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ABSTRACT
Innovation in the network is notoriously difficult due to the
need to support legacy applications. We argue that this dif-
ficulty stems from the API used to access the network. The
ubiquitous Sockets API lets applications choose from a num-
ber of communication mechanisms, but binds them tightly
to their chosen mechanism (e.g. specifying a destination us-
ing IPv4). Applications must therefore be modified in or-
der to benefit from new network technologies. To address
this problem, we propose a new communication API called
NetAPI that lets applications specify their communication
intents without binding to particular network mechanisms,
enabling evolution below the API. We have built a NetAPI
prototype for the iPhone, and use it to show that we can add
disconnection tolerance, content shaping and power saving
policies under NetAPI without application modifications.

1 Introduction
Virtually all network applications access the network through
the Sockets API [17], which was developed for BSD UNIX
over twenty years ago. The Sockets API lets clients select
between a number of network technologies, but it binds them
tightly to their chosen mechanism (e.g. specifying a destina-
tion host using IPv4). Trivial architectural changes, such
as moving from IPv4 to IPv6, require all applications to be
modified. This inflexibility has become problematic as the
Internet has evolved. The Internet for which Sockets were
designed was primarily used for file transfer between static
hosts. Today’s Internet usage is far more diverse, with a va-
riety of end devices (e.g., servers, desktops, laptops, phones)
accessing a variety of content (e.g., documents, voice, video)
through a variety of applications (e.g., email, web, IM) and
network technologies (e.g., Ethernet, 802.11, cellular). The
challenges introduced by this diversity, including mobility,
naming, content delivery, multiple network interfaces, and
intermittent connectivity, have inspired numerous research
efforts over the past decade [3,12,15,16,21]. However, these
advances have proven difficult to deploy without application
modifications, and so remain largely unadopted.

To understand the limitations of the Sockets API, consider
another API used to access system resources: the filesystem
API for accessing storage. Although it is nearly as simple

as Sockets, the filesystem API has fostered far more inno-
vation since the time it was introduced. Today, applications
using the filesystem API can take advantage not just of new
types of storage media and placement algorithms, but also
of filesystems cached in memory (buffer cache), served over
the network (NFS), striped redundantly across disks (RAID),
partitioned across commodity machines (GFS [26]), or em-
ploying advanced deduplication logic to conserve space (Ne-
tApp). The same ls, cat and vi applications written for
BSD UNIX will work over this wide range of storage sys-
tems without even needing to be recompiled.

What features of the storage API made it so much more
capable of supporting innovation than the network API? First,
the filesystem API hides storage technology details from
the application (e.g. locations are given using paths, not
block numbers), whereas the Sockets API requires applica-
tions to invoke specific network mechanisms (e.g. choose
among IPv4 and IPv6 address families, use TCP or UDP).
Second, the filesystem API captures information about ap-
plication intent that aids the implementation (e.g. files are
opened in read or write mode, which determines what caching
may be performed), whereas the Sockets API exposes no
communication semantics to the network stack beyond raw
byte streams or datagrams. Stretching the filesystem anal-
ogy, the Sockets API resembles what might have happened if
the filesystem API included primitives for accessing blocks
and inodes rather than files: there would be little room for
architectural evolution. Our goal in this paper is to define a
communication API that is conducive to innovation.

To show the real-world need for a richer network API,
we note that while researchers been exploring new architec-
tures, practitioners have not been idle. Today’s practical so-
lution to the limitations of Sockets is HTTP. HTTP has well-
defined request semantics (e.g. GET vs. POST) that let mid-
dleboxes understand how to cache responses, speeding con-
tent delivery. Redirection and DNS load balancing provide
some flexibility in naming. HTTP provides limited discon-
nection tolerance by letting partial-content requests resume
a transfer in the middle of a file. Finally, cookies let appli-
cations establish sessions, which can be used to track users
across disconnections and to load balance stateful services.
These are all examples of HTTP exposing application intent
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to the network stack. As a result of these features and of
the widespread availability of HTTP middleboxes, many ap-
plications that used to have separate protocols now run over
HTTP, including file transfer, RPC (SOAP), instant messag-
ing (XMPP), and streaming video (YouTube).1 Nonetheless,
HTTP is limited in flexibility because it is an application
layer protocol. For example, HTTP cannot facilitate de-
ployment of new naming mechanisms or transport protocols.
Furthermore, the caching and session features of HTTP are
implicit conventions tacked on over time. Their implemen-
tation in middleboxes is architecturally clumsy, and much of
the network stack is unaware of these features.

Our Contribution In this paper, we propose a new commu-
nication API, called NetAPI, designed to enable flexibility in
the network. NetAPI provides an interface against which ap-
plications can specify communication intents without bind-
ing to particular network mechanisms. Because no general
interface can be expected to express all communication se-
mantics, NetAPI uses entities called schemes to encapsu-
late specific classes of communication (e.g. web browsing,
voice, RPC). Applications open a NetAPI connection by pro-
viding an URI of the form scheme://resource. A scheme im-
plementation in the OS interprets the resource name, allow-
ing flexibility in naming. Applications then read and write
messages (ADUs [9]) on the connection. The semantics of
these operations are given by the scheme definition,2 but how
these operations map onto wire protocols is a function of the
scheme implementation. NetAPI exposes only the high-level
communication semantics to the application, not low-level
details which may change over time.

The primary benefit of NetAPI is that it hides network
technology details from the application, encapsulating them
in the scheme implementation. Figure 1 illustrates this shift.
Today, applications must manage a variety of low-level net-
work mechanisms, including selecting a name resolution mech-
anism (e.g. INS [21]) and a transport protocol (e.g UDP),
encoding messages over this protocol, selecting network in-
terfaces to use, and ensuring security (through e.g. SSL). Ap-
plications must therefore be ported manually when new net-
work technologies emerge. NetAPI shifts network respon-
sibility for managing low-level network mechanisms to the
scheme implementation, leaving the application responsible
only for breaking content into messages, specifying destina-
tion names, and specifying a high-level security policy. This
separation of concerns simplifies application development
and porting, while letting scheme implementations use new
network technologies without application modifications.

