
Elimination of Side Channel attacks on a Precision
Timed Architecture

Isaac Liu
David McGrogan

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-15

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-15.html

January 26, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Elimination of Timing Attacks with a Precision Timed Architecture

Isaac Liu, David McGrogan
Center for Hybrid and Embedded Software Systems, EECS

University of California, Berkeley
Berkeley, CA 94720, USA

{liuisaac, dpmcgrog}@eecs.berkeley.edu

Abstract

Side-channel attacks exploit information-leaky imple-
mentations of cryptographic algorithms to find the encryp-
tion key. These information leaks are caused by the under-
lying execution platform which contain hardware elements
designed to optimize performance at the expense of pre-
dictable execution time. This shows that for security sys-
tems, not only does the software need to be secure, but the
execution platform also needs to be secure in order for the
entire system to be truly secure. PRET is an architecture
designed for real time systems that has total predictability
without sacrificing performance. It contains ISA extensions
to bring control over temporal properties of a program to
the software level. We show that this design can not only
defend against all software side channel attacks on encryp-
tion algorithms, but completely eliminate the root cause of
the problem. We demonstrate this by running a reference
implementation of the RSA algorithm on PRET and prove
that it’s immune to side channel attacks.

1 Introduction

Encryption is at the heart of every security system. By
scrambling sensitive messages with a key, private informa-
tion is kept private because even if the message is inter-
cepted, the advisory has cannot retrieve the contents of the
message. This is basis for authentication servers, secure
connections and many more. A good encryption algorithm
contains strong mathematical properties that even if the ad-
visory knows the encryption algorithm and eavesdrops on
the encrypted message, it will still be nearly impossible with
the computing power today to decode the message without
the key.

However, attackers soon realized that instead of directly
attacking the mathematical properties of the algorithm, they
can instead infer information from the underlying imple-
mentation, and gain a huge advantage in obtaining the key.

These attacks are called side channel attacks. Timing chan-
nel attacks use run time variances of encryption algorithms
to retrieve the keys. Branch predictor attacks use informa-
tion from the hardware branch predictor to follow control
flow of the encryption algorithms, gaining insight of the key.
Cache attacks use information from the caches and observe
the data accessed in the encryption algorithm to derive the
key. All these attacks target the unpredictable and uncon-
trollable temporal properties of the underlying architecture,
which the software has no control over. It may be true that
special coding techniques can mitigate the chance of suc-
cess for some specific attacks, but the root vulnerability is
still present, which is the uncontrollable temporal semantics
of the architecture. Any other security software will still be
vulnerable to the same attacks. In order for secure soft-
ware to be truly secure, its underlying hardware must also
be secure. In other words, the underlying hardware must
not emit any information about the secure process that’s ex-
ecuting on the hardware. If any information is emitted, it
may be exploited by the attacker to gain advantage for an
attack.

Computer architects have made amazing advancements
in architecture design to allow for faster processing. The in-
troduction and improvement of pipelines, branch predictors
and caches allow for better speculative execution. Hard-
ware threading mechanisms such as simultaneous multi-
threading improve the utilization and throughput of the pro-
cessor. However, these improvements come at a cost. Be-
cause these mechanisms improve performance by specu-
latively executing instructions, the complexity required to
maintain state and recovery is enormous. Programs exe-
cuted on modern processors now have improved average
case performance, but unpredictable and unrepeatable ex-
ecution times. Edwards and Lee[7] argued, for the purpose
of Real Time Systems, that we needed to reconsider the im-
portance of predictability and repeatability in the core de-
sign of the architecture. We argue that this reconsideration
is also needed for security systems, because secure software
is only as secure as its underlying execution platform. In

this paper, we present PRET [12], a Precision Timed archi-
tecture meant for real time systems, and show that an ar-
chitecture design with timing predictability as a core princi-
ple can defend against all temporal side channel attacks and
completely eliminate the source of vulnerability.

