
Virtual Local Stores: Enabling Software-Managed

Memory Hierarchies in Mainstream Computing

Environments

Henry Cook
Krste Asanovic
David A. Patterson

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-131

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-131.html

September 24, 2009

Copyright © 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award
#DIG07-10227).

Virtual Local Stores: Enabling Software-Managed Memory
Hierarchies in Mainstream Computing Environments

Henry Cook, Krste Asanovic, David Patterson
{hcook, krste, pattrsn}@eecs.berkeley.edu

UC Berkeley Parallel Computing Research Laboratory

September 24, 2009

Abstract
Software-managed local stores have proven to be more
efficient than hardware-managed caches for some impor-
tant applications, yet their use has been mostly confined
to embedded systems that run a small set of applications
in a limited runtime environment. Local stores are prob-
lematic in general-purpose systems because they add to
process state on context switches, and because they re-
quire fast data memory close to the processor that might
be better spent on cache for some applications. We in-
troduce virtualized local stores as a mechanism to pro-
vide the benefits of a software-managed memory hierar-
chy in a general-purpose system. A virtual local store
(VLS) is mapped into the virtual address space of a pro-
cess and backed by physical main memory, but is stored
in a partition of the hardware-managed cache when active.
This reduces context switch cost, and allows VLSs to mi-
grate with their process thread. The partition allocated to
the VLS can be rapidly reconfigured without flushing the
cache, allowing programmers to selectively use VLS in a
library routine with low overhead.

1 Introduction
A memory hierarchy is the standard solution to the diffi-
cult tradeoffs between memory capacity, speed, and cost
in a microprocessor memory subsystem. Performance is
critically dependent on how well the hierarchy is man-
aged. Hardware-managed caches (Fig. 1(a)) hide the
memory hierarchy from software, automatically moving
data between levels in response to memory requests by the
processor. At the other extreme, software-managed local
stores (Fig. 1(b)) expose the hierarchy, requiring software
to issue explicit requests to a DMA engine to move data
between levels. Although explicit management imposes
an additional burden on software developers, application-

specific software management of a local store can some-
times improve efficiency substantially compared to the
fixed policy of a hardware-managed cache [31].

Software-managed local stores are widely used in em-
bedded systems, where they help improve performance
and performance predictability, as well as reducing cost
and power dissipation. However, they are rarely em-
ployed in general-purpose systems. Whereas embedded
processors often run only one or a few fixed applica-
tions tuned for the underlying hardware design, general-
purpose processors usually run a multiprogrammed and
time-varying mix of large, complex applications, often
with large amounts of legacy code. One major challenge
to the adoption of local stores in general-purpose com-
puting is that the local store represents a large increase in
user process state that must be saved and restored around
operating system context switches. Another challenge is
that a local store is only beneficial for some pieces of
code, whereas for others, a cache would be more bene-
ficial. As only a limited amount of fast memory can be
placed close to the processor, any fixed partitioning be-
tween cache and local store (Fig. 1(c)) will inevitably be
suboptimal for many use cases, as we show in Section 4.
Existing schemes to support dynamic partitioning of on-
chip memory between cache and local store have signifi-
cant reconfiguration overhead [11,26], and were primarily
designed for embedded systems where a single long-lived
partition is often adequate.

In this paper, we propose a new approach to software-
managed memory hierarchies. Our goal is to provide
the advantages of a software-managed local store where
it is beneficial, without complicating software (both ap-
plication and operating system) when it is not. We ac-
complish this by virtualizing the local stores: Instead
of a dedicated memory structure, a virtual local store
(VLS) is just a segment of the physical main memory
cached in a dynamically created partition of the hardware-

1

managed cache in the same way as any other piece of
physical memory (Fig. 1(d)). Software management is
achieved through user-level memory copy instructions,
which provide a simple software interface to a high-
throughput DMA engine that transfers data between main
memory and the cached VLS segment. Like conven-
tional software-managed local stores, the VLS model im-
proves performance compared to conventional hardware-
managed caches by reducing memory traffic, cache pol-
lution, and cache coherence traffic. Unlike conventional
local stores, the VLS model does not impact software
that does not want to use software management and re-
tains conventional hardware-managed caches’ support for
software-transparent migration of a process’ data to phys-
ical main memory or to a different core after a context
switch.

Given the trend towards providing larger numbers
of simpler cores in chip-scale multiprocessors (CMPs),
software-managed memory hierarchies may prove to be
an important component to help improve per-core perfor-
mance, while reducing energy consumption and improv-
ing utilization of scarce cross-chip and off-chip memory
bandwidth. In addition, software-management can pro-
vide more predictable performance, which can be use-
ful in future manycore systems where some cores are
running real-time critical tasks, such as interfacing with
I/O devices. Although there has been considerable ear-
lier work in local stores and configurable memory hierar-
chies, we believe VLS is the first approach to make all the
benefits of software-managed memory hierarchies avail-
able within a full-featured mainstream computing envi-
ronment.

2 Background and Motivation
Hardware-managed data caches have been successful be-
cause they require no effort on the part of the programmer
and are effective for many types of applications, but local
stores can provide significant advantages over a cache for
certain types of code when the programmer is prepared to
expend the programming effort [30, 31]. We begin by re-
viewing the advantages of a local store architecture, and
will later show how most of these are retained even if the
local store is implemented as a VLS partition within a
cache:

• Simpler access: A cache has to perform an asso-
ciative search to locate the correct way within a set,
whereas a local store simply uses the request address
to directly access a single memory location, saving
energy and potentially reducing latency.

• Flexible placement: Set-associative caches con-
strain the set in which data can reside based on its
address in main memory, leading to conflict misses if
many frequently accessed locations map to the same
set, even when there is sufficient total capacity else-
where in the cache. In addition, caches quantize stor-
age in units of cache lines, and require that cache
lines begin at naturally aligned memory addresses,
leading to wasted capacity for small data objects that
straddle cache line boundaries. Local stores allow
data of any size from main memory to be placed
anywhere in their data buffer, increasing the effec-
tive size of the data buffer.

• Simpler high-bandwidth transfers: To maintain
full utilization of the main memory bandwidth, a
non-blocking cache controller must be used to al-
low multiple cache line requests to be in progress si-
multaneously. These requests can be generated by a
complex processor that can issue multiple indepen-
dent requests before the first has been satisfied, or
from an autonomous hardware prefetcher that pre-
dicts what future lines will be needed by the proces-
sor. For some applications, prefetchers are accurate
and beneficial, but for other applications, prefetch
mispredictions can reduce performance and increase
energy consumption compared to no prefetching.
Hardware prefetchers are also necessarily limited
in scope; virtually no prefetchers will cross a page
boundary, and they must generally experience a few
misses before deciding to activate. A DMA engine
is much simpler to implement, and allows even sim-
ple processor designs to fully utilize the main mem-
ory bandwidth. DMA engines can also move data in
units less than a full cache line, providing greater ef-
ficiency in interconnect and memory (although many
DRAMs have a minimum practical burst size).

• Controllable replacement policy: On a cache miss,
an old line must be evicted from the cache to make
room for the new line. A poor match between the
fixed cache replacement heuristics and the applica-
tion’s memory access pattern can lead to a large in-
crease in memory traffic compared to the ideal be-
havior. With a local store, software has complete
control over replacement.

• Predictable access time: Because the cache is man-
aged automatically by hardware, it is difficult for a
programmer to determine the performance that will
be achieved for a given piece of code, as this depends
on the cache controller state and the operation of any
hardware prefetchers. With a local store, software

2

Figure 1: Alternative on-chip memory organizations: a) conventional hardware-managed data cache, b) pure local store architec-
ture, c) separate cache and local store, d) virtual local store. The figure omits instruction caches and only shows alternatives for the
innermost level of the memory hierarchy.

has full control over both the contents of the data
buffer and when the buffer is accessed, making ex-
ecution time much more predictable.

All of these characteristics give architectures that in-
corporate local stores a performance or energy advantage
whenever it is productive for developers to engage in soft-
ware memory management. Of course, there are many
algorithms for which software memory management is
challenging to program or inefficient at runtime. Further-
more, modern hardware prefetchers are complex enough
to accurately capture and predict the behavior of many
kernels. For these reasons, many architects are resistant
to the idea that physical local stores should be included
in any architecture for which they are not absolutely re-
quired.

VLS resolves this tension between efficiency and pro-
ductivity by providing all of the desirable characteris-
tics listed above, while requiring only extremely minimal
changes to the baseline cache hardware and operating sys-
tem. Since VLS consumes no resources when inactive, it
does not interfere with the effectiveness of the hardware
cache management, and when activated it is no less effec-
tive than a physical local store would have been. Giving
the programmer control over the memory management
model allows them to make the productivity/efficiency
tradeoff on a per-routine basis, while allowing them to al-
ways fall back on robust hardware support.

