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I. INTRODUCTION

The signal processing technique of beamforming is commonlyused to increase the efficiency of a communication
network. While a variety of techniques like adaptive filtering have been used in beamforming, the 1-bit feedback
algorithm used in the implementation of beamforming is fairly new and has been proved to have an efficient
running time [3]. Currently, a 1-bit feedback beamforming algorithm that switches all of the transmitters’ phases
on each iteration to choose a new received signal has been developed and proven to have a running time that is
proportional to the number of transmitters in the system [1]. Another 1-bit feedback beamforming algorithm that
involves switching a few of the transmitters’ phases on eachiteration and has a running time that is proportional
to the number of transmitters has been devised [2], but this analysis was done on only binary signals (signals−1
and1). Our work shows that the 1-bit feedback beamforming algorithm involving few transmitters switching each
iteration has a running time with a linear lower bound even ifthe signals the individual transmitters send out can
be any complex signal on the unit circle (ejθ, θ ∈ [−π, π]).

II. PROBLEM STATEMENT

A. Model Setup

In the communication system at iterationk, there areN transmitters, with each node sendingXi[k] = ejθi[k]. Each
Xi[k] is sent through a channel represented byhi = ejφi . The total received signal isY [k] =

∑N
i=1 ej(θi[k]+φi)+N [k],

whereN [k] is circularly symmetric complex Gaussian noise with variance σ2. The receiver stores the magnitude
of the received signal with the best magnitude so far:‖Ybest[k]‖ = max(‖Y [1]‖, ‖Y [2]‖, . . . ‖Y [k]‖). The receiver
then sends a feedback bitF [k], whereF [k] ∈ {−1, 1}. F [k] = −1 indicates that the received signal’s magnitude
decreased, whileF [k] = 1 indicates that the received signal’s magnitude increased.When‖Ybest[k]‖ ≥ βN for a
given parameterβ ∈ [0, 1], the algorithm terminates.

B. Proposed Algorithm

At time k = 0, the signal transmitters send initial signals with random phases. Each transmitteri transmits
Xi[0] = ej(θi[0]) through a channelhi. The received signalYi[0] =

∑N
i=1 ej(θi[0]+φi) + N [k]. In the proceeding

iterations, a common feedback bitF [k] at timek is sent back over a noiseless channel to the transmitters indicating
whether this current signal’s magnitude is larger or smaller than the largest received signal magnitude so far. At
the transmitters, two sets of signals are stored:X[c] andX[k], wherec denotes the iteration where the transmitted
signals produced the greatest received signal magnitude and k denotes the current iteration. After receiving the
feedback bit from the receiver, the set of transmitted signals X[c] is kept if a−1 bit is received andX[k] is kept if
the feedback bit is+1. After throwing out eitherX[c] or X[k], the transmitters must transmit a new set of signals.
The new set of signals would be chosen like this:

1) Each transmitter chooses a number1 with probability p = α
N

and 0 with probabilityp′ = 1 − α
N

. We refer
to p as the “switch probability”.

2) The transmitters choosing1 will perturb their phases by a random amount chosen from the distribution
Unif[−γ, γ]. These new perturbed signals will be the signals that these transmitters transmit in the next
iteration, while the transmitters choosing 0 will transmitthe same signals that were transmitted in the previous
iteration. After the transmitters choosing 1 toggles theirphases, the algorithm repeats until the received signal
strength is greater thanβN .
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Fig. 1. This plot demonstrates the estimation of the optimalparameters of the algorithm using simulations.

III. N UMERICAL SIMULATIONS FOR THE NOISELESSCASE

In order to maximize the performance of the proposed algorithm, we ran simulations to optimize the two
parameters, phase rangeγ and switch probabilityp in the case where noise is absent in the system. As seen
in Figure 1, the optimal phase range is around3π

16 , and for that particular phase range, the different transmitter
switch probabilities appear to yield similar performances, with the switch probability8

N
producing slightly lower

average running times.
To evaluate our algorithm, we compared it with the algorithmdeveloped by Mudumbai [1]. His algorithm is

very similar to the algorithm we devised, except that after every iteration, all of the transmitters toggle their phases
and transmit a different signal, whereas our algorithm toggles only a few of the transmitters. In comparing the two
algorithms, we ran our algorithm with the optimal parameters found in the previous section (switch probability =
8
N

, phase range =3π
16 ) and ran Mudumbai’s algorithm with the optimal phase range parameter we discovered (phase

range = π
32 ). From Figure 2, it is clear that although Mudumbai’s algorithm performs better for a small number

of transmitters in the network, our algorithm outperforms it as the number of transmitters in the network grows to
larger numbers.

