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Abstract

Recognition of general visual categories requires a di-
verse set of feature types, but not all are equally relevant to
individual categories; efficient recognition arises by learn-
ing the potentially sparse features for each class and un-
derstanding the relationship between features common to
related classes. This paper describes hierarchical discrim-
inative probabilistic techniques for learning visual object
category models. Our method recovers a nested set of object
categories with chosen kernel combinations for discrimina-
tion at each level of the tree. We use a Gaussian Process
based framework, with a parameterized sparsity penalty to
favor compact classification hierarchies. We exploit struc-
tural properties of Gaussian Processes in a multi-class set-
ting to gain computational efficiency and employ evidence
maximization to optimally infer kernel weights from train-
ing data. Experiments on benchmark datasets show that
our hierarchical probabilistic kernel combination scheme
offers a benefit in both computational efficiency and per-
formance: we report a significant improvement in accuracy
compared to the current best whole-image kernel combina-
tion schemes on Caltech 101, as well as a two order-of-
magnitude improvement in efficiency.

1. Introduction

A wide range of image descriptors have been proposed
for visual object category recognition. Local feature de-
scriptors (c.f. [21, 24]) have been shown to be effective:
early models captured appearance and shape variation in
a generative probabilistic framework [11], and more re-
cent techniques have typically exploited methods based on
SVMs or Nearest Neighbors in a bag-of-visual-words fea-
ture space [8, 25, 27, 33]. Several authors have explored
correspondence-based kernels and their extensions [15, 20,
30, 33, 4], where the distance between a set of local feature
descriptors—potentially including appearance and shape /
position—is computed based on associating pairs of de-
scriptors. Efficient intersection and search measures have
been recently shown with such schemes [19, 22]. It is, how-

ever, likely that no single class of features will suffice to
recognize all categories. Recent efforts have highlighted the
value of various different approaches for learning weights
on features or collections of features [13, 14, 10, 34].

Recent work on combining image descriptors to yield
an optimal kernel matrix has shown impressive gains [5,
18, 29]. Learning an optimal weighting over image fea-
ture types can lead to a significant boost in classification
accuracy as the invariance to various geometric, photomet-
ric, and structural transformations most relevant to recog-
nize a category or group of categories can be inferred dur-
ing training [29]. One disadvantage of these approaches is
that instead of optimizing a kernel for the global classifica-
tion problem they separately learn kernels for each individ-
ual class, which can lead to overfitting with small numbers
of training examples and is relatively expensive in terms of
computation time.

Approaches based on cross-validation [6] address these
problems by directly carrying out an exhaustive search over
the parameter space and selecting parameters that reduce
global error on a validation set. However, this approach is
computationally expensive and quickly becomes infeasible
as the parameter space grows. Further, all of these methods
are non-probabilistic and, with exception of [6], do not con-
sider any hierarchy in classification; in contrast, we provide
here a unified probabilistic model that is efficient in terms
of computation and performance. Discovering a hierarchy
amongst the class labels allows for further specialization of
the classification model for different groups of categories
[6, 16, 35, 23].

This paper addresses the problem of discovering a dis-
criminative hierarchy for visual object category recogni-
tion. We develop a probabilistic multi-kernel recognition
framework where kernel combination weights are learned
via an evidence maximization criteria and sparse priors can
encourage compact and efficient classifiers. Our approach
performs weight inference in a multi-class setting and leads
to significantly improved performance and computational
efficiency when compared to previous techniques.

Initial results on visual category learning using a Gaus-
sian Process (GP) multi-kernel formalism were reported in
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[2].1 Here we present a new method which extends such
multi-kernel techniques to include a scheme for extremely
fast multi-class training when compared to a traditional en-
semble of 1-vs-all classifiers, a regularization term which
significantly improves performance especially with small
amounts of training data, and a hierarchical learning formu-
lation which discovers nested sets of related classes leading
to simpler intermediate classifiers and overall improved per-
formance.