3 Virtual Local Store Mechanisms
We begin by describing the mechanisms needed to support
virtual local stores within a cached virtual memory archi-
tecture, and the implications that these mechanisms have
for the programming model and OS behavior. To simplify

our explanation, we focus only on the data portion of the
memory hierarchy, and first assume a uniprocessor sys-
tem before later expanding the design to a cache-coherent
multiprocessor.

3.1 Address Space Mapping

Virtual local stores are implemented on top of traditional
hardware-managed, physically-tagged caches. Figure 2
shows how the current thread running on a core may have
an associated local VLS allocated in physical memory and
mapped into its virtual address space. The local, physical
cache may contain software-managed VLS stored data in
addition to regular hardware-managed cached data. We
refer to the underlying hardware cache memory structure
as the data buffer to prevent confusion when different por-
tions of the structure are allocated to different uses. The
stored data in the VLS is accessed using regular loads
and stores within the VLS virtual address range, avoiding
modifications to the base ISA and allowing library code to
be oblivious to whether it is operating on cached or stored
data.

One approach to implementing the VLS address map-
ping is to simply add an extra VLS bit to page table en-
tries in the TLB. For example, this approach was used
in the XScale processor to indicate accesses should use
the “spatial mini-cache” instead of the main cache [11].
The disadvantages of this approach are that every VLS
access involves an associative lookup in the TLB which
consumes energy (for example, 8% of StrongARM power
dissipation was in the data TLB [19]), the replacement
policy of the TLB might evict VLS entries, and all page
table entries in memory and the TLB are made larger.

We propose adding a more efficient mapping mecha-
nism, which dedicates a large segment of virtual addresses

3

(shown as “VLS” in Figure 2) for the current user thread’s
VLS and adds a separate VLS physical base address reg-
ister, pbase, to each core to provide the base address of
the current VLS in physical memory. The value of pbase
is set by the operating system, and must be saved and re-
stored on thread context switches. Figure 3 shows that a
check of the high-order bits of the effective address early
in the processor pipeline can determine whether any given
access is targeting the VLS or regular cacheable memory.
This technique is similar to how many systems determine
translated versus untranslated memory ranges, so the full
TLB lookup (and any TLB misses) can be avoided for
VLS accesses. We also protect against VLS accesses out-
side the bound of currently allocated VLS physical mem-
ory by using a bound register, called pbound in Figure 3.

Every access to the VLS must check cache tags to see if
the associated VLS line is present in the underlying hard-
ware cache. The programming model for a local store
assumes it will be a contiguous region of memory that
fits in the local data buffer. Figure 2 show how we take
advantage of this contiguity to reduce cache access en-
ergy by using a direct-mapped placement policy for VLS
accesses. Because we recognize a VLS access early in
the pipeline, we can disable the readout of tags and data
from other ways in the set-associative cache to save en-
ergy (Figure 3). This approach is similar to Selective
Direct-Mapping [2], but because we only place VLS data
in the data buffer at the direct-mapped location, we do not
have to make a way prediction and never have to search
the other ways on a VLS cache miss. The VLS uses the
same data path and pipeline timing as regular cache ac-
cesses to avoid complicating the hardware design.

3.2 Data Buffer Partitioning

The mechanisms presented so far do not treat stored ver-
sus cached data differently for purposes of replacement.
This indifference would be adequate if all routines were
either purely cache or purely local store-based. However,
most software-managed code usually benefits from using
a regular cache for some accesses, e.g., global variables
or the stack. Requiring all of these to be first explicitly
copied into local store would impose a significant perfor-
mance and programmer productivity penalty. On the other
hand, arbitrarily mixing cached and stored data would ef-
fectively revert back to a conventional cache design. We
therefore desire to dynamically allocate a partition of the
cache to exclusive VLS use, leaving it unaffected by any
regular cache accesses.

One option is to use way-based partitioning [22] to al-
locate entire ways of the underlying set-associative struc-

ture to either the cache or local store aspects. Way-based
partitioning only affects cache replacement decisions, and
hence only adds logic to the non-critical victim selection
path. A miss on cached data is not allowed to evict a line
from the ways allocated to the VLS, but otherwise follows
the conventional replacement policy. In contrast, a miss
on VLS data will evict the current occupant of its direct-
mapped location in the cache regardless of what type of
data it holds. VLS accesses are always direct mapped,
but we require cache accesses to search all ways, includ-
ing the VLS partition, to reduce reconfiguration overhead.
The main disadvantage of way-partitioning is the reduc-
tion in associativity of the cache partition.

The programmer configures the desired partition size
using a special user-level instruction. This reconfiguration
is a very light-weight operation as it simply sets a register
in the cache controller to modify its replacement policy;
current cache contents are unaffected. The typical usage
would be for a library routine to enable the VLS partition,
perform the computation, then disable the VLS partition.
Because regular cache accesses still search all ways, any
cached data that happens to already exist in a newly acti-
vated VLS partition will still be accessible during execu-
tion of the local store-using routine. Only the number of
VLS lines dynamically required by the local store routine
will be affected during the routine’s execution, reducing
the side effects of coarse granularity partitioning mecha-
nisms. When the VLS partition is released at the end of
the local store routine, any ‘stored’ data can freely be re-
placed by the regular cache replacement algorithm. If the
local store routine is re-executed soon thereafter, it will
likely find some or all of the data previously placed in the
VLS still resident in data buffer. This light-weight recon-
figuration is key to enabling selective and incremental use
of software memory management in library routines.

It is possible to construct a similar scheme around set-
based partitioning or per-line flags [7], which would have
the advantage of preserving associativity of the cache par-
tition and which could potentially allow a finer granularity
of partitioning. However, set-based partitioning is com-
plex to implement in practice as it inserts logic in the
critical set index path. There is also a larger reconfigu-
ration overhead as partitions have to be flushed when the
set indexing scheme changes to maintain memory coher-
ence. Partitioning based on per-line flags would allow for
extremely fine-grain sharing, but requires mechanisms to
flash clear the flags on VLS deactivations [7]. The evalu-
ations in Section 4 use the simpler way-based partitioning
mechanism as this worked well in practice.

4

Figure 2: Mapping of virtual local stores from the virtual address space to physical pages, and how data in those pages is indexed
in the on-chip memory hierarchy. PPN is a “physical page number”. The pbase register is an optional optimization to remove
the need to access the TLB on a local VLS access. To simplify diagram, set-based partitioning (see Section 3.2) is shown, but
way-based partitioning is used in evaluated design.

Figure 3: Overview of mechanisms used in virtualizing the local stores: 1.) Request is identified based on target address as being
a VLS access; 2.) pbase holds physical base address, used instead of TLB lookup; 3.) direct-mapping means multiple way
lookups can be avoided on a VLS access; 4.) Replacement policy respects partitioning; 5) pbound holds number of physical pages
allocated to VLS, to provide protection.

5

3.3 Data movement mechanisms

The other important component of a software-managed
architecture is an efficient mechanism to move data to and
from memory. Regular loads and stores via processor reg-
isters could be used to load the VLS. However, it would be
difficult for a simple processor to keep enough loads and
stores in flight to saturate the bandwidth-latency product
of the main memory system while simultaneously com-
puting on the data. The Cray-2 was an early example of a
system with a local store without DMA capability, but this
machine instead had vector instructions to provide high
bandwidth transfers to and from memory [3].

VLS’s use of the virtual address space lends itself to
a natural memcpy-like interface for transmitting data to
or from the virtual local stores. We therefore provide
a user-level DMA engine as part of the cache controller
that shares functionality with the regular cache miss dat-
apath and prefetch logic. This engine provides basic
functions for performing unit-stride, constant stride, and
scatter-gather transfers between arbitrary virtual memory
addresses. More extensive DMA capabilities could poten-
tially be included to support more complicated patterns of
data movement. DMA transfers can proceed in parallel
with continued processor execution, and a fence mecha-
nism is provided to synchronize the two units.

Unlike a conventional software prefetch or hardware-
managed cache prefetch, the transfered data’s location in
the data buffer is explicitly specified by the DMA re-
quest’s destination address, and is not tied to the source
data’s address in memory. This quality is important to
software developers using VLS to efficiently pack data
into the limited space available in the on-chip data buffers.

Each data item copied from memory by the DMA en-
gine is given a new VLS-associated virtual and physical
address, preserving the original source copy; Figure 4.
This quality preserves the local store semantics expected
by software developers familiar with software memory
management. Writes made to the copy of the data in the
VLS are not propagated back to the original copy in mem-
ory, unless the programmer explicitly copies the data back
(using either stores or DMA transfers).

