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Abstract

We present Privacy Scope, a new system that tracks
the movement of sensitive user data as it flows
through off-the-shelf applications. Privacy Scope uses
application-level dynamic taint analysis, implemented
with dynamic binary translation tools, to let users run
applications in their own environment while pinpoint-
ing information leaks, even when the sensitive data
is encrypted. The system is made possible by tech-
niques we developed for accurate and efficient taint-
ing. Semantic-aware instruction-level tainting handles
special cases and is critical to avoid taint explosion
or loss. Function summaries provide an interface to
handle taint propagation within the kernel and reduce
the overhead of instruction-level tracking. On-demand
instrumentation enables fast loading of large applica-
tions. Together, these techniques let us run on large,
multi-threaded, networked applications and precisely
track where information goes. In tests on Internet
Explorer, Yahoo! Messenger, and Windows Notepad,
Privacy Scope generated no false positives and instru-
mented fewer than 5% of the executed instructions.

1. Introduction

Media and research papers regularly report privacy
vulnerabilities in which applications collect or expose
personal information. Some of these applications are
malware that intend to maliciously exfiltrate data, but
many are not. Our previous study shows that network
applications often disclose various types of personal in-
formation (e.g., search terms, user names, system con-
figuration) to their publishers and to third parties [11].
Google desktop is known to send indexes of local
files to servers under a certain configuration [28], and
Tom-Skype tracks personal chat messages [14]. Other
applications leak information via temporary copies or
cached file snapshots [7].

These examples highlight the fact that legitimate
commercial off-the-shelf applications may manipulate
user information in ways that their users neither expect,
nor appreciate. Unfortunately, it is not feasible for
users to check that the applications they run meet
their privacy expectations, company guidelines, or any
other policies they have for the handling of sensitive
information. Tools are available to protect storage
(e.g., file encryption on sensitive volumes) or limit
network access (e.g., two-way firewalls such as Little
Snitch [17]). However, these tools fail to provide
protection once an application is authorized to read the
user’s data and has access to output channels. Consider
Alice, who uses a messenger client on a company
laptop and wants to be sure that her messages do not
accumulate in a log that may surface later. Or consider
Bob, who purchases goods online and wants to know
exactly which sites receive his credit card number.
Once they choose to use an application, they must
simply hope for the best.

Our goal is to develop a system that will let users
discover when and where applications reveal sensitive
user data. To be valuable in practice, we have four
subgoals. First, our system must run on real applica-
tions. These may be large, multi-threaded and make
heavy use of operating system services. Second, it must
run in the user’s own environment without the need
for application source code. Requiring either source
code or testing environments would greatly limit ap-
plicability. Third, while we do not target malicious
applications that intentionally avoid our techniques,
our system must track information even when it is
transformed in the output stream. Encryption is an
important transformation that is used with sensitive
data, but there are many other ways that information
is encoded in practice. Fourth, our system must be fast
enough to run networked and interactive applications.
Heavyweight mechanisms can introduce delays that
cause timeouts in client-server programs (e.g., Web



browsers) and prevent normal use. While these goals
are ambitious, we believe they define a highly usable
and desirable system.

In this paper we present Privacy Scope, our system
for pinpointing leaks of sensitive data by commer-
cial software that takes significant steps to our goal.
Pioneered by Bell and La Padula [1], there is a
large body of literature on information flow security,
in which mandatory access control policy is defined
and enforced between “subjects” (e.g., processes, pro-
grams) and sensitive “objects” (e.g., files, user inputs).
Recent works proposed different system prototypes,
each implementing information flow security in the
form of new operating systems [8], [30], programming
languages and libraries [19], [12], or system call in-
terposition in the legacy system [25]. However, little
has been studied on how to efficiently track infor-
mation flow by real applications in modern operating
systems. Previous works developed system prototypes
for detecting application leaks while treating a testing
application as a black box [29], [11]. However, these
systems are ineffective when the testing application
reveals a randomized function of the input data. Whole
system simulation can provide low-level information
on how sensitive input data is accessed and propagated
throughout the system [5], [28]. However, hardware-
level data tracking incurs significant performance and
analysis overhead, which makes it unsuitable for in-
specting interactive network applications.

Privacy Scope implements information flow analysis
on applications by using dynamic binary translation
with Pin [13]. This lets users run off-the-shelf software
in their own environment. On this base, we develop a
set of techniques to track where user information goes
accurately and with enough run-time efficiency that it
is plausible for end users to run the system.

Accuracy was a surprising challenge we faced given
that the idea of tainting data is conceptually simple.
However, there are corner cases in which some instruc-
tions (e.g., MOV, AND) or situations (e.g., system call
side-effects) need special taint-propagation logic. As
we found when testing on real applications, failure to
handle these cases quickly results in taint explosion
or loss of taint for real applications. After overcoming
these special cases, we find that we can interpose on
system calls and precisely track information between
keystroke, file and network socket input and output.

Runtime efficiency is a more traditional but still
challenging problem for information flow, and we have
invested considerable engineering effort to develop
Privacy Scope into a feasible system. We start with
instrumentation that operates at both the instruction
level and function level in one program. Function-level

tainting speeds up frequently called functions, and by
using it to model the taint effects of systems calls we
can confine our analysis to an application instead of
having to check the entire system at the hardware level.
Further, by deferring taint tracking from load time to
when it is first needed we can speed up the analysis
dramatically for the tested applications. The result is
that we are able to run our system on networked
and interactive applications such as Internet Explorer
and Yahoo! Messenger. We believe that we will be
able to further improve performance given the growing
research community around binary instrumentation.

We make three contributions in this paper. Our
main contribution is the Privacy Scope system itself
and the set of design choices it embodies. It shows
how to implement personal information tracking that
is both accurate and efficient in a context that is
broadly applicable to everyday usage. We plan to
release Privacy Scope as an open source package to
empower users to check their off-the-shelf software
packages for unexpected information leakage.

