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Abstract—Given an execution trace of an object-oriented
program and an object created during the execution, a path
slice per object with respect to the object, or PSPO, is a part of
the trace such that (1) the sequence of public methods invoked
on the object in the trace is same as the sequence of public
methods invoked on the object in the slice, and (2) given a
method invocation in the slice, the state of all objects accessed
by the method is same in both the trace and slice. A generator
for a PSPO (or GPSPO in short) is a program such that its
only execution trace is the PSPO. We argue that GPSPOs can be
useful for debugging, creating test harnesses, creating regression
test suites, discovering usage and construction patterns of a class.
We present an algorithm to create GPSPOs given an execution
trace and an object. We have implemented the algorithm in a
prototype tool for Java, and we present several examples that
demonstrate the effectiveness of our algorithm and the utility of
GPSPOs.

I. INTRODUCTION

We propose a dynamic path slicing technique for object-
oriented programs. Given an execution trace of an object-
oriented program and an object created during the execution,
we show how to capture the sequence of all method calls on
the object, in addition to all method calls needed to construct
and compute all necessary method parameters. This sequence
is a slice of the given execution trace for the given object.
We call such a sequence a path slice per object, or PSPO.
Moreover, for such a PSPO, we also construct a generator,
or GPSPO—a simple, closed executable program whose trace
is exactly the given PSPO. For example, a GPSPO of the
execution trace of the program in Figure 1 with respect to the
LinkedList object created at line 4 is shown in Figure 2.

We argue that such GPSPOs have many potential applica-
tions:

• GPSPOs can be used to understand how a particular class
has been used in a program. Such an understanding could
help us to learn the typical usage pattern of the class.

• GPSPOs can also be treated as small unit regression tests
for the class of the object. Therefore, whenever we make
any change to the class, we can quickly test the class by
running the GPSPOs for that class instead of running the
whole program from which the GPSPOs were derived.

• GPSPOs can simplify debugging—if an error occurs in
an object during an object-oriented execution, we may be
able to use the GPSPO of the object for debugging rather
than using the full program execution.

• A GPSPO captures a legal sequence of method calls
on a target object. Therefore, GPSPOs can be used to
generate test harnesses, which may otherwise be difficult
to construct manually.

Computation of a PSPO and GPSPO from an execution
trace poses two key challenges: (1) a method called on an
object could be private and thus cannot be directly included
in the GPSPO, and (2) a GPSPO may include a method on
an object, but the object’s definition is subsumed by another
method present in the GPSPO. We illustrates these challenges
in the next section through examples. We solve the first prob-
lem by including in the GPSPO the immediate public method
that encloses the private method. We solve the second problem
by including in the GPSPO some method call that returns the
undefined object. However, the inclusion of a new method
may necessitate the inclusion of yet more methods because
the included method may access some other objects whose
method invocations are not present in the current GPSPO. In
order to resolve these complications, we propose a GPSPO
computation algorithm based on a fix-point computation.

We have implemented our GPSPO computation algorithm
in a prototype tool in Java and have applied it to several
open and closed source Java programs. Our experiments
show that, on average, the traces generated by GPSPOs are
significantly shorter than the original traces. This suggests
that GPSPOs can help in program debugging. Moreover, our
experiments suggest that these GPSPOs can provide compact
usage examples for complicated APIs. Our experiments also
show that test harnesses generated from GPSPOs can increase
test coverage while giving few spurious test failures. The test
harnesses produced for four benchmarks in our suite resulted
in only one such test failure.

Our definition of a GPSPO combines ideas from dynamic
program slicing [16], [2], [1], [17], [9], [5], [30], [26] and
recent work in automatically carving tests from program exe-
cutions [22], [20], [6], [15]. In both dynamic program slicing
and test carving, an execution trace a program is analyzed
to determine how the program modifies some target set of
variables or objects. In the first case, this analysis is used to
produce a simplified, executable subset of the program, called
a program slice, which captures all of the modifications or uses
of the targets. In test carving, this analysis is used to produce
a sequence of methods, along with pre- and post-conditions,



1 p u b l i c c l a s s Example1 {
2 p u b l i c s t a t i c vo id main (String[]) {
3 TreeSet set = new TreeSet();
4 LinkedList list = new LinkedList();
5 Integer I;
6 f o r ( i n t i=0; i<3; i++) {
7 i n t j = (i * 7) % 11;
8 I = new Integer(j);
9 list.addLast(I);
10 set.add(I);
11 }
12 }
13 }

Fig. 1. A simple Java program

p u b l i c c l a s s GPSPO1 {
p u b l i c s t a t i c vo id main (String[] args) {
LinkedList X1 = new LinkedList();
Integer X2 = new Integer(0);
X1.addLast(X2);
Integer X3 = new Integer(7);
X1.addLast(X3);
Integer X4 = new Integer(3);
X1.addLast(X4);

}
}

Fig. 2. A GPSPO with respect to the object created at line 4 in Figure 1

which can be replayed as program tests. A GPSPO can be
viewed as a dynamic program slice of the complete unrolling
of the original program. That is, the program obtained by
unrolling all loops and specializing all conditional statements
for the given execution trace.

In summary, we make the following contributions:
• We introduce the notion of a path slice per object

and argue that path slices per object can aid effective
debugging, testing, and class usage understanding.

• We propose an iterative algorithm for computing a path
slice per object.

• We provide an implementation of our technique for Java
and evaluate our technique on several real-world Java
programs.

