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Abstract

Binary code reutilization is the process of automaticadlgritifying the interface and extracting the
instructions and data dependencies of a code fragment froex@cutable program, so that it is self-
contained and can be reused by external code. Binary codiizagion is useful for a number of
security applications, including reusing the proprietaryptographic or unpacking functions from a
malware sample and for rewriting a network dialog. In thipgrave conduct the first systematic study
of automated binary code reutilization and its securityligpfions.

The main challenge in binary code reutilization is underdiag the code fragment's interface. We
propose a novel technique to identify the prototype of anoenchented code fragment directly from
the program’s binary, without access to source code or symbarmation. Further, we must also
extract the code itself from the binary so that it is selftaimed and can be easily reused in another
program. We design and implement a tool that uses a combinafidynamic and static analysis to
automatically identify the prototype and extract the instions of an assembly function into a form
that can be reused by other C code. The extracted functiobeaan independently of the rest of the
program’s functionality and shared with other users.

We apply our approach to scenarios that include extractiegehcryption and decryption routines
from malware samples, and show that these routines can bedday a network proxy to decrypt en-
crypted traffic on the network. This allows the network proayewrite the malware’s encrypted traffic
by combining the extracted encryption and decryption fiomst with the session keys and the protocol
grammar. We also show that we can reuse a code fragment frompaeking function for the unpacking
routine for a different sample of the same family, even iftbde fragment is not a complete function.

1 Introduction

Often a security analyst wishes to reuse a code fragmenistagailable in a program’s binary, what we call
binary code reutilizationFor example, a piece of malware may use proprietary corsipreand encryption
algorithms to encode the data that it sends over the netwuitkaasecurity analyst may be interested in
reusing those functions to decode the network messagetheFuhe analyst may be interested in building
a network proxy that can monitor and modify the malware’s pmased and encrypted protocol on the
network. Also, for dialog rewriting [22, 27] if some field ofreetwork protocol is changed, other dependant
fields such as length or checksum fields may need to be updétadse fields use proprietary or complex
encodings, the encoding functions can be extracted andykpin the network proxy so that the rewritten
message is correctly formatted. Another application isctieation of static unpacking tools for a class of
malware samples [15]. Currently, creating a static unpaiska slow, manual process. Frameworks have
emerged to speed up such manual analysis [13], but a fagtepami would be to extract the unpacking
function from the malware sample and reuse it as a staticakepa

At the core of these and many other security applicationsnarip code reutilization, an important
problem for which current solutions are either highly mdmravery limited [1, 4, 5, 28]. In this paper
we conduct the first systematic study aftomatic binary code reutilizatigrwhich can be defined as the
process of automatically identifying the interface andaoting the instructions and data dependencies of a
code fragment from an executable program, so that it iscegifained and can be reused by external code.
Reusing binary code is useful because for many programg, asicommercial-off-the-shelf applications



and malware, source code is not available. It is also clgilbgnbecause binary code is not designed to
be reusable even if the source code it has been generatedidroithe main challenge of binary code
reutilization is to interface with the code fragment thatwemnt to reuse. The code fragment may not have
a function prototype available, for example because it wesnided only for internal use, or it may not even
correspond to a function in the first place. Identifying atptgpe for the binary code fragment enables reuse
of the code by generating and passing appropriate inputdditiion, we want to extract the code fragment
itself, i.e., its instructions and data dependencies, atitths self-contained and can be reused by other code,
independently of the rest of the functionality in the pragrarhe self-contained code fragment can easily
be shared with other users and can be statically instrurdemteewritten, for profiling or to enforce a safety
policy on its memory accesses if it is untrusted. To sumreatimary code reutilization encompasses two
tasks: identifying the interface of the code fragment artdagking the instructions and data dependencies
of the code fragment so that it is self-contained.

Scope.Not all binary code can be reused. To reuse a binary code &agte fragment should have a clean
interface and be designed to perform a specific well-coathiask, mostly independent of the remaining
code in the program. In this paper we mostly focus on reusingri code fragments that correspond to
functions at the source code level, what we eatbembly functiondecause in structured programming a
function is the base unit of source code reuse. Functionssarally designed to perform an independent,
well-contained task and have a well-defined interface,ftmetion prototype In addition, we show that
a code fragment that does not correspond to a complete algskmbtion, but has a clean interface and
performs a well-contained task, can also be reused.

Reusing an arbitrary assembly function can be extremelljeritang because the function interface can
be convoluted and the function can have complex side efféxts approach handles common side effects
such as an assembly function modifying one of its parametem@ccessing a global variable, and also
handles calls to standard library functions. But we exclugtetions with a variable-length argument list
or functions that are passed recursive structures suckes tWe refer the reader to Section 2.3 for a more
detailed description of the problem’s scope. An importdasg of functions that we extract in this paper
aretransformation functionswhich include encryption and decryption, compression émcbmpression,
code packing and unpacking, checksums, and generally agfidn that encodes data. Such functions
are usually well-contained, have clean interfaces, lichitiele effects, and are interesting for many security
applications.

Approach. The main challenge in assembly function reutilization enitifying the interface of an assembly
function and generating a prototype for it so that it can lusee by other source code. This is challenging
because théunction parametershat comprise the prototype are not explicitly defined in biveary code
and also because they need to be expressed using variablggas, which do not exist in the binary code.
Our approach uses dynamic analysis to extract a parameteaeton at the binary level (aassembly pa-
ramete) and then translate the assembly parameters into the fgranaimeters in the function’s prototype.
To extract assembly parameters from a given execution,t@aeapproach first identifies the inputs and
outputs for each function run, splits them into assembhapeters, identifies important attributes such as
the parameter type (input, output, input-output) and thrarpater location (register, stack, table), and finally
combines this information across multiple function runs.

To extract the function’s body, i.e., the instructions thanstitute the assembly function, we use the
observation that for reusing a binary code fragment a usen dfas no need to understand its inner workings.
For example, a security analyst may want to reuse the ptapyieipher used by some malware, together
with the session keys, to decrypt some data, without wagrginout how the proprietary cipher works. For
these applications, complex reverse-engineering or dpitatmon methods are not necessary to recover the
function’s body as source code. We can leverage the suppoutrient C compilers for inline assembly [2,
10] and generate a function with a C prototype but an inlireebly body. To extract the function’s



body we use a combination of static and dynamic analysisinichtdes hybrid disassembly [36], symbolic
execution [31], jump table identification [26], and typedrdnce techniques.

security concerns apply to it as to an untrusted third-phiohary: a malicious extracted function might
attempt to call other functions in memory or overwrite thelagtion’s data. If such attacks are a risk,
an isolation mechanism is needed to limit what the extractate can do. In this work we process the
extracted code with a software-based fault isolation ($6d) to insert runtime checks that prevent the
extracted code fragment from writing or jumping outsideigiested memory regions (separate from the rest
of the program). We use PittSFleld [34], an implementatibisBl for x86 assembly code that enforces
jump alignment to avoid overlapping instructions and idelsi a separate safety verifier.

We design and implement BCR, a tool that extracts code fratgrfeom program binaries and wraps
them in a C prototype, so they can be reused by other C code.s&/B@R to extract the encryption and
decryption routines from MegaD and Kraken, two widely useans botnets, and show that these routines,
together with appropriate session keys, can be reused bynankeproxy to decrypt encrypted traffic on
the network. Further, we show that the network proxy can adsaite the malware’'s encrypted traffic
by combining the extracted encryption and decryption fianst with the session keys and the protocol
grammar. To show that we can reuse code fragments that amplete functions as long as the code
fragments have a clean interface, we also extract the umgaftknctions from two samples of Zbot, a trojan,
and use an unpacking fragment from one sample as part of tfieedo unpack the other sample.

