YAMR: Yet Another Multipath Routing Protocol

Igor Anatolyevich Ganichev
Dai BiIn

Philip Brighten Godfrey
Scott Shenker

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-150
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-150.html

October 30, 2009

Copyright © 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

YAMR: Yet Another Multipath Routing Protocol

Igor Ganichey, Bin Dai, P. Brighten Godfrey, and Scott Shenker

ABSTRACT

As the Internet is now a critical component of our informa-
tion infrastructure, several recent papers have proposed us-
ing multipath routing for increase the Internet’s reliability,
and to give users greater control over the service they re-
ceive. However, the paths chosen by these protocols are not
guaranteed to have high diversity. In this paper, we propose
yet another multipath routing scheme (YAMR) for the inter-
domain case. YAMR provably constructs a set of paths that
is resilient to any one inter-domain link failure, thus achiev-
ing high reliability in a systematic way. Further, even though
YAMR maintains more paths that BGP, it actually requires
significantly less control traffic, thus alleviating instead of
worsening the Internet scalability. This reduction in churn
is achieved by a novel hiding technique that automatically
localize failures leaving the greater part of the Internet com-
pletely oblivious.

1. INTRODUCTION

In recent years, a growing chorus of researchers have
advocated the multipath routing paradigm, in which
the routing infrastructure makes multiple paths avail-
able, allowing senders to select among them. This ap-
proach gives users access to the paths that best suit
their needs (low latency, high bandwidth, low loss, low
jitter), thereby improving reliability and increasing com-
petition among ISPs ([16], [3]). It is hard enough to de-
sign multipath routing algorithms for the intradomain
case, but the interdomain case is even more challenging
because of policy constraints and scaling requirements.
There have been several proposals for interdomain mul-
tipath routing (see, for example, [15, 13]), and they
have made admirable progress in grappling with these
two issues; to wit, they have demonstrated that it is
possible to provide a set of alternate interdomain paths
in a scalable and policy-compliant manner.

The only disquieting aspect of these approaches (and
many other multipath proposals in the intradomain case)
is that the set of alternate paths is somewhat ad hoc;
they cannot systematically compute a set of alternate

paths that have a high degree of path diversity.! That
is, while they provide a tunable number of alternate
paths, these paths may have significant overlap, thereby
leaving the possibility that a single failure could take
out the entire set.

In this paper we present the Yet Another Multipath
Routing (YAMR) protocol that systematically provides
high path diversity. There are two components to the
YAMR approach.

(1) An efficient BGP-like mechanism for com-
puting a diverse family of policy-compliant paths:
This component of YAMR (which we call YAMR Path
Construction, or YPC) computes a set of alternate paths
that are deviations from BGP’s default path.? Each al-
ternate path is computed assuming that a link in the
default path is down. Considered as static set of paths,
there is no single failure that can break all the paths
simultaneously, unless that failure disrupts all policy-
compliant paths between the source and receiver. When
protocol dynamics are taken into account, the story is
more complicated (because when BGP recovers from
a link failure, it can break paths that did not contain
the failed link). We present simulation results on the
actual resilience achieved under full dynamics, which
show that YAMR imroves the reliability of BGP in sin-
gle link failures by almost three orders of magnitude.

However, computing this family of paths involves higher
control plane messaging overhead than BGP. We there-
fore added another component to YAMR.

(2) A technique for reducing churn by local-
izing routing updates: Much of the churn created
by BGP is due to the fact that every change in a path
must be disseminated to all nodes that use that path.
YAMR hides some of these updates, and it turns out
that this “update hiding” technique not only reduces
YAMR'’s churn, it also increases (by an order of mag-
nitude) YAMR’s resilience, by largely avoiding BGP’s

!The theory literature has many such algorithms, but they
do not lend themselves to scalable, policy-compliant imple-
mentation.

2This idea is borrowed from [6], which computes the cost of
the cheapest path that avoids each link on shortest path.

problem of recovery causing functioning paths to break.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the YAMR Path Construction algo-
rithm and, in Section 3, we present hiding techniques
in YAMR. We describe simulation results in Section 4.
In the appendix, we formally prove the theorems cited
in this paper.

2. YAMR PATH CONSTRUCTION

2.1 Overview

The core of YAMR is a policy-based multipath con-
struction mechanism that is very similar to BGP. Paths
are described by a series of ASes, such as [A, B, C, DJ;
this also defines a series of interdomain links, such as
(A, B), (B,C), and (C, D) in the preceding example.
For convenience, we use a failure model where these
links are the unit of failure. We can easily generalize
the algorithm to cover both link failures and domain
failures (where all links (*, A) and (A, %) fail for some
A), but our notation is cumbersome enough as is, so we
opt for clarity over generality in this short paper.

The goal of YPC is to compute a default path pg
(that is identical to what BGP would compute) and for
each link L in py also compute (if one exists) a policy-
compliant alternate path py that does not contain the
link L. It turns out that we can only guarantee this
under a set of restrictive conditions.

We say that the network is in a canonical condi-
tion when the network has converged and all ASes fol-
low next-hop [7] and widest-advertisement [11] policies
(these policies include the customer-peer-provider pol-
icy [8]), and there are no dispute wheels [10]. Under
these conditions, we can show:

THEOREM 1. Assuming the canonical condition, for
any destination D, AS A, and interdomain link e, if
there is a policy-compliant path from A to D that avoids
e, then YPC computes a policy-compliant e-avoiding
path to that destination.

We now describe YPC in more detail, starting with
the control plane and then moving to the data plane.

2.2 Control Plane

Similar to BGP, ASes in YAMR construct their de-
fault and alternate paths from the paths advertised by
their neighbors, applying local policies, import and ex-
port filters and actions. These multiple paths to the
same destination are differentiated using labels. Default
paths have a special label which we denote by d, while
alternate paths are labeled by the link they avoid.

Within this framework, YAMR achieves Theorem 1
by selecting paths as described in Procedure 1, where
pr, denotes an L-labeled path, best(U) denotes the

A’s most preferred path from the set U, Ur denotes
the set of L-labeled paths A knows from its neighbors,
and UF denotes the set of default paths A knows that
avoid link L. AS A first selects its default path from
the default paths it knows from its neighbors. Because
default paths are selected only from default paths, the
default paths in YAMR are exactly the same as in BGP.
Then, for each interdomain link L on the default path,
A selects an L-labeled alternate path from the set of
default paths avoiding L and alternate L-labeled paths.
To clarify terms, we use RIB_IN to describe the set
of routes learned from neighbors and RIB_.LOCAL to
describe the set of routes used for forwarding.

Procedure 1: YPC path selection run by AS A.
/* select the default path */
Da = best 4(Uy)
foreach link L in py do
/* select the L-labeled alternate path */
pr = bestA(UY UUL)
end

We now walk through a complete run of YPC shown
in Figure 1. First, C' announces its default path [C] to
its neighbors, which then construct their default paths.
None of the neighbors is able to construct an alternate
path yet. Next, B and D send their default paths to
each other. Upon processing these messages each is
able to construct the alternate path it needs. Next, B
and E send to A the updates to their RIB_LLOCALSs.
A can construct its default paths either from [B,C]
or [E,C]. A prefers to have [A, B,C] as its default
path and now needs to construct alternate paths avoid-
ing links (A4, B) and (B,C). For the (A, B)-avoiding
path A has the path [A, E,C] as the only choice be-
cause the path [A, B, C] goes through (A, B) and the
path [A, B, D,C] cannot be considered because of its
label (and would be unsuitable anyway, since it does not

avoid (A, B)). Finally, A sends updates to its RIB_.LOCAL

to E, which is now able to pick its alternate path.
Putting all this together, we can show:

THEOREM 2. If there are no dispute wheels, YPC al-
ways converges to a unique final configuration that has
no loops.

2.3 Data plane

YAMR requires a single addition to the IP header:
a 32-bit field for the path label. A packet arriving at
AS A destined to D with label L is forwarded along
the L-labeled path towards D if A has such a path
in its RIB_LLOCAL. Otherwise, the packet is forwarded
along the default path towards D (without overwriting
the label). If A does not have a default path towards
D, the packet is dropped. Once the control plane has

This figure presents a simple run of YPC on the topology shown on the left. AS C announces a single
prefix and other ASes build their paths to this prefix. In the table below, the first column shows the
messages send by the protocol. The other five columns show the state of the routing tables after all
the messages in the first column have been processed. Messages are denoted by “src->dst : msg”,
where msg contains a number of paths. Each path is denoted by “label:AS-path”. In this figure, we
denote the default path label by (0,0). Messages that don't result in changes to the routing tables are
omitted. Also, note that we picked a particular order of the messages. If another order were picked,
intermediate routing tables would have been different.

Messages A B C D E

C->D: (0,0):[C]

C->B: (0,0):[C] none (0,0):[B,C] local path (0,0):[D,C] (0,0):[E,C]

C->E: (0,0):[C]

D->B: (0,0):[D,C] none (0,0):[B,C] local path (0,0):[D,C] (0,0):[E,C]

B->D: (0,0):[B,C] (B,C):[B,D,C] (C,D):[D,B,C]

B->A: (0,0):[B,C], (0,0):[A,B,C] (0,0):[B,C] local path (0,0):[D,C] (0,0):[E,C]
(B,C):[B,D,C] (A,B):[A,E,C] (B,C):[B,D,C] (C,D):[D,B,C]

E->A: (0,0):[E,C] (B,C):[A,B,D,C]

A->E: (0,0):[A,B,C], (0,0):[A,B,C] (0,0):[B,C] local path (0,0):[D,C] (0,0):[E,C]

(AB):[AE,C],

(AB):[AEC]

(B,C):[B,D,C]

(C,D):[D,B,C]

(C.E):[E,AB,C]

(BC:ABDCL (8,C):[AB,D,C]

Figure 1: A complete run of YPC on a simple topology.

converged, this algorithm is guaranteed to produce no
loops.

For each destination, a YAMR router needs to have
a forwarding entry for the default path and for each al-
ternate path whose next-hop is different from the next-
hop of the default path. Thus, the state requirements
of YAMR are roughly 1 + k£ times that of BGP, where
k is the average interdomain path length. Recent mea-
surements suggest that this is around 3.6 [2].

2.4 Discussion

As Theorem 1 shows, YPC is guaranteed to give each
AS a policy-compliant path that avoids any given inter-
domain link (if such a path exists), thus greatly improv-
ing reliability. Moreover, users can use all of the paths
simply by inserting the appropriate path label into their
packets. (The default path lists all the AS links, and so
the edge will know which labels will produce different
paths; YAMR does not include mechanisms to tell the
edge which of these AS links might be providing subpar
service.) The paths are constructed and made available
to users with moderate increases in the control messag-
ing (or churn) as we will see in Section 4, and in RIB
and FIB sizes.