A second contribution is semantic-aware taint prop-
agation rules we develop to implement precise infor-
mation flow tracking. At the instruction level, special-
ized taint routines are prescribed for uncommon data
movements (e.g., the REP MOV string copy instruction).
At the function level, previously generated models
propagate taint to capture important side-effects for
calls into the kernel. Our evaluation results show
that Privacy Scope is highly accurate, generating no
false positives when analyzing large size complicated
applications running on Windows. While doing so, it
accurately detected when user typed messages were
sent or written to a file after transformation (even with
encryption or encoding).

Our last contribution is multi-level techniques for
efficient tainting. We find that function summaries
speed up taint tracking eight to nine times compared to
instruction-level taint, and their impact is greatly multi-
plied by using them for frequently called functions and
as part of our approach to instrument the application
but not the operating system. Compared to typical load-
time instrumentation, our on-demand instrumentation
dramatically reduces the number of instructions that
are analyzed, e.g., 5% for Internet Explorer.

The rest of the paper is organized as follows: §2
describes our approach. §3 describes the system design
followed by the implementation highlights. §4 presents
our optimization techniques and the performance study.
§5 shows the evaluation results. §6 reviews related
work in comparison to Privacy Scope. After presenting
remaining challenges in §7, the paper concludes in §8.



2. Approach

This section presents two underlying technologies
that Privacy Scope is built upon. First, we discuss the
dynamic taint analysis technique and how we used
the technique for tracking sensitive data. Then we
present our approach in terms of (1) what input data
we monitor; (2) how we track the propagation of
sensitive input data; and (3) what output channels we
monitor for leak detection. Second, we discuss the Pin
dynamic binary transformation (DBT) system [13]. Pin
is publicly available software, offering a set of high
level APIs for instrumenting applications at run time.
We review the overall software architecture of Pin DBT
and explain in detail a few specific features that we
leveraged for Privacy Scope’s efficient operations.

2.1. Dynamic Taint Analysis

Taint analysis is a process for tracking information
that may have been influenced, or tainted, by other
data. We use taint analysis to track data deemed to be
sensitive by the user. The process is inductive. First,
sensitive data is marked as tainted as it enters the
program. Then, each time an instruction that outputs
data accesses input data that is tainted, any outputs
that may have been influenced by the tainted data are
themselves marked as tainted. Figure 1 illustrates these
basic steps. Tainted data may also influence other data
indirectly, through branch instructions that change the
flow of control and determine which instruction will
write to a given variable [19]. We find that in the
applications we monitor, we are able to accurately
track sensitive data even though we do not track taint
that results exclusively as a result of changes of control
flow.

We track taint at byte-level granularity in application
code, with object-level granularity for system calls
as we do not track instructions within the kernel.
In general, without instrumenting the whole-system
(e.g., Panorama [28]), taint analysis loses the track of
information flow when the application moves tainted
data around via system calls. In this work, we develop
a special function-level taint propagation to address
this limitation of application-level taint analysis, which
we will describe in detail §4.1
Taint Source. An application can receive and process
sensitive information from many input channels (e.g.
USB, keyboard, files, network sockets). Ideally, one
wants to monitor all the possible input channels and
taint the input data if the data deem sensitive. However,
in practice, monitoring an input channel involves OS

• MOV B,A

• Backup register state

• SetTaint (B, GetTaint(A))

• Restore register state

• MOV B,A

…
ret
mov al, byte ptr ds[esi]
mov byte ptr ds[edi], al
mov eax, dword ptr ss[ebp+0x8]
pop esi
pop edi
…

code snippet from IE

…

instrumentation

k

k

virtual
memory

taint map

0

0
1

mem

reg








0
1

1
0
…

Figure 1. MOV instruction is instrumented for dynamic
taint analysis. The first step brings the tainted data
(k) from memory to the register al. The second step
updates the taint map entry corresponding to al. Third,
the content of the register al is copied to memory. Last,
the taint map is updated to reflect the data movement.

device-level instrumentation, thereby requiring some-
what complicated interactions with the underlying op-
erating systems (e.g., system call hooking). In this
work, we mainly focus on two common input channels.
For each input type, the followings discuss cases in
which these input channels carry sensitive information
and how we detect these cases for initial tainting.
Keystroke Tracking. Users routinely type in creden-
tials for accessing online services. Financial data such
as bank accounts and credit card numbers are also
frequently entered by users for online transactions.
These data are often a target of phishing attacks
and the increasing complexity of Web pages with
dynamic scripts makes it hard to track exactly where
the sensitive information is sent to. In other cases, users
may want to send sensitive messages via an instant
messenger or email client and want to make sure that
nothing is cached in the local file system. While it
is straightforward to monitor all keyboard input data,
it is challenging to automatically identify sensitive
inputs and to taint only those. In our system, Privacy
Scope continuously monitors keystrokes via Windows
messages and listens for designated key combinations
for marking the beginning/ending of sensitive keyboard
input data. We stress that a better user interface or
even automatic tagging of sensitive data (if available)
could improve the user experience of the system but
the system usability is beyond the scope of this paper.
File Tracking. Confidential documents, company se-
crets and private memo need to be protected from



accidental leaks. Even if the original document stays
encrypted in the local file system, its temporary copies
can be left unencrypted by the editing software [7] or
by the users themselves for convenience. While the
temporary copies are created on the same machine,
these copies could be leaked out if the machine is
running file sharing clients or remote backup programs.
In this work, we use the extended attributes available
in NTFS to tag files as sensitive. Privacy Scope auto-
matically tracks the file content if a tainted file is read
by the application.
Leak Detection. Output channels through which sen-
sitive information can escape include network sockets,
files, Windows registry keys, shared memory, and sys-
tem messages. We monitor output to network sockets
and files using system call interposition; Privacy Scope
can be extended to monitor other output channels as
necessary. Notification will be displayed (and logged)
when tainted information is leaked to monitored output
channels. While we seek to track input data propaga-
tion irrespectively to data transformation, we treat all
leaks equally, regardless of how data has been trans-
formed. For example, input data can be transformed
and may be reduced to the fewer number of bits to the
point in which the leak is insignificant.

