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Abstract—In this paper we present example applications using
a deadline instruction. The deadline instruction brings cycle
accurate timing information into the application code. We have
implemented the mechanism in a time-predictable Java chip-
multiprocessor. As a proof of the accuracy that can be gained,
a digital to analog conversion of audio signals is implemented
completely in software. Furthermore, we show how the deadline
instruction can be used to verify bytecode execution times on
chip-multiprocessors and how to synchronize tasks to a time-
division based memory arbiter.

I. INTRODUCTION

Lee argues that building reliable real-time embedded sys-
tems require software to yield predictable and repeatable
timing behaviors [11]. By having predictable timing behaviors,
designers can analyze systems (e.g., with static timing analy-
sis) and predict behaviors under various stimuli and operating
conditions. Repeatable timing behaviors promote testing of
the system such that multiple executions of the system under
specific operating conditions yield the same timing behaviors.
This is, of course, in addition to the requirement of correct
functionality. Designers can then assess the reliability of the
system through analysis and testing methods.

Since current abstraction layers in real-time embedded com-
puting are a culmination of years of borrowing of concepts
and tools from general purpose computing, they neglect the
importance of predictable and repeatable timing. Instead, they
focus on solely improving average-case performance. As a
result, the property of timeliness has been abstracted away
at various abstraction layers of computing allowing for com-
puter architectures with speculative execution, deep pipelines,
caches and complex memory hierarchies, and programming
languages, multithreading and operating systems. While most
of these provide techniques to optimize average-case perfor-
mance, they make it extremely difficult to build reliable real-
time embedded systems. This is because the resulting com-
puter architectures exhibit unpredictable and nonrepeatable
timing behaviors. Consequently, we need a paradigm shift for
future real-time embedded systems where timeliness is made a
first-class citizen of real-time embedded computing. Processor
architectures shall be optimized for the worst-case execution
time (WCET) instead of the average-case performance [19],
and they shall exhibit predictable and repeatable timing be-
haviors.

In this paper, we explore the Java Optimized Processor
(JOP) [18] and its supporting tools for building reliable

real-time embedded systems. By design, the JOP is a time-
predictable computer architecture for real-time embedded
systems. It also has a chip-multiprocessor (CMP) version.
Our focus here is on making time a first-class citizen, and
on bringing the property of repeatable timing to JOP. We
accomplish this by extending the hardware architecture and
the programming interface to support timing instructions [4],
[12]. In addition, we also allow for handling timing violations
through timing exceptions [13] by using standard Java excep-
tions or borrowing the semantics of deadline miss handlers
from the real-time specification for Java (RTSJ) [3].

The paper is organized as follows: In the following section
related work is described and Section III gives short overview
of JOP. The deadline instruction, deadline miss handling, and
the implementation in JOP is described in Section IV. Several
use cases of the deadline mechanism are given in Section V
and the paper is concluded in Section VI.

II. RELATED WORK

Ip and Edwards [9] first proposed the deadline instruction
for their H8 PRET machine. The proposed processor was
a single-cycle, non-pipelined design with a simple memory
hierarchy that connected the processor with a fast SRAM.
They showed that the deadline instruction combined with the
simple architecture design made it simple to predict execution
times, and to control the timing behaviors in software for
repeatability.

A later incarnation of the PRET processor was proposed
by Lickly et al. [12] that borrowed the deadline instruction
and incorporated it into a multi-threaded processor based on
the SPARC instruction-set architecture. This architecture uses
a thread-interleaved pipeline, replicates the register file, and
designates individual software-managed scratchpad memories
for each of the hardware threads. One instruction from one
hardware thread occupied at most one stage in the pipeline.
This has the advantage that there are no data dependencies
between the hardware threads. For stalls, the processor uses
a replay mechanism where an instruction waiting for either a
main memory access or a multi-cycle operation to complete is
pushed through the pipeline as a nop, and reinserted into the
pipeline without incrementing the program counter. This ver-
sion of the SPARC-PRET processor showed that it is possible
to maintain predictable and repeatable timing behaviors with
high precision without foregoing performance.



