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Abstract

Deploying real-time control systems software on multi-
processors requires distributing tasks on multiple process-
ing elements, and coordinating their executions using a pro-
tocol. One potential protocol is the use of the discrete-event
(DE) model of computation because it already defines a
clear notion of the passage of time, and there is significant
existing research on distributing DE. In this paper, we con-
sider a distributed DE with null-message protocol (NMP)
on a multicore system for real-time control systems. We il-
lustrate that even with the null-message deadlock avoidance
scheme in the protocol, the system may still deadlock due
to inter-core message dependencies. We propose a simple
analytical model to identify two central reasons for these
deadlocks. They are lack of an upper bound on send and
receive rates for each processing element, and an unknown
upper-bound on network delay. Then, we argue that archi-
tecture features such as timing control, timing synchroniza-
tion and real-time networks-on-chip can be used to prevent
message-dependent deadlock. We show that we can replace
NMP with a distributed DE strategy called PTIDES that
helps ease the process of eliminating this deadlock problem.

1 Introduction

The use of multiprocessors for real-time control sys-
tems requires distributing the real-time software on the var-
ious processing nodes, and coordinating their execution and
communication with a protocol. Two common protocols
are time-triggered and event-triggered. With either of these
protocols, it is critical to ensure that the system is dead-
lock free. In this paper, we focus on the design of reli-
able real-time systems on chip-multiprocessors (CMPs) us-
ing the event-triggered protocol; in particular, the discrete-
event (DE). However, we do not consider a monolithic event
queue because of its inability to exploit parallelism, and
its susceptibility to being a single point of failure. Alter-

natively, we concentrate on distributing the discrete-event
execution across multiple processing nodes. In doing this,
we study the effects of distributing DE with a deadlock
avoidance mechanism known as the null message proto-
col (NMP) [16, 2]. Specifically, we evaluate a potential
message-dependent deadlock [17, 10] problem that arises
even when NMP is used.

The architecture we use is a CMP with multiple pro-
cessing nodes connected via a network-on-chip (NoC). A
processing node connects to a network interface, which is
directly connected to the NoC interconnect. Designers of
NoCs often assume that packets transmitted to a process-
ing node are always consumed immediately. With this as-
sumption, the designer provides guarantee that sent pack-
ets are always delivered. This means that once a packet is
sent, it will reach the destination within a finite amount of
time. Therefore, there is no deadlock or livelock in the net-
work that may cause a packet to never reach its destination.
However, in implementations of CMPs, processing nodes
(i.e. CPUs) have limited memory and processing resources;
therefore, processing nodes cannot always consume pack-
ets as soon as they arrive. If too many packets arrive at a
processing node during an interval, then they are usually
queued up in the network. This results in a blocking ef-
fect in the network, which might cause the system to dead-
lock entirely or partially. This is called message-dependent
deadlock [17, 10].

In the case of NMP, each processing node regularly sends
null messages to some other processing nodes to update
those nodes about the sender’s physical time. It is very pos-
sible that when too many null messages (packets) are sent
to the same receiving node, if that node is busy doing some
task then it cannot process these messages. Therefore, these
null messages fill up the input buffer at the network inter-
face of the node. This congestion prevents other non-null
messages from being processed quickly as well. This tem-
porary blocking effect is problematic for real-time systems
because it might cause the system to miss its real-time dead-
line simply due to a congestion caused by null messages.
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Moreover, if the buffer capacity reaches its maximum, then
the null messages can result in blocking the entire network;
essentially, a deadlock.

There are two main reasons that contribute to this
message-dependent deadlock: 1) lack of an upper-bound on
send and receive rates for each processing element, and 2)
an unknown upper-bound on network delay. If we can ob-
tain these upper-bounds, then we can allocate enough pro-
cessing power to process all arrival messages fast enough
and buffer space to absorb immediately packets of bursty
traffic, thereby guaranteeing that deadlock will never hap-
pens. We propose the use of architectural features such as
timing control, timing synchronization and real-time NoCs
to prevent message-dependent deadlock. In particular, we
show that by using timing instructions in software we can
enforce a bound on the sending/receiving rates between
nodes. For this, we employ a real-time embedded processor
architecture that is designed for predictable and repeatable
timing behaviors called PRET [14]. When we can enforce
a bound on the number of messages sent within an inter-
val, then the number of message arrivals at a receiving node
within an interval are also bounded. We propose an ana-
lytical model based on the ideas of network calculus [3]
and real-time calculus [18] to derive buffer space require-
ments such that no message has to wait at the node’s router.
Furthermore, we propose the use of a programming model
called PTIDES that will make it easier to avoid deadlocks
of a system, but also improves performance over NMP as in
the experiments in Section 6.1, in which PTIDES average
waiting delay is only haft of the minimum NMP waiting
delay.