A second benefit is that because NetAPI captures more
application intent than Sockets, it can enable more intelli-
gence in the network stack. For example, NetAPI is a log-
ical place to build disconnection tolerance that is sharable
across applications. As another example, a mobile phone

1Some of this is also due to firewalls blocking non-HTTP ports.
2We expect schemes to be standardized by bodies like the IETF.
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Figure 1: Block diagram showing how the division of re-
sponsibilities shifts from the current model (left) to a new
functional model (right) with adoption of NetAPI.

might present a setting for “best performance” versus “best
battery life”. Selecting the latter could lower content quality
in a video application and delay file downloads until WiFi is
available. This type of central policy would be impossible if
the network stack did not understand application semantics.

We started this project with a clean-slate approach, and in
our first attempt we proposed a pub-sub API that was quite
different from Sockets [13]. However, after more than a year
of additional research, including extensive implementation,
we have ended up with a design whose syntax is far closer to
the Sockets API. NetAPI essentially replaces addresses with
names, (optional) address binding with (optional) transport
binding, and extends ADUs with properties. These changes,
while seemingly minor (and oft-discussed in the literature),
make the interface far more declarative and thus allow net-
work technology to evolve without changes to applications.

Implementation To evaluate NetAPI, we built a NetAPI
prototype called PANTS (Protocol Aware Network Technol-
ogy Selector) for the iPhone, aimed at mobile networking
challenges like disconnection tolerance and multiple inter-
faces. PANTS runs on the client only and interacts with
legacy servers. We implemented two applications using PANTS,
a file downloader and a news reader, and took advantage of
NetAPI to add disconnection tolerance, power-saving poli-
cies and content shaping to these applications without mod-
ifying them. We also implemented the global “best perfor-
mance” versus “best battery life” setting explained above.

Outline This paper is organized as follows. We start with an
overview of networking challenges that have arisen as the In-
ternet has evolved in Section 2. We describe NetAPI in Sec-
tion 3. In Section 4, we show how NetAPI supports popular
applications. We describe our NetAPI prototype, PANTS, in
Section 5, and evaluate it in Section 6. We discuss the de-
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sign rationale behind NetAPI in Section 7. We survey related
work in Section 8. Finally, we conclude in Section 9.

2 Modern Networking Challenges
We make a case for NetAPI by surveying some major chal-
lenges in today’s Internet. We argue how, despite the recog-
nition of these challenges and the solutions developed, the
inflexibility of the Sockets API limits the pace of innovation.

Naming and Addressing: Research has advocated the de-
coupling of naming of a resource from the address at which
it can be accessed. There are numerous advantages to do-
ing this that have been noted in literature – improved per-
formance by transparently choosing the address of the near-
est source (e.g., i3 [11]), expressive naming of resources
(e.g., Intentional Naming System [21]), and easy deploy-
ment of newer address formats (e.g., IPv6). We believe that
providing a common substrate that accommodates various
naming schemes and decouples addressing would greatly fa-
cilitate development and deployment of such technologies.

Content Delivery: Prior research (e.g., DOT [15], DONA [19])
has proposed the decoupling of the name of a resource from
the mechanism by which it is transferred. This is motivated
by the fact that a resource can often be obtained from multi-
ple sources and that can improve performance. The increas-
ing popularity of mobile devices also presents an opportunity
to query nearby devices for the resource [12].

Multiple Network Interfaces: Mobile devices have multi-
ple connectivity options, e.g., Wi-Fi, cellular, and Bluetooth,
with Wi-Max networks on the horizon. These interfaces
have different characteristics in terms of power, throughput
and range [25], that vary spatially and temporally [5].

Expecting the application to specify the local interface
before starting communication clearly leads to sub-optimal
choices. On the other hand, innovations have been happen-
ing in how devices pick the best available interface [5]. With
low-throughput applications, they may prefer to remain con-
nected to cellular during times of good connectivity. High-
bandwidth applications may wish to avoid the cellular con-
nections altogether, conserving battery life, or to change pro-
tocols on lower-bandwidth links. Proposals have also sug-
gested using interfaces in tandem to increase throughput.

For these, and any future solutions that combine multiple
network interfaces, the current model of tying communica-
tion to a single address is problematic. This has led to solu-
tions that utilize multiple interfaces being implemented in an
architecturally unclean manner and facing deployment chal-
lenges as they invariably require network proxies to mask
changes in the address of the mobile device.

Mobility: Mobility in devices leads to disruptions in con-
nectivity that require application-specific handling. Disrup-
tion tolerant applications like email synchronizers could wait
until they get optimal (e.g., energy efficient) connectivity
options before resuming their activities, while others like
streaming might prefer a seamless transfer of connectivity

to another interface. Temporary loss of connectivity is trou-
blesome as it requires maintenance of state during that pe-
riod and must deal with the possibility of the mobile device
resuming communication using a different IP address. This
is an active research area, with projects such as DTN [22],
Haggle [12], and KioskNet [6].

The reader may note that we have cited existing solutions
to all of these problems. We aim to deal with the overarching
problem of adoption. The limitations of existing network in-
terfaces mean that innovative new technologies have an ex-
tremely hard time leaving the research phase. By placing
these technologies under a common network API, we can
ease adoption and create an environment supporting innova-
tion while still expressing communication intent. It is to this
end that we have developed NetAPI.

3 NetAPI Design
NetAPI provides five basic high-level operations:
• open(scheme://resource, options)⇒ handle
• put(handle, message, options)⇒ result
• get(handle, options)⇒ message
• control(handle, options)⇒ result
• close(handle, options)⇒ result

These operations may be exposed to the application by
NetAPI language bindings in multiple ways, e.g. through
both synchronous and asynchronous versions of the calls.
Errors can be reported through exceptions or return codes.

The operations in NetAPI are very similar to those in filesys-
tems and Sockets, making the API easy to understand for de-
velopers. Our contributions are twofold: providing separate
semantics for separate classes of communications through
schemes, and making the API flexible and declarative through
the use of key-value options and opaque names.

Users start a connection through open(), which returns a
connection handle. Instead of asking for an address or DNS
name in open(), NetAPI takes a Uniform Resource Identi-
fier (URI) [18] of the form scheme://resource. The scheme
portion of the URI selects one of several communication
schemes. Each scheme represents a class of network service,
such as web://, video://, or voice://. The scheme defines the
high-level semantics of NetAPI operations and defines what
types of messages and options can be used. The scheme is
also responsible for defining how the resource name in the
URI is resolved; NetAPI does not enforce any specific nam-
ing mechanisms. This approach to naming has been adopted
by other systems [23] due to its flexibility and extensibility.
We explain schemes in greater detail in Section 3.1.