Other applications. In addition to the applications that we examine in this papigrary code reutilization

is useful for many other applications. For example, it camdged to automatically describe the interface of
undocumented functions. It often happens that malware wsgscumented functions from the Windows
API, which are not described in the public documentation Piojects to manually document such func-
tions [14] could benefit from our approach to automaticallgritify the interface of a binary code fragment.
Extracted functions could also be useful in the developroéprrograms that interoperate with other pro-
prietary interfaces or file formats, by allowing the mixtwfecode extracted from previous implementations
with re-implemented replacements and new functionalityother application is to determine whether two
pieces of binary code are functionally equivalent, for egkatio determine whether a vulnerability has been
fixed in the most recent version. Recent work has addresseistlue at the source code level by fuzzing
both pieces of source code and comparing the input-outptg [20], but how to interface with a binary
code fragment to perform such fuzzing is an open problemallyjra security analyst may want to fuzz a
well-contained, security-sensitive function indeperttjeof the program state in which it is used.

Contributions:

e We propose a novel technique to identify the interface ofreafyi code fragment directly from the
program’s binary, without access to its source code. Tlefate captures the inputs and outputs of
the code fragment and provides a higher level parameteraalish not available at the binary level.

e We design an approach to automatically extract a code fragfmam a program binary so that the
code fragment is self-contained and can be reused by amek@program. The extracted code frag-
ment can be run independently of the rest of the program’stimmality, can be easily instrumented,
and can be shared with other users. We implement BCR, a tatalisies our approach to automatically
extract an assembly function from a given program binary.

¢ We reuse the encryption and decryption routines from twcelyidised spam botnets in a network
proxy that can rewrite their encrypted C&C traffic, when pded with the session keys and the C&C
protocol grammar. In addition, we extract the unpackingfiom from a widely used trojan, and show
that a code fragment belonging to that function can be rebgdlde unpacking function for a different
sample from the same family. Finally, we apply softwareedafault isolation [34] to the extracted
functions to prevent them from writing or jumping outsideitrown isolated memaory regions.



2 Overview and Problem Definition

In this section we give an overview of the binary code rezdtiion problem, formally define it, outline the
scope of our solution, and present an overview of our approac

2.1 Overview

Binary code reutilization comprises two tasks: 1) idemtifythe interface of the code fragment and format-
ting it as a prototype that can be invoked from other sourcerand 2) extracting the instructions and data
dependencies of the code fragment so that it is self-caedaaimd can be reused independently of the rest of
the program’s functionality.

The main challenge in binary code reutilization is identifythe interface of the code fragment, which
specifies its inputs and outputs. This is challenging bexéusary code has memory and registers rather
than named parameters, and has limited type and semamtimiafion, which must be converted into a high
level prototype. In addition, the extracted code fragmes@ds to be self-contained, which in turn implies
that we need a recursive process that extracts any funal@ddrom inside the code fragment that we want
to extract (and from inside those callees), and that we reeaddount for the possible side effects from the
code fragment and its callees. For example, we need to fdemtd extract the data dependencies such as
global variables and tables that the code fragment uses.

Previous work on binary code reutilization is either highdgnual or very limited [4, 5, 28]. As far as
we know we are the first ones to systematically study autentdtiary code reutilization. Our goal is to
automate the whole process, with a focus on automaticadigtitying the code fragment'’s interface. There
are two different representations for the extracted bicade: decompiled source code [4,28] and assembly
instructions [5, 28]. In this work we use inline assemblyhnat C prototype because inline assembly is the
most accurate representation of the code (it representsgetaexecuted) and because decompilation is not
needed for binary code reutilization. The use of inline addg limits portability to the x86 architecture,
and requires compiler support, but the x86 architecturdilisby far the most important architecture in
security applications, and commonly used compilers ireltiich support for inline assembly [2, 10].

To reuse a binary code fragment, the code should have a clesnface and be designed to perform a
well-contained task, relatively independent of the renmgrcode in the program. Otherwise, if the extracted
code interface is not clean or the code performs severatwiteed tasks and the user is only interested in one
of them, it becomes difficult to separate the relevant codkirerface with it. In structured programming,
the above characteristics are usually associated withting; which are the basic unit of (source) code
reuse in a program and reduce the development and mainteasts of a program by making the code
modular. The interface of a function is captured byfutsction prototype

The source-level concept of a function may not be directlecéed at the binary code level, since
functions at the source level can be inlined, split into montiguous binary code fragments, or can exit
using jumps instead of return instructions (e.g., due tectl optimizations). Despite this blurring, it is
possible to define amssembly functioabstraction at the binary level for which an extracted pyqe gives
a clean interface when the underlying functionality is wetidularized. Thus, we focus on identifying the
interface and extracting theodyof such function abstractions, the details of which we tornext.

2.2 Problem Definition

To reuse functions from program binaries, we first need atiom@bstraction that captures our definition of
what a function is in binary code.

Function abstraction. We define aasic blockto be a sequence of instructions with one entry point and
one exit point. Basic blocks are disjoint and partition tloele in an executable. We define assembly



functionto be a collection of basic blocks with a singletry point which is the target of the instruction that
transfers control from the external code into the assemilrigtfon code, and one or moegit points which

are instructions that transfer control to external codebetiinging to the function. All code reachable from
the entry point before reaching an exit point constitutestibdy of the assembly function, except that code
reachable only through call instructions before corredpanreturn instructions is instead part of the called
function. In other words, the body of a function is assumecotatinue with the next instruction after a call
instruction. An exit point can be a return or interrupt instion. Our definition does not include assembly
functions with multiple entry points, which we treat as nplé (partially overlapping) assembly functions,
each including all code reachable from one entry point toexiypoint.

If one assembly function jumps to another, this definitionsiders the blocks following the jump target
to be part of the assembly function to extract. We can furgtiéend our definition of an exit point to include
jumps to the entry point of any other assembly function inghegram’s binary or in an external dynamic
linked library (DLL). For this we need a list of entry pointrfother assembly functions, which can be given
or approximated by considering any target of a call instoucto be an entry point.

Problem definition. The problem of assembly function reutilization is defined gisen the binary of a
program and the entry point of an assembly function in tharyinidentify the interface and extract the
instructions and data dependencies that belong to the bBgs&mction so that it is self-contained and can
be reused by external C code. The extracted function cerdistoth an inline assembly function with a C
prototype and a header file containing the function’s datseeddencies. The problem definition when the
code fragment is not an assembly function is the same, eftuafait requires the exit points to be given.

2.3 Scope

Reusing an arbitrary assembly function is extremely chgileg because the function interface can be con-
voluted and the function can have complex side effects. M the scope of the problem we make the
following assumptions about the function to be extracted:

e Since our approach uses dynamic analysis, we assume thainwexecute the function at least once.
If some specific input is needed to reach the function, weragsue are provided with such input.

e The function has a fixed parameter list. Thus, we excludetimme with variable-length list of argu-
ments such agri nt f.

e The function is not passed complex recursive structurels asdists or trees (pointers to single-level
structures are supported).

e The function does not call system calls directly (e.g., tiglointerrupt orsysent er instructions)
but instead uses system calls only through well-known fanstthat are available in the target system
where the function is reused (e.g., the standard C librartheoWindows API if the target system is
Windows-based).

e The function contains no code that explicitly uses its owaaton. For example, the code should not
check if it is loaded at a specific address or offset. Thigirtgin excludes most self-modifying code.
However, the function may still reference global addredhesugh standard position-independent-
code and dynamic linking: relocatable and non-relocatebtie are both supported.

