inputs.Given the set of basis paths for the grapiM& TIME then has to generate
inputs to the program that will drive the program’s execautitown that path. It does this usikcgnstraint-
based test generatioby generating a constraint satisfaction problem chariaatg each basis path, and
then using a constraint solver based on Boolean satistiafHiAT). This phase uses the UCLID decision
procedure [3] to generate inputs for each path and createsapy of the program for each path, with the
different copies only differing in their initialization fictions. For our experiments, this constraint-based
test generation phase was very quick, taking less than atenioueach benchmark.

4. Predict estimated weight vector or longest pathFinally, Algorithm 2 is run with the set of basis paths
and their corresponding programs, along with Btematrix. The number of iterations in the algorithm,
depends on the mode of usage of the tool. In the experimepdsteel below, we used a deterministic cycle-
accurate processor simulator, and heneeas set equal th, since we perform one simulation per basis
path. In generaly can be pre-computed as described in Section 4 or increaaddally while searching for
convergence to a single longest path.

The run-time for this phase depends on the execution timkeoptogram and the number of iterations of
the loop in Algorithm 2; for our experiments, this run-timaswnder a minute for all benchmarks.

Given the estimated weights computed at each rouadys, ..., W;, we can compute the overall esti-
mated weight vecton} Y1_1W, and use this to predict the length of any path in the progranparticular,
we can predict the longest path, and its corresponding tlerfgternatively, the predicted longest path can
be executed (or simulated) several times to calculate thieedktiming estimate.

5.2 Benchmarks

Our benchmarks were drawn from those used inMHeET Challenge 200R3], which were drawn from
the Malardalen benchmark suite [15] and the PapaBench [i8}. In particular, we used benchmarks that
came from real embedded software (as opposed to toy progrhatsnon-trivial control flow, and did not
require automatic estimation of loop bounds. The latteedn ruled out, for example, benchmarks that
compute a discrete cosine transform or perform data cormsipresbecause there is usually just one path

20

through those programs (going through several iteratibad@op), and variability in run-time usually only
comes from characteristics of the data. Most benchmarkseiialardalen suite are of this nature.

The main characteristics of the chosen benchmarks is shownhle 1. The first three benchmarks,
altitude, stabilisation, and climbontrol, are tasks in the open source PapaBench softwaes fenmanned
aerial vehicle (UAV) [18]. The last benchmark, statematesade generated from a& EMATE Statecharts
model for an automotive window control system. Note in gatttr, how the number of basis pathgs far
less than the total number of source-sink paths in the CF@®.4# able to efficiently count the number of
paths as the CFG is a DAG.) We also indicate the number of bhesde for each task; however, note that
this is an imprecise metric as it includes declarations, memt lines, and blank lines — the CFG size is a
more accurate representation of size.

Name LOC | Size of CFG| Total Num.| Num. of basis
n m of paths pathsb
altitude 12| 12 16 11 6
stabilisation 48 | 31 39 216 10
climb_control 43| 40 56 657 18
statemate | 916 | 290 | 471 7 x 1016 183

Table 1: Characteristics of Benchmarks. “LOC” indicates number of lines of C code for the task. The @olFlow
Graph (CFG) is constructed using the CIL front ends the number of nodesyis the number of edges.

5.3 Worst-Case Execution Time Analysis

We have compared @1eTIME with leading tools for WCET analysis. We present here a coispa
with Chronos [13]. These tools are based on models craftedaidicular architectures, and are designed
to generate conservative (over-approximate) WCET bourdthough GAMETIME is not guaranteed to
generate an upper bound on the WCET, we have found thateG IME can produce larger WCET estimates
than these tools. We also show thatNEE TIME does significantly better than simply testing the programs
with inputs generated uniformly at random.

5.3.1 Comparison with Chronos and Random Testing

We performed experiments to comparaNgETIME against Chronos [13] as well as against testing the
programs on randomly-generated inputs. WCET estimateswpeit in terms of the number of CPU cycles
taken by the task to complete in the worst-case.