2.2. Dynamic Binary Translation

Software systems that support run-time binary
instrumentation of Windows applications include
Pin [13], DynamoRIO [2], StarDBT [24], and Val-
grind [21]. Our design is independent of the underlying
DBT system. We chose Pin because of its avail-
ability1, well defined programming interface, efficient
instrumentation, and support for additional operating
systems should we also choose to support them.

Pin uses just-in-time instrumentation and therefore
can handle dynamic program behaviors such as self
modifying code and statically unknown indirect jump
targets that are hard to predict with static instrumenta-
tion. Pin also allows us to instrument instructions (us-
ing pintools) without worrying about the housekeeping
required to ensure that application behavior is not af-
fected. However, as we will show in §4, this instrumen-
tation transparency comes at the cost of performance
overhead: every time analysis code is executed, Pin
backs-up the registers before and restores them after
to reserve the application context. We use Pin’s other
features such as inlining and flexible instrumentation
for reducing the overhead. Figure 2 shows a simple

1. In comparison, StarDBT [24] is not publicly available and lacks
programming interface although the optimizations implemented on
the DBT by the LIFT tool [18] made it an attractive choice at first.

pintool: The program counts the number of instructions
executed. The figure highlights routines that are used
for instrumentation (which is executed only once) and
for analysis (which is executed whenever the program
encounters the instrumented code.).

analysis routine

Instrumentation routine

#include "pin.H"
#include <iostream>

UINT64 ins_count = 0;

void count()
{ ins_count++; }

void Instruction(INS ins,VOID *v)
{ INS_InsertCall(ins,IPOINT_BEFORE,(AFUNPTR)count,
                 IARG_END); }

void Fini(INT32 code, VOID *v)
{ cerr <<  "Count " << ins_count  << endl; }

int main(int argc, char *argv[])
{
    PIN_Init(argc,argv);
    INS_AddInstrumentFunction(Instruction, 0);
    PIN_AddFiniFunction(Fini, 0);
    PIN_StartProgram();
    return 0;
}

Figure 2. A simple example of Pin-based instrumenta-
tion [9]. This pintool counts the number of times that the
analyzed application’s instructions are executed.

Flexible Instrumentation. First, a pintool can im-
plement complex instrumentation using the instruc-
tion semantics (e.g., opcode, operand type) exposed
by Pin at the instrumentation time. For instance,
the above example can be easily modified to count
only MOV instructions that read memory. Once an
instruction is instrumented, Pin places the instrumented
code in the code cache for reuse throughout the
application’s runtime. However, a pintool can call
PIN_RemoveInstrumentation() to remove the al-
ready instrumented code and invoke a new instru-
mentation logic at runtime. We utilize this feature to
implement the on-demand instrumentation as discussed
in §3.

Conditional Inlining. When an instrumented code is
conditionally executed in the analysis time, a pintool
can use the conditional inlining feature to bypass
injecting the instrumented code all together when the
condition is unmet. Pin further optimizes this feature
by placing the condition logic inline as checking for
the condition (e.g., the if part) needs to be run all
the time whereas the body (the then part) does not.
We use this feature to quickly turn on/off instruction
level taint propagation logic as needed (e.g., when the
function summary is available). See §3 for details.



3. Privacy Scope: Design and Implemen-
tation

In this section, we present the design and implemen-
tation of Privacy Scope and how it interacts with the
underlying operating system for monitoring a target
application’s input and output channels. Privacy Scope
is implemented in the framework of Pin 2.6 for Win-
dows XP. Because we are aiming to create a system
that end users can run on their runtime environment,
efficiency and accuracy are two of our top concerns,
and they are the driving factors in our design.
Taint Map and Propagation. We have a statically
allocated taint table with a statically configurable size
of 8MB. Each bit in the table corresponds to a taint
tag of a byte in the virtual memory (4GB). We map
the virtual memory space into our tag map by left
shift operations. In the case when we use 8MB for
our tag map, we left shift virtual address by 6 bits
( 4GB

8∗8MB ) to obtain its tag position. We chose to use a
static tag map instead of a shadow page table structure
[28] for its simplicity and efficiency in looking up of
taint information. It can potentially lead to collisions,
but we expect the collision rate to be low since
application tends to write to only a small portion of
the virtual memory space. Our experimental results in
§5 reaffirms this assumption.

We use a combination of generic instrumentation
and instruction specific instrumentation to implement
taint propagation in our tool. We use instruction analy-
sis API provided by Pin to determine the registers and
memory regions read and written by an instruction.
We are implementing a policy based on the notion
of data dependency. If the output is a direct copy or
transformation of the input, then the output will be
tainted if the input is tainted. We adopt that policy
for our generalized instrumentation. This gives us a
good coverage over all instructions and allows us to
implement taint propagation without a specific handler
for each type of instruction.

However, there are a few notable exceptions to this
generalization. We have identified four cases in Table
1. Instruction-specific instrumentation is aware of the
different mode of operation of the instruction, and
therefore can be more accurate and efficient. §5 shows
that these exceptions lead to significantly fewer false
positives in real world applications

One important exception is how we handle tainted
index registers. As observed by [22], tainting point-
ers to a tainted piece of data could lead to many
false positives. Our experience confirms those findings.
Hence, we do not taint pointers to tainted data in
our system. However, another finding by [22] shows

that it is critical to handle table lookup operations
where tainted data is used as an index to an array.
Without propagating taint through a table lookup op-
eration, keyboard taint propagation breaks down when
the input is translated from keyboard code into an
ASCII character. We found these table lookups are
accomplished often by addressing memory using an
index register which contains tainted data. Thus we
make an exception for the case, and propagate taint
from index register to the destination. Furthermore, we
have found that some compilers use the base register
as the index to the array, and store the location of
the array in the index register. We also propagate the
taint from the base register, but only when both base
and index registers are used in the instruction. To
avoid the problems with full pointer tainting, we do
not propagate the taint when only the base register is
used. In that case, the instruction is doing a pointer
dereference. In practice, this limited pointer tainting
allows us to capture important table lookup operations,
while avoiding many pitfalls with full pointer tainting.
Object-based Kernel Propagation. Previous taint
tracking systems based on application level binary
rewriting do not propagate taint through system calls.
Specifically, return values from system calls are never
tainted even when the parameters to these system calls
are tainted. This problem occurs on all operating sys-
tems, but is a rather common occurrence on Windows
systems as its user interface subsystem are in the
kernel (GDI subsystem). Messages are passed between
user programs and the kernel frequently. Additionally,
memory management and file operations can change
the data in the memory without being tracked by
Privacy Scope.