II. OVERVIEW

An execution trace (or simply a trace) of an object-oriented
program is the sequence of methods invoked during the
execution. For each method, the trace records the object on
which the method is called, the values of the arguments that are
passed, the value that is returned, and the trace generated by
the body of the method. Given an execution trace of an object-
oriented sequential program and an object created during the
execution, a path slice per object (or PSPO in short) of the
execution with respect to the object is a part of the trace such
that:

1) the sequence of methods invoked on the object in the
trace is same as the sequence of methods invoked on
the object in the slice, and

2) given a method invocation in the slice, the state of all
objects accessed by the method is same in both the trace

p u b l i c c l a s s GPSPO2 {
p u b l i c s t a t i c vo id main (String[] args) {
TreeSet X1 = new TreeSet();
Integer X2 = new Integer(0);
X1.add(X2);
Integer X3 = new Integer(7);
X1.add(X3);
Integer X4 = new Integer(3);
X1.add(X4);

}
}

Fig. 3. A GPSPO with respect to the object created at line 3 in Figure 1

p u b l i c c l a s s GPSPO {
p u b l i c s t a t i c vo id main(String[] args) {
MatchActionProcessor X20 = MatchActionProcessor

();
X20.addAction("<[ˆ>]*>");
FileInputStream X47 = new FileInputStream("file.

txt");
PrintStream X48 = System.out;
X20.processMatches(X47, X48);

}
}

Fig. 4. Usage scenario for the MatchActionProcessor class in the grep
application

and slice.
A generator for a PSPO (or GPSPO in short) is a closed
program such that its only execution trace is the PSPO.

Consider the Java program in Figure 1. The program creates
a TreeSet and a LinkedList and invokes the add and
addLast methods on them, respectively.

A GPSPO of the execution trace of the above program with
respect to the LinkedList object created at line 4 is shown
in Figure 2. The execution trace of this GPSPO is the PSPO of
the execution trace of the program in Figure 1 with respect to
the LinkedList object. Note that the GPSPO completely
eliminates the method invocations on the TreeSet object.
This is because any method invocation in the PSPO does not
access any TreeSet object. Figure 3 shows the GPSPO of
the execution trace of the original program with respect to the
TreeSet object created at line 3.

A. Applications of GPSPOs

We believe that GPSPOs have many applications in program
testing, understanding, and debugging. These applications in-
clude:

a) GPSPOs as regression unit tests: A GPSPO shows
how a particular class has been used in the program, i.e., it
shows how an object of the class has been created and how the
various methods have been called on the object. Note that the
creation and method invocations on the object may use other
objects. A GPSPO creates all such objects and makes sure that
they are in the right state. Thus a GPSPO can be thought of as a
simple, small program that exercises all methods of the object
in the same way as the original program does. Therefore, a
GPSPO could be used as a regression unit test for the class of
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p u b l i c c l a s s GPSPO {
p u b l i c s t a t i c vo id main(String[] args) {
File X148391 = new File("test.tex");
TeXWordFinder X148392 = new TeXWordFinder();
FileWordTokenizer X148397 = new

FileWordTokenizer(X148391,X148392);
...

}
}

Fig. 5. Code snippet to create FileWordTokenizer

the object. Note that a GPSPO does not introduce assertions,
but they can be introduced based on the return values of the
various method invocations in the GPSPO. Moreover, one can
assume that the class itself has various programmer written
assertions.

b) Discovering class usage: Since a GPSPO contains
all the method invocations on a particular object, it can be
used to learn about the typical usage pattern of the class
of the object. For example, a GPSPO shown in Figure 4
from the grep benchmark shows a typical usage scenario
of the class MatchActionProcessor. The usage simply
shows how grep has been implemented using the class
MatchActionProcessor in the Apache regular expres-
sion library. Note that the GPSPO also shows how the ob-
jects X47 and X48 are defined. These objects are passed as
arguments to the method processMatches of the class
MatchActionProcessor.

c) Finding code snippets to create an object of a
given type: Mandelin et al. [19] showed in their jungloid
mining paper that it is often difficult for a programmer to
create an object of a given type. The paper then proposed
a static method to help programmers in creating object of a
given type. Our technique provides a dynamic technique to
come up with such object creation code. This is because a
GPSPO for an object shows how the object is created and
shows operations on all the objects that are required to create
the object. For example, the code in Figure 5 shows how one
can create an object of class FileWordTokenizer in the
Jazzy spell checker, which is otherwise difficult to come up
with if the programmer is not familiar with the API of the
class FileWordTokenizer.

d) Creating test harnesses from GPSPOs: We have
already argued that a GPSPO could be treated as a regression
test, but one can go further and convert them into unit test
harnesses, or parametric unit tests [24]. Such test harnesses
could be used with an automated test generation tool such as
Java Pathfinder [25], DART [7], or CUTE [23], PEX [24] to
improve test coverage of the class of the object involved in
the GPSPO. In order to convert a GPSPO into a test harness,
we simply replace all primitive values used in the GPSPO by
inputs. For example, Figure 6 shows the test harness created
out of the GPSPO in Figure 2. The function readInteger
reads an integer from console or file. Since the test harness
invokes all the methods on the object in the same order as
in the original execution, it will less likely show an invalid

p u b l i c c l a s s Test1 {
p u b l i c s t a t i c vo id main (String[] args) {
LinkedList X1 = new LinkedList();
Integer X2 = new Integer(readInteger());
X1.addLast(X2);
Integer X3 = new Integer(readInteger());
X1.addLast(X3);
Integer X4 = new Integer(readInteger());
X1.addLast(X4);

}
}

Fig. 6. A test harness created from the GPSPO in Figure 2

test execution. Moreover, an automated test generation tool
will improve the coverage of the class. For example, in our
experiments, the GPSPO in Figure 2 covered 30 branches,
while the test harness in Figure 6 covered 44 branches in the
program without exploring any illegal path while testing the
java.util.LinkedList class.