Here we note that there is another type of side channel
attack, the power channel attack. It measures the power dis-
sipated by the processor during encryption to deduct the en-
cryption key. This kind of attack requires extra hardware,
and the attacker must be physically present while the attack
is conducted. We acknowledge the existence of this attack,
but do not address it directly in this paper, merely provide
insights to defending against it.

The following sections describe our work. First we give
a more detailed introduction to encryption and the differ-
ent side channel attacks that have been discovered. Then
we describe the PRET architecture and explain how it can
eliminate the attacks. Finally, we show an example of an
existing encryption algorithm running on the PRET archi-
tecture, and prove that temporal side channel attacks are not
possible.

2 Background

2.1 Encryption

The goal of encryption is to make information illegible to
anyone without special knowledge, generally expressed as
a key. Encryption algorithms generally use a so-called trap-
door function, which is easy to compute in one direction
but difficult (according to current knowledge) to compute
in the other direction without an additional piece of infor-
mation. These functions are based on operations such as
prime factorization or taking discrete logarithms; as years
of concerted effort has failed to produce an efficient algo-
rithm to invert them, the cryptographic algorithms founded
on them are used with a large amount of confidence in the
algorithms’ security. That is, given all details of the encryp-
tion algorithm except for the key, an adversary will not be
able to obtain the encoded information using any reasonable
amount of computational power.

Figure 1: Traditional Model of Cryptography

2.2 Side Channel Attacks

Traditional attacks on cryptographic algorithms use only
the input and output of the algorithm, treating it like a
monolithic black box. However, this does not reflect real-
ity. Algorithms must be implemented in software and run on
hardware, which have various properties that change as a re-
sult of the cryptographic algorithm’s execution. Side chan-
nel attacks use additional data about the encryption process,
obtained via observing these information leaks, to circum-
vent the computational complexity of reversing encryption.
Depending on the algorithm and its implementation, a wide
variety of information leaks may exist on a number of dif-
ferent physical channels. To access and use this leaked in-
formation can be very easy or very difficult depending on
which channel one is attempting to exploit; for example,
getting timing information for a timing attack is as simple
as determining the latency between request and response,
whereas a power attack requires the attacker to physically
access the target system.

Figure 2: Model of Cryptography with Side Channels

2.2.1 Timing Attacks

Timing attacks observe variation in the time spent by an en-
cryption algorithm, often with a known input, and use this
information to deduce the key. These attacks generally re-
quire a source of feedback on the accuracy of the estima-
tions of the key, which may be gained by submitting multi-
ple requests. These timing data are often compared to a du-
plicate of the encrypting hardware belonging to the attacker
over various keys, enabling better feedback. Vulnerability
to this attack depends on the software implementation of
the algorithm, but is rather widespread due to the general
drive toward fast algorithms. The obvious countermeasure
is to make the algorithm execute in the same amount of time
for any input, but this is difficult due to the unpredictability
of compiler optimizations, instruction timings, memory ac-
cesses, and so on. A more useful solution is to obscure the
inputs to a vulnerable operation via message blinding[13];
in RSA this is possible by creating a random pair (vi, vf)
where v−1

f = ve
i , e being the public exponent, then running

2

the modular exponentiation on M · vi mod N and returning
the output multiplied by vf [10]. This solution however cre-
ates overhead, because now every encryption or decryption
requires an extra multiplication step.

2.2.2 Caching Attacks

Caching attacks use a spy thread running concurrently with
the encryption program on the target hardware. The spy
thread constantly accesses memory to occupy all lines in the
cache, and detects the encryption thread’s memory accesses
by timing the return of the data; if the encryption thread
has evicted the spy thread’s cache line for its own use, the
spy thread’s load operation will take longer. For some algo-
rithms, such as AES[5], this enables information about the
key (which has precomputed components) to be obtained di-
rectly; for others, such as some RSA implementations[16],
the program detectably accesses different workspaces in
memory due to control flow based on key bits. These attacks
can be partially handled by security-aware thread schedul-
ing and totally prevented by reworking the algorithm to ex-
ecute code and access memory independently of the input
data and key. The latter would be a tremendous deviation
from standard practice and require the significant reworking
or abandonment of many existing algorithms[16]; as such,
it is rarely pursued.