Numerous optimizations are possible in the interaction
of the DMA engine with a memory hierarchy that supports
VLS. The goal of such optimizations is to take advantage
of programmer intentionality expressed in terms of DMA
transfer requests by avoiding superfluous evictions and re-
fills.

The DMA engine can avoid generating memory refills
for any VLS destination data buffer lines that miss in the
data buffer but will actually be entirely overwritten by the
DMA transfer. This optimization prevents the underlying

hardware-managed mechanisms from causing more refills
than would occur in a purely software-managed system.

Other optimizations come in to play when a data buffer
is partitioned between cache and VLS. For a memory-to-
VLS transfer, the desired DMA behavior is to not place
the source read data in the cache partition of the data
buffer. Only the new VLS copy of the data is allocated
space in the data buffer. This behavior is unlike how a
memcpy operation would occur on a purely hardware-
managed system, where both the source data and the new
copy would be brought into the cache. By moving data
into the VLS, the programmer is explicitly stating their
intention to use that copy specifically, so there is no point
in displacing data from the rest of the data buffer to make
room for the original copy as well.

The same argument applies to transfers of data from
VLS to memory. The destination data that is being writ-
ten back to should not be allocated space in the cache par-
tition of the data buffer. Writing back the data from the
VLS to memory does not evict the VLS copy, so if the
updated data is useful it is already still present. If the pro-
grammer writes back the VLS data and then deactivates
the VLS, they are clearly expressing knowledge that the
data will not be reused in the short term. In other words,
if it would be worthwhile to allocate space for the updated
destination data, it would have been worthwhile to simply
keep the VLS active.

It is worth noting that these allocation policies apply
only to the level of the data buffer in which the VLS in
question is resident; outer level shared buffers may choose
to allocate space for these ‘superfluous’ source or destina-
tion copies. See Section 3.6.3.

VLS also enables new DMA commands that can im-
prove the performance of software-managed memory im-
plementations of certain pieces of code. For example,
some update-in-place software-managed routines must al-
ways write back the data they operated on, even if the
data is not always modified. A hardware-managed ver-
sion would only write back dirty data. Since VLS is
built on top of hardware which detects dirtiness, our inte-
grated DMA engine might allow for conditional software-
managed data transfers.

The integration of a user-level DMA engine with
the cache controller logic, and potentially a hardware-
managed prefetcher, is the most significant hardware
change mandated by the VLS paradigm. However, in
terms of hardware resource overheads, we contend that
the similarities in datapath and functionality among these
three units (cache refill logic, hardware prefetcher, DMA
engine) mitigate some of the costs.

6

Figure 4: Interaction of the memcpy and VLS mechanisms. Initially the data buffer contains hardware-managed cache data. Then
a VLS is mapped into the virtual address space. A memcpy targeting the VLS address range creates a new copy of the source data
in the VLS, evicting the cached data. Changes made to the data in the VLS via store instructions are not reflected in the original
location, since this data is a new copy. When the VLS is unmapped, the stored data may be evicted to its backing location in
memory.

3.4 Software Usage Example
To clarify the way VLS is presented to the programmer,
we provide the following simplified, unoptimized exam-
ple of a vector-matrix multiply. The code assumes that at
least the vector and one row of the matrix can fit in the
physical local data buffer.
// A[M] = C[M][N] * B[N]
void vector_matrix_product(int M, int N, int* A, const int* B, const int* C) {

int* vls_base = (int*) VLS_MAP(2*N*sizeof(int)); //Create a VLS partition
int* vls_b = vls_base; //Assign space for data
int* vls_c = vls_b + N;
VLS_DMA_MEMCPY(B, vls_b, N*sizeof(int)); //Prefetch vector
for(i=0; i < M; i++) {

VLS_DMA_MEMCPY(&C[i][0], vls_c, N*sizeof(int));//Prefetch matrix row
VLS_DMA_WAIT(); //Wait for data
int sum = 0;
for(j=0; j < N; j++)

sum += vls_b[j]*vls_c[j]; //Consume data
A[i] = sum;

}
VLS_UNMAP();

}

In this example, the VLS provides a contiguous seg-
ment of storage in the local data buffer which the pro-
grammer can target using DMA prefetch commands. The
programmer does not have to worry about whether the
prefetches of rows of the C matrix will evict portions of
the B vector, or whether B and C’s address ranges conflict
in the cache for certain sizes. The elements of the A ma-
trix are accessed on-demand by the hardware management
mechanisms, but cannot evict the prefetched elements of
B and C.

Obviously, the programmer could now apply further
optimizations such as software pipelining and double

buffering in order to achieve optimal overlap of com-
munication and computation. The size argument to the
VLS_MAP call can either be used to allocate a variable-
sized VLS partition if supported or simply checked for
overflow to aid debugging in VLS systems with a fixed-
size partition. Once the math routine is finished, it frees
the data buffer space it had been using as a local store by
re-enabling cache replacements in that region.

Although the math routine itself might require exten-
sive tuning to make best use of the VLS, any programs
which call this routine can remain completely oblivious to
the use of VLS and will neither have to rewritten nor re-
compiled. In addition, if the routine was called for a small
vector-matrix operation, only the cached data in the piece
of the VLS specifically needed to hold active data would
be evicted. The rest of the VLS partition would continue
to hold previously cached data that would remain in the
local data buffer after the VLS routine returned. This on-
demand eviction reduces the performance impact on the
caller when a callee uses VLS, as well as the overhead of
VLS allocation.

3.5 Operating System Context Swaps
When the operating system deschedules a process from
a core, the VLS control registers (enabled?, pbase
and pbound) must be saved and restored, but all of the
process’s physically tagged data may remain in the lo-
cal data buffer. Previously stored data may be evicted
by the incoming process depending on the new process’s
data access patterns. Evicted stored data is sent to its
unique backing location in physical memory. Since dif-

7

ferent VLSs belonging to different processes are backed
by different physical addresses, no OS effort is needed to
manage the replacement of one by another.

Upon being restored to the same core, the original pro-
cess may fortuitously find some of its cached or stored
data remaining in the data buffer, and if not, then the data
will be naturally restored on-demand by the regular hard-
ware cache refill mechanisms. The virtual address used to
access the previously stored-and-evicted data will indicate
this data is associated with the process’s VLS, and the re-
fill mechanisms will place the data in the correct partition
as it is brought back on chip.

Obviously, a tradeoff exists between proactively flush-
ing the stored data (as would have to be done in a sys-
tem with a traditional physical local store) and allowing
the data to be evicted and restored on-demand. There are
three main reasons why on-demand is the best choice for
use with VLS.

First, using the already present on-demand refill mech-
anisms exemplifies the way VLS is meant to fit on top
of existing systems. Flushing the local store partition re-
quires additional OS and hardware support.

Second, leaving data in place rather than proactively
moving it around can potentially have significant energy
savings, depending on the size of the local store partition,
the frequency and type of context switches, what will hap-
pen to the data in the VLS once it is restored, and how
likely the data is to remain in the data buffer in the in-
terim swapped out period. If most of the data will def-
initely be evicted, but most will definitely be read again
after restoration, then amortizing overhead with a proac-
tive save and restore may be most efficient. However, if
the data is unlikely to be evicted, or is not going to be
read again or only written over, supporting proactive save
and restores is unnecessary. Hybrid mechanisms could be
customized to a specific OS’s behavior.

Third, the other downside of on-demand replacement
is the unpredictability in access latencies that will occur
when a suspended process is resumed after its stored data
has been evicted. While such non-determinism is antithet-
ical to how local stores are traditionally expected to be-
have, it only occurs after OS-mandated context switches;
real-time applications that cannot tolerate such unpre-
dictability should not be being time-multiplexed by the
operating system in the first place.

3.6 Multiprocessor Implications and Exten-
sions

In this section, we examine how the VLS mechanism can
be straightforwardly extended to multicore processors and

multithreaded applications.

3.6.1 Cache Coherence

Data stored in the VLS is physically tagged and partici-
pates in the regular hardware-managed cache coherence
protocol. One of the advantages often quoted for con-
ventional local stores is that they do not suffer from in-
terference from coherence traffic. Because a VLS con-
tains data backed by a unique location in physical mem-
ory, this reduction in interference can apply in our system
as well, provided the underlying coherence mechanism is
directory-based (i.e., not snoopy). A directory-based co-
herence mechanism will not disturb a cache controller un-
less said cache is actively caching the needed line. Since
stored data is always private and uniquely addressed, its
presence in an on-chip data buffer will not result in any
additional coherence misses or tag checks, other than in
one special case.