This paper is organized as follows: in Section 2, we give
a brief overview of related materials used in this paper in-
cluding network on-chip interconnection, discrete even ex-
ecution, null message protocol and message dependency
deadlock. Section 3 explains the fundamental problem
causing a multicore system to be deadlocked when the null
message protocol is used. We then discuss some deadlock
avoidance mechanism in Section 4. The evaluation section,
Section 5, demonstrates an evaluation of a deadlock sce-
nario and a performance comparison between the null mes-
sage protocol and PTIDES.

2 Background

2.1 Distributing Discrete-event with
NMP

The discrete-event (DE) execution semantics require that
events are processed in timestamp order. An event e is de-
fined as a timestamp and value pair (t, v) where t ∈ R+ and
v ∈ domain(V ). Events are processed such that for two

events e1, e2 with timestamps t1, t2, event e1 is processed
before e2 if and only if t1 < t2.

Figure 1. Message flow of the car wash exam-
ple.

We borrow a car wash [2] example to describe a DE sys-
tem as shown in Figure 1. In this example, there are five
processing components. They are a source, an attendant,
two car washes denoted by CW1 and CW2, and a sink. The
source forwards cars to the attendant who dispatches cars
to the car washes. This attendant follows the policy that it
dispatches a waiting car to the car wash that is idle earli-
est. A request mesage for another car from the car wash
informs the attendant that the car wash is idle. This mes-
sage contains a timestamp of the physical time at which the
car wash became idle. The attendant uses the timestamp to
identify which car wash to allocate a waiting car. Once a car
wish completes its process, it sends the car to the sink. In
doing so, it attaches a message with the timestamp at which
the car completed its wash. The sink then orders the cars
according to the timestamps at which the cars finished their
washes.

Implementing this DE car wash system on a single pro-
cessor is straightforward. It requires ordering an event
queue on timestamps, and the front of the event queue con-
tains the next event to process. Therefore, it is easy to se-
lect the next event to process. On a multiple processor sys-
tem, however, the processing components are distributed,
and each of the processors have their own ordered event
queues. Since a processor does not have global knowledge
of the events at any point in time,it is difficult to determine
when it is safe to process events.

In the case of the car wash example, let us assume that
each of the processing components are distributed on a sep-
arate processor, and they communicate with each other over
a network that exhibits variable latencies. Now, suppose
that the attendant is biased and sends the waiting cars only
to CW1. Upon completing the washes, CW1 sends the cars
to the sink, but since the sink is unaware of this biased rout-
ing, it will wait for a message from CW2. In fact, this will
cause the system to deadlock because the sink will not be
able to complete the wash until it has successfully ordered
the cars based on their timestamps, and to do this, it requires
a message from CW2. To address this issue, the null mes-
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sage protocol (NMP) [16, 2] was proposed.
NMP solves the deadlock issue by periodically sending

null messages from one processing node to another if there
is no real message to send. The null messages update the
receiving nodes with the latest physical time of the sending
node. The car wash example with NMP would then require
CW2 to send null messages to the sink periodically. This
allows the sink to compare the timestamps of the messages
fromCW1 and the null messages fromCW2, and if it deter-
mines that the message fromCW1 has an earlier timestamp,
then that car is completed first. For example, CW1 sends a
car c1 to the sink with a timestamp t1 andCW2 periodically
sends null messages with timestamps to the sink. If the sink
receive a null message n2 with timestamp t2 > t1, then the
sink node knows that there is no pending car from CW2 un-
til t2, therefore the car c1 can be sent out. So the system
cannot be deadlocked.