e) GPSPOs for better debugging: Similar to many
other slicing techniques, GPSPOs simplify debugging as they
create a portion of the original trace that is relevant to
debugging an object. For example, in the program in Figure 1,
assume that the addLast method of LinkedList has a
bug and violates an assertion. There could be two reasons
behind the bug: (1) the program is violating the contract of
the LinkedList class, or (2) the LinkedList class itself
has a bug. The former cause could be discovered by looking
at all the arguments that are passed to the methods invoked on
the LinkedList object and the latter cause could be found
by executing the addLast methods in the right object state.
A GPSPO shown in Figure 2 helps to achieve both these goals.
This is because the GPSPO shows all method invocations
and all method arguments that could have potentially affected
the behavior of the LinkedList object. The GPSPO is
simple without any branching statement and excludes the
TreeSet object completely. One can repeatedly execute this
smaller and simpler GPSPO and debug it. An advantage of
debugging the simpler GPSPO is that the programmer does
not have to look at the entire program involving the TreeSet
object. Moreover, condition 2 of our definition of PSPO also
guarantees that if a bug appears in the addLast method
while executing the program in Figure 1, the same bug will
also appear while executing the GPSPO in Figure 2. This
significantly simplifies the process of debugging in a program
that creates millions of objects, but a PSPO only involves
hundreds of objects.

Note that, unlike traditional program slices, a GPSPO re-
moves all the branching statements and operations on primitive
types. This helps a programmer, who is trying to debug an
object, to focus only on the method invocations on the object,
rather than spending time on the irrelevant control flow and
irrelevant operations on the primitives.
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1 p u b l i c c l a s s Problem1 {
2 p r i v a t e i n t val;
3 p u b l i c Problem1() { val = 0; }
4 p r i v a t e vo id decrement( i n t x) {
5 val = val - x;
6 }
7 p u b l i c vo id transfer(Problem1 from) {
8 val = val + 100;
9 from.decrement(100);
10 }
11 p u b l i c vo id print() {
12 System.out.println(val);
13 }
14 p u b l i c s t a t i c vo id main(String[] args) {
15 Problem1 o1 = new Problem1();
16 Problem1 o2 = new Problem1();
17 o2.transfer(o1);
18 o1.print();
19 System.out.println("Done");
20 }
21 }

Fig. 7. An example showing a problem with GPSPO computation due to
the presence of private methods.

p u b l i c c l a s s GPSPOInvalid {
p u b l i c s t a t i c vo id main(String[] args) {

Problem1 X1 = new Problem1();
X1.decrement(100); //illegal call to

//private method
X1.print();

}
}

Fig. 8. An invalid GPSPO of the only execution of the program in Figure 7
with respect to the object o1

B. Computation of GPSPOs

We present a technique to compute a GPSPO given an object
and an execution trace. There are two key challenges in such
a computation: (1) a method called on an object could be
private and cannot be directly included in the GPSPO, and
(2) a GPSPO may include a method on an object, but the
object’s definition is subsumed by another method present in
the GPSPO. We illustrate these problems using two examples.

Consider the program in Figure 7. The program defines
a class Problem1 that has one public constructor and four
methods, one of which is private. A GPSPO of the only execu-
tion of the program with respect to the object o1 is shown in
Figure 8. However, this program does not compile because the
program calls the private method decrement on X1. This
illustrates the first problem associated with the computation
of a GPSPO. A possible way to solve this problem is to
include in the GPSPO the immediate public method invocation
that encloses the private method. For example, in our case
we include the invocation of the public method transfer
in the GPSPO. This method subsumes the private method
decrement. The modified valid GPSPO for object o1 is
shown in Figure 9. Our GPSPO computation algorithm adopts
this solution.

Consider the program in Figure 10. The program defines a
class Problem2 that has a public and a private constructor. A

p u b l i c c l a s s GPSPOValid {
p u b l i c s t a t i c vo id main(String[] args) {

Problem1 X1 = new Problem1();
Problem1 X2 = new Problem1();
X2.transfer(X1);
X1.print();

}
}

Fig. 9. A valid GPSPO of the only execution of the program in Figure 7
with respect to the object o1

1 p u b l i c c l a s s Problem2 {
2 p r i v a t e Problem2 next;
3 p r i v a t e i n t val;
4 p u b l i c Problem2( i n t val) {
5 t h i s.val = val;
6 t h i s.next = new Problem2();
7 }
8 p r i v a t e Problem2() { val = 10;}
9 p u b l i c Problem2 getNext() { re turn next; }
10 p u b l i c vo id print() {
11 System.out.println(val);
12 }
13 p u b l i c s t a t i c vo id main(String[] args) {
14 Problem2 o1 = new Problem2(9);
15 Problem2 o2 = o1.getNext();
16 o2.print();
17 System.out.println("Done");
18 }
19 }

Fig. 10. An example showing a problem with GPSPO computation due to
the presence of private methods.

GPSPO of the only execution of the program with respect to
the object o2 is shown in Figure 11. The GPSPO is not valid
because it calls the private constructor of Problem2. After
applying the solution proposed above for private methods, we
get the modified GPSPO shown in Figure 12. However, this
GPSPO is not a valid program as the variable X2 is not defined
before it is used—the definition of X2 was implicitly present
in the constructor of X1. Therefore, in order make the GPSPO
a valid program, we include any other method invocation
that returns X2 (see Figure 13.) Note that the inclusion of
a new method invocation may necessitate inclusion of other
method invocations because the included method may access
some objects whose method invocations are not present in
the current GPSPO. We show in Section IV that these issues
reduce the problem of constructing a GPSPO to a fixpoint
computation on the execution trace of the original program.

III. FORMAL DEFINITION OF A PSPO AND A GPSPO

To simplify our exposition, we present our algorithm for a
simplified Java in which every statement is a call to an instance
method on an object and every such method returns a value.
Many of Java’s feature can be realized through our simplified
language as follows:

• We treat reads and writes to fields as calls to get and set
methods (and static fields as static get and set methods).