The special case occurs when a process with a private
VLS is migrated to a new core. After the process has
been migrated, data in the VLS is moved to the new core’s
data buffer by the hardware coherence mechanism. If the
data has already been evicted from the old data buffer,
the coherence mechanism will automatically fetch it from
backing memory. We note that only the needed data will
be transferred over, and that this will usually represent
much less data movement than in a conventional local
store system where the entire contents must be transferred
to the new core’s buffer. As when dealing with context
switches, VLS uses already present hardware mechanisms
to provide on-demand data movement, at the small price
of some slight unpredictability in access times after an al-
ready chaotic event.

3.6.2 Multithreaded Applications

If an application is multithreaded, we can allow each
thread to have its own private VLS that will track the
thread as it moves between cores. If the threads share
an address space, supporting multiple VLSs is simply a
matter of ensuring that they each have a unique region of
the virtual address space (as well as of the physical ad-
dress space) associated with their VLS. Whichever thread
is resident on a given core sets that core’s pbase register
to ensure that the right accesses are identified as being tar-
geted at the VLS. More sophisticated implementations of
VLS can provide a richer environment for multi-threaded
applications that can benefit from software-management
of shared data, as described in the next two sections.

8

3.6.3 Shared Data Buffers

Virtual local stores can be implemented at multiple lev-
els of the cache hierarchy simultaneously, with each level
mapped to a different area of the virtual address space.
This flexibility allows for explicit data movement between
the different levels of the memory hierarchy, and further-
more allows for shared virtual local stores to be created in
shared data buffers.

The additional capacity of outer-level shared caches
may allow for better management of temporal locality.
Some examples of how this capability might be used:

• If each data buffer has its own DMA engine, it
is possible to increase the effectiveness of overlap-
ping communication and computation by fetching
and compressing large blocks of data into the shared
cache and then smaller sub-blocks into the private
data buffer.

• In a program that iterates over a large data structure
repeatedly, we cannot keep the entire structure in the
small private data buffer. However, we can ensure
that the structure remains on chip by placing it in a
VLS in the shared data buffer. This control improves
the efficiency of macroscopic temporal data reuse.

• If we want to explicitly manage a large block of
shared data that will be randomly updated by many
threads, we can use a VLS to keep the block in
the shared cache but allow hardware management
to handle the many random updates and coherence
among higher level caches.

Another implication that VLS has for shared data buffer
design is that the hardware mechanisms of the shared
data buffer must implement a policy for handling requests
made as a result of DMA transfers moving data into a
higher level private VLS. In our current implementation,
the outer level data buffer is exclusive with regards to the
private data buffers, meaning that data currently in the
VLS will never be present in the shared data buffer. How-
ever, the shared data buffer may contain data in a currently
non-resident VLS that has been evicted by recent activity
in the private data buffer in which the VLS was formerly
resident.

The shared data buffer will also cache the ‘superfluous’
source or destination data of a DMA transfer to a private
VLS (i.e. the copy that is not in the private VLS). If the
shared data buffer currently contains a shared VLS, then
any ‘superfluous’ copies of private VLS data or hardware-
managed data will be kept in the hardware-managed par-
tition. However, the shared data buffer will not cache ‘su-
perfluous’ copies of data which has been transferred into

the shared VLS. This selective caching of ‘superfluous’
copies is dependent on each data buffer having its own
personal DMA engine, and a control register that tracks
which VLS (i.e. range of virtual memory) is currently
resident on it.

3.6.4 Direct VLS-to-VLS communication

Another extension to VLS for multithreaded applications
is to make the VLS of one thread “visible” to another, in
that the other thread can read from or write to it. The
mechanisms supporting this visibility allow direct core-
to-core data transfers without involving the outer levels
of the memory system. Figure 5 shows how we do this
by expanding the VLS virtual address map to contain a
separate address range (VLS 0, ..., VLS N-1) for each
participating thread. These ranges are in addition to the
original local VLS virtual address range, which always
maps to the thread’s local VLS (meaning one of the new
VLS ranges will be a shadow backed by the same physical
memory location).

A new set of registers is required to map which vir-
tual address ranges correspond to active VLSs belonging
to threads currently running on the processor. Each core
has a register for every data buffer in which a VLS can be
resident; each register implicitly corresponds to a specific
data buffer. The VLS virtual address range to physical
data buffer mappings must be kept coherent by the op-
erating system as it migrates threads across cores in the
system, or suspends and resumes them. This coherence
requirement is similar to the demands of TLB coherence).
This mechanism makes use of the virtual address space to
abstract away from the programmer the number of phys-
ical data buffers in the system and the current placement
of threads onto cores and their private data buffers.

A load or store to a remote thread’s VLS is recognized
by its target virtual address, and is then routed directly
to the remote core’s cache controller, bypassing the regu-
lar cache coherence scheme . The memory access is then
handled by the remote cache controller as if it had origi-
nated from the local core’s running thread. Figure 6 shows
this sequence of events. .

The DMA engine can be used for higher performance,
for example, reading from the local VLS and writing to
a remote VLS to facilitate producer-consumer access pat-
terns without excessive coherence traffic. The local read
happens as usual, but the write request is now sent directly
to the remote controller, not the outer layers of the mem-
ory hierarchy. The DMA engine could also read from a
shared memory buffer and write to a remote VLS to al-
low one thread to prefetch data for another. The same
mechanism can also be extended to allow external devices

9

Figure 5: Mapping of multiple, mutually visible virtual local stores from the virtual address space to physical page. Multiple
registers are used to track the current mappings of VLSs to data buffers. Changes in mappings must be kept coherent across all
cores (indicated by dotted line). In this example the process is running on the core associated with cache1, so local VLS and
VLS 1 are shadows that map to the same physical memory location.

10

Figure 6: Mechanisms supporting direct VLS-to-VLS commu-
nication.

or application accelerators to be closely coupled with a
thread. We provide a logically separate network to carry
this cross-VLS request traffic, but this network can be
multiplexed onto existing memory system physical net-
works to reduce cost.

When an active thread attempts to send data to a non-
resident thread’s VLS, the regular TLB and page tables
are consulted to find the backing physical copy to which
they will direct the updates. As an alternative, the op-
erating system might choose to always gang-schedule all
threads in a process onto physical cores, avoiding the need
to handle partially resident processes. However, while a
program doing partially-resident communication will suf-
fer from additional coherence traffic (relative to one that
is gang-scheduled), both cases will still execute correctly.
This is another example of how the way VLS builds on
top of a hardware cache mechanisms makes it easier to
implement software-managed memory in a general pur-
pose system.

4 Evaluation

In this section, we quantify the benefits of adding
VLS to a system. We compare systems with purely
hardware-managed caches or with a fixed partition be-
tween hardware-managed cache and software-managed
local store against the more flexible partitioning possible
with VLS. In general-purpose systems, a fixed partition
will be sub-optimal globally since not all applications and
libraries can be converted to effectively use the special-
ized resources.

We simulate the performance of multiple versions of a
set of microbenchmarks and multiple implementations of
more complex speech recognition and image contour de-

tection applications, all running on a simulated machine
with virtualized local stores. We find that, in the case
of the benchmarks, VLS is able to provide each version
with the best possible configuration, while no static con-
figuration is optimal for all benchmarks. In the case of
the multi-phase applications, VLS is able to provide each
phase with a unique configuration, resulting in “best of
both worlds” performance. VLS also significantly reduces
the amount of data that must be saved and restored on con-
text switches.

4.1 Microbenchmarks
We select a group of microbenchmarks from the set of
multithreaded benchmarks used by Leverich et al. in their
study of memory management models [14]. The bench-
marks were originally chosen to represent a variety of
general-purpose and media applications. The benchmarks
are parallelized using POSIX threads and use the asso-
ciated synchronization mechanisms [15]. Not all bench-
marks had source code that was available to us. Table 1
describes some characteristics of these benchmarks. We
consider two versions of each microbenchmark: one that
assumes hardware-managed local memory, and one that
assumes a mix of hardware- and software-managed lo-
cal memory (in the original study this later version ran
on a system with a physically separate local store, in our
study it runs on a system with an appropriately configured
VLS).

4.2 Multi-phase Applications
As a case study in applying VLS to larger, more com-
plex applications with varying memory usage patterns, we
evaluate several implementations of two different multi-
phase applications.

