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Abstract

Optimization and Incentives in Communication Networks

by

Libin Jiang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jean Walrand, Chair

Performance optimization of communication networks involves challenges at both the engi-

neering level and the human level. In the first part of the dissertation, we study a network

security game where strategic players choose their investments in security. Since a player’s

investment can reduce the propagation of computer viruses, a key feature of the game is

the positive externality exerted by the investment. With selfish players, unfortunately,

the overall network security can be far from optimum. First, we characterize the price of

anarchy (POA) in the strategic-form game under an “effective-investment” model and a

“bad-traffic” model, and give insight on how the POA depends on the network topology,

the cost functions of the players, and their mutual influence (or externality). We show that

the POA in general cannot be offset by the improvement of security technology. Second, in

a repeated game, users have more incentive to cooperate. We characterize the socially best

outcome that can be supported by the repeated game, as compared to the social optimum.

We also introduce a Folk Theorem which only requires local punishments and rewards, but

supports the same payoff region as the usual Folk Theorem. Finally, with a social planner

who implements a due-care scheme which mandates the minimal investments, we study how

the performance bound improves. Although our primary focus is Internet security, many

results are generally applicable to games with positive externalities.

In the second part of the dissertation, we consider the problem of achieving the maxi-
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mum throughput and utility in a class of networks with resource-sharing constraints. This

is a classical problem which had lacked an efficient distributed solution. First, we propose

a fully distributed scheduling algorithm that achieves the maximum throughput. Inspired

by CSMA (Carrier Sense Multiple Access) which is widely deployed in today’s wireless net-

works, our algorithm is simple, asynchronous and easy to implement. Second, using a novel

maximal-entropy technique, we combine the CSMA scheduling algorithm with congestion

control to approach the maximum utility. Also, we further show that CSMA scheduling is

a modular MAC-layer algorithm that can work with other protocols in the transport layer

and network layer. Third, for wireless networks where packet collisions are unavoidable, we

establish a general analytical model and extend the above algorithms to that case.

Stochastic Processing Networks (SPNs) model manufacturing, communication, and

service systems. In manufacturing networks, for example, service activities require

parts and resources to produce other parts. SPNs are more general than queueing

networks and pose novel challenges to throughput-optimum scheduling. In the third

part of the dissertation, we proposes a “deficit maximum weight” (DMW) algorithm to

achieve throughput optimality and maximize the net utility of the production in SPNs.

Professor Jean Walrand
Dissertation Committee Chair
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Chapter 1

Optimization and Incentives

Communication networks are composed of distributed, interdependent and sometimes

selfish entities. Performance optimization of these networks involves challenges at both the

engineering level and the human level. At the engineering level, the design objective (or

“social welfare”) of a network is its overall throughput, delay, fairness and security, etc.

To optimize the social welfare in large networks, high-performance distributed algorithms

need to be designed. On the other hand, at the human level the network entities are often

controlled by humans, each with his own individual objective (i.e., “individual welfare”).

The important role of human incentives needs to be understood from a game-theoretic and

economic perspective.

Although the problems at the engineering level and the human level seem quite different,

some fascinating connections have been revealed in recent years. It is known to economists

that by deploying suitable incentivizing mechanisms such as pricing, the social welfare can

be achieved in a game with selfish players. This idea has been used in communication

networks to “regulate” the actions of different network entities (devices) using suitable

“incentives” (in the form of feedback signals), such that a global performance objective is

optimized in a distributed manner. On the other hand, if the devices are controlled by selfish

humans, and there is no suitable regulation or mechanism in place, the network performance

1



Link 1 Link 2

Flow 1
Flow 2

Flow 3

Figure 1.1: Global optimization

at the equilibrium is usually sub-optimum. Therefore, understanding and improving the

performance in such scenarios becomes an important problem.

In this chapter, we give examples to illustrate the connections.

1.1 Global optimization and distributed algorithms

A well known global optimization problem in both communication networks and eco-

nomics is a resource allocation problem. For example, consider three data flows, each going

through a set of links (Fig. 1.1). Flow 1 goes through link 1, flow 2 goes through link 2,

and flow 3 goes through both link 1 and link 2. Both link 1 and 2 have a capacity of 1. The

rate at which flow i sends data is xi, i = 1, 2, 3, and the total rate each link carries cannot

exceed its capacity. That is, x1 + x3 ≤ 1, x2 + x3 ≤ 1. Each flow has an increasing and

strictly concave “utility function” Ui(xi), i = 1, 2, 3. The “congestion control problem” in

communication networks is to determine the flow rates x := (x1, x2, x3) such that the total

utility is maximized. That is,

maxx

3∑
i=1

Ui(xi)

s.t. x1 + x3 ≤ 1

x2 + x3 ≤ 1. (1.1)

In economics, each link corresponds to a “resource”, and each flow corresponds to an

“activity”. The activities consume different sets of resources as described by the above

constraints. The solution of problem (1.1) is the optimum way to allocate the resources to

the activities.

2



1.1.1 Distributed algorithms with economic interpretations

Two influential papers, [1] and [2], first described distributed algorithms in communi-

cation networks to solve problem (1.1) via a Lagrangian decomposition method. Although

the method is standard in optimization theory, its application to communication networks

has made a major impact on the understanding and design of network protocols.

The method is as follows. To solve (1.1), we form a Lagrangian

L(x;µ1, µ2) =
3∑

i=1

Ui(xi)− µ1 · (x1 + x3 − 1)− µ2 · (x2 + x3 − 1)

= [U1(x1)− µ1 · x1] + [U2(x2)− µ2 · x2]

+[U3(x3)− (µ1 + µ2) · x3]

where µ1, µ2 are the dual variables associated with the first two constraints (each for one

link). They can be interpreted as the “unit price” of link 1 and link 2 to “signal” their

congestion level. According to the theory of convex optimization [56], there exists µ∗1, µ
∗
2 ≥ 0

such that x∗ := arg maxx L(x;µ∗1, µ
∗
2) is the optimum solution of problem (1.1). Since the

terms in L(x;µ1, µ2) involving x1, x2, x3 are separable, we have

x∗1 = arg max
x1

{U1(x1)− µ∗1 · x1}

x∗2 = arg max
x2

{U2(x2)− µ∗2 · x2}

x∗3 = arg max
x3

{U3(x3)− (µ∗1 + µ∗2) · x3} (1.2)

The actual algorithms also include an iterative procedure for each link to locally find

the prices µ∗1 and µ∗2.

There are two important points about this solution.

1. Economic Interpretation: Once the proper prices µ∗1, µ
∗
2 are set, the optimal x∗

can be found if each flow chooses its rate according to the total price along its path, in

order to maximizes its “payoff”—for example, U1(x1) − µ∗1 · x1 is the “payoff” of flow 1

since U1(x1) is its utility and µ∗1 · x1 is its payment (although there is no actual payment

involved).

3



In this sense, the price taken by one flow reflects the “externality” it causes to other

flows. The reason why the maximum social welfare is achieved is that each flow takes into

account the externality when maximizing its payoff (in other words, the “externality” is

“internalized”).

2. Distributed Implementation: Once the prices µ∗1, µ
∗
2 are set, the global opti-

mization (1.1) is reduced to a number of individual optimizations in (1.2). This leads to

a distributed algorithms to find x∗. Such algorithms are of particular interest in large

scale communication networks, because the actions of each network device are simple and

localized no matter how large the network is.

Since such algorithms can be “derived” from a global optimization problem, this method

of algorithm design is called the “optimization-based approach”.

1.1.2 Generalization

As a generalization of problem (1.1), consider n “players” in the network, where player

i has a strategy xi, i = 1, 2, . . . , n. Define the vector x = (x1, x2, . . . , xn), and x ∈ X where

X is a “feasible set”. Assume that player i’s utility depends on x (not only xi). Then, a

global optimization problem is

maxx

n∑
i=1

Ui(x)

s.t. x ∈ X . (1.3)

After several early works including [1] [2], this problem has been studied in various

contexts in communication networks, resulting in efficient and distributed algorithms to

optimize various objectives such as throughput, delay, fairness and power consumptions [3].

1.2 Individual optimization and game theory

When the communication devices are controlled by humans, and without any “regula-

tion” such as pricing in place, a “rational” player is only interested in maximizing his own
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utility. In this case, the individual optimization problem becomes important. Given x−i,

player i solves

maxxi Ui(xi,x−i)

s.t. xi ∈ Xi (1.4)

where Xi is the “action set” of player i.

If there is a x̄ such that x̄i ∈ arg max xi∈XiUi(xi, x̄−i),∀i, then x̄ is a “pure-strategy

Nash Equilibrium” [4]. (Although a pure-strategy NE does not always exist, we use it here

for introductory purposes.)

Since the externality is not internalized, in general
∑n

i=1 Ui(x̄) <
∑n

i=1 Ui(x∗) where x∗

is the solution of (1.3). Then the following questions become interesting:

• Is the difference, or ratio between
∑n

i=1 Ui(x∗) and
∑n

i=1 Ui(x̄) bounded?

• If so, what is the largest difference or ratio? (The largest ratio has been named the

“price of anarchy” (POA) in [8].)

• If POA is bad, how to improve it by modifying the game?

1.3 Organization

This dissertation addresses three problems, one at the human level and the other two

at the engineering level. In the first problem, we consider selfish investment in network

security, where each player chooses its investment in security to minimize his own cost. The

main purpose of the study is to develop an analytical framework to understand the price of

anarchy of this game, and study how to improve it using certain mechanisms or regulations.

The second problem is achieving the maximum throughput and utility in a class of networks

including wireless networks. Different from the first problem, the goal here is to maximize

the social welfare through distributed algorithms. We use the optimization-based approach,

but we need to incorporate several other elements (including time-reversible Markov chains,

statistical mechanics and stochastic approximation) to design and analyze our algorithms.
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The third problem is achieving the maximum throughput and utility in stochastic processing

networks (SPNs). SPNs model manufacturing, communication, and service systems. They

are more general than the queueing networks we consider in the second problem and pose

unique challenges.
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Part I

Selfish Investments in Network

Security
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Chapter 2

Introduction

Today’s Internet suffers from various security problems. The best-known security prob-

lems are viruses and worms, which usually carry malicious codes and can cause considerable

damage to the infected computers. The key feature of viruses and worms is that they spread

across the network from infected computers to other computers. Viruses require user inter-

vention to spread (such as opening an email or document which contains the virus), whereas

worms spread automatically [5]

Another well known security risk is caused by the “Botnets”. A Botnet is a collection

of software robots (or “bots”), residing in infected computers, that can be controlled re-

motely by the Botnet operator to perform various malicious tasks such as installing Adware

and Spyware in the infected computers, sending out spams to mail servers, and launching

distributed Denial-of-Service attacks (DDoS) on certain websites. Like viruses and worms,

many bots can automatically scan their environment and propagate themselves by exploit-

ing system vulnerabilities.

Due to the “contagious” nature of the above risks, Internet security does not only depend

on the security investment made by individual users, but also on the interdependency among

them. If a careless user puts in little effort in protecting his computer system (e.g., installing

anti-virus software and patching the system vulnerabilities), then it is easy for viruses,

worms or bots to infect this computer and through it continue to infect or attack others.
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On the contrary, if a user invests more to protect himself, then other users will also benefit

since the chance of infection and attacks is reduced. Therefore, each user’s investment

exerts a “positive externality” on others.

Unfortunately, a selfish user (or “player”) does not consider the above externality when

choosing his investments in security, since he does not bear the full responsibility for his

action. As a result, the overall network security is generally sub-optimum. We are interested

in identifying and modeling the important factors that affect the extent of sub-optimality,

that is, the “price of anarchy”, and also consider possible ways to improve the outcome.

One important factor is the heterogeneity of user preferences. Internet users have dif-

ferent valuations of security and unit costs of investment. For example, government and

commercial websites usually have higher valuations of security, since security breaches would

lead to significant financial losses or other consequences. They are also more efficient in

implementing security measures. On the other hand, a family computer user may care less

about security, and also may be less efficient in improving it due to the lack of awareness

and expertise. As a result, some players may choose to invest more, whereas others choose

to “free ride”, given that the security level is already “good” enough thanks to the invest-

ment of others. Due to the tendency of under-investment, the resulting outcome may be

far worse for all users. This is the “free riding problem” as studied in, for example, [7].

Besides user preferences, the network topology, which is defined to describe the logical

dependency among the players, is also important. The specific “dependency” studied here

is the “importance” of a given user’s investment to others. For example, assume that in a

local network, user A directly connected to the Internet. All other users are connected to A

and exchange a large amount of traffic with A. Clearly, the security level of A is particularly

important for the local network since A has the largest influence on other users. If A has a

low valuation of his own security, then it will invest little and the whole network suffers.
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2.1 Overview of results

We first study how network topology, the preferences of users and their mutual influence

affect network security in a non-cooperative setting. In the strategic-form game, we derive

the “Price of Anarchy” (POA) [8] as a function of the above factors, where the POA here is

defined as the worst-case ratio between the “social cost” at a Nash Equilibrium (NE) and

the social optimum (SO). We show that the price of anarchy in general cannot be offset

by the improvement of security technology. We also introduce the concept of “weighted

POA” to get a richer characterization of the region of equilibrium payoffs. In a repeated

game, users have more incentive to cooperate for their long-term interest. We study the

“socially best” equilibrium in the repeated game, and compare it to SO. Not surprisingly,

much better performance can be achieved in the repeated game. (The above results are

based on [22; 23].)

Given that the POA is large in many scenarios, a natural question is how to improve the

outcome of the game. A conceptually simple scheme with a regulator is called “due care”

(see, for example, [7]). In the idealized case which we call “perfect due care”, each player i

is required to invest no less than x∗i , the investment in the socially optimal configuration.

Then, it can be shown that a NE is that each player i invest x∗i which achieves the SO.

However, since the regulator generally does not have a full knowledge of x∗, we investigate a

more general “due care” scheme where the regulator imposes a minimum investment vector

m on the players where m 6= x∗ in general. We give the worst-case performance bound of

the resulting NE and discuss how the bound could improve compared to the case without

“due care”.

During the study we have also developed a few interesting results for game theory itself.

The “weighted POA” mentioned above is a general concept that can be applied to other

games. We also developed a Folk theorem with local punishments and rewards, utilizing

the structure of a class of games with positive externality.
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2.2 Related works

In [6], Gordon and Loeb presented an economic model to determine the optimum invest-

ment of a single player to protect a given set of information. The model takes into account

the vulnerability of the information and the potential loss if a security breach occurs. The

externalities among different players, or the game theoretical aspects, were not considered.

Varian studied the network security problem using game theory in [7]. There, the effort

of each player was assumed to be equally important to all other users (i.e., the symmetric

case), and the network topology was not taken into account. Also, [7] is not focused on the

efficiency analysis such as quantifying the POA.

In [14], Aspnes et al. formulated an “inoculation game” and studied its POA. There,

each player in the network decides whether to install anti-virus software to avoid infection.

Different from our work, [14] has assumed binary decisions (install or not install) and the

same cost function for all players. Lelarge and Bolot [15] made a similar homogeneous

assumption on the cost functions, and they obtained asymptotic results on the POA in

random graphs when the number of players goes to infinity. Compared to these works,

our results take into account heterogeneous cost functions, and apply to any given network

topology with any number of players.

“Price of Anarchy” (POA) [8], measuring the performance of the worst-case equilibrium

compared to the social optimum, has been studied in various games in recent years, most

of them with “negative externality”. Roughgarden et al. shows that the POA is generally

unbounded in the “selfish routing game” [9; 10], where each user chooses some link(s) to

send his traffic in order to minimize his congestion delay. Ozdaglar et al. derived the POA

in a “price competition game” in [11] and [12], where a number of network service providers

choose their prices to attract users and maximize their own revenues. In [13], Johari et al.

studied the “resource allocation game”, where each user bids for the resource to maximize

his payoff, and showed that the POA is 3/4 assuming concave utility functions. In all the

above games, there is “negative externality” among the players: for example in the “selfish
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routing game”, if a user sends his traffic through a link, other users sharing that link will

suffer larger delays.

On the contrary, in the network security game we study here, if a user increases his

investment, the security level of other users will improve. In this sense, it falls into the

category of games with positive externalities. In fact, many results here may be applicable

to games with a similar nature. For example, assume that a number of service providers

(SP) build networks which are interconnected. If a SP invests to upgrade her own network,

the performance of the whole network improves and may bring more revenue to all SP’s.
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Chapter 3

Strategic-Form Games

3.1 Price of anarchy (POA) in the strategic-form game

3.1.1 General model

Assume there are n “players” where each player is normally an organization or enter-

prise. The security investment (or “effort”, we use them interchangeably) of player i is

xi ≥ 0. This includes investment in both finance (e.g., for purchasing/installing anti-virus

software and firewall), time/energy (e.g., for system scanning, patching and maintenance)

and education. The cost per unit of investment is ci > 0. Denote fi(x) as player i’s “se-

curity risk”: the expected loss due to virus infections and attacks from the network, where

x is the vector of investments by all players. fi(x) is decreasing1 in each xj , j = 1, 2, . . . , n

(thus reflecting positive externality) and non-negative. We assume that it is convex and

differentiable, and that fi(x = 0) > 0 is finite. Then the “cost function” of player i is

gi(x) := fi(x) + cixi (3.1)

Note that the function fi(·) is generally different for different players.

The strategic-form security game Γ is formally defined as

Γ = (N ,X ,g) (3.2)
1“Decreasing” here means “non-increasing”, different from “strictly decreasing”.

13



where N = {1, 2, . . . , n} is the set of players. Xi = R+ is the action set of player i (i.e., his

investment xi ∈ Xi), and X =
∏n

i=1Xi is the set of action profiles. gi : X → R, as defined

in (3.1), is the cost function of player i, and g = (g1, g2, . . . , gn) is the cost functions for the

game. In Γ, player i chooses his investment xi ≥ 0 to minimize gi(x). Also define G(x) as

the total cost (or “social cost”) function:

G(x) :=
n∑

i=1

gi(x). (3.3)

G(x) serves as a global performance measure of a given profile x.

Proposition 1. As a simplification, we can assume that ci = 1,∀i without loss of generality.

Remark: Given this, we will assume ci = 1,∀i in most of our study.

Proof. We show that given a game Γ as in (3.2), we can transform it to an equivalent game

with unit cost 1.

To do this, we change a variable in the cost function (3.1), by defining x′i := cixi,∀i.

Denote x′ = (x′i) = (cixi). Then,

x = (xi) = (x′i/ci). (3.4)

Define the functions

f̂i(x′) := fi(x)

ĝi(x′) := f̂i(x′) + x′i,∀i (3.5)

where x is expressed in (3.4). Then, ĝi(x′) = gi(x),∀i.

Clearly, the game Γ̂ := (N ,X , ĝ) (where ĝ = (ĝi)) is equivalent to Γ. Also, in (3.5), the

unit cost of investment x′i is 1.

Note that f̂i(x′) is non-increasing in x′j , j = 1, 2, . . . , n, and is convex and differentiable

in x′. Also, f̂i(x′ = 0) > 0 is finite. These properties are the same as those assumed for

fi(x).

Therefore, for any game Γ, we can study it as the game Γ̂ with unit cost 1 for each

player.
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3.1.2 A related empirical study

In this section we describe the main findings of a related empirical study in [16] on the

security investments in Japanese enterprises. The purpose is to draw some correspondence

between our general model and the empirical observations.

The data used in [16] is based on “Survey of actual condition of IT usage”, conducted

by METI (Ministry of Economy, Trade and Industry) of the Japanese government in March

2002 and 2003. The data set consists of responses from 3018 enterprises.

First of all, it was found from the data that security investments are significantly af-

fected by the industry type. Financial organizations seem to invest more compared to other

organizations, because they have larger potential losses in the event of security breaches.

This corresponds to the “heterogeneity” of the players in our model, reflected in the cost

function gi(x) = fi(x) + cixi where fi(·) and ci differ for different players. If the security

risk function is large, the player tends to invest more.

Now consider the enterprises with the same industry type. For each enterprise i, the

following variables are defined in [16]:

• vi = 1 if she suffered from virus attacks in 2003, and vi = 0 if not.

• Let Ei be the logarithm of the number of email accounts. Since e-mail attachments

are a major virus source, Ei is used to reflect the vulnerability arising from inside

users.

• Bi is the “system vulnerability score”, which is inherently higher if enterprise i has a

large coverage of systems and networks.

• xi = 1 if the enterprise adopted security measures including “Defense measures”,

“Security policy” and “Human cultivation”2, xi = 0 otherwise.
2“Human cultivation” means the education and training of the members of the enterprise (including the

employees and managers) to increase their awareness of security issues and develop good security practices.
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Then, the data is fit into the following proposed model via “logistic regression”.

vi = α · Ei + β ·Bi + δ · xi (3.6)

Not surprisingly, it was found that α, β > 0 and δ < 0 [16] after the regression. That is,

the security risk vi is positively correlated to the number of email accounts and the system

vulnerability, and negatively correlated to the security investment.

Comparison of the data analysis in [16] and our model

• One can view vi in (3.6) as a simplistic version of our risk function fi(·), since in their

study vi is either 1 or 0, which does not reflect the amount of loss incurred by viruses.

Also, one can view vi as a realization of an inherently random variable, and assume

that the player would make decisions based on the expected loss due to attacks, which

is the definition of fi(·) and will made even more clear in section 3.1.4 and 3.1.5.

• The vulnerability level (affected by Ei and Bi) of each enterprise has been accounted

for by the different risk functions fi(·) in our model (which is another form of het-

erogeneity), and the effect of investment is modeled by the assumption that fi(·) is

decreasing in xi.

• One aspect which was not considered in (3.6) is the positive externality of each player’s

investment to other players.

3.1.3 POA in the general model

First, we prove in section 7.1 the existence of pure-strategy Nash Equilibrium(s).

Proposition 2. There exists some pure-strategy Nash Equilibrium (NE) in Γ.

In the section we consider pure-strategy NE. Denote x̄ as the vector of investments

at some NE, and x∗ as the vector of investments at the social optimum (SO), i.e., x∗ ∈

arg minx≥0 G(x). Also denote the unit cost vector c = (c1, c2, . . . , cn)T .
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We aim to find the POA, Q, which is defined as the largest possible ρ(x̄), where

ρ(x̄) :=
G(x̄)
G∗ =

∑
i gi(x̄)∑
i gi(x∗)

is the ratio between the social cost at the NE x̄ and at the social optimum. For convenience,

sometimes we simply write ρ(x̄) as ρ if there is no confusion.

Before getting to the derivation, we illustrate the POA in a simple example. Assume

there are 2 players, with their investments denoted as x1 ≥ 0 and x2 ≥ 0. The cost function

is gi(x) = f(y)+xi, i = 1, 2, where f(y) is the security risk of both players, and y = x1 +x2

is the total investment. Assume that f(y) is non-negative, decreasing, convex, and satisfies

f(y)→ 0 when y →∞. The social cost is G(x) = g1(x) + g2(x) = 2 · f(y) + y.

0

0.5

1

1.5

2

2.5

NE SO

B

C

A

D

y = x1 + x2y
∗

ȳ

−2*f’(y)

−f’(y)

Figure 3.1: POA in a simple example

At a NE x̄, ∂gi(x̄)
∂xi

= f ′(x̄1 + x̄2) + 1 = 0, i = 1, 2. Denote ȳ = x̄1 + x̄2, then −f ′(ȳ) = 1.

This is shown in Fig 3.1. Then, the social cost Ḡ = 2 · f(ȳ)+ ȳ. Note that
∫∞
ȳ (−f ′(z))dz =

f(ȳ) − f(∞) = f(ȳ) (since f(y) → 0 as y → ∞), therefore in Fig 3.1, 2 · f(ȳ) is the area

B + C + D, and Ḡ is equal to the area of A + (B + C + D).

At SO, on the other hand, the total investment y∗ satisfies −2f ′(y∗) = 1. Using a

similar argument as before, G∗ = 2f(y∗) + y∗ is equal to the area of (A + B) + D.

Then, the ratio Ḡ/G∗ = [A + (B + C + D)]/[(A + B) + D] ≤ (B + C)/B ≤ 2. We will

show later that this upper bound is tight. So the POA is 2.
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Now we analyze the POA with the general cost function (3.1). In some sense, it is a

generalization of the above example.

Lemma 1. For any NE x̄, ρ(x̄) satisfies

ρ(x̄) ≤ max{1,max
k
{(−

∑
i

∂fi(x̄)
∂xk

)/ck}} (3.7)

Note that (−
∑

i
∂fi(x̄)
∂xk

) is the marginal “benefit” to the security of all users by increasing

xk at the NE; whereas ck is the marginal cost of increasing xk. The second term in the RHS

(right-hand-side) of (3.7) is the maximal ratio between these two.

Proof. At NE, 
∂fi(x̄)

∂xi
= −ci if x̄i > 0

∂fi(x̄)
∂xi

≥ −ci if x̄i = 0
(3.8)

By definition,

ρ(x̄) =
G(x̄)
G∗ =

∑
i fi(x̄) + cT x̄∑

i fi(x∗) + cTx∗

Since fi(·) is convex for all i. Then fi(x̄) ≤ fi(x∗) + (x̄− x∗)T∇fi(x̄). So

G(x̄) ≤ (x̄− x∗)T
∑

i

∇fi(x̄) + cT x̄ +
∑

i

fi(x∗)

= −x∗T
∑

i

∇fi(x̄) + x̄T [c +
∑

i

∇fi(x̄)] +
∑

i

fi(x∗)

Note that

x̄T [c +
∑

i∇fi(x̄)] =
∑

i x̄i[ci +
∑

k
∂fk(x̄)

∂xi
]

There are two possibilities for every player i: (a) If x̄i = 0, then x̄i[ci +
∑

k
∂fk(x̄)

∂xi
] = 0.

(b) If x̄i > 0, then ∂fi(x̄)
∂xi

= −ci. Since ∂fk(x̄)
∂xi

≤ 0 for all k, then
∑

k
∂fk(x̄)

∂xi
≤ −ci, so

x̄i[ci +
∑

k
∂fk(x̄)

∂xi
] ≤ 0.

As a result,

G(x̄) ≤ −x∗T
∑

i

∇fi(x̄) +
∑

i

fi(x∗) (3.9)
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and

ρ(x̄) ≤
−x∗T

∑
i∇fi(x̄) +

∑
i fi(x∗)∑

i fi(x∗) + cTx∗
(3.10)

(i) If x∗i = 0 for all i, then the RHS is 1, so ρ(x̄) ≤ 1. Since ρ cannot be smaller than 1,

we have ρ = 1.

(ii) If not all x∗i = 0, then cTx∗ > 0. Note that the RHS of (3.10) is not less than 1, by

the definition of ρ(x̄). So, if we subtract
∑

i fi(x∗) (non-negative) from both the numerator

and the denominator, the resulting ratio upper-bounds the RHS. That is,

ρ(x̄) ≤
−x∗T

∑
i∇fi(x̄)

cTx∗
≤ max

k
{(−

∑
i

∂fi(x̄)
∂xk

)/ck}

where
∑

i
∂fi(x̄)
∂xk

is the k’th element of the vector
∑

i∇fi(x̄).

Combining case (i) and (ii), the proof is completed.

Lemma 2. We can also bound the difference between G(x̄) and G∗. Using (3.9),

G(x̄)−G∗ ≤ −x∗T
∑

i

∇fi(x̄)− cTx∗

≤ {max
k
{(−

∑
i

∂fi(x̄)
∂xk

)/ck} − 1} · (cTx∗) (3.11)

Note that although Lemma 1 is quite general, the bound is not explicit since it involves

x̄.

In the following, we give two models of the network security game which are special

cases of the above general model. Each model defines a concrete form of fi(·). They are

formulated to capture the key features of the system while being amenable to mathematical

analysis. We will give explicit expressions for the POA of the two models.

3.1.4 Effective-investment (“EI”) model

Generalizing [7], we consider an “Effective-investment” (EI) model. In this model, the

security risk of player i depends on an “effective investment”, which we assume is a linear

combination of the investments of himself and other players.
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Specifically, let pi(
∑n

j=1 αjizj) be the probability that player i is infected by a virus (or

suffers an attack), given the amount of effort every player puts in. The effort of player j,

zj , is weighted by αji, reflecting the “importance” of player j to player i. Let vi be the cost

of player i if he suffers an attack; and ci be the cost per unit of effort by player i. Then,

the total cost of player i is gi(z) = vipi(
∑n

j=1 αjizj) + cizi.

For convenience, we “normalize” the expression in the following way. Let the normalized

effort be xi := cizi,∀i. Then

gi(x) = vipi(
∑n

j=1
αji

cj
xj) + xi

= vipi(αii
ci

∑n
j=1 βjixj) + xi

where βji := ci
αii

αji

cj
(so βii = 1). We call βji the “relative importance” of player j to player

i.

Define the function Vi(y) = vi · pi(αii
ci

y), where y is a dummy variable. Then gi(x) =

fi(x) + xi, where

fi(x) = Vi(
∑n

j=1 βjixj) (3.12)

Assume that pi(·) is decreasing, non-negative, convex and differentiable. Then Vi(·) also

has these properties.

Proposition 3. In the EI model defined above,

ρ ≤ max
k
{1 +

∑
i:i6=k

βki} := QEI . (3.13)

Furthermore, the bound is tight.

Proof. Let x̄ be some NE. Denote h :=
∑

i∇fi(x̄). Then the kth element of h

hk =
∑

i

∂Vi(
Pn

j=1 βjix̄j)

∂xk

=
∑

i βki · V ′
i (

∑n
j=1 βjix̄j)
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From (3.8), we have
∂Vi(
Pn

j=1 βjix̄j)

∂xi
= βii · V ′

i (
∑n

j=1 βjix̄j) = V ′
i (

∑n
j=1 βjix̄j) ≥ −1. So

hk ≥ −
∑

i βki. Plug this into (3.7), we obtain an upper bound of ρ:

ρ ≤ max{1,max
k
{−hk}} ≤ QEI := max

k
{1 +

∑
i:i6=k

βki} (3.14)

which completes the proof.

(3.14) gives some interesting insight into the game. Since βki, i 6= k is player k’s “relative

importance” (or externality) to player i, then 1 +
∑

i:i6=k βki =
∑

i βki is player k’s relative

importance to the society. (3.14) shows that the POA is bounded by the maximal social

“importance” (or one plus the “total externality”) among the players. Interestingly, the

bound does not depend on the specific form of Vi(·) as long as it’s convex, decreasing and

non-negative.

It also provides a simple way to compute POA under the model. We define a “depen-

dency graph” as in Fig. 3.2, where each vertex stands for a player, and there is a directed

edge from k to i if βki > 0. In Fig. 3.2, player 3 has the highest social importance, and

ρ ≤ 1 + (0.6 + 0.8 + 0.8) = 3.2. In another special case, if for each pair (k, i), either βki = 1

or βki = 0, then the POA is bounded by the maximum out-degree of the graph plus 1. If

all players are equally important to each other, i.e., βki = 1,∀k, i, then ρ ≤ n (i.e., POA is

the number of players). This also explains why the POA is 2 in the example considered in

Fig 3.1.
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Figure 3.2: Dependency Graph and the Price of Anarchy (In this figure, ρ ≤ 1 + (0.6 +

0.8 + 0.8) = 3.2)
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The following is a worst case scenario that shows the bound is tight. Assume there are

n players, n ≥ 2. βki = 1,∀k, i; and for all i, Vi(yi) = [(1 − ε)(1 − yi)]+, where [·]+ means

positive part, yi =
∑n

j=1 βjixj =
∑n

j=1 xj , ε > 0 but is very small.3

Given x−i = 0, gi(x) = [(1 − ε)(1 − xi)]+ + xi = (1 − ε) + ε · xi when xi ≤ 1, so

the best response for player i is to let xi = 0. Therefore, x̄i = 0,∀i is a NE, and the

resulting social cost G(x̄) =
∑

i[Vi(0) + x̄i] = (1 − ε)n. Since the social cost is G(x) =

n · [(1 − ε)(1 −
∑

i xi)]+ +
∑

i xi, the social optimum is attained when
∑

i x
∗
i = 1 (since

n(1 − ε) > 1). Then, G(x∗) = 1. Therefore ρ = (1 − ε)n → n when ε → 0. When ε = 0,

x̄i = 0,∀i is still a NE. In that case ρ = n.

3.1.5 Bad-traffic (“BT”) Model

Next, we consider a model which is based on the amount of “bad traffic” (e.g., traffic

that causes virus infection) from one player to another. Let rki be the total rate of traffic

from k to i. How much traffic in rki will do harm to player i depends on the investments of

both k and i. So denote by φk,i(xk, xi) the probability that player k’s traffic does harm to

player i. Clearly φk,i(·, ·) is a non-negative, decreasing function. We also assume it is convex

and differentiable. Then, the rate at which player i is infected by the traffic from player k is

rkiφk,i(xk, xi). Let vi be player i’s loss when it’s infected by a virus, then gi(x) = fi(x)+xi,

where the investment xi has been normalized such that its coefficient (the unit cost) is 1,

and

fi(x) = vi

∑
k 6=i

rkiφk,i(xk, xi)

If the “firewall” of each player is symmetric (i.e., it treats the incoming and outgoing

traffic in the same way), then it’s reasonable to assume that φk,i(xk, xi) = φi,k(xi, xk).

Proposition 4. In the BT model,

ρ ≤ 1 + max
(i,j):i6=j

virji

vjrij
:= QBT .

. The bound is also tight.
3Although Vi(yi) is not differentiable at yi = 1, it can be approximated by a differentiable function

arbitrarily closely, such that the result of the example is not affected.
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Proof. Let h :=
∑

i∇fi(x̄) for some NE x̄. Then the j-th element

hj =
∑

i

∂fi(x̄)
∂xj

=
∑
i6=j

∂fi(x̄)
∂xj

+
∂fj(x̄)
∂xj

=
∑
i6=j

virji
∂φj,i(x̄j , x̄i)

∂xj
+ vj

∑
i6=j

rij
∂φi,j(x̄i, x̄j)

∂xj

We have

qj :=

∑
i6=j

∂fi(x̄)
∂xj

∂fj(x̄)
∂xj

=

∑
i6=j virji

∂φj,i(x̄j ,x̄i)
∂xj

vj
∑

i6=j rij
∂φi,j(x̄i,x̄j)

∂xj

=

∑
i6=j virji

∂φj,i(x̄j ,x̄i)
∂xj∑

i6=j vjrij
∂φj,i(x̄j ,x̄i)

∂xj

≤ max
i:i6=j

virji

vjrij

where the 3rd equality holds because φi,j(xi, xj) = φj,i(xj , xi) by assumption.

From (3.8), we know that ∂fj(x̄)
∂xj

≥ −1. So

hj = (1 + qj)
∂fj(x̄)
∂xj

≥ −(1 + max
i:i6=j

virji

vjrij
)

According to (3.7), it follows that

ρ ≤ max{1,max
j
{−hj}} ≤ QBT := 1 + max

(i,j):i6=j

virji

vjrij
(3.15)

which completes the proof.