An important class of functions that satisfy these constsaaretransformation functions Transfor-
mation functions include encryption and decryption, coespron and decompression, code packing and
unpacking, checksums, and generally any function thatdascgiven data in a different format. Such func-
tions are usually well-contained, have clean interfadesitdd side effects, and are interesting for many
security applications.

Handling obfuscation. Our approach can be applied to both benign code and malwanen\&pplying it
to malware we need to consider the obfuscation techniqusrthlware often uses. Common obfuscation
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Figure 1: Our assembly function reutilization approache Tare of our approach is the function extraction
step implemented by BCR. The three dark gray modules in immeixtraction have been specifically de-
signed for this work. The execution monitor, disassemlaled semantics inference module (light gray) are
reused from previous systems.

techniques used to hamper static analysis such as binakingaadding unnecessary instructions, or replac-
ing calls with indirect jumps do not affect our hybrid disasgly approach because it uses dynamic analysis
to complement static disassembly. However, a premise ofpproach is that we can observe a sample’s
execution in our analysis environment (based on a systenhaémnu Thus, like other dynamic approaches,
our approach can be evaded using techniques that detectlizetd or emulated environments [25].

2.4 Approach and System Architecture

Our assembly function reutilization approach compriseselistepsdynamic analysishybrid disassembly
andfunction extraction Figure 1 shows the three steps. In the dynamic analysistlséeprogram is run
inside theexecution monitgrwhich is an emulator based on QEMU [12, 39] that can produeewdion
traces containing the executed instructions, the conthtke instructions’ operands and optional taint
information. The execution monitor tracks when executieaches a given entry point and when it leaves
the assembly function via an exit point. When an exit poinesched, the execution monitor produces a
memory dump, i.e., a shapshot of the process memory adgrass.sThis step may be repeated to produce
multiple execution traces and memory dumps.

In the hybrid disassembly step, BCR recovers the instrastmpmprising the function’s body using a
combination of static and dynamic analysis. It first triest&tically disassemble as much as possible from
the memory dump starting at the function’s entry point, gdime IDA Pro commercial disassembler [3].
Then, it uses the information from the execution traces igaeéd by the dynamic analysis to resolve indirect
jumps and calls, and invokes the static disassembler teghgable instructions at those locations. If the
binary is not packed, static disassembly can be performextityi on the program binary, otherwise the
memory dump produced during the dynamic analysis step @ Udee hybrid disassembly step outputs the
disassembled instructions belonging to the function body.

The core of our approach is the function extraction stefs ilhplemented by BCR and consists of three
sub-steps. Thenterface identification modul@entifies the function’s parameters and outputs (i.e., the
function prototype). Théody extraction modularranges the disassembled instructions into basic blocks,
and rewrites addresses in jumps and table accesses to else Eibally, thecode generation modutakes as



input the function prototype and the control flow graph ofdlssembly function, and produces as output the
C files with the function and header files with its data depeani#s. The interface identification module, the
body extraction module, and the code generation module lbese specifically designed and implemented
in this work. The execution monitor [12,39], disassembBr &nd semantics inference module [22] are pre-
existing tools. We detail the interface identification miedim Section 3, and the body extraction module

and code generation module in Section 4.

2.5 Running Example

Figure 2 shows our running example. At the top is the sourde co
for theencode function, which reads$ en characters from buffer
sr ¢, transforms them using the static tal@ac_t bl , and writes
them to thedst buffer. Below it is the assembly function corre-
sponding to thencode function, extracted by BCR from the pro-
gram binary. The large boxes in the figure show the C protatype
duced by the interface identification module, and the pnatognd
epilogue introduced by the code generation module. Thelesmal
boxes show the additional elements in the body of the functiat
have been rewritten or modified to make the function standeal
The rest are the unmodified assembly instruction extracyethdo
body extraction module. Also produced, but omitted fromfige
ure, is a header file defining a table caltelol .004000000, con-
taining a memory dump of the original module.

3 Function Prototype Identification

The goal of function prototype identification is to build a @hé-
tion prototype for the assembly function so that it can beseeu
from other C code. The C prototype comprises the functioaisa
and a list of itsformal parametersHowever, formal parameters do
not directly appear at the binary code level, so BCR worké it
binary-level abstraction, which we term assembly parametend
describe next. At the same time, we collect some additiorfal-
mation, such as the parameter length or its semantics. fus i
mation does not directly appear in the prototype, but it sdesl for
interfacing with the extracted code. In the remainder of Haction

char enc_tbl[256] = { 0x53, ... ,0x9¢c };
int encode(char*src, char*dst, int len) {

inti;

if (Isrc || !dst) return -1;

memset(dst, 0, len);

for (i=0; i<len; ++i)

dst[i] = enc_tbl[src]i]];

return len;
}
stafic int func_00407000(

void* buf0, /* IN; STACK(0); FixLen(4); PTR */

void* buf1, /* IN-OUT; STACK(1); FixLen(4); PTR */

data32_t buf0_len, /“IN;STACK(2); FixLen(4); LEN */|
__asm____ volatile__(
"push  %[valo]\n\t"
“push  %[buf1\n\t"
"push  %[bufo]\n\t"
“call  [1bI00401000)n\t"

retval_EAX;

"jmp bI_func_0040T000_refjn\t"
"Ibl00401000:\n\t"

"push  %%ebp\n\t"

"mov  %%esp,%%ebp\n\t"
"push  %%ecx\n\t"

"cmpl  $0x0,0x8(%%ebp)\n\t"

"je  [Ibl00401010)n\t"
"bl00401015:\n\t”

"mov  0x10(%%ebp),%%eax\n\t"
"push  %%eax\n\t"

"push  $0x0\n\t"

"mov  0xc(%%ebp),%%ecx\n\t"
"push  %%ecx\n\t"

"call [memsefjnit’

"add  $0xc,%%esp\n\t"

"movl $0x0,-0x4(%%ebp)\n\t"

“imp. 0040103}

"bl00401041 :\n\t"

"mov  0x8(%%ebp),%%ecx\n\t"

"add -0x4(%%ebp),%%ecx\n\t"

"movsbl (%%ecx),%%edx\n\t"

"mov  0xc(%%ebp),%%eax\n\t"

"add -0x4(%%ebp),%%eax\n\t"

"mov %%edx),%%cl\n\t“
"mov %%l (% %eax)\n\t”
“jmp_[bI00AOTO30}n\"

"mov  0x10(%%ebp),%%eax\n\t"
"mov  %%ebp,%%esp\nit”
"pop  %%ebp\n\t"
"ret \n\t"
"Ibl_func_00401000_ret:\n\t"
:/* outputs */ "=a" (retval_EAX)
:/* inputs */ [buf0] "mem" (buf0), [buf1] "mem" (buft),

[val0] "mem" (val0), [buf2] "c" (buf2)
: /* clobber list */ "memory"
);
return retval_EAX;

}

we describe how to identify the prototype of an assemblytfanc Figure 2: Running example. At the
The process for identifying the prototype of an arbitranydny code top is the source code for tlemcode

fragment is analogous.

function and below the extracted ver-

Parameter abstraction. An assembly parameter plays a role for gion of the assembly function.

assembly function analogous to a formal parameter for a €tifum

specifying a location representing an input or output valBat instead of being referred to by a human-
written name, assembly parameters are identified with aitwtén the machine state. To be specific, we

define assembly parameters with five attributes:

1. Theparameter typeaptures whether it is only an input to the functidmNj, only an output from the
function (OUT) or both { N- OQUT). An example of aih N- OUT parameter is a character buffer that the

assembly function converts in-place to uppercase.