The Virtual Simple Architecture (VISA) of Mueller at
al. [1] enabled hard real-time tasks operation on unpredictable
processors. The processor can be operated in two modes:
in super-scalar mode and as a simple, analyzable in-order
pipeline. The real-time tasks are split into subtasks and each
subtask gets a deadline assigned. The execution of real-time
tasks starts in the advanced processing mode and if a deadline
is missed, the processor is switched to the simple mode. The
individual deadlines have to be set so that there is enough slack
time after missing a subtask’s deadline so that this subtask
and all following subtasks can be executed in the slow mode
without missing the final task deadline. The advantage of this
architecture is, that in most cases the advanced mode will
finish in time and leave processing time for non-real-time
tasks. In contrast, the deadline instruction provides detailed
timing control in software, and not just task completion times.
Unlike VISA, PRET allows programmers to explicitly control
the timing in software.

Andalam et al. [2] adopt the PRET philosophy [5] and
propose a synchronous language extension for C called PRET-
C. This extension supports synchronous concurrency, timing
constructs to control logical time, and preemption. While this
is a step toward the right direction for language design, the
deadline instruction works on the processor clock cycle or
physical time, which in the PRET-C language is not possible
as yet.

The XMOS [14] processor architecture and tools support
many of the PRET principles. Their XCore chip implements a
thread-interleaved pipeline architecture with direct access to a
fast SRAM. They also provide round-robin thread scheduling
as in [12], but allow for another mode to switch out threads
waiting on I/O or off-chip memory accesses. Their XCore can
be tiled with other XCore processors through an interconnect.
They also developed a language called XC, which allows for
explicit control over timing.

III. A TIME-PREDICTABLE JAVA PROCESSOR

We evaluate the concept of a deadline instruction in the
context of a time-predictable Java processor, called JOP [18].
JOP is an implementation of the Java virtual machine (JVM)
in hardware and the primary implementation technology is in
a field-programmable gate array (FPGA). JOP is open-source
and the design is available from http://www.jopdesign.com/.

The primary design constraint of JOP is time-predictable
execution of real-time Java programs. JOP targets the future
safety-critical specification for Java [7]. Execution time of
bytecodes, the instructions of the JVM, can be predicted with
cycle accuracy. Therefore, the low-level part of worst-case
execution time (WCET) analysis is greatly simplified. The
distribution of the JOP project includes a WCET analysis tool
[22], [8].

JOP is also used as a basis for research on time-predictable
chip-multiprocessing (CMP) [15]. A time-division multiple
access (TDMA) based arbiter for the main memory isolates
the timing behavior of the different cores. With the known,
static schedule the memory access time can be predicted

Listing 1. Deadline exception generated in Java

public void deadWait(int time) throws DeadlineMissed {

sys.deadLine = time;
if (sys.missedDeadline) {

throw new DeadlineMissed();
}

}

statically [16]. Therefore, WCET analysis for tasks running
on individual cores in a JOP CMP system is still possible.

IV. THE DEADLINE INSTRUCTION

A deadline instruction brings time semantics into the appli-
cation program. In the simplest case, the deadline instruction
delays execution until a specified time in the future. Compared
to simple timers, this instruction allows expressing timing
constraints in the application code with clock cycle accuracy.

For code with variable execution time the deadline instruc-
tion can be used to enforce a maximum execution time of
a code block. Therefore, when the worst-case execution time
(WCET) of these blocks is known, the deadline can be set to
those values, or higher – assuming single threaded execution.
However, when the WCET estimate is wrong (or unknown)
deadlines can be missed. The possible options on deadline
misses are described in the next section.

A. Deadline Violation

What happens on a deadline violation? Four options exist:
(1) ignore the missed deadline, (2) set an overrun status bit,
(3) throw an exception, or (4) invoke a deadline miss handler.
For hard real-time systems, which undergo a rigid certification
process, one can argue that deadline misses are avoided by de-
sign. This is the approach taken by the upcoming specification
for safety-critical Java [7]. Polling a status register to query
if the deadline was missed is similar to the return value of
waitForNextPeriod() in the RTSJ [3]. It is up to the application
programmer to decide if the miss is handled by the application
code.