The put() and get() operations are how a NetAPI appli-
cation inserts and retrieves data from the network. We refer
to one bundle of data as a message. NetAPI messages are
application-defined data units (ADUs) [9], such as individ-
ual frames in a video scheme. They consist of data plus a
list of key-value properties. This lets the scheme implemen-
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tation distinguish between messages types and understand
the semantics of each message.

Get() is also used to accept connections in servers. Call-
ing get() on a server scheme returns a handle to the next
client connection. The application can then call get() and
put() on this handle to communicate with the client.

The control() function is used perform operations that are
not part of the data stream, such as seeking in a streaming
video scheme, or querying the scheme about the packet loss
rate observed. It takes an options argument, which is a list of
key-value pairs interpreted by the scheme. It returns a result
object which may also contain key-value pairs, such as the
loss rate queried. The other NetAPI operations also support
key-value options, and return result objects for schemes that
wish to provide status information. Example uses include
setting transport requirements in open() or signaling end-of-
file in get(). The close() call ends a connection.

The rest of this section describes and motivates the main
design elements of NetAPI: schemes and messages. We end
with a discussion about compatibility and evolution.

3.1 Schemes

A general communication API must support applications with
vastly different requirements from the network: media appli-
cations desire low jitter and tolerate some losses, file down-
load applications may accept a file from multiple providers,
some applications tolerate disconnections, and so forth. The
solution to this problem in Sockets is to provide a low-level
API and ask applications to manage communication details
themselves, but this hinders evolution. The solution in NetAPI
is to separate the definition of semantics for different types
of communication into schemes. Schemes are a key feature
of NetAPI, so we explain and motivate them in detail.

What is a Scheme? A scheme is a protocol between the ap-
plication and the network stack that captures the high-level
structure of a particular form of communication. Schemes
capture communication structure that is unlikely to change
over time, rather than details of how the communication is
implemented on the wire. For example, a web:// scheme for
web clients may specify the following protocol: Applica-
tions call open() on an URI of the form web://location/resource,
optionally call put() to post HTTP POST parameters (spec-
ifying the name of each parameter as a name property on
the message passed to put()), and repeatedly call get() to re-
ceive the file until the message returned has the end of file
property set. Similarly, a video:// scheme may specify that
messages returned by get() are keyframes in a certain encod-
ing, may list a set of standard properties on these messages
that indicate position in the file, and may define control()
operations for seeking and changing bit rate.

The primary benefit of schemes is that scheme implemen-
tations can change underneath an application as long as they
adhere to the scheme. We refer to this as “vertical” evolu-
tion. For example, the web:// scheme can choose to use a dif-
ferent naming mechanism to resolve the location portion of

its URI. Similarly, the video:// scheme could choose to use
a more efficient transport protocol or encoding; as long as
it provides keyframes in the encoding defined in the scheme
standard, applications will continue to work. Furthermore,
the choice of encoding can depend on the network interfaces
available, or on a user setting such as optimizing for battery
life, without the application being aware of these policies.
Scheme definitions themselves can evolve by adding new
options; for example, on a mobile device, the web:// scheme
may support an option to open() called max delay indicat-
ing that a request is delay-tolerant. Finally, if a scheme must
change in a non-backwards-compatible way to support new
technology, a new scheme with a different name can be cre-
ated. We call this “horizontal” evolution.

Scheme Responsibilities. Scheme implementations are re-
sponsible for resolving names, binding to addresses, select-
ing transport protocols, encoding messages, and ensuring
communication security. This represents a significant shift
from the current responsibilities of the network stack. For
example, an implementation of a generic file download scheme
(download:// ) may choose to employ new naming mech-
anisms [14], new transport protocols [30], BitTorrent [8],
DTN [22], or a clean-slate architecture like DONA [19]. The
implementation may also choose which network interface to
use on a mobile device. Finally, the decisions made by the
scheme implementation may be guided by options provided
by the application to the open() call.

Nonetheless, the ability of schemes to select communica-
tion mechanisms does not entail a loss of control in applica-
tions. For example, the system can provide tcp:// and udp://
schemes for applications that desire the same amount of con-
trol over networking that Sockets provide. These schemes
would accept raw IP address and port number pairs as names.
Even in this case, NetAPI is beneficial because it allows new
naming and addressing mechanisms to be supported later.

We also chose to give schemes the responsibility for com-
munication security, by having applications express security
requirements for their content through options in the open()
call. For example, a web-server:// scheme may support an
option called secure in the open() call, which forces the
server to use HTTPS, or a download:// scheme may support
an option called authenticate, which verifies the MD5 di-
gest of the received object against a trusted database. In
contrast, today’s applications tend to use their own secu-
rity mechanisms (often via libraries like TLS), hiding the se-
curity semantics from potential in-network implementations
(e.g. IPsec). In our model, the scheme defines high-level
ways for applications to express confidentiality, integrity and
authentication policies, giving the implementation enough
guidance to meet those needs. This allows implementations
to eventually upgrade to newer security protocols. Of course,
applications that want more control over security can encrypt
and authenticate data manually.

Finally, schemes define the semantics of messages, al-
lowing scheme implementations to perform bundling and
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reordering of messages, caching, and content modification
(e.g. changing encoding). The use of semantic information
can also go beyond simple caching and ordering, and into
policy decisions. For example, a web:// scheme may give
higher priority to HTML files than to media files like JPEG.
This is useful when browsing the web over constrained net-
work links. Likewise, an RSS scheme on a mobile phone
might decide to fetch feeds over the cellular interface, but
synchronize any attached MP3 podcast files only when in
range of a Wi-Fi network. Finally, a media scheme on a
mobile phone might adjust content quality depending on the
network interfaces available as in BARWAN [16]. These ac-
tions may be controlled by global setting in the OS, like a
“best battery life” versus “best performance” setting.

Standardizing Schemes. The task of standardizing and im-
plementing schemes is left to the community. For instance,
the World Wide Web could be implemented by a set of dis-
tinct schemes (e.g. hypertext, audio, and video). However, if
multiple types of communication are supported over a single
protocol (e.g. interactive web browsing and non-interactive
file downloads over HTTP), it may be cleaner to have a sin-
gle scheme for this protocol and hint application require-
ments to it through options. The tradeoffs involved in defin-
ing schemes are inherent, and as such we leave them to do-
main experts in standards bodies. NetAPI aims only to pro-
vide flexibility in defining schemes. Our PANTS prototype
provides two examples of functional schemes in Section 6.