Chronos is built upon SimpleScalar [25], a widely-used foolprocessor simulation and performance
analysis. Chronos extracts a CFG from the binary of the pragfcompiled for MIPS using modified
SimpleScalar tools), and uses a combination of dataflowyaisalinteger programming, and manually con-
structed processor behavior models to estimate the WCHTedask.

To compare GMETIME against Chronos, we used SimpleScalar to simulate, for tea&heach of the
extracted basis paths. We used the same SimpleScalar gwocesfiguration as we did for Chronos (which
is Chronos’ default configuration), specified below:

-cache:il1l i11:16:32:2:1 -mem:lat 30 2 -bpred 2lev -bpred:2lev 1 128 2 1 -decode:width 1 -issue:width
1 -commit:width 1 -fetch:ifgsize 4 -ruu:size 8

Since SimpleScalar’s execution is deterministic for a figeatessor configuration, we did not run Al-
gorithm 2 in its entirety. Instead, we simulated each of theidpaths exactly once (factoring out the time

21

for initialization code) and then predicted the longeshpd described in Section 4. The predicted longest
path was then simulated once and its execution time is reppait QMETIME’'Ss WCET estimate.

The random testing was done by generating initial valuesémh program input variable uniformly
at random from its domain. For each benchmark, we gener@@dch random initializations; note that
GAMETIME performs significantly fewer simulations (only as many a&serare basis paths, for a maximum
of 183 for the statemate benchmark).

Name of | Chronos Random GAMETIME| T.—Ty| Basis path
Benchmark| WCET| testing| estimate Ty times
Te T Ty (%) Max Min
altitude 567 175 348 629 | 343| 167
stabilisation| 1379 | 1435 1513 -89 | 1513 1271
climb_control| 1254 | 646 952 317 | 945 167
statemate | 8584 | 4249 4575 87.6 | 373% 3235

Table 2:Comparison with Chronos and random testing.Execution time estimates are in number of cycles reported
by SimpleScalar. For random testing, the maximum cycle tower 500 runs is reported. The fifth column indicates the@miage
over-estimation by Chronos overa®E TIME, and the last two columns indicate the maximum and minimuaheggounts for basis
paths generated by AMETIME.

Our results are reported in Table 2. We note that the estiof@EaMETIME Ty is lower than the WCET
Tc reported by Chronos for three out of the four benchmarkserdstingly, Ty > T for the stabilisation
benchmark; on closer inspection, we found that this ocdumainly because the number of misses in
the instruction cache was significantly underestimated byoflos. The over-estimation by Chronos for
statemate is very large, much larger than for altitude aimbctontrol. This appears to arise from the fact
that the number of branch mis-predictions estimated by &gas significantly larger than that actually
occurring: 106 by Chronos versus 19 mis-predictions on timgdst path simulated by AMETIME in
SimpleScalar. In fact, the number of branches performedsingle loop of the statemate code is bounded
by approximately 40.

We also note that GMETIME's estimates can be significantly higher than those gerketateandom
testing. Moreover, GMETIME's predicted WCET is higher than the execution time of anyhef basis
paths, indicating that the basis paths taken together geaviore longest path information than available
from them individually.

5.4 Estimating the Full Timing Profile of a Program

One of the unique aspects oA@ETIME is the ability to predict thexecution time profile of a program
the distribution of execution times over program paths -oamnélized in Lemma 4.3.

To experimentally validate this ability, we performed esipents with a complex processor architecture
— the StrongARM-1100 — which implements the ARM instructsat with a complex pipeline and both data
and instruction caches. The Simlt-ARM cycle-accurate &aou [19] was used in these experiments.

In our experiments, we first executed each basis path gedebgtGameTime on the SimIt-ARM sim-
ulator and generated the averaged estimated weight vwg{;@h”% ztb:lv”vt. Using this estimated weight
vector as the weights on edges in the CFG, we then efficieatiyptited the estimated length of each path
in the CFG ax- Wy,g Using dynamic programming. We also exhaustively enumeraiteorogram paths for
the small programs in our benchmark set, and simulated ddblese paths to compute its execution time.

22

For the altitude program, the histogram of execution tinersegated by GMETIME perfectly matched
the true histogram generated by exhaustively enumeratogyam paths.