Note that virji is the damage to player i caused by player j if player i is infected by all

the traffic sent by j, and vjrij is the damage to player j caused by player i if player j is

infected by all the traffic sent by i. Therefore, (3.15) means that the POA is upper-bounded

by the “maximum imbalance” of the network. As a special case, if each pair of the network

is “balanced”, i.e., virji = vjrij ,∀i, j, then ρ ≤ 2!

To show the bound is tight, we can use a similar example as in section 3.1.4. Let there

be two players, and assume v1r21 = v1r12 = 1; φ1,2(x1, x2) = (1 − ε)(1 − x1 − x2)+. Then

it becomes the same as the previous example when n = 2. Therefore ρ→ 2 as ε→ 0. And

ρ = 2 when ε = 0.

Note that when the network becomes larger, the imbalance between a certain pair of

players becomes less important. Thus ρ may be much less than the worst case bound in

large networks due to the averaging effect.
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3.2 Bounding the payoff regions using “weighted POA”

So far in the literature, the research on POA in various games has largely focused on

the worst-case ratio between the social cost (or welfare) achieved at the Nash Equilibria and

the social optimum. Note that the social cost (which is the summation of the individual

costs of all players) only provides one-dimensional information. Therefore the POA is also

one-dimensional information.

However, in any multi-player game, the players’ payoffs form a vector which is multi-

dimensional. Therefore, it is useful to have a richer characterization of the region of the

payoff vectors. This region gives much more information because it characterizes the tradeoff

between efficiency and fairness among different players.

This motivates us to introduce the concept of “weighted POA” which generalizes POA.

With weighted POA, supposing that a NE payoff vector is known, one can bound the region

of all feasible payoff vectors. This gives a better comparison between the NE payoff vector

and the “Pareto frontier” of the feasible payoff region. Conversely, given any feasible payoff

vector, one can bound the region of the possible payoff vectors at all Nash Equilibria.

The “weighted POA”, Qw, is defined as the largest possible ρw(x̄), where

ρw(x̄) :=
Gw(x̄)

G∗
w

=
∑

i wi · gi(x̄)∑
i wi · gi(x∗w)

Here, w ∈ Rn
++ is a weight vector, x̄ is the vector of investments at a NE of the original

game; whereas x∗w minimizes a weighted social cost Gw(x) :=
∑

i wi · gi(x).

Fig. 3.3 illustrates the concept of weighted POA in a 2-player game. The dash-dot red

curve is the Pareto boundary of the feasible payoff region. And there is a unique NE whose

payoff vector (or “cost vector”) is marked by the circle. Then, the POA is equal to a/b.

The weighted POA with weight vector w = (1, 0.5) is c/d. This is because the NE cost

vector is on the line g1 + 0.5 · g2 = c, and the cost vector which minimizes G(2,1)(x) is on

the line g1 + 0.5 · g2 = d.

To obtain Qw, consider a modified game

Γ̂ := (N ,X , ĝ) (3.16)
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where ĝ = (ĝ1, ĝ2, . . . , ĝn), and the cost function of player i is

ĝi(x) := wi · gi(x) = wifi(x) + wi · cixi := f̂i(x) + ĉixi

Note that in the game Γ̂, the NE strategies are the same as the original game Γ: given any

x−i, player i’s best response remains the same (since his cost function is only multiplied by

a constant). So the two games are strategically equivalent, and thus have the same set of

NE’s. As a result, the weighted POA Qw of the original game is exactly the POA in the

modified game (Note the definition of x∗w). Applying (3.7) to the game Γ̂, we have

ρw(x̄) ≤ max{1,max
k
{(−

∑
i

∂f̂i(x̄)
∂xk

)/ĉk}}

= max{1,max
k
{(−

∑
i

wi∂fi(x̄)
∂xk

)/(wkck)}} (3.17)

Then, one can easily obtain the weighted POA for the EI model and the BT model.

Proposition 5. In the EI model,

ρw ≤ Qw,EI := max
k
{1 +

∑
i:i6=k wiβki

wk
} (3.18)

In the BT model,

ρw ≤ Qw,BT := 1 + max
(i,j):i6=j

wivirji

wjvjrij
(3.19)

We use Qw to generally refer to Qw,EI or Qw,BT , depending on the model.

Since ρw(x̄) = Gw(x̄)
G∗

w
=
P

i wi·gi(x̄)P
i wi·gi(x∗w) ≤ Qw, we have

∑
i wi · gi(x∗w) ≥

∑
i wi · gi(x̄)/Qw.

Notice that x∗w minimizes Gw(x) =
∑

i wi · gi(x), so for any feasible x,

∑
i

wi · gi(x) ≥
∑

i

wi · gi(x∗w) ≥
∑

i

wi · gi(x̄)/Qw

Then we have the following.

Proposition 6. Given any NE payoff vector ḡ, then any feasible payoff vector g must be

within the region

B := {g|wTg ≥ wT ḡ/Qw,∀w ∈ Rn
++}
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Conversely, given any feasible payoff vector g, any possible NE payoff vector ḡ is in the

region

B̄ := {ḡ|wT ḡ ≤ wTg ·Qw,∀w ∈ Rn
++}

In other words, the Pareto frontier of B lower-bounds the Pareto frontier of the feasible

region of g. (A similar statement can be made for B̄.)

As an illustrative example, consider the EI model, where the cost function of player i

is of the form gi(x) = Vi(
∑n

j=1 βjixj) + xi. Assume there are two players in the game, and

β11 = β22 = 1, β12 = β21 = 0.2. Also assume that gi(x) = (1 −
∑2

j=1 βjixi)+ + xi, for

i = 1, 2. It is easy to verify that x̄i = 0, i = 1, 2 is a NE, and g1(x̄) = g2(x̄) = 1. One can

further find that the boundary (Pareto frontier) of the feasible payoff region in this example

is composed of the two axes and the following line segments (the computation is omitted):
g2 = −5 · (g1 − 1

1.2) + 1
1.2 g1 ∈ [0, 5

6 ]

g2 = −0.2 · (g1 − 1
1.2) + 1

1.2 g1 ∈ [0, 5]

which is the dashed line in Fig. 3.4.

By Proposition 6, for every weight vector w, there is a straight line that lower-bounds

the feasible payoff region. After plotting the lower bounds for many different w’s, we obtain

a bound for the feasible payoff region (Fig 3.4). Note that the bound only depends on the

coefficients βji’s, but not the specific form of V1(·) and V2(·). We see that the feasible region

is indeed within the bound.

3.3 Improvement of technology

Recall that in game Γ = (N ,X ,g), the general cost function of player i is

gi(x) = fi(x) + xi. (3.20)

where we have assumed that the unit cost ci = 1 without loss of generality.

Now assume that the security technology has improved. We would like to study how

effective is technology improvement compared to the improvement of incentives. In the new
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Figure 3.3: Illustration of weighted POA in a 2-player game. (Assume that the NE is unique.

In this example, the POA is a/b; the weighted POA with weight vector w = (1, 0.5) is c/d.)
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game

ΓTI := (N ,X , g̃) (3.21)

where “TI” stands for “technology improvement”, the new cost function of player i is

g̃i(x) = fi(a · x) + xi, a > 1. (3.22)

This means that the effectiveness of the investment vector x has improved by a times

(i.e., the risk decreases faster with x than before). Equivalently, if we define x′ = a ·x, then

(3.22) is g̃i(x) = fi(x′) + x′i/a, which means a decrease of unit cost if we regard x′ as the

investment.
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Proposition 7. Denote by G∗ the optimal social cost in game Γ, and denote by G̃∗ the

optimal social cost in game ΓTI . Then,

G∗ ≥ G̃∗ ≥ G∗/a. (3.23)

That is, the optimal social cost decreases but cannot decrease more than a times.

Proof. First, for all x, g̃i(x) ≤ gi(x). Therefore G̃∗ ≤ G∗.

Let the optimal investment vector with the improved cost functions be x̃∗. We have

gi(a·x̃∗) = fi(a·x̃∗)+a·x̃∗i . Also, g̃i(x̃∗) = fi(a·x̃∗)+x̃∗i . Then, a·g̃i(x̃∗) = a·fi(a·x̃∗)+a·x̃∗i ≥

gi(a · x̃∗), because fi(·) is non-negative and a > 1.

Therefore, we have a ·
∑

i g̃i(x̃∗) = a · G̃∗ ≥ G(a · x̃∗) ≥ G(x∗) = G∗, since x∗ minimizes

G(x) =
∑

i gi(x). This completes the proof.

Here we have seen that the optimal social cost (after technology improved a times) is

at least a fraction of 1/a of the optimal social cost before. On the other hand, we have the

following about the POA after technology improvement.

Proposition 8. Under the EI model and the BT model, the POA in game ΓTI is the same

as the POA in game Γ . (That is, the expressions of POA are the same as those given in

Proposition 3 and 4.)

Proof. The POA in the EI model only depends on the values of βji’s, which does not change

with the new cost functions. To see this, note that

g̃i(x) = fi(a · x) + xi

= Vi(a ·
∑

j

βjixj) + xi.

Define the function Ṽi(y) = Vi(a · y),∀i, where y is a dummy variable, then g̃i(x) =

Ṽi(
∑

j βjixj)+xi, where Ṽi(·) is still convex, decreasing and non-negative. So the βji values

do not change. By Proposition 3, the POA remains the same.
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In the BT model, define φ̃k,i(xk, xi) := φk,i(a · xk, a · xi), then φ̃k,i(xk, xi) is still non-

negative, decreasing and convex, and φ̃k,i(xk, xi) = φ̃i,k(xi, xk). So by Proposition 4, the

POA has the same expression as before.

To compare the effect of incentive improvement and technology improvement, consider

the following two options to improve the network security.

1. With the current technology, deploy proper incentivizing mechanisms (i.e., “stick and

carrot”) to achieve the social optimum.

2. All players upgrade to the new technology, without solving the incentive problem.

With option 1, the resulting social cost is G∗. With option 2, (without even considering

the cost of upgrading), the social cost is G̃(x̃NE), where G̃(·) =
∑

i g̃i(·) is the social cost

function in game ΓTI , and x̃NE is a NE in ΓTI . Define ρ(x̃NE) := G̃(x̃NE)/G̃∗, then the

ratio between the social costs with option 2 and option 1 is

G̃(x̃NE)/G∗ = ρ(x̃NE) · G̃∗/G∗ ≥ ρ(x̃NE)/a

where the last step follows from Proposition 7. Also, by Proposition 8, in the EI or BT

model, ρ(x̃NE) is equal to the POA shown in Prop. 3 and 4 in the worst case. For example,

assume the EI model with βij = 1,∀i, j. Then in the worst case, ρ(x̃NE) = n. When the

number of players n is large, G̃(x̃NE)/G∗ may be much larger than 1.

From this discussion, we see that the technology improvement may not offset the nega-

tive effect of the lack of incentives, and solving the incentive problem may be more important

than merely counting on new technologies.

3.4 Correlated equilibrium (CE)

Correlated equilibrium (CE) [18] is a more general notion of equilibrium which includes

the set of NE. In some cases, CE has a “coordination effect” that results in better outcomes

than all NE’s [18]. We consider the performance bounds of CE in this section.
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Conceptually, one may think of a CE as being implemented with the help of a mediator

[19]. Let µ be a probability distribution over the strategy profiles x. First the mediator

selects a strategy profile x with probability µ(x). Then the mediator confidentially rec-

ommends to each player i the component xi in this strategy profile. Each player i is free

to choose whether to obey the mediator’s recommendations. µ is a CE iff it would be a

Nash equilibrium for all players to obey the mediator’s recommendations. Note that given

a recommended xi, player i only knows µ(x−i|xi) (i.e., the conditional distribution of other

players’ recommended strategies given xi). Then in a CE, xi should be a best response

to the randomized strategies of other players with distribution µ(x−i|xi). CE can also be

implemented with a pre-play meeting of the players [17], where they decide the CE µ they

will play. Later they use a device which generates strategy profiles x with the distribution

µ and separately tells the i’th component, xi, to player i.

For simplicity, we focus on CE whose support is on a discrete set of strategy profiles.

We call such a CE a discrete CE. More formally, µ is a discrete CE iff (1) it is a CE; and

(2) the distribution µ only assigns positive probabilities to x ∈ Sµ, where Sµ, the support

of the distribution µ, is a discrete set of strategy profiles. That is, Sµ = {xi ∈ Rn
+, i =

1, 2, . . . ,Mµ}, where xi denotes a strategy profile, Mµ < ∞ is the cardinality of Sµ and∑
x∈Sµ

µ(x) = 1. (But the action set of each player is still R+.)

First, we need to establish the existence of discrete CE’s.

Proposition 9. Discrete CE’s exist in the security game since a pure-strategy NE is clearly

a discrete CE, and pure-strategy NE exists (Proposition 2). Also, any randomization over

multiple pure-strategy NE’s is a discrete CE.

Remark: However, discrete CE is not confined to these two types. We will give an

example later.

We first write down the conditions for a discrete CE with the general cost function

gi(x) = fi(x) + xi,∀i. (3.24)

If µ is a discrete CE, then for any xi with a positive marginal probability (i.e., (xi, x̃−i) ∈ Sµ
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for some x̃−i), xi is a best response to the conditional distribution µ(x−i|xi), i.e., xi ∈

arg minx′i∈R+

∑
x−i

[fi(x′i,x−i)+x′i]µ(x−i|xi). (Recall that player i can choose his investment

from R+.) Since the objective function in the right-hand-side is convex and differentiable

in x′i, the first-order condition is
∑

x−i

∂fi(xi,x−i)
∂xi

µ(x−i|xi) + 1 = 0 if xi > 0∑
x−i

∂fi(xi,x−i)
∂xi

µ(x−i|xi) + 1 ≥ 0 if xi = 0
(3.25)

where
∑

x−i

∂fi(xi,x−i)
∂xi

µ(x−i|xi) can also be simply written as Eµ(∂fi(xi,x−i)
∂xi

|xi).

3.4.1 Example

Now we give an example of CE to illustrate the condition (3.25). It also demonstrates

that a CE needs not be a NE or a randomization over multiple NE’s

Consider the EI model with only 2 players, with cost functions g1(x) = f(x1+α·x2)+x1,

and g2(x) = f(x2 + α · x1) + x2, where α > 1,x ≥ 0. (Note that the cost functions of the

two players are symmetric.) We compute the pure NE’s first. Assume that there exists

yNE > 0 such that f ′(yNE) + 1 = 0. Then the best response of player 1 to x2 is BR1(x2) =

(yNE−α ·x2)+, and the best response of player 2 to x1 is BR2(x1) = (yNE−α ·x1)+. Then

there are 3 pure-strategy NE’s, shown in Fig. 3.5.
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Figure 3.5: Pure-strategy NE’s and a discrete CE
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Denote by A, B, C, D the profiles (0,0), (1,0), (0,1), (1,1) respectively (Fig. 3.5).

We would like to construct a CE where only these profiles have positive probability and

µ(A) : µ(B) : µ(C) : µ(D) = 1 : β1 : β1 : β1β2, where β1, β2 > 1.

Consider player 1 (the argument for player 2 is similar), we have ∂g1(x)
∂x1

= f ′(x1+αx2)+1.

Assume that

∂g1(A)
∂x1

= f ′(0) + 1 = −r1

∂g1(B)
∂x1

= f ′(1) + 1 = −r2

∂g1(C)
∂x1

= f ′(α) + 1 = r3

∂g1(D)
∂x1

= f ′(1 + α) + 1 = r4 (3.26)

where r1, r2, r3, r4 > 0, r1 > r2, r3 < r4 (consistent to the convexity of f(·)) and satisfy

r1 = β1r3 and r2 = β2r4. (3.27)

Proposition 10. If (3.26) and (3.27) holds, then µ is a CE.
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Proof. By (3.26) and (3.27), we have

µ(A|x1 = 0)
∂g1(A)

∂x1
+ µ(C|x1 = 0)

∂g1(C)
∂x1

∝ µ(A)
∂g1(A)

∂x1
+ µ(C)

∂g1(C)
∂x1

∝ −r1 + β1r3 = 0

and

µ(B|x1 = 1)
∂g1(B)

∂x1
+ µ(D|x1 = 1)

∂g1(D)
∂x1

∝ µ(B)
∂g1(B)

∂x1
+ µ(D)

∂g1(D)
∂x1

∝ −β1r2 + β1β2r4 = 0.

Therefore, by condition (3.25), it is the best response of player 1 to obey the recom-

mended actions (0 or 1) from the distribution µ. Due to symmetry of the cost functions and

the distribution µ, player 2 also obeys the recommended actions. Therefore µ is a CE.

Clearly, there exist functions f(y) that satisfy (3.26) and (3.27). Fig. 3.6 shows 1+f ′(y)

of such a function.

3.4.2 How good can a CE get?

The next question we would like to understand is: does there always exist a CE that

achieves the social optimum in the security game? In other words, can we always “coordi-

nate” the players’ actions using CE in order to achieve the SO? The answer is given below.

Proposition 11. In general, there does not exist a CE that achieves the social optimum in

the security game.

Proof. Suppose that there is a unique x∗ > 0 that minimizes the social cost. If a CE

achieves SO, then the CE should have probability 1 on the profile x∗. In other words, each
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time, the mediator chooses x∗ and recommends x∗i to player i. Then, we have∑
k

∂fk(x∗)
∂xi

= −1

Since
∑

k
∂fk(x∗)

∂xi
≤ ∂fi(x

∗)
∂xi

, we have ∂gi(x
∗)

∂xi
= ∂fi(x

∗)
∂xi

+ 1 ≥ 0. If the inequality is strict,

then player i has incentive to invest less than x∗i . Therefore in general, CE cannot achieve

SO in this game.

Proposition 12. But, a CE can be “better” than all pure-strategy NE’s in the security

game.

Remark : Similar results hold for games with finite action sets [18]. Note that the

security game we study here is different in that the action set of each player is R+ which is

not a finite set.

Consider the example in the last section where 1 + f ′(y) is shown in Fig. 3.6. For

simplicity, we assume that 1+f ′(y) is piecewise linear, and satisfies 1+f ′(1+ ε) = 0 (where

ε > 0), 1 + f ′(2 + α) = 1, and f(∞) = 0. Then f(1 + α), f(α), f(1) and f(0) can be

computed according to Fig. 3.6.

In the CE µ, the expected cost of player 1 is

Eµ(g1(x))

=
1

1 + 2β1 + β1β2
{f(0) + β1[f(1) + 1] +

β1f(α) + β1β2[f(1 + α) + 1]}

and by symmetry, Eµ(g2(x)) = Eµ(g1(x)). So the expected social cost is Eµ(g1(x)+g2(x)) =

2Eµ(g1(x)).

Also, since 1 + f ′(1 + ε) = 0, we have yNE = 1 + ε. From here the social costs of all

three pure-strategy NE’s in Fig. 3.5 can be obtained.

Let α = 5, β1 = 8, β2 = 4, r1 = 2.4, r2 = 2, r3 = 0.3, r4 = 0.5, ε = 1. Then, it can be

computed that the expected social cost at the CE is Eµ(g1(x) + g2(x)) = 4.351. And the

social costs at the NE 1, NE 2 and NE 3 in Fig. 3.5 are 7.467, 5.4 and 5.4 respectively.

Therefore the CE is “better” than all pure-strategy NE’s.
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3.4.3 The worst-case discrete CE

In contrast to the last section, now we consider the POA of discrete CE, which is defined

as the performance ratio of the worst discrete CE compared to the SO. In the EI model

and BT model, we show that the POA of discrete CE is identical to that of pure-strategy

NE derived before, although the set of discrete CE’s is larger than the set of pure-strategy

NE’s in general.

First, the following lemma can be viewed as a generalization of Lemma 1.

Lemma 3. With the general cost function (3.24), the POA of discrete CE, denoted as ρCE,

satisfies

ρCE ≤ max
µ∈CD

{max{1,max
k

[Eµ(−
∑

i

∂fi(x)
∂xk

)]}}

where CD is the set of discrete CE’s, the distribution µ defines a discrete CE, and the

expectation is taken over the distribution µ.

The proof of Lemma 3 (shown in section 7.4) is similar to that of Lemma 1, although

the distribution µ can be complicated.

Proposition 13. In the EI model and the BT model, the POA of discrete CE is the same

as the POA of pure-strategy NE. That is, in the EI model,

ρCE ≤ max
k
{1 +

∑
i:i6=k

βki},

and in the BT model,

ρCE ≤ (1 + max
(i,j):i6=j

virji

vjrij
).

The proof is in section 7.5.
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Chapter 4

Extensive-Form Games

4.1 Repeated game

In the repeated game, the strategic-form game Γ is repeated in each “period”. As in

Γ, we assume that in each period, some cost on security investment is incurred for player

i and he has a security risk fi(·) which depends on all players’ investments in this period.

In this case, the players have more incentives to cooperate for their long term interests. In

this section we consider the performance gain provided by the repeated game.

We make the following standard definitions in the repeated game.

The game Γ is repeated in period 0, 1, 2, . . . . Let xt
i be the action of player i in period

t, and let xt be the vector of actions of all players in period t. Define ht+1, the history at

the end of period t, to be the sequence of actions in the previous periods:

ht+1 := (x0,x1, . . . ,xt).

And h0 is an empty history. Let the set of possible histories at the end of period t be Ht.

A pure strategy for player i is a sequence of maps {st
i}t=0,1,..., where each st

i maps Ht

to his feasible action set R+. Then, st
i(h

t) is player i’s action in period t specified by his

strategy, given the history ht. For simplicity, we write st
i(h

t) as si(ht). Also, let the vector

s(ht) = (si(ht))n
i=1.
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We say that player i has deviated in period t if xt
i 6= si(ht).

Players discount the future. Specifically, player i’s cost in the repeated game is

g∞i := (1− δ)
∞∑
i=0

[gi(xt) · δt]

where δ ∈ (0, 1) is the “discount factor”.

Define gi, the “reservation cost” of player i, as

gi := min
xi≥0

gi(x) given that xj = 0,∀j 6= i

and we denote xi as a minimizer. gi = gi(xi = xi,x−i = 0) is the minimal cost achievable

by player i when other players are punishing him by making minimal investments 0. Let

the reservation cost vector g := (gi)n
i=1.

By Proposition 1, we assume that gi(x) = fi(x) + xi without loss of generality. Also,

we make the following additional assumptions in this section:

1. fi(x) (and gi(x)) is strictly convex in xi if x−i = 0. So xi is unique.

2. ∂gi(0)
∂xi

< 0 for all i. So, xi > 0.

3. For each player, fi(x) is strictly decreasing with xj for some j 6= i. That is, positive

externality exists.

By assumption 2 and 3, we have gi(x) < gi(xi = xi,x−i = 0) = gi,∀i. Therefore there

exists x′ ≥ 0 so that g(x′) < g (where the strict inequality is element-wise throughout the

chapter).

4.1.1 A performance bound on the best SPE

The Folk Theorem by Fudenberg and Maskin (Theorem 5.4 in [17]) provides a Subgame

Perfect Equilibrium (SPE) in repeated games with discounted costs (as we assumed above)

to support any feasible cost vector g < g, when the discount factor δ is sufficiently close

to 1. Assume that g(x′) = g where x′ ≥ 0. In particular, they defined the strategies for
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the players so that in the SPE outcome, each player i sticks to the investment x′i, so that

g∞i = gi < gi.1

Therefore, the set of SPE is quite large in general. By negotiating with each other, the

players can agree on some SPE. In this section, we are interested in the performance of

the “socially best SPE” that can be supported, that is, the SPE with the minimum social

cost (denoted as GE). Such a SPE is “optimal” for the society, provided that it is also

rational for individual players. We will compare it to the social optimum by considering

the “performance ratio” γ = GE/G∗, where G∗ is the optimal social cost, and

GE = infx≥0
∑

i gi(x)

s.t. gi(x) < gi,∀i
(4.1)

Since gi(·) is convex by assumption, due to continuity,

GE = minx≥0
∑

i gi(x)

s.t. gi(x) ≤ gi,∀i
(4.2)

where gi(x) ≤ gi is the rationality constraint for each player i. Denote by xE a solution of

(4.2). Then
∑

i gi(xE) = GE .

Recall that gi(x) = fi(x) + xi, where the investment xi has been normalized such that

its coefficient (unit cost) is 1. Then, to solve (4.2), we form a partial Lagrangian

L(x, λ′) :=
∑

k gk(x) +
∑

k λ′k[gk(x)− gk]

=
∑

k(1 + λ′k)gk(x)−
∑

k λ′kgk

and pose the problem maxλ′≥0 minx≥0 L(x, λ′).

Let λ be the vector of dual variables when the problem is solved (i.e., when the optimal

solution xE is reached). Then differentiating L(x, λ′) in terms of xi, we have the optimality
1In the game defined above, xi and gi(x) have no upper-bound. So the proof of SPE is somewhat different.

However, one can show that the one-stage deviation principle still holds (under the strategies), which can
then be used to establish the SPE similar to the proof of Theorem 5.4 in [17].
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condition 
∑

k(1 + λk)[−∂fk(xE)
∂xi

] = 1 + λi if xE,i > 0∑
k(1 + λk)[−∂fk(xE)

∂xi
] ≤ 1 + λi if xE,i = 0

(4.3)

Proposition 14. The performance ratio γ is upper-bounded by γ = GE/G∗ ≤ maxk{1+λk}.

(The proof is given in section 7.2.)

This result can be understood as follows: if λk = 0 for all k, then all the incentive-

compatibility constraints are not active at the optimal point of (4.2). So, individual ratio-

nality is not a constraining factor for achieving the social optimum. In this case, γ = 1,

meaning that the best SPE achieves the social optimal. But if λk > 0 for some k, the

individual rationality of player k prevent the system from achieving the social optimum.

Larger λk leads to a poorer performance bound on the best SPE relative to SO.

Proposition 14 gives an upper bound on γ assuming the general cost function gi(x) =

fi(x) + xi. Although it is applicable to the two specific models introduced before, it is not

explicitly related to the network parameters. In the following, we give an explicit bound

for the EI model.

Proposition 15. In the EI model where gi(x) = Vi(
∑n

j=1 βjixj) + xi, γ is bounded by

γ ≤ min{max
i,j,k

βik

βjk
, Q}

where Q = maxk{1 +
∑

i:i6=k βki}.

The part γ ≤ Q is straightforward: since the set of SPE includes all NE’s, the best SPE

must be better than the worst NE. The other part is derived from Proposition 14 (its proof

is included in section 7.3).

Note that the inequality γ ≤ maxi,j,k
βik
βjk

may not give a tight bound, especially when

βjk is very small for some j, k. But in the following simple example, it is tight and shows

that the best SPE achieves the social optimum. Assume n players, and βij = 1,∀i, j. Then,

the POA in the strategic-form game is ρ ≤ Q = n according to (3.14). In the repeated

game, however, the performance ratio γ ≤ maxi,j,m
βim

βjm
= 1 (i.e., the social optimum is

achieved). This illustrates the performance gain resulting from the repeated game.
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It should be noted that, however, although repeated games can provide much better

performance, they usually require more communication and coordination among the players

than strategic-form games.

4.1.2 Folk Theorem with local punishments and rewards

In this section, our study is more on the game theory itself.

In the usual Folk theorem, the strategy structure proposed by Fudenberg and Maskin

(Theorem 5.4 in [17]) requires that, in general, all players change their actions to punish a

misbehaving player and then reward those who have punished him correctly.

In a large network (or a game with many players), however, it increases the coordination

overhead to require that all players be involved in the punishment and rewarding actions. In

this section, we are interested in constructing a SPE which only relies on “local” punishments

and rewards, only involving the player who deviates and his “neighbors” (to be defined

more precisely below). Also, it seems more reasonable to allow simultaneous, but local

punishments and rewards in large networks, which is another major difference from the

aforementioned strategy structure. We show that this SPE supports the same payoff (or

cost) region as the usual Folk Theorem.

Still, our SPE requires that all actions are observable to all players as in the usual

Folk Theorem. In that sense, the SPE is not “fully localized”. However, the result in this

section, we believe, is an interesting first step to explore whether there exists a SPE which

only requires local observations and local reactions, but can still achieve the same payoff

region as the usual Folk Theorem.

We make the following mild assumptions.

1. For any player i, the cost function gi(x) = fi(x) + xi is continuous in xi. The action

xi ∈ [0, xmax]. 2 And 0 ≤ fi(x) <∞,∀x.

2. xmax is large enough: xmax ≥ fi(0),∀i.
2Here, we define the upper bound xmax so that the one-stage deviation principle can be directly used,

which simplifies the proof.
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3. gi(x) only depends on xi and xj for all j ∈ N (i). More formally, let S(i) = {i}∪N (i)

and U(i) be the set of all other players not in S(i). Then ∂gi(x)
∂xk

= 0,∀k ∈ U(i),∀x.

4. Assume i ∈ N (j) iff j ∈ N (i). (Therefore, the dependent relationships among the

players are symmetric and can be represented by an undirectional graph, such as the

ones in Fig 4.1.)

5. There are positive externalities from the neighbors, i.e., ∂gi(x)
∂xj

≤ 0,∀j ∈ N (i),∀x.

Theorem 1. Folk Theorem with local punishments and rewards. Under the above as-

sumptions, in a repeated game with observable actions3, any feasible vector g < g (i.e.,

gi < gi,∀i) can be supported by a SPE with only “local” punishments and rewards, if the

discount factor δ is large enough.

“Local punishments and rewards” mean that, if node i deviates in a period, only players

within his L-hop neighborhood need to change their actions in response to the deviation,

where L is a constant.

The key to the proof is the construction of punishments and rewards that only involve

local players.

Assume that the profile x′ = (x′i)
n
i=1 achieves the cost vector g < g. That is, gi(x′) =

gi,∀i.

(i) Local punishment: Player i is punished by his neighbors: Any player j ∈ N (i)

lets xj = 0, and player i lets xi = xi to get his reservation cost gi. (Recall that gi(x) does

not depend on xk,∀k ∈ U(i).)

(ii) Local rewarding: Player i rewards his neighbors. Any player j ∈ N (i) lets

xj = x′j , and player i lets xi = x̂i > x′i. For j ∈ N (i), define

ĝj(i) := gj(x̂i,x′−i) ≤ gj(x′i,x
′
−i) = gj (4.4)

by assumptions 5.
3That is, the actions of each player can be observed by all other players.
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θi(hτ ) A B(i, ·) B(j, ·), j 6= i C(i) C(j), j 6= i

si(hτ ) x′i xi 0 x̂i x′i

Table 4.1: Mapping from the “state” to the action

Also, x̂i is chosen such that

ĝi(i) := gi(x̂i,x′−i) = gi + ∆ < gi (4.5)

for some ∆ > 0. (Such a ∆ exists since gi < gi.) Lemma 4 below shows that such a x̂i

exists.

Lemma 4. There exists x̂i > x′i such that (4.5) holds.

Proof. From assumption 2 and the form of gi(x), we know that gi(xi = xmax,x−i = x′−i) ≥

xmax ≥ fi(0) = gi(0) ≥ gi. Since gi(x) is continuous in xi, gi(xi = xmax,x−i = x′−i) ≥ gi

(just proved) and gi(x′) = gi < gi, we know that there exists an x̂i > x′i such that (4.5)

holds.

Proof of Theorem 1:

We first describe the strategy, and then show that it is a SPE.

I. Strategy

To define the strategy, we need to specify what is si(hτ ) given hτ , τ = 0, 1, 2, . . . . For

this, we define θi(hτ ) as the “state” of player i in period τ given the history hτ . The possible

states are given in Table 4.1, where the second argument of B(i, ·) is a counter which will

be made clear later. Also, si(hτ ) is directly obtained from θi(hτ ) according to Table 4.1.

Write θ(hτ ) := (θi(hτ ))n
i=1. The remaining task is to specify θ(hτ ).

θ(hτ ) is computed recursively: first, let θi(h0) = A,∀i; then, for t = 0, 1, 2 . . . , τ − 1,

compute θ(ht+1) from θ(ht) and xt (i.e., the actions in period t) by the following three steps.

Step 1: Punishment actions
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Denote the set of players who have deviated in period t as Dt. Define the following

subset of Dt:

Pt := {j ∈ Dt|S(j) ∩ S(j′) = ∅,∀j′ ∈ Dt, j′ 6= j}. (4.6)

Pt is the set of players who will be “punished” for their deviations in period t. Definition

(4.6) ensures the following.

Lemma 5. If there is a single player j who deviates in period t, then j ∈ Pt.

For any player j ∈ Pt, let θi(ht+1) = B(j,Nj),∀i ∈ S(j), where Nj is chosen such that

min
x

gj(x) + Nj · gj > max
x

gj(x) + Nj · ĝj(j) (4.7)

where the min and max are taken over the domain x ∈ [0, xmax]n. Such an Nj exists since

ĝj(j) < gj according to (4.5).

According to Table 4.1, if j ∈ Pt, we have sj(ht+1) = xj and sk(ht+1) = 0,∀k ∈ N (j).

This means that the neighbors of player j should begin to “punish” player j in period t+1.

Step 2: Reverting actions

For j ∈ Pt, define the set

It
j := {i|i 6= j; θi(ht) = B(i, r) where r ≤ Ni;S(i) ∩ S(j) 6= ∅}. (4.8)

For all k ∈ S(i)\S(j) where i ∈ It
j , j ∈ Pt, let θk(ht+1) = A (i.e., the state of player k

is “reverted” to A from B(i, r)). Therefore, sk(ht+1) = x′k.

For example, in Fig 4.1 (a), S(1) = {1, 2, 3, 4}, S(5) = {3, 5, 6, 7}. Suppose that players

in S(1) are in state B(1, r) (where 1 < r ≤ N1) in period t (i.e., player 2, 3, 4 are “punishing”

player 1 due to his earlier deviation). And suppose that player 5 is the only player who

deviates in period t. Then, Pt = {5}, It
5 = {1}. So, in period t + 1, the states of player 3,

5, 6, 7 are B(5, N5); and the state of player 1, 2, 4 is A. This means that the punishment of

player 1 is ended if some player in S(1) needs to begin punishing another player. In Fig 4.1

(b), however, the set S(1) and S(5) are disjoint. Under the same assumptions for period t,
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(a) A scenario where simultaneous punishmentments
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(b) A scenario where simultaneous punishmentments are

allowed

Figure 4.1: Illustration of simultaneous punishmentments

then in period t + 1, the states of all players in S(1) are B(1, r − 1) and the states of all

players in S(5) are B(5, N5). In other words, player 1 and 5 are punished simultaneously.

Note that these “reactions” (i.e., changes of states in response to deviations) in step 1

and 2 are local in the sense that a deviator only affects the states of players within 3 hops.

Step 3: Actions of other players

For any player j whose state θj(ht+1) has not been assigned in step 1 or 2, do the

following.

(i) If θj(ht) = B(i, r) for some i, let

θj(ht+1) =


B(i, r − 1) if r > 1

C(i) if r = 1
.

(ii) If θj(ht) = A or C(i) for some i, then let θj(ht+1) = θj(ht), i.e., the state is

unchanged.
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II. SPE

We now show that the above strategy is a SPE, i.e., unilateral deviation in any subgame

will not yield any benefit for the deviator. Using the one-stage-deviation principle, we only

need to consider the case when one player deviates in a single period and follows the strategy

afterwards.