2. Theparameter locatiordescribes how the code finds the parameter in the prograatés #t parame-
ter can be found on the stack, in a register, or at anothetitocin memory. For stack parameters, the
location records the fixed offset from the value of the stagikfer at the entry point; for a register,
it specifies which register. Memory locations can either Bixed location, a global, or a location
pointed by another pointer parameter, perhaps with aniaddltoffset. BCR also specially classifies
globals that are accessed as tables via indexing from a ftagtihg address, recording the starting
address and the offset.

3. Theparameter lengtttan be either fixed or variable. A variable length could bedeined by the
value of another length parameter, or the presence of a k@wmiter (like a null character for a
C-style string).

4. Theparameter semantidadicates how its value is used. Parameters have pointength semantics
if they are used to identify the location and size of otheapeaters, as previously described. Our
parameter abstraction supports a number of semantic tgteed to system operations, such as IP
addresses, timestamps, and filenames.UNKNOWN type represents a parameter whose semantics
have not been determined.

5. Theparameter value lisgives the values BCR has observed the parameter to take lbassembly
function executions. This is especially useful if the pagtens semantics are otherwise unknown: a
user can just supply a value that has been used frequentig jpaist.

Overview. The interface identification module identifies the asserpblyameters using a dynamic analysis
that takes as input the execution traces produced by theigxeanonitor. It consists of three steps. For
each assembly function execution, it identifies a list oeagsy parameters used by the assembly function
in that run (Section 3.1). Next, it combines the assemblpmpaters from multiple runs to identify missing
parameters and generalizes the parameter attributesais8c2). Finally, it identifies additional semantics
by running the assembly function again in the execution toonising the parameter information and a taint
tracking analysis (Section 3.3). Later, in Section 4.2, viltexplain how the code generation module trans-
lates the assembly parameters produced by the interfanéficietion module into the formal parameters
and outputs the C function prototype.

3.1 Identifying the Assembly Parameters from a Function Run

For each function run in the execution traces the interfdeatification module identifies the run’s assembly
parameters. Because there are no variables at the binaty(tevy registers and memory), this module
introduces abstract variables (sometimes called A-l08f & an abstraction over the machine-level view
to represent concepts such as buffers and stack parameétese variables must be sufficiently general to
allow for rewriting: for instance, the addresses of globaliables must be identified if the variable is to
be relocated. A final challenge is that because the code leiingcted might have been created by any
compiler or written by hand, BCR must make as few assumpagrzossible about its calling conventions.

In outline, our approach is that the interface identifiaatiodule first identifies all the bytes in the pro-
gram’s state (in registers or memory) that are either antiopan output of the assembly function, which
we callinput locationsandoutput locationsrespectively. It then generalizes over those locationgd¢og-
nize abstract locations and assembly parameters. To géestecombination of precision and efficiency,
we use a combination of local detecting of instruction idsp@and whole-program dataflow analysis using
tainting and symbolic execution. In the remainder of thidtisa we refer to an assembly parameter simply
as “parameter” for brevity, and use the term “formal pararigb refer to the parameters in the C function
prototype. Next, we define a program location and what inpdt@utput locations are.

Program locations. We define gprogram locationto be a one-byte-long storage unit in the program’s
state. We consider four types of locatiomsemory locationsregister locationsimmediate locationsand
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Description

Identify stack and table accesses

Identify input and output locations

Remove unnecessary locations (e.g., saved registersy&i6i?, address)
Identify input and input-output pointers by value

Split input locations into parameter instances using @ojistack and table access informatipn
Identify input parameter pointers by dataflow

Split output locations into parameter instances usingtpoinformation
Identify output parameter pointers by dataflow

O N[O O W N

Table 1: Summary of parameter identification process fonatfan run.

constant locationsEach memory byte is a memory location indexed by its addi&ash byte in a register
is a register location; for example, the 32-bit register BAa$ four locations EAX(0) through EAX(3), two
of which are also the registers AL and AH. An immediate lamatiorresponds to a byte from an immediate
in the code section of some module, indexed by the offsetebitie with respect to the beginning of the
module. Constant locations play a similar role to immediatations, but are the results of instructions
whose outputs are always the same. For example, one commamiglto XOR a register with itself (e.g.,
xor %eax, %ea) which sets the register to zero.

Input locations. We define an input location to be a register or memory locahanis read by the function

in the given run before it is written. ldentifying the inputchtions from an execution trace is a dynamic
dataflow-based counterpart to static live-variables datafinalysis [35], where input locations correspond
to variables live at function entry. Like the static anadysihe dynamic analysis conceptually proceeds
backwards, marking locations as inputs if they are readnmrking the previous value of a location as
dead if it is overwritten. (Since we are interested onlywetiess at function entrance, we can use a forward
implementation.) The dynamic analysis is also simpler bseanly one execution path is considered, and
the addresses in the trace can be used directly instead sém@tive alias analysis. This basic determination
of input locations is independent of the semantics of thatlon, but as we will explain later not all input
locations will be treated as parameters (for instance, etifiomis return address will be excluded).

Output locations. We define an output location to be a register, memory, or eoh&ication that is written
by the extracted function and read by the code that execfigzgtze function returns. Extending the analogy
with compiler-style static analysis, this correspondsh® intersection of the reaching definitions of the
function’s code with the locations that are live in the syt code. Like static reaching definitions [35],
it is computed in a single forward pass through the trace.

Our choice of requiring that values be read later is motivdig minimizing false positives (a false
positive output location translates into an extra paramatéhe C function prototype). This requirement
can lead to false negative results on a single run, if an outplue happens not to be used under some
circumstances. However, our experience is that such fagatives can be well addressed by combining
multiple function runs, so using a strict definition in thisgse gives the best overall precision.

Approach. The input and output locations contain all locations beilegdo the assembly parameters and
globals used by the assembly function, without regard tbngatonventions. In addition to identifying
them, the interface identification module needs to clagbiéyinput and output locations into higher level
abstractions representing parameters. Also, it need<tuifgd whether a parameter corresponds to a stack
location, to a global, or is accessed using a pointer. Theatiygarameter identification process from one
function run is summarized in Table 1 and described next.

For efficiency, the basic identification of parameters isnglsi forward pass that performs only local
analysis of instructions in the trace. It starts at the eptint of one execution of a function, and uses one
mode to analyze both the function and the functions it califjout discerning between them (for instance,



a location is counted as an input even if it is only read in éeddunction), and another mode to analyze
the remainder of the trace after the function finishes. Feheastruction, it identifies the locations the
instruction reads and writes. For each location, it ideggithe first and last times the location is read and
written within the function, as well as the first time it is dear written after the function. Based on this
information, a location is classified as an input locatioih i$ read inside the function before being written
inside the function, and as an output location if it is writte the function and then read outside the function
before being written outside the function; observe thatation can be both an input and an output.

At the same time, the analysis classifies accesses as stdakl®raccesses by a local matching of
machine code idioms. The ESP register is always considerpdimt to the stack. The EBP register is only
considered to point to the stack if the difference betwegrdtue and that of ESP at function entrance is a
small constant, to support both code that uses it as a fraintepand code that uses it as a general-purpose
integer register. Then, a memory access is a stack accéssdd a stack register as a starting address and
has a constant offset. On the other hand, a memory accesséield as a table access if its starting address
is a constant and the offset is a non-stack register. Thengtarddress and offset values in stack and table
accesses are recorded for future use.