2.2 Interconnection Network on Chip

2.2.1 Network on Chip

Network on-chip (NoC) is a new design paradigm for Sys-
tem on-chip (SoC) [4, 15]. Network on-chip often uses the
wormhole packet switching [5]. A packet is divided in to
smaller data unit called flits (flow units) as in Figure 2(a).
The head flit contains routing and other information for
routers to route the packet. In wormhole switching, buffers,
i.e. in a router, are allocated to flits rather than packets. So
a packet is sent from one router to another router gradually
flit by flit. Thus, a packet can span over multiple routers and
buffers causing blocking to other packets.

2.2.2 Deadlock-free Interconnection Network

An interconnection network used to connect processing
elements such as the network on-chip in Figure 5(a) is
composed solely of routers. The interconnection network
is deadlock free if the routing function in the routers of
the network does not cause any routing-dependent dead-
lock as in Figure 2(b), in which packets create a cyclic
loops [7]. In Figure 2(b), deadlock happens when four pack-
ets P1, P2, P3, P4 wait for buffer space occupied by each
other in a loop and all buffers are full, therefore no packet
can advance.

2.3 Message-Dependent Deadlock

In a multicore system that uses network on-chip inter-
connection, although the communication network is dead-
lock free, message-dependent loops created by process-
ing nodes might cause deadlocks in the multicore sys-
tem [17, 10, 11]. This deadlock is sometimes called re-
quest ≺ reply dependency deadlock. Intuitively, the pro-

cessing nodes process requests then sometimes send out a
reply message. This request ≺ reply dependency might
form cyclic dependency loops in the whole systems as in
Figure 2(c). Different form routing-dependent deadlocks,
in the message-dependent deadlock, the message-dependent
loops are created at processing nodes. For example, when
node A has a new pending request reqB from node B but
it first has to send out a reply repA of some previous re-
quest from node B to free its internal memory in order to
consume reqB . However, repA cannot be sent out due to
buffers in the network are full that need node B to con-
sume some messages to free the network buffer. However,
node B also cannot consume any messages since its inter-
nal memory is full and it cannot send out a message to node
A because the buffers in the network are full. Both node A
and B wait for each other to consume packets but none of
them can then the deadlock happens.

The progress of deadlock formation is as follows. Let
IQA, OQA, IQB , OQB be input, output queues of nodes
A,B respectively. When node A sends packets to node B,
if it sends packets faster than node B can process then the
packets will queue up at output links and buffers at routers
around node B. When the buffers at routers around node B
are full, this effect will block other normal packets. Other
normal packets then fill up buffers at other routers. Gradu-
ally, this congestion will propagate to to output of node A,
then input of node A. Then node A cannot send/receive and
any packet. At this point, the system becomes deadlocked.

3 Deadlock of Null Message Protocol

3.1 Deadlock Scenario

The car wash example in Figure 1 is vulnerable to
message-dependent deadlock if there are several washing
nodes and those nodes frequently send out null messages
to update the attendant and sink nodes about their current
progress time. If the attendant and sink nodes at some time
receive too many null messages from the washing nodes,
partially due to the traffic pattern distortion of a packet
switching network that cause time intervals between mes-
sages to become smaller as in Figure 4 in [20], then those
receiving nodes cannot process all null message packets
on-time. This, coupled with some other bursty traffic like
memory access traffic, might cause congestion at the links
around those receiving nodes similar to the phenomenon in
Section 2.3. This congestion then might causes those re-
ceiving nodes to be unable to send out messages, car as-
signment messages in case of the attendant node and car
delivery messages in case of the sink node. Since those
nodes cannot send out messages, they cannot free their in-
ternal buffers to receive more packets. Till this time, the
system becomes deadlocked.
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(a) Format of a packet. (b) Routing-dependent deadlock. (c) Message-dependent deadlock.

Figure 2. Interconnection network

3.2 Analytical Model

We present an analytical model to clearly describe the
factors causing deadlock. Our model is based on the ideas
of network calculus [3] and real-time calculus [18]. Let V
be the set of nodes in a network and C ⊂ N be the set of
virtual channel index. The set of flows in the network is
defined as F ⊆ V × V × C. A flow f = (s, d, c) ∈ F
is a path from a source node s to a destination node d with
virtual channel index c ∈ C.