Now, given any history ht+1 = (x0,x1, . . . ,xt). In the following, we consider a deviation

by player i in period t + 1 who follows the strategy afterwards. Other players always follow

their strategies after period t. We say that a player “deviates from state S” if his state is

S in period t + 1 but his action does not conform to it.

Lemma 6. Given any history ht+1, with or without the above one-stage deviation by player

i, eventually the states of all players become either A or C. Therefore xi ≥ x′i,∀i eventually.

Proof. Note that in each period the state of any player is among A, B or C. Starting with

period t + 2, all players follow their strategies. Eventually, all players with state B change

to state C.

Assume that player i’s state is A in period t + 1 (i.e., θi(ht+1) = A). If he conforms

to it (and other players follow their strategies), he will never be punished and will remain

in state A. According to Lemma 6, he will eventually receive a cost which is not higher

than gi. If he deviates, by Lemma 5 he will be punished in state B(i, ·) in the following Ni

periods; and will receive a cost of ĝi(i) := gi + ∆ later in state C(i) which lasts for ever. If

the discount factor δ is large enough, the cost at the “tail” dominates, so there is no benefit

for him to deviate.

Assume that player i’s state is B(j, r), j 6= i in period t + 1 for some r. If he conforms,

he will eventually receive a cost not more than ĝi(j) ≤ gi in state C(j) (after the states of

all players become A or C, by Lemma 6). If he deviates, he will eventually receive a cost

ĝi(i) := gi + ∆ in state C(i). So there is no incentive to deviate.

Assume that player i’s state is B(i, r) in period t+1 for some r. If he conforms, his cost

is gi when his state is B(i, ·) (for less than Ti periods), and ĝi(i) := gi + ∆ after his state
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changes to C(i). If he deviates in period t + 1, his cost is at least gi in this period (since xi

is his best response when the actions of its neighbors are 0), and he will then receive a cost

of gi for Ti periods and later receive a cost of ĝi(i) := gi + ∆ in state C(i). Since gi > ĝi(i),

there is no benefit to deviate.

Assume that player i’s state is C(j), j 6= i in period t + 1. If he conforms, eventually

his cost is at most ĝi(j) ≤ gi (after the states of all players become A or C, by Lemma 6).

Otherwise, he eventually has a cost of ĝi(i) := gi + ∆ in state C(i). So he should conform.

Assume that player i’s state is C(i) in period t + 1. If he conforms, his cost is ĝi(i) :=

gi + ∆. Otherwise, his expected cost would be at least

gi,D := (1− δ) min
x

gi(x) + δ(1− δNi)gi + δNi+1ĝi(i).

Note that

gi,D − ĝi(i)

= (1− δ) min
x

gi(x) + δ(1− δNi)gi − (1− δNi+1)ĝi(i)

= (1− δ)[min
x

gi(x)− (gi + ∆)] + δ(1− δNi)[gi − ĝi(i)]

≥ (1− δ)[min
x

gi(x)−max
x

gi(x)] + δ(1− δNi)[gi − ĝi(i)]

= (1− δ){[min
x

gi(x)−max
x

gi(x)] +

(δ + δ2 + · · ·+ δNi)[gi − ĝi(i)]}

When δ approaches 1, this expression approaches (1 − δ){[minx gi(x) − maxx gi(x)] +

Ni[gi − ĝi(i)]}, which is strictly positive by (4.7). So gi,D > ĝi(i): there is no incentive for

player i to deviate.
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Chapter 5

Improving the Outcome with a

“Due Care” Regulation

Recall again that in the strategic-form game Γ = (N ,X ,g), the general cost function is

gi(x) = fi(x) + xi,∀i.

In the “due care” scheme, a social planner requires that player i invest at least mi.

For example, UC Berkeley has a minimum security standard for devices connected to

the campus network [21]. Requirements include software patch updates, anti-virus software,

host-based firewall software, etc. Devices that do not meet the standard are not allowed to

connect to the network.

Definition: More formally, the game with a “due care” level of m is defined as

ΓDC(m) = (N ,XDC ,g)

where “DC” means “due care”, m = (m1,m2, . . . ,mn) ≥ 0 is the vector of minimum

investments, XDC =
∏n

i=1XDC,i and the action set XDC,i = [mi,+∞).
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5.1 Improved bounds

Proposition 16. Assume that x∗ ≥ 0 achieves the social optimum in game Γ (and the

optimal social cost is G∗ =
∑

i gi(x∗)). Also assume that m ≤ x∗ element-wise. Let x̄DC

be a NE in ΓDC(m), i.e., the new game with the due care level m. Then,

∑
i

gi(x̄DC)−G∗ ≤ (Q− 1)(1Tx∗ −M) (5.1)

where M =
∑

i mi, and Q refers to QEI or QBT depending on the model.

Remark : In comparison, in the original game Γ we have G(x̄)−G∗ ≤ (Q− 1) · (1Tx∗)

by (3.11) where x̄ is a NE in Γ, and the bound is tight (i.e., there exist parameters of the

game such that the equality holds).

Therefore, (5.1) shows that the difference bound has improved in ΓDC(m). The im-

plication is that if a social planner employs a “due care” scheme which requires that each

player i invest at least mi ≤ x∗i , then the outcome could improve.

Proof. We now show that (5.1) can be obtained by utilizing the previous results in a modified

game.

Define x′i := xi −mi ≥ 0. Consider the new game Γ′ where the strategies are x′ ≥ 0,

and the cost function is

ĝi(x′) := f̂i(x′) + x′i,∀i

where

f̂i(x′) := fi(m + x′).

Notice that f̂i(x′) is still convex in x′ and non-increasing with every x′i. Also,

gi(x′ + m) = ĝi(x′) + mi,∀i (5.2)

∑
i

gi(x′ + m) =
∑

i

ĝi(x′) + M. (5.3)

Clearly, the social optimum in Γ′ is achieved by x∗ −m ≥ 0.
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Since x̄DC is a NE in ΓDC(m), therefore x̄′ := x̄DC −m is a NE in Γ′. Then, using

(3.11), we have ∑
i

ĝi(x̄′)−
∑

i

ĝi(x∗ −m) ≤ (Q− 1)(1Tx∗ −M). (5.4)

Finally, using (5.3) and (5.4), we have (5.1).

Corollary 1. In the special case when m = x∗ (i.e., when each player is required to invest

at least x∗i ), (5.1) implies that
∑

i gi(x̄′ + m) − G∗ ≤ 0, so the SO is achieved in the NE.

We call this setup as the “perfect due care”.

In practice, on the other hand, the social planner normally does not know x∗. However,

he could use an estimation of x∗ to set m. Ideally, mi can be different for different players

depending on their social importance. But we show that even with a uniform minimum

investment requirement for all players, the difference bound could still improve.

Assume that mi = m,∀i. If m = minj x∗j > 0, then by (5.1), the difference bound

improves.

In general, m ≤ x∗ does NOT hold, so (5.1) does not apply. In this case, let I+(m) :=

{i|x∗i > mi}, D+(m) :=
∑

i∈I+
(x∗i −mi); I−(m) := {i|x∗i < mi}, D−(m) := −

∑
i∈I−(x∗i −

mi); and let I0(m) := {i|x∗i = mi}. Then we have the following.

Proposition 17. Assume that x̄DC is a NE in ΓDC(m) where m ≤ x∗ does not necessarily

hold. Then

∆(m) :=
∑

i

gi(x̄DC)−G∗ ≤ (Q− 1) ·D+(m) + D−(m). (5.5)

Remark: Note that this result includes Prop. 16 as a special case where I−(m) = ∅,

D−(m) = 0 and D+(m) = 1Tx∗ −M .

Proof. Denote x̄′ := x̄DC −m. By (3.11), we have
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∆(m) =
∑

i

ĝi(x̄′)−
∑

i

ĝi(x∗ −m)

≤ −(x∗ −m)T
∑

i

∇f̂i(x̄′)− 1T (x∗ −m)

≤
∑

j∈I+(m)

[(x∗j −mj)(−
∑

i

∂f̂i(x̄′)
∂x′j

)]− [D+(m)−D−(m)]

Let Qj be an upper bound of −
∑

i
∂f̂i(x̄

′)
∂x′j

. (In the EI model, Qj = 1 +
∑

i:i6=j βj,i. In

the BT model, Qj = 1 + maxi:i6=j
virji

vjrij
.) Then,

∆(m) ≤
∑

j∈I+(m)

(Qj − 1)(x∗j −mj) + D−(m). (5.6)

Since Q := maxj Qj , we have (5.5) which is a looser bound.

Assume that mi = m ≥ 0,∀i, i.e., the social planner sets the same minimum investment

for all players. We would like to choose m to minimize the upper bound of ∆(m) = ∆(m1)

in (5.5). Denote the RHS of (5.5) as B(m) = B(m1). Then the left-sided derivative of

B(m1) is
d−∆(m1)

dm
= −(Q− 1) · [|I+(m1)|+ |I0(m1)|] + |I−(m1)|,

and the right-sided derivative is

d+∆(m1)
dm

= −(Q− 1) · |I+(m1)|+ [|I−(m1)|+ |I0(m1)|].

Note that |I+(m1)|+ |I0(m1)| =
∑n

i=1 I(x∗i ≥ m) where I(·) is the indication function.

And |I−(m1)| + |I0(m1)| =
∑n

i=1 I(x∗i ≤ m). Also note that Q ≥ 1. Therefore, both

the left-sided and right-sided derivatives are non-decreasing functions of m. So, B(m1) is

convex in m.

When m = 0, d−∆(m1)/dm = −(Q − 1) · n ≤ 0. Therefore, B(m1) has a minimum

achieved at m = m0 where m0 satisfies that

d−∆(m01)
dm

≤ 0,
d+∆(m01)

dm
≥ 0. (5.7)

Remark : Clearly, letting m = m0 in general leads to a better difference bound than

m = minj x∗j .
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5.2 Numerical example

Next, we give a numerical example to illustrate how the “due care” scheme changes the

outcome.

In the EI model, assume that there are n = 6 players. Assume that the cost function

of player i is

gi(x) = fi(x) + xi

= (1−
∑

k

βk,ixk)+ + xi.

Define the matrix B := (βi,j)1≤i,j≤n as

B =



1 0 0.7 0 0.3 0.3

0 1 1 0 0.5 0.4

0.5 0.6 1 0 0.3 0.5

0 1 0 1 0.6 0

0 0 0 0.6 1 0

0 0.6 0 0.4 0 1


which is arbitrarily chosen (with βi,i = 1,∀i). From B, it is easy to compute that the POA

is QEI = 2.9.

Then, we set the minimum investments vector m = m1 where m =

0, 0.05, 0.1, . . . , 0.95, 1. For each value of m, we numerically find a NE, compute its

social cost, and compare it with the SO. Fig. 5.1 shows the ratio and difference between

the social costs at the NE and the SO, for different values of m. In Fig. 5.1, we have also

plotted the looser and tighter upper bounds on the difference as in (5.5) and (5.6).

As expected, there is an optimum level of m. If m = 0, then the game is reduced to

the case without “due care”; if m is too large, then the investments are unnecessarily large

which increases the social cost. We also see that if the regulator sets the same, but properly

chosen m for all players, the social cost could still decrease significantly.

51



0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

Minimum required investment (for all players)

Ratio of the social cost at NE and SO

(a) Ratio

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Minimum required investment (for all players)

Difference in social cost at a NE and SO
A looser upper bound
A tighter upper bound

(b) Difference

Figure 5.1: The effect of the “due care” scheme
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Chapter 6

Conclusion

6.1 Summary

We have studied the equilibrium performance of the network security game. Our model

explicitly considered the network topology, the different cost functions of the players, and

their relative importance to each other. We showed that in the strategic-form game, the

POA can be very large and tends to increase with the network size, and the dependency and

imbalance among the players. This indicates severe efficiency problems in selfish investment.

We have compared the benefits of improving security technology and improving incentives.

In particular, we show that the POA of pure-strategy NE is invariant with the improvement

of technology, under the EI model and the BT model. So, improving technology alone may

not offset the efficiency loss due to the lack of incentives. As a generalization of our study,

we have considered the performance of correlated equilibrium (CE). We have shown that

although CE cannot achieve SO in general, it can be better than NE’s in some cases. In

terms of the worst-case bounds, the POAs of discrete CE are the same as the POAs of

pure-strategy NE under the EI model and the BT model.

Not surprisingly, the best equilibrium in the repeated games usually gives much better

performance, and it’s possible to achieve the social optimum if that does not conflict with

individual interests. Implementing the strategies supporting a SPE in a repeated game,
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however, needs more communication and coordination among the players. To reduce the

coordination overhead, we have introduced a new Folk Theorem which only requires local

punishments and rewards, but supports the same payoff region as the usual Folk Theorem.

Finally, we have investigated how the worst-case social cost in the strategic-form game

could improve with a “due care” scheme where the regulator does not have full knowledge

of the network.

6.2 Future work

Usually, the more information the social planner has, the more efficient mechanisms she

can deploy, as seen in the “due care” scheme. However, collecting more information means

less privacy for the players, which could become a bottleneck to implementing efficient

schemes. Similar situations arise for other proposed mechanisms such as cyber-insurance.

Therefore, improving network security is complex economic and technological problem that

also involves social aspects. A further investigation into these issues, and their impact on

the efficiency and implementability of different mechanisms is an interesting direction for

future research.

In our study, we have largely assumed that the players in the game are Internet users,

such as enterprises and organizations who invest to protect their security. In fact, the role

of Internet Service Providers (ISPs) is also important. ISPs know more about the internal

structure and operations of their networks than the users, therefore they are arguably

in a better position to deploy security measures, such as (i) setting up better filters and

intrusion detection systems to block suspicious traffic in their networks, and even block

suspicious websites; (ii) setting up more strict security policies (including some security

mandates to their users). Unfortunately, the ISPs may not have enough incentives to invest

more in security for a number of reasons. First, the investments in security by the ISPs

do not necessarily translate to higher revenues. For example, blocking certain traffic or

websites may reduce the usability of the Internet for the users, and raising the security

standard for the users also causes burdens to some of them. These factors could affect
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the user subscription to the ISP. Second, the ISPs do not suffer the full consequence of

attacks. The increased traffic caused by most attacks or spams can be carried by the ISP’s

network without too much additional cost, and the damages to end users’ computer systems

are largely not suffered by the ISPs. Due to the above incentive problems of the ISPs, one

would expect that some regulations imposed on the ISPs would benefit the network security.

Note that in principle, our “effective-investment” (EI) model can also include the ISPs

as players, whose investments benefit other players. Therefore, it is a quite flexible model

to take into account these effects.

Finally, the attackers’ incentive is another interesting aspect. The most direct way to

discourage the attackers is to catch them. This effort has been under way and intensifying,

although it is generally not easy due to the anonymity and lack of traceability in the

Internet. On the other hand, if the defenders invest more to make the network more secure,

the attackers may be more discouraged to attack, at least when an immediate technology

upgrade is not available on the attackers’ side.
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Chapter 7

Skipped Proofs

7.1 Proof of Proposition 2

Consider player i’s set of best responses, BRi(x−i), to x−i ≥ 0. Define xi,max :=

[fi(0) + ε]/ci where ε > 0, then due to convexity of fi(x) in xi, we have

fi(xi = 0,x−i)− fi(xi = xi,max,x−i)

≥ xi,max · (−
∂fi(xi,max,x−i)

∂xi
)

=
fi(0) + ε

ci
(−∂fi(xi,max,x−i)

∂xi
)

. Since fi(xi = 0,x−i) ≤ fi(0), and fi(xi = xi,max,x−i) ≥ 0, it follows that

fi(0) ≥ fi(0) + ε

ci
(−∂fi(xi,max,x−i)

∂xi
)

which means that ∂fi(xi,max,x−i)
∂xi

+ ci > 0. So, BRi(x−i) ⊆ [0, xi,max].

Let xmax = maxi xi,max. Consider a modified game where the strategy set of each

player is restricted to [0, xmax]. Since the set is compact and convex, and the cost function

is convex, therefore this is a convex game and has some pure-strategy NE [20], denoted as

x̄.

Given x̄−i, x̄i is also a best response in the strategy set [0,∞), because the best response

cannot be larger than xmax as shown above. Therefore, x̄ is also a pure-strategy NE in the

original game.

56



7.2 Proof of Proposition 14

Consider the following convex optimization problem parametrized by t = (t1, t2, . . . , tn),

with optimal value V (t):

V (t) = minx≥0
∑

i gi(x)

s.t. gi(x) ≤ ti,∀i
(7.1)

When t = g, it is the same as problem (4.2) that gives the social cost of the best SPE;

when t = g∗, it gives the same solution as the social optimum. According to the theory of

convex optimization ([56], page 250), the “value function” V (t) is convex in t. Therefore,

V (g)− V (g∗) ≤ ∇V (g)(g − g∗)

Also, ∇V (g) = −λ, where λ is the vector of dual variables when the problem with t = g

is solved. So,

GE = V (g)

≤ V (g∗) + λT (g∗ − g)

= G∗ + λT (g∗ − g)

≤ G∗ + λTg∗

Then

γ =
GE

G∗ ≤ 1 +
λTg∗

1Tg∗
≤ max

k
{1 + λk}

which completes the proof.

7.3 Proof of Proposition 15

It is useful to first give a sketch of the proof before going to the details. Roughly,

the KKT condition [56] (for the best SPE), as in equation (4.3), is
∑

k(1 + λk)[−∂fk(xE)
∂xi

] =

1+λi,∀i (except for some “corner cases” which will be taken care of by Lemma 8). Without
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considering the corner cases, we have the following by inequality (7.2):

γ ≤ max
i,j

1 + λi

1 + λj
= max

i,j

∑
k(1 + λk)[−∂fk(xE)

∂xi
]∑

k(1 + λk)[−∂fk(xE)
∂xj

]

≤ max
i,j,k
{∂fk(xE)

∂xi
/
∂fk(xE)

∂xj
}

which is Proposition 18. Then by plugging in fk(·) of the EI model, Proposition 15 imme-

diately follows.

Now we begin the detailed proof.

As assumed in section 4.1, g(x) < g is feasible.

Lemma 7. If g(x) < g is feasible, then at the optimal solution of problem (4.2), at least

one dual variable is 0. That is, ∃i0 such that λi0 = 0.

Proof. Suppose λi > 0,∀i. Then all constraints in (4.2) are active. As a result, GE =
∑

k gk.

Since ∃x such that g(x) < g, then for this x,
∑

k gk(x) <
∑

k gk. x is a feasible point

for (4.2), so GE ≤
∑

k gk(x) <
∑

k gk, which contradicts GE =
∑

k gk.

From Proposition 14, we need to bound maxk{1 + λk}. Since 1 + λi ≥ 1,∀i, and

1 + λi0 = 1 (by Lemma 7), it is easy to see that

γ ≤ max
k
{1 + λk} = max

i,j

1 + λi

1 + λj
(7.2)

Before moving to Proposition 18, we need another observation:

Lemma 8. If for some i,
∑

k(1 + λk)[−∂fk(xE)
∂xi

] < 1 + λi, then λi = 0.

Proof. From (4.3), it follows that xE,i = 0. Since
∑

k(1+λk)[−∂fk(xE)
∂xi

] < 1+λi, and every

term on the left is non-negative, we have

(1 + λi)[−
∂fi(xE)

∂xi
] < 1 + λi

That is, ∂fi(xE)
∂xi

+ 1 = ∂gi(xE)
∂xi

> 0. Since fi(x) is convex in xi, and xE,i = 0, then

gi(xi,xE,−i) ≥ gi(xE,i,xE,−i) +
∂gi(xE)

∂xi
(xi − 0) > gi(xE)
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where we have used the fact that xi > 0.

Note that gi(xi,xE,−i) ≤ gi(xi,0−i) = gi. Therefore,

gi(xE) < gi

So λi = 0.

Proposition 18. With the general cost function gi(x) = fi(x) + xi, γ is upper-bounded by

γ ≤ min{max
i,j,k
{∂fk(xE)

∂xi
/
∂fk(xE)

∂xj
}, Q}

where Q is the POA derived before for Nash Equilibria in the strategic-form game (i.e.,

ρ ≤ Q), and xE achieves the optimal social cost in the set of SPE.

Proof. First of all, since any NE is Pareto-dominated by g, the best SPE is at least as good

as NE. So γ ≤ Q.

Consider πi,j := 1+λi
1+λj

. (a) If λi = 0, then πi,j ≤ 1. (b) If λi, λj > 0, then according

to Lemma 8, we have
∑

k(1 + λk)[−∂fk(xE)
∂xi

] = 1 + λi and
∑

k(1 + λk)[−∂fk(xE)
∂xj

] = 1 + λj .

Therefore

πi,j =

∑
k(1 + λk)[−∂fk(xE)

∂xi
]∑

k(1 + λk)[−∂fk(xE)
∂xj

]
≤ max

k
{∂fk(xE)

∂xi
/
∂fk(xE)

∂xj
}

(c) If λi > 0 but λj = 0, then from Lemma 8,
∑

k(1 + λk)[−∂fk(xE)
∂xi

] = 1 + λi and∑
k(1 + λk)[−∂fk(xE)

∂xj
] ≤ 1 + λj . Therefore,

πi,j ≤
∑

k(1 + λk)[−∂fk(xE)
∂xi

]∑
k(1 + λk)[−∂fk(xE)

∂xj
]
≤ max

k
{∂fk(xE)

∂xi
/
∂fk(xE)

∂xj
}

Considering the cases (a), (b) and (c), and from equation (7.2), we have

γ ≤ max
i,j

πi,j ≤ max
i,j,k
{∂fk(xE)

∂xi
/
∂fk(xE)

∂xj
}

which completes the proof.

Proposition 18 applies to any game with the cost function gi(x) = fi(x)+xi, where fi(x)

is non-negative, decreasing in each xi, and satisfies the assumption (1)-(3) at the beginning
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of section 4.1. This includes the EI model and the BT model introduced before. It is not

easy to find an explicit form of the upper bound on γ in Proposition 18 for the BT model.

However, for the EI model, we have the simple expression shown in Proposition 15:

γ ≤ min{max
i,j,k

βik

βjk
, Q}

where Q = maxk{1 +
∑

i:i6=k βki}.

Proof. The part γ ≤ Q is straightforward: since the set of SPE includes all NE’s, the best

SPE must be better than the worst NE. Also, since ∂fk(xE)
xi

= βikV
′
k(

∑
m βmkxE,m), and

∂fk(xE)
xj

= βjkV
′
k(

∑
m βmkxE,m), using Proposition 18, we have γ ≤ maxi,j,k

βik
βjk

.

7.4 Proof of Lemma 3

Proof. The performance ratio between the discrete CE µ(x) and the social optimal is

ρ(µ) :=
G(µ)
G∗ =

E[
∑

i(fi(x) + xi)]∑
i[fi(x∗) + x∗i ]

where the expectation (and all other expectations below) is taken over the distribution µ.

Since fi(·) is convex for all i. Then for any x, fi(x) ≤ fi(x∗) + (x− x∗)T∇fi(x). So

ρ(µ)

≤
E[(x− x∗)T

∑
i∇fi(x) + 1Tx] +

∑
i fi(x∗)∑

i fi(x∗) + 1Tx∗

=
E{−x∗T

∑
i∇fi(x) + xT [1 +

∑
i∇fi(x)]}+

∑
i fi(x∗)∑

i fi(x∗) + 1Tx∗

Note that

xT [1 +
∑

i∇fi(x)] =
∑

i xi[1 +
∑

k
∂fk(x)

∂xi
].

For every player i, for each xi with positive probability, there are two possibilities: (a)

If xi = 0, then xi[1 +
∑

k
∂fk(x)

∂xi
] = 0,∀x; (b) If xi > 0, then by (3.25), E(∂fi(x)

∂xi
|xi) = −1.
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Since ∂fk(x)
∂xi

≤ 0 for all k, then E(
∑

k
∂fk(x)

∂xi
|xi) ≤ −1. Therefore for both (a) and (b), we

have E[xi(1 +
∑

k
∂fk(x)

∂xi
)|xi] = xi · E[1 +

∑
k

∂fk(x)
∂xi
|xi] ≤ 0. So,

E{
∑

i

[xi(1 +
∑

k

∂fk(x)
∂xi

)]}

=
∑

i

E{E[xi(1 +
∑

k

∂fk(x)
∂xi

)|xi]} ≤ 0.

As a result,

ρ(µ) ≤
−E[x∗T

∑
i∇fi(x)] +

∑
i fi(x∗)∑

i fi(x∗) + 1Tx∗
. (7.3)

Consider two cases:

(i) If x∗i = 0 for all i, then the RHS is 1, so ρ(µ) ≤ 1. Since ρ(µ) cannot be smaller than

1, we have ρ(µ) = 1.

(ii) If not all x∗i = 0, then 1Tx∗ > 0. Note that the RHS of (7.3) is not less than 1, by

the definition of ρ(µ). So, if we subtract
∑

i fi(x∗) (non-negative) from both the numerator

and the denominator, the resulting ratio upper-bounds the RHS. That is,

ρ(µ) ≤
−E[x∗T

∑
i∇fi(x)]

1Tx∗
≤ max

k
{E(−

∑
i

∂fi(x)
∂xk

)}

where
∑

i
∂fi(x̄)
∂xk

is the k’th element of the vector
∑

i∇fi(x̄).

Combining cases (i) and (ii), we have

ρ(µ) ≤ max{1,max
k

E(−
∑

i

∂fi(x)
∂xk

)}.

Then, ρCE is upper-bounded by maxµ∈CD
ρ(µ).

7.5 Proof of Proposition 13

Proof. Since µ is a discrete CE, by (3.25), for any xi with positive probability,

E(−∂fi(x)
∂xi
|xi) ≤ 1. Therefore E(−∂fi(x)

∂xi
) ≤ 1.

In the EI model, we have

−∂fi(x)
∂xk

= βki[−
∂fi(x)
∂xi

].
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Therefore

E(−
∑

i

∂fi(x)
∂xk

) = E(−
∑

i

βki
∂fi(x)
∂xi

) ≤
∑

i

βki.

So, ρCE ≤ maxk{1 +
∑

i:i6=k βki}.

In the BT model, similar to the proof in Proposition 4, it’s not difficult to see that the

following holds for any x:

[−
∑
i:i6=j

∂fi(x)
∂xj

]/[−∂fj(x)
∂xj

] ≤ max
i:i6=j

virji

vjrij
.

Then,

−
∑

i

∂fi(x)
∂xj

≤ (1 + max
i:i6=j

virji

vjrij
)[−∂fj(x)

∂xj
].

If µ is a discrete CE, then E(−∂fj(x)
∂xj

) ≤ 1,∀j. Therefore E(−
∑

i
∂fi(x)
∂xj

) ≤ (1 +

maxi:i6=j
virji

vjrij
). So,

ρCE ≤ max
j

E(−
∑

i

∂fi(x)
∂xj

) ≤ (1 + max
(i,j):i6=j

virji

vjrij
).
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Part II

CSMA Scheduling and Congestion

Control
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Chapter 8

Introduction

In multi-hop wireless networks, it is an important problem to efficiently utilize the

network resources and provide fairness to competing data flows. These objectives require

the cooperation of different network layers (See Fig. 8.1). Assuming that the routing (in the

network layer) is fixed, the transport layer needs to inject the right amount of traffic into

the network based on the congestion level and the MAC layer (i.e., Medium Access Control

layer) needs to serve the traffic efficiently to achieve high throughput. Through a utility

maximization framework [24], this problem can be naturally decomposed into congestion

control at the transport layer and scheduling at the MAC layer. The utility maximization

problem is an instance of (1.3):

maxx

m∑
i=1

Ui(xi)

s.t. x ∈ X (8.1)

where m is the number of data flows, xm is the rate of flow m, X is the “capacity region”

of the network.

It turns out that MAC-layer scheduling is the bottleneck of the problem [24]. In par-

ticular, it is not easy to achieve the maximal throughput through distributed scheduling,

which in turn prevents full utilization of the wireless network. Scheduling is challenging

since the conflicting relationships between different links can be complicated.
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Figure 8.1: Network layers

8.1 Interference model and the scheduling problem

First we describe the general interference model we will consider. Assume there are K

links in the network, where each link is an (ordered) transmitter-receiver pair. The network

is associated with a conflict graph (or “CG”) G = {V, E}, where V is the set of vertices

(each of them represents a link) and E is the set of edges. Two links cannot transmit at the

same time (i.e., “conflict”) iff there is an edge between them.

For example, consider the network in Fig 8.2 (a). Assume that link 1 and 2 cannot

transmit at the same time since they are too close, and assume the same for link 2 and

3. Then, the network’s conflict graph (CG) is shown in Fig 8.2 (b), where each square

represents a link and the edge between a pair of links indicates interference.

An independent set (IS) in G is a set of links that can transmit at the same time without

any interference. Let X be the set of all IS’s of G (not confined to “maximal independent

sets”), and let N = |X | be the number of IS’s. Denote the i’th IS as xi ∈ {0, 1}K , a 0-1

vector that indicates which links are transmitting in this IS. The k’th element of xi, xi
k = 1

if link k is transmitting, and xi
k = 0 otherwise. We also refer to xi as a “transmission state”,

and xi
k as the “transmission state of link k”.

For example, in the CG in Fig 8.2 (b), the following states constitute independent sets:

(i) No link transmits; (ii) Only one link transmits; (iii) Two links, link 1 and 3, transmit at
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(c) Arrival rates

Figure 8.2: Example

the same time. We have listed a few IS’s in Fig 8.2 (c), denoted by the 0-1 vectors defined

above.

Assume i.i.d. traffic arrival at each link k with arrival rate λk. λk ≤ 1 is also normalized

with respect to the link capacity 1, and thus can be viewed as the fraction of time when

link k needs to be active to serve the arrival traffic. And denote the vector of arrival rates

as λ ∈ RK
+ . Further assume that λk > 0,∀k without loss of generality, since the link(s) with

zero arrival rate can be removed from the problem.

Definition 1. (i) λ is said to be feasible if and only if λ =
∑N

i=1 p̄i ·xi for some probability

distribution p̄ ∈ RN
+ satisfying p̄i ≥ 0 and

∑N
i=1 p̄i = 1. That is, λ is a convex combination

of the IS’s, such that it is possible to serve the arriving traffic with some transmission

schedule. Denote the set of feasible λ by C̄.

(ii) λ is said to be strictly feasible iff it can be written as λ =
∑N

i=1 p̄i · xi where p̄i > 0

and
∑N

i=1 p̄i = 1. Denote the set of strictly feasible λ by C.

For example, the arrival rates λ = (0.4, 0.6, 0.4) is feasible since λ = 0.4 ∗ (1, 0, 1)+0.6 ∗

(0, 1, 0). However, it is not strictly feasible because the IS (0, 0, 0) must have a probability

of 0. On the other hand, λ = (0.4, 0.5, 0.4) is strictly feasible.

We show the following relationship in section 9.7.1.

Proposition 19. The set C is exactly the interior of C̄.
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Remark: The interior of C̄ is defined as int C̄ := {λ ∈ C̄|B(λ, d) ⊆ C̄ for some d > 0},

where B(λ, d) = {λ′| ||λ′ − λ||2 ≤ d}.

Now we define what is a scheduling algorithm and when it is called “throughput-

optimum”.

Definition 2. A scheduling algorithm decides which links should transmit at any time

instance t, given the history of the system (possibly including the history of queue lengths,

arrival processes, etc) up to time t.

A scheduling algorithm is throughput optimum if it can support any strictly feasible

arrival rates λ ∈ C (in other words, it can stabilize the queues whenever possible). Equiva-

lently, we also say that such an algorithm achieves the maximal throughput.

We say that a scheduling algorithm is distributed if each link only uses information

within its one-hop neighborhood. We are primarily interested in designing a distributed

scheduling algorithm that is throughput optimum.

8.2 Related works

8.2.1 Scheduling algorithms

There have been many scheduling algorithms proposed in the literature. Most of them

divide the time into equal-length “slots”. In each slot t, t = 0, 1, 2, . . . , the algorithm chooses

an IS x∗(t) ∈ X to be active (that is, each link in the IS transmits a unit-length packet).

The scheduling decision is usually based on Q(t) ∈ RK
+ , the queue lengths of different links

in that slot (with higher priority usually given to longer queues). Then the queue lengths

in the next slot are

Q(t + 1) = [Q(t)− x∗(t)]+ + a(t)

where a(t) ∈ RK
+ is the vector of the number of arrived packets in slot t. It is assumed that

E(a(t)) = λ.

67



Maximal-weight scheduling

A classical throughput-optimum algorithm is maximal-weight scheduling (MWS) [47].

(This algorithm has also been applied to achieve 100% throughput in input-queued switches

[48].) With MWS, in each slot, an IS with the maximal “weight” is scheduled, where the

“weight” of an IS is the summation of the queue lengths of the active links in the IS. That

is, the scheduled IS in slot t is

x∗(t) ∈ arg max
x∈X

w(x, t)

where w(x, t) is the weight of the IS x in slot t:

w(xi, t) :=
∑

k

[xi
kQk(t)].

For example, assume that Q(t) = (5, 4, 3) in the 3-link network in Fig 8.2 (b), then

x∗(t) = (1, 0, 1).

However, implementing MWS in general G is quite difficult for two reasons. (i) MWS is

inherently a centralized algorithm and is not amenable to distributed implementation; (ii)

finding a maximal-weighted IS (in each slot) is NP-complete in general and is hard even for

centralized algorithms. Therefore, MWS is not suitable for distributed wireless networks.

Low-complexity but sub-optimal algorithms

Due to the above disadvantages of MWS, a number of low-complexity, but sub-optimal

scheduling algorithms have been proposed. The Maximal Scheduling algorithm (MS) was

proposed in [33] and was also studied in the context of 802.11-like protocol [34]. In each

slot, MS chooses links with non-empty queues until no further link can be chosen without

interference. For example, assume that Q(t) = (5, 4, 0) in Fig 8.2 (b). Then MS either

activates link 1 or link 2 (but not both) in slot t.

In LQF [35; 36; 37; 38], x∗(t) is constructed by iteratively choosing the longest queue.

(Therefore LQF can be viewed as a greedy algorithm.) For example, assume that Q(t) =

(5, 4, 3) in Fig 8.2 (b). To determine x∗(t), LQF does the following. First, since link 1 has
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the longest queue, let x∗1(t) = 1. After choosing link 1, link 2 cannot be chosen, therefore

x∗2(t) = 0. In the remaining link(s), link 3 has the longest queue, so let x∗3(t) = 1. Repeat

the process until all links are decided.

Although the above algorithms have low computational complexity, they can only

achieve a fraction of the capacity region C in general. The size of the fraction depends

on the network topology and interference relationships. Since LQF takes into account the

queue lengths, it can usually achieve higher throughput than MS and also has good delay

performance. In fact, it has been shown that LQF is throughput optimum if the network

topology satisfies a “local pooling” condition [35], or if the network is small [38]. In general

topologies, however, LQF is not throughput optimum, and the fraction of C achievable can

be computed as in [36].