Excluding unnecessary input locations.The input locations given by the simple liveness-style dkidim
above include several kinds of locations with bookkeepmigs in function calls which should not be con-
sidered parameters, so we next discuss how to exclude theraxclude the return address, the interface
identification module ignores any memory locations writbgra call instruction or read by a return instruc-
tion during the function execution. To exclude the stackpmi it ignores any access to ESP. When code
calls functions in a dynamically linked library, it fetchté® real entry point of the function from an export
table, but we exclude such loads.

Most complex is the treatment of saved registers. For instame define a stack location to be used for
saving the register EBX if the contents of EBX are first savethat location with a push instruction, and
later restored to EBX with a pop instruction. But the locatie not a saved register location if the value
is popped to a different register than it was pushed fromf threi stack value is otherwise accessed either
before or after the pop. Conventionally, the stack is usezht@ certain registers designated by the calling
convention if a called function modifies them, but our anialys independent of the calling convention’s
designation: it simply excludes any location used only &virsg a register.

Identifying pointers. A final building block in identifying parameters is to iddgtiocations that hold
pointers. The interface identification module uses a coatliin of two approaches for this task: an in-
expensive value-based method that can be applied on atidnsaand a more expensive dataflow-based
method that works by creating a symbolic formula and is &plpdielectively. To detect a pointer by value,
BCR simply checks each sequence of four consecutive inpatitins (pointers are four bytes on our 32-bit
architecture) to see if their value forms an address of amotiput or output location. However, this simple
approach can fail to detect some pointers (for instanceadideess of a buffer that was only accessed with
non-zero indexes), so we also implement a more sophidtiegiproach.

To identify more pointers, the interface identification muses a symbolic execution approach using
our Vine system [16] to analyze an indirect memory access. iiiput locations to the function are marked
as symbolic variables, and the module computes a formukhéoralue of the effective address of the access
in terms of them, using dynamic slicing [19]. It then perfaraigebraic simplifications and constant folding
on the formula, and checks whether it has the form of a 3Apitti plus a constant. If so, the input locations
are considered a pointer, and the constant an offset witl@rrdgion the pointer points to. (The reverse
situation of a constant starting address and a variabletafises not occur, because it would already have
been classified as a global table.) Though precise, this ajenéxecution is relatively expensive, so the
interface identification module uses it only when neededvewill describe next.
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Identifying assembly parameters from input and output locaions. Once the input and output locations
have been identified and unnecessary locations removeihténtace identification module identifies input
and input-output pointers by value as explained above. Ttheses the pointers, stack, and table accesses to
classify the input and output locations into assembly patams. Each parameter is a contiguous region in
memory (or a register), but two distinct parameters may lpcadt in memory, so the key task is separating
a contiguous region into parameters. The module considiexsadion to be the start of a new parameter if
it is the start of a pointer, the address after the end of at@oiar the location of a pointer, stack, or table
access. With the information found so far, the interfacatifieation module can determine the parameter
type, location, and value, and if the parameter has poietigastics. The parameter length is provisionally
set to the length seen on this run.

Then, the interface identification module attempts to frritlassify any parameters that are in memory
but are not on the stack and are not known globals by applyiegdataflow-based pointer identification
analysis. Specifically, it checks whether the access tottrérgy location of the parameter was a pointer
access; if so, it updates the type of the pointed-to paranaete the semantics of the pointer parameter
accordingly. After classifying the input locations andngers in this way, the module goes on to classify
the output locations similarly, and to identify and clagsither pointers that point to them.

3.2 Combining Assembly Parameters from Multiple Function Runs

The set of assembly parameters identified from a single rynbmancomplete, for instance if a parameter
is used only in a limited way on a particular execution patte $r ¢ anddst in Figure 2. Therefore the
interface identification module further improves its résidy combining the information about parameters
identified on multiple runs.

The final set of parameters identified is the union of the patara identified over all runs, where
parameters are considered the same if they have the samnmegbardocation. When parameters with the
same location differ in other attributes between runs,dtaiributes are merged as follows:

e The parameter type generalizes to input-output if it wasitip some runs and output in others.

e The parameter length generalizes to variable-length it fixed-length in some runs and variable-
length in others, or if it had differing lengths across runs.

e The parameter semantics generalizes to any non-unknowas ifat was a known value in some runs
and unknown in others (e.g., a parameter is considered aepafrit was sometimes identified to
be one, but considered unknown on runs when it was NULL). @rother hand, the semantics are
replaced with unknown if they had conflicting values on dif& runs.

e The parameter value list is the union of all the observedeslu

3.3 Identifying Parameter Semantics

In addition to the declared type of a parameter includedérGlprototype, it is also common (e.g., in MSDN
documentation [9]) to provide additional information ixter a comment that explains how the parameter
is used; what we refer to as BemanticsFor instance, onient parameter might hold the length of a buffer,
while another is an IP address. We next describe the techsitne interface identification module uses to
identify such parameter semantics.

Two kinds of semantics that occur frequently in transfoiorafunctions as part of specifying other
input and output parameters are pointers and lengths. Asgibled above, the parameter identification
process finds pointer parameters at the same time it identtie parameters they point to. To identify
length parameters, their targets, as well as variablettheparameters that use a delimiter to mark the end of
the parameter (e.g., null-terminated strings), we levemgviously proposed protocol reverse engineering
techniques [24,43] based on taint tracking.
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The interface identification module also builds on taintkiag to detect semantics related to system
operations such as IP addresses, timestamps, ports, amahfiés, using a kind of type inference [22].
Certain well-known functions take inputs or produce owdpita particular type, so BCR uses taint tracking
to propagate these types to the target function (the ong leginacted) if an output of a well-known function
is used as an input to the target function, or an output ofdhget function is an input to a well-known
function. For instance, the argument to theet _nt oa function is an IP address, so an output parameter
that is used to derive that argument must itself be an IP add@onversely, if an input parameter is based
on the return value ot | Get Last W n32Er r or , it must be an error code. Currently, BCR supports 20
semantics, the 18 semantics defined in [22], plus “pointad ‘mnknown”. A similar approach could also
be used at the instruction level to select a more specific € ¢gpch ag | oat rather thari nt ), but we
have not seen a need for this in security applications.

Taint-tracking-based semantics inference takes advamtege execution monitor’s support for function
hooks, which are instrumentation code executed just bedaddor just after the execution of a chosen
function. Hooks added after the execution of well-knowrctions and the target function taint their outputs,
and hooks before their execution check if their inputs argegd. Because such hooks can only be added to
the target function after its parameters have been ideshtfiemantics inference requires an extra run of the
function in the execution monitor.

4 Function Body Extraction and C Code Generation

In this section we first present how the body extraction medukracts the instructions that form the body
of an assembly function, and then describe how the code gimemodule produces a C function with an
inline-assembly body from the output of the interface idaation module and the body extraction module.
The key challenges are that the instructions come from ppstd binary, so static disassembly would be
unable to locate all the relevant instructions, and thaettieacted code uses a different calling convention
that C code expects. For brevity, we use “C function” to rdéea function with a C prototype and an
inline-assembly body.

4.1 Function Body Extraction

Extracting the function body is a recursive process thatsstay extracting the body of the given function
and then recursively extracts the body of each of the funstithat are descendants of this function in
the function call graph. The body extraction module avoixtsaeting well-known functions that may be
available in the system where the C function is going to bermgailed, such as functions in the standard C
library or in the Windows Native API. This increases portigai for example if a function from a Windows
executable usest r cpy from the standard C library, it can be recompiled in a Linugteyn making a
call to the localst r cpy function. In other cases, portability is not possible beeatlhe function may not
have a direct replacement in the target OS (e.qg., there igr@ct deplacement in Linux for NtReadFile), so
this optimization is not performed. For instance, in oumning example, shown in Figure 2, tecode
function callsmenset ; since it is part of the C library, it is skipped. For each fume to extract, the body
extraction module uses a combination of dynamic and stattyais.