Previously tainting tracking through the kernel in-
volves installing a kernel module/ driver and it is
responsible for tracking propagation within the ker-
nel [29]. Unfortunately, integrating a kernel module
with a dynamic binary translation framework would
introduce a lot of complexity to the system as two com-
ponents need to coordinately update taint information.
This kernel component can also potentially slow down
other parts of the system, as it is constantly resident.

We take a hybrid approach to this problem by using
byte level propagation at user level and object level
propagation at the kernel level. Instead of having kernel
component monitoring changes in the kernel, Privacy
Scope maintains a list of tainted kernel level objects
(often object handles in Windows) and a few important
attributes of these objects such as size or the location
in memory by interposing on kernel function calls.
Example of such kernel objects include file handles,
memory mapped regions among other things.



Instruction Reason and specific handler
XOR, SUB, SBB, AND These instructions can be used to clear register if the operands are the same.

Need to special case this as a clear operation rather than a taint propagation.
MOV MOV instruction represent a very common case of propagating taint from

between registers and memory regions. We choose to instrument this to reduce
the time needed to analyze each MOV instruction in a generic fashion.

REP prefix A number of instructions can have the REP prefix. The operation following
REP prefix is repeated until a register counter counts down to 0. When used
with MOV instruction, it can facilitate large memory copy efficiently. However,
the counters should be excluded from taint propagation. They should not be
the source or the destination of taint, even though they are both read and
written.

Tainted index registers When an x86 instruction addresses memory, it computes the final address using
Base + (Index * Scale) + Displacement. Base and index value are specified
using a base and an index registers. In this case, we adopt the policy to
propagate the taint in the base and index register to the destination if both of
them are present. If only base register is used, then we ignore the propagation.
Note this is also an exception to explicit flow propagation. We found this policy
necessary for taint propagation in real world applications.

Table 1. Exception Cases to Generic Data Dependency Propagation

We will explain the object-based kernel propagation
using the file system as an example. We monitor
operations such as CreateFile, WriteFile, and
CloseHandle so that we can detect opening of tainted
file or when we write tainted data to a file. For each
of these operations, we insert a function level instru-
mentation, so that we capture the parameters to these
functions and create a corresponding object in user
space for each file that is open. Taint can flow from the
memory taint map to these objects. For example, when
WriteFile is called with a tainted buffer as parameter,
the entire file object becomes tainted.

Because files can also be mapped into user’s
address space using CreateFileMapping and
MapViewOfFile, we also monitor these calls and
record the location where the files are mapped.
In essence, we are mirroring some kernel states
and use them to propagate taint from one kernel
object (file) to another (memory mapping). Because
of these auxiliary information, we can construct
accurate instrumentations for system calls based
on the semantics of the function. We are able to
capture any potentially tainted output from the kernel
call, as well as simulating its side effect using the
shadow data structures. We name these function
level instrumentations ”kernel function summaries”,
because they summarize the taint propagation behavior
of the kernel function. They are a special class of
function summary, which we use in general to improve
the performance of Privacy Scope.

Input and Output Channel Monitoring. We monitor
user input and allow users to indicate which keystrokes

are sensitive information. In our implementation, we
intercept any calls made to DispatchMessage() and
examine the message to look for WM_KEYDOWN type
messages which indicate key press. If input tainting is
turned on (between ALT+F9 and ALT+F10), these char-
acters will be set to be tainted and tracked throughout
application execution. We handle taint flows to the file
system using the aforementioned object level propa-
gation. The in-memory file handle object is tainted
as soon as any tainted information is written to the
file. Furthermore, this information is persistent, and
stored in the file system. We use extended attributes
supported by NTFS to store taint information in each
file. While extended attributes are flexible to use (i.e.,
an attribute is defined by a pair of name and value,
whose length can be variable.), a potential security
issue is that currently there is no support for controlling
access or modification of extended attributes.

To detect leaks, we monitor send() and
WriteFile() system calls: Any tainted network
traffic can be recorded with the socket infomation.
Files are marked to be tainted if tainted information is
written to them. Figure 3 shows the interfaces defined
for input and output monitoring.

4. Efficient Taint Tracking

As shown in the previous works [16], [4], [18],
instruction-level taint tracking introduces significant
slow down when implemented in a straightforward
way. Although these previous solutions were built
on a different DBT, we also experience a similar



application

files (persistent taint info
stored in extended attributes)

network buffers

Dispatch
Message() Send()

keystrokes WriteFile()
CreateFile()

MapViewOfFile()
CloseHandle()

ALT+F9:  taint begin

ALT+F10: taint end

WM_KEYDOWN: input char

NtSetEaFile()
NtQueryEaFile()

Figure 3. Windows system calls interposed for monitor-
ing input and output channels of applications

performance overhead (e.g., taking a couple of minutes
to signin to Yahoo! Messenger as opposed to seconds)
when running a testing application with an early ver-
sion of Privacy Scope. This section discusses the new
features that we developed for faster taint tracking.

Since the instrumentation routine is executed only
once in most cases, the majority of the overhead comes
from the analysis routine which inspects the input
data used by an instruction and taints output data if
necessary. In general, there are two ways to reduce the
analysis overhead as shown in the figure. The first one
is to optimize the analysis routine itself and the second
one is to reduce the number of times that the analysis
routine is called. Many techniques have been proposed
for the former [4], [18] and in this work, we focus on
the techniques to achieve the latter.