2.2.3 Branch Predictor Attacks

Similar to caching attacks, branch predictor attacks involve
a spy program running concurrently with the encryption
program. In this case, the spy thread fills all entries in the
branch predictor table by simply executing branching in-
structions throughout its own program. If the encryption
algorithm takes a branch, the corresponding branch predic-
tor entry will be occupied by the encryption algorithm. By
counting the CPU cycles required to execute a branch, the
spy program detects any change in the state of the branch
predictor and therefore infers the control flow of the encryp-
tion thread, revealing information about the key. For some
algorithms, this attack is capable of obtaining the entire key
after spying on only a single encryption operation[1]. This
attack can be prevented simply by never using secret infor-
mation to determine a branch, for example through clever
use of arithmetic in lieu of conditionals. This is similar
in concept to the dramatic reworking suggested to prevent
caching attacks, and thus is not often practiced.

2.2.4 Power Attacks

Power attacks use the changing power consumption of the
processor to infer the activity of the encryption software
over time. Differences in algorithm activity based on the

key will be revealed by the fluctuations they create in pro-
cessor energy use. Power attacks require measurement of
the power intake of the processor, and are thus generally
impossible without physical access to the target hardware,
but this is no obstacle in cases such as consumer electronics.
Countermeasures to this sort of attack can be placed in soft-
ware or hardware; software-based approaches include un-
conditional execution of operations with large power char-
acteristics, operating on pieces of the secret at a time, and
interleaving random computations with the sensitive opera-
tions. Hardware approaches include randomized clocking,
power filtering, and power buffering. Hardware is more ex-
pensive to secure than software, but may be necessary de-
pending on the level of security required.[13]

3 Elimination of Side Channel Attacks

We can see a pattern in all of the side channel attacks
mentioned above. The attacker collects information from
the implementation on the underlying hardware, and use
it to infer information regarding the encryption algorithm,
which can lead to exposure of the secret key. The branch
predictor side channel attack and cache side channel attack
both attack a single shared resource from the hardware. By
writing a spy process to hog up that resource, an attacker
can easily monitor another thread’s access to the same re-
source and therefore monitor the activity of the thread. The
timing side channel attack exploits the algorithm’s uncon-
trollable execution time on the processor, and predicts the
execution flow to obtain the encryption key. Several individ-
ual methods have been proposed to counter the attacks, but
they don’t tackle the principle cause of the vulnerability –
the uncontrollable and unpredictable execution of software
on modern computer architectures. Lickly and Liu [12]
introduced PRET (PREcision Timed Architecture), an ar-
chitecture that delivers predictable timing along with pre-
dictable function and performance. This architecture tack-
les the root cause of side channel attacks by design, elimi-
nating the vulnerability.

We present an overview of the PRET architecture in the
context of eliminating side channels attacks, and refer inter-
ested users to [12] for more details. We assume the reader
has a basic understanding of computer architecture, such as
how pipelining and caches work. Readers that aren’t famil-
iar with these terms are advised to see [15] for an introduc-
tion.

3.1 PRET Architecture

A block level diagram of the PRET architecture is shown
in Figure 3. The core integer unit pipeline of the PRET ar-
chitecture implements a thread-interleaved pipeline. Hard-
ware units that keep the processor’s state such as register

3

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

THREAD0

registers
special registers

deadline registers

REGISTER FILE

INTEGER
UNIT

THREAD
CONTROLLER

DMA

Memory Mapped
Input/Output

thread0

thread1

thread2
...

MEMORY
MANGEMENT

UNIT shared address
space

INST_SPMS

program codeprogram codeprogram codeprogram codeprogram codeprogram code

SPM0

DATA_SPMS

datadatadatadatadatadata

SPM0 MAIN
MEMORY

MEMORY

WHEEL

0

1 2

3

45

Figure 3: Block Diagram of PRET Architecture

files or local on-chip memories are duplicated for each hard-
ware thread to keep each thread independent. Threads are
scheduled to execute in a predictable round-robin fashion.
Scratchpad memories (SPM)[3] are employed instead of
caches to allow controlled and predictable access to local
on-chip memories. A memory controller facilitates time-
triggered access to the off-chip main memory through a
memory wheel to decouple the threads’ access to memory
from each other. In addition, ISA support is provided to
bring timing semantics to the software level.