• We define a special object representing every class and
treat static methods for a class as instance methods on
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p u b l i c c l a s s GPSPOInvalid1 {
p u b l i c s t a t i c vo id main(String[] args) {

// illegal call to the
// private constructor
Problem2 X2 = new Problem2();
X2.print();

}
}

Fig. 11. An invalid GPSPO of the only execution of the program in Figure 10
with respect to the object o2

p u b l i c c l a s s GPSPOInvalid2 {
p u b l i c s t a t i c vo id main(String[] args) {

Problem2 X1 = new Problem2(9);
X2.print(); // illegal: X2 undefined

}
}

Fig. 12. A invalid GPSPO of the only execution of the program in Figure 10
with respect to the object o2

the corresponding special object.
• We treat void methods as returning a special value
void.

• We treat constructors as special <init> methods that
return references to the constructed object.

Our algorithm operates on a finite trace of an execution
of a program. A trace records the hierarchial sequence of
method calls made during the program execution. For each
call, it records the object on which the method was called,
the parameters to the method, the value returned by the
method, and the trace of methods invoked during the method’s
execution. That is, a trace is a sequence of method invocations
M of the form: V0 = o.m(V1, V2, . . . , Vn){M1, . . . ,Mn},
where where m is the name of the invoked method, o is the
object on which m is invoked, the Vi are parameter and returns
values, and the Mi are the methods invoked by M .

For example, Figure 14 contains the trace generated by the
program in Figure 7. The trace is a single, top-level method
invocation:

M1 : void = Problem1.main() {
M2,M4,M6,M12,M16,M17

}

Several, of the methods invoked by M1 further invoke methods
themselves (i.e. M3, M4, M6, and M12). Note that field

p u b l i c c l a s s GPSPOValid {
p u b l i c s t a t i c vo id main(String[] args) {

Problem2 X1 = new Problem2(9);
Problem2 X2 = X1.getNext();
X2.print();

}
}

Fig. 13. A valid GPSPO of the only execution of the program in Figure 10
with respect to the object o2

M1: void = Problem1.main(n u l l) {
M2: o1 = o1.<init>() {
M3: void = o1.setVal(0) { }

}
M4: o2 = o2.<init>() {
M5: void = o2.setVal(0) { }

}
M6: void = o2.transfer(o1) {
M7: 0 = o2.getVal() { }
M8: void = o2.setVal(100) { }
M9: void = o1.decrement(100) {
M10: 0 = o1.getVal() { }
M11: void = o1.setVal(-100) { }

}
}

M12: void = o1.print() {
M13: o3 = System.getOut() { }
M14: -100 = o1.getVal() { }
M15: void = o3.print(-100) { }

}
M16: o3 = System.getOut() { }
M17: o3.print(‘‘Done’’) { }

}

Fig. 14. An execution trace of the program in Figure 7

accesses are treated as calls to getter and setter methods, and
that static field out is treated as an instance field of special
object System. Further, primitive operations such as integer
addition and subtraction are omitted.

The PSPO for this trace with respect to o1 is given by the
sequence M2,M4,M6,M12 and its corresponding GPSPO is
shown in Figure 9.

Given a method invocation M of the form V0 =
o′.m(V1, V2, . . . , Vn){M1M2 . . .Mk}, we define the follow-
ing functions.

Definition III.1. We define target(M) as o′ (the object on
which a method is invoked), method(M) as m (the name of
the method), and return(M) as V0 (the object returned by the
method).

For example, in the trace in Figure 14, target(M6) is o2,
method(M6) is transfer, and return(M6) is void.

Definition III.2. We define accessedObjects(M) as the set
{o′} ∪ {Vi | i ∈ [1, n] and Vi is an object } ∪⋃k

i=1 accessedObjects(Mi). We extend the definition to a
trace τ = M1M2 . . .Mk as follows.

accessedObjects(τ) =
k⋃

i=1

accessedObjects(Mi)

That is, accessedObjects(M) contains all the objects that
have been accessed by the method invocation M . For example,
for the trace in Figure 14, accessedObjects(M6) is the set
{o1, o2}.

Definition III.3. We define freeObjects(M) as the set {o′} ∪
{Vi | i ∈ [1, n] and Vi is an object } if method(M) is not
<init> and as the set {Vi | i ∈ [1, n] and Vi is an object }
if method(M) is <init>

5



For example, for the trace in Figure 14, freeObjects(M2) is
the empty set and freeObjects(M6) is the set {o1, o2}. In
general, freeObjects(M) contains the objects that are passed
as arguments to the method invocation M . These objects need
visible definition in a GPSPO.

Definition III.4. We say that M ′ @ M , iff the following holds

(M ′ == M) ∨
k∨

i=1

(M ′ @ Mi)

We extend the definition to a trace τ = M1M2 . . .Mk as
follows. We say M ′ @ τ iff there exists a i ∈ [1, k] such that
M ′ @ Mi.

For example, for the trace in Figure 14, M2 @ M1,
M9 @ M1, M9 @ M6. Informally, we say M ′ @ M , if
the invocation of M encloses the invocation of M ′.

Definition III.5. [PSPO] Given a trace τ and an object
os, a path slice per object (or PSPO) of os is a trace
σ = M1M2 . . .Mn such that

• [AllPublic] for each i ∈ [1, n], Mi is a public method
invocation,

• [ValidSlice] for all i, j ∈ [1, n], if i < j, then Mi is
invoked before Mj in τ , Mi 6@ Mj , and Mj 6@ Mi,

• [Containment] for all M @ τ , if target(M) is os then
M @ σ,

• [ValidState] for all i ∈ [1, n] and for all o ∈
accessedObjects(Mi), if there exists an M such that
target(M) is o and M is invoked before Mi in τ , then
M @ σ,

• [AvailableAtUse] for all i ∈ [1, n] and for all o ∈
freeObjects(Mi), there exists a 1 ≤ j < i such that
return(Mj) is o.