4.2.1 Image Contour Detection

The first application is an implementation of the gPb ap-
proach to image contour detection [5]. Image contour
detection is an important part of many computer vision
tasks, including image segmentation, object recognition
and object classification. The pGb detector [17] is the
highest quality image contour detector currently known,
as measured by the Berkeley Segmentation Dataset. The
detector is composed of many modules that can be
grouped into two sub-detectors, one based on local image
analysis on multiple scales, and the second on the Nor-
malized Cuts criterion.

The local detector uses brightness, color and texture
cues at multiple scales. For each cue, the detector es-

11

Name Input set Parallelism
Merge Sort 219 32-bit keys (2 MB) Across sub-arrays, decreasing with time
Bitonic Sort 219 32-bit keys (2 MB) Across sub-arrays, no decrease over time

FIR filter 220 32-bit samples Across sample strips
Stereo Depth Extraction 3 CIF image pairs Input frames are divided and statically allocated
MPEG-2 Encoder [24] 10 CIF frames Macroblock task queue, no dependencies

H.264 Encoder 10 CIF frames (Foreman) Macroblock task queue, interdependencies

Table 1: Microbenchmark descriptions. See [14] for details

timates the probability of a contour existing for a given
channel, scale, pixel and orientation by measuring the dif-
ference between two halves of a scaled disk centered at
that pixel and with that orientation. The detector is con-
structed as a linear combination of the local cues, with
weights learned from training on an image database.

The local detector is used to create an affinity matrix
whose elements correspond to the similarity between two
pixels. This affinity matrix is used in the Normalized
Cuts approach [25], which approximates the normalized
cuts graph partitioning problem by solving a generalized
eigensystem. This approach results in oriented contour
signals that are linearly combined with the local cue infor-
mation based on learned weights in order to form the fi-
nal pGb detector. For more information on the algorithms
used in the various detectors, please refer to [5].

Two of the many modules that make up the gPb de-
tector take up the vast majority (90%) of computation
time. One is the module responsible for computing the
local cues, the other for the solution to the generalized
normalized cuts eigensystem. Local cue computation in-
volves building two histograms per pixel. The eigen-
solver used here is based on the Lanczos algorithm us-
ing the Cullum-Willoughby test without reorthogonaliza-
tion, as this was found to provide the best performance
on the eigenproblems generated by the Normalized Cuts
approach [5]. The Lanczos algorithm requires repeatedly
performing a sparse matrix-vector multiply (SpMV) on
large matrices; the size of the matrix is the square of the
number of pixels in the image.

Converting the local cues calculation and the eigen-
solver to use software memory management took less than
50 lines of additional code (the entire application had
3953), not counting the previously implemented DMA li-
brary. For the local cues calculation, the entirety of both
histograms used per pixel fit in the VLS. Placing the his-
tograms there ensured that they were kept in the L1 data
buffer throughout the computation. Sections of the im-
age were also software prefetched. For the eigensolver,
adding macroscopic software prefetching to some sec-
tions of code was trivial, whereas for other pieces of code
(such as SpMV) the optimizations required more effort.

VLS allowed us to leave the insignificant portions of
the code unmodified, without paying an energy or perfor-
mance overhead.

We used a 50 x 50 pixel image for this experiment, as
larger datasets resulted in extraordinarily lengthy simula-
tion run times. Future work on faster simulators will ex-
plore how the performance benefits scale with increasing
image size.

4.2.2 Speech Recognition

The second application is a Hidden-Markov-Model
(HMM) based inference algorithm that is part of a large-
vocabulary continuous-speech-recognition (LVCSR) ap-
plication [6, 10].

LVCSR applications analyze a set of audio waveforms
and attempt to distinguish and interpret the human utter-
ances contained within them. First, a speech feature ex-
tractor extracts feature vectors from the input waveforms.
Then an inference engine computes the most likely word
sequence based on the extracted speech features and a lan-
guage recognition network. The graph-based recognition
network represents a model of human language that is
compiled ofine, and trained using statistical learning tech-
niques. The recognition network we use here models a
vocabulary of over 60,000 words and consists of millions
of states and arcs.

The algorithm traverses the graph of the network re-
peatedly, using the Viterbi search algorithm to select the
most likely words sequence from out of tens of thousands
of alternative interpretations [20]. Because the graph
structure of underlying network is based on natural lan-
guage it is very irregular, and when combined with an in-
put dependent transversal pattern this irregularity results
in a highly variable working set of active states over the
course of the algorithm runtime. The inference process is
divided into a series of five phases, and the algorithm iter-
ates through the sequence of phases repeatedly with one
iteration for each input frame. Table 2 lists the character-
istics of each phase of the application.

Converting the inference engine to use software mem-
ory management took only about 50 lines of additional

12

Phase Name Description Data Access
1 Cluster Observation prob. computation, step 1 Up to 6 MB data read, 800KB written
2 Gaussian Observation prob. computation, step 2 Up to 800KB read, 40KB written
3 Update Non-epsilon arc transitions Small blocks, dependent on graph connectivity
4 Pruning Pruning states Small blocks, dependent on graph connectivity
5 Epsilon Epsilon arc transitions Small blocks, dependent on graph connectivity

Table 2: LVSCR application phase descriptions. See [6] for details

code (the entire application had 2969), again not counting
the previously implemented DMA library. Most of the
modifications had to do with software pipelining loops to
allow for effective software prefetching. The transition
process was eased by the fact that VLS guarantees correct
execution even in the event of misconfiguration, and that
the conversion could be implemented incrementally. All
phases were converted to use software memory manage-
ment to illustrate the contrast in the effectiveness of the
different management types for different memory access
patterns.

While the inference process can exploit fine-grained
parallelism within each phase [6, 21], we have initially
chosen to work with sequential phase implementations
for simplicity. The presence of multiple, repeated phases,
each with different memory access patterns, is sufficient
to demonstrate the applicability of VLS. We are working
to port a parallel implementation of the LVCSR applica-
tion application, as well as additional complex applica-
tions with diverse memory management needs.

4.3 Simulator

We use Virtutech Simics 3.0 [28] and Wisconsin GEMS
[18] to simulate a sixteen core CMP system with a two
level on-chip memory hierarchy. Table 3 summarizes the
parameters of this system. We choose these specific hard-
ware parameters in an attempt to match the memory hi-
erarchy design space explored by Leverich et al. [14].
Our goal in doing so is to give our conclusions a con-
crete basis in the context provided by their examination of
several chip multiprocessor memory management models
and configurations.

While both studies have memory hierarchy parameters
that are similar in scope, the actual simulation infrastruc-
tures used are quite different. In our case, Simics pro-
vides the functional simulation of the processor cores,
while GEMS Ruby provides timing and functional mod-
els of the cache hierarchy, on-chip network, and off-chip
DRAM memory modules. The cores modeled by Simics
are simple in-order processors that support the x86-32 in-
struction set. Simics is a full system simulator, and we run
OpenSolaris (microbenchmarks) or Fedora Linux (appli-

cations) installations on our simulated machine. We have
modified GEMS Ruby to support VLS, and added a hard-
ware prefetch engine (prefetching is turned on only where
explicitly noted).

Simics’ speed is sufficient to allow us to simulate the
microbenchmarks to completion, or to at least one billion
instructions per core, whichever comes first. We are able
to run the single-threaded LVSCR application to comple-
tion, which can take over 50 billion cycles in some in-
stances.

4.4 VLS Implementation
The most pertinent feature of the simulated machine is
that each core is associated with a local, private on-chip
memory, all of which are backed by a global, shared on-
chip memory. We have modified GEMS Ruby’s function-
ality such that each of the local memories can be dynam-
ically partitioned into a VLS and a hardware-managed
cache. Adding this capability required modifying the
cache replacement protocol and the indexing mechanism
for accesses identified as mapping to the VLS. In our ex-
periments partitioning is done on a per-way basis. The
virtual address space region that is to be treated by the
hardware as mapping to the VLS is communicated to the
simulator by Simics magic instructions; which are func-
tionally equivalent to writing to the pbase and pbound
control registers.

We created a DMA library backend to support the soft-
ware management of the virtual local stores in our simu-
lated machine. We took the Smart Memories [16] DMA
library already used by the software-managed versions of
the microbenchmarks [14] and ported it to generate data
movement requests on our Simics-based simulator.