Hybrid disassembly. The body extraction module uskgbrid disassemblihat combines static disassembly
from the program binary or a memory dump with dynamic infaiiorafrom execution traces [36]. Static

disassembly provides better coverage of code that was aotied on a particular run, but dynamic analysis
provides better coverage of indirect jumps; a hybrid of watinks best. If the program binary is not packed,
then it can be directly disassembled, but for packed bisdBi€R uses the memory dump taken by the
execution monitor at the exit point of the function. It is iorfant to take the dump at the end of the
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function’s execution so it contains only pages that have besded into memory (not pages swapped out to
disk or not yet loaded); only after execution can we be susadhevant pages are resident.

BCR uses IDA Pro [3] as its static disassembler and staressksnbling at the given function entry
point. In the presence of indirection, the static disass$enmay miss instructions because it can not resolve
the instructions’ targets. Thus, the body extraction medullects the targets of all indirect jumps and calls
seen in the execution traces and directs the static disassetn continue disassembling at those addresses.
For example, in Figure 2, the call to the memset function wagrally a direct call to a stub that used an
indirect jump intonenset ’'s entry point in a dynamic library. The body extraction miedresolves the
target of the jump and uses the information about exportadtions provided by the execution monitor to
determine that the function is the standaehset .

In addition, BCR uses a dataflow-based approach to stgtidalhtify the targets of jump tables, another
class of indirect jumps often used to implement switch statets [26]. Thus, the body extraction module
uses static disassembly when possible and incorporaté$oadtlinformation when it encounters indirec-
tion. For each function, hybrid disassembly stores thesgesabled basic blocks, and records the targets of
indirect calls and jumps. As the hybrid disassembly praggesthe control flow graph is recovered.

Rewriting call/jumps to use labels. Once the C function is recompiled it will almost certainly flaced

at a different address, so the body extraction module needgke the code relocatable. To enable this, it
inserts a label at the beginning of each basic block. Theewitites the targets of jump and call instructions
to use these labels. If the target of a jump instruction ha®een recovered by the hybrid disassembly, it is
rewritten to use a unique missing block label that exits thmefion with a special error condition. Figure 2
uses small boxes to highlight the inserted block labels hadawritten call/jump instructions. Rewriting
the call/jump instructions to use labels also enables aarsgisubsequent tool (like the SFI tool discussed
in Section 5.5) to instrument the function or alter its bébialay inserting new instructions in the body.

Rewriting global and table accessesThe extracted C function is composed of a C file with the assemb
function and a header file. The header file contains a memanpdf the module containing the function
to extract, taken at the function’s exit point on a given rtihe body extraction module rewrites instructions
that access global variables or tables to point to the qooreding offsets in the memory dump array. This
way the extracted function can access table offsets tha hawvbeen seen in the execution traces. In our
running example, the header file is not shown for brevity,thatarray with the contents from the memory
dump is called bl .004000000 and the instruction that accessasc _t bl has been rewritten to use the
label 0x3018+t bl .00400000 which is the first byte oenc_t bl in the memory dump. The memory
dump is taken at the function’s exit point, but if the intedaidentification module discovers any global
input parameters, it ensures that their values are coptedhie dump at function entry.

An alternative approach would be to create separate C aarayvariables for each global parameter,
which would reduce the space requirements for the extrdareetion. Though this would work well for
scalar global variables, it would be difficult to infer ther@xt size for tables, since the binary does not
contain bounds for individual variables, and code comgiteth C often does not even have bounds checks.
(An intermediate approach would be to estimate the sizeabla by multiplying the largest observed offset
by a safety factor; this would be appropriate if it could bewesed that testing covered at least a uniform
fraction of the entries in each table.)

4.2 C Code Generation

The code generation module writes the output C files usingnfbemation provided by the interface iden-
tification module and the body extraction module. To encbédinction body the code generation module
uses GCC's inline assembly feature [2]. It wraps the fumcbody in an assembly block and then puts the
assembly block inside a function definition with a C functiototype, as shown in Figure 2. In addition
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it creates a C header file containing the memory dump as apn arleugh our current implementation is
just for GCC, the inline assembly features of Visual C/C+8][Would also be sufficient for our purposes.
Some of those features, such as “naked” inline assemblyiéunscfor which the compiler does not generate
a prologue or epilogue, could make the process more comtenie

The assembly block contains the assembly instructions &TASyntax, and the list of inputs, outputs,
and clobbered registers. These are filled using the parainéemation provided by the interface identi-
fication module. When GCC compiles the function, it will addlpgue and epilogue code that affects the
stack layout, so even if the extracted function originalged a standard calling convention, it would not
find stack parameters in the expected place. To overcomeribidem, the code generation module inserts
wrapper code at the beginning of the function that reads déinarpeters from the C prototype (as inputs to
the assembly block), puts them in the stack or register ilmsitexpected by the extracted function, and
performs a call to the extracted entry point. After the cafitiuction it inserts a jump to the end of the
function so that the epilogue inserted by GCC is executed.sEtond box in Figure 2 shows this wrapper.

The C prototype comprises the function name and the fornranpeters of the function. The function
name is based on its entry poitfitnc_00401000 in the running example), and each parameter’s C type
is based on its size and whether it is a pointer. Input andtioptput parameters located in the stack or
registers appear first, with stack parameters appearingder of increasing offset (this means that if the
extracted function used the most common C calling conventteeir order will match the original source).
For each output parameter returned using a register, thee gekeration module adds an additional pointer
formal parameter at the end of the C prototype and uses tipaitsuist in the assembly block to let GCC
know that the register needs to be copied to the pointedettitm. Additionally, for output global or table
parameters the code generation module adds a C variabesponding to the start address of the global or
table in the memory dump. This makes the function’s sidectdffavailable to other C code.

Each formal parameter is also annotated with a comment itrest tpformation about the attribute values
for the corresponding assembly parameter such as the parayfee and its semantics. These are useful for
a user that wants to reuse the function. In addition, it prihé most common value seen for each parameter
during the multiple executions along with the percentagexaicutions where the parameter showed that
value. This allows the user to select a value for the paraméten the parameter semantics are unknown.
The function prototype is shown in the first box in Figure 2.

5 Evaluation

This section describes the experiments we have performegenmnstrate that our binary code reutilization
approach and implementation is effective for security @pibns such as rewriting encrypted malware
network traffic and static unpacking, that non-functiorgfreents can be extracted to give useful functions,
and that extracted functions can be used safely even thbwggtctome from an untrusted source.

5.1 Rewriting MegaD’s C&C Protocol

MegaD is a prevalent spam botnet that accounted for 35.4% gppam in the Internet in a December 2008
study [7], and still accounts for 9% as of September 2009 B&cent work reverse-engineers MegaD’s
proprietary, encrypted, C&C protocol [22], and demonsaewriting messages on the host by modifying
a buffer before encryption. In this section we show that @geably function reutilization approach enables
the same C&C rewriting on a network proxy, by extracting thédkey generation and encryption functions.

Function extraction. MegaD'’s C&C messages on port 443 use a proprietary protaulemcryption
algorithm (not SSL), and the bot contains functions for kleacryption, block decryption, and a common
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key generator. We identify the entry points of the three fiams using previously proposed techniques that
flag functions with a high ratio of arithmetic and bitwise ogt#oons [22,41].