A requirement for PSPO is that all top-level method invoca-
tions in the PSPO are public. This ensures that we can create
a valid program out of a PSPO. The condition [AllPublic] in
the definition of PSPO fulfills this requirement. [ValidSlice]
ensures that a PSPO is a slice of the original trace, i.e.
all elements of the PSPO are present in the same order as
in the original trace τ . [Containment] ensures that all the
method invocations on os are present in the PSPO. Condition
[ValidState] ensures that any object o on which a method
has been invoked in the PSPO is in the right state. This can
be ensured if all the method invocations on o in the original
trace is also present in the PSPO. In order to ensure that we
can create a program from a trace, we need to make sure
that a visible object in a PSPO is defined before it is used.
[AvailableAtUse] ensures this.

Proposition III.6. Let σ be the PSPO of the object os and
trace τ . Then the sequence of methods invoked on os in σ is
same as the sequence of the methods invoked on os in τ .

The above proposition follows from the conditions [Valid-
Slice] and [Containment] in Definition III.5. Informally, the
proposition states that all methods invoked on os in the original

execution are also present in the PSPO. This is one of the
primary requirements for a PSPO.

Proposition III.7. Let σ be the PSPO of the object os and
trace τ . If M is a method invocation in σ, then the state of
all the objects accessed by M is same in both σ and τ .

The above proposition follows from the condition [Valid-
State] in Definition III.5.

Definition III.8. [GPSPO] Given a PSPO, a GPSPO is a
program whose exact execution trace is the PSPO.

IV. GPSPO COMPUTATION ALGORITHM

The GPSPO computation algorithm works in two steps. In
the first step, we compute a PSPO. The PSPO is then used to
generate GPSPO. We next describe the two steps.

Algorithm 1 PSPO(τ, os)
1: Input: τ and os

2: σ ⇐ M such that M is the last method invoked on o in τ
3: repeat
4: σ′ ⇐ σ
5: σ ⇐ addAccessedObjects&TheirMethods(τ, σ)
6: σ ⇐ addDefinition(τ, σ)
7: until σ == σ′

8: return σ

A. PSPO Computation Algorithm

The pseudo-code of the algorithm is shown in Algorithm 1.
The algorithm essentially computes a fix point trace such that
all the conditions in Definition III.5 are satisfied. Specifically,
given an execution trace τ and an object os created in the
trace τ , we start with an initial slice σ that contains the last
method invocation on os in τ . Then we expand the slice by
incorporating other method invocations until we find a slice
that satisfies all the conditions of being a PSPO. We add
other method invocations in the slice by calling the functions
addAccessedObjects&TheirMethods and addDefinition.

Function addAccessedObjects&TheirMethods adds all
method invocations on objects that have been accessed by
at least one method invocation in σ. In order to add a
new method invocation to the slice σ, we call the function
addToSlice. addToSlice ensures that we do not add a private
method—if the last argument passed to addToSlice is a private
method, then we find the immediate enclosing public method
invocation in τ that contains the private method invocation
and add the public method invocation to the slice. addToSlice
also ensures that whenever we add a method invocation M to
the slice, any other method invocation in the slice is removed
if the invocation is contained in M .

Function addDefinition ensures that the last condition in
Definition III.5 is satisfied. Note that whenever we add a
method invocation to the slice using addToSlice, one of the
conditions in Definition III.5 may get violated. This is because
the newly added method invocation may access some objects
that we have not considered yet or the method invocation may
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Algorithm 2 addAccessedObjects&TheirMethods(τ, σ)
1: repeat
2: let σ = M1M2 . . . Mn

3: σ′ ⇐ σ
4: for i = 1 to n do
5: for each o ∈ accessedObjects(Mi) do
6: for each M ′ @ τ such that target(M ′) == o and M ′ is

invoked before Mi in τ do
7: σ ⇐ addToSlice(τ, σ, M ′)
8: end for
9: end for

10: end for
11: until σ == σ′

12: return σ

Algorithm 3 addDefinition(τ, σ)
1: let σ = M1M2 . . . Mn

2: if ∃i ∈ [1, n] and ∃o ∈ freeObjects(Mi) such that ∀j ∈ [1, i−1].
return(Mj) 6= o then

3: let M ′ @ τ such that M ′ is invoked before Mi in τ and
¬(M ′ @ σ) and return(M ′) == o

4: σ ⇐ addToSlice(τ, σ, M ′)
5: end if
6: return σ

need definition of some objects. Therefore, we keep iterating
the process until we get a valid PSPO.

Theorem IV.1. Algorithm 1 terminates.

We provide a sketch of the proof for the above theorem.
Essentially, the size of the set {M | M @ σ} is increased
by at least 1 in each iteration (except the last iteration) of
the repeat–until loops of both Algorithm 1 and Algorithm 2
and the size is upper bounded by the size of the (finite) set
{M | M @ τ}.

Theorem IV.2. The slice returned by Algorithm 1 satisfies
Definition III.5.

We again provide a brief proof sketch. The proof requires
us to show that σ returned by Algorithm 1 satisfies all the five
conditions in Definition III.5. The condition [AllPublic] is an
invariant and is ensured by lines 1, 2, and 3 of Algorithm 4.
The condition [ValidSlice] is also an invariant and is ensured
by line 5 of Algorithm 4. The condition [Containment] is
ensured by line 2 in Algorithm 1 and by the Algorithm 2.
The condition [ValidState] is ensured by Algorithm 2 and the
condition [AvailableAtUse] is ensured by Algorithm 3.