Generation of a Java exception allows handling of dead-
line misses in the application. We can generate checked or
unchecked exceptions in the hardware. Unchecked exceptions
are for events that indicate an abnormal program flow (e.g.,
division by zero). They can be caught, but the application can
also decide to not handle that exception. In that case the thread
is terminated. Checked exceptions force the programmer to
handle the exception. Those exceptions can only be declared
at method bodies. Therefore, we have to wrap the deadline
instruction into a method. Generation of a checked exception
can be implemented in Java with the status polling approach,
as shown in Listing 1.

The main drawback of handling the deadline miss in the
application code is that on a deadline miss the processor
is forced to even execute more code, probably worsen the

http://www.jopdesign.com/


situation. Another option is to use explicit deadline miss han-
dlers. Deadline miss handlers are available in the RTSJ when
the optional feature of deadline monitoring is implemented.
The miss handler can be a task with its own scheduling
parameters. The priority can be higher than the application
task that generated the deadline violation or it can be lower
to defer the action taken on a miss. If the miss handler is
implemented as a first level interrupt handler, the overhead
of a scheduler decision can be avoided and the miss handler
runs at top priority. An advantage of the miss handler is that
the error handling is not interleaved with application code.
Furthermore, a single handler can be used for all deadline
instructions in the application. Perhaps there is a degraded
application mode available and the miss handler triggers this
mode on any deadline miss, or a simple reboot of the system
is the appropriate action to take.

The above discussed suggestions, except RTSJ miss han-
dlers, have a main drawback: the deadline miss is detected
at the end of execution of the code block, but not at the
actual miss time. The deadbranch instruction, as presented
in [13], provides a mechanism to setup a timer before the
execution of the code that will raise an exception when the
timer expires. The end of the code block under the deadline
control has to reset the timer with a deadload instruction. A
combination of deadline monitoring and maximum execution
time enforcement results in following code pattern:

time = sys. cntInt+1000;
try {

sys.setTimeout = time;
// do the work
sys.deadLine = time;

} catch (DeadlineMiss dm) {
// handle deadline miss

}

The first statement queries the current time and adds the
maximum allowed execution time (which equals the deadline).
Setting of the timeout value starts the timer that will throw a
hardware generated exception (DeadlineMiss) when not reset.
At the end of the code block under timer control, the access
to the deadLine register will stop the timeout counter and stall
until the deadline is reached.

B. Implementation
We have implemented a semantic equivalent to the deadline

instruction as proposed in [12]. Instead of changing the
instruction set of JOP, we have implemented an I/O device
for the cycle accurate delay. The time value for the delay
until is written to that I/O device and the device delays the
acknowledge signal until the deadline. Therefore, the write
instruction is delayed. This simple device is independent of
the processor and can be used in any architecture where an
I/O request needs an acknowledgement.

The deadline device is implemented within the system I/O
device that contains a cycle counter, a 1 MHz counter, the
timer interrupt logic, and the watchdog. The deadline device
uses the cycle counter. Therefore, the timing granularity is a
single clock cycle.

I/O devices on JOP are mapped to so called hardware
objects [21]. A hardware object represents an I/O device as
a plain Java object. Field read and write access are actual
I/O register read and write access. The following code shows
how to obtain a hardware object for the system device, read
out the current processor clock tick, and perform the deadline
operation.

SysDevice sys = IOFactory.getFactory().getSysDevice();

int time = sys. cntInt ;
time += 1000;
sys.deadLine = time;

The first instruction requests a reference to the system
device hardware object. This object (sys) is accessed to read
out the current value of the clock cycle counter. The deadline
is set to 1000 cycles after the current time and the assignment
sys.deadline = time writes the deadline time stamp into the I/O
device and blocks until that time.

Deadline miss handlers can be implemented on JOP with
the programmable timer interrupt. The interrupt handler can
be implemented in Java as a Runnable() [20].

C. Deadline Mechanism in Software

The deadline mechanism can be implemented on standard
processors completely in software as long as a timer tick or
clock cycle counter is available. A simple busy wait till the
deadline expires gives the best resolution. The following code,
equivalent to the former code fragment, shows this busy loop
in the context of JOP:

SysDevice sys = IOFactory.getFactory().getSysDevice();

int time = sys. cntInt ;
time += 1000;
while (time − sys.cntInt >= 0) {

;
}

The subtraction of the current counter value from the
timeout value and the comparison against 0 allows using
an overflowing counter. For a counter width of n bits, the
maximum relative timeout is 2n−1−1 cycles.