3.1.1 Thread-Interleaved Pipeline

Pipeline hazards occur because the next instruction to be fed
into the pipeline does not have the required information to
be executed. Conditional branches are the prime example
– the pipeline cannot fetch and execute the next instruction
without knowing what it is. The penalty of hazards can be
mitigated by introducing hardware units that speculate the
next state; branch predictors speculate the next instruction,
and caches speculate the data that will be accessed in the
near future. If the speculation is correct, there is no penalty
and the processor continues to execute. But if it is incor-
rect, then the processor must do extra work to recover by
discarding the speculated work and re-executing the correct
instructions. These mechanisms are the main cause of un-
predictable execution time because in software there is no
way of knowing whether the hardware speculation is correct
or not.

If we can remove pipelining hazards, then we can re-
move the need for the speculation units. Lee [11] proposed
using thread interleaved pipelines to remove data dependen-
cies and control hazards in the pipeline to get predictable
and repeatable behavior. The basic idea is shown in Figure
4.

Via thread-interleaving, we can completely remove any
data forwarding logic in the processor, along with the
branch predictors, because we have no need to speculate
the next instruction to be executed. Simply by focusing
on repeatable and predictable behavior in the design of the
pipeline, we have removed the vulnerability that enabled the
branch predictor attack.

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12
T4: SW 0(r7), r5

T1: LW r5, 12(r1)

t9

F D X M W

F D X M W

F D X M W

F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in

 a thread always
 completes write

-back before next
 instruction in

 same thread

 reads register file

Figure 4: How interleaved threading removes data dependencies

3.1.2 Memory System

Fast access on-chip memory is a requirement for modern
processors. The high clock speed of the processor combined
with the high latency of main memory results in hundreds of
cycles lost when the processor needs to access the off-chip
main memory. Caches are a hardware controlled fast ac-
cess memory that tries to predict and pre-fetch the data from
main memory for the processor based on temporal and spa-
tial locality of data access. If the cache control speculation
is accurate, then access to data can complete in one cycle
of the processor. However, if a misprediction occurs, the
time it takes to access the data is drastically longer. Thus,
cache hits and misses often determine the performance of a
program, cause it to be the major source of timing unpre-
dictability [17].

Unlike the branch predictor, removing fast access mem-
ories is not an option, since it will result in a huge perfor-
mance overhead. Instead, we use scratchpad memories as
an alternative to caches. Scratchpad memory brings the con-
trol over the fast access memory to software. The compiler
can pre-allocate the data locations in the fast access mem-
ory, resulting in predictable performance (since we always
know which accesses are hits or misses). The software may
also control the loading of scratchpad memories at run time
by using Direct Memory Access instructions without a loss
of predictability. Ongoing research has shown methods to
efficiently manage the scratchpads [2, 4, 14] to optimize the
performance of a program, but that is beyond the scope of
this paper.

Unlike on simultaneous multi-threaded architectures, a
cross-hardware-thread cache side channel attack is not pos-
sible because each thread has its own separate physical
scratchpad memory. Only if multiple software threads
were to run on a single hardware thread, then two soft-
ware threads would share the same scratchpad. However,
because the allocation of memory on the scratchpad is soft-
ware controlled, any underlying software thread supervisor
would have complete control over the scratchpad allocation.
One could imagine a management scheme similar to virtual
memory for scratchpads to separate access for each thread.
Again, by designing the architecture to preserve predictable
and repeatable timing, we have removed the vulnerability

4

deadi $t0, 8
add $r1, $r2, $r3
deadi $t0, 10
add $r1, $r2, $r3
(a)

cycle instruction $t0

−4 deadi $t0, 8 3
−3 " 2
−2 " 1
−1 " 0

0 add $r1, $r2, $r3 7

1 deadi $t0, 10 6

2 " 5
...
...