Because of the great flexibility available to scheme im-
plementations, we expect scheme specifications to include a
list of permissible implementation choices, similar to todays
Internet RFCs.

3.2 Messages

Messages in NetAPI are application-defined data units (ADUs)
[9] containing data and a list of key-value properties. The
use of ADUs allows applications to divide content into log-
ical units which can be treated individually by the network
stack, similar to files in a filesystem and request-response
pairs in HTTP. Properties let applications express semantic
information about content without being coupled to a spe-
cific protocol encoding. NetAPI does not mandate how mes-
sages are encoded and ordered. For example, properties may
map to flags in RTP or headers in HTTP. Messages may be
concatenated into a TCP stream in a web:// scheme, or may
be unordered UDP packets in a video:// scheme. Both en-
codings and transport protocols are free to evolve.

A second advantage of a message-oriented API is that
message reconstruction is performed by the scheme, elim-
inating a common source of bugs and security problems.

3.3 Compatibility and Evolution

As network technologies and schemes evolve, new and old
scheme implementations will have to be compatible. In addi-
tion, schemes must be compatible with existing non-NetAPI
applications. Currently, each form of communication is tightly

coupled with an existing wire protocol (e.g. the web and
HTTP). To ensure compatibility while supporting evolution,
we propose that all schemes initially be defined in terms of
wire protocols such as HTTP and RTP that are standardized
independent of NetAPI. Initially, scheme implementations
would interoperate with each other and with legacy applica-
tions over a single legacy protocol. Over time, as schemes
gain more options for transport and naming, a protocol ne-
gotiation phase can be added, with a default protocol chosen
if the negotiation cannot be performed.

Evolving naming options will likely be the most difficult
task. The name formats a scheme expects can change, and
applications would need to be modified to take advantage of
any new naming mechanisms the scheme decides to present.
However, if the application is designed to be name-format-
agnostic (e.g. users specify strings for names), then it can
benefit from new naming mechanisms with no code changes.

4 Usage Examples
We now show several examples of how NetAPI supports
popular Internet applications. We start with an in-depth look
at web content retrieval, to demonstrate that all the details of
the application can be accommodated by NetAPI. We then
present several other applications for breadth.

4.1 Web Content Retrieval

The web:// scheme is used for retrieving web content. It
accepts a URI (web://<url>) and optional URL-encoded
key-value parameters.

A web page is returned over multiple messages, because
it may be arbitrarily large. The application calls get() repeat-
edly to receive chunks of the page, in the same way that the
read() call on sockets returns chunks of bytes. These chunks
are annotated with metadata such as position in the file, to-
tal file length and an end-of-file flag to aid reconstruction.
Timeouts are signalled via options fields, with get() return-
ing immediately if the HTTP connection fails.

Web servers also need access to cookies and HTTP head-
ers, like the user agent, when they generate content for a
HTTP request. Clients may pass these parameters to the
open() call as options. In the same manner, the client may
ask for security features like server identity authentication
and content protection through options to open(). For access
controlled resources, the client may supply a username and
password. Exposing the credentials to the API allows the
implementation to select security mechanisms most appro-
priate for a particular operating environment and to evolve
them over time. For example, the implementation could add
support for a single sign-on protocol such as Liberty [31]
without application modification.

As an example, a web browser executes the following
Python-like pseudocode to download a web page, supplying
a cookie and requesting authentication of the source:

handle = open("web://my.site.com/home.html",
authenticate_origin = true,
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cookies = {"username": "john"})
while True:
message = get(handle)
page += message.data
if message.is_end_of_file:
break

print(page)

Clients can also submit data to a server through HTML
forms that processes it and returns a response (as in HTTP
POST). The application calls put() with the form data before
calling get() to retrieve the response.

Network bindings. In well-connected environments, the web://
scheme can be implemented over HTTP/1.1. The, open()
call triggers an HTTP get request, and data is returned in
get(). Submitting data to a server happens via HTTP POST.
A successful response is encoded as a NetAPI message, map-
ping the HTTP headers into the key/value properties. A
failure maps into an API error. If encryption is requested,
the transactions are layered over SSL/TLS. HTTP authen-
tication may also be used. Like today’s HTTP clients, the
implementation can use persistent connections and pipelin-
ing to optimize performance, letting applications use asyn-
chronous get() calls to request multiple objects in parallel.

NetAPI also makes it natural to run the web:// scheme
using other network technologies, such as DOT [15] or Bit-
Torrent [8]. To download a web object using BitTorrent, an
initial resolution step identifies the content hash and location
of the appropriate tracker for the publication URI, and then
initiates the download process from peers. DOT would sim-
ilarly transfer the object over the most appropriate transport
method after locating it.

Finally, unlike current HTTP libraries, NetAPI makes it
possible to install central policies across all applications that
use the web:// scheme. For example, a user interested in
blocking ads in both their web browser and their news reader
may install a global filter, without having to configure each
application to use the filter.

4.2 Web Server

Naming is an extremely difficult problem for web services.
Though all major services use DNS as the primary nam-
ing mechanism, the limitations of that technology are well
known. Allowing a web server to transparently use different
naming mechanisms and transports would allow for a greater
rearchitecting of the Internet without a major overhaul of the
services involved.

Our solution is to build a NetAPI scheme that abstracts
naming and transport from the web server application. To do
this, the scheme maps from the name provided to the open()
call (e.g., open(web-server://foo) to names appropriate
for the new technologies (e.g., dtn://foo). The application
may also specify specific naming technologies and names
in the options, signaling to the scheme that it should use
these names for those technologies. This allows for the ap-
plication to make use of new technologies with default name

mappings, yet still customize existing ones. The following
snippet shows how this may map into code:

h = open("web-server://foo",
{"dtn" = "dtn://not-foo"})

When the scheme receives a message for the server, the
appropriate information is translated and handed to the ap-
plication. The application may be aware of what technology
is being used, for instance sending less data over delay tol-
erant links. Following this, the application sends data to the
client, which is bundled and forwarded over the appropriate
transport mechanism.

When publishing static content, the application no longer
needs to be informed of requests. If we wanted to optimize
this publishing of static content, we may opt for horizontal
evolution. Although publishing could be an extension to the
web-server scheme, it is distinct enough to warrant a new
web-publish scheme. Under this new scheme, the applica-
tion calls put() to insert static content into the network. This
data can then be aggressively cached and/or replicated with
a content distribution network (CDN) [1], BitTorrent [8], or
DONA [19]. The scheme may automatically load balance
the content, replicating more aggressively or to different lo-
cales when load increases. Any client requesting it will be
directed by the scheme to a close, lightly loaded machine.