Given labeled training data, our method learns an opti-
mal combination of kernels by maximizing the evidence of
the observed object category labels. A significant advan-
tage of GP regression is that leave-one-out estimates can
be very efficiently computed, and can be utilized to rela-
tively quickly learn a hierarchy of classes based on a confu-
sion matrix. In contrast, traditional discriminative methods
typically require retraining a classifier every time a single
example is removed from the training set. Our method ex-
ploits the structural properties of GP regression for efficient
multi-way classification.

In the experiments reported below, our method performs
favorably to the kernel combination schemes of [29] and
[5]. We restrict our evaluation to the publically available
‘whole-image’ kernels (not including the ‘ROI kernels’ re-
ported in [5])2; focusing on the power of kernel combination
and hierarchy formation we believe our method offers the
best reported performance on Caltech datasets when com-
pared on all available whole-image kernels.

2. Background: Combining Kernels with
Gaussian Processes

As Gaussian processes are non-parametric models, their
performance in regression and classification tasks depends
on the covariance matrix or kernel that captures the similar-
ity between the data points. Let Y = [y1, · · · , yN ]T be the
set of class labels. For simplicity in the discussion consider
the binary case, yi ∈ {−1, 1}, and let X = [x1, · · · , xN ]T

be the set of input variables xi ∈ <Q. The Gaussian Process
prior is then defined as

p(Y|X) = N (0,K) , (1)

with K the covariance matrix corresponding to a kernel
(similarity measure). See [26] for a detailed treatment.

In [17] GP covariance functions based on the Pyramid
Match Kernel [15] (and by extension, the Spatial Pyramid
Match [20]) were introduced, and results in a supervised
and active learning setting were reported. Other kernels

1An anonymized version of this recently accepted journal paper is pro-
vided in the supplementary material.

2 The segmentation implicit in the ROI kernels is shown in [5] to be
extremely powerful, yeilding higher overall performance than with whole-
image kernels, but these kernels are not publically available for all test
splits so we were unable to try them with our method.

used in SVM-based visual category recognition are also
generally suitable for use as GP covariances. In [28] the
composition of an RBF kernel, which is traditionally used
in GP regression and has hyperparameters associated with
the mapping, and a PMK kernel was used for human pose
estimation.

In a multi-kernel approach the covariance is defined as a
linear combination of covariance matrices [2]

K =
M∑
i=1

αiK(i) (2)

where α = {α1, · · · , αM} are the weight parameters,
∀i, αi ≥ 0, and ∃ αi suth that αi > 0, at least one αi

is different from zero. The individual covariance matrices
K(i) are restricted to be positive definite, so that their linear
combination is also positive definite.

Learning in the Gaussian Process framework consists of
estimating the kernel hyperparameters, including the kernel
weight parameters in the case of the multi-kernel in Eq. (2).
Finding the right set of hyperparameters can be a challenge.
Ideally we would like to marginalize over these hyperpa-
rameters. While approaches based on Hybrid Monte Carlo
have been explored to perform this marginalization [31],
such techniques are computationally expensive.

A more computationally efficient alternative is empiri-
cal Bayes, where the idea is to maximize the marginal like-
lihood or evidence. This methodology of tuning the hy-
perparameter is often called evidence maximization. This
approach is computationally efficient and unlike cross-
validation it does not require a validation set.

When using a Gaussian noise model, the log of the evi-
dence can be written in closed form [26, 2]

L(α) = − log p(Y|X,α)

=
1
2
YT (σ2I + K)−1Y +

1
2

log |σ2I + K|+ C

where C is a constant, σ the noise variance, and α =
{α1, · · · , αM} is the set of hyperparameters. Learning the
parameters by maximum likelihood results in accurate clas-
sification [2] when the number of examples is large. How-
ever, when the number of training examples is small, and
the number of kernels large, learning by maximum likeli-
hood can result in overfitting.

3. Efficient Multi-Class Learning
In this section we describe several aspects of our new

method, which extends the above formalism to incorporate
a regularization term to avoid overfitting on small training
sets, and includes a new algorithm for very efficient kernel
combination in the multi-class case. Our method also incor-
porates a novel hierarchical learning technique, described in
the following section.