4.1. Function Summary

When DBTs instrument an instruction, it needs to
backup the necessary state (i.e. registers) and switch
to a new execution stack before starting to execute
the analysis routine. Although much research has been
done about only partially backing up state, this switch-
ing cost can still be expensive because it happens each
time an instruction executes. We noticed that many
highly utilized functions have well defined semantics,
and we can completely turn off taint propagation
while running the function. If necessary, at the end
of the execution, we will run a patching function to
propagate taint information between inputs and outputs
of the function. Because we turn off taint propagation
for each instruction inside the function, we eliminate
the cost of these context switches while running the

function. The followings show the different types of
summaries that can be generated based on the types of
functions:

1) No patching necessary: Functions that do not
produce output nor have side effect or functions
whose only outputs are independent of the inputs.

2) Function-level taint tracking: Functions that pro-
duce output in output parameters or by modifying
memory region. We can still turn off the taint
propagation inside the function, but we need to
modify the taint table upon returning from this
function.

As a first step, we currently rely on human experts to
generate the summaries of highly utilized functions. To
improve scalability, we can employ static analysis to
generate function summary or to statically instrument
the binaries with taint propagation logic [20]. We pro-
filed one of our example application, Internet Explorer
(IE) to capture the functions where the most of the
time is spent. For this profile, we do not count any
callee’s execution time in the caller’s time. We hope to
find functions that are general enough to be beneficial
to most applications. Figure 4 shows the distribution
of instructions over the functions called by IE during
a test run. We have excluded functions that are not
documented or do not have clear semantics defined for
them. The functions are sorted by the cumulative num-
ber of executed instructions for the observation period.
A noteworthy point is that these top fifteen function
calls account for over 25% of the total instructions,
suggesting that there is potential for significant saving
if these functions are summarized. Table 2 divided
these functions into the types listed above. Similar
function distributions are observed for our other test
applications, Notepad and Yahoo! Messenger. These
top functions we obtained for IE are also among the top
functions in our other experiments, which shows some
empirical evidence that we are not being too specific
in our function selections.

We will use a representative example of wcsncpy
to explain how function summary works and its per-
formance implications. According to MSDN [26], it
has three input parameters, source address, destination
address and length N . It copies up to N wide character
strings from source buffer to the destination buffer.
After the function terminates, we will perform taint
propagation operation to the taint table that mimic
the logic of the function. It copies the taint infor-
mation from the source to the destination up to N
wide characters. In addition to a reduction in the
number of context switches, function summary also
allows wcsncpy to execute without interruption. This



Category Functions
1. No patching necessary wcslen, strchr, bsearch, strchr,ReleaseMutex, RtlEqualUnicodeString, bsearch,

RtlAllocateHeap, RtlFreeHeap, RtlValidateUnicodeString, GetWindowThread-
ProcessId, GetDC, LdrGetProcedureAdress

2. Function-level taint tracking wcscpy, RtlHashUnicodeString, tan

Table 2. Break-down of the top fifteen functions called by Internet Explorer
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Figure 4. IE profile results: We pick top 15 functions
from the profiling. They account for 28% of the total num-
ber of instructions executed at runtime. These functions
account for 26.60% and 11.50% for Notepad and for
Yahoo! Messenger respectively.

preserves any caching locality that can be disrupted
when instrumented code are mixed with application
instructions.
Fast Lookup. Because any arbitrary function can be
called within a function, we must ensure the called
function will not propagate taint and thus interfere
with the logic of the function summary. In the initial
implementation of function summary, this was done
by using a thread local variable to indicate whether
a particular thread is propagating taint. However, it is
expensive simply to check that state variable because
of context switch cost. We take advantage of a feature
called conditional inlining where a separate scratch
register is used to indicate whether the analysis routine
should run. This lead to roughly about 2x performance
improvement.
Performance. We present the empirical results show-
ing the significant speed up when function summaries
are in place. To better understand the performance
saving, we conducted micro-benchmarking, measuring
the time spent in selected functions in each call, rather
than the total time spent to execute an entire program.
However, we show that savings from each function
call can be multiplied, resulting in a significant overall

improvement.
We create an artificial workload for the benchmark.

In each experiment, we measured the time it took from
hitting the first instruction of the function to the return
instruction in microseconds. We will use two specific
functions GetWindowThreadProcessId and wcsncpy
to represent the two types of function listed above.
Different instrumentations were applied to the two
functions. We used 50 sample data to generate figures 5
and used 10 samples to generate each data point in 6.

Figure 5 compares the average times to run the
GetWindowThreadProcessId function with instruc-
tion level taint tracking and with function summary.
Because it does not propagate taint, function sum-
mary essentially turns off the propagation within the
function. The graph also shows the standard deviation,
which is small (less than 5 usecs). The average speed-
up by skipping taint-tracking inside the function is 6.6
(97.34 vs 14.8). Note that the function is quite simple
in its logic so the number of context switches we saved
using function summary is also relatively small.

Next, we would like to study how much overhead
the patching function incurs over the baseline where
propagation is simply turned off. Figure 6 shows that
functional propagation is virtually overlapping with
the baseline case. The graph also shows how the
complexity of the function affects the benefit of the
function summary (note the log-log scale). The benefit
of function summary improves as the function com-
plexity increases. Note that when N ≥ 16, the speed-
up is more than 10 times. This results encourage us
to summarize higher level functions. However, there
is an inherent tradeoff between how much benefit we
get from each function summary and how often a
function is called and whether the function is used in
a wide range of applications. Since we are building a
general framework for evaluating different kind of ap-
plications, we chose generality over high-level function
summaries that tend to be application specific.

Although we do not report the results from the other
12 functions for the sake of brevity, we note the similar
overhead reduction by function summaries. Since these
are the functions that are frequently called by the
testing application, we expect that the performance



gain gets compounded as the program runs longer. All
15 function summaries are added to Privacy Scope and
was used for the application study.
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Figure 5. Average time to run GetWindowThreadPro-
cessId measured in u seconds (category 1)
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Figure 6. Average time to run wcsncpy measured in u
seconds (category 2). We vary N, the number of bytes
to copy, to show the increasing benefit of function-level
propagation.