4.3 Multimedia Streaming

Multimedia content is naturally accommodated in NetAPI,
enabling efficient distribution protocols in a wide variety of
environments. For example, the data associated with a URI
in a media:// scheme might link to set of track descriptors,
each with a reference to a URI in the video-data:// or audio-
data:// scheme for streams with various encodings and vari-
ous levels of quality. These per-track streams in turn contain
multiple messages, one for each frame of the audio/video,
with properties defining the frame content type and a time
offset relative to the start of the video. A media player se-
lects the tracks it desires, opens them, and calls get() repeat-
edly to receive frames. The player may also move forward
and backward in the stream by calling a seek control() oper-
ation, and may obtain network statistics such as lost frames
or jitter by calling a get-statistics control() operation.

Network bindings. On the Internet, video content is deliv-
ered in multiple ways, including HTTP, streaming protocols
layered on UDP, and peer-to-peer protocols. NetAPI enables
any of these methods to be used efficiently. Furthermore,
the fact that name resolution happens below the API lets
NetAPI take advantage of novel approaches for determin-
ing the nearest content server without application modifica-
tions. For example, in a DTN context, instead of streaming
the video frame-by-frame, the whole video might be packed
up into a single DTN bundle, then unpacked at the client and
delivered frame-by-frame in response to get() calls.

On a mobile device, NetAPI can take into account the
quality of the available connection (cellular vs Wi-Fi) and
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any user policy settings (e.g. best battery life vs. best perfor-
mance) to choose the right level of quality for the stream.

4.4 Syndicated Content

Syndication protocols such as RSS distribute news, blog posts,
or other periodically updated items. NetAPI is a natural
fit for this publish/subscribe design pattern. In the news://
scheme, each URI identifies a news stream publication that
contains news items (one per message), corresponding to the
items in an RSS feed. Message properties identify feed ori-
gin, timestamps, and references to the complete articles.

As with multimedia content, clients call get() to obtain
news items one at a time as individual messages in the order
that they were published. If a client initializes having previ-
ously obtained and displayed some items, it can also check
for new items by calling a control() operation, passing the
identifier of the last message received.

Network bindings. RSS and ATOM are obvious choices to
implement the news:// scheme in well-connected environ-
ments. While a client has an open publication handle, the
implementation periodically polls the feed over HTTP, pars-
ing the XML items into NetAPI messages. Alternatively, the
implementation could use a true subscription-based protocol
like Corona [20], or bundle multiple items together in a sin-
gle transfer over an intermittent network.

5 PANTS: NetAPI for Mobile Phones
To evaluate the feasibility, usability and flexibility of NetAPI,
we implemented a prototype of it for mobile phones. Mobile
devices present significant networking challenges, as they
must regularly switch between network interfaces and ac-
cess points. This is often done at the expense of battery life
and application usability, much to the chagrin of users. For
developers, mobile networking is complex, leading to bugs,
poor performance, or applications that simply do not attempt
to tolerate disconnections or conserve battery life. Mobile
phones thus provide an ideal usage scenario for NetAPI.

We built a mobile phone implementation of NetAPI called
Protocol Aware Network Technology Selector (PANTS) for
the jail-broken iPhone platform. We implemented two schemes
on PANTS – web and voice – and used them in three sample
applications. Both schemes interoperate with legacy servers.
We then used PANTS to add disconnection tolerance, content-
shaping, and power-saving features in our scheme imple-
mentations below NetAPI, without modifying applications.

This section describes the goals and architecture of PANTS.
Then, in Section 6, we describe our sample schemes, appli-
cations, and experience adding functionality below NetAPI.

5.1 PANTS Goals

In designing PANTS, we wanted to build a research platform
that would not only implement NetAPI, but would also be
able to host various cross-application policies for managing
multiple network interfaces proposed in the literature [6, 12,
16, 32]. We set the following goals for PANTS:

Application 1 

PANTS Core 

Scheme Instance Scheme Instance 

Application 2 

Scheme 
Config File 

User 
Preferences 

NetAPI (over RPC) 

Network Manager 

WiFi EDGE … 

Connection requests 

Connectivity decisions Status 

Figure 2: PANTS architecture.

1. Provide a NetAPI interface to applications.
2. Provide a location for centralized network interface se-

lection based on application needs and user preferences.
3. Make schemes and policies pluggable.
4. Support “real” applications talking to unmodified servers.

5.2 PANTS Architecture

PANTS is implemented as a Python daemon using Twisted
Python [36]. The primary supported platform is the jail-
broken iPhone, but PANTS also runs on Nokia’s N810 Linux
platform and on Linux and Mac OS X laptops. Figure 2 il-
lustrates the architecture of PANTS. The system has the fol-
lowing main components:

Application Interface. Applications communicate with the
PANTS daemon by invoking the NetAPI operations (open(),
get(), etc) over local RPC. We provide both XML RPC,
which has implementations in most programming languages,
and a more efficient binary protocol for Python clients.

Schemes. Each scheme implementation in PANTS is a Python
class. An XML configuration file maps each scheme name
to a class name. An instance of the appropriate scheme class
is created for each client connection after the client calls
open(). This instance implements the other NetAPI oper-
ations, such as get() and put(), by invoking lower-level net-
work mechanisms.

Connection Requests. Scheme instances do not open TCP
and UDP connections to servers directly. Instead, they re-
quest a connection from the core module, allowing it to give
them the “best” available network interface. We also let
schemes provide hints about their bandwidth, latency, and
disconnection tolerance needs to aid in interface selection.
These hints could be used for various network selection poli-
cies proposed in the literature [6, 7, 12, 16, 32]. However,
we have not implemented any of these policies in PANTS
yet, because we have focused on implementing other in-
teresting functionality under NetAPI. We have only imple-
mented a simple policy for disruption-intolerant applications
described in the PANTS Core section below. We also let
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schemes manually request particular network interfaces.

Network Manager. PANTS has a network interface driver
object for each physical network interface on the phone. This
driver wraps platform-specific networking libraries to ex-
pose network interface status to PANTS (e.g. available WiFi
networks and signal strength) and to let PANTS turn the in-
terface on and off. The status information to can be used to
select interfaces in schemes or in the PANTS Core.

User Preferences. PANTS provides a simple binary setting
for user preferences – best performance or best battery life.
This setting is available to the PANTS core and to schemes.