3.1. Learning from Small Number of Examples

To avoid overfitting, instead of finding the hyperparame-
ters by maximum likelihood, we assume a prior distribution
over the hyperparameters, p(α), and choose the maximum-
a-posteriori (MAP) estimate. It can be easily shown that
various choices of priors lead to different choices of regular-
ization. For instance assuming a Gaussian and a Laplacian
prior on α leads to an L2 and L1 regularized formulation
respectively; the latter is well known to enforce a degree
of sparsity on the kernel weights. A parameterized form
of regularization is known in the statistics literature as the
elastic net [12]. We can write the optimization as

arg min
α
− log p(Y|X,α) + γ1||α||1 + γ2||α||2

subject to: αi ≥ 0 ∀i ∈ {1, ..,M}.

Here, γ1 and γ2 are regularization constants for L1 and L2
norms respectively. The non-negativity constraints on α en-
sure that the resulting K is positive-semidefinite and can be
used in a GP formulation (or other kernel-based methods).

This objective can be minimized using non-linear opti-
mization techniques, such as gradient descent. The opti-
mization can be performed with multiple initializations to
deal with the fact that we are optimizing a non-convex func-
tion and the log evidence has multiple local optima. The
gradients of the negative log evidence, L(α), are efficient
to compute and can be written as:

δL(α)
δαi

=− 1
2
YT A−1K(i)A−1Y +

1
2

Tr(A−1K(i))

+ γi + γ2 ·α

where A = σ2I + K. In our implementation we use a
gradient descent procedure based on the projected BFGS
method using line search.

Our Gaussian Process framework provides conditional
models that are probabilistic; since GPs marginalize over
the feature weights, our model–in contrast to other state-
of-the-art discriminative models such as SVMs [5, 29]–is
less prone to overfitting. As shown in this paper, this re-
sults in a large increase of performance when dealing with
small number of examples, greater than 7% in Caltech 101
(for 1 training image per class). GPs have structural prop-
erties with regard to multiclass classification and leave-one-
out cross-validation that, as shown below, can be exploited
to develop highly efficient algorithms for learning kernel
combinations as well as discovering hierarchies.

3.2. Learning in Multi-Class Problems

Object categorization is typically a multiclass problem
and consequently requires a multiclass extension of the ker-
nel learning framework. Popular techniques include 1-vs-

all or 1-vs-1 formulations, where outputs from multiple bi-
nary classifiers trained on 1-vs-rest and pairwise classifica-
tion problems are combined respectively. Learning a kernel
introduces additional complexity as the optimization proce-
dure for kernel combination should consider all the labels
and result in a single set of global parameters that are in-
formative about the entire classification task. Learning a
global set of parameters is in general non-trivial, and learn-
ing separate kernels for each binary subproblem has been
proposed [29]. Despite the fact that such classwise pa-
rameterizations offer flexibility in modeling each individual
class, these extrategies are more prone to overfitting than
global ones when dealing with small number of examples.
As shown below, global optimization of the parameters con-
sistently outperforms classwise optimization in our experi-
ments. Furthermore, classwise techniques require solving
as many classification tasks as the number of classes; with
large datasets such as Caltech-101 and Caltech-256 this
means that learning has to be repeated 101 and 256 times re-
spectively. While it is unclear how to overcome these issues
in non-probabilistic approaches such as [29], GPs provide a
principled and computationally efficient scheme of finding
globally optimal parameters.

We first consider a 1-vs-all formulation of GP classifiers,
where multiple binary classifiers correspond to each indi-
vidual class. Similar to binary classifiers we optimize ker-
nels weights by considering the log evidence, however, for
the multiclass case we consider a joint log-likelihood over
all the classifiers:

L(α) = −
∑

i

log p(Y(i)|X,α) .

Here the sum is taken over all the class labels, and Y(i) are
the labels for i-th 1-vs-all problem. This joint likelihood
corresponds to a probabilistic model that assumes that given
the input images the binary outputs of 1-vs-all problems are
independent. Note that, this assumption is well justified as
given an image its class label is determined by the image
content only. Further, this model allows us to optimize for
a global set of kernel parameters that maximize the joint
likelihood over all the class labels. Thus, instead of learning
a kernel for every individual class, we can learn an optimal
parameterization that is globally discriminative.