Throughput-optimum algorithms for restrictive interference models

A few recent works proposed throughput-optimal algorithms for certain interference

models. For example, Eryilmaz et al. [28] proposed a polynomial-complexity algorithm

for the “two-hop interference model”1. Modiano et al. [29] introduced a gossip algorithm

for the “node-exclusive model”2. The extensions to more general interference models, as

discussed in [28] and [29], usually involves extra challenges. Sanghavi et al. [30] introduced

an algorithm that can approach the throughput capacity (with increasing overhead) for the

node-exclusive model.

Random Access algorithms

Recently, a number of researchers realized that random access algorithms, despite their

simplicity, can achieve high throughput in wireless networks. Random access algorithms dif-

fer significantly from the synchronous time-slotted model adopted in many existing schedul-

ing algorithms described above. Of particular interest is the CSMA/CA algorithm (Carrier
1In this model, a transmission over a link from node m to node n is successful iff none of the one-hop

neighbors of m and n is in any conversation at the time.
2In this model, a transmission over a link from node m to node n is successful iff neither m nor n is in

another conversation at the time.
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Sense Multiple Access / Collision Avoidance) widely deployed in the current IEEE 802.11

wireless networks. In CSMA/CA (or “CSMA” for simplicity), each link keeps sensing the

medium when it is not transmitting. If the link senses that transmission signal (or power)

of some conflicting link(s), the link does not start a transmission to avoid a collision. Oth-

erwise, the link starts a transmission after a randomly chosen waiting time (or “backoff

time”). The original purpose of the random backoff time is to prevent several links from

starting transmitting at the same time which leads to collisions. As a result, the algorithm

is asynchronous and distributed in nature, where each link decides its action based on its

own observations of its neighbors. With these advantages, a question is whether this type

of algorithm can achieve the maximum throughput.

In [53], Durvy and Thiran showed that asynchronous CSMA can achieve a high level of

spatial reuse, via the study of an idealized CSMA model without collisions. In [40], Mar-

bach et al. considered a model of CSMA with collisions. It was shown that under a restric-

tive “node-exclusive” interference model, CSMA can be made asymptotically throughput-

optimal in the limiting regime of large networks with a small sensing delay. (Note that when

the sensing delay goes to 0, collisions asymptotically disappear.) In [41], Proutiere et al.

developed asynchronous random-access-based algorithms whose throughput performance,

although not optimum, is no less than some maximal scheduling algorithms, e.g. Maximum

Size scheduling algorithms.

However, none of these works have established the throughput optimality of CSMA

under a general interference model, nor have they designed specific algorithms to achieve

the optimality.

8.2.2 Joint scheduling and congestion control

In the scheduling problem, it is usually assumed that the (random) arrival processes to

the links are given3, and the purpose of the scheduling algorithm is to support the arrivals

(such that the queues are stable). In the protocol stack of wireless networks, the scheduling

algorithm is located in the medium access control (MAC) layer. The transport layer, on
3But the average arriving rates are general unknown.
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the other hand, controls the arrival processes. These two layers need to work together to

achieve high throughput as well as certain fairness (in terms of maximum total utility)

among different data flows which traverse the network. This is the joint scheduling and

congestion control problem.

Interestingly, solving the utility maximization problem ([24]) naturally leads to a simple

congestion control algorithm at the transport layer and the maximal-weight scheduling

(MWS) at the MAC layer. Unfortunately, as mentioned in section 8.2.1, implementing

MWS is not practical in distributed networks. This motivated the study of combining

imperfect scheduling with congestion control: Reference [39] investigated the impact of

imperfect scheduling on network utility maximization. Related to this area, there is research

on utility maximization given a certain MAC layer protocol, for example [31] and [32]

which considered the slotted-ALOHA random access protocol at the MAC layer. Due to

the inherent inefficiency of slotted-ALOHA, however, these proposals cannot achieve the

maximum utility that is achievable with perfect scheduling.

8.3 Overview of results

8.3.1 Throughput-Optimum CSMA Scheduling

Our first contribution is to introduce a distributed adaptive CSMA (Carrier Sensing

Multiple Access) algorithm for a general interference model. It is inspired by CSMA but

may be applied to more general resource sharing problems (i.e., not limited to wireless

networks). We show the algorithm (and its variants) can achieve the maximal throughput,

in an idealized-CSMA model without packet collisions and also in a CSMA model with

collisions. The algorithm may not be directly comparable to the throughput-optimal algo-

rithms mentioned above since it utilizes the carrier-sensing capability. But it does have a

few distinct features:

• Each node only uses its local information (e.g., its backlog). No explicit control

messages are required among the nodes.
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• It is based on CSMA random access, which is similar to the IEEE 802.11 protocol

and is easy to implement.

• Time is not divided into synchronous slots. Thus no synchronization of transmissions

is needed.

In [42], Rajagopalan and Shah independently proposed a throughput-optimal algorithm

similar to ours in the context of optical networks. However, there are some notable differ-

ences. First, in Theorem 2, we show that any λ ∈ C can be supported by a fixed set of

parameters in CSMA, and our algorithms are designed to find or approximate these param-

eters. This observation was not made in [42]. Instead, the stationary distribution of the

network dynamics in [42] (similar to CSMA) are used to approximate the maximal-weight

schedule. Also, utility maximization (discussed below) was not considered in [42].

Next we give an overview on how the adaptive CSMA scheduling works. We first discuss

the case with the idealized-CSMA without packet collisions (this case will be covered in

Chapter 9 which is based on [26; 67]). The case with collisions will be explained later.

Consider a wireless network where some links interfere. Packets arrive at the transmit-

ters of the links with certain rates. Consider an “idealized-CSMA” protocol [51; 52] that

works as follows. The different transmitters choose independent exponentially-distributed

backoff times. A transmitter decrements its backoff timer when it senses the channel idle

and starts transmitting when its timer runs out. The packet transmission times are also

exponentially distributed. (The process defines a “CSMA Markov chain”.) The assump-

tion in [51; 52] is that a transmitter hears any transmitter of a link that would interfere

with it. That is, there are no hidden nodes. Moreover, the transmitters hear a conflicting

transmission instantaneously. Accordingly, there are no collisions in the idealized-CSMA.

In practice, other protocols with RTS/CTS (i.e., the control packets named “Request-to-

Send”/“Clear-to-Send”) can be used to address the hidden node problems [51; 55].

The “adaptive CSMA” scheduling algorithm works in a very intuitive way: Each link

adjusts its transmission aggressiveness (“TA”) based on its backlog. If its backlog in-

creases, then the link transmits more aggressively, and vice versa. For simplicity,
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we temporarily make an idealized time-scale-separation approximation, that is, as the links

change their TA, the CSMA Markov chain instantaneously reaches its stationary distri-

bution. Under this approximation, we can show that the following simple algorithm is

throughput-optimal.

• The transmitter of link k sets its mean backoff time to be exp{−α ·Qk} where Qk is

the backlog of link k and α > 0 is any constant.

Since it takes some time to reach the stationary distribution, the approximation does not

hold in practice. Therefore, the actual algorithm is somewhat different from this. However,

the main idea remains the same. (Chapter 9 will give the details.)

In the case with collisions, to achieve throughput-optimality, we need to limit the impact

of collisions. This leads us to the following design choices.

• Each link fixes the mean backoff time, but adjusts the mean transmission time ac-

cording to its backlog. If the backlog increases, it increases the mean transmission

time, and vice versa. (This is because if we adjust the backoff time, then the collisions

would be excessive when the backoff time is small.)

• Also, we adopt the RTS/CTS mode of IEEE 802.11 standard. That is, before a link

transmits a data packet, it first transmits a short control packet (RTS, or “Request-to-

Send” packet). If the RTS is successful (i.e., it is acknowledged by a CTS, or a “Clear-

to-Send” packet, from the intended receiver), then the data packet is transmitted.

Otherwise, the link will wait for a random time and transmits the RTS again. The

benefit of RTS/CTS mode is that, in the absence of hidden nodes, collisions only

happen among the short control packets, but not the longer data packets.

With the above designs, the impact of collisions is limited: the cost due to collisions does not

increase with the lengths of data packets. Thus, with long enough data packets, throughput-

optimality can be approached, if we can establish the throughput-optimality in the idealized-

CSMA model.

We will formally prove these results in Chapter 10, which is based on [72; 73].
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In both the cases without or with collisions, the main thread of our development includes

the following three steps.

• Analyzing the stationary distribution of the Markov chain defined by the CSMA pro-

tocol with given parameters (TA). The stationary distributions in both cases (without

or with collisions) have a product-form, due to their time-reversible or quasi-reversible

structure.

• Then showing that there exist a proper choice of the parameters such that the average

service rates induced by the product-form distribution can support any strictly feasible

arrival rates on all links. (But our algorithms do not require apriori knowlege of the

arrival rates.) This has an interesting connection with Markov Random Fields.

• Based on these insights, designing adaptive distributed algorithms to stabilize the

queues. The algorithms essentially solve a convex optimization problem with noisy

gradients. (Therefore we use tools in stochastic approximation.)

8.3.2 Joint CSMA scheduling and congestion control

Our second contribution is to combine the proposed scheduling algorithm with end-

to-end congestion control using a novel “maximal entropy” technique, to achieve fairness

among competing flows as well as maximal throughput (sections 9.2, 9.3).

The resulting algorithm is very simple. In addition to the CSMA scheduling algorithm

at the MAC layer, the source of each data flow performs the following congestion control

function: it decreases its input rate if the queue at the source builds up, and vice

versa.

We further show that the proposed CSMA scheduling not only can be combined with

congestion control at the transport layer, it is in fact a modular MAC-layer algorithm that

can work with various protocols in other layers. In section 9.7.4, we derive and present

the joint algorithms after combining it with optimal routing, anycast and multicast at the

network layer.
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Chapter 9

Distributed CSMA Scheduling and

Congestion Control

9.1 Adaptive CSMA scheduling for maximal throughput

9.1.1 An idealized CSMA protocol and the average throughput

We use an idealized model of CSMA as in [50; 51; 52]. This model makes two simplifying

assumptions. First, it assumes that if two links conflict – because their simultaneous trans-

missions would result in incorrectly received packets – then each of the two links hears when

the other one transmits. Second, the model assumes that this sensing is instantaneous, so

that collisions do not occur. The first assumption implies that there are no hidden nodes

(HN). This is possible if the range of carrier-sensing is large enough [55].1 ) The second

assumption is violated in actual systems because of the finite speed of light and of the time

needed to detect a received power.
1A related problem that affects the performance of wireless networks is the exposed-node (EN) problem.

EN occurs when two links could transmit together without interference, but they can sense the transmission
of each other. As a result, their simultaneous transmissions are unnecessarily forbidden by CSMA. Reference
[55] proposed a protocol to address HN and EN problems in a systematic way. We assume here that the HN
and EN are negligible with the use of such a protocol. Note that however, although EN problem may reduce
the capacity region, it does not affect the applicability of our model, since we can define an edge between
two links in the CG as long as they can sense the transmission of each other, even if this results in EN.
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Despite these assumptions, we will use the idealized-CSMA model in this chapter for

the following reasons:

(1) We find that the idealized-CSMA model is an easier starting point before analyzing

the case with collisions. In fact, it has captured the essence of CSMA. Indeed, in Chapter

10, we will present another model that explicitly considers collisions in wireless network.

That model is a natural generalization of idealized-CSMA. Also, our distributed scheduling

and congestion control algorithms based on idealized-CSMA can be naturally extended to

that model.

(2) Collisions and the HN problem only occur in wireless networks, but not in a more

general class of networks such as stochastic processing networks (SPN) [25]. Designing

scheduling algorithms based on idealized-CSMA is certainly relevant and interesting for

those networks.

SPN is a general model for manufacturing, communication, or service systems. Consider

the following “task processing” problem in SPN for an example. There are K different

types of tasks and a finite set of resources B. To perform a type-k task, one needs a subset

Bk ⊆ B of resources and these resources are then monopolized by the task while it is being

performed. Note that two tasks can be performed simultaneously iff they use disjoint subsets

of resources. Clearly this can be accommodated in our model in section 8.1 by associating

each type of tasks to a “link”.

The idealized-CSMA works as follows. If the transmitter of link k senses the transmis-

sion of any conflicting link (i.e., any link m such that (k, m) ∈ E), then it keeps silent. If

none of its conflicting links is transmitting, then the transmitter of link k waits (or backs-

off) for a random period of time that is exponentially distributed with mean 1/Rk and

then starts its transmission2. If some conflicting link starts transmitting during the backoff,

then link k suspends its backoff and resumes it after the conflicting transmission is over.

The transmission time of link k is exponentially distributed with mean 1. (The assump-

tion on exponential distribution can be relaxed [52].) Assuming that the sensing time is
2If more than one backlogged links share the same transmitter, the transmitter maintains independent

backoff timers for these links.
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Link 1

Link 2 …...

…...

…...

Link 3 …... …...

…...

X2,W

X2,T

X1,W

X1,T

X3,T

Figure 9.1: Timeline of the idealized CSMA

negligible, given the continuous distribution of the backoff times, the probability for two

conflicting links to start transmission at the same time is zero. So collisions do not occur

in idealized-CSMA.

For the 3-link network in Fig. 8.2 (b), the timeline of the above idealized CSMA

protocol is shown in Fig. 9.1, where Xk,W and Xk,T are the random waiting time and

random transmission time of link k. Note that every time when link k transmits a packet,

Xk,W and Xk,T are newly generated, independent of the past.

It is not difficult to see that the transitions of the transmission states form a Continuous

Time Markov Chain, which is called the CSMA Markov Chain. The state space of the

Markov chain is X . Denote link k’s neighboring set by N (k) := {m : (k, m) ∈ E}. If in

state xi ∈ X , link k is not active (xi
k = 0) and all of its conflicting links are not active (i.e.,

xi
m = 0,∀m ∈ N (k)), then state xi transits to state xi + ek with rate Rk, where ek is the

K-dimension vector whose k’th element is 1 and all other elements are 0’s. Similarly, state

xi + ek transits to state xi with rate 1. However, if in state xi, any link in its neighboring

set N (k) is active, then state xi + ek does not exist (i.e., xi + ek /∈ X ).

Fig 9.2 gives an example network whose CG is shown in (a). There are two links, with

an edge between them, which means that they cannot transmit together. Fig 9.2 (b) shows

the corresponding CSMA Markov Chain. State (0,0) means that no link is transmitting,

state (1,0) means that only link 1 is transmitting, and (0,1) means that only link 2 is

transmitting. The state (1,1) is not feasible.

Let rk = log(Rk). We call rk the “transmission aggressiveness” (TA) of link k. For

a given positive vector r = {rk, k = 1, . . . ,K}, the CSMA Markov chain is irreducible.
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Link 1 Link 2

(a) Conflict graph

(0,0)

(0,1)

(1,0)

1

R2

1

R1

(b) CSMA Markov

Chain

Figure 9.2: Example: Conflict graph and corresponding Markov Chain.

Designate the stationary distribution of its feasible states xi by p(xi; r). We have the

following result.

Lemma 9. ([50; 51; 52]) The stationary distribution of the CSMA Markov chain has the

following product-form:

p(xi; r) =
exp(

∑K
k=1 xi

krk)
C(r)

(9.1)

where

C(r) =
∑

j exp(
∑K

k=1 xj
krk) . (9.2)

Note that the summation
∑

j is over all feasible states xj.

Proof. We verify that the distribution (9.1)-(9.2) satisfies the detailed balance equations

(see [49]). Consider states xi and xi + ek where xi
k = 0 and xi

m = 0,∀m ∈ N (k). From

(9.1), we have
p(xi + ek; r)

p(xi; r)
= exp(rk) = Rk

which is exactly the detailed balance equation between state xi and xi + ek. Such relations

hold for any two states that differ in only one element, which are the only pairs that

correspond to nonzero transition rates. It follows that the distribution is invariant.

Note that the CSMA Markov chain is time-reversible since the detailed balance equa-

tions hold. In fact, the Markov chain is a reversible “spatial process” and its stationary

distribution (9.1) is a Markov Random Field ([49], page 189; [54]). (This means that the
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state of every link k is conditionally independent of all other links, given the transmission

states of its conflicting links.)

Later, we also write p(xi; r) as pi(r) for simplicity. These notations are interchangeable

throughout the chapter. And let p(r) ∈ RN
+ be the vector of all pi(r)’s. In Fig 9.2, for

example, the probabilities of state (0,0), (1,0) and (0,1) are 1/(1+R1+R2), R1/(1+R1+R2)

and R2/(1 + R1 + R2) in the stationary distribution.

It follows from Lemma 1 that sk(r), the probability that link k transmits, is given by

sk(r) =
∑

i[x
i
k · p(xi; r)] . (9.3)

Without loss of generality, assume that each link k has a capacity of 1. That is, if link

k transmits data all the time (without contention from other links), then its service rate is

1 (unit of data per unit time). Then, sk(r) is also the normalized throughput (or service

rate) with respect to the link capacity.

Even if the waiting time and transmission time are not exponential distributed but

have the same means 1/Rk and 1 (in fact, as long as the ratio of their means is 1/Rk),

reference [52] shows that the stationary distribution (9.1) still holds. That is, the stationary

distribution is insensitive to the distributions of the waiting time and transmission time.

9.1.2 Adaptive CSMA for maximal throughput

CSMA could achieve the maximal throughput

For a λ ∈ C, let p̄ be a probability distribution such that λ =
∑N

i=1 p̄ix
i. (Note that

p̄ may not be unique, in which case we arbitrarily choose one such distribution.) Define

the following function (the “log-likelihood function” [59] if we estimate the parameter r

assuming that we observe p̄i). Note that p̄ only shows up in the derivation of our algorithm,

but the information of p̄ is not needed in the algorithm itself.

F (r;λ) :=
∑

i p̄i log(pi(r))

=
∑

i p̄i[
∑K

k=1 xi
krk − log(C(r))]

=
∑

k λkrk − log(
∑

j exp(
∑K

k=1 xj
krk))
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where λk =
∑

i p̄ix
i
k is the arrival rate at link k. (Note that the function F (r;λ) depends

on λ, but does not involve p̄ anymore.)

Consider the following optimization problem

supr≥0 F (r;λ) . (9.4)

Since log(pi(r)) ≤ 0, we have F (r;λ) ≤ 0. Therefore supr≥0 F (r;λ) exists. Also, F (r;λ)

is concave in r [56]. We show that the following proposition holds.

Proposition 20. If supr≥0 F (r;λ) is attainable (i.e., there exists finite r∗ ≥ 0 such that

F (r∗;λ) = supr≥0 F (r;λ)), then sk(r∗) ≥ λk,∀k. That is, the service rate is not less than

the arrival rate when r = r∗.

Proof. Let d ≥ 0 be a vector of dual variables associated with the constraints r ≥ 0 in

problem (9.4), then the Lagrangian is L(r;d) = F (r;λ) + dT r. At the optimal solution r∗,

we have

∂L(r∗;d∗)
∂rk

= λk −
∑

j xj
k exp(

∑K
k=1 xj

kr
∗
k)

C(r∗)
+ d∗k

= λk − sk(r∗) + d∗k = 0 (9.5)

where sk(r), according to (9.3), is the service rate (at stationary distribution) given r. Since

d∗k ≥ 0, λk ≤ sk(r∗).

Equivalently, problem (9.4) is the same as minimizing the Kullback–Leibler divergence

(KL divergence) between the two distributions p̄ and p(r):

inf
r≥0

DKL(p̄||p(r)) (9.6)

where the KL divergence

DKL(p̄||p(r)) : =
∑

i[p̄i log(p̄i/pi(r))]

=
∑

i[p̄i log(p̄i)]− F (r;λ).

That is, we choose r ≥ 0 such that p(r) is the “closest” to p̄ in terms of the KL

divergence.
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The above result is related to the theory of Markov Random Fields [59] in that, when

we minimize the KL divergence between a given joint distribution pI and a product-form

joint distribution pII , then depending on the structure of pII , certain marginal distributions

induced by the two joint distributions are equal (i.e., a moment-matching condition). In our

case, the time-reversible CSMA Markov chain gives the product-form distribution. Also,

the arrival rate and service rate on link k are viewed as two marginal probabilities. They are

not always equal, but satisfy the desired inequality in Proposition 20, due to the constraint

r ≥ 0 which is important in our design.

The following condition, proved in section 9.7.2, ensures that supr≥0 F (r;λ) is attain-

able.

Proposition 21. If the arrival rate λ is strictly feasible, then supr≥0 F (r;λ) is attainable.

Combining Propositions 20 and 21, we have the following desirable result.

Theorem 2. For any strictly feasible λ there exists a finite r∗ such that sk(r∗) ≥ λk,∀k.

Remark : To see why strict feasibility is necessary, consider the network in Fig. 9.2.

If λ1 = λ2 = 0.5 (not strictly feasible), then the service rates s1(r) = s2(r) → 0.5 when

r1 = r2 →∞, but they cannot reach 0.5 for finite values of r.

An idealized distributed algorithm

Since ∂F (r;λ)/∂rk = λk − sk(r), a simple gradient algorithm to solve (9.4) is

rk(j + 1) = [rk(j) + α(j) · (λk − sk(r(j)))]+,∀k (9.7)

where j = 0, 1, 2, . . . , and α(j) is some (small) step sizes. Since this is an algorithm to

maximize a concave function, it is well known that with suitable decreasing step sizes α(j),

r(j) converges to r∗; and with a constant step size α(j) = α, ∀j where α is small enough,

r(j) converges to a neighborhood of r∗ (and in general oscillates around the neighborhood)

[56].
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The most important property of algorithm (9.7), however, is that it is easy for distributed

implementation in wireless networks, because link k can adjust rk based on its local infor-

mation: arrival rate λk and service rate sk(r(j)). (If the arrival rate is larger than the

service rate, then rk should be increased, and vice versa.) No information about the arrival

rates and service rates of other links is needed. Note that however, the arrival and service

rates are generally random variables in actual networks, unlike in (9.7). Therefore (9.7) is

only an idealized algorithm which cannot be used directly.

Proposed distributed algorithm

We propose the following algorithm based on the above insight. Let link k adjust rk

at time tj , j = 1, 2, . . . . Let t0 = 0 and the update interval T (j) := tj − tj−1, j = 1, 2, . . . .

Define “period j” as the time between tj−1 and tj , and r(j) as the value of r set at time

tj . Let λ′k(j) and s′k(j) be, respectively, the empirical average arrival rate and service

rate at link k between time tj and tj+1. That is, s′k(j) :=
∫ tj+1

tj
xk(τ)dτ/T (j + 1), where

xk(τ) ∈ {0, 1} is the state of link k at time instance τ . Note that λ′k(j) and s′k(j) are

generally random variables. We design the following distributed algorithm.

Algorithm 1: Adjusting the TA (transmission aggressiveness) in CSMA

At time tj+1 where j = 0, 1, 2, . . . , let

rk(j + 1) = [rk(j) + α(j) · (λ′k(j)− s′k(j))]D,∀k (9.8)

where α(j) > 0 is the step size, and [·]D means the projection to the set D := [0, rmax]

where rmax > 0. We allow rmax = +∞, in which case the projection is the same as [·]+.3

Clearly, each link k only uses its local information in the algorithm.

In section 9.6, we will discuss how Algorithm 1 can support the arrival rates and stabilize

the queues under suitable settings of α(j), T (j) and rmax. In other words, we will explain its

convergence and stability properties. (We defer this part because it is relatively technical.)
3A subtle point: If in period j + 1 (for any j), the queue of link k′ becomes empty, then link k′ still

transmits dummy packets with TA rk′(j) until tj+1. This ensures that the (ideal) average service rate is
still sk(r(j)) for all k. (The transmitted dummy packets are counted in the computation of s′k(j).)
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We note that in a related work [46], Liu et al. carried out a convergence analysis, using

a differential-equation method, of a utility maximization algorithm extended from [26] (see

section 9.3 for the algorithm). However, queueing stability was not established in [46].

9.1.3 Discussion

(1) It has been believed that optimal scheduling is NP complete in general. This com-

plexity is reflected in the mixing time of the CSMA Markov chain (i.e., the time for the

Markov chain to approach its stationary distribution). In [67], the upper-bound used to

quantify the mixing time is exponential in K. However, the bound may not be tight in

typical wireless networks. For example, in a network where all links conflict, the CSMA

Markov chain mixes much faster than the bound.

(2) There is some resemblance between the above algorithm (in particular the CSMA

Markov chain) and simulated annealing (SA) [45]. SA is an optimization technique that

utilizes time-reversible Markov chains to find a maximum of a function. SA can be used,

for example, to find the Maximal-Weighted IS (MWIS) which is needed in Maximal-Weight

Scheduling. However, note that our algorithm does not try to find the MWIS via SA.

Instead, the stationary distribution of the CSMA Markov chain with a properly-chosen r∗

is sufficient to support any vector of strictly feasible arrival rates (Theorem 2).

9.2 The primal-dual relationship

In the previous section we have described the adaptive CSMA algorithm to support any

strictly-feasible arrival rates. For joint scheduling and congestion control, however, directly

using the above expression of service rate (9.3) will lead to a non-convex problem. This

section takes another look at the problem and also helps to avoid the difficulty.
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Rewrite (9.4) as

maxr,h {
∑

k λkrk − log(
∑

j exp(hj))}

s.t. hj =
∑K

k=1 xj
krk,∀j

rk ≥ 0,∀k.

(9.9)

For each j = 1, 2, . . . , N , associate a dual variable uj to the constraint hj =
∑K

k=1 xj
krk.

Write the vector of dual variables as u ∈ RN
+ . Then it is not difficult to find the dual

problem of (9.9) as follows. (The computation was given in [27], but is omitted here.)

maxu −
∑

i ui log(ui)

s.t.
∑

i(ui · xi
k) ≥ λk,∀k

ui ≥ 0,
∑

i ui = 1.

(9.10)

where the objective function is the entropy of the distribution u, H(u) := −
∑

i ui log(ui).

4

Also, if for each k, we associate a dual variable rk to the constraint
∑

i(ui · xi
k) ≥ λk

in problem (9.10), then one can compute that the dual problem of (9.10) is the original

problem maxr≥0 F (r;λ) (This is shown in section 9.7.2 as a by-product of the proof of

Proposition 21). This is not surprising, since in convex optimization, the dual problem of

dual problem is often the original problem.

What is interesting is that both r and u have concrete physical meanings. We have seen

that rk is the TA of link k. Also, ui can be regarded as the probability of state xi. This

observation will be useful in later sections. A convenient way to guess this is by observing

the constraint
∑

i(ui · xi
k) ≥ λk. If ui is the probability of state xi, then the constraint

simply means that the service rate of link k,
∑

i(ui · xi
k), is larger than the arrival rate.

Proposition 22. Given some (finite) TA’s of the links (that is, given the dual variable

r of problem (9.10)), the stationary distribution of the CSMA Markov chain maximizes

the partial Lagrangian L(u; r) = −
∑

i ui log(ui) +
∑

k rk(
∑

i ui · xi
k − λk) over all possible

distributions u. Also, Algorithm (9.7) can be viewed as a subgradient algorithm to update

the dual variable r in order to solve problem (9.10).
4In fact, there is a more general relationship between ML estimation problem such as (9.4) and Maximal-

Entropy problem such as (9.10) [59] [60]. In [27], on the other hand, problem (9.10) was motivated by the
“statistical entropy” of the CSMA Markov chain.
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Proof. Given some finite dual variables r, a partial Lagrangian of problem (9.10) is

L(u; r) = −
∑

i

ui log(ui) +
∑

k

rk(
∑

i

ui · xi
k − λk). (9.11)

Denote u∗(r) = arg maxu L(u; r), where u is a distribution. Since
∑

i ui = 1, if we can

find some w, and u∗(r) > 0 (i.e., in the interior of the feasible region) such that

∂L(u∗(r); r)
∂ui

= − log(u∗i (r))− 1 +
∑

k

rkx
i
k = w,∀i,

then u∗(r) is the desired distribution. The above conditions are

u∗i (r) = exp(
∑

k

rkx
i
k − w − 1),∀i. and

∑
i

u∗i (r) = 1.

By solving the two equations, we find that w = log[
∑

j exp(
∑

k rkx
j
k)]− 1 and

u∗i (r) =
exp(

∑
k rkx

i
k)∑

j exp(
∑

k rkx
j
k)

,∀i (9.12)

satisfy the conditions.

Note that in (9.12), u∗i (r) is exactly the stationary probability of state xi in the CSMA

Markov chain given the TA r of all links. That is, u∗i (r) = p(xi; r),∀i (cf. (9.1)). So

Algorithm (9.7) is a subgradient algorithm to search for the optimal dual variable. Indeed,

given r, u∗i (r) maximizes L(u; r); then, r can be updated by the subgradient algorithm

(9.7), which is the deterministic version of Algorithm 1. The whole system is trying to solve

problem (9.10) or (9.4).

Let r∗ be the optimal vector of dual variables of problem (9.10). From the above

computation, we see that u∗(r∗) = p(r∗), the optimal solution of (9.10), is a product-form

distribution. Also, p(r∗) can support the arrival rates λ because it is feasible to (9.10).

This is another way to look at Theorem 2.

9.3 Joint scheduling and congestion control

Now, we combine congestion control with the CSMA scheduling algorithm to achieve

fairness among competing flows as well as the maximal throughput. Here, the input rates

are distributedly adjusted by the source of each flow.
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9.3.1 Formulation and algorithm

Assume there are M flows, and let m be their index (m = 1, 2, . . . ,M). Define amk = 1

if flow m uses link k, and amk = 0 otherwise. Let fm be the rate of flow m, and vm(fm) be

the “utility function” of this flow, which is assumed to be increasing and strictly concave.

Assume all links have the same PHY data rates (it is easy to extend the algorithm to

different PHY rates).

Assume that each link k maintains a separate queue for each flow that traverses it. Then,

the service rate of flow m by link k, denoted by skm, should be no less than the incoming

rate of flow m to link k. For flow m, if link k is its first link (i.e., the source link), we say

δ(m) = k. In this case, the constraint is skm ≥ fm. If k 6= δ(m), denote flow m’s upstream

link of link k by up(k, m), then the constraint is skm ≥ sup(k,m),m, where sup(k,m),m is equal

to the incoming rate of flow m to link k. We also have
∑

i ui · xi
k ≥

∑
m:amk=1 skm,∀k, i.e.,

the total service rate of link k is not less than the sum of all flow rates on the link.

Then, consider the following optimization problem:

maxu,s,f −
∑

i ui log(ui) + β
∑M

m=1 vm(fm)

s.t. skm ≥ 0,∀k,m : amk = 1

skm ≥ sup(k,m),m,∀m, k : amk = 1, k 6= δ(m)

skm ≥ fm,∀m, k : k = δ(m)∑
i ui · xi

k ≥
∑

m:amk=1 skm,∀k

ui ≥ 0,
∑

i ui = 1.

(9.13)

where β > 0 is a constant weighting factor.

Notice that the objective function is not exactly the total utility, but it has an ex-

tra term −
∑

i ui log(ui). As will be further explained in section 9.3.2, when β is large,

the “importance” of the total utility dominates the objective function of (9.13). (This is

similar in spirit to the weighting factor used in [44].) As a result, the solution of (9.13)

approximately achieves the maximal utility. Associate dual variables qkm ≥ 0 to the 2nd

and 3rd lines of constraints of (9.13). Then a partial Lagrangian (subject to skm ≥ 0,
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∑
i ui · xi

k ≥
∑

m:amk=1 skm and ui ≥ 0,
∑

i ui = 1) is

L(u, s, f ;q)

= −
∑

i ui log(ui) + β
∑M

m=1 vm(fm)

+
∑

m,k:amk=1,k 6=δ(m) qkm(skm − sup(k,m),m)

+
∑

m,k:,k=δ(m) qkm(skm − fm)

= −
∑

i ui log(ui)

+β
∑M

m=1 vm(fm)−
∑

m,k:k=δ(m) qkmfm

+
∑

k,m:amk=1[skm · (qkm − qdown(k,m),m)]

(9.14)

where down(k, m) means flow m’s downstream link of link k (Note that down(up(k, m),m) =

k). If k is the last link of flow m, then define qdown(k,m),m = 0.

Fix the vectors u and q first, we solve for skm in the sub-problem

maxs
∑

k,m:amk=1[skm · (qkm − qdown(k,m),m)]

s.t. skm ≥ 0,∀k, m : amk = 1∑
m:amk=1 skm ≤

∑
i(ui · xi

k),∀k.

(9.15)

The solution is easy to find (similar to [24] and related references therein): at link

k, denote zk := maxm:amk=1(qkm − qdown(k,m),m). (i) If zk > 0, then for a m′ ∈

arg maxm:amk=1(qkm − qdown(k,m),m), let skm′ =
∑

i(ui · xi
k) and let skm = 0,∀m 6= m′.

In other words, link k serves a flow with the maximal back-pressure qkm− qdown(k,m),m. (ii)

If zk ≤ 0, then let skm(j) = 0,∀m, i.e., link k does not serve any flow. Since the value of

qdown(k,m),m can be obtained from a one-hop neighbor, this algorithm is distributed. (In

practice, the value of qdown(k,m),m can be piggybacked in the ACK packet in IEEE 802.11.)

Plugging the solution of (9.15) back into (9.14), we get

L(u, f ;q) = [−
∑

i ui log(ui) +
∑

k(zk)+(
∑

i ui · xi
k)]

+[β
∑M

m=1 vm(fm)−
∑

m,k:k=δ(m) qkmfm]

where zk is the maximal back-pressure at link k. So a distributed algorithm to solve (9.13)

is as follows. Denote by Qkm the actual queue length of flow m at link k. For simplicity,

assume that v′m(0) ≤ V <∞,∀m, i.e., the derivative of all utility functions at 0 is bounded

by some V <∞.
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Algorithm 2: Joint scheduling and congestion control

Initially, assume that all queues are empty (i.e., Qkm(0) = 0,∀k, m), and let qkm(0) =

0,∀k, m. As before, the update interval T (j) = tj − tj−1 and t0 = 0. Here we use constant

step sizes and update intervals α(j) = α, T (j) = T,∀j. The variables q, f , r are iteratively

updated at time tj , j = 1, 2, . . . . Let q(j), f(j), r(j) be their values set at time tj . Denote

by s
′
km(j) the empirical average service rate of flow m at link k in period j + 1 (i.e., the

time between tj and tj+1).

• Scheduling: In period j + 1, link k lets its TA be rk(j) = [zk(j)]+ in the CSMA

operation, where zk(j) = maxm:amk=1(qkm(j)−qdown(k,m),m(j)). (The rationale is that,

given z(j), the u∗ that maximizes L(u, f ;q(j)) over u is the stationary distribution

of the CSMA Markov Chain with rk(j) = [zk(j)]+, similar to the proof of Proposition

22.) Choose a flow m′ ∈ arg maxm:amk=1(qkm(j)− qdown(k,m),m(j)). When link k gets

the opportunity to transmit, (i) if zk(j) > 0, it serves flow m′; (Similar to Algorithm

1, the dummy packets transmitted by link k, if any, are counted in s
′
km′(j).) (ii) if

zk(j) ≤ 0, then it transmits dummy packets. These dummy packets are not counted,

i.e., let s
′
km(j) = 0,∀m. Also, they are not put into any actual queue at the receiver

of link k. (A simpler alternative is that link k keeps silent if zk(j) ≤ 0. That case can

be similarly analyzed following the method in section 9.7.3.)