BGP scalability is considered a critical challenge [12]
and YPC makes it worse. Among the many dimensions
of scalability, churn appears to be the most intractable.
Indeed, the comparison of technology trends and pro-
jected growth of RIB and FIB sizes in [1] suggests that
technology advances are expected to satisfy RIB and

FIB memory requirements at a constant cost. We now
present a method that reduces YAMR’s churn below
that of BGP. This churn reduction method involves hid-
ing path withdrawals, leaving most of the Internet com-
pletely oblivious to the failure.

3. HIDING ROUTE UPDATES

K F
ASes hiding failure ‘\\

H
ASes hiding both T . \
5 ASes hiding

of link (A,B) ASes oblivious to
J ‘ both failures
failures B
\ \ failure of link (C,E)
A c)
Destination AS—___ ", 5 ﬂijailed Links

Figure 2: An illustration of hiding bubbles.

3.1 Overview

YAMR’s hiding technique is a set, of distributed mech-
anisms that can be applied to either YPC or BGP to
confine the effects of a link failure to a small neighbor-
hood around the link. Hiding ASes do not propagate
information about the link failure to their neighbors if
they can safely reroute around the failure. For example,
in Figure 1, if link (B, C) fails, B can reroute around
this failure by deflecting all traffic onto [B, D, C] with-

Procedure 2: YAMR default path selection.

while Uy is non-empty do
pa = best4(Uy)
if pg is lame then
pa-defl := best_non_lame()
if pg.defl is null then
delete pg from RIB_IN

continue
end

end

break
end

out telling A that path [B,C] has failed. We call B a
hiding AS, path [B, D, C] a deflection path, and path
[B, C] (the failed path being hidden) a lame path.

In the example above, B is able to completely hide
the failure so that all other ASes remain oblivious to it.
However, in general topologies and policies, B might
be able to hide the failure only from a subset of its
neighbors, but can’t hide it from others because it does
not have a suitable path it can export to them. In such
a case, B withdraws the failed path from the neighbors
for whom it can’t hide the failure. These neighbors then
try to hide the failure from their neighbors, recursively.
This process continues until the failure is completely
hidden. In other words, a single failure is hidden by
a dynamically determined bubble of hiding ASes (see
Figure 2).

When hiding is combined with YPC to produce the
full YAMR protocol, the following results hold:

THEOREM 3. If there are no dispute wheels, YAMR
always converges.

THEOREM 4. In the converged state, YAMR has no
forwarding loops or dead ends. Moreover, if ASes fol-
low next-hop policies, all forwarding paths are policy-
compliant.

THEOREM 5. Assuming canonical conditions, for each
AS A, if there is a policy-compliant path from A to the
destination, A has a policy-compliant path to the desti-
nation in YAMR.

THEOREM 6. When a failed link recovers, all hiding
caused by it stops and routing returns to normal.

These theorems are prooved in the appendix. Next,
we present the four mechanisms that comprise hiding.

3.2 Hiding Path Selection

The fundamental mechanism of hiding is to pretend
that a withdrawn path is available. When a path cur-
rently in the AS A’s RIB_IN is withdrawn from A, A
does not delete it from the RIB_IN as it would in BGP.

Instead, A marks the path as lame and calls path se-
lection. In path selection, if A selects a lame path, it
tries to choose a deflection path (from among the set of
other default and alternate paths) for it. If there is no
suitable deflection path, the lame path is deleted from
the RIB_IN and no hiding occurs. YAMR’s selection of
the default path is presented in Procedure 2. Alternate
paths are selected analogously.

After path selection, each lame path in the RIB_LOCAL
has a deflection path associated with it. As in BGP,
after the RIB_.LOCAL has been updated, YAMR an-
nounces the changes to its neighbors. Export filters
and actions are applied to non-lame paths in exactly
the same way as in BGP. However, for lame paths, ex-
port filters are applied to the corresponding deflection
paths and export actions are applied to the lame path.
If export filters allow the deflection path to be adver-
tised to a neighbor, the lame path is actually advertised.
Otherwise, a withdrawal message is sent to the neigh-
bor.

3.3 Hiding Forwarding

Forwarding in YAMR is the same as in YPC except
that the forwarding entries for lame paths are built
based on the corresponding deflection paths. If the lame
path’s label is different from the deflection path’s label,
the labels of packets forwarded along the deflection path
are replaced by the deflection path’s label.

3.4 Tokens

In the two previous sections, we described that YAMR,
advertises lame paths, but forwards on deflection paths.
When there is a single failure, this lie is harmless, but
with multiple failures and multiple ASes hiding, lying
can cause forwarding loops or leave an AS unnecessar-
ily disconnected. These two problems originate from
the following two fundamental issues.

Consider an AS B that advertises a path p to its peer
A. Because of hiding, the actual forwarding path p’ can
be different from p. The difference between p and p’
leads to problems in two cases:

1. If Aisin p’ but not in p, A can select p and create
a forwarding loop.

2. If A is in p but not in p’, A will not accept p and
can become disconnected if p is the only path it
was offered.

Hiding solves the two problems by introducing a new
message type we call a token. There are two types of
tokens. Loop tokens solve the first problem, while dis-
connection tokens solve the second. We call the mes-
sages tokens, because their processing resembles passing
a physical token - no AS remembers any state for any
token and when a token is received it is either dropped
or passed on to a single other AS.

At a high level the goal of both token mechanisms
is to cause some AS to stop hiding. Informally, hiding
tries to hide as much as possible, but it recognizes that
sometimes too much hiding can cause problems. The
cure for these problems is to reduce the level of hiding
in the network by asking some AS(es) to stop hiding.
In the distributed environment of the network, the AS
that is hurt by a problem is usually not the AS that is
causing the problem. Moreover, the AS that is hurt by
a problem might not know that it is hurt just by looking
at its local state. In the loop detection mechanism, an
AS sends a token when there is a possibility that it
might be hurt. If indeed so, the token is guaranteed to
find the causing AS and to cause it to stop hiding. In
the disconnection token mechanism, the AS creates a
token when it knows that it is hurt. The purpose of the
token is to find the causing AS and to cause it to stop
hiding. Next, we describe both mechanisms in details.

Loop Tokens. The loop tokens are created in a sin-
gle case - when a particular path is picked as a deflection
path for a particular lame path for the first time. In this
case, the AS that picked the deflection paths creates a
loop token and forwards it along the deflection path.

Each loop token T contains two pieces of data: a
destination prefix p and a list S of (B, N) pairs, where
B is a label and N is an AS number. Each AS that
forwards T appends to S a pair (B, N) containing the
label of the path on which the token is forwarded and
its own AS number. Let L denote the label in the last
pair of S.

When a token arrives at an AS A, A first looks up the
path P along which it would forward a packet destined
to p with label L. Let @ be the label this packet would
have when leaving A. Then, A checks how many times
(Q, A) is present in S. If twice, A drops T. If none, A
forwards T along P. If once, A checks if P is lame. If
s0, A deletes P from the RIB_IN, thus ceasing to hide
it, and drops 7. If P is not lame, A forwards T along
P.

Disconnection Tokens. The disconnection token
mechanism requires a small change to the path selec-
tion process: ASes must not use sender side loop de-
tection and the import filters must not filter out loopy
paths allowing them to be inserted in RIB_INs. Next,
we describe the creation and processing of disconnection
tokens.

An AS A creates a disconnection token when its path
selection cannot pick a default path (because there are
no candidates) but its RIB_IN contains at least one
loopy path. A sends the created token along any loopy
path and schedules a timer to retransmit the token if
the condition persists at the timer expiration.

Disconnection token contains the same data as the
loop token and this data is updated the same way. Only
the processing at the routers different. As with loop

tokens, A first looks up P and Q. If P is lame, A deletes
P from the RIB_IN and drops T'. Otherwise, A checks
if S contains (@, A). If so, A drops T. Otherwise, A
forwards T along P.ath.

3.5 Failed Link Propagation

To ensure that hiding does not inadvertently attempt
to hide a permanent change and that the network re-
turns to normal when the failure recovers, we need one
last mechanism we call Failed LInk Propagation (FLIP)
and a single rule to control when an AS can hide.

FLIP is a path-vector based dissemination protocol,
which can essentially be obtained from BGP by remov-
ing all policies and replacing IP prefixes with link fail-
ures. The only distinctive feature of FLIP is that link
failures are propagated only in withdrawal messages.
This ensures that only a few ASes that need to know
about the failure get notified by FLIP.

The hiding control rule is the following. An AS can
hide a failure of a path [Ay, As,..., A,] as long as it
knows (from FLIP) that for some 1 < i < n — 1 link
(A;, A;11) has failed. Using this rule and FLIP we can
summarize when an AS can hide and when it has to
stop.

When to Hide. When a failure occurs, FLIP dis-
seminates the failure to some ASes thus allowing them
to hide the failure. If another type of change occurs, no
failure information is disseminated, thus ensuring that
no AS will try to hide this change.

‘When to Stop Hiding. Each AS is free to stop hid-
ing at any time for whatever reason, but it is required to
stop hiding a path when FLIP revokes all link failures
relevant to the path. When a failed link recovers, FLIP
is guaranteed to revoke the failure information from all
the ASes it originally disseminated the failure informa-
tion to. Thus, when a failed link recovers, all ASes that
were hiding this failure are guaranteed to stop hiding
and return the network to the original state.

3.6 Discussion

Recalling the high level picture, YPC is able to ef-
ficiently construct a set of paths with provable static
diversity, but incurs higher messaging overhead than
BGP. To decrease the overhead, we developed a hid-
ing technique that, as we will see in the next section,
brings the churn level of YAMR below that of BGP.
The surprising result, again to be discussed in the next
section, is that hiding also substantially improves re-
silience. Hiding localizes the impact of any routing up-
date, and decreases the chance that the convergence
process will interfere with any functioning paths.

However, hiding deprives YAMR of some of YPC’s
valuable properties. First, the set of YAMR paths might
not be one-failure resistant because the set of paths
might already be hiding failures (so another failure would

BGP | HBGP | YPC | YAMR
Percent Discon 9.05 8.43 0.12 0.01
Ave Conv Time | 23.8 16.7 449 1.16

Table 1: Average percentage of ASes experiencing tran-
sient disconnectivity (top row) and average convergence
time in seconds (bottom row) following a single link fail-
ure in a 1000 node topology.

cause the path to fail). Second, YAMR’s advertised
paths can be different from the forwarding paths. Be-
cause ASes cannot be sure about the paths beyond
the first hop, they cannot implement policies beyond
next-hop policies with 100% confidence. The question
is whether the benefits (described in the next section)
of YAMR’s increased resilience and substantially lower
churn compared with YPC are worth these two disad-
vantages.