PANTS Core. The PANTS Core module is responsible for
creating scheme instances in response to connections, select-
ing network interfaces in response to schemes’ connection
requests, and turning interfaces on and off.

We currently support only a simple network interface se-
lection policy, meant to illustrate that PANTS can imple-
ment cross-application policies. Schemes may say, for each
connection request, whether the connection is disruption-
tolerant, i.e. could be resumed if we switch network inter-
face. Applications such as file download and email are disruption-
tolerant, but low-latency applications like VOIP may not be.
This policy is in place because the iPhone OS only allows
one of EDGE and WiFi to be active at any time. For disruption-
tolerant applications, PANTS returns the best-performing net-
work interface available (preferring WiFi over cellular), un-
less a disruption-intolerant application is running, in which
case the current interface is used. For disruption-intolerant
applications, PANTS chooses EDGE when possible, unless
another disruption-intolerant application is running over WiFi.

6 Evaluation
To evaluate our NetAPI prototype, we implemented two sam-
ple schemes, web and voice, and three applications over these
schemes. We then added five policies in the scheme imple-
mentations under NetAPI, to demonstrate that these policies
can be implemented cleanly without modifying applications.
Section 6.1 describes the web scheme, to which we added
support for disconnection tolerance, content shaping, and a
power saving policy. Section 6.2 describes the voice scheme,
to which we added encoding selection and security mecha-
nism selection. Finally, we benchmark PANTS to show that
the overhead from NetAPI is tolerable in Section 6.3.

6.1 Web Scheme

We implemented a web scheme for accessing content over
HTTP. Applications use this scheme by opening a URI of
the form web://host:port/resource, then successively calling
get() to obtain chunks of content. The message properties
for each chunk include the chunk’s position in the file and
some HTTP parameters such as content length.

We built two sample applications over the web scheme: a
File Downloader and a News Reader. We briefly describe

(a) Downloader (b) News Reader

Figure 3: PANTS applications using the web scheme.

these applications and demonstrate how extending the web
scheme provides benefits to the applications.

File Downloader. Our first application was a File Down-
loader (Figure 3(a)) that fetches a large file over HTTP. This
is representative of applications such as music stores, video
stores, and software updaters. This is an example of an ap-
plication that would clearly benefit from features like dis-
connection tolerance and smart resumption of downloads.

News Reader. The News Reader (Figure 3(b)) represents
a more interactve application. It downloads an RSS feed
every 60 seconds and displays a list of stories. The user may
click a story to view its summary in a HTML content control.
In addition to the disconnection tolerance, we used PANTS
to implement a power-saving policy: download media files
(like images or audio) only when Wi-Fi is available.

Both applications use less than 10 lines of code to invoke
NetAPI. The following listing shows the relevant code from
the Downloader (in Python); the News Reader is similar:

self.fileData = ""
connection = PANTS.open(self.url)
while True:
message = connection.get()
self.fileData += message["data"]
self.progress = (message["position"] /

message["fileLength"])
if message["isEndOfFile"]:
break

The code simply opens a handle and calls get on it re-
peatedly to receive chunks of the file. The message returned
by get contains a field called "isEndOfFile" on the last
chunks. It also contains fields for the current position in the
file and the file length, which are used to display progress.
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6.1.1 Features Implemented Under Web Scheme

Disconnection Tolerance. The original web scheme attempted
to open a connection right away and return the data to the
client, raising an error otherwise. We made the scheme re-
silient to disconnection through two mechanisms:
1. If a connection to the server cannot be made, or is bro-

ken, the scheme will retry connecting later. Any get
calls made by the application during this time will block.
We also plan to support a timeout on get and an optional
parameter to prevent blocking.

2. On reconnection to the server after a disconnection, the
scheme implementation uses the HTTP Range parame-
ter, supported by most web server implementations, to
request only the range of bytes starting from the last re-
ceived position to the end of the file (similar to download
managers in web browsers like Mozilla Firefox).

With these changes, our sample applications automati-
cally became tolerant to disconnections due to exiting a cov-
erage area or moving between two hotspots. No changes to
the applications were required, because the web scheme se-
mantics already defined all get calls as blocking.

Power Management. To further illustrate the flexibility of
PANTS, we extended the web scheme with a feature that is
missing in mobile download applications that we are aware
of (e.g. iTunes on the iPhone): the ability to constrain down-
loads to only occur over Wi-Fi, to save power3. This re-
quired a very simple code change to the scheme implementa-
tion – when the scheme requests a connection from PANTS,
if the “best battery life” user setting is on, it explicitly re-
quests WiFi. Because of the download-resumption function-
ality in the previous section, the semantics seen by the appli-
cation are unchanged – it receives a new chunk of data each
time it calls get().

Content Shaping. We also demonstrate PANTS’s ability to
transform the content received by the application. When the
“best battery life” policy is selected by the user, we alter
the page content received by the News Reader application
to remove the HTML image tags, disabling images and thus
conserving download bandwidth. This is a basic example
meant simply to convey the point that PANTS can control
content quality to enforce policies.

6.2 Voice Scheme

To test the applicability of PANTS and NetAPI to multime-
dia tasks, we implemented a voice-over-IP (VoIP) scheme.
This scheme utilizes Twisted Python’s SIP protocol libraries
to register and communicate with an IP private branch ex-
change (PBX) system, using authentication credentials (user-
name and password) provided to the open() function. When
the PBX receives a call destined for our application, PANTS
and the PBX negotiate an RTP connection using the Session
Description Protocol (SDP). Because the VoIP registration
3WiFi is more costly than GPRS per second, but less costly per
byte. This is due to the transmission costs and bandwidths.

and session negotiation protocol is more complex than the
HTTP logic in the web scheme, the voice scheme provided
a good opportunity to verify that NetAPI can encapsulate
complex session setup protocols inside a scheme.

We built a very simple application on the voice scheme
that registers with a PBX server, providing a username and
password, but does not attempt to parse RTP data or respond
to calls. This was sufficient to test that the full connection
bootstrap process can be done inside NetAPI. We plan to
build an application that actually plays media and allows the
user to speak in the future, but it was difficult to find suitable
required media libraries for Python on the iPhone.