• Congestion control: For each flow m, if link k is its source link, the transmitter of link

k lets the flow rate in period j+1 be fm(j) = arg maxf̂m∈[0,1]{β ·vm(f̂m)−qkm(j)· f̂m}.

(This maximizes L(u, f ;q(j)) over f .)

• The dual variables qkm (maintained by the transmitter of each link) are updated

(similar to a subgradient algorithm). At time tj+1, let qkm(j + 1) = [qkm(j) − α ·

s
′
km(j))]+ + α · s′up(k,m),m(j) if k 6= δ(m); and qkm(j + 1) = [qkm(j)− α · s′km(j))]+ +

α · fm(j) if k = δ(m). (By doing this, approximately qkm ∝ Qkm.)

Remark 1: As T → ∞ and α → 0, Algorithm 2 approximates the “ideal” algorithm that

solves (9.13), due to the convergence of the CSMA Markov chain in each period. A bound

of the achievable utility of Algorithm 2, compared to the optimal total utility W̄ defined in
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(9.16) is given in section 9.7.3. The bound, however, is not very tight, since our simulation

shows good performance without a very large T or a very small α.

Remark 2: In section 9.7.4, we show that by using similar techniques, the adaptive

CSMA algorithm can be combined with optimal routing, anycast or multicast with network

coding. So it is a modular MAC-layer protocol which can work with other protocols in the

transport layer and the network layer.

Remark 3 : Coincidentally, the authors of [68] implemented a protocol similar to Al-

gorithm 2 using 802.11e hardware and it shows superior performance compared to normal

802.11. There, according to the backpressure, a flow chooses from a discrete set of con-

tention windows, or “CW’s” (where a smaller CW corresponds to a larger TA). We note

that, however, different from our work, [68] only focuses on implementation study, without

theoretical analysis. Therefore, the potential optimality of CSMA is not shown in [68].

Also, the CW’s there are set in a more heuristic way.

9.3.2 Approaching the maximal utility

We now show that the solution of (9.13) approximately achieves the maximal utility

when β is large. Denote the maximal total utility achievable by W̄ , i.e.,

W̄ := maxu,s,f
∑

m vm(fm) (9.16)

subject to the same constraints as in (9.13). Assume that u = ū when (9.16) is solved.

Also, assume that in the optimal solution of (9.13), f = f̂ and u = û. We have the following

bound.

Proposition 23. The difference between the total utility (
∑M

m=1 vm(f̂m)) resulting from

solving (9.13) and the maximal total utility W̄ is bounded. The bound of difference decreases

with the increase of β. In particular,

W̄ − (K · log 2)/β ≤
∑

m vm(f̂m) ≤ W̄ . (9.17)

Proof. Notice that H(u) = −
∑

i ui log(ui), the entropy of the distribution u, is bounded.
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Indeed, since there are N ≤ 2K possible states, one has 0 ≤ H(u) ≤ log N ≤ log 2K =

K log 2.

Since in the optimal solution of problem (9.13), f = f̂ and u = û, we have H(û) +

β
∑

m vm(f̂m) ≥ H(ū)+βW̄ . So β[
∑

m vm(f̂m)−W̄ ] ≥ H(ū)−H(û) ≥ −H(û) ≥ −K ·log 2.

Also, clearly W̄ ≥
∑M

m=1 vm(f̂m), so (9.17) follows.

9.4 Reducing the queueing delay

Consider a strictly feasible arrival rate vector λ in the scheduling problem in section

9.1. With Algorithm 1, the long-term average service rates are in general not strictly higher

than the arrival rates, so traffic suffers from queueing delay when traversing the links. To

reduce the delay, consider a modified version of problem (9.10):

maxu,w −
∑

i ui log(ui) + c
∑

k log(wk)

s.t.
∑

i(ui · xi
k) ≥ λk + wk,∀k

ui ≥ 0,
∑

i ui = 1

0 ≤ wk ≤ w̄,∀k

(9.18)

where 0 < c < 1 is a small constant. Note that we have added the new variables wk ∈ [0, w̄]

(where w̄ is a constant upper bound), and require
∑

i ui · xi
k ≥ λk + wk. In the objective

function, the term c · log(wk) is a penalty function to avoid wk being too close to 0.

Since λ is in the interior of the capacity region, there is a vector λ′ also in the interior

and satisfying λ′ > λ component-wise. So there exist w′ > 0 and u′ (such that
∑

i u
′
ix

i
k =

λ′k := λk + w′
k,∀k) satisfying the constraints. Therefore, in the optimal solution, we have

w∗
k > 0,∀k (otherwise the objective function is −∞, smaller than the objective value that

can be achieved by u′ and w′). Thus
∑

i u
∗
i · xi

k ≥ λk + w∗
k > λk. This means that the

service rate is strictly larger than the arrival rate, bringing the extra benefit that the queue

lengths tend to decrease to 0.
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Similar to section 9.2, we form a partial Lagrangian (with y ≥ 0 as dual variables)

L(u,w;y) = −
∑

i ui log(ui) + c
∑

k log(wk)+∑
k[yk(

∑
i ui · xi

k − λk − wk)]

= [−
∑

i ui log(ui) +
∑

k(yk
∑

i ui · xi
k)]+∑

k[c · log(wk)− ykwk]−
∑

k(ykλk).

(9.19)

Note that the only difference from (9.11) is the extra term
∑

k[c · log(wk)−ykwk]. Given

y, the optimal w is wk = min{c/yk, w̄},∀k, and the optimal u is the stationary distribution

of the CSMA Markov Chain with r = y. Therefore the (sub)gradient algorithm to update

y is yk ← yk + α(λk + wk − sk(y)).

Since r = y, we have the following localized algorithm at link k to update rk. Notice

its similarity to Algorithm 1.

Algorithm 3: Enhanced Algorithm 1 to reduce queueing delays

At time tj+1 where j = 0, 1, 2, . . . , let

rk(j + 1) = [rk(j) + α(j) · (λ′k(j) + min{c/rk(j), w̄} − s′k(j))]D (9.20)

for all k, where α(j) is the step size, and D = [0, rmax] where rmax can be +∞. As in

Algorithm 1, even when link k′ has no backlog (i.e., zero queue length), we let it send

dummy packets with its current aggressiveness rk′ . This ensures that the (ideal) average

service rate of link k is sk(r(j)) for all k.

Since Algorithm 3 “pretends” to serve some arrival rates higher than the actual arrival

rates (due to the positive term min{c/rk(j), w̄}), Qk is not only stable, but also tends to

be small. The convergence and stability properties of Algorithm 3 when rmax = ∞ are

discussed in (i) of Appendix C. If rmax < ∞, the properties are similar to those in (ii) of

Appendix C.

For joint CSMA scheduling and congestion control, a simple way to reduce the delay,

similar to [69], is as follows. In item 2 (“congestion control”) of Algorithm 2, let the actual

flow rate be ρ·fm(j) where ρ is slightly smaller than 1, and keep other parts of the algorithm
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unchanged. Then, each link provides a service rate higher than the actual arrival rate. So

the delay is reduced with a small cost in the flow rates.

9.5 Simulations

9.5.1 CSMA scheduling: i.i.d. input traffic with fixed average rates

In our C++ simulations, the transmission time of all links is exponentially distributed

with mean 1ms, and the backoff time of link k is exponentially distributed with mean

1/ exp(rk) ms. The capacity of each link is 1(data unit)/ms. There are 6 links in “Network

1”, whose CG is shown in Fig. 9.3 (a). Define 0 ≤ ρ < 1 as the “load factor”, and

let ρ = 0.98 in this simulation. The arrival rate vector is set to λ=ρ*[0.2*(1,0,1,0,0,0) +

0.3*(1,0,0,1,0,1) + 0.2*(0,1,0,0,1,0) + 0.3*(0,0,1,0,1,0)] = ρ*(0.5,0.2,0.5,0.3,0.5,0.3) (data

units/ms). We have multiplied by ρ < 1 a convex combination of some maximal ISs to

ensure that λ ∈ C.

Initially, all queues are empty, and the initial value of rk is 0 for all k. rk is then adjusted

using Algorithm 1 once every T = 5ms (i.e., T (j) = T,∀j), with a constant step size

α(j) = α = 0.23,∀j. Fig. 9.3 (b) shows the evolution of the queue lengths with rmax = 8.

They are stable despite some oscillations. The vector r is not shown since in this simulation,

it is roughly α/T times the queue lengths. Fig. 9.3 (c) shows the evolution of queue lengths

using Algorithm 3 with c = 0.01, w̄ = 0.02 and all other parameters unchanged. The

algorithm drives the queue lengths to around zero, thus significantly reducing the queueing

delays.

Fig 9.4 shows the results of Algorithm 3 with α(j) = 0.46/[(2+ j/1000) log(2+ j/1000)]

and T (j) = (2 + j/1000) ms, which satisfy the conditions for convergence in section 9.6.

The constants c = 0.01, w̄ = 0.02, and rmax = ∞. To show the negative drift of queues,

assume that initially, all queue lengths are 300 data units in Fig 9.4. We see that the TA

vector r converges (Fig 9.4 (a)), and the queues tend to decrease and are stable (Fig 9.4
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(b) Queue lengths, with constant step size. The vector r

is not shown since it is proportional to the queue lengths.
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(c) Queue lengths (with Algorithm 3)

Figure 9.3: Adaptive CSMA Scheduling (Network 1)
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Figure 9.4: Decreasing step sizes

(b)). However, there are more oscillations in the queue lengths than the case with constant

step size. This is because when α(j) becomes smaller when j is large, r(j) becomes less

responsive to the variations of queue lengths.

9.5.2 Joint scheduling and congestion control

In Fig 9.5, we simulate a more complex network (“Network 2”). We also go one step

further than Network 1 by giving the actual locations of the nodes, not only the CG. Fig 9.5

(a) shows the network topology, where each circle represents a node. The nodes are arranged

in a grid for convenience, and the distance between two adjacent nodes (horizontally or

vertically) is 1. Assume that the transmission range is 1, so that a link can only be formed

by two adjacent nodes. Assume that two links cannot transmit simultaneously if there are

two nodes, one in each link, being within a distance of 1.1 (In IEEE 802.11, for example,

DATA and ACK packets are transmitted in opposite directions. This model considers the

interference among the two links in both directions). The paths of 3 multi-hop flows are

plotted. The utility function of each flow is vm(fm) = log(fm + 0.01). The weighting factor
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Figure 9.5: Flow rates in Network 2 (Grid Topology) with Joint scheduling and congestion

control

is β = 3. (Note that the input rates are adjusted by the congestion control algorithm

instead of being specified as in the last subsection.)

Fig 9.5 (b) shows the evolution of the flow rates, using Algorithm 2 with T = 5ms and

α = 0.23. We see that they become relatively constant after an initial convergence. By

directly solving (9.16) centrally, we find that the theoretical optimal flow rates for the three

flows are 0.11, 0.134 and 0.134 (data unit/ms), very close to the simulation results. The

queue lengths are also stable (in fact, uniformly bounded as proved in section 9.7.3).

9.6 Throughput-optimality of the CSMA scheduling algo-

rithm

9.6.1 Overview

Now we explain the throughput-optimality of Algorithm 1. First, it is useful to extend

the algorithm a little bit as follows.

rk(j + 1) = [rk(j) + α(j) · (λ′k(j) + h(rk(j))− s′k(j))]D (9.21)
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where D := [0, rmax] and the function h(·) ≥ 0. If h(·) = 0, then algorithm (9.21) reduces

to Algorithm 1. If h(·) > 0, then algorithm (9.21) “pretends” to serve some arrival rates

higher than the actual ones. The benefit of this is that the queue lengths tend to decrease

since the algorithm serves a bit more packets than needed.

The intuition for the throughput-optimality is that one can make r change slowly (i.e.,

“quasi-static”) to allow the CSMA Markov chain to approach its stationary distribution

(and thus obtaining good estimation of sk(r)). This allows the separation of time scales of

the dynamics of r(j) and the CSMA Markov chain.

Before proceeding, we need to give more precise definitions of queue stability and

throughput optimality.

For simplicity, assume the following i.i.d. Bernoulli arrivals (although it can be readily

generalized [67]): Let ak(t) ∈ {0, 1} be the arrival process at link k. For t ∈ [j, j + 1], j =

0, 1, 2, . . . (i.e., in a given “slot” with length 1), a(t) = 1 with probability λk and a(t) = 0

otherwise. Then, Ak(t) :=
∫ t
0 ak(τ)dτ , the cumulative amount of arrived traffic at link k by

time t, satisfies that E(Ak(t))/t = λk.

Let xk(t) ∈ {0, 1} be the instantaneous transmission state of link k at (continuous) time

t. For link k, define the cumulative “service” by time t as Sk(t) =
∫ t
τ=0 xk(τ)dτ , and the

cumulative departure by time t as Dk(t) =
∫ t
τ=0 xk(τ)I(Qk(τ) > 0)dτ , where I(·) is the

indicator function and Qk(τ) := Qk(0) + Ak(τ) − Dk(τ) is the queue length of link k at

time τ . Note that there is no departure if the queue is empty but we allow xk(τ) = 1 even

if Qk(τ) = 0 (in which case dummy packets are sent).

Definition 3. The queues are “rate stable” if limt→∞[Ak(t) − Dk(t)]/t = 0,∀k almost

surely.

Another notion of stability is the positive (Harris) recurrence of the network Markov

chain.

Definition 4. An algorithm is said to be “throughput-optimal” if for any λ ∈ C, it makes

96



the system rate stable or positive (Harris) recurrent. In this case, we also say that the

algorithm achieves the “maximal throughput”.

Now, we give a summary of the properties of algorithm (9.21).

(i) With properly-chosen constant step sizes α(j) = α, ∀j and update intervals T (j) =

T,∀j, one can arbitrarily approximate the maximal throughput.

(ii) With properly-chosen decreasing step sizes and increasing update intervals (e.g.,

α(j) = 1/[(j +2) log(j +2)], T (j) = j +2) and function h(·), and with rmax = +∞, for any

λ ∈ C, the vector r(j) converges and the queues are rate-stable. Therefore the algorithm is

throughput-optimum.

(iii) In a variant of the algorithm where r(j) is guaranteed to be bounded, with suitable

decreasing step sizes and constant update intervals, one can arbitrarily approximate the

maximal throughput.

9.6.2 More formal results

We now state the main results about algorithm (9.21) and its variants, and give proof

sketches in the next section.

For constant step sizes and update intervals, we have the following.

Theorem 3. Let rmax < +∞ and h(rk(j)) = ε > 0 in algorithm (9.21). Define the capacity

region

C′(rmax, ε) : = {λ|λ + ε · 1 ∈ C, and

arg max
r≥0

F (r;λ + ε · 1) ∈ [0, rmax]K}

If λ ∈ C′(rmax, ε), then there exist constant step size α(j) = α and update interval T (j) = T

such that all queues are stable.

Remark: Note that C′(rmax, ε) → C as rmax → +∞ and ε → 0. So the maximal

throughput can be arbitrarily approximated by setting rmax and ε.

97



For time-varying step sizes and update intervals, we have the following.

Theorem 4. Assume that λ is strictly feasible (i.e., λ ∈ C). Also assume that there is

a maximal instantaneous arrival rate λ̄ for any link (i.e., λ′k(j) ≤ λ̄,∀k, j). In algorithm

(9.21), let h(·) = 0 and rmax = +∞. Denote ∆(m) :=
∑m−1

j=0 α(j). Choose α(j) and

non-decreasing T (j) such that

α(j) > 0,
∑

j α(j) =∞,
∑

j α2(j) <∞ (9.22)

∑∞
m=1[α(m)∆(m)]2 <∞ (9.23)

∑∞
m=1[α(m) ·∆(m) · f(m)/T (m + 1)] <∞ (9.24)

where

f(m) := exp{(5
2K + 1) · [λmax ·∆(m) + log(2)]} (9.25)

where K is the number of links, and λmax := λ̄.

Then with algorithm (9.21), r(j) converges to some r∗ with probability 1. The vector r∗

satisfies that sk(r∗) ≥ λk,∀k. Also, the queues are rate stable.

Remark : Besides “rate stability”, another notion of stability is the positive (Harris)

recurrence of the underlying network Markov process, in particular the queue lengths. Note

that with the time-varying step sizes and update intervals in the setup of Theorem 4, the

Markov process is not time-homogeneous, in which case positive (Harris) recurrence is not

well defined. This is the reason why we choose to prove the “rate stability”. One concern

for rate stability is that the queue lengths may go to infinity, since “rate stability” only

ensures that limt→∞[Ak(t) − Dk(t)]/t = limt→∞Qk(t)/t = 0,∀k. However, this issue can

be avoided in an enhanced algorithm in Theorem 5.

What α(j), T (j) satisfy the above conditions?

Proposition 24. The setting α(j) = 1/[(j + 2) log(j + 2)] and T (j) = j + 2 satisfies

conditions (9.22), (9.23) and (9.24). Note that this setting does not depend on, or require

the knowledge of K and λmax, and thus can generally apply to any network.
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Similarly, the same is true for the following settings. (i) α(j) = 1/[(j + 2) log(j + 2)]

and T (j) = (j + 2)γ for any γ > 0; (ii) α(j) = c0/[(a · j + b + 2) log(a · j + b + 2)] and

T (j) = a · j + b + 2 (with constants a > 0, b > 0, c0 > 0).

Prop. 24 is not difficult to check [67].

An enhancement which leads to smaller queues are given in the following theorem.

Theorem 5. We make the same assumptions as in Theorem 4, with the only differences

that h(rk(j)) = min{c/rk(j), w̄} where c, w̄ > 0 (see section 9.4 for an explanation of the

function), and λmax := λ̄ + w̄.

Then, r(j) converges to some r∗ with probability 1. The vector r∗ satisfies that sk(r∗) >

λk,∀k. Also, the queues are rate stable, and return to 0 infinitely often w. p. 1.

As explained in section 9.4, setting h(rk(j)) this way ensures that the convergent point

r∗ makes the average service rates strictly larger than the arrival rates. As a result, in

addition to the results of Theorem 4, the queues also return to 0 infinitely often and tend

to be small.

Also, all settings in Prop. 24 still satisfy conditions (9.22), (9.23) and (9.24) with the

new definition of λmax.

In a variant of the algorithm, one can use decreasing α(j) and constant update intervals

T (j) (instead of increasing T (j)). However, this variant requires that r(j) be bounded.

Therefore, it can only approximate, but not achieve, the maximal throughput. The variant

is

rk(j + 1) = rk(j) + α(j) · [λ′k(j) + ε− s′k(j) + h̄(rk(j))]. (9.26)

Note that there is no projection in (9.26). Instead, h̄(rk(j)) is used to bound r(j) in a

“softer” way:

h̄(y) =


rmin − y if y < rmin

0 if y ∈ [rmin, rmax]

rmax − y if y > rmax

(9.27)
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Then, the following can be shown.

Theorem 6. Assume that

λ ∈ C(rmin, rmax, ε)

:= {λ| arg max
r

F (r;λ + ε · 1) ∈ (rmin, rmax)K}.

Then, if α(j) > 0 is non-increasing and satisfies
∑

j α(j) = ∞,
∑

j α(j)2 < ∞ and

α(0) ≤ 1, then r(j) converges to r∗ as i→∞ with probability 1, where r∗ satisfies sk(r∗) =

λk + ε > λk,∀k. Also, the queues are rate stable and return to 0 infinitely often.

Remark: Clearly, as rmin → −∞, rmax → ∞ and ε → 0, C(rmin, rmax, ε) → C. So the

maximal throughput can be arbitrarily approximated by setting rmax, rmin and ε.

9.6.3 Proof sketches

We now give proof sketches of the above theorems. The full proofs are in [67].

Proof sketch of Theorem 3

The basic idea is that when T (j) = T is large enough, s′k(j) and λ′k(j) are very close

to sk(r(j)) and λk. If α(j) = α is small enough, then the algorithm approximately solves

maxr≥0 F (r;λ + ε · 1). So the average service rate at any link k is close to λk + ε which is

larger than the arrival rate λk. Therefore, all queues are stable.

Proof sketch of Theorem 4

Some notation

Before proving Theorem 4, we need some notation. Let x0(m) be the state of the

CSMA Markov chain at time tm. Define the random vector U(m) := (s′(m − 1), λ′(m −

1), r(m), x0(m)) for m ≥ 1 and U(0) = (r(0) = 0, x0(0)). Let Fm be the σ-field generated

by U(0), U(1), . . . , U(m). Fm represents what happened up to time tm.
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Given a vector of TA r(m) at time tm of algorithm (9.21), the vector g(m) whose

k-th element gk(m) := λk − sk(r(m)) is the gradient of F (r(m);λ). To find the desired

r∗ = arg maxr≥0 F (r;λ), the ideal algorithm (9.7) would follow the direction of g(m).

However, we only have an estimation of gk(m), denoted by

g′k(m) = λ′k(m)− s′k(m). (9.28)

Denote E(·|Fm) by Em(·). The “error bias” of g′k(m) is defined as

Bk(m) : = Em(g′k(m))− gk(m)

= [Em(λ′k(m))− λk]−

[Em(s′k(m))− sk(r(m))]. (9.29)

Define also the zero-mean “noise”

ηk(m) : = [λ′k(m)− Em(λ′k(m))]

−[s′k(m)− Em(s′k(m))].

Since both s′k(m) and λ′k(m) are bounded, the noise is also bounded: |ηk(m)| ≤ c2 for some

c2 > 0. Then, we have

g′k(m) = gk(m) + Bk(m) + ηk(m). (9.30)

We now sketch the proof in three steps, with the complete proof in [67]. These steps are

relatively independent–if one step can be modified or strengthened later, other steps can

still apply.

Step 1: Bounding the error bias Bk(m),m = 1, 2, . . .

This step shows that the error bias Bk(m) (9.29) decreases “fast enough” with time.

This is done by bounding the two parts of Bk(m).

(i) First, we show that ∀k,

|Em[s′k(m)]− sk(r(m))| ≤

2K exp{(5
2
K + 1)[||r(m)||∞ + log(2)]}/Tm+1 (9.31)
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where Tm+1 means T (m + 1). This is obtained by analyzing the mixing time of the CSMA

Markov chain with TA r(m) (via the conductance [70] of the chain).

By (9.21), we have rk(j +1) ≤ rk(j)+α(j)λmax,∀k, j, so rk(m) ≤ λmax
∑m−1

j=0 α(j),∀k.

Using this in (9.31) yields

|Em[s′k(m)]− sk(r(m))|

≤ 2K · f(m)/Tm+1,∀k. (9.32)

(ii) Next, with the Bernoulli arrival process ak(t) we assumed, it can be shown that

|Em[λ′k(m)]− λk| ≤ 1/Tm+1. (9.33)

Therefore, |Bk(m)| ≤ 2K · f(m)/Tm+1 + 1/Tm+1 ≤ 3K · f(m)/Tm+1. Denote by B(m)

the vector of Bk(m)’s. Since |rk(m) − r∗k| ≤ |r∗k| + |rk(m)| ≤ r̄ + λmax
∑m−1

j=0 α(j) where

r̄ = maxk |r∗k|, we have

∞∑
m=1

α(m)|(r(m)− r∗)T ·B(m)|

≤ 3K2
∞∑

m=1

{α(m)[r̄ + λmax∆(m)] · f(m)/Tm+1]}

< ∞ (9.34)

where the last step has used condition (9.24).

Step 2: Convergence of r(j), j = 1, 2, . . . to r∗

Lemma 10. If (9.34) and (9.23) hold, then with Algorithm (9.21) whose parameters satisfy

the conditions in Theorem 4, r(j) converges to r∗ (the optimal solution of problem (9.4))

with probability 1.

The proof is related to the theory of stochastic approximation [57; 58]. We use d(j) :=

||r(j) − r∗||22 as a Lyapunov function and show that d(j) → 0 with probability 1. Ideally,

if we have the accurate gradient g(j) of F (r(j);λ), it is well known that d(j) → 0 with

suitable step sizes α(j). The key purpose of (9.34) and (9.23) is to control the effect of the

estimation error. Essentially, the result of step 1, (9.34), ensures that the effect of the bias

102



B(j) diminishes as j → ∞, and (9.23) ensures that the effect of the martingale noise η(j)

diminishes (by the martingale convergence theorem.) Combining these and the fact that∑
j α(j) =∞, the convergence to r∗ can be established.

Since r∗ = arg maxr≥0 F (r;λ), we have sk(r∗) ≥ λk,∀k.

Step 3: Rate stability

Lemma 11. With probability 1, limt→∞ Sk(t)/t = sk(r∗),∀k.

This is Lemma 4 in [67]. Since we know from step 2 that r(j) → r∗, it seems quite

intuitive that in the long term, the average service rate of link k converges to sk(r∗).

However, the actual proof is not straightforward.

Finally, the following result [67] concludes the proof.

Lemma 12. If limt→∞ Sk(t)/t = sk(r∗),∀k with probability 1, and if sk(r∗) ≥ λk,∀k, then

the system is rate stable.

Proof sketch of Theorem 5

The proof Theorem 5 follows the same line as that of Theorem 4. As the only difference,

r(j) converges to a different r∗ which is the optimal vector of dual variables of problem

(9.18)). r∗ satisfies the strict inequality sk(r∗) > λk,∀k, which further guarantees that the

queue lengths tend to be small and return to 0 infinitely often.

Proof sketch of Theorem 6

The intuition is that when the step sizes becomes small, r(j) changes slowly and is

quasi-static. Also, r(j) is bounded, so that the mixing time of the CSMA Markov chain

is always bounded. Therefore, in a large time scale, the algorithm follows the gradient

direction which leads to the convergence.

Technically, this is proved by using the differential-equation approach in [74] (also used

in [46]). That is, the trajectory of r(j) converges to the solution of a differential equation
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which converges to r∗. The proof is similar to that of Theorem 9 in the next chapter, and

is omitted here.

9.7 Appendices

9.7.1 Proof of the fact that C is the interior of C̄

Proposition 25. λ is strictly feasible if and only if λ ∈ int C̄. (In other words, C = int C̄.)

Proof. (i) If λ is strictly feasible, then it can be written as λ =
∑

i p̄ix
i where p̄i > 0,∀i and∑

i p̄i = 1. Let p̄0 be the probability corresponding to the all-0 IS, and p̄k be the probability

of the IS ek, k = 1, 2, . . . ,K. Let d0 = min{p̄0/K, mink p̄k} > 0. We claim that for any λ′

that satisfies

|λ′k − λk| ≤ d0,∀k, (9.35)

we have λ′ ∈ C̄. Indeed, if λ′ satisfies (9.35), we can find another probability distribution p̄′

such that
∑

i p̄
′
ix

i
k = λ′k,∀k. p̄′ can be constructed as follows: let p̄′0 = p̄0 −

∑
k(λ

′
k − λk),

p̄′k = p̄k + (λ′k − λk), and let the probabilites of all other IS’s be the same as those in p̄. By

condition (9.35), we have p̄′ ≥ 0. Also,
∑

i p̄
′
ix

i
k = λ′k,∀k.

Therefore, B(λ, d0) ⊆ C̄ where d0 > 0. So λ ∈ int C̄.

(ii) Assume that λ ∈ int C̄. We now construct a p > 0 such that λ =
∑

i pix
i. First,

choose an arbitrary pI > 0 (such that
∑

i pI,i = 1) and let λI :=
∑

i pI,ix
i. If it happens to

be that λI = λ, then λ is strictly feasible. In the following we assume that λI 6= λ. Since

λ ∈ int C̄, there exists a small-enough d > 0 such that λII := λ + d · (λ − λI) ∈ C̄. So λII

can be written as λII =
∑

i pII,ix
i where pII ≥ 0 and

∑
i pII,i = 1.

Notice that λ = α · λI + (1 − α) · λII where α := d/(1 + d) ∈ (0, 1). So λ =
∑

i pix
i

where pi := α · pI,i + (1− α) · pII,i,∀i. Since α > 0, 1− α > 0 and pI,i > 0, pII,i ≥ 0,∀i, we

have pi > 0,∀i. Therefore λ is strictly feasible.
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9.7.2 Proof the Proposition 21

Consider the convex optimization problem (9.10), where λ is strictly feasible (i.e., λ =∑
i p̄i · xi for some p̄i > 0,∀xi and

∑
i p̄i = 1). Problem (9.10) is clearly feasible and the

feasible region is closed and convex. The objective function (the entropy) is bounded in the

feasible region. So, the optimal value is bounded.

We now check whether the Slater condition [56] (pages 226-227) is satisfied. Since all

the constraints in (9.10) are linear, we only need to check whether there exists a feasible u

which is in the relative interior [56] of the domain D of the objective function −
∑

i ui log(ui),

which is D = {u|ui ≥ 0,
∑

i ui = 1}. Since λ =
∑

i p̄i · xi where p̄i > 0,∀i and
∑

i p̄i = 1,

letting u = p̄ satisfies the requirement. Therefore the Slater condition is satisfied. As a

result, there exist finite dual variables y∗k ≥ 0, w∗
i ≥ 0, z∗ such that the Lagrangian

L(u;y∗,w∗, z∗)

= −
∑

i ui log(ui) +
∑

k y∗k(
∑

i ui · xi
k − λk)

+z∗(
∑

i ui − 1) +
∑

i w
∗
i ui

(9.36)

is maximized by the optimal solution u∗, and the maximum is attained.

We first claim that the optimal solution satisfies u∗i > 0,∀i. Suppose u∗i = 0 for all

i’s in a non-empty set I. For convenience, denote p̄ as the vector of p̄i’s. Since both u∗

and p̄ are feasible for problem (9.10), any point on the line segment between them is also

feasible. Then, if we slightly move u from u∗ along the direction of p̄ − u∗, the change of

the objective function H(u) := −
∑

i ui log(ui) (at u∗) is proportional to

(p̄− u∗)T∇H(u∗)

=
∑

i

(p̄i − u∗i )[− log(u∗i )− 1]

=
∑
i/∈I

(p̄i − u∗i )[− log(u∗i )− 1] +
∑
i∈I

p̄i[− log(u∗i )− 1].

For i 6/∈ I, u∗i > 0, so
∑

i/∈I(p̄i − u∗i )[− log(u∗i ) − 1] is bounded. But for i ∈ I, u∗i = 0,

so that − log(u∗i ) − 1 = +∞. Also, since p̄i > 0, we have (p̄ − u∗)T∇H(u∗) = +∞. This

means that H(u) increases when we slightly move u away from u∗ towards p̄. Thus, u∗ is

not the optimal solution.
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Therefore u∗i > 0,∀i. By complementary slackness, w∗
i = 0. So the term

∑
i w

∗
i ui in

(9.36) is 0. Since u∗ maximizes L(u;y∗,w∗, z∗), it follows that

∂L(u∗;y∗,w∗, z∗)
∂ui

= − log(u∗i )− 1 +
∑

k

y∗kx
i
k + z = 0,∀i.

Combining these identities and
∑

i u
∗
i = 1, we have

u∗i =
exp(

∑
k y∗kx

i
k)∑

j exp(
∑

k y∗kx
j
k)

,∀i. (9.37)

Plugging (9.37) back into (9.36), we have maxu L(u;y∗,w∗, z∗) = −F (y∗;λ). Since u∗

and the dual variables y∗ solves (9.10), y∗ is the solution of miny≥0{−F (y;λ)} (and the

optimum is attained). So, supr≥0 F (r;λ) is attained by r = y∗. The above proof also shows

that (9.4) is the dual problem of (9.10).

9.7.3 Analysis of Algorithm 2

Lemma 13. Assume that the utility function vm(fm) (strictly concave) satisfies v′m(0) ≤

V <∞,∀m. Denote by L as the largest number of hops of a flow in the network. Then in

Algorithm 2, bkm(j) ≤ β · V + α + 2α · (L− 1),∀k, m at all time step j.

Proof. According to Algorithm 2, the source of flow m solves fm(j) = arg maxf ′m∈[0,1]{β ·

vm(f ′m)− qδ(m),m(j) · f ′m}. It is easy to see that if qδ(m),m(j) ≥ β · V , then fm(j) = 0, i.e.,

the source stops sending data. Thus qδ(m),m(j + 1) ≤ qδ(m),m(j). If qδ(m),m(j) < β · V , then

qδ(m),m(j + 1) ≤ qδ(m),m(j) + α < β · V + α. Since initially qkm(0) = 0,∀k, m, by induction,

we have

qδ(m),m(j) ≤ β · V + α, ∀j,m. (9.38)

Denote bkm(j) := qkm(j) − qdown(k,m),m(j). In Algorithm 2, no matter whether flow

m has the maximal back-pressure at link k, the actual average service rate s
′
km(j) = 0

if bkm(j) ≤ 0. That is, s
′
km(j) > 0 only if bkm(j) > 0. Since s

′
km(j) ≤ 1, by item 3

of Algorithm 2, qdown(k,m),m(j + 1) ≤ qdown(k,m),m(j) + α and qkm(j + 1) ≥ qkm(j) − α.

Then, if bkm(j) > 0, we have bkm(j + 1) ≥ bkm(j) − 2α > −2α. If bkm(j) ≤ 0, then
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bkm(j + 1) ≥ bkm(j). Since bkm(0) = 0, by induction, we have

bkm(j) ≥ −2α, ∀j, k,m. (9.39)

Since
∑

k:amk=1 bkm(j) = qδ(m),m(j), combined with (9.38) and (9.39), we have bkm(j) ≤

β · V + α + 2α · (L− 1).

Total utility

Regard each period (with length T ) as a “time slot” in [44]. By Lemma 13, bkm(j) ≤

β · V + α + 2α · (L− 1),∀k,m, j. Since rk(j) = [maxm bkm(j)]+, we have 0 ≤ rk(j) ≤ C :=

β · V + α + 2α · (L− 1). Thus, the mixing time of the CSMA Markov chain in any period

is bounded [67]. So

|Ej [s′k(j)]− sk(r(j))| ≤
C1

T
(9.40)

where the constant C1 depends on C and K ([67]), and Ej(·) means the expectation condi-

tioned on the values of all random variables up to time tj .

Since u∗i := pi(r(j)),∀i maximizes H(u) +
∑

k[rk(j)
∑

i(x
i
k · ui)] (see Proposition 22),

similar to the proof of Proposition 23, we have

∑
k

[rk(j)
∑

i

(xi
k · u∗i )]

=
∑

k

[rk(j) · sk(r(j))]

≥ max
µ∈C̄

∑
k

[rk(j) · µk]−K · log(2)

where C̄ is the set of feasible service rates (including C and its boundary).

By this inequality and (9.40),

∑
k

{rk(j) · Ej [s′k(j)]} ≥ max
µ∈C̄

∑
k

[rk(j) · µk]

−K · log(2)−K · C · C1/T.

Define r̃k(j) := rk(j)/α (then r̃k(j) corresponds to the maximal differential backlog
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W ∗
k (j) in [44], since the change of rk(j) has been scaled by the step size α), we have

∑
k

{r̃k(j) · Ej [s′k(j)]} ≥ max
µ∈C̄

∑
k

[r̃k(j) · µk]

−[K · log(2) + K · C · C1/T ]/α.