There are additional computational benefits of the above
scheme. Note that in the proposed GP framework, given a
test observation x∗, the mean prediction for a binary classi-
fier can be computed as:

ȳ
(i)
∗ = k(x∗)T A−1Y(i) , (3)

where k(x∗) is the kernel computed between the training
and test data. The most expensive operation in such com-
putation is the matrix inversion which is independent of
the training labels Y. Consequently, once the inverse is



computed, estimating predictions for 1-vs-all models cor-
responds to a multiplication with the relevant label vectors.

This is a significant advantage since the cost of training
all the classifiers in a 1-vs-all formulation is the same as the
cost of training a single classifier. This is especially bene-
ficial in cases with large number of classes, and provides a
significant advantage over other methods which separately
need to train different classifiers per class. This observation
readily extends to the kernel learning scenario with multi-
ple classes. As before, the primary operation is a matrix in-
version (computing A−1) that is independent of the labels.
Thus, learning kernels for multiple class problems using the
joint likelihood has similar cost as that of learning a kernel
in a binary problem 3. We show empirically in Section 5
that this scheme is extremely fast when compared to other
state-of-the-art methods while providing superior classifica-
tion performance.

4. Learning a Hierarchy Tree in Multiclass
Problems

It is often the case for multiclass problems that some
classes are typically more confused than others, e.g., dis-
criminating bikes and motorbikes is more challenging than
discriminating bikes and oranges. As a consequence, one
can expect an increase of classification accuracy by train-
ing classifiers dedicated to discriminate the most similar
classes. In this section we introduce an efficient hierarchi-
cal classification scheme that utilizes the confusion matrix
to generate a hierarchy of classifiers, where at each level of
the hierarchy similar classes are group together.

There have been some attempts at learning such hierar-
chy based on clustering confusion matrices [16, 6], which
are typically generated with cross-validation. Leave-one-
out is especially attractive method to generate confusion
matrices. It is well known that in the limit the leave-one-
out error is the unbiased estimator of generalization error
[7]; consequently, finding a hierarchy to reduce the error on
cross-validation results should lead to more accurate mod-
els. However, computing such a matrix can be expensive if
a new classifier needs to be trained after each point is re-
moved/replaced in the training set.

The structure of GP regression provides an elegant so-
lution to compute a leave-one-out cross validation matrix.
Most of the computation can be shared across each leave-
one-out estimate; leave-one-out classifier outputs for all the
training points can be found in one simple matrix opera-
tion. Specifically, the leave-one-out predictive means ȳ for
all training data are given by [26]:

ȳLOO = ȳ − [A−1Y]./diag(A−1) (4)

3The computational cost is dominated by the O(N3) cost of inverting
A, with N the number of examples.

Here, ȳ denotes the predictive mean on the training points
when using all the data. Also note that the inverse A−1

was already computed during kernel learning. The compu-
tational complexity of this operation is only O(N2), with
N the number of training points. Further, as mentioned
before this readily extends to the multiclass case as A is
unchanged and the inverse can be reused across all the indi-
vidual classes.

Once the confusion matrix Cm is computed, clusters
of classes that are most confusable can be found. In this
work, we use self-tuning spectral clustering [32] on the
symmetrized confusion matrix

Csym =
1
2

(Cm + CT
m) (5)

We let the self-tuning spectral method discover the correct
number of clusters. Further, if a class is perfectly recog-
nized using the leave-one-out scheme we consider it a leaf
node at that level. New kernel weights for the root classifier
are learned by merging all classes in each cluster; thus, the
classifier at the root level learns to classify a data point into
the discovered clusters. This process is recursively applied
to each cluster of size greater than one until all the clusters
have one class. Algorithm 1 describes details of the proce-
dure to learn the object hierarchy. At test time, at each level
of the hierarchy we first classify the cluster that each test
example belongs to. This process is repeated until we arrive
at a leaf of the hierarchy.