For a time instant t ∈ R, we define upper bound of the
traffic transmitted by a source node on flow f as xf (t),
and the traffic arriving at the destination node at the same
time instant as af (t). A destination node on flow f has
a minimum processing capability (amount of traffic it can
process) of rf (t). For a time interval [t0, t1] such that
t0, t1 ∈ R, the upper bound of the amount of traffic trans-
mitted by the source node is Xf (t0, t1) =

∫ t1
t0
xf (t)dt, and

the maximum amount of traffic arriving at the destination
node is Af (t0, t1) =

∫ t1
t0
af (t)dt. The minimum process-

ing capability of a destination node reserved for flow f is
Rf (t) =

∫ t1
t0
r(t)dt. At the destination node, there is buffer

space reserved for the flow f , which we denote as Bf .
Congestion occurs when there are more packets arrived

than consumed on a flow. We characterize the amount of
traffic packets contributing to the congestion on flow f by
Nf (t0, t1) = Af (t0, t1) − Rf (t0, t1). If a flow does not
have sufficient buffer space on it, a deadlock due to un-
consumed packets may occur. Therefore, we must satisfy
condition (1) in order to avoid such deadlocks.

Af (t0, t1)−Rf (t0, t1) ≤ Bf ,∀t0, t1. t1 ≥ t0 ≥ 0 (1)

Notice that condition (1) is a sufficient and necessary
to exclude packet congestion resulting to deadlocks. How-
ever, enforcing this condition directly from a programming
model is difficult because Af (t0, t1) depends on the prop-
erties of the underlying communication infrastructure such

as the routing and switching policies.
We can, however, control the transmission rate in a pro-

gramming model; hence, we need to deriveAf (t0, t1) using
the transmission rate from a source node. To do this, we re-
quire the notion of a network delay, and the interval bounds
that result in the maximum number of arrival packets at a
destination node. Let Df be the minimum network delay,
and Df + ∆f be the maximum network delay on flow f .
Note that ∆f can be interpreted as the jitter in the network
on a flow f .

Figure 3. Effect of traffic distortion on
send/arrival rates.

Figure 3 shows the relationship between the transmission
and arrival of packets for an interval [t0, t1]. Notice that a
packet arriving at the destination node d at t0 can be sent
latest from node s at time t0 −Df −∆f . The traffic arriv-
ing at node d at time t1 can be sent earliest at time t1−Df .
Hence, the maximum amount of traffic arriving at a des-
tination node d in between [t0, t1] must be transmitted by
source node s within the interval [t0 −Df −∆f , t1 −Df ].
Intuitively, the area of the region B is equal to the area
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of the reason A. We can use these bounds to describe the
following:

∫ t1−Df

t0−Df−∆f
xf (t)dt =

∫ t1
t0
af (t)dt. And since

Af (t0, t1) =
∫ t1

t0
af (t)dt andXf (t0−Df−∆f , t1−Df ) =∫ t1−Df

t0−Df−∆f
xf (t)dt, this allows us to describe the following

condition:

Af (t0, t1) = Xf (t0 −Df −∆f , t1 −Df ) (2)

Combining conditions (1) and (2), ∀t0, t1.t1 ≥ t0 ≥ 0,
we obtain

Xf (t0 −Df −∆f , t1 −Df )−Rf (t0, t1) ≤ Bf (3)

Condition (3) captures the transmission rate, processing
capabilities, and the jitter in the network. Through program-
ming models, it is possible to control the transmission rates,
the processing capability, and even allocate sufficient buffer
capacity. However, this formulation requires that a bound
for the network delay and jitter are determined.

3.3 Identification of Deadlock Factors

We identify two factors that contribute to the dead-
lock issue: 1) temporary or permanent mismatch between
send/receive rates, and 2) bursty traffic caused by message
jitter in the packet-switching network.

3.3.1 Mismatch of Send/Receive Rates

It is clear from condition (3) that if sufficient buffer capacity
is not allocated, then whenever packets are sent faster than
they are processed, the unconsumed packets can overflow
the buffers and result in deadlocks. However, only control-
ling the transmission and processing rates is not safe be-
cause the condition (3) also depends on message jitter ∆f .