4. EVALUATION

Recall that YAMR is composed of the path construc-
tion algorithm YPC and a hiding technique. This hid-
ing technique can be applied to BGP, forming what we
call HBGP. To understand the contributions of these
components to various metrics, we run each experiment

for all four protocols: BGP, HBGP, YPC, and YAMR.
4.1 Methodology

We implemented a message-level event driven simula-
tor that includes important features like MRAI timers
(with average value of 30 seconds), router processing
delay, and message propagation delay. For simplicity,
we represent each AS as a single router. We used anno-
tated Internet-like topologies generated using [4].

Our basic experiment is the following. Given a topol-
ogy and a multihomed stub AS, we make the AS an-
nounce a prefix, let the network converge, fail one of
the provider links from this AS, and let the network
reconverge. This basic experiment is repeated for all
multihomed stub ASes and all of their provider links.
We use a 1000 node topology for most metrics. To study
scalability, we use topologies of sizes from 500 to 5000
in increments of 500.

We selected this initial experiment, which focuses on
failures close to the edge, because internal failures are
substantially less common and more amenable to recov-
ery, even in BGP. Thus, these edge failures are the most
interesting case, and are the dominant case in reality.
We also note that this simulation is similar to the live
deployment experiment of [14]. Our future work will
study a broader class of failure models.

4.2 Results

We present and discuss our preliminary simulation
results for reliability, churn and path stretch.

Reliability Table 1 shows the average number of
ASes that experience any disconnectivity during the
convergence process. We consider an AS to experience
disconnectivity if there is ever a moment when none of
the paths in its forwarding table are working. The ta-
ble shows YAMR is almost 1000 times more resilient
than BGP. The table also includes the average conver-
gence time of the network. Note that YAMR converges
more than 20 times faster than BGP, because of its
localization of failures. In both cases, the hiding as-
pect helps YPC far more than BGP. Presumably this is
because YPC provides many more potential deflection
paths than BGP.

Because the simulation evaluations of other interdo-
main multipath routing proposals [17, 15, 13] were done
with different methodologies, we have not yet been able
to accurately compare YAMR'’s reliability with them;
however, we can give a very rough comparison of YAMR
to path splicing [13]. Recall that static reliability means
that a routing protocol, at the time of the failure, has
an alternate path that avoids the failure. This is an
easier quantity to measure than what we studied in our
dynamic simulations, but it ignores the fact that when
a routing protocol is converging to route around the
failure, it can disrupt this functioning alternate path.
Nonetheless, it does provide some measure of reliabil-
ity. Eyeballing Figure 7 in [13], we see that path splic-
ing is able to improve static BGP reliability by about
a factor of 15 with 5 forwarding entries per router per
destination (that is, there are 15 times more unnec-
essary disconnections in BGP than there are in path
splicing). YAMR, on the other hand, has no unneces-
sary disconnections when a single link fails, and even
in our dynamic simulations which allow routing recov-
ery to disrupt these alternate paths, it has almost 1000
times fewer unnecessary disconnections than BGP.

R-BGP [11] is another promising approach, achieving
both perfect static and dynamic reliability when a sin-
gle link fails. However, it is not a canonical multipath
algorithm because it does not make multiple paths avail-
able to the users; it only invokes them upon network-
detected failure. It also does not have perfect policy
compliance.

Churn Figure 3 shows the CDFs of the number of
messages following a link event. We present two graphs
with and without tokens because token processing is a
much lighter operation than update message processing
and because separating them shows how many updates
hiding saved and how much extra communication it in-
troduced.

In both graphs, YAMR and HBGP significantly out-
perform YPC and BGP, reinforcing the conclusion that
hiding is effective in reducing the messaging overhead.
If tokens are ignored, YAMR reduces the message over-
head by a factor of 6.2 compared to BGP, and by a

1.0 Ch_urn CDFs 10 Churn CDFs including tokens _
Figure 3: CDFs of number
of messages following a link o8 L8
. Q@ K
event. On the left side, only g . 2 e
update messages are included. & A
o o
On the right side, all messages $o04 S04
. g g
are included. The averages g T g ——TT
are BGP: 829, YPC: 1828, o2l £ HBGP o2 & e HBGP
BGP : : BGP
HBGP: 178 and 249, YAMR:) vpe e
134 and 286. 0-00"*"560 1000 1500 2000 2500 3000 3500 4000 4500 0-05*""566 1000 1500 2000 2500 3000 3500 4000 4500
Number of Messages Number of Messages
1400 Scaling of Churn, All Events 9000 Scaling of Churn, Lower Half of Events
. e YPC > i YPC &=
Figure 4: Average number 5 12000 **+ BGP S, 5 8000 =1 BoP S
. . o - HBGP -, ©7000}| """ HBGP ¢\ ‘;
of messages following a l.mk % 10000 | — vav : — VAMR &
event versus topology size. = = 6000 & E
On the left side, all link events 5 80 2 5000
. . Qo W Qo any
are included. On the right £ eo00 * E 4000
. 2 2
side, only half of the events & .., IRCANE 9,3000
. g g R
with lowest number of mes- g g . g 2009 TP
. 2000 “\‘\\ 1 o B T
sages are included, separately e~ 1000 ettt
pust gunsst®

for each protocol.

factor of 2.9 if tokens are counted despite the fact that
YAMR constructs more paths.

Note that compared to the protocols without hid-
ing (BGP and YPC), the protocols with hiding (HBGP
and YAMR) perform relatively better in the lower per-
centiles than in the higher percentiles. For example, at
20" percentile, YAMR has only 5 messages while BGP
has 388 messages. For every failure, BGP requires many
messages to converge. YAMR, in contrast, is more bi-
modal: when the failure occurs in a richly connected
portion of the network, it recovers with very few mes-
sages, but if connectivity is sparse then recovery is ex-
pensive (sometimes more so than BGP). Exploring this
bimodal distribution, Figure 4 demonstrates that the
size of the smaller convergence events are independent
of network size, but the average size of all convergence
events grows linearly with network size.

Path Stretch After each of our basic experiments
with a single provider link failure, we measured the av-
erage path stretch for all 3 protocols and found that the
average path stretch was negligible. For example, the
average path stretch of YAMR was only 1.02. The rea-
son is that in the Internet-like topologies, it is almost
always possible to find an alternate path that has the
same length as the shortest path.

Forwarding Table Let F' be the average number
of forwarding entries per router per destination. As
noted in Section 2.3, the pessimal F is 1 + k, where k
is the average path length, and this occurs when every
alternate path is different. In our 1000 node topology
the average path length is 2.86, so the pessimal F' is

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Topology Size

§00 1000 1500 2000 2500 3000 3500 4000 4500 5000
Topology Size

3.86, but in our simulations F' = 2.21, 43% less than
the pessimal value. If this holds for the Internet, F' for
the Internet would be roughly 2.62.

S. REFERENCES

[1] D. G. Andersen, H. Balakrishnan, N. Feamster,
T. Koponen, D. Moon, and S. Shenker.
Accountable internet protocol (aip). In
SIGCOMM, pages 339-350, 2008.

[2] Routing table report. http://thyme.apnic.net/ap-
data,/2009/07/23,/0400/mail-global.

[3] D. D. Clark, J. Wroclawski, K. R. Sollins, and
R. Braden. Tussle in cyberspace: defining
tomorrow’s internet. IEEE/ACM Trans. Netw.,
13(3):462-475, 2005.

[4] X. Dimitropoulos, D. Krioukov, A. Vahat, and
G. Riley. Graph annotations in modeling complex
network topologies. In NSDI, August 2007.

[5] N. Feamster, R. Johari, and H. Balakrishnan.
Implications of autonomy for the expressiveness of
policy routing. In SIGCOMM, pages 25-36, New
York, NY, USA, 2005. ACM.

[6] J. Feigenbaum, C. H. Papadimitriou, R. Sami,
and S. Shenker. A bgp-based mechanism for
lowest-cost routing. Distributed Computing,
18(1):61-72, 2005.

[7] J. Feigenbaum, R. Sami, and S. Shenker.
Mechanism design for policy routing. Distributed
Computing, 18(4):293-305, 2006.

[8] L. Gao and J. Rexford. Stable internet routing
without global coordination. In SIGMETRICS,

pages 307-317, 2000.

[9] M. G. Gouda. Elements of network protocol
design. John Wiley & Sons, Inc., New York, NY,
USA, 1998.

[10] T. Griffin, F. B. Shepherd, and G. T. Wilfong.
The stable paths problem and interdomain
routing. IEEE/ACM Trans. Netw., 10(2):232-243,
2002.

[11] N. Kushman, S. Kandula, D. Katabi, and B. M.
Maggs. R-bgp: Staying connected in a connected
world. In NSDI, 2007.

[12] D. Meyer, L. Zhang, and K. Fall. Report from the
ITAB Workshop on Routing and Addressing. RFC
4984 (Informational), Sept. 2007.

[13] M. Motiwala, M. Elmore, N. Feamster, and
S. Vempala. Path splicing. In SIGCOMM, pages
27-38, 2008.

[14] F. Wang, Z. M. Mao, J. Wang, L. Gao, and
R. Bush. A measurement study on the impact of
routing events on end-to-end Internet path
performance. In ACM SIGCOMM, 2006.

[15] W. Xu and J. Rexford. Miro: multi-path
interdomain routing. In SIGCOMM, pages
171-182, 2006.

[16] X. Yang, D. Clark, and A. W. Berger. Nira: a
new inter-domain routing architecture.
IEEE/ACM Trans. Netw., 15(4):775-788, 2007.

[17] X. Yang and D. Wetherall. Source selectable path
diversity via routing deflections. In SIGCOMM,
pages 159-170, 2006.

APPENDIX

Here we formally prove YAMR’s properties that were
mentioned in the paper.

A. PRELIMINARIES

First, we define and discuss several preliminaries.

A.1 Policy Assumptions

The proofs of some of our results require two assump-
tions about ASes’ routing policies. We assume that
ASes follow next-hop and widest-advertisement policies,
which we define below. Neither of these policy classes
are new ([7], [11]). We adopt the definition of former
class without change, but clarify the definition of the
latter.