Algorithm 1 Learning Object Class Hierarchy
function TreeOut = LearnTree(ListClasses)

if (length(ListClasses) > 1) then
Learn kernel parameters α for ListClasses
Compute leave-one-out confusion matrix Cm

Cluster classes using Csym = (Cm + CT
m)

Learn kernel parameters α using the clustered classes
TreeOut.nodeparams = α
TreeOut.nodeclasses = Learned clusters

for i = 1 to number of clusters do
TreeOut.child(i) = LearnTree(Cluster(i))

end for

else
TreeOut.nodeparams = ListClasses

end if

Return TreeOut

5. Experiments and Results
In this section we report results demonstrating the com-

putational efficiency and high performance accuracy of
probabilistic kernel combination, the ability of the proposed



framework to discover object hierarchies, and the use of re-
covered hierarchies for improved classification with small
numbers of training examples.

Datasets and Implementation Details

We performed experiments on two different datasets that are
considered standards for the object categorization task: the
Caltech-101 data set and the Caltech-256 data set (which is
a superset of Caltech-101). Our experiments use 30 images
per class from Caltech-101 dataset (3030 images in total),
and are the same as the ones used in [29]. For Caltech-256
[9] we use the kernels of [1]. The training and the test split
consists of 10 and 25 images per class.

We consider various shape and appearance features and
sampling strategies, which are useful to capture the intra-
class variation present in the Caltech-101 and Caltech-256
images. Specifically, we look at the following eight combi-
nations of matching kernels and features:

1. AppColour: SIFT descriptors are extracted for each
component of the HSV color space representation of
the image, with all features sampled on a regular grid
and at four fixed scales. These are quantized into visual
words, and the pyramid kernel is applied per word in
the space of image coordinates. See [5] for details.

2. AppGray: Same as AppColour, except features are
extracted from the grayscale images.

3. Shape 180: Histograms of oriented gradients are
matched using a spatial pyramid kernel. Edges are
computed using the Canny edge detector followed by
Sobel filtering for computing the gradients; the gradi-
ents are discretized into orientation histogram bins in
the range [0, 180] with soft voting. See [5] for details.

4. Shape 360: Same as Shape 180 except that the orien-
tation bins are in the range [0, 360].

5. GB: The Geometric Blur feature of [3] is extracted at
sampled edge points. For the kernel values, the exact
correspondences are computed based on the average
minimum distance between points in the two input sets
of features, as in [33].

6. GBdist: Same as GB, except the feature representa-
tion has an additional geometric distortion term.

7. Dense PMK: Pyramid Match Kernel (PMK) with uni-
formly shaped pyramid bins, using SIFT descriptors
extracted densely from the images at every 8th pixel
from a region of 16 pixels in diameter, with each SIFT
descriptor concatenated with its normalized image po-
sition. PCA is used to reduce the dimensionality of the
SIFT descriptors to 10, yielding features having a total
of 12 dimensions. See [15] for details.
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GP−L2
GP−L1
GP unregularized

Figure 1. Performance comparison of different regularized and
unregularized version of the probabilistic kernel combination
scheme. A strong regularization results in significantly higher
gains specially when the amount of labeled data is sparse.

8. Spatial PMK: The spatial variant of Dense-PMK. We
take the same raw SIFT features, but quantize them
into visual words, and then build one pyramid per
word, each with uniform bins in the space of image
coordinates. See [20] for details.

The kernel matrices for both datasets using each of these
image descriptors were provided directly by the respective
authors. In the experiments below we use either four, six
or eight kernels to compare against existing approaches and
refer to the group of first four, six and eight kernels from the
list mentioned above.

For comparison against Varma and Ray [29], we used
code provided by the authors with the parameters setting
they provided. For learning kernels in GP models, we ran-
domly initialized the kernel parameters and set the noise
model variance to σ = 10−10. These parameter val-
ues worked well; we experimented with other initialization
schemes but found that the kernel learning was fairly insen-
sitive to the initialization.

In all our experiments we follow the standard testing pro-
tocol, where a given number of training images (say 15) are
taken from each class at random, and the rest of the data
is used for testing. The mean recognition rate per class is
used as a metric of performance. This process is repeated
10 times and the average correctness rate is reported. Fi-
nally, all the experiments are performed using MATLAB on
a 64-bit windows machine with dual Intel Xeon 3.0 Ghz
processors and 8 GB of RAM.