If the jitter ∆f increases then the amount of traffic
Xf (t0−Df −∆f , t1−Df ) may also increase as the length
t1 − t1 + ∆f of the interval [t0 − Df − ∆f , t1 − Df ] in-
creases, accordingly, the amount of traffic sent during the
interval is increased. The message jitter occurs because of
the best-effort routing schemes often employed in network-
on-chip architectures. Figure 4 illustrates the message jitter
issue [20]. Even when the sender guarantees that packets
are transmitted at regular intervals, after traversing through
three routers, the intervals between them may be reduced.
This appears as bursty traffic to the destination node. This
phenomenon happens because packets have to compete for
resources such as buffers and physical links in a network.
This causes a packet’s arrival to get closer to the previous
one when the previous packet has to wait for resources. For
a large network-on-chip composed of hundreds of nodes,
packets might have to traverse several hops, which may in-
crease the message jitter and result in severe bursty traffic.

This effect can then cause a node to temporarily be flooded
with messages; thus, the external network may be blocked
resulting in system deadlock. The minimum delay Df can
be easily determined by sending a message in a network
without any other traffic. If we can estimate ∆f , then the
upper bound on the sending rate at each source node can be
derived from condition (3).

Figure 4. Jitter of messages.

4 Deadlock Avoidance Mechanisms

To build a reliable system, a high-level programming
layer should know more about its underlying hardware in-
frastructure like buffer space, network delay and so on.
High-level software programs also should not behave self-
ishly such as sending as many packets as fast as possible,
instead, they should co-ordinate in a timely manner. Simply
increasing buffer space without explicitly controlling the
sending/receiving rates of computation nodes in a multicore
system is never safe because bursty traffic might quickly fill
up buffers in an interconnection network. In addtion, the
varying network delays often contribute to bursty traffic that
flood nodes with messages.

Our solution essentially controls and determines the rates
and variables in condition( 3). There are three components
to our solution: on-chip real-time communication network,
repeatable transmission rates at the sender, a calculus an-
alytic model based on the ideas of network calculus [3]
and real-time calculus [18] for estimating buffer capacity
and processing capability. We describe controlling mes-
sage jitter by using an on-chip real-time communication
network, which helps with estimating message jitter ∆f .
We also show that it is necessary to control the sending rate
Xf (t0, t1) of a source node by using timing instructions of a
real-time embedded processor architecture PRET [14]. Fi-
nally, from condition (3) we to derive the buffer space and
processing capability from the maximum number of packet
arrivals within any certain interval at a processing node.
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4.1 Guaranteed-service On-chip Commu-
nication

In order to guarantee (3), we need to estimate the mes-
sage jitter ∆f . The guaranteed-service on-chip communi-
cation network such as [1, 8] can guarantee ∆f = 0. Other
real-time communication on-chip can guarantee that ∆f is
smaller than a reasonable finite value. The guaranteed ser-
vice communication on-chip guarantees that real-time mes-
sages will reach their destination within a certain, previ-
ously known, bounded amount of time regardless of other
traffic on a network on-chip. This guarantee is essential for
real-time multicore systems using network on-chip.

In the example from [1], there are three real-time flows
on a network as in Figure 5(a) that are routed to share a
number of links. The traffic pattern of each flow is charac-
terized by the maximum packet length in flits of each flow
and the minimum interval between two successive pack-
ets in cycles of each flow. For example, the specifica-
tions for the three flows are as follows: F1 = (PE7 →
PE23, 5flits, 21cycles), F2 = (PE6 → PE3, 3, 19) and
F3 = (PE5 → PE19, 4, 17). Based on those characteris-
tics, a suitable path is found in a system to meet the real-
time constraint of each flow if that path exists. The packets
sent from source nodes of the three flows will reach the des-
tination node within a bounded amount of time regardless of
other traffic as in Figure 5(b). The figure shows that it will
take the packets of one real-time flow the same amount of
time to reach their destination.

4.2 Timing-Control Architecture

We find that the deadline instruction in real-time proces-
sor PRET [14] is a useful mechanism to control the trans-
mission rates of a node. In the car wash example, suppose
that each car wash node periodically sends null messages to
the attendant node, this is called the null message flow, on
condition that the interval between null messages is at least
2000 cycles. In conventional architecture, car wash nodes
can be programmed as follows:

while(notTerminated)
{

...
send(attendantNode, nullMessage);
i = 0;
while(i < 100)
{

...
if(someCondition)

break; //this can reduce execution time
...
i++;

}
send(attendantNode, nullMessage);
...