Now, using Corollary 1 in [44], it follows that

lim inf
J→∞

∑
m

vm(f̄m(J))

≥ W̄ − 2[K · log(2) + K · C · C1/T ]/α + 5K

2β/α

= W̄ − [K · log(2) + K · C · C1/T ] + 5α ·K/2
β

(9.41)

where f̄m(J) :=
∑J−1

j=0 E[fm(j)]/J is the expected average rate of flow m up to the J ’s

period. We have used the fact that Rmax
k = 1, µin

max,k = µout
max,k = 1, where Rmax

k is the

maximal flow input rate at link k, µin
max,k and µout

max,k are the maximal rate the link k can

receive or transmit.

As expected, when T → ∞ and α → 0, this bound matches the bound in Proposition

23. Also, as β →∞, α → 0 , and T →∞ in a proper way (since C and C1 depend on β),

lim infJ→∞
∑

m vm(f̄m(J))→ W̄ .

Queue lengths

By (9.38) and (9.39), we have

qkm(j) ≤ β · V + α + 2(L− 1)α, ∀k, m, j.

Also, in view of the dynamics of qkm(j) in Algorithm 2, the actual queue lengths

Qkm(j) ≤ (T/α) · qkm(j),∀k, m, j. Therefore,

Qkm(j) ≤ T

α
[β · V + (2L− 1)α] (9.42)

So all queue lengths are uniformly bounded. The bound increases with T, β and decreases

with α.
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The above bounds (9.41) and (9.42), however, are not very tight. Our simulation shows

near-optimal total utility without a very large β, T or a very small α. This leads to moderate

queue lengths.

9.7.4 Extensions: adaptive CSMA scheduling as a modular MAC-layer

protocol

Using derivations similar to section 9.3.1, our CSMA algorithm can serve as a modu-

lar “MAC-layer scheduling component” in cross-layer optimization, combined with other

components in the transport layer and network layer (see Fig. 8.1 for the different layers),

usually with queue lengths as the shared information. For example, in addition to its com-

bination with congestion control (at the transport layer), we demonstrate in this section its

combination with optimal multipath routing, anycast and multicast (at the network layer).

Therefore this is a joint optimization of the transport layer, network layer and the MAC

layer.

Anycast

To make the formulation more general, let’s consider anycast with multipath routing.

(This includes unicast with multipath routing as a special case.) Assume that there are

M flows. Each flow m has a source δ(m) (with some abuse of notation) which generates

data and a set of destinations D(m) which receive the data. “Anycast” means that it is

sufficient for the data to reach any node in the set D(m). However, there is no specific

“path” for each flow. The data generated by the source is allowed to split and traverse any

link before reaching the destinations (i.e., multipath routing). This allows better utilization

of the network resource by routing the data through less congested parts of the network.

(For simplicity, we don’t consider the possibility of physical-layer multicast here, i.e., the

effect that a node’s transmission can be received by multiple nodes simultaneously.)

In this case, it is more convenient to use a “node-based” formulation [24; 43]. Denote

the number of nodes by J . For each node j, let I(j) := {k|(k, j) ∈ L}, where L is the set of
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links (it is also the set V in the conflict graph), and let O(j) := {k|(j, k) ∈ L}. Denote the

rate of flow m on link (j, l) by sm
jl . Then the (approximate) utility maximization problem,

similar to (9.13), is

maxu,s,f −
∑

i ui log(ui) + β ·
∑M

m=1 vm(fm)

s.t. sm
jl ≥ 0,∀(j, l) ∈ L,∀m

fm +
∑

l∈I(j) sm
lj ≤

∑
l∈O(j) sm

jl ,∀m, j = δ(m)∑
l∈I(j) sm

lj ≤
∑

l∈O(j) sm
jl ,∀m, j 6= δ(m), j /∈ D(m)∑

i ui · xi
(j,l) ≥

∑
m sm

jl ,∀(j, l) ∈ L

ui ≥ 0,
∑

i ui = 1.

Associate a dual variable qm
j ≥ 0 to the 2nd and 3rd lines of constraints (for each m

and j /∈ D(m)), and define qm
j = 0 if j ∈ D(m). (Note that there is no flow-conservation

constraint for flow m at each node in D(m).) Then similar to section 9.3.1, a partial

Lagrangian is

L(u, s, f ;q)

= −
∑

i ui log(ui)

+β ·
∑

m vm(fm)−
∑

m qm
δ(m)fm

+
∑

(j.l)∈L,m[sm
jl · (qm

j − qm
l )].

(9.43)

First fix u and q, consider maximizing L(u, s, f ;q) over s, subject to sm
jl ≥ 0 and

∑
i ui ·

xi
(j,l) ≥

∑
m sm

jl . For each link (j, l), let the maximal back-pressure z(j,l) := maxm(qm
j − qm

l ).

Then clearly, if z(j,l) > 0, a flow m′ with qm′
j − qm′

l = z(j,l) should be served (with the whole

rate
∑

i ui · xi
(j,l)). If z(j,l) ≤ 0, then no flow is served. After we plug this solution of s

back to (9.43), the rest derivation is the same as in section 9.3.1. Therefore the distributed

algorithm is as follows. We again assume v′m(0) ≤ V < +∞,∀m.

Initially, assume that all queues are empty, and set qm
j = 0,∀j, m. Then iterate as

follows. (Similar to Algorithm 2, the step size is α, and the update interval is T . For

simplicity, we omit the time index here.)

• CSMA scheduling and routing: If z(j,l) > 0, link (j, l) lets r(j,l) = z(j,l) in the CSMA

operation. Choose a flow m′ with qm′
j − qm′

l = z(j,l). When it gets the opportunity to
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transmit, serve flow m′. If z(j,l) ≤ 0, then link (j, l) keeps silent. (Note that there is

no replication of packets.)

• Congestion control: For each flow m, if node j is its source, then it sets fm =

arg maxf ′m∈[0,1]{β · vm(f ′m)− qm
j f ′m}.

• The dual variables qm
j are updated as follows: qm

j ← [qm
j − α

∑
l∈O(j) sm

jl )]+ +

α
∑

l∈I(j) sm
lj if j 6= δ(m) and j /∈ D(m); and qm

j ← [qm
j − α

∑
l∈O(j) sm

jl )]+ + α(fm +∑
l∈I(j) sm

lj ) if j = δ(m). (By doing this, roughly qm
j ∝ Qm

j where Qm
j is the corre-

sponding queue length.) Always let qm
j = 0 if j ∈ D(m).

Furthermore, the above algorithm can be readily extended to incorporate channel selection

in multi-channel wireless networks, with each “link” defined by a triplet (j, l; c), which refers

to the logical link from node j to l on channel c. In this scenario, the conflict graph is defined

on the set of links (j, l; c).

Multicast with network coding

Assume that there are M multicast sessions. Each session m has a source δ(m) which

generates data and a set of destinations D(m) which receive the data. Different from

“anycast”, here the data must reach all nodes in the set D(m). There are two possible

designs for multicast. (1) Fixed multicast tree, where the routes of each multicast session

are fixed. (2) Multicast combined with multipath routing and network coding. Case (1)

is straightforward, but the routing may not be optimal. In case (2), [63] demonstrates an

algorithm which achieves the optimal utility, which however, requires centralized Maximal-

Weight scheduling at the MAC layer. In this section, we show that CSMA scheduling can

be combined with it, leading to a fully distributed algorithm. To facilitate network coding,

we let all the packets have the same size (Note that our results are insensitive to the

distribution of the transmission time, i.e., packet size, if the transmission time and waiting

time are not both constant [52]).

According to the theory of network coding [64], a certain flow rate for a multicast session

can be supported if and only if it can be supported separately for each destination node.
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Let smp
jl be the “information flow rate” on link (j, l) in multicast session m destined for

node p ∈ D(m), and sm
jl be the “capacity” for session m on link (j, l). The above condition

is that smp
jl ≤ sm

jl ,∀p ∈ D(m). Then, the approximate utility maximization problem is

maxu,s,f H(u) + β ·
∑M

m=1 vm(fm)

s.t. smp
jl ≥ 0,∀(j, l) ∈ L,∀m,∀p ∈ D(m)

fm +
∑

l∈I(j) smp
lj ≤

∑
l∈O(j) smp

jl , ∀m, j = δ(m), p ∈ D(m)∑
l∈I(j) smp

lj ≤
∑

l∈O(j) smp
jl , ∀m, p ∈ D(m), j 6= δ(m), j 6= p

smp
jl ≤ sm

jl ,∀p ∈ D(m),∀(j, l) ∈ L∑
i ui · xi

(j,l) ≥
∑

m sm
jl ,∀(j, l) ∈ L

ui ≥ 0,
∑

i ui = 1.

Associate a dual variable qmp
j ≥ 0 to the 2nd and 3rd lines of constraints (for each

m, p ∈ D(m) and j 6= p), and define qmp
j = 0 if j = p. Then a partial Lagrangian is

L(u, s, f ;q)

= H(u)

+β ·
∑

m vm(fm)−
∑

m(
∑

p∈D(m) qmp
δ(m))fm

+
∑

(j.l)∈L,m,p∈D(m) smp
jl [(qmp

j − qmp
l )].

(9.44)

We first optimize L(u, s, f ;q) over {smp
jl }, subject to 0 ≤ smp

jl ≤ sm
jl . A solution is as

follows: smp
jl = 0,∀p satisfying qmp

j − qmp
l ≤ 0, and smp

jl = sm
jl ,∀p satisfying qmp

j − qmp
l > 0.

Define the “back-pressure” of session m on link (j, l) as Wm
jl :=

∑
p∈D(m)(q

mp
j − qmp

l )+. By

plugging the above solution to (9.44), we have

L(u, s, f ;q)

= H(u)

+β ·
∑

m vm(fm)−
∑

m(
∑

p∈D(m) qmp
δ(m))fm

+
∑

(j.l)∈L,m sm
jl W

m
jl .

. (9.45)

Now we optimize it over {sm
jl}, subject to

∑
i ui · xi

(j,l) ≥
∑

m sm
jl . One can find that

the rest is similar to previous derivations. To avoid repetition, we directly write down the

algorithm. Assume v′m(0) ≤ V < +∞,∀m.

Initially, assume that all queues are empty, and set qmp
j = 0,∀j,m, p. Then iterate:
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• CSMA scheduling, routing, and network coding: Link (j, l) computes the maximal

back-pressure z(j,l) := maxm Wm
jl . If z(j,l) > 0, then let r(j,l) = z(j,l) in the CSMA

operation. Choose a session m′ with Wm′
jl = z(j,l). When it gets the opportunity to

transmit, serve session m′. To do so, node j performs a random linear combination5

of the head-of-line packets from the queues of session m′ with destination p ∈ D(m′)

which satisfies qm′p
j − qm′p

l > 0, and transmits the coded packet (similar to [63]). The

coded packet, after received by node l, is replicated and put into corresponding queues

of session m′ at node l (with destination p ∈ D(m′) such that qm′p
j − qm′p

l > 0). The

destinations can eventually decode the source packets [63]. If z(j,l) = 0, then link (j, l)

keeps silent.

• Congestion control: For each flow m, if node j is its source, then it sets fm =

arg maxf ′m∈[0,1]{β · vm(f ′m)− (
∑

p∈D(m) qmp
δ(m))f

′
m}.

• The dual variables qm
j are updated as follows: qmp

j ← [qmp
j − α

∑
l∈O(j) smp

jl )]+ +

α
∑

l∈I(j) smp
lj if j 6= δ(m) and j 6= p where p ∈ D(m); and qmp

j ← [qmp
j −

α
∑

l∈O(j) smp
jl )]+ + α(fm +

∑
l∈I(j) smp

lj ) if j = δ(m). (Note that each packet gen-

erated by the source j = δ(m) is replicated and enters the queues at the source for

all destinations of session m.) By doing this, roughly qmp
j ∝ Qmp

j where Qmp
j is the

corresponding queue length. Always let qmp
j = 0 if j = p where p ∈ D(m).

Note that both algorithms in section 9.7.4 can be analyzed using the approach in section

9.7.3 for Algorithm 2.

5We briefly explain how to perform a “random linear combination” of these packets. For more details,
please refer to [63]. (Note that our main focus here is to show how to combine CSMA scheduling with other
network protocols, instead of network coding itself.) Initially, each packet generated by the source in each
session is associated with an ID. Assume that each packet is composed of many “blocks”, where each block
has γ bits. So, each block can be viewed as a number in a finite field F2γ which has 2γ elements. For each
packet P to be combined here, randomly choose a coefficient aP ∈ F2γ . Denote the i’th block of packet P
as P (i). Then the corresponding block in the code packet Z is computed as Z(i) =

P
P aP P (i), where the

multiplication and summation is on the field F2γ , and the summation is over all the packets to be combined.
Clearly, each packet in the network is a linear combination of some source packets. The ID’s of these

source packets and the corresponding coefficients are included in the packet header, and are updated after
each linear combination along the path (such that the destinations can decode the source packets).
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Chapter 10

CSMA Scheduling with Collisions

10.1 Motivation and overview

We have shown that an adaptive CSMA (Carrier Sense Multiple Access) distributed

algorithm can achieve the maximal throughput in a general class of networks. In wireless

networks, however, the algorithm needs an idealized assumption that the sensing time is

negligible, so that there is no collision. In this chapter, we study more practical CSMA-based

scheduling algorithms with collisions. First, we provide a discrete-time model of this CSMA

protocol and give an explicit throughput formula, which has a simple product-form due to

the quasi-reversibility structure of the model. Second, we show that the algorithm in the last

chapter can be extended to approach throughput optimality in this case. Finally, sufficient

conditions are given to ensure the convergence and stability of the proposed algorithm.

To combine the scheduling algorithm (with collisions) with congestion control, we follow

a similar approach used in the last chapter. The details of the combination is given in [71].

To achieve throughput-optimality even with collisions, we need to limit the impact of

collisions. Our basic idea, as outlined in section 8.3.1, is to use a protocol similar to the

RTS/CTS mode of IEEE 802.11, where we let each link fix its transmission probability but

adjust its transmission time (or length) to meet the demand. In the absence of hidden

nodes, collisions only occur among the small RTS packets but not the data packets. Also,
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the collision probability is limited since we fix the transmission probabilities. These two

key factors combined ensure a limited impact of collisions. When the transmission lengths

are large enough, the protocol intuitively approximates the idealized-CSMA.

However, to precisely model and compute the service rates in the CSMA protocol with

collisions, and to prove the throughput-optimality of our algorithms are not straightforward.

First, the Markov chain used to model the CSMA protocol is no longer time-reversible. Also,

the resulting stationary distribution, although in a product-form, is no longer a Markov

Random Field.

Finally, it is worth noting that an interesting byproduct of our general CSMA model

developed in this chapter is the unification of several known models for slotted-ALOHA,

wireless LAN (as in Bianchi [65]) and the idealized-CSMA model. Indeed, we believe that

the general CSMA model captures some essence of random access algorithms.

We note a recent work [61] by Ni and Srikant who developed an alternative algorithm

to deal with collisions. Their algorithm uses alternate control phases and data phases.

Collisions only occur in the control phase, but not in the data phase. The same product-

form distribution as in the last chapter can be obtained for the data phase, which is then

used to achieve the maximal throughput.

10.2 CSMA/CA-based scheduling with collisions

10.2.1 Basic protocol

We describe the basic CSMA/CA protocol with fixed transmission probabilities (which

suffices for our later development.) Let σ be the duration of each idle slot (or “minislot”).

(In 802.11a, for example, σ = 9µs.) In the following we will simply use “slot” to refer to

the minislot.

Assume that all links are saturated (i.e., always have packets to transmit). In each

slot, if (the transmitter of) link i is not already transmitting and if the medium is idle, the

transmitter of link i starts transmission with probability pi (also denote qi := 1−pi). If at a
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certain slot, link i did not choose to transmit but a conflicting link starts transmitting, then

link i keeps silent until that transmission ends. If they start transmitting at the same slot,

then a collision happens. (In this chapter, we focus on networks without hidden nodes.)

Each link transmits a short probe packet with length γ (all “lengths” here are measured

in number of slots) before the data is transmitted (similar to the RTS/CTS mode in 802.11).

This increases the overhead of successful transmissions, but can avoid collisions of long data

packets. When a collision happens, only the probe packets collide, so each collision lasts

a length of γ. Assume that a successful transmission of link i lasts τi (which includes a

constant overhead τ ′ and the data payload τp
i which is a random variable). Clearly τi ≥ τ ′.

Let the p.m.f. (probability mass function) of τi be

Pr{τi = bi} = Pi(bi),∀bi ∈ Z++ (10.1)

and assume that the p.m.f. has a finite support, i.e., Pi(bi) = 0,∀bi > bmax > 0. Then the

mean of τi is Ti :=
∑

b∈Z++
b · Pi(b).

Fig. 10.1 illustrates the timeline of a 3-link network where link 1 and 2 conflict, and

link 2 and 3 conflict.

The above model possesses a quasi-reversibility property that will lead to a simple

throughput formula. A process is “time-reversible” if the process and its time-reversed

process are statistically indistinguishable [49]. Our model, in Fig. 10.1, reversed in time,

follows the same protocol as described above, except for the order of the overhead and the

payload, which are reversed. A key reason for this property is that the collisions start and

finish at the same time.

10.2.2 Notation

Let the “on-off state” be x ∈ {0, 1}K , and xk be the k-th element of x. Define xk = 1 if

link k is active (transmitting) in state x, and xk = 0 otherwise. Then x is a vector indicating

which links are active in a given slot. Let G(x) be the subgraph of G after removing all

vertices (each representing a link) with state 0 (i.e., any link j with xj = 0) and their

associated edges. In general, G(x) is composed of a number of connected components
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Figure 10.1: Timeline in the basic model (In this figure, τi = Ti, i = 1, 2, 3 are constants.)
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Figure 10.2: An example conflict graph (each square represents a link). In this on-off state

x, links 1, 2, 5 are active. So S(x) = {5}, φ(x) = {1, 2}, h(x) = 1.

(simply called “components”) Cm(x),m = 1, 2, . . . ,M(x) (where each component is a set

of links, and M(x) is the total number of components in G(x)). If a component Cm(x) has

only one active link (i.e., |Cm(x)| = 1), then this link is having a successful transmission; if

|Cm(x)| > 1, then all the links in the component are experiencing a collision. Let the set of

“success” links in state x be S(x) := {k|k ∈ Cm(x) with |Cm(x)| = 1}, and the set of links

which are experiencing collisions be φ(x). Also, define the “collision number” h(x) as the

number of components in G(x) with size larger than 1. Fig. 10.2 shows an example. Note

that the transmissions in a collision component Cm(x) are “synchronized”, i.e., the links in

Cm(x) must have started transmitting in the same slot, and will end transmitting in the

same slot after γ slots (the length of the probe packets).
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10.2.3 Throughput computation

By properly defining the “state”, the above CSMA/CA protocol defines a discrete time

Markov chain. This Markov chain is quasi-reversible, and its stationary distribution has a

simple product-form, as shown in section 10.5.1 during the proof of Theorem 7. Then, the

probability of any on-off state x can be computed:

Theorem 7. With the stationary distribution, the probability of x ∈ {0, 1}K is

p(x) =
1
E

(γh(x)
∏

k∈S(x)

Tk)
∏

i:xi=0

(1− pi)
∏

j:xj=1

pj

=
1
E

(γh(x)
∏

k∈S(x)

Tk)
K∏

i=1

pxi
i q1−xi

i (10.2)

where Ti is the mean transmission length of link k, and E is a normalizing term such that∑
x p(x) = 1.1

The proof is given in section 10.5.1.

Remark: This simple product-form formula turns out to be quite powerful. It not only

allows us to extend our algorithms previously designed for idealized CSMA to the practical

CSMA with collisions, but also unifies several well-known models — Slotted Aloha, Bianchi’s

model of Wireless LAN [65] and the idealized CSMA turn out to be special cases of Theorem

7. We will elaborate on this later in section 10.6.

Now we re-parametrize Tk by a variable rk. Let Tk := τ ′ + T0 · exp(rk), where τ ′ is the

overhead of a successful transmission (e.g., RTS, CTS, ACK packets), and T p
k := T0 ·exp(rk)

is the mean length of the payload. T0 > 0 is a constant “reference payload length”. Let r

be the vector of rk’s. By Theorem 7, the probability of x (with a given r) is

p(x; r) =
1

E(r)
g(x) ·

∏
k∈S(x)

(τ ′ + T0 · exp(rk)) (10.3)

where g(x) = γh(x)
∏K

i=1 pxi
i q1−xi

i is not related to r, and the normalizing term is

E(r) =
∑
x′

[g(x′) ·
∏

k∈S(x′)

(τ ′ + T0 · exp(rk))]. (10.4)

1In this chapter, several kinds of “states” are defined. With a little abuse of notation, we always use p(·)
to denote the probability of the “state” under the stationary distribution of the CSMA Markov chain. This
does not cause confusion since the meaning of p(·) is clear from its argument.
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Then, the probability that link k is transmitting payload in a given slot is

sk(r) =
T0 · exp(rk)

τ ′ + T0 · exp(rk)

∑
x:k∈S(x)

p(x; r) (10.5)

Recall that the capacity of each link is 1. So sk ∈ [0, 1] is also the service rate of link k.

10.3 A Distributed algorithm to approach throughput-

optimality

The following theorem states that any λ ∈ C can be supported by properly choosing the

mean payload lengths T p
k := T0 exp(rk),∀k.

Theorem 8. Assume that γ, τ ′ > 0, and transmission probabilities pk ∈ (0, 1),∀k are fixed.

Given any λ ∈ C, there exists a unique r∗ ∈ RK such that the service rate of link k is equal

to the arrival rate for all k:

sk(r∗) = λk,∀k. (10.6)

And r∗ is the solution of the convex optimization problem

max
r

L(r;λ) (10.7)

where L(r;λ) =
∑

k(λkrk)− log(E(r)). This is because ∂L(r;λ)/∂rk = λk − sk(r),∀k.

The proof is given in section 10.5.2.

Theorem 8 motivates us to design a gradient algorithm to solve problem (10.7). How-

ever, similar to the idealized-CSMA case in the last chapter, due to the randomness of the

system, λk and sk(r) cannot be obtained directly and need to be estimated. In the follow-

ing algorithm, each link k dynamically adjusts its mean payload length T p
k based on local

information.

Algorithm 4: Transmission length control algorithm

The vectors r is updated at time ti, i = 1, 2, . . . . Let t0 = 0 and ti − ti−1 =

M (milliseconds), i = 1, 2, . . . . Let “period i” be the time between ti−1 and ti, and r(i)
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be the value of r at the end of period i, i.e., at time ti. For simplicity, assume that the

update interval (M milliseconds) is a multiple of minislots, and r(i),∀i is always set at the

beginning of a minislot. Initially, link k sets rk(0) ∈ [rmin, rmax] where rmin, rmax are two

parameters (to be further discussed). Then at time ti, i = 1, 2, . . . , update

rk(i) = rk(i− 1) + α(i)[λ′k(i)− s′k(i) + h(rk(i− 1))] (10.8)

where α(i) > 0 is the step size in period i, λ′k(i), s
′
k(i) are the empirical average arrival rate

and service rate2 in period i (i.e., the actual amount of arrived traffic and served traffic in

period i divided by M . Note that λ′k(i), s
′
k(i) are random variables which are generally not

equal to λk and sk(r(i − 1)). Assume that the maximal instantaneous arrival rate is λ̄, so

λ′k(i) ≤ λ̄,∀k, i. And h(·) is a “penalty function”, defined below, to keep r(i) in a bounded

region. (This is a “softer” approach than directly projecting rk(i) to the set [rmin, rmax].

The purpose is only to simplify the proof of Theorem 9 later.)

h(y) =


rmin − y if y < rmin

0 if y ∈ [rmin, rmax]

rmax − y if y > rmax

(10.9)

In period i + 1, given r(i), we need to choose τp
k (i), the payload lengths of each link k,

so that E(τp
k (i)) = T p

k (i) = T0 exp(rk(i)). If T p
k (i) is an integer, then we let τp

k (i) = T p
k (i);

otherwise, we randomize τp
k (i) as follows:

τp
k (i) =


⌈
T p

k (i)
⌉

with probability T p
k (i)−

⌊
T p

k (i)
⌋

⌊
T p

k (i)
⌋

with probability
⌈
T p

k (i)
⌉
− T p

k (i)
(10.10)

Clearly, there are other ways to randomize τp
k (i) if T p

k (i) is not integer.

Intuitively speaking, Algorithm 4 says that when rk ∈ [rmin, rmax], if the empirical

arrival rate of link k is larger than the service rate, then link k should transmit more

aggressively by using a larger Tx length, and vice versa.
2Like in the last chapter, we let link k send dummy packets when the queue is empty (so each link is

saturated). This ensures that the CSMA Markov chain has the desired stationary distribution in (10.2).
Note that the transmitted dummy packets are also included when s′k(i) is computed.
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Algorithm 4 is parametrized by rmin, rmax which are fixed during the execution of the

algorithm. Note that the choice of rmax affects the maximal possible payload length. Also,

as discussed below, the choices of rmax and rmin also determine the “capacity region” of

Algorithm 4.

We define the region of arrival rates

C(rmin, rmax) := {λ|r∗ := arg max
r

L(r;λ) ∈ (rmin, rmax)K}

(recall that r∗ is unique for a given strictly feasible λ). Later we will show that the algorithm

can “support” any λ ∈ C(rmin, rmax) in some sense under certain conditions on the step

sizes.

Clearly, C([rmin, rmax]) → C as rmin → −∞ and rmax → ∞, where C is the set of

all strictly feasible λ (by Theorem 8). Therefore, although given rmin, rmax, the region

C(rmin, rmax) is generally smaller than C, one can choose rmin, rmax to arbitrarily approach

the maximal capacity region C. Also, there is a tradeoff between the capacity region and

the maximal packet length.

Theorem 9. Assume that the vector of arrival rates λ ∈ C(rmin, rmax). With Algorithm 4,

(i) If α(i) > 0 is non-increasing and satisfies
∑

i α(i) =∞,
∑

i α(i)2 <∞ and α(1) ≤ 1,

then r(i)→ r∗ as i→∞ with probability 1, where r∗ satisfies sk(r∗) = λk,∀k.

(ii) If α(i) = α (i.e., constant step size), then for any δ > 0, there exists α > 0 such that

lim infN→∞
∑N

i=1 s′k(i)/N ] ≥ λk − δ,∀k with probability 1. In other words, one can achieve

average service rates arbitrarily close to the arrival rates by choosing small enough α.

The complete proof is given in section 10.5.3. But the result can be intuitively under-

stood as follows. If the step size is small, rk is “quasi-static” such that roughly, the service

rate is averaged (over multiple periods) to sk(r), and the arrival rate is averaged to λk.

Thus the algorithm solves the optimization problem (10.7) by a stochastic approximation

[74] argument, such that r(i) converges to r∗ in part (i), and r(i) is near r∗ with high

probability in part (ii).
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Corollary 2. Consider a variant of Algorithm 4:

rk(i) = rk(i− 1) + α(i)[λ′k(i) + ε− s′k(i) + h(rk(i− 1))] (10.11)

where ε > 0. That is, the algorithm “pretends” to serve the arrival rate λ + ε · 1 (where

ε > 0) which is slightly larger than the actual λ. Assume that

λ ∈ C′(rmin, rmax, ε)

:= {λ|λ + ε · 1 ∈ C(rmin, rmax)}.

(i) If α(i) > 0 is non-increasing and satisfies
∑

i α(i) =∞,
∑

i α(i)2 <∞ and α(1) ≤ 1,

then r(i)→ r∗ as i→∞ with probability 1, where r∗ satisfies sk(r∗) = λk + ε > λk,∀k

(ii) If α(i) = α (i.e., constant step size) where α is small enough, the all queues are

positive recurrent.

Algorithm (10.11) is parametrized by rmin, rmax and ε. Clearly, as rmin → −∞, rmax →

∞ and ε→ 0, C′(rmin, rmax, ε)→ C, the maximal capacity region.

The proof is similar to that of Theorem 9 and is given in [73]. A sketch is as follows:

Part (i) is similar to (i) in Theorem 9. The extra fact that sk(r∗) > λk,∀k reduces the

queue size compared to Algorithm 4. Part (ii) holds because if we choose δ = ε/2, then by

Theorem 9, lim infN→∞
∑N

i=1 s′k(i)/N ] ≥ λk + ε − δ > λk,∀k almost surely if α is small

enough. Then the result follows by showing that the queues have negative drift.

10.4 Numerical examples

Consider the conflict graph in Fig. 10.3. Let the vector of arrival rates be λ = ρ · λ̂,

where ρ ∈ (0, 1) is the “load”, and λ̂ is a convex combination of several maximal IS:

λ̂ = 0.2∗[1, 0, 1, 0, 1, 0, 0]+0.2∗[0, 1, 0, 0, 1, 0, 1]+0.2∗[0, 0, 0, 1, 0, 1, 0]+0.2∗[0, 1, 0, 0, 0, 1, 0]+

0.2 ∗ [1, 0, 1, 0, 0, 1, 0] = [0.4, 0.4, 0.4, 0.2, 0.4, 0.6, 0.2]. Since ρ ∈ (0, 1), λ is strictly feasible.

Fix the Tx probabilities at pk = 1/16,∀k. The “reference payload length” T0 = 15. The

collision length (e.g., RTS length) is γ = η · 10, and the overhead of successful transmission
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Figure 10.3: The conflict graph in simulations
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(b) Relation with the overhead (given ρ = 0.8)

Figure 10.4: Required mean payload lengths

is τ ′ = η · 20, where η is a “relative size” of the overhead for simulation purpose. Later we

will let η ∈ {1, 0.5, 0.2} to illustrate the effects of overhead size.

Now we vary ρ and η. And in each case we solve problem (10.7) to obtain the required

mean payload length T p
k := T0 ·exp(r∗k), k = 1, 2, . . . , 7. Fig. 10.4 (a) shows how T p

k ’s change

as the load ρ changes, where η = 1. Clearly, as ρ increases, T p
k ’s tend to increase. Also, the

rate of increase becomes faster as ρ approaches 1. Therefore, there is a tradeoff between the

throughput and transmission lengths (long transmission lengths introduce larger delays for

conflicting links). Fig. 10.4 (b) shows how T p
k ’s depends on the relative size η of overhead

(with fixed ρ = 0.8 and η ∈ {1, 0.5, 0.2}). As expected, the smaller the overhead, the smaller

T p
k ’s are required.
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(b) Stability of the queues

Figure 10.5: Simulation of Algorithm (10.11) (with the conflict graph in Fig. 10.3)

Next, we evaluate algorithm (10.11) (a variant of Algorithm 4) in our C++ simulator.

The update in (10.11) is performed every M = 5ms. Let the step size α(i) = 0.23/(2 +

i/100). The upper bound rmax = 5, lower bound rmin = 0, and the “gap” ε = 0.005.

Assume the initial values of rk’s are 0.

Let the “load” of arrival rates be ρ = 0.8 (i.e., λ = 0.8 · λ̂), and the relative size of

overhead η = 0.5 (i.e., γ = 5, τ ′ = 10). To show the negative drift of the queue lengths,

assume that initially all queue lengths are 300 (data units). As expected, Fig. 10.5 (a)

shows the convergence of the mean payload lengths, and Fig. 10.5 (b) shows that all queues

are stable.

10.5 Proofs of theorems

10.5.1 Proof of Theorem 7

Define the state

w := {x, ((bk, ak),∀k : xk = 1)} (10.12)
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where bk is the total length of the current packet link k is transmitting, ak is the remaining

time (including the current slot) before the transmission of link k ends. Note that

(I) ak ≤ bk,∀k.

(II) If k ∈ φ(x), then bk = γ and ak ∈ {1, 2, . . . , γ}. An important observation here is

that the transmissions in a collision component Cm(x) are “synchronized”, i.e., the links

in Cm(x) must have started transmitting at the same time, and will end transmitting at

the same time, so all links in the component Cm(x) have the same remaining time. That

is, ak = a(m) for any k ∈ Cm(x) where |Cm(x)| > 1, and a(m) denotes the remaining time

of the component Cm(x). (To see this, any two links i and j in this component with an

edge between them must have started transmitting at the same time. Otherwise, if i starts

earlier, j would not transmit since it already hears i’s transmission; and vice versa. By

induction, all links in the component must have started transmitting at the same time.)

The transitions among the set of states defined in (10.12) form a discrete-time Markov

chain which is ergodic. Since the transmission lengths are always bounded by bmax by

assumption, we have bk ≤ bmax, and therefore the Markov chain has a finite number of

states. Its stationary distribution is expressed in the following lemma.

Lemma 14. In the stationary distribution, the probability of a valid3 state w as defined by

(10.12) is

p(w) =
1
E

∏
i:xi=0

qi

∏
j:xj=1

[pj · f(bj , j, x)] (10.13)

where

f(bj , j, x) =


1 if j ∈ φ(x)

Pj(bj) if j ∈ S(x)
, (10.14)

where Pj(bj) is the p.m.f. of link j’s transmission length, as defined in (10.1). Also, E is a

normalizing term such that
∑

w p(w) = 1, i.e., all probabilities sum up to 1. Note that p(w)

does not depend on the remaining time ak’s.

Proof. For a given state w = {x, ((bk, ak),∀k : xk = 1)}, define the set of active links whose
3A state w is valid iff it satisfies (I) and (II) above.

125



remaining time is larger than 1 as

A1(w) = {k|xk = 1, ak > 1}.

Links in A1(w) will continue their transmissions (either with success or a collision) in the

next slot.

Define the set of inactive links “blocked” by links in A1(w) as

∂A1(w) = {j|e(j, k) = 1 for some k ∈ A1(w)}

where e(j, k) = 1 means that there is an edge between j and k in the conflict graph. Links

in ∂A1(w) will remain inactive in the next slot.

Write Ā1(w) := A1(w) ∪ ∂A1(w). Define the set of all other links as

A2(w) = N\Ā1(w).

These links can change their on-off states xk’s in the next slot. On the other hand, links in

Ā1(w) will have the same on-off states xk’s in the next slot.

State w can transit in the next slot to another valid state w′ = {x′, ((b′k, a′k),∀k : x′k =

1)}, i.e., Q(w,w′) > 0, if and only if w′ satisfies that (i) x′k = xk,∀k ∈ Ā1(w); (ii) b′k =

bk, a
′
k = ak − 1,∀k ∈ Ā1(w) such that xk = 1; (iii) a′k = b′k,∀k ∈ A2(w) such that x′k = 1,

and b′k = γ,∀k ∈ A2(w) ∩ φ(x′). (If A2(w) is an empty set, then condition (iii) is trivially

true.) The transition probability is

Q(w,w′) =
∏

i∈A2(w)

[pi · f(b′i, i, x
′)]x

′
iq

1−x′i
i .

Define

Q̃(w′, w) :=
∏

i∈A2(w)

[pi · f(bi, i, x)]xiq1−xi
i .