4.2. On-demand Instrumentation

When the application starts up, the instrumentation
code cache is completely empty and all instructions
need to be instrumented. In addition, many initial-
ization routines are instrumented to propagate taint
when there is no taint in the system yet. Both factors
lead to a significant delay in application start-up. We
noticed that the instrumentation cost is often unnec-
essary if sensitive information is never introduced to
the program. We introduce on-demand instrumentation
in Privacy Scope. As the application starts, we per-
form no instructional instrumentation and only limited
functional instrumentation to monitor the various input

channels taint can be introduced to the process. This
may include opening of a tainted file and keyboard
input. Because there is no instructional instrumentation
initially, the application loads very quickly. When one
of the trigger condition happens, Privacy Scope inval-
idates all existing instrumentations, and re-instrument
instructions as necessary. This has the added benefit of
not instrumenting libraries or functions that are only
used at the loading time of the application.
Performance. The cost of instrumentation comes from
the cost of inserting the instrumentation (instrumenta-
tion time) and the cost of running those instrumenta-
tions (analysis time). We break it down by measuring
the number of instrumentations done and the number of
instrumentations we ran during run time and see how
they are affected by the on-demand instrumentation.
To our surprise, the number of total instruction instru-
mented is only different by a small amount. However,
the number of total instrumentation ran is different by
an order of magnitude.
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Figure 7. Savings of on-demand instrumentation for
each use case

Figure 7 that shows the benefit of on-demand instru-
mentation is also a function of the application and spe-
cific application use cases that we are experimenting.
As the application size and complexity increases, the
benefit from on-demand instrumentation also increase.

5. Evaluation

This section presents the evaluation results of Pri-
vacy Scope using three real applications: Notepad is
a simple but representative example of text editing
software that may create copies of potentially sen-
sitive information. Yahoo! Messenger carries private
conversations and its complexity (especially running a
propriety protocol such as YMSG) makes the analysis



intriguing. Internet Explorer is a popular browser,
through which users send sensitive information (e.g.,
credit card numbers) and interact with online services.
They vary in application code size and complexity,
but are also general enough to represent classes of
applications we are interested in. In what follows, we
first present the evaluation methodology and show the
experimental results. Then, we examine the special
taint propagation logics that Privacy Scope implements
(as discussed in §3) and how they affect the accuracy
when analyzing real-world applications.

5.1. Application Study

Because of the interactive nature of the applications
that we evaluate, it is difficult to automate experiments
and moreover to tease apart human induced delay from
the overall performance results. However, we believe
that it is important to run experiments with realistic use
cases and to report the overall latency to demonstrate
the practical value of the Privacy Scope system. In this
section, we run each experiment at least three times
and report the average. Each experiment starts after
the application has been running for a while in order
to separate out one time instrumentation cost (i.e., we
only report hotcache numbers). However, we reset the
taint map prior to each run to isolate experiments.

Table 3 summarizes the evaluation results. Test run
time shows the average time to execute each experi-
ment over three runs. We use Pin to print out times-
tamps in the beginning and the end of an experiment
to obtain the results. The next column (# of taint
map updates) shows the number of times that tainted
data is updated by instructions during the experiment
period. This value represents the low-level movements
of sensitive data during the experiment. For accuracy,
we inspect the output of each experiment (e.g., network
or file buffers) and check the taint map for each
output byte. We use domain knowledge (given that
these applications are closed source2) to determine the
accuracy. The last column (taint map size) shows the
number of bytes in the application’s memory that are
still tainted after the experiment is done.
Windows Notepad. We use Notepad to test file taint
propagation. Privacy Scope inserts the special marking
in the extended attributes of a file containing tainted (or
sensitive) data. In this experiment, we open a tainted
file using Notepad and then save the content to a new
file. As expected, when WriteFile was called, Privacy

2. Even for an open source program, one needs to understand both
the program and the system calls used by the program in order to
fully understand all the possible paths of taint propagation, which is
challenging.

Scope correctly carried the taint over to the buffer
containing the data to be written to the new file and
updated the extended attributes of the new file to reflect
the change. This experiment took longer than the rest
partly because it involves multiple user interactions
(e.g., clicking Save As after the file is loaded then
typing the new file name). However, most delay was
introduced by taint analysis — as Figure 7 shows that
although this task appears simple, it requires more taint
propagating instructions to be run than the other two
applications, thus resulting in higher latency.

Consistently across all the experiments, there are
three strings remained in the taint map, two of which
correspond to the file content. For example, we used
the tainted input file that contained 7 characters,
tainted. When WriteFile was called, the taint map
was 25 bytes containing the following three strings:
tainted (7 bytes), the unicode conversion of tainted
(14 bytes), and x71x00x00x00x00 (4 bytes). Although
it is obvious that the first two are correctly tainted,
since we do not know the internals of the testing
application, it is difficult to determine the correctness
of the third string. Therefore, in this analysis, we only
examine tainted bytes exposed to output channels.

This experiment shows that Privacy Scope could
have prevented accidental creation of temporary files
that may cause leakage of private information. Since
the taint marking is embedded in a file’s meta data,
Privacy Scope can eliminate the propagation of sensi-
tive inputs through file system if an application copies
what is in the memory (e.g., password) to a file and
later attempts to send it from the file.
Yahoo! Messenger. We first sign in using a Yahoo!
Messenger client then send a message, taintme to
another user. To track when and where the message
leaves the client program, we use the hotkeys
mentioned in the earlier section to tag only the
message as we type each character into the client.
Privacy Scope first detects that the message is sent
to a Yahoo! server (as expected). The network buffer
containing the message is correctly tainted: Only the
7 bytes of taintme are marked tainted in the buffer
of 118 bytes as shown below. Each byte is shown
either in ASCII or hex (e.g., x80) if not printable.
Tainted bytes are shown between [TS] and [TE]:
...x8014xc0x80[TS]taintme[TE]xc0x80429xc0...
What was a surprise to us is that shortly after this
event, Privacy Scope discovers that the tainted
message is written to a file after converted to a string
of the same length as shown in Table 3. Because of the
transformation, initially we were unsure of the result.
However, the filename (20090830-peername.dat)
suggests that the file contains message archives. We



Test details Test results Test run
time

# of taint
map updates

Taint map
size

Notepad
Open a tainted file
then save the
content to a new file

The new file’s extended
attributes has the taint tag and
the entire buffer of WriteFile
is correctly tainted

22.9 (sec) 908 25 (bytes)

Yahoo!
Messenger

Send a tainted
message, “taintme”

The network buffer containing
“taintme” is correctly tainted 6.3 (sec) 3854 148 (byes)

“taintme” is saved to a file as
x17x13x80x1Ex1Dx1bx1c.
The file is marked tainted.