...
7 " 0

8 cycles

8 add $r1, $r2, $r3 9
(b)

Fig. 2. (a) A code frag-
ment with two deadline

instructions and (b) its
temporal behavior. The
deadline instruction guar-
antees the two add in-
structions are executed 8
cycles apart.

Each timer register counts down one per cycle, stopping when it reaches zero.
When execution reaches a deadline instruction, it pauses there until the given
timer register reaches zero. In the cycle following the one in which the timer has
a zero count, the timer is reloaded with the source value, either from a register
or an immediate value, and the instruction following the deadline executes.

Figure 2 illustrates the operation of the deadline instruction. Here, it is being
used to ensure that exactly eight cycles occcur between the end of the first
deadline and the end of the second. To achieve this, the second deadline delays
for seven cycles to compensate for the single cycle add instruction. Assuming the
timer $t0 has value 3 when the first deadline is executed, it waits until the timer
elapses. (This is implicitly assuming the timer had been set at the beginning
of an earlier block.) In the cycle following this (cycle 0 in the figure), the first
add instruction executes, then the second deadline delays until cycle 8, when
the second add instruction starts. The semantics of the deadline instruction
therefore guarantee that the code between the two deadlines takes exactly eight
cycles to execute, provided it does not require more.

Using deadline instructions is preferable to padding the program with NOPs,
the usual technique for achieving such precise timing. A key advantage is that
code using deadline does not have to know its execution time. For example,
using deadline can deal with loops with a variable (but bounded) number of
iterations; inserting NOPs would require the program, at runtime, to calculate
the number of cycles the loop took and then delay for the remaining amount
of time. Especially when each iteration of the loop is variable (e.g., because of
conditionals), this can grow very complex.

Reduced code size is another advantage. Except where no NOP-padding is
necessary, fewer deadline instructions are necessary to achieve the same effect.

Finally, our approach produces a sort of temporal binary compatibility. Pro-
vided the numbers loaded in the timers are corrected, a program using our
technique that meets all its deadlines will behave identically (i.e., with the same
timing and function) on a faster processor.

Figure 5: By enclos-
ing the add instruction
with deadlines, we en-
sure that the 2 adds are
executed 8 cycles apart.
$t0 is a deadline reg-
ister. When a dead-
line instruction is en-
countered, the program
does not progress for-
ward until the deadline
register is decremented
to 0.

that enables caching attacks.

3.1.3 Instruction Set Architecture Extension

Even with a timing-predictable architecture that executes
instructions in a deterministic way, algorithms and pro-
grams naturally introduce varying run times because each
iteration may follow a different path in the code. Clever In-
struction Set Architecture (ISA) designs have bridged the
developer and the machine extremely well, providing sim-
ple enough instructions for the machine to be kept sim-
ple, and yet still provide expressability to the program-
mer. However, this level of abstraction has failed to bring
temporal semantics of the underlying architecture up to
the software level. One way to control execution time is
through programming external timers and interrupts, which
the hardware must support. This is both tedious and difficult
to program, and the resulting code is non-portable.

Ip and Edwards [8] propose a processor extension that al-
low explicit timing control at the ISA level. They introduce
deadline registers which are decremented each clock cycle
if it contains a value other than zero. Deadline instructions
load values in the deadline register when the register is zero.
A basic example is shown in figure 5.

This allows control over execution time of the program
at the software level, without dealing with interrupts and
external timers. This extension along with a predictable ar-
chitecture allow programmers full control over the run time
of a program, allowing them to write predictable and pre-
cision timed code and defend against timing side channel
attacks.