B. Generating a GPSPO from a PSPO

The second step of the algorithm generates a simple pro-
gram whose only execution generates the PSPO. Let σ =
M1M2 . . .Mn be a PSPO. Our GPSPO generating algorithm
performs simple syntactic transformations on each statement
in σ, prints it to a file and thus creates a compilable Java code.
The pseudo code for creating GPSPO from a PSPO is given in
algorithm 5. The Print method in the algorithm prints the text
in the quotes to a file. Before printing, it converts the objects
(Vi’s) from their internal representation to unique variable
names using the $ macro. For every Vi, $Vi first checks if

Algorithm 4 addToSlice(τ, σ,M)
1: if M is private then
2: M ⇐ M ′ where M ′ is the shortest public method invocation

in τ such that M @ M ′

3: end if
4: let σ = M1M2 . . . Mn

5: σ ⇐ M1 . . . MkMMh . . . Mn, if M is invoked after Mk in τ
and ∀i ∈ [k + 1, h− 1].Mi @ M and Mh 6@ M

Algorithm 5 Algorithm to Compute a GPSPO from a PSPO
1: Print public class GPSPO {
2: Print public static void main(String[] args){
3: declared ⇐ ∅
4: for i = 1 to n do
5: if Mi is of the form o = o.<init> (V1, V2, . . . , Vn){M∗}

then
6: Print “T $o = new T ($V1, $V2, . . . , $Vn);” where T is the

type of o.
7: declared = declared ∪{o}.
8: else if Mi is of the form V0 = o.m(V1, V2, . . . , Vn){M∗}

then
9: if V0 is an object and V0 6∈ declared then

10: Print “T $V0 = $o.m($V1, $V2, . . . , $Vn);” where T is
the type of V0.

11: declared = declared ∪{V0}
12: else if V0 is an object and V0 ∈ declared then
13: Print “$V0 = $o.m($V1, $V2, . . . , $Vn);”
14: else if V0 is a primitive or void then
15: Print “$o.m($V1, $V2, . . . , $Vn);”
16: end if
17: end if
18: end for
19: Print }}

Vi is a primitive. If so, it returns the value of Vi. Otherwise, it
takes the address of Vi, appends the character ’X’ in front of it
and returns the result. The character is appended to the front
of the address to follow the Java naming convention which
does not allow a variable name to start with a number.

The algorithm maintains an auxiliary set declared (initial-
ized to ∅ on line 3) that maintains the objects declared so far
in the GPSPO. For every Mi ∈ σ, the algorithm performs
following actions: (1) If Mi is a constructor (line 5), then it
prints the appropriate return-type declaration (line 6) and adds
the object created by the constructor to the declared set. (2)
Otherwise, if Mi is any other method invocation, the algorithm
first checks if the returned object of the method is already
declared (line 9). If not, it prints the appropriate return type
and adds the returned object to the declared set (line 11).

V. IMPLEMENTATION

We have implemented the GPSPO creation algorithm in
a prototype tool for Java. We instrument a Java program
to insert hooks before and after every method call. When
the instrumented program is executed, these hooks generate
the trace of the execution. Specifically, for every method
call, we record the object on which the method is invoked,
the parameters to the method and the return value of the
method. For each object, we record a unique identifier
representing that object, and for each primitive type (int,
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Program |PSPO|/ unique(PSPO)/ Average # of GPSPOs # of classes
Name |Trace| unique(Trace) |GPSPO|
grep 0.29% 36.7% 2.92 12 11

awk 0.03% 4.3% 2.27 283 15

JNotePad 0.34% 7.8% 3.30 27 14

Search 0.48% 63.5% 2.33 56 5

jTidy 0.66% 7.7% 29.95 1435 55

jazzy 1.25% 0.3% 21.02 3890 15

TABLE I
STATISTICS ON GPSPOS COMPUTED FOR SEVERAL BENCHMARKS

boolean, float, byte, short, char, long,
byte, double) and java.lang.String, we record
the concrete value. At the end of the execution, the trace is
analyzed either to generate GPSPOs of all objects created
during the execution or the GPSPOs of all objects of a
particular class created during the execution.

Note that unlike dynamic program slicing where all state-
ments of a program needs instrumentation, we only instrument
the statements that invoke a method. As such we generate
shorter traces and use far less memory than traditional dynamic
program slicing. Algorithm 1 for PSPO computation has many
loops and seems to have huge runtime complexity. However,
an implementation that traverses the trace in reverse direction
would ensure that Algorithm 2 has a runtime complexity of
O(n), where n is the length of the trace. Moreover, one
can show the repeat-until loop in Algorithm 1 runs for at
most O(n) iterations. Therefore, the algorithm has a total
complexity of O(n2). In practice, however, we observed that
only a few iterations of this repeat-until loop were needed
for generating the PSPOs.

The algorithm to create a GPSPO from a PSPO requires
us to know the address of an object, so that each object is
identified by unique numeral. In case of Java, the address of
an object cannot be obtained directly. Therefore, we maintain
a WeakIndentityHashMap that maps each object, as it is
created, to a unique id. We use this unique id for each object
as its address.

VI. EVALUATION

In this section, we describe our efforts to experimentally
evaluate the utility of PSPOs and GPSPOs for program de-
bugging, for creating test harnesses, and for discovering class
usage.

A. GPSPOs for Debugging

Suppose a programmer wishes to debug the interaction be-
tween a program and a particular program object. For example,
in some particular program execution, a data structure may
throw an unexpected exception—is this exception due to a bug
in the data structure itself, or due to the program violating the
contract of the structure? How can a GPSPO of the execution
of the data structure aid in debugging this problem?

To investigate such an issue, a programmer might add addi-
tional assertions or logging code, or might step through parts
of the buggy execution, inspecting the target data structure
and arguments passed to its methods. We argue that much of
the same analysis could be easier and more effective if done
instead on the GPSPO for this target data structure object.
Such a path slice is an executable program and performs all
of the same updates on the object as the original execution.
However, the GPSPO’s execution ideally eliminates much of
the original execution that does not directly affect the target
object, including unnecessary methods and control flow.