4.5 Microbenchmark Analysis
The microbenchmarks we use have been converted to be
able to run using either caches or local stores, but this con-
version process was not a simple one [14]. Architects can-
not expect all software that will ever run on the system
to be rewritten; programmer effort aside, the software-
managed memory model is untenable for programs with

13

Attribute Setting
CPUs 800MHz, in-order execution, 16 cores for microbenchmarks, 1 for LVSCR

L1 Instruction Caches 16KB, 2-way set associative, 32-byte blocks, 1 port
L1 Data Caches 32 KB, 4-way set associative, 32-byte blocks, 1 port, VLS enabled

L2 Unified Cache 512KB, 16-way set associative, 32-byte blocks, 2 banks, non-inclusive
Coherence Protocol GEMS MOESI-CMP-Directory-m [18]
Hardware Prefetcher 1 per data cache, tagged, tracks sequential accesses, 8 access history, run-ahead of 4 lines

DMA Engine 1 per core, 32 outstanding accesses
On-chip Network Hierarchical Crossbar, 2 cycle latency local, 5 cycle latency non-local, plus arbitration

Off-Chip 1GB DRAM One channel at 3.2 GHz
Virtual Local Stores One per core, may be 0 to 24 KB in size, incremented by 8 KB (way-based)

Table 3: Simulated system parameters

Figure 7: Normalized effect of hardware and software management on performance and aggregate off-chip memory traffic. The
y-axis shows the normalized number of cycles or off-chip read and write requests issued by the application, while each bar is a
different combination of management style and hardware configuration. The hardware configurations are specified as X/Y, where
X is the number of KB allocated to cache and Y is the number of KB allocated to local store.

14

complex memory access patterns. In the face of applica-
tion heterogeneity, general-purpose systems without vir-
tualization or reconfiguration capabilities must statically
allocate their physical resources between different use
cases.

The graphs in Figure 7 expose the various effects that
different static partitionings between cache and local store
have on each of our microbenchmarks’ performance and
aggregate off-chip bandwidth, which is a significant con-
tributor to energy used by the memory system. While soft-
ware management is slightly more effective for certain
benchmarks, hardware management is more efficient in
some cases. An even split of the underlying hardware be-
tween the two use cases is generally detrimental to cache
miss rates and local store efficiency, relative to configura-
tions that maximize the resources available to the memory
management used by the code. Hardware-managed ver-
sions running on limited cache sizes demonstrate the per-
formance penalty that unmodified applications will pay
for having a permanently allocated physical local store.
Software-managed configurations with limited local store
sizes demonstrate the limits placed on software manage-
ment’s effectiveness by having some local memory con-
figured to be hardware-managed cache for the benefit of
legacy applications or libraries.

The results presented here correspond with those pub-
lished in [14], even though the underlying simulation
infrastructure and local store implementation are com-
pletely different. This independent verification helps to
validate both sets of results. A few comments on specific
benchmarks: bitonic sort’s high traffic and poor perfor-
mance under the software-managed model is due to the
fact that sublists being sorted may already be partially in
order, and hence do not actually need to be modified and
written back. The hardware-managed systems discover
this automatically, whereas the software-managed sys-
tems write back all the data regardless. FIR and Merge-
sort see the most memory traffic improvement under the
software-managed model. Mergesort makes significant
use of store-only lists, which a write-allocate cache will
first refill in the cache before immediately overwriting
it. Explicit management of the output lists alleviates this
problem, reducing memory traffic. However, the software
management requires extra comparisons within the inner
loop, resulting in extra instructions and increased runtime.
FIR’s performance is benefiting particularly from macro-
scopic software prefetching using DMAs.

These benchmarks represent computational kernels,
many of which might be composed together in a real ap-
plication. Performance suffers when a compromise solu-
tion is chosen that statically allocates less on-chip mem-

ory to each type of management in order to provide for
both types. Given a mixed set of kernels or libraries run-
ning on a statically partitioned machine, we must apply
the same allocation across all applications (i.e. choose a
single bar across all benchmarks in Figure 7), and this in-
evitably results in suboptimal performance for some pro-
grams. In contrast, VLS can dynamically repurpose mem-
ory resources on a per routine basis, allowing program-
mers to always choose the configuration most suited to
their kernel’s memory access pattern.

4.6 Vision Application Analysis

Based on the runtime breakdown of the different tasks in-
volved in gPb image contour detection, we deemed that
it was only worthwhile to provide software memory man-
agement for two of the many steps (local cue calculation
and the eigensolver). VLS made this selective deploy-
ment of software memory management as an optimiza-
tion possible. Using VLS and software memory manage-
ment resulted in significant speedups for the two tasks we
did target, resulting in an overall 32% reduction in run-
time. The speedup for local cues is due to a combination
of placement of certain data structures inside the direct-
mapped VLS partition, and some software prefetching.
The improvement in the eigensolver performance is due
primarily to macroscopic software prefetching (since the
matrices and vectors involved are generally too large to
fit entirely within the local data buffer, and span multi-
ple pages). The results presented in Figure 8 and Table 8
are for a single-threaded version of the code operating on
a 50x50 pixel image. A larger image might increase the
relative benefit of the software-management, however we
have not yet evaluated any due to the performance limita-
tions of our software simulator.

4.7 Speech Application Analysis

The speech recognition inference engine has different
memory access patterns in each of its phases. This diver-
sity is reflected in Figure 9 and Table 9, which show the
performance of each of the phases under different memory
management models and hardware configurations. The
hardware configurations considered are all-phase hard-
ware management on a full cache system, all-phase hard-
ware management on a full cache system with a hard-
ware prefetch engine, all-phase software management on
a system with physically partitioned local stores, and both
styles of management chosen per-phase on a dynamically
partitioned system with VLS. While some phases of the
application benefit more from one model or the other,

15

Phase Name HW-managed Software-managed
1 fileio 0.078 0.079
2 lib 0.005 0.005
3 textons 0.668 0.668
4 localcues 7.581 5.375
5 mcombine 0.008 0.008
6 nmax 0.001 0.001
7 intervene 0.307 0.307
8 eigsolver 3.305 1.381
9 oefilter 0.167 0.167
10 gcombine 0.002 0.002
11 postprocess 0.006 0.006

Table 4: Performance of vision phases under different memory management styles. Performance number units are
billions of cycles.

Figure 8: Effect of different memory management schemes on per-phase performance in cycles. The first bar represents hardware
management on a full cache system, and the second is a dynamically partitioned system with VLS. Solid segments represent
hardware-managed phases, while striped segments are software-managed.

16

Figure 9: Effect of different memory management schemes on per-phase performance in cycles. Each stacked bar is a use case:
hardware management on a full cache system, hardware management on a full cache system with prefetching, software management
on a system with physically partitioned local stores, and mixed management on a dynamically partitioned system with VLS. Solid
segments represent hardware-managed phases, while striped segments are software-managed.

Phase Name 32KB HW-man. 32KB HW-man. w/ prefetch 8KB HW-man. and 24KB SW-man.
1 Cluster 10.73 10.05 5.98
2 Gaussian 23.87 26.08 21.11
3 Update 5.84 6.64 11.86
4 Pruning 3.22 3.46 5.57
5 Epsilon 1.92 2.17 2.87

Table 5: Performance of speech recognition phases under different memory management styles. Performance number
units are billions of cycles.

17

VLS allows us to choose the best model and memory con-
figuration for each phase.

It is important to note that choosing to use software-
managed memory for a given routine is a choice akin to
choosing to use software pipelining or software prefetch-
ing. During development, the programmer must decide
whether deploying software memory management for a
given piece of code is worthwhile based on their under-
standing of the memory access pattern and the impact that
the optimization is going to have on overall performance.
The contribution of VLS is allowing the programmer to
deploy such changes incrementally and selectively, as we
see in this case study.

Phase 1 streams through over 6 MB of data, performing
simple accumulations. Large (19 KB) chunks of data are
accessed deterministically, making it easy to use macro-
scopic prefetching to hide the cost of fetching this data
from memory. The effectiveness of the hardware prefetch
engine is limited by the fact that it cannot fetch data across
page boundaries, and the fact that it often generates ex-
tra memory accesses by prefetching past the end of 512B
subblocks of data. Software memory management is very
effective and easy to implement for this phase. However,
while macroscopic prefetching does limit the latency cost
of the many memory accesses, it cannot address the sheer
volume of data required by this phase. The traffic caused
by such large, repeated streaming reads dominates the off-
chip traffic for the entire application.

Phase 2 processes only smaller (1 KB) chunks of data at
a time, making it harder to amortize the latency any better
than the hardware prefetch engine can do automatically.
Software and hardware management are about equally ef-
fective in terms of performance for this phase, although
the software model generates fewer off-chip memory ac-
cesses since it never has to speculate. This phase is pri-
marily computation-bound in our current implementation.

Phases 3, 4, and 5 are all heavily dependent on the
graph structure of the underlying language model. Small,
non-consecutive chunks of arc and state data are accessed
and modified depending on which states are active and
depending on the graph’s connectivity. This makes it hard
to effectively prefetch any large amount of data. Further-
more, there is a degree of reuse within and between these
phases, as certain state and arc information may be read
or written repeatedly. The hardware management mecha-
nisms fortuitously discover this resuse, whereas our soft-
ware management must pessimistically write back and
refetch these small structures repeatedly.