Encoding Selection. When receiving a new call, both the
PBX and PANTS signal the encodings available for use in
this communication. We decided to try to limit the band-
width used when on a GPRS connection, while using a high
bit-rate encoding on Wi-Fi networks. This policy was simple
to implement in PANTS, through a check in the call recep-
tion handling code. Because SDP is used to negotiate the
encoding, we filter the high-bandwith encodings from that
communication when on a low-bandwidth link. This forces
the PBX to use only low-bandwidth encodings. Likewise,
when on Wi-Fi, we do no such filtering.

In the current voice scheme, the application must still be
aware of the encoding used in RTP, so it cannot be fully ag-
nostic to VOIP protocol evolutions. However, it would also
be possible to have PANTS decode the RTP data and give
the application content in a single lossless encoding.

Security Policies. During the SIP registration, the PBX server
lists available authentication mechanisms. Again, PANTS
can make intelligent decisions without the application’s in-
volvement. For secure VoIP communications, PANTS can
disallow communications over unknown or unsecured WiFi
networks. It can also request encrypted communication. If
PANTS were implemented in the OS, security policies could
also be set at the OS level by system administrators in an
enterprise, and would thus affect any NetAPI-based VOIP
application that users installed, including applications that
administrators may not be aware of.

6.3 Performance

Our primary goal with PANTS was to explore the flexibility
of NetAPI, not to achieve high performance. As such, we
used a rapid prototyping language (Python), whose perfor-
mance is worse on a mobile phone. Nonetheless, we evalu-
ated the performance of PANTS to show that overheads are
tolerable. We compared the time it takes to download a file
through PANTS to downloading it through wget. Table 1
shows the results for four scenarios – a laptop downloading
a small file over Wi-Fi, a laptop downloading a large file,
and an iPhone connecting over Wi-Fi or EDGE. We see no
statistically significant difference between PANTS and wget
in all scenarios except for Wi-Fi on the iPhone. This slow-
down is due to PANTS becoming CPU-bound. We expect a
native implementation of NetAPI to be as fast as wget.
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Scenario File PANTS Mbps Direct Mbps
Laptop Wi-Fi 440 KB 2.02 (.24) 1.8 (.12)
Laptop Wi-Fi 6.7 MB 4.13 (.56) 3.83 (1.48)
iPhone Wi-Fi 440 KB 1.01 (.13) 1.49 (.13)
iPhone EDGE 440 KB 0.04 (.01) 0.03 (.01)

Table 1: PANTS download performance compared to
wget. Standard deviations shown in parentheses.

7 Discussion
NetAPI Design Rationale NetAPI sprang out of an ear-
lier clean-slate project to replace the Sockets API with a
more flexible pub-sub interface [13]. After a year of dis-
cussions and implementation, what surprises us most is how
similar our final result is to Sockets. Rather than attempt-
ing to change basic communication abstractions in NetAPI,
we decided to make the existing read/write interface more
declarative, through features such as URIs for names (in-
stead of addresses) and key-value options. The resulting in-
terface is simple and familiar to programmers. In addition,
we allowed separate interfaces for different classes of com-
munication to be created through schemes, which define the
high-level semantics of NetAPI operations but support evo-
lution both “vertically” within scheme implementations and
“horizontally” through the introduction of new schemes.

The concept of schemes led to some interesting debates
within our group. First, by making standards bodies re-
sponsible for defining scheme semantics, are we just shift-
ing the problem of designing an evolution-friendly API to
them? We believe that this is not the case. The problem of
defining future-friendly communication interfaces is inher-
ently complex, so there can be no “free lunch” – someone
will have to make tough decisions, and standards bodies like
the IETF are well suited to understand such decisions given
their experience defining protocols. However, schemes sepa-
rate the problem into tractable pieces and provide an avenue
for gradual evolution. Useful schemes for simple forms of
communication such as email and HTTP could be defined
today based on protocol specifications, and would allow de-
velopers to take advantage of features such as disconnection
tolerance that can be built below NetAPI. These schemes
could then be extended over time with new options, or suc-
ceeded by new versions. Furthermore, schemes for different
communication classes can be developed independently.

Second, how will different scheme implementations and
versions interact? Currently, each class of communication
is tightly coupled with an existing wire protocol (e.g. HTTP
for the web, or RTP for media). Our proposal is let wire
protocols be standardized independent of NetAPI and define
NetAPI schemes in terms of these wire protocols. Initially,
scheme implementations would interoperate with each other
and with legacy applications through a single protocol. Over
time, as schemes gain more options for transport and nam-
ing, a protocol negotiation phase can be added, with a default
protocol chosen if the negotiation fails.

Property Sockets HTTP Filesystem NetAPI 
App. intent captured low high medium high 

Technology detail hidden low medium high high 

Naming flexibility low medium high high 

Generality across apps. high medium high high 

Implementation freedom low medium high high 

Table 2: Comparing the interfaces provided by Sockets,
HTTP, filesystems, and NetAPI.

Aside from schemes, the main design principle behind
NetAPI is separation of concerns between the application
and the scheme implementation. Rather than being respon-
sible for both determining high-level communication goals
(e.g. download a file) and invoking the network mechanisms
that accomplish them, as under the current model, applica-
tions under NetAPI only specify high-level goals, and scheme
implementations decide how to meet them. This lets scheme
implementations use new network mechanisms without ap-
plication changes, and simplifies application development.
Providing a high-level interface for network operations is
of course not unique to NetAPI; many communication li-
braries, such as .NET’s HttpWebRequest [27], perform the
same function. Our contribution is to define an interface that
we believe is general enough to work across applications,
across devices, and across very different network technolo-
gies, making it a candidate for a new operating system API.

This leads us to a final question: should NetAPI be a sys-
tem interface or an application library? Although it is possi-
ble to implement NetAPI in a library, implementing it in the
OS has advantages. First, the NetAPI implementation can
coordinate traffic across multiple applications, e.g. to priori-
tize media traffic. Second, the system can make centralized
decisions, such as turning network interfaces on and off.

Comparing NetAPI to Other System APIs To summarize
the design principles that went into NetAPI, we compare it
with several other APIs along several axes in Table 2:
• Sockets provides a low-level interface to the network,

which makes it generally applicable across applications
but reduces the amount of freedom that implementa-
tions have. Little application intent is exposed to the
network stack, and addresses are used instead of names.

• HTTP (which is a protocol, but has essentially become
an API through various libraries) captures more appli-
cation intent than Sockets. This allows implementa-
tions to be more flexible and to hide technologies such
as caching from applications. However, HTTP is less
broadly applicable than Sockets – for example, it is
not suitable for low-jitter applications that prefer UDP
over TCP. HTTP also provides no flexibility in naming
hosts, only in naming resources on hosts.