}

In the above program, the interval between null message
sends are determined by the execution time of the code seg-

ment between those send commands. As the speed of a pro-
cessor is increased or there are no threads competing for
execution with this thread or some execution path takes less
time than usual such as the break command, the interval be-
tween the two send commands may become smaller. This
means that messages will be sent to the receiving node faster
than required. Then, the receiving node might be flooded
with messages if its processing capability and buffer capac-
ity are not adjusted accordingly. If the receiving node is
flooded with messages, potential deadlock might happen.
Now we will modify the program to use timing instructions
as follows.

while(notTerminated)
{

...
//interval to the next send command
//is at least 2000 cycles
DEADLINE(z);
send(attendantNode, nullMessage);
i = 0;
while(i < 100)
{

...
if(someCondition)

break;
...
i++;

}

//interval to the next send command
//is at least 2000 cycles
DEADLINE(z);
send(attendantNode, nullMessage);
...

}

In the above code, we insert two deadline instructions
with parameter z that converted into 2000 cycles to make
sure that the interval between the two null message send
commands to the attendant node is never smaller than 2000
cycles regardless of processor speed and/or current proces-
sor workload affected by other concurrent threads or the
lengths of execution paths of the program. As the inter-
val between two send commands is guaranteed to be always
larger than some certain value, a node will never send mes-
sages faster than it is allowed, thereby the destination node
is never flooded with messages. For example, if for each car
wash node, each null message packet size is p and the in-
terval between null messages p((t1−Df )−(t0−Df ))

Xf (t0−Df ,t1−Df )
≥ 2000

is guaranteed by the deadline instructions and ∆f = 0 is
guaranteed by the real-time communication with jitter con-
trol, then Xf (t0 − Df , t1 − Df ) ≤ p t1−t0

2000 , which means
that if the attendant node processing capabilityRf (t0, t1) ≥
p t1−t0

2000 − Bf ⇔ Bf ≥ p t1−t0
2000 − Rf (t0, t1), then the suffi-

cient and necessary condition (3) is satisfied.

4.3 PTIDES Execution Strategy

PTIDES makes it easier to satisfy condition (3) since
PTIDES does not send any null messages. If we consider
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(a) A traffic Scenario.
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Figure 5. Configurations and evaluation results

null messages from each car wash node to the attendant
node is a flow and request packets is another flow, then
those flows need to satisfy the condition (3). Given that null
messages are rather regular, calculating the condition (3)
for all the null messages flow might be problematic when
the real-time constraints of a system is also taken into ac-
count. For PTIDES, the condition (3) is computed only for
request flows. Request messages are not sent as regularly
as null messages, therefore, calculating the condition (3)
with some real-time constraints of a system could be much
more easier. As PTIDES does not need null messages, we
only need to compute the condition (3) for each request flow
from a car wash to the attendant. Suppose that it takes each
car wash at least 10000 cycles to wash a car, this can be
guaranteed by using PRET, then the interval between two
consecutive request messages is at least 10000 cycles. We
apply the same procedure as in Section 4.2 to derive that
Rreq flow(t0, t1) ≥ p t1−t0

10000 −Breq flow to satisfy (3) where
p is request packet size.

We will briefly explain the basic PTIDES execution strat-
egy [21] in the context of the car wash example. PTIDES
requires a strict packet delay bound to guarantee the discrete
event semantics. A guaranteed service on network on-chip

architecture in Section 4.1 can be used as the underlying
communication for PTIDES on a network on-chip multi-
core system. Different from the NMP, PTIDES does not use
null messages to avoid protocol deadlock. Instead, PTIDES
uses the delay bound of a message in a network to guarantee
the DE semantics. Suppose that a request message mi sent
from a car wash node CWi will reach the attendant node
within the delay bound d(CWi).

The attendant node receive a request message m1 from
car wash CW1 with timestamp t1. The attendant node
knows that it is safe to dispatch a car to CW1 when: 1)
Either the attendant node has received all request messages
from other nodes and all the other request messages have
timestamp greater thanm1. 2) Or current physical time τ ≥
t1 + d(CWi)∀i and all received messages have timestamp
greater than t1. The reason for the second condition is that
if a car wash CW2 sends a request message m2 with times-
tamp t2 to the attendant node. At the physical time τ , the
messagem2 has not reached the attendant node. This means
that t2 + d(CW2) > τ . Furthermore, τ ≥ t1 + d(CWi)∀i,
therefore t2 + d(CW2) > t1 + d(CW2)⇒ t2 > t1. There-
fore it is safe to allocate a car to CW1 without violating the
DE semantics.
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5 Experiments

5.1 Simulation Scenario

To demonstrate the potential deadlock of the NMP on a
multicore system, we set up a simple simulation scenario
of the car wash example on a network on chip using the
Noxim [6] simulator. The scenario of the example is shown
in Figure 5(c), where there is a 3 × 3 network. The source
and attendant share the same center node. The outer nodes
are 8 car wash nodes. For the sake of simplicity, we discard
the sink node. This example is a metaphor for a simple load
balancing protocol.