First, we use BCR to automatically extract the key genemdtimction. The identified prototype shows
that the function has two parameters and uses two globadgdaliihe first parameter points to an output
buffer where the function writes the generated key. Thersgq@arameter is a pointer to an 8 byte buffer
containing the seed from which the key is generated. Theasiuthction generates the encryption key from
the given seed and the two tables in the binary. Other atérgbshow that all calls to the key generation
function use the same “abcdefgh” seed, and that the twost@néenot modified by the function.

Although the entry points for the block encryption and detion functions are different, the first in-
struction in the block decryption function jumps to the gmoint of the block encryption function, so here
we describe just the encryption function. The prototypeasted by BCR has 3 parameters and uses 6
global tables. The first parameter points to an input bufbertaining a key (as produced by the key gener-
ation function). The other two parameters are pointerseécstme 8 byte input-output buffer that on entry
contains the unencrypted data and on exit contains the jgtecyglata.

To encrypt an arbitrary message, the proxy must encrypablrilength data, not just 64-bit blocks.
We tried extracting the function that calls the block entigp function, but as indicated by its prototype it
performed other tasks we do not wish to extract, such asgetp the network and parsing the message. So
instead we write our own wrapper for the block encryptionction.

To verify that the extracted encryption/decryption fuontivorks correctly, we augment a BinPac gram-
mar for the unencrypted MegaD C&C protocol, reported inieavlork [22], to use the extracted function
for decryption, and test it using a BinPac parser from Brd W C&C messages extracted from network
traces. Using the new grammar, the parser succeeds on ahtihgpted MegaD C&C messages found in
the traces.

Network-based C&C rewriting. To perform network rewriting we must deploy the encrypto@eryption
function, as well as the session keys, in a network proxyhSuaroxy will only be effective if the functions
and keys match those in the bots, so to estimate the rate el wWigy change we repeated our analysis with
an older MegaD sample. According to malware analysis ordargices [17], our primary sample was first
seen in the wild on December 2008, and our older one on FehA#¥8. Although there are differences
between both samples, such as the older sample using pors@@d of 443 for its C&C, the parser, using
the decryption function and keys extracted from the Decersdn@ple, is able to successfully parse the C&C
messages from the February sample. In addition, we extnadkgy generation and encryption functions
from the February sample and compare them with the ones fier®écember sample. Although there are
syntactic differences, the versions are functionally egjent, producing the same outputs on more than a
billion randomly generated inputs. Thus we conclude thatrtievant algorithms and keys, including the
session key, have been unchanged during the time span choyies.

To show how our assembly function reutilization approachbées live rewriting on the network, we
build a network proxy that is able to decrypt, parse, modiiy ee-encrypt MegaD C&C messages that it
sees on the network. To test the proxy we reproduce an exetiftom [22], but perform rewriting on the
network rather than on the host. The experiment proceedslaw$. We run a live MegaD bot in a virtual
environment that filters all outgoing SMTP connections,dontainment purposes.

To start, suppose that no proxy is in use. The C&C server sarutsnmand to the bot ordering it to
test its ability to send spam by connecting to a test maileserBecause the virtual environment blocks
SMTP, the bot sends a reply to the C&C server indicating thedrinot send spam, and afterwards no more
spam-related messages are received.

Next we repeat the experiment, adding a network proxy thtgt as a man-in-the-middle on traffic
between the C&C server and the bot. For each message serg bptththe proxy decrypts it and checks
if it is a message that it needs to rewrite. When the bot sdmesnessage indicating that it has no SMTP
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capability, the proxy, instead of relaying it to the C&C sar\creates a different message indicating that the
SMTP test was successful, encrypts it, and sends it to the &&@r instead. (It would not be sufficient
for the proxy to replay a previous encrypted success mesbagause the message also includes a nonce
value selected by the C&C server at the beginning of eaclogliaWith the proxy in place, the bot keeps
receiving spam-related messages, including a spam tesnatet lists of addresses to spam, though it is
unable to actually send spam.

5.2 Rewriting Kraken’s C&C Protocol

Kraken is a spam botnet that was discovered on April 2008 asdben thoroughly analyzed [4, 5, 11, 33].
Previous analysis uncovered that Kraken (versions 315 a@puses a proprietary cipher to encrypt its C&C
protocol and that the encryption keys are randomly gengayesach bot and prepended to the encrypted
message sent over the network [4, 11]. Researchers havealtyamverse-engineered the decryption func-
tion used by Kraken and provided code to replicate it [4]. His {paper, we extract Kraken’s decryption
function using our automatic approach and verify that odraeted function is functionally equivalent to
the one manually extracted in previous work. Specificalliew testing the manually and automatically
extracted function on millions of random inputs, we find thaitputs are always the same. In addition,
we extract the corresponding encryption function and akdheu function, used by the bot to verify the
integrity of the network messages.

Similarly to the MegaD experiment described in Section ®é,build a network proxy that uses the
extracted encryption, decryption, and checksum functiasswell as the protocol grammar, and use it to
rewrite a C&C message to falsify the result of an SMTP cajigltiheck. Unfortunately (for our purposes),
all Kraken samples that we have access to do not connect tbvang&C server on the Internet. Thus,
to verify that the message rewriting works we use a previopablished Kraken parser [6]. The rewritten
message parses correctly and has the STMP flag correctlyfietb@et to one).

5.3 Reusing Binary Code that is not an Assembly Function

Next we show that our approach enables reusing a binary cagmént that does not correspond to a com-
plete assembly function, but has a clean interface andmpesfan independent task. We extract unpacking
code from two versions of a trojan horse prograbotused primarily to steal banking and financial infor-
mation [18]. Zbot uses two nested layers of packing. The &snprovided to us by an external researcher,
represent a typical task in the course of malware analysisy have already had one layer of packing
removed, and we have been provided the entry points for andeawore complex, unpacking routine.

The function prototype extracted by BCR is identical fortbfatnctions. It contains two pointer param-
eters: the ESI register points to an input-output buffert@immg packed data as input and a count of the
number of bytes unpacked as output, while the EDI registertpdo an output buffer for unpacked data.
Since ESI and EDI are not used for parameter passing in arhedtandard x86 calling conventions [42],
this suggests these functions were manually-written asigecode.

Although the prototypes are the same, the unpacking fumgtaye not functionally equivalent; they
both consist of two distinct loops, and we find that extragtinese loops separately captures more natural
functional units. Examining the extracted function bodiee find that both consist of two loops that are
separated bpusha andpopa instructions that save and restore processor state. Eaphrakes its own
pass over the packed data, with the first pass applying aairdptiphering by subtracting a hardcoded key,
and the second pass performing a more complex instructiengbruction unpacking. After extracting the
two loops into separate functions, we verify that the déferes between the versions are only in the first
loop: the extracted version of the second loop can be reusedsathe sample versions. This highlights the
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General Code Extraction Parameter Identification
Function # Runs Run #Insn. | # Missed | # Indirect | # Param. | FP FN
time(sec) blocks | call/jump
MegaD keygen 4 3 320 0 0 3 0 0
MegaD encrypt 6 257 732 0 0 4 0 0
Kraken encrypt 2 16 66 0 0 7 1 0
Kraken decrypt 1 2 66 0 0 6 0 0
Kraken checksum 1 179 39 0 0 4 1 0
Zbot v1151 2 15 98 0 0 2 0 0
Zbot v1652 2 17 93 0 0 2 0 0
MD5_Init 6 2 10 0 0 1 0 0
MD5_Update 6 38 110 0 1 3 0 0
MD5_Final 7 31 67 0 3 2 0 0
SHAL Init 1 8 11 0 0 1 0 0
SHA1 Update 1 36 110 0 1 3 0 0
SHA1 Final 2 36 76 0 3 2 0 0

Table 2: Evaluation results. At the top are the functionsaetéd during the end-to-end applications and at
the bottom some additional functions extracted from thert3&i library.

fact that as long as a binary code fragment has a clean io¢éediad performs a well-separated task, it can
be reused even if it does not correspond to a complete functithe original machine code.