8.4 (sec) 3885 118 (byes)

Internet
Explorer

Post a tainted data,
“7777” over HTTP

The network buffer containing
“7777” is correctly tainted. 5.6 (sec) 4884 132 (byes)

Post a tainted data,
“7777” over HTTPS

The last 41 bytes of the SSL
packet containing “7777” is
correctly tainted.

9.0 (sec) 4474 252 (byes)

Table 3. Evaluation results of Privacy Scope using three applications running on Windows

later find an option to turn on/off message archiving
and another option to display the archive. Using the
option, we confirm that indeed the file contains tainted
message.

As shown in the table, each experiment takes less
than 10 seconds on average with less than 1.5 second
standard deviation. We also checked all clean network
buffers and files that were created shortly after the
message was sent and found no false negatives to our
best knowledge.

This experiment demonstrates that by monitoring
both network and file outputs, Privacy Scope would
have effectively detected and prevented an applica-
tion’s logging of keystrokes without user knowledge.
It also shows our ability to track the input information
regardless of transformation by the application.
Internet Explorer. This experiment was designed to
study Privacy Scope’s ability to track sensitive data
even when it is encrypted. We set up a Web page with
a simple HTML Form that sends the input data to a
remote server via the HTTP Post method. First, we
enter four digits 7777 on the form and submit it and
confirm that Privacy Scope correctly taints the four
digits in the post message. Again, we double check
that only the four digits out of 870 bytes of the send
buffer were tainted as shown below.
...cardnumber=[TS]7777[TE]&expmonth=8&...
Second, we repeat the same experiment but this time
we modify the page so that the form is submitted to the
same server over HTTPS. The results show that Privacy
Scope taint the last 41 bytes of the encrypted message
whose length is 888 bytes. In order to confirm that the
tainted part contains the input string 7777, we vary the

length of an input and record how the length a tainted
string changes. Two observations suggest that Privacy
Scope correctly taints the segment of the encrypted
message containing the input string.
(1) The length of the (output) tainted string is directly
proportional to that of the input string. I.e., the length
of the tainted string increased from 41 to 45 and to
53 when the input length increased from 4 to 8 and
to 16. Our hypothesis is that 41 bytes (when the input
was 4 bytes) include the input (4 bytes), the remaining
message (starting from &expmonth= as shown above),
which is 21 bytes, and MAC (16 bytes). This suggests
that the data was encrypted with a length-preserving
scheme with an authenticator added at the end.
(2) The tainted string in the output buffer always begins
at the same byte position (842th byte in this case). We
believe that that is where the input string is inserted.
However, without knowing the exactly what encryption
mode is used, we are unsure whether all the bytes
after the input were correctly tainted3. However, we
believe that the tainted string correctly includes the
tainted input.

As shown in Table 3, it takes also less than 10 sec-
onds on average to run experiments with Internet Ex-
plorer even when Internet Explorer is communicating
with a server over SSL. This experiment demonstrates
that Privacy Scope could detect if online applications
leak sensitive user inputs even when the applications
make use of cryptography, which would otherwise
render unreadable the output data.

3. For a pure stream cipher like RC4, those bytes shouldn’t have
been tainted. For CFB or GCM, they should have been tainted.



Accuracy. The highly accurate results demonstrate that
low-level taint propagation logics discussed in Table 1
correctly model data dependency flows. To confirm
that these logics are necessary (and not optional)
for precise information tracking, we repeat the
above experiment with only generic data dependency
propagation logic and register clearing logic on (i.e.,
turning off the logics implementing rows 3—5 in
Table 1). The result shows that the taint map gets
quickly polluted and resulted in many false positives in
the output. For instance, the same experiment with IE
causes overtainting in the network buffer as follows:
[TS]paymentType=American+Express&cardnumber
=7777&expmonth=8&expyear=[TE] when only 7777
should have been tainted. The taint map size is 5,308
bytes including large strings of randomly looking
bytes, which are very likely false positives given that
the input string is only 4 byte long. Then, we reinstate
the special logics for MOV instructions but exclude
the logic for handling REP prefix. The result is quite
surprising. Taint fails to propagate to network output.
Moreover, the propagation quickly disappeared. The
number of times that taint map is updated is only 195,
which is by an order of magnitude smaller what we
see with Privacy Scope (4884 as shown in Table 3).

6. Related Work

There is a large body of work aimed at protecting
user privacy using information flow tracking tech-
niques. This section discusses how Privacy Scope
differs and complements these previous approaches.
Dynamic Software Analysis for Information Leaks.
Vachharajani et al. present a detailed discussion of
issues around building a runtime system for enforcing
user-defined information-flow security policies [23].
The proposed solution, RIFLE, tracks information flow
using new hardware extensions with carefully designed
binary translation. RIFLE incurs low overhead and can
effectively handle conditional dependency and loops
but it requires significant hardware support, thus not
directly applicable to existing systems.

Panorama [28] and TaintBochs [5] are built on
whole-system simulation (e.g., QEMU, Bochs), capa-
ble of tracking the propagation of sensitive data at
the hardware level. Designed for malware analysis
(Panorama) and for data lifetime analysis (TaintBochs),
both systems generate the sheer volume of logs de-
tailing data propagation across applications and the
underlying operating system. While such low-level
information is valuable for understanding the complete
picture of information leaks within the system, the
current implementations incur high overhead —- 20x

slowdown (Panorama), 2 to 10 times slower than Bochs
(TaintBochs), rendering these systems not suitable for
capturing client-server interactions. Dytan [6] is a
generic taint analysis framework for Linux platform
and supports customizable taint propagation policies.
However, our multilevel taint propagation technique
would have required significant reengineering of the
Dytan’s internals.