4 Case Study

4.1 RSA Vulnerability

The central computation of the RSA algorithm is based
primarily around modular exponentiation. It takes the form

INPUT: M, N, d = (dn−1dn−2...d1d0)2
OUTPUT: S = Md mod N

S← 1
for j = n - 1 ... 0 do

S← S2 mod N
if dj = 1 then

S← S ·M mod N
return S

Paul Kocher outlined[10] a notional side-channel tim-
ing attack on this algorithm that requires a large number
of plaintext-cyphertext pairs and detailed knowledge of the
target implementation. By simulating the target system for
predicted keys, the actual key could be derived one bit at a
time. An improved method [6] demonstrated the ability to
obtain even a 512-bit key in a reasonable amount of time.
Our analysis of the algorithm demonstrated that a signif-
icant portion of the variation in the algorithm’s execution
time could be attributed to the branch in the loop above.
When the reference implementation of RSA (RSAREF 2.0)
was ported to the PRET architecture, single iterations of the
loop varied in execution time almost exclusively due to the
value of dj . As seen in Figure 6, each iteration took ap-
proximately either 440 or 660 kilocycles, with very little
deviation from the two means. This is far more than suffi-
cient for a successful timing attack; 0.2% of that difference
was adequate in one case! [6]

 300000

 400000

 500000

 600000

 700000

 800000

 0 50 100 150 200 250 300

Cy
cle

s

Iterations from the Mod Exp loop

Run time of the Modular Exponent operation

Without deadline instructions
With deadline instructions

Figure 6: Run time of Modular Exponent operation

4.2 Removing the Vulnerability

By simply adding a PRET deadline statement in the body
of the loop, the bimodality of the execution time is totally
eliminated, as seen in Figure 6. As enforced by the deadline,
all iterations take the same amount of time. Additionally,

5

placing a deadline on this loop eliminates the vast majority
of the variation in the runtime of the entire program. Figure
7 shows the large-scale effect: Without the deadline, differ-
ent keys exhibit significant diversity in algorithm execution
time. When the deadline is added, the fluctuation is dramat-
ically reduced, and what variations from the mean exist are
not even obviously correlated to the variations that existed
before. This indicates that the much smaller abnormalities
that have been revealed stem from a different source. The
algorithm contains other branches that affect runtime, but
evidently none so significant as the one in the loop which
was made irrelevant by the deadline. It is obvious at this
point that we could simply do a worst case execution time
analysis, and enclose the entire encryption algorithm within
one deadline instruction. This effectively removes even the
remaining fluctuations and will cause the encryption to AL-
WAYS run in the exact amount of time.

 1.5e+08

 1.55e+08

 1.6e+08

 1.65e+08

 1.7e+08

 1.75e+08

 0 5 10 15 20 25 30 35 40 45 50

Cy
cle

s

Encryption Keys

Run time of the RSA operation

Without deadline instructions
With deadline instructions

Figure 7: Run time of RSA operation

In addition to its resistance to timing attacks, simply by
running on the PRET architecture, this RSA implementa-
tion is now immune to cache attacks and branch predic-
tor attacks, both of which can be significant dangers to
RSA[1, 16].

4.3 Remaining Vulnerabilities

PRET was designed to tackle temporal unpredictabilities
in the architecture. Since the current implementation is a
software simulator, we cannot evaluate the power vulnera-
bilities. It might be the case that the processor will consume
less power while waiting for the deadline register to count
down. As a result, measuring power consumption instead
of time elapsed might still reveal variations very similar to
those observed in execution time when there were no dead-
lines. Depending on the application’s demands, this may be

acceptable. However, power attacks could also be prevented
with additional architecture features; as the PRET architec-
ture is intended for real-time applications rather than se-
curity applications, it is not designed to burn power while
waiting, but such functionality could be added and con-
trolled in software by processor state registers to allow a
power burning mode while doing the encryption, and a
switch back to power saving mode when not.

5 Conclusion

Side-channel attacks are a credible threat to many cryp-
tographic systems. Their capability derives not from a
weakness in an algorithm’s mathematical underpinnings but
from information leaks in the implementation of the algo-
rithm. Without secure hardware, software cannot be con-
sidered truly secure. Some stopgap measures are imple-
mentable in software, but rarely are they a guaranteed fix.