(If A2(w) is an empty set, then Q(w,w′) = 1 and Q̃(w′, w) := 1.) If w and w′ does not satisfy

conditions (i), (ii), (iii), then Q(w,w′) = 0, and also define Q̃(w′, w) = 0. (Q̃(w′, w) can

be viewed as the transition probability of the time-reversed process: notice the similarity

between Q(w,w′) and Q̃(w′, w).)

126



Then, if Q(w,w′) > 0 (and Q̃(w′, w) > 0), p(w)/Q̃(w′, w) = 1
E

∏
i/∈A2(w)[pi ·

f(bi, i, x)]xiq1−xi
i . And p(w′)/Q(w,w′) = 1

E

∏
i/∈A2(w)[pi · f(b′i, i, x

′)]x
′
iq

1−x′i
i . But for any

i /∈ A2(w), i.e., i ∈ Ā1(w), we have x′i = xi, b
′
i = bi by condition (i), (ii) above. Therefore,

the two expressions are equal. Thus

p(w)Q(w,w′) = p(w′)Q̃(w′, w),∀w,w′.

Therefore, ∑
w

p(w) ·Q(w,w′) =
∑
w

p(w′) · Q̃(w′, w) = p(w′).

That is, the distribution (10.13) is invariant (or “stationary”).

Using Lemma 14, the probability of any on-off state x, as in Theorem 7, can be computed

by summing up the probabilities of all states w’s with the same on-off state x, using (10.13).

Define the set of valid states B(x) := {w| the on-off state is x in the state w}. By

Lemma 14, we have

p(x) =
∑

w∈B(x)

p(w)

=
1
E

∑
w∈B(x)

{
∏

i:xi=0

qi

∏
j:xj=1

[pj · f(bj , j, x)]}

=
1
E

(
∏

i:xi=0

qi

∏
j:xj=1

pj)
∑

w∈B(x)

∏
j:xj=1

f(bj , j, x)

=
1
E

(
∏

i:xi=0

qi

∏
j:xj=1

pj) ·
∑

w∈B(x)

[
∏

j∈S(x)

Pj(bj)] (10.15)

Now we compute the term
∑

w∈B(x)[
∏

j∈S(x) Pj(bj)]. Consider a state w =

{x, ((bk, ak),∀k : xk = 1)} ∈ B(x). For k ∈ S(x), bk can be different values in Z++.

For each fixed bk, ak can be any integer from 1 to bk. For a collision component Cm(x)

(i.e., |Cm(x)| > 1), the remaining time of each link in the component, a(m), can be any
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integer from 1 to γ. Then we have

∑
w∈B(x)

[
∏

j∈S(x)

Pj(bj)]

=
∏

j∈S(x)

[
∑
bj

∑
1≤aj≤bj

Pj(bj)]
∏

m:|Cm(x)|>1

(
∑

1≤a(m)≤γ

1)

=
∏

j∈S(x)

[
∑
bj

bjPj(bj)] · γh(x)

= (
∏

j∈S(x)

Tj)γh(x) (10.16)

Combining (10.15) and (10.16) completes the proof.

10.5.2 Proof of Theorem 8

If at an on-off state x, k ∈ S(x) (i.e., k is transmitting successfully), it is possible that

link k is transmitting the overhead or the payload. So we define a more detailed state (x, z),

where z ∈ {0, 1}K . Let zk = 1 if k ∈ S(x) and link k is transmitting its payload (instead of

overhead). Let zk = 0 otherwise. Denote the set of all possible detailed state (x, z) by S.

Then similar to the proof of Theorem 7, and using equation (10.3), we have the following

product-form stationary distribution

p((x, z); r) =
1

E(r)
g(x, z) · exp(

∑
k

zkrk) (10.17)

where

g(x, z) = g(x) · (τ ′)|S(x)|−1′zT 1′z
0 . (10.18)

where 1′z is the number of links that are transmitting the payload in state (x, z).

Now we give alternative definitions of feasible and strictly feasible arrival rates. As will

be shown soon, these definitions are equivalent to Definition 1 in section 8.1.

Definition 5. (i) A vector of arrival rate λ ∈ RK
+ (where K is the number of links) is

feasible if there exists a probability distribution p̄ over S (i.e.,
∑

(x,z)∈S p̄((x, z)) = 1 and

p̄((x, z)) ≥ 0), such that

λk =
∑

(x,z)∈S

p̄((x, z)) · zk. (10.19)
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Let C̄CO be the set of feasible λ, where “CO” stands for “collision”.

The rationale of the definition is that if λ can be scheduled by the network, the fraction

of time that the network spent in the detailed states must be non-negative and sum up to 1.

(Note that (10.19) is the probability that link k is sending its payload given the distribution

of the detailed states.)

For example, in the Ad-hoc network in Fig. 8.2, λ = (0.5, 0.5, 0.5) is feasible, because

(10.19) holds if we let the probability of the detailed state (x = (1, 0, 1), z = (1, 0, 1)) be 0.5,

the probability of the detailed state (x = (0, 1, 0), z = (0, 1, 0)) be 0.5, and all other detailed

states have probability 0.

(ii) A vector of arrival rate λ ∈ RK
+ is strictly feasible if it can be written as (10.19)

where
∑

(x,z)∈S p̄((x, z)) = 1 and p̄((x, z)) > 0. Let CCO be the set of strictly feasible λ. We

will show below that CCO is the interior of C̄CO.

In the previous example, λ = (0.5, 0.5, 0.5) is not strictly feasible since it cannot be

written as (10.19) where all p̄((x, z)) > 0. But λ′ = (0.49, 0.49, 0.49) is strictly feasible.

Proposition 26. Definition 1 and Definition 5 are equivalent. That is,

C̄CO = C̄ (10.20)

CCO = C (10.21)

where C̄ and C are the feasible and strictly feasible sets of λ as defined in section 8.1 (without

states with collisions).

Remark: This also implies that CCO is the interior of C̄CO, since C is the interior of C̄

by Prop. 19.

Proof. We first prove (10.20). By definition, any λ ∈ C̄ can be written as λ =
∑

σ∈X p̄σσ

where X is the set of independent sets, and p̄ = (p̄σ)σ∈X is a probability distribution, i.e.,

p̄σ ≥ 0,
∑

σ∈X p̄σ = 1. Now we construct a distribution p over the states (x, z) ∈ S as

follows. Let p((σ, σ)) = p̄σ,∀σ ∈ X , and let p((x, z)) = 0 for all other states (x, z) ∈ S.
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Then, clearly
∑

(x,z)∈S p((x, z)) · z =
∑

σ∈X p((σ, σ)) · σ =
∑

σ∈X p̄σσ = λ, which implies

that λ ∈ C̄CO. So,

C̄ ⊆ C̄CO. (10.22)

On the other hand, if λ ∈ C̄CO, then λ =
∑

(x,z)∈S p((x, z))·z for some distribution p over

S. We define another distribution p̄ over X as follows. Let p̄σ =
∑

(x,z)∈S:z=σ p((x, z)),∀σ ∈

X . Then, λ =
∑

(x,z)∈S p((x, z)) · z =
∑

σ∈X
∑

(x,z)∈S:z=σ p((x, z))σ =
∑

σ∈X p̄σσ, which

implies that λ ∈ C̄. Therefore

C̄CO ⊆ C̄. (10.23)

Combining (10.22) and (10.23) yields (10.20).

To prove (10.21), we only need to show that CCO is the interior of C̄. The proof is very

similar to that in section 9.7.1, and is thus omitted.

We now consider the following function (the “log likelihood function” [59] if we estimate

the parameter r from p̄((x, z))’s). We will show that r∗ that maximizes F (r;λ) over r

satisfies (10.6).

F (r;λ)

=
∑

(x,z)∈S p̄((x, z)) log(p((x, z); r))

=
∑

(x,z)∈S p̄((x, z))[
∑

k zkrk + log(g(x, z))− log(E(r))]

=
∑

k λkrk +
∑

(x,z)∈S [p̄((x, z)) log(g(x, z))]− log(E(r))

where λk =
∑

(x,z)∈S p̄((x, z)) · zk is the arrival rate at link k. Note that F (r;λ) is concave

in r. This is because (a) the first term is linear in r; (b) the second term does not involve

r and (c) E(r) as defined in (10.4) can be expanded to a sum of exponential terms of r. So

log(E(r)) is a log-sum-exp function which is convex [56]. Therefore F (r;λ) is concave in r.

Consider the following optimization problem

supr F (r;λ) . (10.24)

Note that the difference between F (r;λ) and L(r;λ) defined in Theorem 8 is a constant
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independent of r. Therefore, problem (10.24) is equivalent to

sup
r

L(r;λ). (10.25)

Since log(p((x, z); r)) ≤ 0, we have F (r;λ) ≤ 0. Therefore supr F (r;λ) exists. Since λ

is strictly feasible, supr F (r;λ) can be attained (The proof of this subtle point is given a

little later.) So the problem is the same as maxr F (r;λ). Hence, the solution of (10.24), r∗,

satisfies

∂F (r∗;λ)
∂rk

= λk −
1

E(r∗)

∑
x:k∈S(x)

[g(x) · T0 · exp(r∗k) ·
∏

j∈S(x),j 6=k

(τ ′ + T0 · exp(r∗j ))]

= λk −
1

E(r∗)
T0 · exp(r∗k)

τ ′ + T0 · exp(r∗k)

∑
x:k∈S(x)

[g(x) ·
∏

j∈S(x)

(τ ′ + T0 · exp(r∗j ))]

= λk −
T0 · exp(r∗k)

τ ′ + T0 · exp(r∗k)

∑
x:k∈S(x)

p(x; r∗)

= λk − sk(r∗) = 0.

Proof of the attainability of supr F (r;λ)

Lemma 15. Assume that λ is strictly feasible. Problem (10.24) is the dual problem of the

following convex optimization problem, where the vector u can be viewed as a probability

distribution over the detailed states (x, z):

maxu {
∑

(x,z)∈S

[−u(x,z) log(u(x,z))] +
∑

(x,z)∈S

[u(x,z) · log(g(x, z))]}

s.t.
∑

(x,z)∈S:zk=1

u(x,z) ≥ λk,∀k

u(x,z) ≥ 0,
∑
(x,z)

u(x,z) = 1. (10.26)

Furthermore, supr F (r;λ) is attainable.

Proof. Since λ is strictly feasible, problem (10.26) is strictly feasible and satisfies the Slater

condition [56].
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Let yk ≥ 0 be the dual variable associated with the constraint
∑

(x,z)∈S:zk=1 u(x,z) ≥ λk,

then a partial Lagrangian is

L(u;y)

=
∑

(x,z)∈S

[−u(x,z) log(u(x,z))] +
∑

(x,z)∈S

[u(x,z) · log(g(x, z))]

+
∑

k

yk[
∑

(x,z)∈S:zk=1

u(x,z) − λk]

=
∑

(x,z)∈S

{u(x,z)[− log(u(x,z)) + log(g(x, z)) +
∑

k:zk=1

yk]} −
∑

k

(ykλk).

So
∂L(u;y)
∂u(x,z)

= − log(u(x,z))− 1 + log(g(x, z)) +
∑

k:zk=1

yk.

If u(x,z) = p((x, z);y) (cf. equation (10.17)), then the partial derivative

∂L(u;y)
∂u(x,z)

= log(E(y))− 1

which is the same for all state (x, z) (Given the dual variables y, log(E(y)) is a constant).

This means that u(x,z) = p((x, z);y) > 0 maximizes L(u;y) over u subject to u(x,z) ≥

0,
∑

(x,z) u(x,z) = 1 (since it is impossible to increase L(u;y) over u by slightly perturbing

u). Denote l(y) = maxu L(u;y), and u(x,z)(y) = p((x, z);y) as the maximizer. Then the

dual problem of (10.26) is infy≥0 l(y). Plugging the expression of u(x,z)(y) into L(u;y),

it is not difficult to find that infy≥0 l(y) is equivalent to problem (10.24), with r and y

interchangeable.

Since problem (10.26) satisfies the Slater condition, there exists a (finite) vector of opti-

mal dual variable r∗, which is also the solution of problem (10.24). Therefore, supr F (r;λ)

is attainable and is the same as maxr F (r;λ).

Proof of the uniqueness of r∗

Now we show the uniqueness of r∗. Note that the objective function of (10.26) is strictly

concave. Therefore u∗, the optimal solution of (10.26) is unique. Consider two extended

state (ek, ek) and (ek,0), where ek is the K-dimensional vector whose k’th element is 1
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and all other elements are 0’s. We have u∗(ek,ek) = p((ek, ek); r∗) and u∗(ek,0) = p((ek,0); r∗).

Then by (10.17),

u(ek,ek)(r
∗)/u(ek,0)(r

∗) = exp(r∗k) · (T0/τ ′). (10.27)

Suppose that r∗ is not unique, that is, there exist r∗I 6= r∗II but both are optimal r. Then,

r∗I,k 6= r∗II,k for some k. This contradict to (10.27) and the uniqueness of u∗. Therefore r∗

is unique.

10.5.3 Proof of Theorem 9

We will use results in [74] to prove Theorem 9. Similar techniques have been used in

[46] to analyze the convergence of an algorithm in [26].

Part (i): Decreasing step size

Define the concave function

H(y) :=


−(rmin − y)2/2 if y < rmin

0 if y ∈ [rmin, rmax]

−(rmax − y)2/2 if y > rmax

(10.28)

Note that dH(y)/dy = h(y) where h(y) is defined in (10.9). Let G(r;λ) = F (r;λ) +∑
k H(rk). Since λ is strictly feasible, maxr F (r;λ) has a unique solution r∗. That is,

F (r∗;λ) > F (r;λ),∀r 6= r∗. Since r∗ ∈ (rmin, rmax)K by assumption, then ∀r,
∑

k H(r∗k) =

0 ≥
∑

k H(rk). Therefore, G(r∗;λ) > G(r;λ),∀r 6= r∗. So r∗ is the unique solution

of maxr G(r;λ). Because ∂G(r;λ)/∂rk = λk − sk(r) + h(rk), Algorithm 4 tries to solve

maxr G(r;λ) with inaccurate gradients.

Let vs(t) be the solution of the following differential equation (for t ≥ s)

dvk(t)/dt = λk − sk(v(t)) + h(vk(t)),∀k (10.29)

with the initial condition that vs(s) = r̄(s). So, vs(t) can be viewed as the “ideal” trajectory

of Algorithm 4 with the smoothed arrival rate and service rate. And (10.29) can be viewed
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as a continuous-time gradient algorithm to solve maxr G(r;λ). We have shown above that

r∗ is the unique solution of maxr G(r;λ). Therefore vs(t) converges to the unique r∗ for

any initial condition.

Recall that in Algorithm 4, r(i) is always updated at the beginning of a minislot.

Define Y (i − 1) := (s′k(i), w0(i)) where w0(i) is the state w at time ti. Then {Y (i)} is a

non-homogeneous Markov process whose transition kernel from time ti−1 to ti depends on

r(i− 1). The update in Algorithm 4 can be written as

rk(i) = rk(i− 1) + α(i) · [f(rk(i− 1), Y (i− 1)) + M(i)]

where f(rk(i−1), Y (i−1)) := λk−s′k(i)+h(rk(i−1)), and M(i) = λ′k(i)−λk is Martingale

noise.

To use Corollary 8 in page 74 of [74] to show Algorithm 4’s almost-sure convergence to

r∗, the following conditions are sufficient:

(i) f(·, ·) is Lipschitz in the first argument, and uniformly in the second argument. This

holds by the construction of h(·);

(ii) The transition kernel of Y (i) is continuous in r(i). This is true due to the way we

randomize the transmission lengths in (10.10).

(iii) (10.29) has a unique convergent point r∗, which has been shown above;

(iv) With Algorithm 4, rk(i) is bounded ∀k, i almost surely. This is proved in Lemma

16 below.

(v) Tightness condition ((†) in [74], page 71): This is satisfied since Y (i) has a bounded

state-space (cf. conditions (6.4.1) and (6.4.2) in [74], page 76). The state space of Y (i) is

bounded because s′k(i) ∈ [0, 1] and w0(i) is in a finite set (which is shown in Lemma 17)

below.

So, by [74], r(i) converges to r∗ almost surely.

Lemma 16. With Algorithm 4, r(i) is always bounded. Specifically, rk(i) ∈ [rmin−2, rmax+

2λ̄],∀k, i, where λ̄, as defined before, is the maximal instantaneous arrival rate, so that

λ′k(i) ≤ λ̄,∀k, i.
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Proof. We first prove the upper bound rmax+2λ̄ by induction: (a) rk(0) ≤ rmax ≤ rmax+2λ̄;

(b) For i ≥ 1, if rk(i−1) ∈ [rmax+λ̄, rmax+2λ̄], then h(rk(i−1)) ≤ −λ̄. Since λ′k(i)−s′k(i) ≤

λ̄, we have rk(i) ≤ rk(i−1) ≤ rmax+2λ̄. If rk(i−1) ∈ (rmin, rmax+λ̄), then h(rk(i−1)) ≤ 0.

Also since λ′k(i)−s′k(i) ≤ λ̄ and α(i) ≤ 1,∀i, we have rk(i) ≤ rk(i−1)+ λ̄ ·α(i) ≤ rmax +2λ̄.

If rk(i− 1) ≤ rmin, then

rk(i) = rk(i− 1) + α(i)[λ′k(i)− s′k(i) + h(rk(i− 1))]

≤ rk(i− 1) + α(i){λ̄ + [rmin − rk(i− 1)]}

= [1− α(i)] · rk(i− 1) + α(i){λ̄ + rmin}

≤ [1− α(i)] · rmin + α(i){λ̄ + rmin}

= rmin + α(i) · λ̄

≤ λ̄ + rmin ≤ rmax + 2λ̄.

The lower bound rmin − 2 can be proved similarly.

Lemma 17. In Algorithm 4, w0(i) is in a finite set.

Proof. By Lemma 16, we know that rk(i) ≤ rmax + 2λ̄,∀k, i, so T p
k (i) ≤ T0 exp(rmax +

2λ̄),∀k, i. By (10.10), we have τp
k (i) ≤ T0 exp(rmax + 2λ̄) + 1,∀k, i. Therefore, in state

w0(i) = {x, ((bk, ak),∀k : xk = 1)}, we have bk ≤ bmax for a constant bmax and ak ≤ bk for

any k such that xk = 1. So, w0(i) is in a finite set.

Part (ii): Constant step size

The intuition is the same as part (i). That is, if the constant step size is small enough,

then the algorithm approximately solves problem (10.24). Please refer to [73] for the full

proof.
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10.6 Theorem 7 as a unification of several existing models

As mentioned before, Theorem 7 turns out to be a quite general result which can

specialize to the following well-known cases.

10.6.1 Slotted Aloha

By setting γ = 1, Tk = 1,∀k in our model, both the collision length and transmission

length are one slot (of course, the slot here can be longer than σ = 9µs in 802.11a), which

is slotted Aloha. By Theorem 7, we have

p(x) =
1
E

∏
i∈N

pxi
i q1−xi

i .

It is easy to see that the normalizing constant E = 1. Thus, p(x) =
∏

i∈N pxi
i q1−xi

i , as

expected.

10.6.2 CSMA with the complete conflict graph (e.g., in a single-cell wire-

less LAN)

If the conflict graph is a complete graph, any pair of links conflict with each other, i.e.,

if more than one link transmit at the same time, there is a collision. In this scenario, the

collision number h(x) ≤ 1. If h(x) = 1. then call x a “collision state”. Also note that

|S(x)| = 0, so by Theorem 7,

p(x) =
1
E

(γh(x)
∏

k∈S(x)

Tk)
∏
i∈N

pxi
i q1−xi

i =
1
E

γ
∏
i∈N

pxi
i q1−xi

i . (10.30)

If h(x) = 0 and |S(x)| = 0, then no link is active (xk = 0,∀k) in the state. In this case

x is a “idle state”, and

p(x) =
1
E

∏
i∈N

pxi
i q1−xi

i =
1
E

∏
i∈N

qi. (10.31)

Finally, if h(x) = 0 and |S(x)| = 1, then only one link, denoted by s(x), is active and

its transmission is successful. Then x as a “success state”, and

p(x) =
1
E

Ts(x)

∏
i∈N

pxi
i q1−xi

i =
1
E

Ts(x)ps(x)

∏
i6=s(x)

qi. (10.32)
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Equation (10.30), (10.31) and (10.32) agree to the results in [65] for 802.11 networks

when all links conflict with each other.

10.6.3 Idealized CSMA

In idealized CSMA [50], it is assumed that the carrier-sensing is instant (without delay).

Therefore, a minislot is arbitrarily small such that the transmission probability pi in each

minislot can be made arbitrarily small to avoid collisions.

Consider a sequence of system indexed by n where the length of a minislot decreases

like 1/n. Since the packet transmission length and collision length are measured by the

numbers of minislots, suppose that γ(n) = n · γ, T
(n)
k = n · Tk. And suppose p

(n)
k = pk/n.

By Theorem 7, we have

p(n)(x)

=
1

E(n)
((γ(n))h(x)

∏
k∈S(x)

T
(n)
k )

∏
i∈N

(p(n)
i )xi(1− p

(n)
i )1−xi

=
1

E(n)

∏
k∈S(x)

[T (n)
k p

(n)
k ] ·

∏
m:|Cm(x)|>1

[γ(n)(
∏

j∈Cm(x)

p
(n)
j )] ·

∏
i:xi=0

(1− p
(n)
i )

=
1

E(n)

∏
k∈S(x)

(Tkpk) ·
∏

m:|Cm(x)|>1

[
γ

n|Cm(x)|−1

∏
j∈Cm(x)

pj ] ·
∏

i:xi=0

(1− p
(n)
i ).

As n→∞, γ
n|Cm(x)|−1 → 0 for m ∈ G(x) and

∏
i:xi=0(1− p

(n)
i )→ 1. Therefore

p(n)(x) → 1
E∞

∏
k∈S(x)

(Tkpk) if there is no collision component

p(n)(x) → 0 if there exists any collision component (10.33)

where E∞ is a proper normalizing constant.

As expected, there is no collision in the network as n → ∞. Also, the non-collision

states have a product-form distribution which matches the results in [50; 51; 52].
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Chapter 11

Conclusion

11.1 Summary

We have proposed a distributed CSMA scheduling algorithm, and showed that in both

cases with or without collisions, it is throughput-optimal under a general interference model.

We have utilized the product-form stationary distribution of CSMA networks in order to

obtain the distributed algorithm and its throughput optimality. In the case with collisions,

the key idea is to adjust the transmission time instead of the backoff time in order to limit

the effect of collisions. Furthermore, we have combined that algorithm with end-to-end

congestion control to approach the maximal utility, and showed the connection with the

classical back-pressure algorithm. Our algorithm is easy to implement, and the simulation

results are encouraging.

The adaptive CSMA algorithm is a modular MAC-layer protocol that can work with

other protocols in the transport layer and network layer. For example, we have demonstrated

its combination with optimal routing, anycast and multicast (with network coding).

138



11.2 Future work

Our current performance analysis of Algorithm 1 and 2 is based on a separation of

time scales, i.e., the vector r is adapted slowly to allow the CSMA Markov chain to closely

track the stationary distribution p(r). The simulations, however, indicate that such slow

adaptations are not always necessary. In the future, we are interested to understand more

about the case without time-scale separation. This case is more challenging since we need to

analyze a “joint” Markov chain whose state is (x, r), where x ∈ {0, 1}K is the transmission

state and r ∈ RK is the TA vector (instead of separating them due to their different time

scales). New techniques are needed in order to establish the stability of the joint Markov

chain.

Although it is not clear whether a complete time-scale separation is necessary, we do ob-

serve through simulations that, if the CSMA Markov chain mixes fast, then CSMA schedul-

ing performs better in terms of the delay and delay oscillation. We think the reason is

that with a faster mixing Markov chain, the transmission states with larger weights are

easier to reach. This opens doors to another research direction related to Markov chain

Monte Carlo, that is to design faster-mixing Markov chains (or network dynamics) with the

desired stationary distribution. However, the new network dynamics should be amenable

to distributed implementation in order to keep the advantages of CSMA scheduling.

Another interesting direction is the combination of CSMA scheduling with another

scheduling algorithm in order to get the advantages of both. In [62], CSMA is combined with

LQF (Longest-Queue-First) for the purpose of better delay performance. The performance

analysis of the hybrid algorithm, however, still requires further research.
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Part III

Scheduling in Stochastic

Processing Networks
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Chapter 12

Stable and Utility-Maximizing

Scheduling in SPNs

12.1 Introduction

Stochastic Processing Networks (SPNs) are models of service, processing, communica-

tion, or manufacturing systems [75]. In such a network, service activities require parts and

resources to produce new parts. Thus, parts flow through a network of buffers served by

activities that consume parts and produce new ones. Typically, service activities compete

for resources, which yields a scheduling problem. The goal of the scheduling is to maximize

some measure of performance of the network, such as the net utility of parts being produced.

As SPNs are more general than queuing networks, one may expect the scheduling that

minimizes an average cost such as total waiting time to be complex. Indeed, the optimal

scheduling of queuing networks is known only for simple cases, such as serving the longest

queue or the Klimov network [76]. For SPNs, one approach has been to consider these

networks under the heavy-traffic regime [77]. In such a regime, a suitable scheduling may

collapse the state space. For instance, when serving the longest queue, under heavy traffic

the queue lengths become equal. It is then sometimes possible to analyze the SPN under

heavy traffic as in [78]. Using this approach, in [79], the authors prove the asymptotic
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optimality under heavy traffic of maximum pressure policies for a class of SPNs. It may

also happen that the control of the heavy traffic diffusion model is tractable while the

original problem is not [81].

Another line of investigation explores a less ambitious formulation of the problem. In-

stead of considering the Markov decision problem of minimizing an average cost, this ap-

proach searches for controls that stabilize the network or that maximize the utility of its

flows. This approach has been followed successfully for communication networks.

Tassiulas and Ephremides [47] proposed a maximum weight scheduling algorithm

(MWS) that schedules the independent set (non-conflicting nodes) with the maximum sum

of queue lengths. The authors prove that this algorithm achieves the maximum possible

throughput. The central idea of considering the maximization of the sum of the user utili-

ties is due to [82]. See also [83; 84]. Combining this objective with the scheduling appears

in [85; 86]. In these works, it is shown that maximum backpressure algorithms combined

with congestion control maximize the total utility of the flows in the network.

This chapter follows a similar approach. The objective is to achieve throughput optimal-

ity and maximize the total net utility of flows of parts that the network produces. However,

the scheme proposed in the chapter differs from previous work. For instance, simple exam-

ples show that MWS is not stable for some SPNs and that a new approach is needed. The

basic difficulty is that the maximum weight and related algorithms are too greedy and may

lead some service activities to starve other service activities. Dai and Lin [80] show that

MWS is stable in SPNs if the network structure satisfies a certain assumption (for example,

in a limited class of SPNs where each service activity consumes parts from a single queue).

We propose a deficit maximum weight (DMW) algorithm [87] that automatically makes

certain service activities wait instead of always grabbing the parts they can use, therefore

achieving throughput optimality without the assumption in [80].

The chapter is organized as follows. Section 12.2 illustrates through examples the basic

difficulties of scheduling SPNs and the operations of the DMW scheduling algorithm. Sec-

tion 12.3 defines the basic model. Section 12.4 describes the DMW algorithm formally and
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proves that it stabilizes the network. Section 12.5 explains that the algorithm, combined

with the control of the input activities, maximizes the sum of the utilities of the network.

Section 12.7 provides a number of simulation results to confirm the results of the chapter.

12.2 Examples

This section illustrates critical aspects of the scheduling of SPNs on simple examples.

Figure 12.1 shows a SPN with one input activity (IA) represented by the shaded circle and

four service activities (SAs) represented by white circles. SA2 needs one part from queue

2 and produces one part that leaves the network, similarly for SA4. SA3 needs one part

from each of the queues 2, 3 and 4 and produces one part that leaves the network. SA1

needs one part from queue 1 and produces one part which is added to queue 4. Each SA

takes one unit of time. There is a dashed line between two SAs if they cannot be performed

simultaneously. These conflicts may be due to common resources that the SAs require. The

parts arrive at the queues as follows: at even times, IA1 generates one part for each of the

queues 1, 2 and 3; at odd times, no part arrives.

One simple scheduling algorithm for this network is as follows. At time 0, buffer the

parts that arrive at queues 1, 2 and 3. At time 1, perform SA1 which removes one part

from queue 1 and adds one part to queue 4. At time 2, use the three parts in queue 2, 3,

4 to perform SA3 and buffer the new arrivals. Repeat this schedule forever, i.e., perform

SA1 and SA3 alternately. This schedule makes the system stable.

2

3

4

3

2

4

1

1

1

Figure 12.1: A network unstable under MWS

Interestingly, the maximum weight algorithm makes this system unstable (in a similar
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way to a counter example in [80]). By definition, at each time, this algorithm schedules

the SAs that maximize the sum of the backpressures. Accordingly, at time 1, one part has

arrived in queue 1, 2 and 3 (at time 0). Since queue 4 is empty, SA3 and SA4 cannot be

scheduled, so this algorithm schedules SA1 and SA2, after which one part remains in queue

3 and queue 4. At time 2, the algorithm schedules SA4, and buffers new arrivals, after

which two parts remain in queue 3, and one part in queue 1 and queue 2. Continuing in

this way, the number of parts in queue 3 increases without bound since the algorithm never

schedules SA3 and never serves queue 3. (In fact, any work-conserving algorithm leads to

the same result in this example.) The deficit maximum weight algorithm that we propose

in this chapter addresses this instability.

Fig. 12.2 provides another example of instability, this time due to randomness. There,

SA1 processes each part in queue 1 and then produces one part for queue 2 or queue 3,

each with probability 0.5. Each activation of SA2 assembles one part from queue 2 and

one part from queue 3. Each SA takes one unit of time. If the parts arrive at queue 1 at

rate λ1 < 1, then one would expect the SPN to be able to process these parts. However,

the difference between the number of parts that enter the queues 2 and 3 is null recurrent.

Thus, no scheduling algorithm can keep the backlogs in the queues 2 and 3 bounded at the

same time. In this chapter, we are only interested in those networks which are feasible to

stabilize.

2

3

1

1 21
 1

w.p. 0.5

w.p. 0.5

Figure 12.2: An infeasible example

Figure 12.3 shows another SPN. IA1 produces one part for queue 1. IA2 produces one

part for queue 2 and one part for queue 3. The synchronized arrivals generated by IA2

correspond to the ordering of a pair of parts, as one knows that such a pair is needed for

SA2. This mechanism eliminates the difficulty encountered in the example of Figure 12.2.

In Figure 12.3, we say that each IA is “source” of a “flow” of parts (as a generalization of a
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“flow” in data networks). SA1 and SA2 in this network conflict, as indicated by the dashed

line between the SAs. Similarly, SA2 and SA3 conflict. One may consider the problem

of scheduling both the IAs (ordering parts) and the SAs to maximize some measure of

performance. Our model assumes the appropriate ordering of sets of parts to match the

requirements of the SAs.

2
2

3

1
1

1
4

3

2

Figure 12.3: Arrivals and conflicting service activities

We explain the deficit maximum weight (DMW) scheduling algorithm on the example

of Figure 12.1. In that example, we saw that MWS is unstable because it starves SA3.

Specifically, MWS schedules SA2 and SA4 before the three queues can accumulate parts for

SA3. The idea of DMW is to pretend that certain queues are empty even when they have

parts, so that the parts can wait for the activation of SA3. The algorithm is similar to MWS

but the weight of each SA is computed from the “virtual queue lengths” qk = Qk −Dk,∀k.

Here, Qk is the actual length of queue k and Dk ≥ 0 is called “deficit”.

DMW automatically finds the suitable values of the deficits Dk. To do this, DMW

uses the maximum-weighted schedules without considering whether there are enough input

parts available. When the algorithm activates a SA which does not have enough input

parts in queue k, the SA produces fictitious parts, decreases qk (which is allowed to be

negative) and increases the deficit of queue k. This algorithm produces the results in Table

12.1, where each column gives the values of q and D after the activities in a slot. For

deficits, only D4 is shown since the deficits of all other queues are 0. In the table, SA0

means that no SA is scheduled because all the weights of the activities are non-positive.

Note that when SA3 is activated for the first time, queue 4 is empty: Q4 = 0. Therefore

q4 is decreased to -1, D4 is increased to 1 and a fictitious part is produced. But since

SA1 is activated simultaneously, q4 becomes 0 after this slot. After that, the sequence
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Activity→ SA0+IA1 SA3+SA1 SA0+IA1 SA3+SA1 ...
q1 0 1 0 1 0 ...
q2 0 1 0 1 0 ...
q3 0 1 0 1 0 ...
q4 0 0 0 0 0 ...
D4 0 0 1 1 1

Table 12.1: Deficit Maximum Weight scheduling

(SA0+IA1, SA3+SA1) repeats forever and no more fictitious parts are produced. The key

observation is that, although the virtual queue lengths are allowed to become negative, they

remain bounded in this example. Consequently, with proper D, the actual queue lengths

Q = q + D are always non-negative, and thus avoid the starvation problem.

12.3 Basic model

For simplicity, assume a time-slotted system. In each slot, a set of input activities (IAs)

and service activities (SAs) are activated. Assume that each activity lasts one slot for the

ease of exposition. (In section 12.6, we will discuss the case where different activities have

different durations.) There are M IAs, N SAs, and K queues in the network. Each IA, when

activated, produces a deterministic number of parts for each of a fixed set of queues. Each

SA, when activated, consumes parts from a set of queues and produces parts for another

set of queues, and/or some “products” that leave the network.

The set of IAs, SAs and queues are defined to be consistent with the following. (i)

Each IA is the “source” of a “flow” of parts, like in Figure 12.3. In other words, the parts

generated by IA m can be exactly served by activating some SAs and eventually produce

a number of products that leave the network. (This will be made more formal later.)

Otherwise, it is impossible to stabilize the network. There are M IAs and M flows. (ii)

Parts in different flows are buffered in separate queues. (iii) A SA n is associated with a

set of input queues In and a set of output queues On. Due to the way we define the queues

in (ii), different flows are served by disjoint sets of SAs. (Even if two SAs in different flows
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essentially perform the same task, we still label them differently.) Also, a SA is defined

only if it is used by some flow.

Each activation of IA m adds ak,m parts to queue k. Define the “input matrix” A ∈

RK∗M where Ak,m = −ak,m,∀m, k. Each activation of SA n consumes bk,n parts from each

queue k ∈ In (the “input set” of SA n), and produces b
′
k,n parts that are added to each

queue k ∈ On (the “output set” of SA n), and (possible) a number of final products that

leave the network. Assume that In ∩ On = ∅. Accordingly, define the “service matrix”

B ∈ RK∗N , where Bk,n = bk,n if k ∈ In, Bk,n = −b
′
k,n if k ∈ On, and Bk,n = 0 otherwise.

Assume that all elements of A and B are integers. Also assume that the directed graph

that represents the network has no cycle (see, for example, Fig. 12.1 and Fig. 12.3).