For the climhcontrol task, the GMETIME histogram is a close match to the true histogram, as can
be seen in Figure 5. Out of a total of 657 paths, 129 were foarfuktfeasible; of these, AMETIME’S
prediction differs from the true execution time on only 12hsabut the prediction is never off by more than
20 cycles.

Path lengths for cctask (bin size = 20 cycles)

N
o

Frequency
[= N N w w
(5, o 1%, o 1%,

=
o

Ul

% ﬂui.l 1,

500 1000 1500 2000
Execution time (cycle count)

Figure 5: Estimating the distribution of execution times with GAMETIME. The true execution times are
indicated by white bars, the predicted execution times by ¢pars, and the cases where the two coincide are colorekl blac

In summary, we have found AMETIME to be an adequate technique to estimate not just the WCET,
but also the distribution of execution times of a programm,deen complex microprocessor platforms. A
key aspect of GMETIME's effectiveness has been the generation of tests for ba#s.p We have also
experimented with other coverage metrics such as statertbeatage, but these do not yield the same level
of accuracy as do basis path coverage. Full path coveragerysdifficult to achieve for programs that
exhibit path explosion (e.g., statemate), while the nunatbdiasis paths remains tractable.

6 Conclusions

We have presented a new, game-theoretic approach to @sgimatantitative properties of a software
task, such as its execution time profile and worst-case éwrectime (WCET). Our tool, GMETIME,

is measurement-based, making it easy to use on many diffeletforms without the need for tedious pro-
cessor behavior analysis. We have presented both thesdratid experimental results for the utility of the
GAMETIME approach for quantitative analysis, in particular for tipniestimation.

We note that our algorithm and results of Section 4 are génartnat they apply to estimating longest
paths in DAGs in an unpredictable environment, not justrtortg estimation for embedded software. One
could apply the algorithms presented in this paper to gtaivie analysis of many systems with suitable
graph models. Several potential applications are wortloeixg, including timing analysis of combinational
circuits and distributed embedded and control systemsglisas/power estimation of embedded systems.

23

Acknowledgments

We are grateful to Subramani Arunkumar, Richard Karp, Edwage, and Pravin Varaiya for valuable
discussions and feedback. We thank Bharathi Seshadri,iSiisap and Min Xu for their inputs. Andrew
Chan helped generate the experimental data presentedtiorS&el. The first author was supported in part
by NSF CAREER grant CNS-0644436 and an Alfred P. Sloan Felipy and the second author by DARPA
grant FA8750-05-2-0249.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

Baruch Awerbuch and Robert D. Kleinberg. Adaptive ragtwith end-to-end feedback: distributed
learning and geometric approachesSINOC '04: Proceedings of the thirty-sixth annual ACM sympo-
sium on Theory of computingages 45-53, New York, NY, USA, 2004. ACM.

Clark Barrett, Roberto Sebastiani, Sanjit A. Seshial @esare Tinelli. Satisfiability modulo theories.
In Armin Biere, Hans van Maaren, and Toby Walsh, editdtandbook of Satisfiabilityvolume 4,
chapter 8. 10S Press, 2009.

Randal E. Bryant, Daniel Kroening, Joel Ouaknine, Safji Seshia, Ofer Strichman, and Bryan
Brady. Deciding bit-vector arithmetic with abstractionn TACAS volume 4424 ofLNCS pages
358-372, 2007.

Nicold Cesa-Bianchi and Gabor LugosPrediction, Learning, and GamesCambridge University
Press, 2006.

Arindam Chakrabarti, Krishnendu Chatterjee, ThomadH&nzinger, Orna Kupferman, and Rupak
Majumdar. Verifying quantitative properties using bounddtions. InProc. Correct Hardware Design
and Verification Methodgages 50—-64, 2005.

Stephen A. Edwards and Edward A. Lee. The case for thégiwadimed (PRET) machine. IDesign
Automaton Conference (DA(ages 264—-265, 2007.

David Eppstein. Finding the k shortest pats8AM Journal on Computing8(2):652—-673, 1998.

George Necula et al. CIL - infrastructure for C progranalgsis and transformatiomttp://manju.
cs.berkeley.edu/cil/.