Overall, we see a mix of different behaviors within a
single application. The structure of the algorithm makes
both management styles difficult or inefficient in some

phases, but beneficial in others. Using the lightweight
reconfigurability of VLS, the programmer can pick a lo-
cal memory configuration and management type on a per
phase or per routine basis. This flexibility allows us to
achieve the best possible overall performance.

4.8 Context Switch Overhead
VLS provides a way to seamlessly integrate local store
semantics with a multiprogrammed operating system, but
it should also provide improved efficiency over a physi-
cally partitioned local store in this environment. We quan-
tify this improvement by comparing the amount of data
that is added to the user process state by a physical lo-
cal store (which must be saved and restored on context
switches) with the amount of stored data that is evicted
and refetched on-demand in a VLS system. Figure 10
plots this comparison for our LVSCR application on a ma-
chine with 24 KB local stores. On every context switch,
the machine with the physical local store must save and
restore the entire local store. In contrast, the machine
with VLS only evicts stored data if there are conflicts
with the new program’s memory accesses, and only re-
stores them on demand. In this example the only other
code that runs are kernel routines, system daemons, and
another user program running in an idle loop. If a com-
peting program was able to use up the entire local memory
during its time on the processor then the performance of
both systems would be near equivalent. The reductions in
data movement enabled by VLS, combined with its sin-
gle tag lookup per access and single dual-use datapath,
suggest that it may be more energy efficient than hybrid
systems with split physical caches and local stores – this
energy tradeoff is the subject of our future work.

5 Related Work
Albonesi [1] proposes a hardware-managed cache orga-
nization that allows for certain ways of the cache to be
disabled for certain applications or phases of application
execution. Ranganathan et al. [22] build on the way-based
partitioning design by allowing different ways to be repur-
posed for a variety of uses (e.g. instruction reuse), rather
than just being turned off. VLS makes use of these recon-
figurable components.

A fundamental component of the Smart Memories ar-
chitecture [16] is a reconfigurable memory substrate made
up of ‘mats’ of small SRAM blocks and configurable
logic. A set of mats can be configured to implement a
wide variety of cache organizations, as well as local stores
or vector register files. This reconfigurability can incur

18

Figure 10: Effect of backing the VLS data in physical memory on context switch overhead for the speech inference engine. Both
bars assume 24KB per-core of local store. The top bar assumes a separate physical local store that is virtually indexed. The bottom
bar assumes a VLS with physically tagged data. Overhead is measured in terms of megabytes of data which are written back and
restored due to context switches over the course of the application’s runtime. A Linux 2.6.15 kernel with default settings is used.

significant performance overheads, and the burden placed
on the programmer is quite substantial as they must now
program the wires and memory hierarchy as well as the
processor. VLS is lightweight in that it provides support
only for the local store use case, but does so without re-
quiring the programming model to manage hardware be-
havior explicitly.

The TRIPS architecture as presented by Sankaralingam
[23] allows memory tiles embedded throughout the archi-
tecture to behave as NUCA L2 cache banks, local stores,
synchronization buffers, or stream register files. While
different subsets of a TRIPS architecture may be in dif-
ferent morphs simultaneously, there is no clear way for a
single process to simultaneously make use of the memory
structures or policies associated with two or more morphs.
Again, VLS serves as a lightweight solution compatible
with standard architectures that provides only for the com-
mon local store use case.

Sasanka et al. [24] present ALP, an architecture that
makes use of a DLP technique called SIMD vectors and
streams on top an incrementally modified superscalar
CMP/SMT architecture. Part of their L1 data cache can
be reconfigured to provide a SIMD vector register file
when needed. Only a single cache way is reconfigured
into SVRs, and this is done using the technique described
by [22]. VLS uses address space mechanisms rather than
special instructions to access the repurposed underlying
hardware, enabling unmodified library code to operate on
stored data.

The Texas Instruments TMS320C62xx series of digi-
tal signal processors have the capability to divide the L2
cache portion of their memory hierarchy into a hardware-
managed cache and a software-managed RAM [26]. This
is done on a per-way basis, similar to the technique used
in [22]. Intel’s Xscale processor architecture [11] has a
virtually-tagged data cache that provides both per-cache-
line locking of external memory addresses and allows cer-
tain ways of the data cache to be used as a local store.

These hardware mechanisms are the most similar to the
ones we propose, but no mechanisms are provided in sup-
port of multiprogramming and they have significant repar-
titioning overhead (for example, the Xscale requires a spe-
cial instruction is issued per line locked in the cache).

Wen et al. [29] have developed a system design target-
ing applications with both regular and irregular stream-
ing characteristics. They evaluate a variety of designs for
the on-chip memory hierarchy, including physically parti-
tioned [14] or hybrid systems [12], and discover that com-
bining a streaming register file and a cache into a unified
Syncretic Adaptive Memory module yields the best per-
formance. Similarly, Gummaraju et al. [8, 9] have pro-
posed using portions of the L2 cache as a local memory
with per-line locking flags, as well as additional hardware
modifications in support of a stream programming model.
Both projects focus on a specific type of streaming work-
load, and so naturally only addresses code compiled by a
specialized compiler or operating in a special runtime en-
vironment. However, their key insights mirror our own,
and SAM, Streamware, and VLS can be seen as address-
ing similar pressing issues for programmers attempting to
write highly efficient code.

Leverich et al. [14] provide a recent comparison study
between pure hardware-managed caches and software-
managed local stores in a chip multiprocessor context.
They use a common set of architectural assumptions to
evaluate two representative architectures under a set of
hand-tuned benchmarks. They find that the stream pro-
gramming model improves performance when used on top
of either memory model, and that both organizations are
near equally scalable. VLS gives the programmer flexi-
bility to choose between their design points at a very fine
granularity, and supports adoption of the stream program-
ming model by interested programmers.

Software prefetching has been proposed as a way to
mitigate the reactive disadvantage of hardware manage-
ment mechanisms [4, 27]. However, correctly utilizing

19

software prefetch can prove difficult for programmers and
compilers due to the fact that its effectiveness depends on
the specific timing and replacement policies of the under-
lying hardware. VLS provides a stable target for software
prefetch mechanisms. Software management of a special
repurposed partition has also been proposed for the in-
struction cache [13].

6 Future Work
Virtual local stores can be implemented at multiple levels
of the cache hierarchy, and we are working to rewrite ap-
plications to take advantage of shared virtual local stores
maintained in the outer levels of the cache hierarchy.
The additional associativity and size of the outer caches
may allow for better management of temporal locality
in shared memory workloads. We are also investigat-
ing multi-threaded applications that can make use of fine-
grained data movement directly between VLSs resident
on separate cores, and will investigate the utility of pro-
viding additional hardware support for such movement.
Further studies will also incorporate analyses of the en-
ergy saving provided by on-demand software memory
management.

Another area of future research is integrating VLS
into software productivity frameworks. Such frame-
works might include performance-tuned libraries, code-
generating autotuners, or scripting language constructs
that JIT into highly efficient parallel code. All these
frameworks mesh well with the VLS paradigm, in that
they are intended to allow programmers to selectively op-
timize their code in domain specific ways. It remains to
be seen which frameworks will be able to make efficient
use of the software memory management capabilities pro-
vided by VLS.

There are other mechanisms that could be ‘virtualized’
by repurposing on-chip data buffers in order to allocate
specialized resources only when they are needed. One
example is virtual transaction buffers that provide hard-
ware support for transactional memory when it is useful,
but serve as normal caches otherwise. Another example
might be ring buffers used for communicating messages
in a partitioned exokernel operating system. Mechanisms
of interest to us are ones that can make use of the im-
plicit mapping between virtual address space regions and
some underlying specialized semantics. Using the vir-
tual address space is a composable, flexible way to pro-
vide programmers with on-demand special purpose mem-
ory structures without damaging the performance of other
programs that will be running on the system. For now, it
is unclear how many additional specialized use cases (if

any) are worth supporting in the underlying hardware.

7 Conclusion
The power wall and the memory wall are increasing inter-
est in software-managed local stores because expert pro-
grammers writing code for all types of systems are seek-
ing to reduce power and improve memory performance.
Hardware-managed caches are still needed for programs
that do not lend themselves to such optimizations, as well
as for programs that either are run too infrequently to
merit heavy tuning or are written by programmers without
the skills needed to take advantage of local stores. VLS
gives expert programmers concerned with efficiency the
software management tools they need without inflicting a
performance penalty on all noncompliant code.