Effect of Regularization

First, we study how regularization of the log evidence ef-
fects classification performance. Figure 1 demonstrates
recognition performance of different regularized and un-
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Figure 2. (a) Comparison of accuracy obtained when optimizing kernels globally versus class wise. Comparison of (b) computational
efficiency and (c) statistical efficiency for learning using GPs and Varma & Ray [29] that uses class wise optimization with SVMs.

Table 1. Time required and accuracy achieved on Caltech-101 us-
ing 15 labeled examples per class.

Method Kernels Time in Seconds Accuracy
GP tree 8 305.49± 29.10 90.71± 0.58

6 206.87± 36.82 89.64± 0.54
4 133.04± 7.75 81.46± 0.93

GP 8 267.51± 3.45 88.81± 0.69
6 149.44± 1.35 88.74± 0.69
4 91.31± 1.01 80.32± 1.16

Varma & Ray[29] 6 6192.05± 113.65 87.15± 0.56
4 4463.81± 165.84 79.88± 0.65

SVM-CV4[6] 4 ≥ 4463.81 81.00± 0.80

regularized probabilistic schemes averaged over 10 differ-
ent splits. As shown in the figure regularization results in
a significant improvement in performance, especially L2;
the average gain is very high for small number of examples
(≈ 12% for 2 examples per class). With two examples per
class, the average accuracy, 47%, is higher than many prior
methods that used a much larger number of label examples.

Computational Efficiency and Accuracy

Next, we explore the performance difference when param-
eters are trained globally versus trained separately for each
class. Figure 2(a) shows a scatter plot where each point
represents test accuracy obtained on a single train-test split
of Caltech-101 data with 5 labeled examples per class. The
figure illustrates performance on 35 different train-test splits
when combinations of six kernels are learned. Most of the
points lie above the diagonal, which suggests that training
parameters globally is better than classwise training. To
judge the significance of the results we performed a paired-
t test and found the performance different to be significant
at p = 10−3 level. By jointly maximizing parameters for
all classes the classifier learns representations that are max-
imally informative with respect to all the classes simultane-
ously, as is evident from superior performance across all

4Accuracy reported from [6] and includes ROI detection.

three choice of kernel combinations. Classwise training
has been the method of choice as non-probabilistic alter-
natives such as SVMs do not have straightforward formu-
lations to optimize the weights globally—however, as de-
scribed above, GPs avoid this problem by forming the joint
likelihood of all the labels given the training data.

We also compare the computational efficiency of our ap-
proach with the scheme of Varma and Ray [29]. Figure
2(b) shows the time required to learn the kernel combination
with six kernels. The method of Varma and Ray [29] learns
kernels separately for each class using the one-vs-all formu-
lation of binary SVMs and takes significantly longer time
than the probabilistic combination based on GP. The GP-
based approach learns the kernels simultaneously for all the
classes and has clear computational advantages vs. train-
ing one-vs-all classifiers. In terms of accuracy GP-based
formulation significantly outperforms the SVM formulation
(see Figure 2(c)).

It has been suggested that performance of SVM based
kernel combination can be improved by using cross-
validation. Bosch et al. [6] perform a local search for kernel
combination parameters around an initial solution found by
Varma and Ray [29]. Note that the time required to run
such an approach is lower bounded by the time required to
first optimize SVM parameters and quickly becomes infea-
sible as we increase the number of kernels. For example,
using the strategy of [6], for eight kernels on Caltech-101
101 ∗ 218 ≈ 3.8 trillion SVMs will need to be trained. Ta-
ble 1 summarizes comparison of time required and the test
accuracy of our approach with other methods. We can eas-
ily see that the GP based method has clear computational
and statistical advantages.