In addition to evaluating our algorithm under the ideal, noise-free conditions, we measured the algorithm’s
performance in situations with different levels of noise. As shown in Figure 3, the algorithm works relatively well
for SNR values above40 dB, but once the SNR decreases to below40 dB, the average running time of the algorithm
deviates from its linear characteristic present in ideal, noise-free circumstances.

IV. M ATHEMATICAL ANALYSIS OF OUR PROPOSEDALGORITHM

To do running time analysis, we approximate our algorithm byanalyzing it as a phase synchronization problem.
Instead of analyzing the time required for the received signal to reach a certain magnitude, we use a probabilistic
model to analyze the time required for the individual transmitted signals to attain a phase within a certain range,
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Fig. 2. This plot compares the running time of the all switch and few switch algorithms

which translates to the received signal attaining a certainrequired magnitude. To validate this proof, we also show
the correspondence between phase synchronization and magnitude maximization. In this proof, we assume thatα
is small enough so that only one transmitter toggles its phase in any iteration.

A. Proof of Linearity with respect to the Number of Transmitters

Because our proposed distributed beamforming algorithm isa probabilistic algorithm, we demonstrate the linearity
of the running time’s lower bound by showing that the lower bound on the expected value of the running time of
the algorithm scales with the number of transmitters in the network. To demonstrate the linearity of the lower bound
of the running time’s expected value, we must first formulatethe definition of the termination of the algorithm.

We define the termination of the algorithm as the iteration when the probability of the phase of any transmitter
having a value betweenarccos(β) and− arccos(β) rises above1−ε, whereε is a very small positive number andβ
is the percentage of total transmit power required for the termination of the algorithm. When this condition occurs,
virtually all of the transmitters have phases betweenarccos(β) and− arccos(β), which means thatcos(Xi) ≥ β
for virtually every i. Since there are N transmitters:

N
∑

i=1

cos(Xi) ≥ βN

This is the desired termination condition as the total strength of the received signal is greater thanβN . For the
probability of the phase of any transmitter to lie betweenarccos(β) and− arccos(β), that transmitter must have
on average toggled a certain number of timesx.

x =
4

γ
(
π

2
− arccos(β))
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Fig. 3. This is a plot of the running times of the few switch algorithm at different noise levels

γ is the improvement phase range. In the average case, the average initial phase difference between any given
transmitter and the boundaries of the target phase rangearccos(β) and − arccos(β) is (π

2 − arccos(β)) since
initially, a transmitter’s phase differs from0 by π/2 in the average case. The probability that a transmitter’s phase
improves on any iteration is approximately12 , provided thatγ is sufficiently small, and if the transmitter does
improve its phase, the expected amount of phase improvementis γ

2 . This means that the expected value for the
phase improvement isγ4 if a transmitter is toggled. Since the average phase improvement per toggle isγ4 and the
goal is to improve the initial phase by an average phase of(π

2 − arccos(β)), the average number of toggles needed
to reach the goal would bex = 4

γ
(π

2 − arccos(β)).
The probability that a given transmitter has toggled at least x times afterT total toggles is:

T
∑

i=x

(

T

i

)

(
1

N
)i(1 −

1

N
)T−i = 1 −

x−1
∑

i=0

(

T

i

)

(
1

N
)i(1 −

1

N
)T−i

To reach termination condition,

1 −

x−1
∑

i=0

(

T

i

)

(
1

N
)i(1 −

1

N
)T−i ≥ 1 − ε,

or
x−1
∑

i=0

(

T

i

)

(
1

N
)i(1 −

1

N
)T−i ≤ ε

Using Chernoff’s inequality:
x−1
∑

i=0

(

T

i

)

(
1

N
)i(1 −

1

N
)T−i ≤ e−

N

2T
( T

N
−x+1)2



Let C = x − 1. The previous inequality implies:

e−
N

2T
( T

N
−C)2 ≤ ε

which implies− N
2T

( T
N

− C)2 ≤ ln ε. Solve the quadratic inequality for T:

T ≥ N(C − ln ε +
√

(ln ε)2 − 2C ln ε)

Sinceε < 1 andC > 0, the expression inside the square root is always positive, which means that the expression
above is always real. This result implies that the lower bound on the number of iterations taken on average to
toggle (1 − ε)N transmitters x times is linear with respect to the number of transmitters in the system.