We say that an AS follows next-hop policies if its
export filter is based solely on the destination and on
the path’s next-hop AS. In other words, all paths for a
given destination from a given peer are announced to
the same set of peers. We say that AS A’s policies are
widest-advertisement policies if the following is true for
all destination prefixes p (all paths are towards p). If
A is willing to advertise a path from peer B to peer
C, then whenever B advertises a path to A, A has to

Figure 5: A announces a prefix and sends it with
path [A] to B and C. Both B and C choose this
path and send paths [B, 4] and [C, A] to D, re-
spectively. D prefers path [D, B, A] over path
[D,C, A]. D’s export filter allows path [D,C, A]
but path [D, B, A] is blocked. Therefore, D does
not send anything to H, which becomes discon-
nected even though the path [H, D, C, A] is work-
ing and policy-compliant.

be willing to advertise its path to C. If A uses a path
through C it does not need to advertise it back to C,
but the export filter has to allow A to advertise the
path back to C. Finally, if the AS hosting a destination
prefix follows widest-advertisement policies, it has to
advertise the destination prefix to all of its peers.

We make a specific set of assumptions that include
valley-free customer-peer-provider policies. Our results
most probably hold under a larger set of assumptions,
but we do not attempt to find the precise class of policies
under which our results hold. In fact, even for BGP the
class of policies that are guaranteed to give each AS a
path when there is a policy compliant path is unknown
to the best of our knowledge. Figure 5 is an example
where BGP leaves an AS disconnected when there is a
working policy-compliant path.

DEFINITION 1. A path P = [An, Apn—1,...,40] is a
policy-compliant path if for each 0 < i <n —1, A; is
willing to advertise path [A;, Ai—1, ..., Ao] to A;ji1.

In fact, by contemplating figure 5 and the widest-
advertisement assumption, it seems that some version
of the widest-advertisement assumption is required to
ensure that nodes with policy-compliant paths will not
be disconnected in BGP.

A.2 Ordering of Peers

The next-hop and widest-advertisement policies im-
ply a useful categorization of peers that we define and
proof here. Next-hop and widest-advertisement policies
are assumed throughout this section.

Fix a destination prefix, i.e. everything in this sec-
tion will refer to paths to a single destination prefix.
Let p1,pa,...,pr be the peers of an AS A. For each
pi, let s; denote the set of peers to which A would be
willing to advertise a path learned from p;. The set s; is
determined solely by the export filter and can contain

Di-

Partition peers into equivalence classes based on the
equality of corresponding sets s; and order classes in
decreasing order of the size of s; (for now, break ties ar-
bitrarily. We will show that there is actually no ties.).
Denote the peers in class j by pj1,pj.2,---,Pjk;- De-
note the set s; corresponding to the class j by S; and
let there be a total of ¢ classes.

LEMMA 1. For any two classes 1 <i < j <¢, S; C
S; (Sj is a strict subset of S;).

Proor. Pick two peers p; ., and p;, from classes ¢
and j, respectively. Consider a case when A gets ad-
vertisements only from p;,, and p;,. There are two
possibilities: either A chooses a path through p; ., or a
path through p; ..

If A chooses a path through p; ,,,, by the assumption
of widest-advertisement policies, A has to advertise the
path it chose (the path through p;) to all of S;. Be-
cause, the set of peers to which A advertises a path
through p; ., is by definition S;, S; has to be a subset
of S;. Furthermore, S; cannot have the same num-
ber of elements as S; because then the two sets would
be equal and would not represent two different classes.
Thus, Sj cS;

If A chooses a path through p;,,, by the symmet-
ric argument to the one above, we get that S; has to
be a strict subset of S;, which is impossible because
|S;] > |S;| by the choice of ordering. Therefore, A
cannot prefer a path through p; ., if it follows widest-
advertisement and next-hop policies. The impossibility
of this case implies the next lemma. [J

LEMMA 2. For any two classes 1 < i < j < ¢ and
any two peers p; m and p;, from these classes, a path
through p;m is more preferred than a path through p; .
Further, we call class i a more preferred class than j.

PRrROOF. Follows from the proof of the previous lemma.

B. YPC CONVERGENCE

In this section, we prove theorem 2. We use the
framework and results presented in [10]. Unfamiliar
readers should read this work if they desire to rigor-
ously understand our arguments. Otherwise, the basic
ideas should be clear.

First, we extend the SPVP definition of [10] to YPC
and call it SYPC. Because the extension is an obvious
one, we present only the salient differences and omit
the details. The rib and rib_in of SYPC contain not
a single path as in SPVP but multiple paths - one per
label. Each message still contains a single path, but it
also contains a label for this path. The same policies are
applied to all paths, independent of their labels. The
path selection process is the same as described in the
YPC design above. We restate it in the next paragraph.

When a node processes a message with a default path,
it updates the default path entry of the peer’s rib_in.

Then, it chooses the best default path from all the avail-
able default paths in rib_ins. If the best path has
changed, it is sent to all the peers and the path se-
lection is run for all the labels on the new default path.
When a node processes a message with an alternative
path, it inserts this path into the rib_in and runs path
selection on the path’s label. Path selection for an alter-
native label is the following process. The node chooses
the best path from all the default and like-labeled paths
in rib_ins. If this path is different from the current
path with the same label in the rib, the rib is updated
and the path is sent to the peers.

PROOF OF THEOREM 2. First of all, notice that the
processing of alternative paths results in some extra
state, messages, and processing, but does not impact
the dynamics and processing of the default paths. In
particular, given an instance of SYPC and an analo-
gous instance of SPVP (with the same graph, the same
policies, equivalent initial configuration, and equivalent
activation sequence), they will have exactly the same
evolution (same state changes and messages). There-
fore, because we know that SPVP converges in the ab-
sence of dispute wheels, we can conclude that the de-
fault paths of SYPC converge in the same conditions.
Moreover, because we know that SPVP always con-
verges to a unique configuration, the default paths of
SYPC converge to a unique configuration. This ar-
gument is a restatement of the fact that the default
paths of YPC are constructed in exactly the same way
as default paths of BGP. Next, we show that alternative
paths also converge.

Intuitively, after the default paths have converged,
alternative paths for each label behave just like regular
BGP path on a subgraph (the subgraph of nodes whose
default paths go through the edge corresponding to the

U label) of the whole graph. The reasons for this simi-

larity are that the processing of each label is isolated
from the processing of any other label (i.e. there is no
interdependence between labels), and that the nodes
don’t change their interest in any label (because the
default paths don’t change). Therefore, intuitively, all
alternative paths should converge. To show this fact
more rigorously, for each label e, we define an instance
of SPVP that evolves in the same way as the e-labeled
paths in SYPC. We call such an instance of SPVP an
e-brother of SYPC (see figure 6 for an illustration).
Consider the state S of SYPC after all default paths
have converged. Let G = (V, E) be the AS graph from
the given instance of SYPC. Let the fixed destination
prefix p be hosted by AS D. Consider the tree T of
converged default paths to D in S. Let T denote the
subtree of T' consisting of the ASes whose default paths
go through e. T°€ is the tree of ASes that are inter-
ested in e-labeled paths. Next, we first define the state
of ASes in the e-brother, then the state of edges, and

contains all the e-labeled paths in link A — B in
S.

e AcT¢ B ¢Te: thelink A — B in e-brother is
empty.

e A g T¢ B € T the link A — B in e-brother
contains all the default paths in link A — B in S
(there is actually no such paths because all default
paths have converged in S).

e A ZTe B ¢ T the link A — B in e-brother
contains all the default paths in link A — B in S
(there is actually no such paths because all default
paths have converged in S).

Finally, we describe the permitted path sets and com-
plete the definition of e-bother. The permitted path sets
in e-brother are exactly the same as in S except that
for each AS A ¢ T° and all of A’s peers B € T¢, we ex-
clude all paths through B from P#. The reason for this
exclusion is to prevent e-labeled paths from 7 from af-
fecting default paths outside of 7. This is a feature of

- | inks of the default path tree
mmmmmm -- The link e

............... Inter-AS links not in the default path tree YPC and the e-brother should simulate it.
v -- Subtree of nodes whose default paths go Given the definition of e-brother, it is obvious that it
through link e will evolve in the same way as the e-labeled paths in S.

Therefore, to show that e-labeled path converge in S, we
Figure 6: An illustration of e-brother. Node D is the need to show that e-brother converges. The e-brother

destination. The subtree of nodes in the shaded area to- is guaranteed to converge because it has the same given

gether with thick edges is the T°. All the nodes together policies, which don’t have dispute wheels. We only need
with thick edges is the default path tree T. The only to note that shrinking permitted path sets cannot intro-
change to the policies in e-brother is that nodes outside duce a dispute wheel because no new paths are allowed

of T¢ that have peers in T (nodes M, J, K, H), don’t and no preferences between paths have changed. More-
over, since the e-brother converges to a unique final con-

figuration, S will converge to the unique analogous final
configuration. Because the argument above can be re-
peated for each edge e, the whole SYPC is guaranteed
to converge to a unique final configuration. [J

accept any paths from these peers. The only structural
change is that link e ((G, J)) is removed. These changes
cannot introduce a dispute wheel and they preserve the
widest-advertisement and next-hop policies.

finally, the permitted path sets. C. YPC PATH DIVERSITY GUARANTEES

For each AS A in T°, its rib in e-brother contains
the e-labeled path from A’s rib in S. For each peer
AS B of A, the rib_in4(B) in e-brother contains the
e-labeled path from rib_ins(B) in S, if B is in T°. If
B is not in T, then rib_in(B) in e-brother contains
the default path from rib_iny(B) in S.

For each AS A not in T, its rib in e-brother contains
the default path from A’s rib in S. For each peer AS
B of A, the rib_ins(B) in e-brother is empty, if B is
in 7°. If B is not in T°, then rib_in4(B) in e-brother

In this section, we proof theorem 1 that we also call a
path diversity guarantee. Our path diversity guarantee
for YPC follows from a feature of widest-advertisement
policies. We first state the feature in a lemma below
and proof that BGP (SPVP) has this feature. Then,
we apply this feature to YPC.

Recall that in section A.2 we proved two lemmas (1,
2) partitioning AS’s peers into classes. We now intro-
duce two new notions: a nicest possible class and a nice

contains the default path from rib_in4(B) in S. If any path.

of the paths is not available, the corresponding entry in DEFINITION 2. Consider an instance Z of SPVP (or

e-brother is empty. SYPC) with no dispute wheels and each AS following
The links of e-brother are the same as the links of S next-hop and widest-advertisement policies. For each

except for link e, which is not present in e-brother. For AS A in Z, let C be a set of classes ¢ such that there

two ASes A and B, the link from A to B contains the exists a path p = [A, A,_1,An_a,..., Ag] such that p

following based on whether A and/or B are in T is policy-compliant and A,_1 € c¢. Then, the nicest

e A e T¢ B e T¢ the link A — B in e-brother possible class for A is the most preferred class in C.