Andras Gyorgy, Tamas Linder, Gabor Lugosi, and @ytOttucsak. The on-line shortest path problem
under partial monitoringd. Mach. Learn. Res8:2369-2403, 2007.

Sandy lIrani, Gaurav Singh, Sandeep Shukla, and RajegitaG An overview of the competitive
and adversarial approaches to designing dynamic powergearent strategieslEEE Trans. VLSI
13(12):1349-1361, Dec 2005.

Raimund Kirner and Peter Puschner. Obstacles in wiarsé- execution time analysis.IBORGC pages
333-339, 2008.

Edward A. Lee. Computing foundations and practice fdrar-physical systems: A preliminary report.
Technical Report UCB/EECS-2007-72, University of Califiarat Berkeley, May 2007.

24

[13] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychalury. Chronos: A timing analyzer for
embedded software. Technical report, National Universit$ingapore, 2005http://www. comp.
nus.edu.sg/~rpembed/chronos/chronos_tool.pdf.

[14] Yau-Tsun Steven Li and Sharad MalikPerformance Analysis of Real-Time Embedded Software
Kluwer Academic, 1999.

[15] Malardalen WCET Research Group. The Malardalen berack suitehttp://www.mrtc.mdh.se/
projects/wcet/benchmarks.html.

[16] Thomas J. McCabe. A complexity measutEEE Transactions on Software Engineer,rf4):308—
320, 1976.

[17] H. Brendan McMahan and Avrim Blum. Online geometricioptation in the bandit setting against
an adaptive adversary. DOLT'04, pages 109-123, 2004.

[18] Fadia Nemer, Hugues Cass, Pascal Sainrat, Jean-Pasb@a and Marianne De Michiel. Papabench:
A free real-time benchmark. I6th Intl. Workshop on Worst-Case Execution Time (WCET) y&isl
2006.

[19] Wei Qin and Sharad Malik. Simit-ARM: A series of free ingtion-set simulators and micro-
architecture simulator&ittp: //embedded.eecs.berkeley.edu/mescal/forum/2.html.

[20] Reinhard Wilhelm et al. The Determination of Worst-E&xecution Times—Overview of the Meth-
ods and Survey of ToolACM Transactions on Embedded Computing Systems (TR2G0&).

[21] Herbert Robbins. Some aspects of the sequential defigxperiments. Bull. Amer. Math. Sog.
58(5):527-535, 1952.

[22] Sanjit A. Seshia and Alexander Rakhlin. Game-theorétiing analysis. IrProc. IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAi2pes 575-582, 2008.

[23] Lili Tan. The Worst Case Execution Time Tool Challend®@: Technical Report for the External
Test. Technical Reports of WCET Tool Challenge 1, Uni-DUEcBmber 2006.

[24] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power dyss of embedded software: a first step
towards software power minimization. Rroceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCADpages 384—-390, 1994.

[25] Todd Austin et al. The SimpleScalar tool settp://www.simplescalar.com.

[26] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, aptePPuschner. Measurement-based timing
analysis. InProc. 3rd Int'l Symposium on Leveraging Applications ofihat Methods, Verification
and Validation 2008.

[27] Reinhard Wilhelm. Determining Bounds on Execution &sn In R. Zurawski, editotiandbook on
Embedded SystemsSRC Press, 2005.

25

A Azuma-Hoeffding Inequality

The Azuma-Hoeffding inequality is a very useful concembrainequality. A version of this inequality with
a slightly better constant is given as Lemma A.7 in [4].

LemmaA.l LetV,...,Yr be a martingale difference sequence. Suppose|Ytat c almost surely for all

te{1,...,1}. Then for anyd > 0,
T
Pr ZlYt > 1/21c%l0g(2/3) | <d
t=

One-sided inequalities faf{_; Y; also hold by replacing /& with 1/3 in the logarithm. The inequality
is an instance of the so-calledncentration of measure inequalitieRoughly speaking, it says that if each
random variable fluctuates within the bourjds, c], then the sum of these variables fluctuates, with high
probability, within[—c./T,c\/T].

26