B. Correspondence of phase synchronization and magnitude

To justify decomposing the magnitude maximization probleminto a phase synchronization problem, we now
prove that moving the phase of one transmitter away from the phase of the total summed signal almost always
results in a decrease in magnitude and vice versa. This proofis an assumption that only one transmitter is chosen
to toggle on a particular iteration. Without loss of generality, assign a phase of0 radians to the initial resultant
received signalR. Let θ be the initial phase of the one transmitter chosen to toggle in the next iteration andφ be
the phase of that same transmitter after toggling. Therefore, the initial signal of the transmitter selected to toggle
is t = cos(θ) + j sin(θ) and t′ = cos(φ) + j sin(φ) is the signal of the same transmitter after toggling (see Figure
4). The difference vector between the total received signalbefore and after toggling is represented asz = t′− t, or
breakingt′ andt into components,z = cos φ− cos θ + j sin(φ)− j sin(θ) since all of the signals of the transmitters
lie on the unit circle.‖R′‖ represents the magnitude of the new received signal while‖R‖ is the magnitude of the
old received signal.

‖R′‖ =
√

(‖R‖ + cos(φ) − cos(θ))2 + (sin(φ) − sin(θ))2

or
‖R′‖ =

√

‖R‖2 + 2‖R‖(cos(φ) − cos(θ)) + (cos(φ) − cos(θ))2 + (sin(φ) − sin(θ))2

For ‖R′‖ < ‖R‖,

2‖R‖(cos(φ) − cos(θ)) + (cos(φ) − cos(θ))2 + (sin(φ) − sin(θ))2 < 0

or

2‖R‖(cos(φ) − cos(θ)) + (cos(φ))2 − 2 cos(φ) cos(θ) + (cos(θ))2 + (sin(φ))2 − 2 sin(φ) sin(θ) − (sin(θ))2 < 0

which is equal to
2‖R‖(cos(φ) − cos(θ)) + 2(1 − cos(φ) cos(θ) − sin(φ) sin(θ)) < 0

or
2‖R‖(cos(φ) − cos(θ)) + 2(1 − cos(φ − θ)) < 0

Working out the algebra, this expression is equal to:

cos φ − cos θ <
cos(φ − θ) − 1

‖R‖

If ‖R‖ is large enough, this inequality can be approximated by:cos φ − cos θ < 0. This happens only if|θ| < |φ|,
i.e. the new phaseφ is further from the phase of the resultant than the old phaseθ, since cosine is monotonically
decreasing from0 to π. This means that perturbing a transmitter’s phase away fromthe phase of the total received
signal results in a decrease in magnitude of the total received signal.



Fig. 4. This is a figure of the signals in an iteration of the algorithm with one transmitter toggling

V. CONCLUSION AND FUTURE WORK

In our work, we have devised a novel beamforming method for transmitters transmitting complex signals with
unit power and shown that the lower bound on the time requiredfor the algorithm to complete is proportional
to the number of transmitters. Linearity is hard to achieve for an inherently nonlinear problem like beamforming,
and creating a beamforming technique that exhibits linearity for a relatively general class of signals represents a
breakthrough in the development of efficient beamforming algorithms. In addition to the linearity of the lower bound
of the convergence time of our beamforming technique, the 1-bit feedback nature of the algorithm greatly reduces
the computational complexity and power usage of the transmitters in the communication network. One problem
that remains to be solved is the issue with the robustness of the algorithm to noise. Currently, this beamforming
technique exhibits linear running time provided that the channels through which transmitters transmit signals are
noise free. However, the algorithm loses the ability to converge in linear time when the SNR of the channels drop
below 50 dB. The solution to this robustness issue remains anopen topic for further research.
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