10

DEFINITION 3. A path p = [An, An_1,...,40] is a
nice path of A,, if p is policy-compliant and A,_1 is a
peer in A, ’s nicest possible class.

LEMMA 3. Let Z be a converged instance of SPVP
with no dispute wheels and each AS following next-hop
and widest-advertisement policies. Then, for each AS
A, if there exists a policy-compliant path from A to the
destination, then A is connected in Z through a nice
path.

PROOF. Note that this lemma actually makes two
separate points and it can be of independent interest
because it is about BGP. First, each AS that can possi-
bly be connected (there is a policy-compiant path from
it to the destination) will be connected. Second, it will
actually be connected through a nice path.

First, note that nodes that have no policy-compliant
paths to the destination, will obviously be isolated and
won’t affect any of the formed paths. Thus, without
loss of generality we can assume that there are no such
nodes.

We first show the following sublemma. Let A be an
AS that is not connected through a nice path in Z (from
now on the specification ”in Z” is assumed and we don’t
write it explicitly). Let p = [A, Ap—1, An_2,..., Ag] be
anice path of A. Then, at least oneof A,,_1, A,_o, ..
is not connected through a nice path.

Assume the contrary, that all of the intermediate
nodes have a nice path. There are two possible cases:
either A is disconnected or A is connected. If A is dis-
connected n has to be at least 2. Consider A,,_1. By
assumption, A;,,_1 is connected through a nice path. Be-
cause A,,_1 is willing to advertise a path through A, _»
to A and it is connected through a nice path, A, _; has
to be willing to advertise its current path to A. Thus,
A has to be connected. This contradiction proves the
sublemma, in the case that A is disconnected. Next, we
consider the case when A is connected.

In the case that A is connected, we show that the
pathsof A,_1,A,_o,...,Ap has to go through A, which
is a contradiction because the path of Ag is [Ag]. Let
p% and pS denote a nice and the current path of X,
respectively. Further, let p(Y") denote the suffix of path
p starting at Y. First, note that since all A;’s have a
nice path, they all must be connected. If p§ does
not go through A, A, 1 has to advertise p§ to A
because it is a nice path, because A,_; is willing to
advertise p(A4,_1) to A, and because we assume widest-
advertisement policies. But then, A would have a nice
path. Therefore, p§ has to go through A.

Assume p§ does not go through A. Because it
does not go through A, it does not go through A,_;.
Then, A,_o is advertising P4, , to A,,_1. Because
P4, , # Pa, ,(An_2) (one goes through A and one
does not) and because A, i current path is p%

LA

11

Mr=t([Apa]ph,) < A*»=1(p%). Recall that be-
cause A’s current path is not nice, A4 ([A4, An—1lpi,) >
A (p%). These four paths and nodes A and A,,_; form a
dispute wheel, which we assumed does not exist. Thus,
P4, _, goes through A.

The argument above can be repeated inductively. At
the step for A,,_;, the following holds:

M=t ([Apiaph,) < A= (pf

An—i+1)
M9 <A (A An_y, . Ansia]p,)

and these four paths together with A and A,,_;1 form a
dispute wheel. This finishes the proof of the sublemma.
Next, we prove the lemma.

Assume the contrary, that there exists an AS Ay
whose path is not nice. Then, pick a nice path p; =
[Ao, Bn—1,Bn—2,...,Bo] from Ay to the destination.
On this path, pick a node B;, 0 < ¢ < n — 1 such
that

e B,;’s path is not nice
e Path [BZ, Bl',l, ..

Such B; can be found in the following way. By the sub-
lemma, there is an AS B; whose path is not nice. If for
this Bj, the path [B;, Bj_1, ..., By is nice, we can ap-

., Bo] is not a nice path of B;.

ply the sublemma to B; and its nice path [Bj, B;_1,. .., By,

to find a node By, k < j, whose path is not nice. If
the path [By,Bk-1,...,Bo] is a nice path of By, we
can continue analogously. Because the original path
[Ao, Bp—1,Bn—2,...,Bo] is finite and on each iteration
it gets smaller, this process cannot continue forever.
Therefore, there exists such a B;. Rename it to A;.

Define Ay, As, ... analogously until some A, is not
the same as a previously found A,. Without loss of
generality, assume that » = 0 (because we could have
started at A,). Let p; be the nice path of A; we used
to find A;y;. Interpret the subscripts module ¢ and
let R; be the prefix of the path p; until and including
A;r1. Let @; be the suffix of the path p;_; starting
from and including A;. Let R = Ro, R1,...,Rg—1, Q =
62()7 Qh ey qul, and A = ‘/4()7 Al, ey Aqfl. Then,
W = (A,Q, R) is a dispute wheel. This contradiction,
proves the lemma. O

We are now ready to proof theorem 1

PrOOF OF THEOREM 1. For the proof, we will use
the e-brother defined in the proof of theorem 2. While
constructing an instance of e-brother from an instance
of SYPC involves many details, here we consider only
converged instances of SYPC and e-brother and many of
the detail become irrelevant. The only details we need
are the structural and policy changes. These changes
are described in the caption of figure 6.

In the proof of theorem 2, we have already noted
that the structural and policy changes in e-brother can-
not, obviously introduce a dispute wheel, because they

merely cut down on policy-compliant paths. We now
show a lemma that if all ASes in an instance S of SYPC
follow widest-advertisement and next-hop policies, then
all ASes in S’s e-brother follow widest-advertisement
and next-hop policies.

The essence of widest-advertisement policies is that if
an AS A is willing to advertise some path to its peer B,
that A has to advertise some other paths to B. Because
the changes in e-brother are that some ASes never ad-
vertise any path to some other ASes (deletion of edge
e is equivalent to the ASes at e ends not advertising
anything to each other), the ”if” clause of the definition
never happens for these pair of ASes. For other pairs of
ASes, e-brother does not change their interactions at all.
Therefore, widest-advertisement policies are preserved
in e-brother.

The preservation of next-hop policies is obvious. Given
an AS A and its path p, in S, A would advertise p to a
set of peers determined by p’s next-hop. In e-brother,
A advertises p to the same set of peers, possibly minus
some peers to whom A does not advertise anything.
Thus, the set of peers to whom p is advertised in e-
brother is also determined just by the next-hop of p.
This completes the proof of the lemma. This lemma
allows us to apply lemma 3 to e-brother.

First, we show that if BGP gives A a path p after
failure of e, then there is a policy-compliant path from
A to the destination in the e-brother. This is not imme-
diately obvious because p itself might not be a policy-
compliant path in e-brother. To show the existence of
such a path ¢, we construct it based on p in the following
way.

If A ¢ T¢ then A’s default path in e-brother does not
go through e and is obviously a policy-compliant path.
In this case, q is A’s default path. If A € T¢, let B be
the last AS along p starting from the destination that is
not in 7. Let C be the AS after B. By definition, C €
T¢. Then, g = st is a concatenation of two paths, where
s is the prefix of p from A to B, and t is B’s default path
(there are actually no ”alternative” paths in e-brother,
we still use the qualifier ”default” to indicate that the
path is the same as the default path in SYPC). We only
need to show that st is policy-compliant. Because we
assumed next-hop policies, to show that st is policy-
compliant we only need to show that B is willing to
advertise t to C'. By lemma 3, B’s default path exists
and, moreover, is a B’s nice path (in SPVP, not only in
e-brother). Therefore, B has to be willing to advertise
tto C.

Thus, we have showed that there exists a policy-
compliant path ¢ in e-brother from A to the destination.
By existence of ¢ and lemma 3, node A will have a path
pa in the e-brother’s converged state. Because paths in
e-brother correspond one-to-one to the e-avoiding path
of YPC, p4 is the e-avoiding path that A has in YPC

12

before the failure of e, as desired. [

D. HIDING CONVERGENCE

In the paper, we introduced the hiding technique and
applied it to BGP and YPC. We now define a formal
model for hiding and prove its convergence properties.
Also, the description of hiding in the paper contained
many details. The model we define and study here
strips many of the details exposing the core of hiding.
We hope that the core hiding model can be of indepen-
dent interest.

D.1 HPYV Definiton

We first define the formal model for hiding, which we
call Hiding Path Vector (HPV). HPV and the frame-
work around it are based on SPVP [10], where from we
borrow most of our definitions. We repeat them here
for completeness of presentation.

The HPV algorithm is defined over an undirected
graph G = (V, E), where V = {0,1,2,...,n} is a set
of vertices (also called nodes and E is a set of edges.
Vertex 0 is a special destination vertex. Each edge in
E represents two reliable FIFO message queues - one in
each direction. For a vertex v, we denote the set of v’th
neighboring vertices by N(v).

DEFINITION 4. Path P = [ug, ug—1,...,u1,ug] S a
sequence of nodes w; € V such that (u;,u;—1) € E.
There is a special empty path denoted by €. Path P is
called simple if all of its nodes are pairwise different.
Nodes up, ur_1 and ug are called the first node, the
next-hop, and the last node of P, respectively. Paths
P = [ug,...,ug] and Q = [vm,...,v0] can be concate-
nated into a path PQ = [uk,...,Up, Vm—1,-..,00] if
Uy = V. Concatenation with the empty path € is the
identity operation.

DEFINITION 5. For each node v € V, a set of simple
paths PY such that € € PY is a set of permitted paths
at node v. We also require that P® = {[0]}. P is the set
of all sets P".

Note that sets P let us model several different char-
acteristics of BGP. First, we model both import and
export filters using permitted path sets. Modeling of
import filters is obvious - paths that are rejected by the
import filters are not permitted. Modeling of export
filters is done in the following way: the case when node
u does not export path P to its neighbor v, is modeled
by not including path P in P”. Second, we model the
loop detection of BGP by including only simple paths
in permitted path sets.