The simulation steps are as follows: 1) A car wash node
sends a request message to the attendant node whenever it
is idle (not busy washing any car). The request message
also contains a timestamp of the time of the node when the
request message is sent. 2) The attendant node will allocate
a car to a washing node by an allocation message when-
ever it receives a request message. However, the attendant
node requires that cars be allocated to washing node in an
increasing order of the timestamp in request messages. This
means that, if there are 2 request messagesm1 andm2 from
node n1, n2 with timestamp t1 < t2 respectively, although
m2 arrives at the attendant node before m1 due to different
network delays, node n1 is still allocated a car before n2. 3)
A car wash node, whenever allocated a car, will wash a car
within a specified amount of time. When it finishes wash-
ing the car, it sends another request message to the attendant
node to ask for new cars to wash.

5.2 Simulation with the Null Message
Protocol

5.2.1 Simulation specification

While the basic simulation steps of the example are as in the
above section, the null message protocol to avoid deadlock
is as follows: 1) A car wash node periodically sends null
messages to the attendant node to update its current time to
the attendant node via the timestamps in the messages. 2)
The attendant node, whenever it receives a null message,
updates its knowledge of the current time of the node that
sends the null message.

It is also mandatory that the messages sent from a wash-
ing node to the center node be received in order. Those
messages are routed using XY routing, so-called Dimension
Order Routing (DOR) [7]. In our simulation, the network
is also lightly loaded with other traffic using DyAd adap-
tive routing [12] with packet insertion rate at 0.005. The
simulation specification is as in Table 11.

1We choose to use simulation parameters with small cycles to facilitate
the process of simulating. Those parameters can be scaled to fit with real
applications

Value
Time to process a message (null, request) 10 cycles

Interval between null messages 80 cycles
Time to wash a car 301 cycles

Buffer size (at attendant node) 40 flits
Message size 2 flits

Number of cars to wash 200

Table 1. Simulation specification

5.2.2 Deadlock Characterization

First, we would like to define deadlock in our simulation
experiments.

Definition 1 A node is blocked when both its input queue
and output queue are full. A system is deadlocked when all
the nodes are blocked.

With the specification in Table 1, deadlock happens fre-
quently 70 times in 100 runs before 200 cars are washed.
When we increase the interval between null messages sent
by a washing node to 82 cycles, deadlock happens less fre-
quently. If the interval is more than 85 cycles, deadlock
does not occur in our simulation because the condition (3)
is satisfied. However, we consider the situation when the
update interval is kept at 85 cycles, but the attendant node
cannot process a packet in 10 cycles anymore due to some
cache misses or some increased workload, its time to pro-
cess a packet is increased by 10% to 11 cycles. Immedi-
ately, the deadlock happens frequently again in our simula-
tion.

Consider another situation when each washing node is
supposed to send null messages every 85 cycles, but due
to improper timing or decreased workload, it sends mes-
sages faster at a rate of 80 cycles then deadlock can happen
quickly within 50,000 cycles after that. To avoid this situ-
ation, we can use an architecture like PRET [14] that does
not allow some work (sending message) to be done faster
than needed as in Section 4.2.

Figure 5(d) shows the interaction between the null mes-
sage interval and deadlock frequency. There is a sharp
threshold where deadlock turns from never happening to
happening frequently. This occurs because car wash nodes
send null messages faster than the attendant node can han-
dle. For example, if car wash nodes send null messages
at the rate 1 null message per 80 cycles, since there are 8
car wash nodes, null messages will arrive at the attendant
node every 10 cycles. Sometimes some request messages
arrive at the attendant node also, so null messages and re-
quest messages will arrive at the attendant node every inter-
val less then 10 cycles. Because the attendant can process
one message in 10 cycles, it cannot process all arrival mes-
sages, the condition (3) is violated. The mismatch between
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the arrival rate and consumption rate at the attendant node
might cause the system to be deadlocked, we can avoid this
deadlock beforehand by setting the interval between null
messages to a larger enough value, say 85 cycles to satisfy
(3).