With a busy waiting loop, polling the clock cycle counter,
the jitter of the deadline will be in the order of a few cycles.
Some of the example use cases of the deadline mechanism, as
described in the next section, will not tolerate this jitter.

Implementation of deadline monitoring on standard proces-
sors requires a timer that can raise an interrupt on expiration.
Depending on the operating system, the actual execution
latency of the miss handler can be in the order of several
thousand cycles [20].

V. USAGE EXAMPLES

A cycle accurate delay – the deadline instruction – can
be used for many different applications: e.g., generation of
timed I/O operations, WCET measurements of code fragments
running on a TDMA based CMP system, using time for
communication synchronization, and synchronizing tasks to



Fig. 1. A 1 MHz signal generated in software with the help of a deadline
instruction

a TDMA based arbiter for single path programming. We
describe a few application examples in this section.

A. Evaluation

As a first test of the achievable timing resolution we
generate a 1 MHz signal and measure the resulting frequency
with an Agilent Technologies DSO6034A oscilloscope. Fig-
ure 1 shows the result. From the measurement we see that
the generated frequency is exact (within the measurement
resolution) and there is no jitter.

B. Audio Payback

For the evaluation of the deadline instruction we have
implemented a playback of audio signals. To challenge the
implementation the audio samples are not sent to an off-chip
DAC, but the DAC is completely implemented in software.
With the help of the deadline instruction the application
generates a cycle accurate pulse-width modulation (PWM) of
the the audio signal. The signal is output on an I/O pin of
the processor and a simple, passive 2nd order low-pass filter
converts the PWM signal to the audio signal. Without any
further amplification we use a standard head-set to evaluate
the quality of the signal (listen to the music).

The code fragment in Listing 2 shows the DAC loop. The
loop contains two deadline instructions: the first one generates
the sample period and the timeout value is increased in each
iteration by the period in clock cycles; the second deadline
instruction depends on the sample value and shifts the 1 to 0
transition within the period.

As a first audio experiment we generate a 1 kHz sawtooth
signal. Figure 2 shows the signal in yellow and the spectrum in
magenta. The signal is sampled at 100 kHz by the oscilloscope.
The spectrum is displayed logarithmic with 10 dB per octave,
and 5 kHz per unit. A sawtooth signal contains even and
odd harmonics with an amplitude of A/n for the harmonic
n, which can be seen in the spectrum. Furthermore, we see

Fig. 2. A 1 kHz Sawtooth signal and the analyzed spectrum up to 50 kHz

Listing 2. A software DAC generating a PWM signal with the deadline
instruction

final static int PERIOD = CLK FREQ/44100;

for (;;) {
time += PERIOD; // converter period
off = time + getSample();
sys.deadLine = time;
pwm.port = 1; // high output
sys.deadLine = off;
pwm.port = 0; // low output

}

two peaks around 44 kHz that represent the sample signal of
44.1 kHz. In the time domain we can see the sample signal
superimposed on the sawtooth signal. It is out of the audio
band and therefore not heard. However, due to non-linearity
of the speakers, difference signals in the audio band can be
produced. To avoid this interfering signal a higher order low-
pass is needed or the sample frequency has to be increased
with over-sampling. The resulting lower resolution (due to
over-sampling) of the individual samples can be compensated
with error propagation to the following samples, similar to the
Floyd-Steinberg algorithm for image dithering [6].

Implementing over-sampling for audio signals in software
is probably beyond the processing power of JOP. However, for
low-frequency DACs, which are used in control applications,
over-sampling and the use of the deadline instruction is a
valuable option.