DEFINITION 6. Fach node v € V has a ranking func-

tion AV that assigns a non-negative number (preference)
for each path in PY. The higher the value of *(P), the

Procedure 3: Procedure for node u when it is ac-
tivated by a regular activator towards v

Procedure 4: Procedure for node u when it is ac-
tivated by a revealing activator towards v

if there is a pending message m from v to u then
remove m from the link queue
P := path in m
if P € P* then
rib_in,(v) :== P
if rib(u) # best(u) then

rib(u) := best(u)

foreach w € N(u) do

| send rib(u) to w
end

end
else

| mark rib_in,(v) as lame
end

end

higher is v’th preference for P. Furthermore, for all
v € V, we require that \Y(¢) = 0 and for P € P,
P # e, \?(e) > 0. Finally, we assume that for P, # P,
AV (P1) # A\Y(Py). A weaker form of this injectivity as-
sumption is sufficient for the proofs, but since this as-
sumption is true for BGP, we might as well assume this
strong version. A denotes the set of all \V

FEach node in HPV has two data structures: rib -
corresponding to Loc-RIB in BGP specification, and
rib_in - corresponding to the Adj-RIB-In in BGP spec-
ification. Like BGP, rib(u) always contains the most
preferred path among the paths in {[u,v]P : v € N(u),
P =rib_in,(v)}. We denote this most preferred path
by best(u). Unlike BGP, the rib_in,(v) in can contain
not only the last path received by u from v, but also
the last permitted path (in P*) received by u from v
or the empty path e. The case when rib_in,(v) con-
tains last path received by u from v corresponds to the
regular BGP-like situation. The case when rib_in,(v)
contains the last permitted path received by u from v
corresponds to the case when u is hiding. The case
when rib_in,(v) contains the empty path corresponds
to the case when u was hiding, stopped, and have not
yet received a permitted path from v.

As in [10] and [9], to model the distributed nature of
HPV we introduce a notion of an activation sequence.

Activation sequence specifies when which node does what.

Different activation sequences model different execution
orders of the true distributed version of HPV. HPV ex-
ecutes by processing one activator from the sequence
at a time. We say that i’th activator is processed at
time 7. Each activator in an activation sequence is tu-
ple a = (u,v,t) where u is the node being activated,
v is a neighbor of u towards which w is activated, and
t is the type of the activator. HPV has two types of

13

if rib_in,(v) is lame then

rib_in,(v) =€

if rib(u) # best(u) then
rib(u) := best(u)
foreach w € N(u) do

| send rib(u) to w

end

end

end

activators: a regular activator and a revealing activa-
tor, which are handled with procedures 3 and 4. Each
procedure is run atomically.

Regular activator for u towards v is handled (pro-
cedure 3) by first removing a pending message from v
(if there is no message the activator results in a nop)
containing a path P. If P is not a permitted path, the
current path in the rib_in,(v) is marked lame and P
is discarded. If P is permitted, it is handled in the
standard BGP fashion - it is put into rib_in,(v); the
current best path is computed; if the current best path
is not in the rib(u), rib(u) is updated and the change
is sent to the neighbors. Thus, regular activators are
essentially, the same as the activators in [10], with the
only difference that a non-permitted path is not put
into rib_in, which is marked as lame instead.

Revealing activator for u towards v is a nop if rib_in, (v)

is not lame. If rib_in,(v) is lame, the lame path is
deleted (by setting rib_in, (v) to the empty path) and
the standard BGP path selection is carried out. Re-
vealing activator essentially brings the rib_in, (v) into
a state that is equivalent to the one SPVP (model for
BGP in [10]) would have brought it into.

We call an activation sequence fair if for each pair of
neighboring nodes (u, v) it contains infinitely many reg-
ular activators (u, v, ”regular”). In our presentation, all
activation sequences are assumed to be fair.

In a truly distributed HPV, regular activators corre-
spond to an arrival of a message from a neighbor, while
revealing activators correspond to the node deciding to
stop hiding. This decision can be caused by many fac-
tors such as a reception of a token (described earlier) or
an expiration of a timer. These factors are intentionally
left out of the model. The fact that our convergence re-
sult for HPV is valid for arbitrary activation sequences
shows that it is safe for operators to stop hiding any
path at any time.

The last piece that we need to formally talk about
HPYV is the state consistency. The state of HPV is said
to be consistent if all of the following hold

1. For all u € V, rib(u) = best(u), i.e. rib(u) con-

tains the best possible path given the values of
rib_in’s.

2. For each pair (u, v) of neighboring nodes, if the link
from v to u is not empty, the last message in this
link contains the path in rib(v).

3. For each pair (u, v) of neighboring nodes, if the link
from v to u is empty, then one of the following is
true

(a) rib(v) € P* and rib_in,(v) = rib(v)

(b) rib(v) € P* and rib_in,(v) = ¢

(c) rib(v) € P* and rib_in,(v) contains the last
permitted path that v sent to w.

Throughout the paper we assume that the initial state
is consistent. It is easy to check that any activation
sequence (not necessarily fair) takes the system in con-
sistent state into consistent state.

Thus, we have finished defining HPV. Its inputs are
a graph, a collection of ranking functions, a collection
of permitted path sets, an activation sequence, and an
initial state. This 5-tuple of inputs define an instance
of HPV.

D.2 Dispute Wheels

Next, we restate the definition of a dispute wheel from
[10].

DEFINITION 7. A sequence of nodes U = ug, uy,
..., ug—1 together with two sequences of nonempty paths
Q = QOa Qh LR Qk717 R = R07 R17 s 7Rk:71 consti-
tute a dispute wheel W = (U, Q, R) if

1. R; is a path from u; to u; 411
2. Q; € Pv

3. RiQi+1 € PYi

4. A (Qi) < A (RiQit1)

where all subscripts are to be interpreted module k. For
an illustration of a dispute wheel see figure 9.a of [10].

D.3 HPYV Convergence

Given an instance of HPV, we say that rib_in,(v)
converges if rib_in, (v) does not change after some time
to. We say that a node u converges if rib(u) does not
change after some time ty. Finally, we say that HPV
converges is all nodes converge. Next, we state the main
theorem, discuss why we choose to prove this theorem,
prove a number of lemmas, and finally prove the theo-
rem.

THEOREM 7. An instance of HPV converges if it does
not have a dispute wheel.

Even through the analogous result for BGP conver-
gence is not the sate of the art ([5]), it is well-known and

14

relatively simple result. At the same time, it is power-
ful enough to guarantee convergence in at least two im-
portant classes of policies - the customer-peer-provider
policies and the generalized shortest-path based poli-
cies. Finally, this result is particularly appealing be-
cause the proof exposes the effects of hiding on the dy-
namics of the model.

Let value(u) be a set of paths that node w picks in-
finitely many times. C'is the set of nodes that converge
(whose value() has a single path), R is the set of con-
verged rib_in’s, and O is the set of oscillating nodes
(whose value() has at least two paths). It is obvious
that O and C are disjoined and cover V.

LEMMA 4. Given nodes u and v, if rib_in,(v) € R,
then v € O.

PROOF. We prove the contrapositive - if v € C, then
rib_in,(v) € R. By definition, because v € C, rib(v)
does not change after some time t5. Because rib(v)
does not change after ¢y, v does not send any messages
to u after tg. Thus, the link from v to u is always empty
after some time t; (because we always assume that the
activation sequence is fair). Then, regular activators for
u towards v in a nop after ¢; and the rib_in,(v) can-
not change during regular activator processing after t;.
Moreover, rib_in,(v) can change at most once during
a revealing activator processing after ¢;. Thus, there
is a time after which rib_in, (v) does not change, i.e.
rib_in,(v) € R as desired. O

LEMMA 5. Ifug € O and Py = [ug, u1, ..., Uk—1,
up = 0] € values(ug), then for some 0 < i < k —1,
rib_in,, (uir1) € R. In other words, there is a conver-
gent rib_in along Py.

PrOOF. If rib_in, (u;) € R, we are done. Assume
rib_ing,(u1) ¢ R. Then, by lemma 4, u; € O. We next
show that P, = [u1,...,uk—1,ur = 0] € values(uy)

First, because Py € values(ug) and rib_in,,(u1) &
R, P; has to appear in (and disappear from) rib_in,, (u1)
infinitely many times. The only way for P, to ap-
pear in rib_in,,(u;) replacing another path is for wug
to process a message containing P; from u;. Therefore,
u1 sends Pj infinitely many times, which implies that
Py € values(uy).

Thus, we have showed that if rib_in, (u1) € R, then
u; € O and P; € values(up). Applying the same ar-
gument, we can show that if rib_in,, (u3) € R, then
ug € O and Py € values(ug). Continuing analogously,
if no rib_in along the path converges, then u; = 0 has
to be oscillating, which is impossible. Thus, for some
0<i<k-—1,ribin,, (u;11) € R. O

PrOOF OF THEOREM 7. We prove the contrapositive
statement - if an instance of HPV does not converge,
there is a dispute wheel. Since HPV does not converge,
O is nonempty. Let u € O and P € values(u). Then,

by lemma 5, there is a convergent rib_in along P. Let
ug be the first node along P, whose rib_in from the
downstream node is convergent. Then, uy € O because
otherwise the node upstream of ug would have a con-
vergent rib_in from ug (and hence ug would not be the
first node with convergent downstream rib_in).

In the next section, we show how the convergence
result for HPV can be applied to YAMR to prove its
convergence. To avoid boring the reader with pages of
formal details, we present only the main constructs and
arguements of the proof.

Let Hy be a path starting at ug such that P = [u, ..., uo]Ho]).4 HSYPC Convergence

Because, the downstream rib_in from wug is convergent,
the path Hy is always available to ug after some point
in time. Because Hj is always available and ug is an
oscillating node, Hy has to be the least preferred path
by up from among all the paths in wvalues(ugp). Let
Jo € values(ug) be a more preferred path than Hy.

Now, we have an oscillating node ug and a path Jy €
values(up). Using the same argument as we did for u
and P € values(u), we can find an oscillating node u;
and a path Jy € values(u;). Continuing in this fashion,
for some value of k, a newly found uy will be equal to an
already found u;. Notice that an oscillating node can
have at most one path it picks infinitely many times that
comes from a convergent rib_in - the least preferred
path in values() of this node. Therefore, Hy, = H;.

Now, lets rename u; to a;,—; and H; to Q;—; for i =
gy j+1,. .. k—1. Also, fori =0,1,...,k—j—1, let R; be
such a path that J;; = R;H;1;4+1. In other words, R; is
the prefix of J;1; until and including u;1,41. Finally, let
m = k—j—1. With these definitions, we now have a dis-
pute wheel, W = (A,Q, R), where A = aqg,a1,...,an,
Q = QQ,Ql,...,Qm, R = Ro,Rl,...,Rm. The first
three conditions for the dispute wheel in definition 7 are
obviously satisfied by construction. The last condition
holds because J; was picked to be a more preferred path
than H; for ¢ = 0,1,...,k — 1, and because Hy = Hj.
This completes the proof. [

In this section, we defined a HPV and proved that
it converges under any fair activation sequence as long
as the policies don’t contain dispute wheels. HPV can
be viewed as an application of the hiding technique to
SPVP. The hiding technique simply says that when a
node’s peer withdraws a path from it, the node can
pretend that it continues to have the path until the
peer announces another path or until the node decides
to stop pretending. An intuitive reason why hiding
does not affect convergence of SPVP is because hid-
ing does not introduce anything new into the dynamics
of SPVP - it simply delays the processing of a with-
drawal. SPVP processes the withdrawal immediately,
while HPV processes the withdrawal when it decides to
(or never if the peer sends a new path before the node
processes the withdrawal). In some sense, the fact that
SPVP converges under any activation sequence means
that SPVP’s dynamics are invariant under the timing
of events. Thus, it seems reasonable that if the timing
of withdrawal processing is made variable (what hiding
does to SPVP), SPVP will still converge.