Privacy Oracle [11] and TightLip [29] are
lightweight tools that are capable of analyzing appli-
cations for information leaks without any application-
level instrumentations. However, these systems are
limited to the software whose outputs only depend on
inputs (and externally controllable parameters such as
time and system configurations) and not scalable to
tracing multiple input data.
Optimizing Dynamic Taint Analysis. Many opti-
mization techniques have been proposed to improve
efficiency in dynamic taint tracking using binary instru-
mentation [18], [16], [4], [10]. Although these systems
focused on software vulnerability analysis (by tracing
incoming network data), some of the optimization
techniques are complementary to what our current
system implements and can further improve Privacy
Scope.

LIFT [18], built on the StarDBT binary instrumen-
tation tool, implements three optimization techniques:
fast-switch is to reduce the overhead of context switch
whereas the other two (fast-path, and merge-check)
are to reduce the number of taint propagating instru-
mentations. A key difference between LIFT’s fast-path
and merge-check and our function summary is that
LIFT’s optimization techniques apply at basic block
or trace levels and they require runtime checking.
Unfortunately, since neither LIFT nor StarDBT is not
publicly available for testing, we cannot compare the
effectiveness of the two approaches. However, our
function summary can be implemented on top of
LIFT’s three optimizations and further reduce the taint-
tracking overhead.

Ho et al. [10] implement page-granularity taint
tracking for efficiency. Their system is built on the
Xen virtual machine monitor and dynamically switches
from virtualization to hardware-based emulation when
a tainted page is accessed by the processor. We be-
lieve that this optimization can be highly effective
when implemented in Privacy Scope since most taint
sources are small. Although not suitable for commer-
cial software analysis, TaintPolicy [27] instruments C
programs through a source-to-source transformation to
perform efficient runtime taint tracking.
OS Level Information Flow. Other systems have been
built to integrate the notion of information flow and



taint tracking directly into the operating system. Both
Asbestos [8] and HiStar [30] use labels to indicate the
taint level of OS abstractions and restrict information
flow from more sensitive object to less sensitive object
without the use of a trusted agent. Many legacy ap-
plications cannot run on these experimental platforms
and end users would have to run a different operating
system to benefit.

PRECIP [25] retrofits these ideas to Windows oper-
ating system and is a lightweight system that aims to
prevent information leaks. PRECIP intercepts system
calls and monitors output channels (e.g., files, network
sockets) in which sensitive input data (e.g., files, user
inputs) are written to, and prevents malicious processes
(e.g., keyloggers) from gaining access to these re-
sources. Tracing is done at the object level granularity
and thus it is unable to track information if transformed
by the application.

7. Discussions

The application study in §5 demonstrated the ability
of Privacy Scope in tracking sensitive data propagation
and discovering leaks by off-the-shelf applications.
However, issues are remained to increase the effec-
tiveness of Privacy Scope. In this section, we discuss
limitations of the current implementation and promis-
ing avenues to explore in order to improve the system
with fast analysis and accurate and comprehensive leak
tracking.
Performance. Privacy Scope markedly improved the
performance of application-level taint tracking with
the two techniques (function summaries, on-demand
instrumentation) as shown in §4. We expect further
performance gain by adapting some of the previously
explored methods for reducing taint analysis overhead
in [18], [4], [10].

Various low-level system supports for fast binary
instrumentations are on the horizon as well. Dynamic
binary translation tools are continuously evolved with
new optimizations and additional features. For in-
stance, persistent code caches are shown to be ef-
fective in reducing long initialization sequences of
applications when implemented in the DynamoRIO
DBT [3]. A simple hardware enhancement (a dedicated
interconnect with added ISA support) is shown to
drastically reduce the overhead of information flow
tracking by efficiently leveraging multicores [15].
Limitations. Sensitive data can be passed along (via
shared memory or system messages) and then leaked
by other processes running on the same system. To
detect such leaks involving multiple processes, one

may turn to a whole-system simulation based approach
such as Panorama [28] or TaintBochs [5].

In the current implementation, we chose 1 bit taint
tag for speed and simplicity, but it does not allow users
to pinpoint which sensitive input is getting leaked.
In addition, for file tainting, taint level changes can
cause previously collected taint information to become
obsolete. While it is rather straightforward to extend
the tag table to include multiple bit tags, larger tags
can lead to cache pollution and space overhead.

Like many existing tools [18], [16], [4], we track
only explicit flows (also called data flows or data
dependency). As a result, Privacy Scope will miss leaks
if tainted data propagate through control flows, which,
we assume, is infrequent in practice. However, Slowin-
ska and Bos point out that explicit data flow tracking
can lose taint very easily through table lookups [22].
We address this issue by employing specific policies
regarding the use of index registers.
Evasion. Privacy Scope is designed for evaluating off-
the-shelf software and aim to protect accidental leak
of private information. Therefore, it is not our goal
to avoid possible active evasion techniques one might
employ. Some software like Skype or Limewire ac-
tively probe for the presence of instrumentation tools,
debuggers, or virtual machines and abort the program
when detected. These practices are not common and
would likely alarm the user to proceed more cautiously
if such behavior is observed.

8. Conclusion

We present Privacy Scope, a system that pinpoints
leaks of sensitive data by commercial software. It
is well-known that legitimate, popular applications
can accidentally or intentionally expose private user
information. With Privacy Scope, users can check that
applications disclose their personal information in the
ways that they expect, rather than simply trust them.

Privacy Scope uses dynamic binary translation tech-
niques to implement dynamic taint analysis on un-
modified commercial applications running in normal
user environments. To build our system, we developed
and integrated a set of techniques that include: mixed
instruction and function-level tainting; function sum-
maries for efficiency and accuracy of application-only
tainting; special semantics for corner-case instructions
and kernel side-effects; and tainting on demand rather
than at load time. The result is a comprehensive
system that is efficient enough to track where sensi-
tive information goes in large multi-threaded network
applications that include Internet Explorer and Yahoo!



Messenger. In tests, we were able to run these appli-
cations online and precisely trace where input marked
as sensitive was output with no false positives. With
additional engineering effort, we believe that Privacy
Scope can be valuable as a system that is widely used
to discover how applications behave in practice.
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