VLS is a set of architectural mechanisms that pro-
vides the advantages of software-managed memory with-
out changing the ISA or substantially increasing the state
of the user processes. The composable nature of VLS al-
lows procedures written using software memory manage-
ment optimizations and procedures that assume hardware
management to work synergistically together in a single
program, which is likely a requirement for the success of
local stores in non-embedded applications. Building on
underlying hardware management mechanisms ensures
that execution will always be correct, even in the face of
programmer error. At the same time, the local store se-
mantics provided by VLS are easier for programmers to
reason about than software prefetching into a hardware-
managed cache.

With VLS, programmers do not have to pick a ‘mode’
at boot time or as an application begins to execute and
then live with that setting throughout the entirety of the
application’s run time. While some applications could be
wholly converted to software management, partial conver-
sions that only optimize critical sections are supported ef-
fectively with VLS. Virtual local stores only exist when
the programmer can make use of them, and are seam-
lessly absorbed into the hardware-managed memory hier-
archy otherwise. VLS provides all the benets of software-
managed memory hierarchies within the context of a full-
featured mainstream computing environment.

20

References
[1] D. H. Albonesi. Selective cache ways: on-demand

cache resource allocation. In MICRO 32: Proceed-
ings of the 32nd annual ACM/IEEE international
symposium on Microarchitecture, pages 248–259,
Washington, DC, USA, 1999. IEEE Computer So-
ciety.

[2] B. Batson and T. N. Vijaykumar. Reactive-
associative caches. In PACT ’01: Proceedings of
the 2001 International Conference on Parallel Ar-
chitectures and Compilation Techniques, pages 49–
60, Washington, DC, USA, 2001. IEEE Computer
Society.

[3] D. A. Calahan. Performance evaluation of static and
dynamic memory systems on the Cray-2. In ICS ’88:
Proceedings of the 2nd international conference on
Supercomputing, pages 519–524, New York, NY,
USA, 1988. ACM.

[4] D. Callahan, K. Kennedy, and A. Porterfield. Soft-
ware prefetching. In ASPLOS-IV: Proceedings of
the fourth international conference on Architectural
support for programming languages and operating
systems, pages 40–52, New York, NY, USA, 1991.
ACM.

[5] B. Catanazaro, B.-Y. Su, N. Sundaram, Y. Lee,
M. Murphy, and K. Keutzer. Efficient, high-quality
image contour detection. In IEEE International
Conference on Computer Vision, 2009.

[6] J. Chong, Y. Yi, N. R. Satish, A. Faria, and
K. Keutzer. Data- parallel large vocabulary contin-
uous speech recognition on graphics processors. In
Intl. Workshop on Emerging Applications and Many-
core Architectures, 2008.

[7] L. T. Clark and et al. An embedded 32-b micropro-
cessor core for low-power and high-performance ap-
plications. IEEE JSSC, 36(11):1599–1608, Novem-
ber 2001.

[8] J. Gummaraju, J. Coburn, Y. Turner, and M. Rosen-
blum. Streamware: programming general-purpose
multicore processors using streams. In ASPLOS
XIII: Proceedings of the 13th international confer-
ence on Architectural support for programming lan-
guages and operating systems, pages 297–307, New
York, NY, USA, 2008. ACM.

[9] J. Gummaraju, M. Erez, J. Coburn, M. Rosenblum,
and W. J. Dally. Architectural support for the stream

execution model on general-purpose processors. In
PACT ’07: Proceedings of the 16th International
Conference on Parallel Architecture and Compi-
lation Techniques, pages 3–12, Washington, DC,
USA, 2007. IEEE Computer Society.

[10] X. Huang, A. Acero, and H.-W. Hon. Spoken Lan-
guage Processing: A Guide to Theory, Algorithm
and System Development. Prentice Hall, 2001.

[11] Intel. 3rd Generation Intel XScale(R)
Microarchitecture Developer’s Manual.
http://www.intel.com/design/intelxscale/, May
2007.

[12] N. Jayasena, M. Erez, J. Ahn, and W. Dally. Stream
register files with indexed access. In Tenth Interna-
tional Symposium on High Performance Computer
Architecture (HPCA-2004., 2004.

[13] T. M. Jones, S. Bartolini, B. D. Bus, J. Cavazos,
and M. F. P. O’Boyle. Instruction cache energy
saving through compiler way-placement. In DATE
’08: Proceedings of the conference on Design, au-
tomation and test in Europe, pages 1196–1201, New
York, NY, USA, 2008. ACM.

[14] J. Leverich, H. Arakida, A. Solomatnikov,
A. Firoozshahian, M. Horowitz, and C. Kozyrakis.
Comparing memory systems for chip multiproces-
sors. In ISCA ’07: Proceedings of the 34th annual
international symposium on Computer architecture,
pages 358–368, New York, NY, USA, 2007. ACM.

[15] B. Lewis and D. J. Berg. Multithreaded Program-
ming with Pthreads. Prentice Hall, 1998.

[16] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally,
and M. Horowitz. Smart memories: a modular re-
configurable architecture. In ISCA ’00: Proceedings
of the 27th annual international symposium on Com-
puter architecture, pages 161–171, New York, NY,
USA, 2000. ACM.

[17] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Us-
ing contours to detect and localize junctions in natu-
ral images. In Computer Vision and Pattern Recog-
nition, pages 1–8, June 2008.

[18] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore,
M. D. Hill, , and D. A. Wood. Multifacet’s
general execution-driven multiprocessor simulator
(gems) toolset. Computer Architecture News (CAN),
September 2005.

21

[19] J. Montanaro, R. T. Witek, K. Anne, A. J. Black,
E. M. Cooper, D. W. Dobberpuhl, P. M. Donahue,
J. Eno, A. Fatell, G. W. Hoeppner, D. Kruckmeyer,
T. H. Lee, P. Lin, L. Madden, D. Murray, M. Pearce,
S. Santhanam, K. J. Snyder, R. Stephany, and S. C.
Thierauf. A 160MHz 32b 0.5W CMOS RISC mi-
croprocessor. In Proc. International Solid-State Cir-
cuits Conference, Slide Supplement, February 1996.

[20] H. Ney and S. Ortmanns. Dynamic programming
search for continuous speech recognition. IEEE Sig-
nal Processing Magazine, 16:64–83, 1999.

[21] S. Phillips and A. Rogers. Parallel speech recogni-
tion. Int. J. Parallel Program., 27(4):257–288, 1999.

[22] P. Ranganathan, S. Adve, and N. P. Jouppi. Recon-
figurable caches and their application to media pro-
cessing. In ISCA ’00: Proceedings of the 27th an-
nual international symposium on Computer archi-
tecture, pages 214–224, New York, NY, USA, 2000.
ACM.

[23] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim,
J. Huh, N. Ranganathan, D. Burger, S. W. Keckler,
R. G. McDonald, and C. R. Moore. Trips: A poly-
morphous architecture for exploiting ilp, tlp, and
dlp. ACM Transactions on Architecture and Code
Optimization(TACO), 1(1):62–93, March 2004.

[24] R. Sasanka, M.-L. Li, S. V. Adve, Y.-K. Chen, and
E. Debes. Alp: Efficient support for all levels of
parallelism for complex media applications. ACM
Transactions on Architecture and Code Optimiza-
tion, 4(1):3, 2007.

[25] J. Shi and J. Malik. Normalized cuts and image seg-
mentation. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, 22(8):888–905, August 2000.

[26] Texas Instruments. TMS320C6202/C6211 Peripher-
als Addendum to the TMS320C6201/C6701 Periph-
erals Reference Guide (SPRU290), August 1998.

[27] S. P. Vanderwiel and D. J. Lilja. Data prefetch mech-
anisms. ACM Computing Surveys, 32(2):174–199,
2000.

[28] Virtutech. Simics ISA Simulator. www.simics.net,
2008.

[29] M. Wen, N. Wu, C. Zhang, Q. Yang, J. Ren, Y. He,
W. Wu, J. Chai, M. Guan, and C. Xun. On-chip
memory system optimization design for the ft64 sci-
entific stream accelerator. IEEE Micro, 28(4):51–70,
2008.

[30] S. Williams, J. Carter, L. Oliker, J. Shalf, and
K. Yelick. Lattice boltzmann simulation optimiza-
tion on leading multicore platforms. In Interna-
tional Parallel and Distributed Processing Sympo-
sium (IPDPS), April 2008.

[31] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Hus-
bands, and K. Yelick. Scientific computing kernels
on the cell processor. International Journal of Par-
allel Programming (IJPP), June 2007.

22