15

In the previous sections we defined SYPC to be the
formal model for YPC. SYPC for YPC is what SPVP
is for BGP. In this section, we talk about HSYPC,
which is the result of applying the hiding technique to
SYPC, just like HPV was the result of applying the
hiding technique to SPVP. Throughout the discussion,
we consider an instance of HSYPC, Z, with no dispute
wheels and a consistent initial configuration. We as-
sume that there are no link events and policy changes
after some moment. Our goal is to prove that HSYPC
converges. Note that HSYPC is a simplified model
YAMR. Thus, in this section we come very close to
proving that YAMR converges (i.e. proving theorem
3). In the next section, we actually prove theorem 3.

First of all, the default paths of HSYPC are con-
structed in exactly the same way as the paths of HPV.
Therefore, by theorem 7, the default paths of HSYPC
converge.

After convergence of default paths, the dynamics of
paths with a given label are completely independent
from the dynamics of other labels. Therefore, it is suffi-
cient to show that paths with a given label e converge.

Let S¢ be the set of nodes whose (converged) default
paths contain e. Let S be the set of all nodes whose
default paths don’t contain e. If Z contains nodes that
don’t have default paths, these nodes are completely
isolated and we can assume there are no such nodes
without loss of generality. Therefore, SUS® = V', where
V is the set of all nodes as usually. Using the notation
from the previous section, we can note that S C C' and
O C 5.

Note that because of hiding the set S¢ does not have
to be a tree. However, similar arguments that we used
in the previous section apply here as well. For the re-
mainder of a section, when we talk about the path of
a node u, we mean u’s default path if v € S and u’s
e-labeled path if u € S¢. Further, when we talk about
rib_in,(v), we mean the default path in rib_in,(v) if
v € S and the e-labeled path in rib_in,(v) if v € S°.
In other words, rib_in,(v) contains the path that we
are concerned with for node v.

Thus, for each node we have at most one path that
we are concerned with and there is a single path in
rib_in,(v) for each connected ordered pair (u,v) of
nodes that we are concerned with. The interdependence
of these paths is not the same as the paths in HPV -
the paths at different nodes affect each other as was de-
scribed in the YAMR’s design. However, the dynamics

are sufficiently similar to HPV that we can use the same
notation and the same arguments.

LEMMA 6. Given nodes u and v, if rib_in,(v) € R,
then v € O.

PROOF. The meaning of this lemma in the new con-
text is somewhat different from the meaning of lemma
4. However, the unchanged proof of lemma 4 proves
this lemma as well. [

LEMMA 7. Iqu €0 and Py = [Uo,ul, e, Uk—1,
up = 0] € values(ug), then for some 0 < i < k —1,
rib_in,, (uir1) € R. In other words, there is a conver-
gent rib_in along Py.

PROOF. First of all, ug € S¢ because ug € O. If for
any 1, 0 < ¢ < k, u; € S, the statement is obvious.
Thus, we can assume that for all i u; € S¢. Then, the
proof of lemma 5 applies here unchanged. [J

At this point, we have repeat the proof of theorem
7 verbatim (but obviously using the new meanings for
paths and rib_ins) to show that e-labeled paths con-
verge. As mentioned earlier, repeating the same argu-
ment for all labels, show that HSYPC converges when
there are no dispute wheels.

D.5 YAMR Convergence

In this section, we finally prove theorem 3. We restate
it here in a more rigorous way.

THEOREM 8. Consider an instance Z of YAMR with
consistent initial configuration, no dispute wheels, and
all ASes following widest-advertisement and next-hop
policies. Assume there are no policy changes and link
events after timet. Then, there exists a timet’ > t after
which no update messages are sent, no tokens are sent,
and no state changes occur. In other words, YAMR
converges completely.

ProoOF. Consider an instance X of HSYPC that cor-
responds to Z. In the previous section, we showed that
X converges. This implies that after some time ¢y no
update messages are sent and no state changes occur
Z. Therefore, we only need to show that no tokens are
sent after some time.

Before showing that tokens cease to be sent, we need
to realize that no state changes after ¢y implies that
after typ no AS changes what it hides. In other words,
no AS can decide to stop hiding some path after ¢g by
definition of 5. ASes have complete freedom deciding
what to hide and when to stop hiding, but whatever
they do, they can continue forever as was shown in the
previous section. Thus, there exists a time, tg, after
which no hiding changes occurs. This logical point that
gives complete freedom to ASes and yet claims that all
ASes stop after some point can be hard to understand.
We further illustrate it with an example.

16

Consider a finite set of integers C. Then, in any infi-
nite sequence S of integers from C, there exists an index
after which S contains only integers that appear in it
infinitely many times. Think of constructing a sequence
So that will contradict this statement. We have com-
plete freedom to choose how many elements of C' will
appear in the sequence finitely many times. Further,
we have complete freedom to choose how many times
each of these elements will appear in Sy. Even further,
we can put each occurrence of each of these elements as
far in the sequence as we want. Yet, despite all these
freedoms, there is an index after which there is none of
our elements. The convergence of state in hiding has
the same logic. ASes have a lot of freedom, but after
some point they all stop. Next, we show that loop and
disconnection tokens stop.

Recall that loop detection tokens are sent only at the
end of path selection. Path selection can only be trig-
gered by an update message or by a decision to stop
hiding (because of a reception of another token or in-
ability to find a deflection path). We know that no up-
date messages are sent after ty. We also argued above
that no AS can decide to stop hiding after 5. There-
fore, no loop detection tokens can be sent after some
time t; > ty when all the updates message sent before
to have been processed (no new ones can be sent after
to)-

Lastly, we show that disconnection tokens cannot be
sent forever. Assume the contrary that there exists an
AS A that sends disconnection tokens forever. In par-
ticular, A sends tokens after £; when all the state has
converged and no update messages are sent. Because A
sends disconnection tokens A must choose a loopy path.
Because the state has converged and the control path
is loopy, the forwarding path corresponding to it has to
contain a hiding AS B. Upon reception of A’s discon-
nection token B has to stop hiding, thus changing its
state. This contradiction completes the proof. O

E. HIDING LOOP-FREENESS

In this section, we prove theorem 4 that guarantees
loop-freeness of YAMR (and HBGP as a special case).

As before, we fix a destination prefix. We say AS A
has an e-labeled path if A’s rib contains an e-labeled
path (even if this path is lame). We also introduce the
notion of label L’s forwarding path starting at node A.
Given a node A and a label L, the forwarding path of
L starting at A is the path on which a packet leaving
A with label L will travel. The label can change along
the forwarding path. The forwarding path can contain
a loop, in which case it is infinite. Next, we restate
theorem 4 more rigorously and prove it.

THEOREM 9. Assume after some time tg, there are
no link events and policy changes for a sufficiently long
time that the network converges at time t1. Then, if an

AS has an L-labeled path at time t1, the forwarding path
of L starting at the AS is finite and ends at the desti-
nation. In other words, if the AS sends a packet with
label L the packet will reach the destination (ignoring
practicalities like data corruption).

PROOF. Assume the contrary, that there is an AS
that has a path for a label but whose forwarding path
for this label does not reach the destination. Note that
since the network is in the converged state at time t¢q,
the forwarding path cannot be finite and not end at the
destination. If the forwarding path ends at a node X
that is not the destination and the previous nodes is Y,
then Y forwarding table is not consistent with X RIB,
which is impossible in the converged state. Thus, the
forwarding path has to be infinite and hence contain a
loop.

Let a supernode (A, L) be a pair, where A is a node
and L is a label. Intuitively, a supernode (A, L) is a
node A and its path for L. It is useful because we
can talk about the path of a supernode and the for-
warding entry of the supernode without specifying the
label. Using supernodes, we can represent the loop
F in the forwarding path as a sequence of supernodes
[(Ao, Lo)7 ey (Akfl, kal), (Ak7 Lk) = (Ao, Lo)], where
each supernode (A4;, L;) represents the fact that packet
sent on the forwarding path arrives at node A; with la-
bel L;. Whenever we use indices of supernodes in F,
they are to be interpreted module k. We call a supern-
ode (A;, L;) a hiding supernode if the path for label L; at
node A; is lame. We say that a supernode (A4;, L;) sent
a loop token we mean that node A; sent a token along
its L;-labeled path. We say that a supernode (A;, L;)
changed its forwarding state if the next-hop supernode
of (A4;, L;) has changed. Note that if the label changed
the next-hop node can be the same.

Because the network state has converged and there is
a loop F' in the forwarding path, F' has to contain a hid-
ing supernode. Without loss of generality let (Ag, Lo)
be the last hiding supernode in F' that sent a loop token
T, say at time o (if there are multiple such supernodes,
let (Ag, Lg) be an arbitrary one of them). Next, we
show that there exists a supernode in F' that changed
its forwarding state after it processed T' (not necessarily
because of T').

Recall that a hiding supernode always sends a token
after it changes its forwarding state. Because T is the
last token (Ag, Lo) sent, it did not change its forwarding
state after sending T and T was sent to (A1, L1). Now,
if there is no supernode in F' that changed its forward-
ing state after processing T, then the token must have
traveled around F' and must have come back to (Ao, Lo).
(Ao, Ly) would then have changed its forwarding con-
trary to the fact above. Thus, there is a supernode
that changed its forwarding after processing T', say at
time t3. Let (A4;, L;) be the supernode that changed its

17

forwarding last among all the supernodes in F', say at
time ¢4 (if there are multiple such supernodes, choose
one randomly). Then, t4 > t3 > t2 and hence there are
no tokens sent by supernodes in I’ after t4.