In this paper we lay out a means of attacking the root
cause of side-channel attacks - the means of information
leakage. By securing the hardware element via an archi-
tecture founded on predictable performance, we allow a
slightly modified encryption algorithm to entirely resist tim-
ing, cache, and branch prediction attacks. Judicious use of
deadline instructions to hide branch-induced runtime varia-
tions prevent timing attacks, the presence of thread-specific
scratchpad memory instead of shared cache makes cache at-
tacks impossible, and the absence of any need for a branch
predictor likewise rules out branch predictor attacks.

We demonstrate the application of these principles to a
known-vulnerable implementation of RSA. In an unmodi-
fied state on secure hardware, it has significant runtime vari-
ations that can be used to derive the private encryption key.
When modified to take advantage of the timing-invariance
features of the hardware, its increased resistance to timing
attacks is obvious. Other algorithms which require security
could be similarly ported to security-enabling hardware and
easily modified to become immune to a number of danger-
ous side-channel attacks.

References

[1] O. Aciiçmez, Çetin Kaya Koç, and J.-P. Seifert. On the
power of simple branch prediction analysis. In ASIACCS
’07: Proceedings of the 2nd ACM symposium on Informa-
tion, computer and communications security, pages 312–
320, New York, NY, USA, 2007. ACM.

[2] O. Avissar, R. Barua, and D. Stewart. An optimal mem-
ory allocation scheme for scratch-pad-based embedded sys-
tems. ACM Transactions on Embedded Computing Systems
(TECS), 1(1):6–26, 2002.

[3] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and
P. Marwedel. Scratchpad memory : A design alternative

6

for cache on-chip memory in embedded systems. Hard-
ware/Software Co-Design, International Workshop on, 0:73,
2002.

[4] S. Bandyopadhyay. Automated memory allocation of ac-
tor code and data buffer in heterochronous dataflow models
to scratchpad memory. Master’s thesis, EECS Department,
University of California, Berkeley, Aug 2006.

[5] D. J. Bernstein. Cache-timing attacks on AES, 2004.
[6] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestr, J.-J.

Quisquater, and J.-L. Willems. A practical implementation
of the timing attack. In J.-J. Quisquater and B. Schneier, edi-
tors, Proceedings of the Third Working Conference on Smart
Card Research and Advanced Applications (CARDIS 1998).
Springer-Verlag, 1998.

[7] S. A. Edwards and E. A. Lee. The case for the precision
timed (PRET) machine. pages 264–265, June 2007.

[8] N. J. H. Ip and S. A. Edwards. A processor extension
for cycle-accurate real-time software. In Proceedings of
the IFIP International Conference on Embedded and Ubiq-
uitous Computing (EUC), volume 4096, pages 449–458,
Seoul, Korea, Aug. 2006.

[9] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel
cryptanalysis of product ciphers. In Journal of Computer
Security, pages 97–110. Springer-Verlag, 1998.

[10] P. C. Kocher. Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems. pages 104–113.
Springer-Verlag, 1996.

[11] E. A. Lee and D. G. Messerschmitt. Pipeline interleaved pro-
grammable DSP’s: Architecture. ASSP-35(9):1320–1333,
Sept. 1987.

[12] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and
E. A. Lee. Predictable programming on a precision timed
architecture. In CASES ’08: Proceedings of the 2008 inter-
national conference on Compilers, architectures and synthe-
sis for embedded systems, pages 137–146, New York, NY,
USA, 2008. ACM.

[13] J. A. Muir. Techniques of side channel cryptanalysis. Mas-
ter’s thesis, University of Waterloo, 2001.

[14] H. D. Patel, B. Lickly, B. Burgers, and E. A. Lee. A
timing requirements-aware scratchpad memory allocation
scheme for a precision timed architecture. Technical Re-
port UCB/EECS-2008-115, EECS Department, University
of California, Berkeley, Sep 2008.

[15] D. Patterson and J. Hennessy. Computer Organization and
Design: The Hardware/software Interface. Morgan Kauf-
mann, 2005.

[16] C. Percival. Cache missing for fun and profit. In Proc. of
BSDCan 2005, page 05, 2005.

[17] L. Thiele and R. Wilhelm. Design for Timing Predictability.
Real-Time Systems, 28(2):157–177, 2004.

7