• The filesystem API for storage contains several fea-

10



tures that make it both generally applicable and flexi-
ble: paths for naming, mount points for seamlessly in-
tegrating new filesystems, file properties such as writabil-
ity, and a means of capturing application intents through
parameters such as the mode in which a file is opened.

• NetAPI incorporates the properties that make the filesys-
tem API flexible (textual names, properties and op-
tions). It is applicable to more applications than HTTP
because it does not mandate TCP or DNS, and it pro-
vides freedom in naming both hosts and resources.

NetAPI Adoption. Like previous Internet architecture pro-
posals, NetAPI requires application modifications in order to
be adopted. However, NetAPI aims to be the “last” major in-
terface change for some time, by providing a high degree of
flexibility, being similar enough to Sockets to be familiar to
developers, and supporting existing protocols (as shown by
PANTS). Whether NetAPI is adopted also depends on how
useful it is to developers. We believe that NetAPI has the
potential to solve real problems today in the space of mo-
bile devices, by encapsulating complex functionality such
as disconnection tolerance and management of multiple in-
terfaces into scheme implementations that can be used by
many applications. Mobile developers are also already used
to working with higher-level APIs in a sandbox environment
(e.g. Palm’s WebOS [2] requires applications to be written in
JavaScript and HTML5). We plan to pursue a fuller imple-
mentation of NetAPI for a mobile platform in future work.

8 Related Work
Rethinking the communication API. NetAPI is the evo-
lution of a proposal presented in [13], where the authors
argued that a publish/subscribe API would serve the needs
of today’s Internet applications better than Sockets. NetAPI
contains multiple improvements over this early proposal.

First, rather than attempting to replace the low-level Sock-
ets API, we focus on enabling separation of concerns be-
tween a high-level layer providing a communication inter-
face to the application (NetAPI) and the network stack be-
low it. NetAPI can thus interoperate with Sockets applica-
tions. Second, the put/get interface in NetAPI is a more nat-
ural fit for many applications than a pure publish-subscribe
API. For example, for a request-response interaction with
an HTTP server, [13] suggests having the client create a
temporary publication to use to receive its reply and post
a reference to this publication to the server. In NetAPI,
the request-response exchange is simply a put followed by
a get. We do note that schemes can use pub-sub mecha-
nisms if desired. Third, we have implemented a prototype
of NetAPI that can run “real” applications interacting with
existing servers, which we have used to explore the design
space and to verify that useful functionality can be imple-
mented below the API.

Research proposals. A number of systems have been pro-
posed in the research literature that both inspired certain as-

pects of the design of NetAPI and also serve as examples of
the types of systems that would be enabled by widespread
adoption of NetAPI.

DONA [19] is a clean-slate networking design built around
a name-based anycast abstraction to access data objects with-
out knowledge of their location in the network. The DOT
proposal [15] provides a framework by which largely un-
modified applications can leverage a dynamic mapping to a
particular transport method when transferring large data ob-
jects. Their work supports our belief that many applications
are agnostic of the particulars of transfer methods, and that
a dynamic binding of such methods is beneficial for optimal
behavior in a range of environments.

DTN [22], Haggle [12], and KioskNet [6] attempt cre-
ate networks over unreliable links. These technologies are
particularly applicable to cellular networks and developing
regions, where network connectivity is often spotty. Ab-
stracting these technologies below the network API would
allow for much greater adoption of technology in disadvan-
taged areas as well as simplifying the development of delay-
tolerant applications.

A handful of other proposals have demonstrated the ben-
efits of expressing application communication semantics to
the network stack, including Scalable Data Naming [33] and
Structured Streams [24]. Declarative networking [10] shares
our goals of expressing the intent instead of a precise mech-
anism for the network, but focuses more on the implemen-
tation of network protocols rather than the expression of a
wide range of application-relevant semantics.

Middleware systems. Many middleware systems have been
developed that offer applications a higher-level API than Sock-
ets, and several adopt the publish/subscribe paradigm (e.g.,
Tibco [35] and IBM WebSphere MQ [28]). Our proposal
does not aim to compete with these or any other middleware
systems; we advocate a new programming interface, not a
proposal or mandate for a specific implementation of that
interface. NetAPI is a closer match to language-specific
messaging interfaces like the Java Message Service [34].

One commercial platform of particular interest is the Palm
WebOS [2] for mobile phones. In WebOS, the high-level
API offered to developers of mobile applications is HTML5,
CSS, and Javascript; developers write applications as if they
are web pages. However, applications also gain disconnec-
tion tolerance through the HTML 5 client-side storage API
[37]. Although applications must manually control which
data they place in the client-side database provided by the
storage API and when they synchronize the database with
the Internet, this example illustrates the need for discon-
nection tolerance in mobile applications and the willingness
of commercial developers to forsake the Sockets API for a
higher-level communication interface.

Mobility aware applications. Dealing with changing net-
work characteristics in mobile settings, and informing ap-
plications to adapt accordingly has been proposed in prior

11



work. The framework in [4] detects the available network
interfaces and its changing characteristics and presents them
to applications. Odyssey [7], Mobiware Toolkit [32] and
the framework in [29] focus on the complementary aspect of
defining mechanisms for applications adaptation. Odyssey [7]
models the adjustment of applications to general changes
in resources around the high-level concepts of agility and
fidelity. In addition to involving network elements (e.g.,
routers) in detecting mobility, Mobiware [32] defines a util-
ity function relating the application’s quality and bandwidth
changes. Likewise, the framework in [29] provides appli-
cations with a feedback loop that helps map from network-
centric quality to application-centric quality.

NetAPI implementations can benefit from many of the
above-mentioned techniques. However, our goal is to design
a generic interface that allows these and other network tech-
nologies to be deployed without application modifications.

9 Conclusion
NetAPI is a communication interface designed to enable in-
novation in the network. Unlike the Sockets API, NetAPI
hides implementation mechanisms from the application and
captures application intent to let the network stack serve ap-
plication requests intelligently. This design allows new net-
work technologies to be deployed below NetAPI without ap-
plication modifications. Furthermore, application develop-
ment is simplified because complex management of network
mechanisms can be encapsulated into shared scheme imple-
mentations. We have demonstrated the utility of NetAPI
through a prototype for mobile phones called PANTS, show-
ing that disconnection tolerance, content shaping and power
saving policies can be added transparently under NetAPI.
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