Because (A, L;) did not send a token after updat-
ing its forwarding state at time t4, it is not a hiding
supernode. Therefore, it must have sent an update to
(Aj_1,Lj_1) because no forwarding changes happen af-
ter t4. Because (A;_1,L;_1) also did not send a token
after receiving this update, it is not a hiding supernode
and it must have sent an update to (A;_2,L;_2) (be-
cause no forwarding changes happen after ¢4). We can
continue this argument until we conclude that (Ag, Lo)
is not a hiding supernode, which contradicts our choice
of (Ag, Lp). This contradiction completes the proof. [

F. HIDING CONNECTIVITY

In this section, we formally prove theorem 5. Note
that it is enough to prove that an AS that can be con-
nected is connected though its default path. Thus, it
is enough to prove theorem 5 for HBGP. We start with
some definitions:

e control path - a path that the AS has in its RIB or
RIB_IN. Control path can be lame. Then, it has a
deflection path. For an AS A, we denote, its control
path by ca. By ca(u) we denote the control path
of A were it to choose the peer u’s control path as
best.

e forwarding path - a path that the packets actually
travel from an AS. For an AS A, we denote, its
forwarding path by fa. By fa(u) we denote the
forwarding path of A were it to forward through
peer u. Note that f4(u) can be infinite if the packet
comes back to A.

e Given a forwarding path p, the corresponding con-
trol paths is denoted by ctrl(p). Given a control
path p, the corresponding forwarding paths is de-
noted by fwd(p)

e nice forwarding path - like nice path but referring
specifically to a forwarding path.

e class(p) - is a class of a path p, which is the class
of the next-hop peer in p.

o fine forwarding class ¢ of some AS A is defined as
follows. Let U be the set of all peers of A that an-
nounce a path to A (including peers that announce
a loopy path to A). Then c is the highest class in
the set {class(fa(u)) : u € U, fa(u) is finite}. If
the set is empty, we say that ¢ is null.

e fine forwarding path p is a path whose class is the
fine forwarding class.

e A path advertised by a peer u to A is called mis-

aligned if it contains A but the suffix of u starting
at A is not the same as any of A’s paths from which

it could have originated. In the case of HBGP,
there is a single originating path - the path in the
RIB. In the case of YAMR, a default path can only
originate from another default path and an alterna-
tive path can originate from the default path and
from a labeled path with the same label. We also
say a misaligned advertisement if it contains a mis-
aligned path. If a path is not misaligned, we say it
is aligned.

Notice that for ASes that don’t hide, the next-hop ASes
for corresponding forwarding and control paths are the
same. Therefore, a control path is nice if and only if
the forwarding path is nice. Thus, we can simply talk
about a nice path without specifying which we mean.
Also, we can talk about the nezt-hop without specifying
on which path the next-hop is.

LEMMA 8. Let Z be an instance of HBGP with no

dispute wheels and all ASes following widest-advertisement

and next-hop policies. Assume that there has been no
policy changes and link events for a long enough time
that Z has converged. Then, for each AS A, fa is in
the fine forwarding class of A. In particular, if fa is
null, the fine forwarding class is null.

PRrROOF. First, consider the case when f4 does not
exist. If A does not forward anywhere, either no peer
advertises a path to A or there is a path advertised
to A that A cannot forward on (if there are multiple
such paths, choose the most preferred one). In the first
case, we have nothing to show. In the second case, the
only reason A cannot forward on a path advertised to
it is that this path is loopy. However, because A does
not have any path in its RIB, this loopy path must be
misaligned and A must be sending disconnection tokens
along this path. This contradicts the assumption that
Z has converged and concludes the case when f4 is null.

Consider the case when f4 exists. Assume the con-
trary that fa is not in the fine forwarding class ¢ of A
and let the next-hop along f4 be B. If f4 is not in c,
then class of f4 must necessarily be less preferred that
¢, by definition of c¢. Let f/ be a forwarding path of A
that is in ¢ and let C be the next-hop along f’;. Because
f4 is in the more preferred class than f4, A would pre-
fer any path through C to any path through B. How-
ever, since A does not prefer the path pc advertised
by C (the control path whose corresponding forwarding
path is f/), pc must be loopy. Moreover, pc has to
be aligned. Indeed, if pc were misaligned, it would be
considered in A path selection, would be preferred over
pp (the control path whose corresponding forwarding
path is f4) and A would send a disconnection token
contradicting our assumption that Z converged.

Because pc goes through A but f/; does not, there is
an AS along f’) that hides. Let D be the first AS along
f! starting from A that hides. Then, D prefers the path

18

pc (D) more than ¢ - the control path corresponding to
the suffix of f/ starting at D. Now, we can identify a
dispute wheel.

Let us rename some paths and nodes to illustrate the
dispute wheel. Let A be ug. Let D be u;. Let the
control path corresponding to fa be Q. Let g be Q1.
Let [A,C,..., D], the prefix of f/ until D be Ry. Let
the prefix of pc(D) until and including A be R;. Now,
the dispute wheel is W = (U = wug,u1,Q = Qo, @1, R =
Ry, Ry). Verifying that W is indeed a dispute wheel is
straightforward. This contradiction finishes the proof
of the lemma. O

In the presence of hiding nodes, advertised control
paths are different from the forwarding paths. There-
fore, ASes don’t have enough knowledge to choose the
best available forwarding path. However, as the lemma
8 states, the disconnection token mechanism ensure that
ASes end up with almost the best available paths. Even
though this result is quite promising, under the general
assumptions we have been using, the small imperfection
the mechanism allows can prevent some ASes from get-
ting a nice forwarding path. To guarantee that each AS
gets a nice forwarding path, we have to narrow the class
of possible AS policies to those for which these imper-
fections cannot cause any harm. We call this class of
policies dispute circlet free policies, or in other words,
policies that don’t have dispute circlets. Luckily the
common customer-peer-provider policies don’t have dis-
pute circlets, if we assume that there are no cycles made
entirely from provider-to-customer links.

The only difference between dispute circlets and dis-
pute wheels is the path preference relation they use. For
dispute wheels, the preference relation is the same rela-
tion that ASes use to rank paths based on the ranking
function. For dispute circlets, the preference relation
R4 of an AS A is a general binary relation that is not
necessarily a partial order defined as follows. Given the
AS graph, the ranking functions of all ASes, an AS A,
and two paths p; and ps from A to the destination,
(p1,p2) € Ra if and only if class(p1) < class(ps). If
(p1,p2) € Ra, we write it as p; = po.

If A4 (p1) > A (p2), class(p1) < class(ps) and (py,p2)
R 4. Therefore, all preference relations based on ranking
function are included in R4, from which it immediately
follows that every dispute wheel is a dispute circlet.

LEMMA 9. If there are no dispute circlets, each AS
in Z has a nice forwarding path.

PrOOF. We first show the following sublemma. Let
A be an AS that does not have a nice forwarding path in
Z (from now on the specification ”in Z” is assumed and
we don’t write it explicitly). Let p = [A, A1, Ap_2a, ...

be a nice path from A. Then, at least oneof A, 1, Ap_o, ...

does not have a nice forwarding path.

) AO]
) Al

Assume the contrary, that all of the intermediate
nodes have nice forwarding paths. There are two pos-
sible cases: either A is disconnected or A is connected.
If A is disconnected n has to be greater or equal to 2.
Consider A,_;. By assumption, A,,_; has a nice for-
warding path. Because (1) A, —; is willing to advertise
a path through A4,,_5 to A (namely p), (2) A,—; has a
nice forwarding path, A, 1 has to be willing to adver-
tise its control path to A. Therefore, the fine forwarding
class of A is non-null. By lemma 8, A is connected. This
contradiction proves the sublemma in the case that A
is disconnected. Next, we consider the case when A is
connected.

In the case that A is connected, we show that the for-
warding paths of A,,_1, A, _o,..., Ag has to go through
A, which is a contradiction because the path of Ag is
[Ag]. Let p% and pS denote a nice and the current
forwarding paths of X, respectively. Further, let p(Y)
denote the suffix of path p starting at Y. First, note
that since all A;’s have a nice forwarding path, they all
must be connected. Because A, _; forwards through a
nice peer, it has to advertise its control path to A. If
p%.,_, does not go through A, A’s fine forwarding class
is equal to the nice forwarding class. By lemma 8, A’s
forwarding path is a nice forwarding path. This is a
contradiction. Therefore, p§ has to go through A.

Assume p§ does not go through A. Because it
does not go through A, it does not go through A, _;.
Then, A,_o is advertising P4, , to A,,_1. Because
P4, , # Pa, ,(An_2) (one goes through A and one
does not) and because A,,_1’s current forwarding path is
Ph, s [Analph,, <A1 p4, . Recall that because
A’s current forwarding path is not nice, [A, A, 1]p%, _, >
p%. These four paths and nodes A and A,,_; form a dis-
pute circlet, which we assumed does not exist. Thus,
P%,_, goes through A.

The argument above can be repeated inductively. At
the step for A,,_;, the following holds:

Apn_it1 pC
= Pa, i1

[An—i+1]P%, ,
pf4 <A [Aa An—17 cee

and these four paths together with A and A,,_; 1 form a
dispute circlet. This finishes the proof of the sublemma.
Next, we prove the lemma.

Assume the contrary, that there exists an AS Ay
whose forwarding path is not nice. Then, pick a nice
path p1 = [Ag, Br—1, Bn—2, ..., Bg] from Ay to the des-
tination. On this path, pick a node B;, 0 <i<n—1
such that

cAn—i1]pG

n—i

e B;’s forwarding path is not nice

e Path [BZ, Bifl, ..
of Bi-

Such B; can be found in the following way. By the sub-

lemma, there is an AS B; whose forwarding path is not

., Bo| is not a nice forwarding path

A

19

nice. If for this Bj, the path [B;, Bj_1,..., By] is nice,
we can apply the sublemma to B; and its nice path
[Bj, Bj_1,...,Bo], to find a node By, k < j, whose for-
warding path is not nice. If the path [By, Bx—1, ..., Bo]

is a nice forwarding path of By, we can continue analo-
gously. Because the original path [Ag, Bp—_1, Bn—2, - - -, Bo]
is finite and on each iteration it gets smaller, this pro-
cess cannot continue forever. Therefore, there exists
such a B;. Rename it to A;.

Define Aj, As, ... analogously until some A, is not
the same as a previously found A,. Without loss of
generality, assume that » = 0 (because we could have
started at A,). Let p; be the nice path of A; we used
to find A;y1. Interpret the subscripts module ¢ and
let R; be the prefix of the path p; until and including
Air1. Let Q; be the suffix of the path p;_; starting
from and including A4;. Let R = Ro, R1,...,Rg—1, Q =
62()7 Qh ey qulv and A = 14()7 A17 ceey Aqfl. Then,
W = (A, Q, R) is a dispute circlet. This contradiction,
proves the lemma. O

To show theorem 5, we simply apply lemma 9 to de-
fault path of YAMR.

G. HIDING RECOVERY

The Theorem 6 is obvious because of the failed link
propagation mechanism. Recall that having a failed
link information gives an AS a permission to hide the
failure. When the link recovers, all failure information
is guaranteed to be withdrawn from every AS that had
it. When the failure information is withdrawn, all ASes
stops hiding and routing returns to normal.