It is difficult to directly measure the benefit a GPSPO could
provide for a particular debugging task. However, we believe
the following properties of GPSPOs can help indicate their
debugging utility:

• Length of Trace of GPSPO. The trace of a GPSPO (i.e.
its PSPO) is a subset of the original execution trace. The
shorter a GPSPO’s trace, the more unnecessary parts of
the original execution have been sliced away. This may
lead to easier debugging by enabling a programmer to
focus on the simpler execution of the GPSPO, rather
than the full original execution. Thus, in our experiments,
we measure the ratio of the length of our PSPO’s to the
lengths of the original execution.

• Unique Statements in PSPO. A second measure of the
complexity of a GPSPO is the number of unique program
statements in the trace of a GPSPO. This is a rough mea-
sure of how much of the original static program source is
executed by the GPSPO. Thus, we also measure the ratio
of the number of unique statements in each GPSPO’s
trace to the number of unique statements executed by
the original trace. This indicates of what fraction of the
static program exercised by the original execution trace
is sliced away in the GPSPO.

In order to explore the debugging utility of GPSPOs, we
generated GPSPOs for several benchmark programs. Specif-
ically, four open-source Java utilities—grep and awk, im-
plemented on top of Apache’s regular expression library, the
jTidy HTML-cleaning tool, and the jazzy spell checker—
and two closed-source applications—the JNotePad text edi-
tor and Search, a command-line web search engine. For each
of these benchmarks, we generated several typical execution
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traces and computed a GPSPO for every object in each trace.
For each benchmark, we averaged over all GPSPOs and

their PSPOs: (1) the ratio of the length of the PSPO to
the length of the original trace, (2) the ratio of the number
of unique statements in the PSPO to the number of unique
statements in the original trace, and (3) the length of the
GPSPO. These quantities are tabulated in Table I. Further,
Table I gives the total number ofGPSPOs generated for each
benchmark and the number of non-primitive classes seen in
each benchmark.

Table I shows that, for each of these benchmarks, a GPSPO
removes, on average, more than 98% of the original execution.
Further, on average anywhere from 36% and to 90%+ percent
of the unique static program statements in the original trace
are removed. We believe these initial results are promising:
for these benchmarks, the average GPSPO is significantly
simpler than the full trace from which it is derived. Thus,
some debugging could be performed on these GPSPOs rather
than on the full original programs.

B. GPSPOs for Discovering Class Usage

Large object-oriented software systems and libraries often
have complex APIs, which can make discovering the usage
of a particular class difficult or tedious. There are several
static approaches for automatically synthesizing small code
snippets to demonstrate the usage of a class. For example,
Prospector [19] is a system which takes a user query of
the form Tin → Tout, where Tin is the source object and
Tout is the destination object (i.e. object to be synthesized)
and generates a sequence of method calls that returns Tout

starting with Tin. Note that Prospector is a static technique
that generates code based on static method signatures.

GPSPOs can be seen as a dynamic alternative to Prospector
or other such static systems, where a sequence of method
calls is generated dynamically by observing execution traces
of a program, rather than statically from method signatures or
program source code.

In order to measure the utility of GPSPOs for discovering
class usage, we ran our GPSPOs computation on all objects
in several executions of jtidy, a Java tool for cleaning up
HTML. One of the authors, having familiarity with the jtidy
API, manually generated queries of the form Tin → Tout for
three commonly used classes in jtidy. GPSPOs are complete
programs and as such do not provide any facility to discover
a sequence of method calls that convert an object of class Tin

to an object of class Tout. Hence, we manually collected the
GPSPO source files that contained both Tin and Tout classes.
For each query, we then picked the source file containing the
fewest number of lines and manually examined its suitability
as a code snippet highlighting how to create an Tout object
given a Tin.

The results for the three queries are shown in Table II. The
first two columns of the table give the Tin and Tout classes
for each query. The third column gives the exact lines of code
from the source file that convert an object of type Tin to the
object of type Tout. Finally, the last column gives the number

Test | GPSPO | branches branches Number
Name covered covered of false

by GPSPO by Harness positives
TreeMap 7 22 43 0

List 2 1 1 0

Vector 4 3 4 1

LinkedList 7 30 44 0

TABLE III
TEST HARNESS QUALITY USING GPSPOS

of lines of code in the GPSPO that was selected as described
above.

These results show that on all three queries, the required
code to convert an object of class Tin to an object of class
Tout was found in the minimal GPSPO we examined. Note that
some of these transformations are fairly hard to achieve and in-
volve several intermediate objects. For example, in the second
query, to generate an object of class Node, one needs to create
a FileInputStream, a StreamInImpl, and a Lexer
object, and pass them to the parseDocument method along
with the Configuration object. It could be quite hard to
discover this usage using documentation alone. Our GPSPOs,
however, were able to correctly instantiate these objects before
passing them to the parseDocument method. Moreover, the
GPSPOs contained the relevant sequence without containing
too much extraneous code (27 lines in the worst case).

These preliminary results suggest that GPSPOs can be used
by programmers to help dynamically discover class usage
examples. These techniques could perhaps form the basis
for a more effective and automatic system for dynamically
discovering class usage.

C. GPSPOs for Test Harness Generation

A test harness for a class is often constructed as a closed
program that non-deterministically calls all legal sequences
of methods of the class with legal inputs for method pa-
rameters [10], [24]. Generating an ideal test harness for a
class that only permits legal behaviors and prohibits illegal
behaviors is often tedious. We argue that GPSPOs could be
used to generate good quality test harnesses, i.e. test harnesses
that allow most legal behaviors (i.e. give good coverage) and
prohibit most illegal behaviors (i.e. avoid false positives.) We
convert a GPSPO into a test harness by replacing all primitive
values with inputs (see Figure 6 for an example.) Note that
a GPSPO always exhibits a legal behavior of the class, but it
only shows a single behavior (or a single execution path.) By
replacing the constant primitives in the GPSPO by inputs, we
introduce more behaviors.