C. Instruction Measurement

Pitter has implemented a CMP version of JOP with a TDMA
based memory arbiter [15]. A static memory access schedule
removes any time dependencies between tasks executed on dif-
ferent processor cores. With the known, static TDMA schedule
the WCET of individual bytecodes that access memory can be
analyzed. Pitter has extended the WCET tool of JOP [22] to



Listing 3. Bytecode execution time measurement on a TDMA based system

int a [] = new int [1];

// A 0.1s interval in multiple of the TDMA round plus 1
int shift = CLOCK FREQ/10/(TDMA LENGTH)∗TDMA LENGTH+1;

// get measurement overhead
int time = Native.rd(Const.IO CNT);
time = Native.rd(Const.IO CNT)−time;
int off = time;

int start = sys. cntInt + shift ;
for ( int i=0; i<TDMA LENGTH; ++i) {

sys.deadLine = start;
// measurement start
time = Native.rd(Const.IO CNT);
a[0] = 1;
// measurement stop
time = Native.rd(Const.IO CNT)−time;
System.out.println(time−off);
start += shift ;

}

include the TDMA schedule. Examples of bytecode execution
times, dependent on the number of processor cores and the
time slot length, are given in the appendix of his PhD thesis.

Static WCET analysis is the preferred methodology for
real-time systems. However, experimental evaluation of the
static analysis tool is needed to build confidence that the
static analysis is correct. In the case of execution time of
individual bytecodes, the experimental validation is not trivial.
The actual execution time depends on the phasing between the
start of the instruction and the TDMA arbitration schedule. A
guaranteed execution and measurement of all possible phases
of the bytecode under investigation just with a test program
is practically impossible. Tests with random delays can give
some confidence to the static analysis.

With a deadline instruction the generation of test cases
of all possible phases is trivial. The code segment under
investigation is started after a deadline instruction. The start
time of a measurement is shifted, with respect to the TDMA
schedule, one cycle each iteration – for a TDMA round of
n cycles, the start time is a multiple of n + 1 cycles. After
n measurements all possible phase relationships have been
evaluated and the WCET of this code fragment is measured.

Listing 3 shows the measurement of the execution time of
bytecode iastore at all possible TDMA phases. For a three
core CMP with a TDMA slot length of 6 cycles the TDMA
schedule (n) is 18 cycles. The measured execution times of
the code fragment are between 27 and 44 clock cycles. The
measured code consists of following bytecodes:

iconst 0
iconst 1
iastore

The first two bytecodes execute in a single cycle – they don’t
access main memory. Therefore, the array store instruction

takes between 25 and 42 clock cycles. The static WCET
analysis of iastore for the measured CMP configuration results
in 41 clock cycles. This is one cycle lower than the measured
WCET. Therefore, we have to investigate the timing model of
the JOP CMP configuration to find this error.

D. Single-Path Programs on a CMP System
Single-path programming is a methodology to eliminate

all data dependent control decisions [17]. If-conversion with
predicated instructions and loops with constant bounds are
the key elements. Execution of single-path programs on not
too complex processors results in constant execution time.
Therefore, static WCET analysis can be substituted by mea-
surements. In [10] it has been shown that even processors with
instruction caches deliver constant, and therefore repeatable,
execution timing.

JOP, in a single processor setting, is time-predictable enough
for the single-path programming paradigm. However, in a
CMP configuration the execution time depends on the phasing
of the task relative to the TDMA memory access schedule.
The deadline instruction can be used to synchronize the task
execution start with the TDMA schedule. Each start of a task
has to be delayed till a start time that is a multiple of the
TDMA schedule. For example, if three processors are used
with a TDMA slot of 4 cycles, tasks are only allowed to start
at multiples of 12 cycles. For single-path programming it does
not matter at what phasing, relative to the TDMA schedule, the
task starts as long as it starts every time at the same phasing.
In that case the execution time can simply be measured. An
evaluation of this approach is described in [23].

VI. CONCLUSION

An application visible deadline instruction brings timing
semantics into the application program. We have implemented
a simple I/O device for a cycle accurate delay of the processor
pipeline in the context of the Java processor JOP. The I/O de-
vice delays a write access to the timing port till the expiration
of the target time. It can be used in any processor that stalls
on an I/O access operation till the I/O acknowledgement.

The deadline mechanism can be used for various tasks. For
example, it allows generation of cycle accurate I/O operations
as we have shown with a software DAC to generate audio
signals. We have also evaluated the deadline instruction in the
context of a CMP system with a TDMA based memory arbiter.
With this experiment we found an error in the execution time
model for the JOP CMP system, which we have to further in-
vestigate. Furthermore, application tasks can be synchronized
to the TDMA schedule with a cycle accurate delay.
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