5.2.3 Effect of other network traffic on deadlock

In this section, we will evaluate the effect of other network
traffic on the deadlock. Figure 5(e) shows the effect of in-
creasing other traffic load in the network on deadlock oc-
currence of NMP. The simulation scenario is as follows: 1)
The interval between null messages is 85 cycles. 2) The
packet insertion rate of other traffic is gradually increased
from 0.005 to 0.02. 3) Other parameters stay the same.

For each packet insertion rate, we simulate 100 times
to get the number of deadlocks. As we can see, when we
increase the packet insertion rate of other traffic, deadlock
cases might grow from never to frequently. So in a more
complex network with multiple request ≺ reply fash-
ion transactions or during bursty memory traffic, deadlock
might happens easily.

5.3 Simulation with PTIDES Strategy

For PTIDES, instead of waiting for null messages from
washing nodes to the attendant node, the attendant node
uses the passage of real-time. By using guaranteed service
mechanism in [1], the attendant node knows for sure that a
request message sent from a washing node will never be de-
layed by the network more than somemax delay. Then the
mechanism as described in Section 4.3 is applied. The same
configuration is applied and we never find any deadlock.
The average allocation waiting delay is about 52 cycles in
comparison with that of null message protocol at about al-
ways more than 100 cycles for any variation of interval be-
tween null messages. The buffer at the attendant node is
enough to store all the request packets from car wash nodes.

6 Related Work

There are some common approaches used in current
CMP architecture with network-on-chips to avoid dead-
lock. They involve increasing the number of virtual chan-
nels, buffer sizes [9], or by using a deadlock resolution
mechanisms [11]. However, simply increasing the buffer
size and number of virtual channels without considering
the send/receive rates is never safe since if a node continu-
ously sends more packets than another node can receive, un-
consumed packets will fill up buffers gradually and form a
deadlock. Deadlock resolution mechanisms are often com-
plicated since they require an end-to-end flow control mech-
anism as in TCP/IP so that a sending node has to resend a

packet when this packet is killed by the deadlock resolution
mechanism clock. It might also slow down the clock of a
system [9] since deadlock detection and resolution logic is
added to router pipeline stages.

Although message-dependent deadlock happen infre-
quently, for safety-critical control systems, this kind of
deadlock has to be excluded completely. In [13], whenever
deadlock happens and is detected, an intermediate node has
to consume some messages, store them in its local memory
and then resend those messages when the network is freed.
This mechanism is not safe and is especially unsuitable for
real-time systems. In the active message communication
model [19], deadlock is avoided by making the receiving
nodes always sink a message when it arrives. However, to
successfully implement that, receiving nodes have to be fast
enough to process all received messages before a new mes-
sage arrives. As we can see flooding other nodes with null
messages as in the NMP might hinder this approach.

6.1 Comparison

Figure 5(f) shows the performance of the two approaches
in terms of waiting delay, which is defined as the interval
from when a request message is sent until the attendant node
decides to allocate a car to the request node2. We choose
this metric because it is independent from washing time.
From that figure, we can also see that decreasing the interval
between null messages does not necessarily mean smaller
waiting delay. We can see that PTIDES execution scheme
provides better waiting delay. Sending fewer packets can
also reduce the power consumption of a system.

7 Conclusion

We have shown that the NMP might cause a potential
deadlock in a multicore system if it is not implemented
carefully. We also show that in order to exclude message-
dependent deadlocks in a multicore system, a computation
node needs to know the bound of the number of message
arrivals within an interval of time to allocate enough buffer
and processing power to process those messages, ensuring
that all messages are consumed right after they have arrived.
This means that sending nodes should not send messages
too fast. This can be supported using PRET architecture.

PTIDES execution strategy is a suitable replacement for
NMP since it can exploit the inherent time synchronization
in a multicore system. PTIDES execution strategy avoids
sending many null messages, which means that less power
is consumed and potential deadlocks due to null messages
are avoided. We expect that our techniques will not only

2Please note that the null message interval is for NMP only, PTIDES
does not use null messages
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solve the deadlock issue but also provide a better real-time
guarantee.
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