5.4 Quantitative Summary of Function Extraction

Table 2 summarizes the extraction results for all functimestioned in Section 5.1 through Section 5.3 and
some additional functions that we extract from the OpenSi@hty for evaluation purposes. Tli&eneral
section of the table shows the number of function runs in Keew@ion traces used as input to the function
extraction step, and the total time needed to extract thetifum TheCode Extractionsection has the
number of instructions in each extracted function, the nemab missed blocks and the number of indirect
call and jump instructions. Thiearameter Identificatiorsection shows the number of parameters in the C
function prototype and the number of false positives (egnecessary parameters in the prototype) and false
negatives (e.g., missing parameters in the prototype).theoOpenSSL functions, the false positives and
negatives are measured by comparison with the original @sawode. For the malware samples, no source
is available, so we compare with our best manual analysigfané&raken) with other reported results.

The results show that a small number of executions is encugkttact the complete function without
missing blocks or parameters. For samples without indirgtips or calls, static disassembly recovers
all basic blocks. For the samples with indirection, the dgitainformation resolves the indirection and
enables the static disassembler to find all the instructionise function body. The Kraken checksum and
MegaD encrypt samples are significantly slower to extreen the other samples. This is because they have
larger number of invocations of the dataflow-based pointahysis technique, which dominates the running
time. The parameter identification results show that norpatars are missed: some runs do not identify all
parameters, but combining multiple executions (Secti@y @ves complete results. For the functions from
OpenSSL, the parameters include fields in a context stri¢hat is passed to the functions via a pointer.
Two extra (false positive) parameters are identified, béthhich are output parameters reported as returned
in the ECX register. These are caused by a compiler optimnizdperformed by the Microsoft compiler,
for instance) that replaces the instructeonb $4, %esp to reserve a location on the stack with the more
compact instructioppush %ecx, which has the same effect on the stack pointer and alsoapialue
from ECX that will later be overwritten. When this idiom oesun the code following an extracted function
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that uses ECX internally, the interface identification medacorrectly identifies ECX as a function output.
(This phenomenon has also been noticed by other reseaf@ii¢)sNote that false positive parameters are
not a serious problem for usability: extra outputs can syniygl ignored, and extra inputs do not change the
extracted function’s execution.

5.5 Software-based Fault Isolation

If the extracted functions are to be used in a security-teesipplication, there is a danger that a malicious
extracted function could try to hijack or interfere with theration of the application that calls it. To prevent
this, we use software-based fault isolation (SFI) [40] aglativeight mechanism to prevent the extracted
code from writing to or calling locations in the rest of thephpation. SFI creates separate “sandbox”
data and code regions for the extracted function, so thainitanly write to its data region and it can only
jump within its code region. SFI works by adding checks juefobe each store or jump instruction, but the
extracted code still runs in the same address space, sdroatishe application are still simple and efficient.

Specifically, we postprocess our extracted malware funstising PittSFleld, an implementation of SFI
for x86 assembly code [34]. PittSFleld adds new instrustion checks, and to enforce additional alignment
constraints to avoid overlapping instructions, so BCRisistation of jumps to use labels is necessary for it
to work. PittSFleld was previously implemented for use with assembly code generated by GCC, so in
order to work with the hand-written assembly in the extrddtenctions, we generalize it to save and restore
the temporary register used in sandboxed operations, amat @ssume that EBP is always a pointer to the
stack. We also make corresponding changes to PittSFladgarate verification tool, so a user can check
the safety of an extracted function without trusting thesparwho extracted it.

6 Related Work

This section compares our approach with the manual protesms to replace, techniques for related
extraction problems in other domains, and some other tasiksequire similar algorithms.

Manual code extraction. Code extraction is a common activity in malware analysid, ibis usually
performed manually [4,5,28]. While this process can gieedhalyst a deep understanding of the malicious
functionality, it is also very time-consuming. Simple taalpport can make some of the repetitive tasks
more convenient [1], but existing approaches still reqapecialized skills. Our approach allows this task
to be automated, when all that is needed is to be able to ex#weifunctionality in another context.

Input-output formula extraction. A variant on the extraction problem is one where the funeiioy

to be extracted is sufficiently simple to be represented byglesformula. If the inputs and outputs of the
computation are known, such a formula can be extracted bpslcrexecution. For instance, such formulas
computed between input and output system calls can be usprbtocol dialog replay [23], or as a malware
signature [32]. However, a single formula is not a practiegresentation for more complex functionality
that includes loops or other variant control-flow paths, esuicomplex data structures. (For instance, the
malware modeling tool of Kolbitsch et al. [32] falls back teimg an executable slice if it cannot extract
an exact formula.) In addition to the different represeatabf the extracted functionality, the extraction
problem we consider here is more difficult because the ingudisoutputs must be inferred.

Interface extraction from source code.Jiang and Su [30] investigate the problem of automatic fiater
extraction in C source code, to allow automated randomniggtr fragments with equivalent behavior.
Their task of determining which variables constitute ispaihd outputs of a fragment is related to the one
we tackle in Section 3, but made easier by the availabilitiypé information. Extracting the code itself is
also easier because Jiang and Su’s code fragments aretegsby definition to contiguous statements.
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Liveness analysisThe analyses that our tool performs to identify input anghouvariables are the dynamic
analogues of static data-flow analyses performed by corspech as live variable and reaching definitions
analysis [35]. Some of the same challenges we face have edsodildressed in purely static tools such as
link-time optimizers that, like our tool, must operate ondoly code. For instance, link-time optimizers [29,
38] must also exclude saves of callee-saved registers fierresults of naive liveness analysis.

Binary rewriting. Many of the techniques required for binary code reutil@maire used in binary rewriting
and instrumentation applications. For instance, pureiicstlisassembly provides insufficient coverage for
even benign applications on Windows/x86 platforms, scestétthe art rewriting tools require a hybrid
of static and dynamic disassembly [36] much as we do. Cifsgeahd Van Emmerik [26] introduced the
technique we adopt for locating the jump table statemergd ts implement switch statements as part of
their binary translation tool UQBT.

7 Conclusion

This paper performs the first systematic study of automatiarip code reutilization, which we define as the
process of automatically identifying the interface andaoting the instructions and data dependencies of a
code fragment from an executable program, so that it iscgglfained and can be reused by external code.

We have proposed a novel technique to identify the prototfpen undocumented code fragment di-
rectly from the program’s binary, without access to its seuwcode. We have designed an approach to au-
tomatically extract a code fragment from a program binarthed the code fragment is self-contained. The
extracted code fragment can be run independently of theféisé program’s functionality in an external C
program, and can be easily tested, instrumented, or shatiedtiver users.

We have implemented BCR, a tool that uses our approach toatitally extract an assembly function
from a program binary. We have used BCR to reuse the encryatid decryption routines from two widely
used spam botnets in a network proxy that can rewrite the aralgrC&C encrypted traffic. In addition,
we have extracted the unpacking function from a widely usgidr, and have shown that a code fragment
belonging to that function can be reused by the unpackingtiwm for a different sample from the same
family. Finally, we have applied software-based faultasioin techniques [34] to the extracted functions to
ensure they can be used safely even though they come frontraistenl source.
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