In our experiments, we evaluate whether the conversion
of GPSPOs to test harnesses: (1) increases the number of
legal behaviors (i.e. increases test coverage), while (2) not
introducing too many illegal behaviors (i.e. avoids false posi-
tives.) In order to evaluate the first criterion, we use the test
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Tin Tout Code for transforming Tin → Tout obtained using GPSPOs Number
of lines
in the file

java.lang.String org.w3c.tidy. AttrCheckImpl.CheckUrl X10 = new AttrCheckImpl.CheckUrl(); 8

Attribute Attribute X38 = new Attribute("id", 28, (AttrCheck)X10);

org.w3c.tidy.Configuration org.w3c.tidy.Node Configuration X3 = new Configuration(); 32

FileInputStream X574 = new FileInputStream("test.html");

StreamInImpl X587 = new StreamInImpl(X574, 1, 4);

Lexer X588 = new Lexer((StreamIn)X587, X3);

Node x594 = ParserImpl.parseDocument(X588);

org.w3c.tidy.ParserImpl. org.w3c.tidy.Dict ParserImpl.ParseInline X171 = new ParserImpl.ParseInline(); 28

ParseInline Dict X242 = new Dict("dt", 31, 294976, (Parser)X171, null);

TABLE II
GPSPOS FOR CLASS USAGE DISCOVERY

generation tool CUTE [23] on the test harness and check if
CUTE increases the test coverage over the coverage attained
by simply running the GPSPO. In order to evaluate the second
criterion, we record the number of exceptions thrown by
the test inputs generated by CUTE. Note that an exception
indicates that we have used the class illegally, provided that
the class has no bugs. This requirement is met by picking
well-known classes from the java.util framework that are well
tested, relatively bug-free, and are only expected to throw
exceptions on illegal usage. In our experiments, we picked
four random GPSPOs on objects from the java.util Collections
framework and transformed them into test harnesses.

Table III reports the results. Column 1 gives the name of
the test benchmark. Column 2 reports the size of the GPSPO
from which we have created the test harness. Column 3 gives
the branch coverage that we achieve if we simply execute
the GPSPO. Column 4 gives the branch coverage that we
achieve if we test the harness with CUTE. Column 5 reports
the number of false positives (or illegal test inputs) generated
by CUTE. The results show that test harnesses created using
these GPSPOs gave only one false positive on one of the
benchmarks. Moreover, the branch coverage obtained using
GPSPOs was improved by almost 44% on average by con-
verting to test harnesses. For one harness, we observed an
improvement of almost 100% in the branch coverage. This
suggests that we can increase branch coverage by a reasonable
factor by creating test harnesses using GPSPOs.

These preliminary experiments suggest that GPSPOs can be
good starting points for creating test harnesses exhibiting few
false positives and providing additional test coverage.

VII. RELATED WORK

Closely related work includes a variety of novel tech-
niques for automatically carving unit or subsystem tests from
recorded program executions [22], [20], [6], [15]. Most closely
related is the work of Jorde et al. [15] on A-DUTs, in
which method calls are recorded during the execution of a
system test and the dependencies between these calls are
computed. These dependencies are used to replay only the

sequence of methods invoked on some specific object, as
well as the methods to construct any needed parameters.
These techniques, however, typically involve additional replay
machinery which yield tests robust against code changes, but
at the cost of additional complexity. GPSPOs, on the other
hand, are simple programs which can be directly compiled
and executed. They are useful not just in constructing program
tests, but in program debugging and understanding.

Our technique is closely related to program slicing [27]
(both dynamic [16], [2], [1], [17], [9], [5], [30], [26] and
static [21], [13], [12], [8], [18]). Similar to program slicing,
GPSPO also comes up with a smaller program. However, in
case of a program slicing, the output is the original program
with some statements removed from the program. In contrast,
a GPSPO is a simple program containing only method calls,
and containing no branching or looping statements. A program
slice ensures that we get a minimal slice of the program so that
the statement of interest gets executed under similar state as in
the original program. In contrast, a GPSPO ensures that for a
given object, the same methods get invoked on the object in the
same order and under the same state as in the original program
execution. A program slice contains all dependent statements,
whether they are operations on primitives or objects. We
remove any operation on primitives from a GPSPO. Note that
this does not mean that whatever methods a GPSPO calls are
devoid of operations on primitives—the code of those methods
remain exactly same as the original program.

Jhala et al. [14] proposed path slicing to make software
model checking efficient. Path slicing takes as input a possi-
bly infeasible static execution path to a target location, and
eliminates all the operations that are irrelevant towards the
reachability of the target location. Although the two technique
have similar sounding names, they are different from each
other both in respect to their goals and their methodology—
path slicing operates on a static (and possibly infeasible) path,
whereas path slicing per object operates on a real execution
path.

Prospector [19] helps programmers write API client code
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more easily by synthesizing jungloid code fragments automat-
ically given a simple query that describes that desired code
in terms of input and output types. GPSPOs can also be used
for this purpose in many situations. Being static in nature,
Prospector can come up with many suggestions and they may
not be precise in complex situations. Being dynamic in nature,
GPSPOs can only come up with suggestions that they see in
an execution, but they are precise as they are carved out from
real execution traces.

Specification mining [4], [29] and interface synthesis [3],
[11], [28] are related techniques which try to infer the usage
of a class API. Specifically, these techniques either statically or
dynamically compute a finite state machine denoting the legal
method call sequences on an object of a given class. In order
to infer such finite state machines, they either look at client
programs using the class or look at the implementation of the
class. Unlike GPSPOs, these techniques may not be useful in
debugging a particular execution. Moreover, if a method on
an object takes objects of other classes as arguments or uses
them internally, then these techniques cannot help to figure
out the right state of these objects.

VIII. CONCLUSION

We introduced the concept of generator for path slice per
object (GPSPOs.) We provided an algorithm to compute GP-
SPOs and an implementation of the algorithm. We believe that
path slice per object is an important concept that could help us
to perform better debugging, testing, and understanding class
APIs.
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