Hierarchical Classification

We performed experiments to investigate whether learning
object class hierarchies can improve classification perfor-
mance. Table 1 shows the running time and average ac-
curacies obtained by our hierarchical approach. Note that



Figure 3. One instance of learnt object class hierarchy using Caltech-101 data (15 examples per class, 8 Kernels)

the running time to learn such a hierarchy is just slightly
higher than non-hierarchical probabilistic kernel combina-
tion, and is significantly lower than SVMs, while the per-
formance is improved. Figure 3 shows an example of a
hierarchy learned by our technique. Note that the learned
hierarchy is computed using a confusion matrix; a class is
considered a cluster by itself if it does not get confused.
Thus, the level at which a class becomes a leaf is an indi-
cator of how difficult a class is. For instance, classes like
faces, airplanes, motorbikes are found to be the easiest to
recognize and become leaves at the first level. Note, that
faces, airplanes and motorbikes comprise of three of four
categories of Caltech-4 data and this observation is consis-
tent with other prior work that reported very good accura-
cies with single descriptors [15]. The hardest categories are
grand piano, mandolin, cellphone, emu, bonsai, hedgehog
and mayfly. We find some of the categories that have similar
visual properties are grouped together. For instance, wheel
chair and chair are challenging classes that are grouped at
the second to the last level. However, we also note that two
categories which are traditionally confused in PMK-based
approaches, ketch and schooner, were more easily recog-
nized in the multi-kernel setting; while the PMK and its spa-
tial variant had difficulty classifying those categories, the
AppColour, AppGray, Shape 180 and Shape 260 did pro-
vide very good discriminative features. We must note that
the learned hierarchy is a discriminative hierarchy and not
a semantic one; no clear division along semantic categories
is discernable.

Similarly, we also learned a hierarchical model on
Caltech-256 data. We used the 4 whole-image kernels (Ap-
pColour, AppGray, Shape 180, Shape 260) available from
[1], where a single train-test split with 10 training exam-
ples and 25 test examples per class is provided. The learn-
ing time for a full hierarchical model was 923.12 seconds
despite the large number of classes and we obtained a test
accuracy of 46.36%. The non-hierarchical model obtained
an accuracy of 44.20% (647.61 seconds) outperforming the
method of Varma et al. [29] which achieved 43.03% (11.23
hours), using these 4 kernels. Bosch et al. [6] reports higher
performance using additional kernel matrices not available
to us at this time. Our results confirm that when compared
on the same set of input kernel matrices, our method out-
performs the kernel combination formulations reported in
[29].

Comparison with the State-of-the-Art

Figure 4 shows a comparison of the accuracy obtained with
competing whole-image-kernel approaches. We obtain sig-
nificantly better results than all methods including a non-
regularized kernel learning scheme using GPs. The kernel
combination of Bosch et al. [6] is slightly worse than ours
when tested on the same kernels; we note that their reported
performance is significantly higher (98%) when used with
the full set of their innovative segmentation-mask (ROI)
kernels. We were not able to run our method with the ROI
kernels since only one split was publically available. (Each
test split requires a recomputed set of kernel matricies cor-
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Figure 4. Performance comparison against existing methods on
Caltech-101 that use whole image kernels.

responding to selected test image ROI under their scheme).
Also, note that we can train a full hierarchy for Caltech-101
in as few as 10 minutes on a single CPU machine. Further,
note that we achieve over 64% accuracy with just 2 exam-
ples per class which is better than most of the methods that
use far more images to train. This suggests the utility of the
proposed probabilistic approach to learn good object cate-
gory models with sparse data.

6. Conclusion
We have presented a discriminative probabilistic frame-

work based on Gaussian Processes that performs kernel
combination and learns a hierarchy of visual categories.
Besides providing a principled theoretical methodology for
regularized kernel combination, the proposed scheme has
significant computational advantages. By exploiting the
structure of GPs the method can learn globally optimal ker-
nel combinations for multiclass problems and discover hi-
erarchies very quickly. The empirical experiments indicate
two orders of magnitude in speed with additional boost in
classification accuracy.

We plan extensions of the framework where we both rec-
ognize and detect objects from images. By incorporating
such region of interest detection schemes we should be able
to learn better object categorization models. We also plan
to extend the model to handle multiple objects in the same
image and explore sparse GP techniques for large datasets.
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