Let a(t) ∈ {0, 1}M , t = 0, 1, . . . be the “arrival vector” in slot t, where am(t) = 1 if IA m

is activated and am(t) = 0 otherwise. Let λ ∈ RM be the vector of (average) arrival rates.

Let x(t) ∈ {0, 1}N be the “service vector” in slot t, where xn(t) = 1 if SA n is activated

and xn(t) = 0 otherwise. Let s ∈ RN be a vector of (average) service rates.

Point (i) above means that, for any activation rate λm > 0 of flow m, there exists

sm ∈ RN such that

Am · λm + B · sm = 0 (12.1)

where Am is the m’th column of A. The vector sm is the service rate vector for flow m that

can serve λm. We also make the reasonable assumption that sm is unique given λm, i.e.,

there is only one way to serve the arrivals. Summing up (12.1) over m gives

A · λ + B · s = 0. (12.2)

where s =
∑

m sm � 0. (Note that since each flow is associated with a separate set of

queues and SAs, equation (12.2) also implies (12.1) for all m.) By assumption, s is unique

given λ, so we also write s in (12.2) as s(λ).

Due to resource sharing constraints among the SAs, not all SAs can be performed

simultaneously at a given time. Assuming that all queues have enough parts such that any

SA can be performed, let x̃ ∈ {0, 1}N be a feasible service vector, and X be the set of such

x̃’s. (We also call x̃ an independent set since the active SAs in x̃ can be performed without
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conflicts.) Denote by Λ be the convex hull of X , i.e.,

Λ := {s|∃p < 0 :
∑
x̃∈X

px̃ = 1, s =
∑
x̃∈X

(px̃ · x̃)}

and let Λo be the interior of Λ. (That is, for any s ∈ Λo, there is a ball B̃ centered at s with

radius r > 0 such that B̃ ⊂ Λ.)

We say that λ is feasible iff s(λ) ∈ Λ;λ is strictly feasible iff s(λ) ∈ Λo.

In a more general setting, the output parts of a certain SA can split and go to more

than one output sets. The split can be random or deterministic. For example, in a hospital,

after a patient is diagnosed, he goes to a certain room based on the result. A probabilistic

model for this is that the patients go to different rooms with certain probabilities after the

SA (i.e., the diagnosis). The split can also be deterministic. For example, in manufacturing,

the output parts of a SA may be put into two different queues alternately.

In both cases, we can define the element Bk,n in the matrix B to be the average rate that

SA n consumes (or adds) parts from (to) queue k. However, note that in the random case,

it may not be feasible to stabilize all queues by any algorithm, even if there exist average

rates satisfying (12.1). Fig. 12.2 described earlier is such an example. For simplicity, here

we mainly consider networks without splitting.

12.4 DMW scheduling

In this section we consider the scheduling problem with strictly feasible arrival rates λ.

We first describe the DMW algorithm and then show its throughput optimality.

Let the actual queue lengths at time t be Qk(t), k = 1, 2, · · · ,K. Define a “deficit”

Dk(t) ≥ 0. DMW uses the “virtual queue length” qk(t) = Qk(t) − Dk(t) to compute the

schedule in each slot.

DMW (Deficit Maximum Weight) Scheduling

Initially (at time 0), set q(0) = Q(0) = D(0) = 0. Clearly, Q(0) = q(0) + D(0).
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(i) Update of virtual queues q(t): In each time slot t = 0, 1, 2 . . . , the set of SAs with

the maximal backpressure is scheduled:

x∗(t) ∈ arg max
x∈X

dT (t) · x (12.3)

where d(t) ∈ RN is the vector of backpressure, defined as

d(t) = BTq(t), (12.4)

and X is the set of independent sets including non-maximal ones. Also, for any SA n, we

require that x∗n(t) = 0 if dn(t) ≤ 0.

Recall that an independent set is a set of SAs that can be performed simultaneously

assuming that all input queues have enough parts. So, it is possible that SA n is scheduled

(i.e., x∗n(t) = 1) even if there are not enough parts in some input queues of SA n. In this

case, SA n is activated as a “null activity” (to be further explained in (ii)). Then, update

q as

q(t + 1) = q(t)−A · a(t)−B · x∗(t) (12.5)

where, as defined earlier, a(t) is the vector of actual arrivals in slot t (where the m’th element

am(t) corresponds to IA m). In this chapter, x∗(t) and x∗(q(t)) are interchangeable.

Expression (12.5) can also be written as

qk(t + 1) = qk(t)− µout,k(t) + µin,k(t),∀k

where µout,k(t) and µin,k(t) are the number of parts coming out of or into virtual queue k

in slot t, expressed below. (We use v+ and v− to denote the positive and negative part of

v. That is, v+ = max{0, v} and v− = max(0,−v}, so that v = v+ − v−.)

µout,k(t) =
∑N

n=1[B
+
k,nx∗n(t)]

µin,k(t) =
∑M

m=1[A
−
k,mam(t)] +

∑N
n=1[B

−
k,nx∗n(t)].

(ii) Update of actual queues Q(t) and deficits D(t): If SA n is scheduled in slot t but

there are not enough parts in some of its input queues (or some input parts are fictitious,

further explained below), SA n is activated as a null activity. Although the null activity n

149



does not actually consume or produce parts, parts are removed from the input queues and

fictitious parts are added to the output queues as if SA n was activated normally. So the

actual queue length

Qk(t + 1) = [Qk(t)− µout,k(t)]+ + µin,k(t). (12.6)

Then the deficit is computed as

Dk(t + 1) = Qk(t + 1)− qk(t + 1). (12.7)

Remark : The key idea of DMW is to augment the “state” by including the virtual

queues q(t), and then show the relationship between the virtual queues and actual queues.

The following is a useful property of Dk(t).

Lemma 18. Dk(t) is non-decreasing with t, and satisfies

Dk(t + 1) = Dk(t) + [µout,k(t)−Qk(t)]+.

Proof. By (12.7), (12.5) and (12.6), we have

Dk(t + 1) = Qk(t + 1)− qk(t + 1)

= [Qk(t)− µout,k(t)]+ − [qk(t)− µout,k(t)]

= Qk(t)− µout,k(t) + [µout,k(t)−Qk(t)]+

−[qk(t)− µout,k(t)]

= Dk(t) + [µout,k(t)−Qk(t)]+, (12.8)

which also implies that Dk(t) is non-decreasing with t.

Proposition 27. If ||q(t)||2 ≤ G at all time t for some constant G > 0, then

(i) D(t) is bounded. Also, only a finite number of null activities occur. So in the long

term the null activities do not affect the average throughput.

(ii) Q(t) is bounded.
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Proof. Since ||q(t)||2 ≤ G, we have −G′ ≤ qk(t) ≤ G′,∀k, t where G′ := d
√

Ge,. We claim

that Dk(t) ≤ G′ + µout,∀k, t where µout is the maximum number of parts that could leave

a queue in one slot. By the definition of the DMW algorithm, Dk(t) is non-decreasing with

t and initially Dk(t) = 0. Suppose to the contrary that Dk(t) is above G′ + µout for some k

and t. Then there exists t
′
which is the first time that Dk(t

′
) is above G′ + µout. In other

words, Dk(t
′
) > G′ + µout and Dk(t

′ − 1) ≤ G′ + µout.

By (12.8) and (12.7), we have

Dk(t + 1) = Dk(t) + [µout,k(t)−Qk(t)]+

= Dk(t) + max{0, µout,k(t)−Qk(t)}

= max{Dk(t), Dk(t) + µout,k(t)−Qk(t)}

= max{Dk(t),−qk(t) + µout,k(t)}

So Dk(t
′
) = max{Dk(t

′−1),−qk(t
′−1)+µout,k(t′−1)}. Since qk(t

′−1) ≥ −G′, µout,k(t) ≤

µout, we have Dk(t
′
) ≤ G′ + µout. This leads to a contradiction. Therefore, Dk(t) ≤

G′ + µout,∀t, k.

Note that when a queue underflow (i.e., when µout,k(t) > Qk(t) for some k, t) occurs,

Dk is increased. Also, the increase of Dk is a positive integer. Since D(0) = 0, D(t) is

non-decreasing and remains bounded for all t, the number of queue underflows must be

finite. Since we have assumed that the directed graph which represents the network has no

cycle, it is clear that each underflow only “pollutes” a finite number of final outputs (i.e.,

the products). Therefore, in the long term the queue underflows (and the resulting null

activities) do not affect the average throughput.

Part (ii): Qk(t) = qk(t) + Dk(t) ≤ 2G′ + µout,∀k, t.

In section 12.4.1 we will show that q(t) is bounded under certain conditions on the

arrivals. By Proposition 27, Q(t) is bounded and the maximal throughput is achieved. But

before that, we need to identify some useful properties of the system. Our analysis differs

from existing analysis of MWS-like algorithms, e.g., in [47; 85], since we allow qk(t) to be

negative, and an activity generally involves multiple input and output queues.
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Lemma 19. In DMW, if d(t) = 0 at some time t, then q(t) = 0.

Proof. Let zm(t) and wn(t) be, respectively, the number of times that IA m and SA n have

been performed until time t. Write z(t) and w(t) as the corresponding vectors. Using

q(0) = 0 and equation (12.5), we have

q(t) = −A · z(t)−B ·w(t). (12.9)

For λm = 1, there exists sm = s′m such that (12.1) holds. So Am = −B · s′m. Using this

and (12.9),

q(t) =
∑

m[B · s′mzm(t)]−B ·w(t)

= B · v

where v :=
∑

m[s′mzm(t)]−w(t). By assumption,

d(t) = BTq(t) = BT B · v = 0.

Thus, vT BT B · v = ||B · v||2 = 0. So, B · v = q(t) = 0.

Remark : We have used the fact that for any t, q(t) is always in the subspace B :=

{u|u = B · v for some v}.

Lemma 20. Assume that λ is a strictly feasible, i.e., ∃y ∈ Λo such that

A · λ + B · y = 0. (12.10)

Then there exists δ > 0 such that for any q satisfying q ∈ B,

qT B · [x∗(q)− y] ≥ δ||q|| (12.11)

where

x∗(q) ∈ arg max
x∈X

qT B · x. (12.12)

Proof. Since y ∈ Λo, ∃σ′ > 0 such that y′ ∈ Λ for any y′ satisfying ||y′ − y|| ≤ σ′.

For any q̂ satisfying ||q̂|| = 1, q̂ ∈ B, by Lemma 19, we have d̂ := BT q̂ 6= 0. Also,

||BT q̂|| ≥ σ̂ := min||q′||=1,q′∈B ||BTq′|| > 0. Choose ε̂ > 0 (which may depend on q̂) so that
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||ε̂·BT q̂|| = σ′. Then, y+ε̂·BT q̂ ∈ Λ. Also, (12.12) implies that x∗(q) ∈ arg maxx∈Λ qT B ·x.

So, q̂T B · x∗(q̂) ≥ q̂T B · [y + ε̂ · BT q̂] = q̂T B · y + ε̂ · ||BT q̂||2 ≥ q̂T B · y + σ̂ · σ′. Let

δ := σ̂ · σ′. Then

min
||q̂||=1,q̂∈B

q̂T B · [x∗(q̂)− y] ≥ δ. (12.13)

Consider any q 6= 0. Let q̂ := q/||q||, then ||q̂|| = 1. Note that if x∗(q̂) ∈ arg maxx∈X q̂T B ·

x, then x∗(q̂) ∈ arg maxx∈X qT B · x by linearity, so qT B · x∗(q̂) = qT B · x∗(q). Therefore

qT B · [x∗(q)− y] = qT B · [x∗(q̂)− y] = ||q|| · q̂T B · [x∗(q̂)− y] ≥ δ||q||, proving (12.11). If

q = 0, then (12.11) holds trivially.

12.4.1 Arrivals that are smooth enough

Recall that λ is strictly feasible and (12.10) is satisfied. First consider a simple case

when the arrival rates are “almost constant” at λ. Specifically, assume that am(t) = bλm ·

(t + 1)] − bλm · t],∀m, t. Then
∑t−1

τ=0 am(τ) = bλm · t] ≈ λm · t,∀t, so that the arrival

rates are almost constant. Later, we all show that q(t) is bounded under such arrivals. By

Proposition 27, Q(t) is bounded and the maximal throughput is achieved.

However, since the “almost constant” assumption is quite strong in practice, it is useful

to relax it and consider more general arrival processes. In particular, consider the following

(mild) smoothness condition.

Condition 1: There exists σ > 0 and a positive integer T such that for all l = 0, 1, 2, . . . ,

ãl + σ · 1 and ãl − σ · 1 are feasible vectors of arrival rates, where

ãl :=
∑(l+1)·T−1

τ=l·T a(τ)/T (12.14)

is the vector of average arrival rates in the l’th time window of length T . In other words,

there exists a large enough time window T such as the ãl is “uniformly” strictly feasible.

Remark : Note that ãl can be very different for different l’s. That is, ãl, l = 0, 1, . . . do

not need to be all close to a certain strictly feasible λ.

Theorem 10. Under Condition 1, q(t) is bounded for all t. Therefore (i) and (ii) in Prop.

27 hold.
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The proof is in section 12.9.1.

Corollary 3. With the “almost constant” arrivals, q(t) is bounded for all t.

Proof. Since
∑t−1

τ=0 am(τ) = bλm · t], we have |
∑t−1

τ=0 am(τ) − λm · t| ≤ 1,∀t. So

|
∑(l+1)·T−1

τ=l·T am(τ)/T − λm| = (1/T ) · |[
∑(l+1)·T−1

τ=0 am(τ)− λm · (l + 1)T ]− [
∑l·T−1

τ=0 am(τ)−

λmlT ]| ≤ 2/T . Since λ is strictly feasible, there exists a large enough T to satisfy Condition

1.

12.4.2 More random arrivals

Assume that am(t) ∈ Z+ is a random variable with bounded support, and satisfies

E(am(t)) = λm,∀t. (12.15)

For simplicity, also assume that the random variables {am(t),m = 1, 2, . . . ,M, t =

0, 1, 2, . . . } are independent. (This assumption, however, can be easily relaxed.) Suppose

that the vector λ is strictly feasible.

In general, this arrival process does not satisfy the smoothness condition (although when

T is large,
∑t+T−1

τ=t a(τ)/T is close to λ with high probability). With such arrivals, it is not

difficult to show that q(t) is stable, but may not be bounded. As a result, the deficits D(t)

may increase without bound. In this case, we show that the system is still “rate stable”,

in the sense that in the long term, the average output rates of the final products converge

to the optimum output rates (with probability 1). The intuitive reason is that as D(t)

becomes very large, the probability of generating fictitious parts approaches 0.

Theorem 11. With the arrival process defined above, the system is “rate stable”.

The formal proof is given in section 12.9.2.

Although the system is throughput optimum, with D(t) unbounded, the actual queue

lengths Q(t) = q(t) + D(t) may become large when D(t) is large. An alternative to avoid

large Q(t) is to set an upper bound of Dk(t), denoted by D̄. In this alternative, we do
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not increase Dk(t) once it hits D̄. But q(t) still evolves according to part (i) of the DMW

algorithm. Let the actual queue length be Qk(t) = [qk(t) + Dk(t)]+. Fictitious parts are

generated in slot t as long as qk(t)−µout,k(t) < −Dk(t) (or, Qk(t)−µout,k(t) < 0). Given a

D̄, one expects that the output rates are lower than the optimum in general, since fictitious

parts are generated with a certain probability after Dk(t) first hits D̄. But one can make

the probability arbitrarily close to 0 by choose a large enough D̄. The proof is similar to

that of Theorem 11 and is not included here.

12.5 Utility maximization

Assume that for each IA m, there is a “reward function” vm(fm) (where fm is the

activation rate), and a cost function cmfm, where cm is the cost of the input materials of IA

m per unit rate. Define the utility function as um(fm) := vm(fm)− cmfm. Let f ∈ RM be

the vector of input activation rates. Assume that um(·) is increasing and concave. The joint

scheduling and congestion control algorithm (or “utility maximization algorithm”) works

as follows.

Utility Maximization Algorithm

Initially let q(0) = Q(0) = 0. In each time slot t = 0, 1, 2, . . . , besides DMW Scheduling

(12.3), i.e.,

x∗(t) ∈ arg max
x∈X

dT (t) · x,

IA m chooses the input rate

fm(q(t)) := arg max
0≤f≤1

{V · um(f) + q(t)T Amf} (12.16)

where V > 0 is a constant, and Am is the m’th column of A. Then, update the virtual

queues as

q(t + 1) = q(t)−A · f(q(t))−B · x∗(t) (12.17)

Since fm(q(t)) in general is not integer, we let am(t) = bFm(t + 1)c − bFm(t)c, where

Fm(t) :=
∑t−1

τ=0 fm(q(τ)). And update the actual queues in the same way as (12.6).
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Theorem 12. With the above algorithm, q(t) and Q(t) are bounded. Also, there are at

most a finite number of null activities which do not affect the long term throughput.

The proof is in section 12.9.3.

The following is a performance bound of the utility maximization algorithm. The proof

is similar to that in [85], and is given in section 12.9.4.

Theorem 13. We have ∑
m

um(f̃m) ≥ U∗ − c/V (12.18)

where f̃m := lim infT→∞
∑T−1

t=0 fm(q(t)), U∗ is the optimal total utility, and c > 0 is a

constant defined in (12.20). That is, a larger V leads to better a lower bound of the achieved

utility (at the cost of larger queue lengths).

12.6 Extensions

In the above, we have assumed that each activity lasts one slot for the ease of exposition.

Our algorithms can be extended to the case where different activities have different durations

under a particular assumption. The assumption is that each activity can be suspended in

the middle and resumed later. If so, we can still use the above algorithm which re-computes

the maximum weight schedule in each time slot. The only difference is that the activities

performed in one time slot may not be completed at the end of the slot, but are suspended

and to be continued in later slots. (The above assumption was also made in the “preempted”

networks in [80]. There, whenever a new schedule is computed, the ongoing activities are

suspended, or “preempted”.)

In this case, the algorithms are adapted in the following way. The basic idea is the same

as before. That is, we run the system according to the virtual queues q(t). Let the elements

in matrices A and B be the average rates of consuming (or producing) parts per slot from

(or to) different queues. Even if an activity is not completed in one slot, we still update

the virtual queues q(t) according to the above average rates. That is, we view the parts in

different queues as fluid and q(t) reflects the amount of fluid at each queue. However, only
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when an activity is completed, the actual parts are removed from or added to the output

queues. Note that when an activity is suspended, all parts involved in the activity are frozen

and are not available to other activities. When there are not enough parts in the queues

to perform a scheduled activity, fictitious parts are used instead (and the corresponding

deficits are increased).

On the other hand, if each activity cannot be suspended in the middle once it is started,

then one possible scheme is to use long time slots in our algorithms. In slot t, each SA n

with x∗n(t) = 1 is activated as many times as possible. When each slot is very long, the

wasted time during the slot becomes negligible, so the algorithm approximates the maximal

throughput (with the cost of longer delay). Without using long slots, the non-preemptive

version of the maximal-pressure algorithm proposed in [80] is not throughput-optimum in

general, but it IS under a certain resource-sharing constraints [80].

12.7 Simulations

12.7.1 DMW scheduling

We simulate a network similar to Fig. 12.1, but with a different input matrix A and

service matrix B below.

A =



−3

−2

−1

0


, B =



1 0 0 0

0 1 1 0

0 0 1 0

−1 0 2 1


It is easy to check that if λ1 = 1/3, we have A · λ1 + B · s = 0 where s :=

[1, 1/3, 1/3, 1/3]T ∈ Λ (and s is unique). So, any λ1 ∈ (0, 1/3) is strictly feasible.

In the simulation, IA1 is activated in slot 5k, k = 0, 1, 2, . . . , . So the input rate λ1 = 1/5

which is strictly feasible. Since SA 3 requires enough parts from several queues to perform,

it is not difficult to see that normal MWS fails to stabilize queue 3. Fig. 12.4 shows that

DMW stabilizes all queues and have bounded deficits.
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Now we make a change to the arrival process. In time slot 4k, k = 0, 1, 2 . . . , IA 1

is independently activated with probability 0.8. As a result, the expected arrival rate is

strictly feasible and also satisfies the smoothness condition (Condition 2) with T = 4. Fig.

12.5 shows that our algorithm stabilizes all queues. As expected, Dk(t) stops increasing

after some time since q(t) is bounded.
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Figure 12.4: DMW scheduling (with deterministic arrivals)
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Figure 12.5: DMW Scheduling (with random arrivals)
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12.7.2 Utility maximization

Consider the network in Fig. 12.6 (a). The utility functions of both flows are um(·) =

log(·). We simulate the network with the utility maximization algorithm with V = 50. Fig.

12.6 (b) shows Qk(t) and Dk(t). As expected, Dk(t) stops increasing after some time due

to the boundedness of qk(t). The average throughput of flow 1 and 2 is 0.4998 and 0.4998,

which are very close to the theoretical optimal throughput computed by solving the utility

maximization problem numerically. (To double-check the correctness of the algorithm, note

that for example q1(t) + q2(t) = [Q1(t)−D1(t)] + [Q2(t)−D2(t)] is about 100 after initial

convergence. So by (12.16), f1(q(t)) ≈ V/[q1(t) + q2(t)] = 0.5.)
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Figure 12.6: Utility Maximization
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12.8 Summary and future work

We have proposed a “Deficit Maximum Weight” (DMW) scheduling algorithm for SPNs.

It has been shown that the algorithm overcomes the instability issue of the Maximum Weight

algorithm that arises in general SPNs. Under different assumptions of the arrival processes,

DMW achieves the maximum throughput in different senses. We have also combined DMW

scheduling with input rate control in order to approach the maximum utility of the SPN.

The performance of DMW could be further improved. For example, with null activities,

a queue may receive fictitious parts in some slots and drop normal parts in other slots. So,

one could store the dropped parts and replace the fictitious parts later when they arrive.

The performance improvement with such schemes is interesting for future research.

The current algorithm achieves bounded queues when the arrival processes are smooth

enough, and guarantees rate stability otherwise. Rate stability is a weaker form of stability

than positive recurrence of the queues. We are also interested to enhance the current algo-

rithm or design new algorithms to achieve positive recurrence under such arrival processes.

12.9 Skipped proofs

12.9.1 Proof of Theorem 10

To analyze the queue dynamics, consider the Lyapunov function L(q(t)) = ||q(t)||2. We

have

∆(q(t)) := L(q(t + 1))− L(q(t))

= ||q(t)−A · a(t)−B · x∗(q(t))||2 − ||q(t)||2

= −q(t)T A · a(t)− q(t)T B · x∗(q(t))

+||A · a(t) + B · x∗(q(t))||2

≤ −q(t)T A · a(t)− q(t)T B · x∗(q(t)) + c (12.19)
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where c > 0 is a constant, defined as

c :=
∑

k

(µ2
k,in + µ2

k,out) (12.20)

where µk,in, µk,out are, respectively, the maximum amount of parts that can enter or leave

queue k in one time slot.

Lemma 21. Assume that q(0) = 0. If for any t,

L(q(t + 1))− L(q(t)) ≤ −δ||q(t)||+ c (12.21)

where δ > 0 is a constant, then q(t) is always bounded. In particular, L(q(t)) ≤ c2/δ2 + c.

Proof. We prove this through the principle of mathematical induction. First, L(q(0)) =

0 ≤ c2/δ2 + c.

Next, as the induction hypothesis, assume that L(q(t)) ≤ c2/δ2 +c. Consider two cases.

(i) If L(q(t)) ∈ [c2/δ2, c2/δ2 + c], then ||q(t)|| ≥ c/δ. By (12.21), we have L(q(t + 1)) ≤

L(q(t)) ≤ c2/δ2 + c. (ii) If L(q(t)) < c2/δ2, since L(q(t+1))−L(q(t)) ≤ −δ||q(t)||+ c ≤ c,

we also have L(q(t + 1)) ≤ c2/δ2 + c. This completes the proof.

Lemma 22. Assume that condition 1 holds. Let y(l ·T ) be the (unique) vector that satisfies

A · ãl + B · y(l · T ) = 0 (12.22)

where ãl is defined in (12.14). Then there exists δ̄ > 0 such that

qT B · [x∗(q)− y(l · T )] ≥ δ̄||q||,∀l,∀q ∈ B (12.23)

where x∗(q) is defined in (12.12).

Proof. By Condition 1, ∃σ > 0 such that for all l, ãl + σ · 1 and ãl − σ · 1 are feasible.

Therefore, y(l · T ) + s(σ · 1M ) ∈ Λ and y(l · T ) − s(σ · 1M ) ∈ Λ. Define σ′ > 0 to be the

minimum element of s(σ · 1M ) � 0, then y′ ∈ Λ for any y′ satisfying ||y′ − y(l · T )|| ≤ σ′.

(This is because the set Λ is “comprehensive”: if s ∈ Λ, then s′ ∈ Λ for any 0 � s′ � s.)

Then, following the proof of Lemma 20, letting δ̄ := σ̂ · σ′ (which do not depend on l or q)

completes the proof.
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Lemma 23. Assume that the maximum change of any queue in one time slot is bounded

by α. And the absolute value of every element of A and B is bounded by b̄. Then

L(q((l + 1)T ))− L(q(l · T ))

≤ −T · δ̄||q(l · T )||+ c2

where c2 > 0 is a constant, defined as

c2 := T · c + KT 2α · (M + K)b̄.

Proof. From (12.19), we have

L(q((l + 1)T ))− L(q(l · T ))

≤ −
∑(l+1)T−1

τ=l·T q(τ)T A · a(τ)

−
∑(l+1)T−1

τ=l·T q(τ)T B · x∗(q(τ)) + T · c.

For any τ ∈ {l · T, . . . , (l + 1)T − 1},

q(τ)T B · x∗(q(τ))

≥ q(τ)T B · x∗(q(l · T ))

= q(l · T )T B · x∗(q(l · T )) +

[q(τ)− q(l · T )]T B · x∗(q(l · T )).

Since |qk(τ) − qk(l · T )| ≤ T · α, and each element of x∗(q(l · T )) is bounded by 1, we

have

|[q(τ)− q(l · T )]T B · x∗(q(l · T ))| ≤ KNb̄Tα.

Therefore,

q(τ)T B · x∗(q(τ))

≥ q(l · T )T B · x∗(q(l · T ))−KNb̄Tα. (12.24)
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Also, q(τ)T A · a(τ) ≥ q(l · T )T A · a(τ)−KMb̄Tα. Then

L(q((l + 1)T ))− L(q(l · T ))

≤ T · {−q(l · T )T A · ãl + KMb̄Tα

−q(l · T )T B · x∗(q(l · T )) + KNb̄Tα}+ T · c

= −T · q(l · T )T B · [x∗(q(l · T ))− y(l · T )] + c2

≤ −T · δ̄||q(l · T )||+ c2

where the last two steps have used (12.22) and condition (12.23).

Now Theorem 10 can be proved as follows.

Proof. Lemma 23 and Lemma 21 imply that q(l · T ) is bounded for all l. Because each

queue has bounded increments per slot, q(t) is bounded for all t.

12.9.2 Proof of Theorem 11

By (12.19), L(q(t + 1))− L(q(t)) ≤ −q(t)T A · a(t)− q(t)T B · x∗(q(t)) + c. So

E[L(q(t + 1))− L(q(t))|q(t)]

≤ −q(t)T A · E[a(t)]− q(t)T B · x∗(q(t)) + c

= −q(t)T A · λ− q(t)T B · x∗(q(t)) + c

= q(t)T B · y − q(t)T B · x∗(q(t)) + c

≤ −δ||q(t)||+ c. (12.25)

Let E0 := {q(t)| ||q(t)|| ≤ (c+1)/δ. Then if q(t) /∈ E0, E[L(q(t+1))−L(q(t))|q(t)] ≤ −1;

if q(t) ∈ E0, E[L(q(t+1))−L(q(t))|q(t)] <∞ due to the bounded change of queue lengths

in each slot. Therefore, by Foster’s criteria as used in [47], q(t) is stable.

Also, we claim that given a set E , with probability 1, the time average P (E) :=

limT→∞
∑T−1

t=0 I(q(t) ∈ E)/T exists. To see this, partition the state space of q(t) into

set T ,R1,R2, . . . where Rj , j = 1, 2, . . . are closed sets of communicating states and T is

163



the set of states not in ∪jRj . If q(0) = 0 ∈ Rj for some j, then q(t) will not leave the

set and all states in Rj are positive recurrent. Therefore there is a well defined stationary

distribution in Rj , so P (E) exists w. p. 1. If q(0) = 0 ∈ T , by Foster’s criteria as used in

[47] (Theorem 3.1), the negative drift implies that w. p. 1, q(t) enters some Rj in finite

time. After that there is a well defined time average of I(q(t) ∈ E) w. p. 1. Therefore, the

overall time average P (E) exists. In both cases,

P (E) = πj(E) (12.26)

where πj(·) is the stationary distribution on the Rj , and Rj is the closed set of communi-

cating states q(t) eventually enters.

To show the rate stability, consider two kinds of queues. WLOG, let U be the set of

queues whose deficits go unbounded. According to Proposition 27, the queues outside the

set only induce a finite number of null activities.

Consider queue k ∈ U . For any C > 0, since Dk(t) → ∞, there exists finite time tk

such that Dk(t) ≥ C,∀t ≥ tk. For t ≥ tk, queue k induces null activities at slot t − 1 only

when qk(t) < −Dk(t) ≤ −C. So the total number of null activities induced by queue k is

not more than N · [tk +
∑∞

t=tk
I(qk(t) < −C)] ≤ N · [tk +

∑∞
t=0 I(qk(t) < −C)], since queue

k at most induces N null activities in one time slot. Therefore, the average rate the queue

k induces null activities is

rk ≤ N · lim
T→∞

1
T

[tk +
T−1∑
t=0

I(qk(t) < −C)] = N · Pr(qk < −C). (12.27)

where the marginal probability on the RHS is induced by the stationary distribution πj(·)

on the set Rj which q(t) eventually enters. So limC→+∞ Pr(qk < −C) = 0. Since (12.27)

holds for any C > 0, letting C → +∞ yields rk = 0.

Therefore, the average rate of null activities is 0 in the long term w. p. 1. Also, if

we imagine that the null activities produce real parts, then the output rates of the final

products would be the maximum since the virtual queues q(t) are stable. Combining the

two facts concludes the proof.
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12.9.3 Proof of Theorem 12

Lemma 24. q(t) is bounded.

Proof. Choose any f ′ ∈ Rm and y′ > 0 in Λo such that the flow conservation constraint is

satisfied: A · f ′ + B · y′ = 0, and |
∑

m um(f ′m)| < ∞,∀m. The latter is feasible by letting

f ′m = ε > 0,∀m where ε is small enough.

By Lemma 20, we have for any q ∈ B,

qT B · [x∗(q)− y′] ≥ δ′||q|| (12.28)

for some constant δ′ > 0.

Also, since f ′m ∈ [0, 1], by (12.16),

V · um(f ′m) + q(t)T Am · f ′m

≤ V · um(fm(q(t))) + q(t)T Amfm(q(t)),∀m.

Therefore

V ·
∑M

m=1 um(f ′m) + q(t)T A · f ′

≤ V ·
∑M

m=1 um(fm(q(t))) + q(t)T A · f(q(t)).

Since |
∑

m um(f ′m)| < ∞, we have
∑M

m=1 um(fm(q(t))) −
∑M

m=1 um(f ′m) ≤∑M
m=1 um(1)−

∑M
m=1 um(f ′m) ≤ C1 for some positive constant C1. So

−q(t)T A · f(q(t)) ≤ −q(t)T A · f ′ + V · C1. (12.29)

Similar to (12.19), the Lyapunov drift in the algorithm is

∆(q(t)) ≤ −q(t)T A · f(q(t))− q(t)T B · x∗(q(t)) + c. (12.30)
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Plugging (12.28) and (12.29) into (12.30) yields

∆(q(t))

≤ −q(t)T A · f ′ + V · C1 − q(t)T B · y′ − δ′||q(t)||+ c

= −q(t)T [A · f ′ + B · y′]− δ′||q(t)||+ V · C1 + c

= −δ′||q(t)||+ V · C1 + c.

Using Lemma 21, the above implies that for all t,

L(q(t)) ≤ [(V · C1 + c)/δ′]2 + V · C1 + c.

So q(t) is bounded.

Define q̃(0) = 0, and for t = 0, 1, . . . , define

q̃(t + 1) = q̃(t)−A · a(t)−B · x∗(t). (12.31)

Lemma 25. For all t, ||q̃(t)− q(t)|| ≤ Z for some constant Z > 0.

Proof. By (12.17) and q(0) = 0, we have

q(t) =
∑t−1

τ=0[−A · f(q(τ))−B · x∗(τ)]

= −A
∑t−1

τ=0 f(q(τ))−B ·
∑t−1

τ=0 x∗(τ).

By (12.31) and q̃(0) = 0, we have

q̃(t) =
∑t−1

τ=0[−A · a(τ)−B · x∗(τ)]

= −Ab
∑t−1

τ=0 f(q(τ))c −B ·
∑t−1

τ=0 x∗(τ).

So, ||q̃(t) − q(t)|| = ||A · {
∑t−1

τ=0 f(q(τ)) − b
∑t−1

τ=0 f(q(τ))c}||. Since each element of∑t−1
τ=0 f(q(τ))− b

∑t−1
τ=0 f(q(τ))c is between 0 and 1, and each element of A is bounded, we

conclude that ||q̃(t)− q(t)|| ≤ Z for some constant Z > 0.

Now we are ready to complete the proof.
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Since ||q̃(t)|| ≤ ||q(t)|| + ||q̃(t) − q(t)||, combining the previous two lemmas, we know

that ||q̃(t)|| ≤ G,∀t for some G > 0. Define D(t) = Q(t)− q̃(t). Comparing the dynamics

of Q(t) and q̃(t), it is clear that we can apply Proposition 27 to q̃(t),Q(t) and D(t) to

complete the proof.

12.9.4 Proof of Theorem 13

Proof. Assume that f∗ ∈ Rm and y∗ > 0 achieves the optimal utility U∗. So A·f∗+B·y∗ = 0

and U∗ =
∑

m um(f∗m).

We also have qT B · [x∗(q)− y∗] ≥ 0. This is equivalent to (12.28) when δ′ = 0. Then,

following the proof of Theorem 12 (but without using the upper bound C1), we have

∆(q(t)) ≤ −q(t)T [A · f∗ + B · y∗] +

V · [
∑
m

um(fm(q(t)))−
∑
m

um(f∗m)] + c

= V · [
∑
m

um(fm(q(t)))− U∗] + c.

Summing over t from 0 to T − 1 yields

L(q(T ))− L(q(0)) ≤ V ·
T−1∑
t=0

∑
m

um(fm(q(t)))− V TU∗ + T · c.

Dividing both sides by T · V , and using L(q(T ))− L(q(0)) = L(q(T )) ≥ 0, one gets

T−1∑
t=0

∑
m

um(fm(q(t)))/T ≥ U∗ − c/V. (12.32)

Since um(·) is concave, um(
∑T−1

t=0 fm(q(t))/T ) ≥
∑T−1

t=0 um(fm(q(t)))/T . Using this, (12.32)

and letting T →∞, we have (12.18).
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