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. INTRODUCTION

The signal processing technique of beamforming is commoséd to increase the efficiency of a communication
network. While a variety of techniques like adaptive filbgrihave been used in beamforming, the 1-bit feedback
algorithm used in the implementation of beamforming islyaimew and has been proved to have an efficient
running time [3]. Currently, a 1-bit feedback beamformirigagithm that switches all of the transmitters’ phases
on each iteration to choose a new received signal has beatoged and proven to have a running time that is
proportional to the number of transmitters in the system fijother 1-bit feedback beamforming algorithm that
involves switching a few of the transmitters’ phases on a@fation and has a running time that is proportional
to the number of transmitters has been devised [2], but thadyais was done on only binary signals (signals
and1). Our work shows that the 1-bit feedback beamforming atgoriinvolving few transmitters switching each
iteration has a running time with a linear lower bound eveth@ signals the individual transmitters send out can
be any complex signal on the unit circle’{, 6 € [, 7]).

[l. PROBLEM STATEMENT
A. Model Setup

In the communication system at iteratibnthere areV transmitters, with each node sendifigk] = e%ilkl Each
X;[k] is sent through a channel representedpy- /¢:. The total received signal i§[k] = S~ | e/ ¢k +60 1 N[k],
where N [k] is circularly symmetric complex Gaussian noise with vac@n?®. The receiver stores the magnitude
of the received signal with the best magnitude so f&f.. (k]| = max(|Y[1]]], [|Y[2]ll,.-- ||Y[k]|]). The receiver
then sends a feedback Wit/k], where F[k] € {—1,1}. F[k] = —1 indicates that the received signal’s magnitude
decreased, whilé’[k] = 1 indicates that the received signal’s magnitude increagéten ||Y,.«[k]|| > SN for a
given parametep < [0, 1], the algorithm terminates.

B. Proposed Algorithm

At time k = 0, the signal transmitters send initial signalghwiandom phases. Each transmitietransmits
X;[0] = /%) through a channeh;. The received signal;[0] = SN, /(@0+¢) 1 N[k]. In the proceeding
iterations, a common feedback Wi{k] at timek is sent back over a noiseless channel to the transmitteicaiimh
whether this current signal's magnitude is larger or smahan the largest received signal magnitude so far. At
the transmitters, two sets of signals are stot€¢t] and X [k], wherec denotes the iteration where the transmitted
signals produced the greatest received signal magnitudekatenotes the current iteration. After receiving the
feedback bit from the receiver, the set of transmitted $gyAdc] is kept if a—1 bit is received andX [k] is kept if
the feedback bit is+1. After throwing out eithetX [c] or X [k], the transmitters must transmit a new set of signals.
The new set of signals would be chosen like this:

1) Each transmitter chooses a numbewith probability p = £ and 0 with probabilityp’ = 1 — &. We refer

to p as the “switch probability”.

2) The transmitters choosing will perturb their phases by a random amount chosen from fibgilmltion
Unif[—v,~]. These new perturbed signals will be the signals that thesesmitters transmit in the next
iteration, while the transmitters choosing 0 will transthi¢ same signals that were transmitted in the previous
iteration. After the transmitters choosing 1 toggles tipfiases, the algorithm repeats until the received signal
strength is greater thafiN.
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Fig. 1. This plot demonstrates the estimation of the optipsmhmeters of the algorithm using simulations.

1. NUMERICAL SIMULATIONS FOR THE NOISELESSCASE

In order to maximize the performance of the proposed algoritwe ran simulations to optimize the two
parameters, phase rangeand switch probabilityp in the case where noise is absent in the system. As seen
in Figure 1, the optimal phase range is aro@%d and for that particular phase range, the different tratiemi
switch probabilities appear to yield similar performanoegh the switch probability% producing slightly lower
average running times.

To evaluate our algorithm, we compared it with the algoritdeveloped by Mudumbai [1]. His algorithm is
very similar to the algorithm we devised, except that aftere iteration, all of the transmitters toggle their phases
and transmit a different signal, whereas our algorithm eggnly a few of the transmitters. In comparing the two
algorithms, we ran our algorithm with the optimal parameteund in the previous section (switch probability =
%, phase range %) and ran Mudumbai’s algorithm with the optimal phase rangemeter we discovered (phase
range =s5). From Figure 2, it is clear that although Mudumbai’s algun performs better for a small number
of transmitters in the network, our algorithm outperformas the number of transmitters in the network grows to
larger numbers.

In addition to evaluating our algorithm under the ideal, seefree conditions, we measured the algorithm’s
performance in situations with different levels of noises ghown in Figure 3, the algorithm works relatively well
for SNR values abové0 dB, but once the SNR decreases to belidwB, the average running time of the algorithm
deviates from its linear characteristic present in idealse-free circumstances.

IV. MATHEMATICAL ANALYSIS OF OURPROPOSEDALGORITHM

To do running time analysis, we approximate our algorithmahglyzing it as a phase synchronization problem.
Instead of analyzing the time required for the received aigm reach a certain magnitude, we use a probabilistic
model to analyze the time required for the individual traitsd signals to attain a phase within a certain range,



Few Switch Compared with All Switch
12.5 T T T T T T T T

©)

few switch E

O all switch
115} i

12

11

10.5

10

9.5

o
6]
T
1

O
st 0o O o))

75 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
number of transmitters

Normalized Running Time (iterations / number of transmitters)

Fig. 2. This plot compares the running time of the all switcld dew switch algorithms

which translates to the received signal attaining a cereguired magnitude. To validate this proof, we also show
the correspondence between phase synchronization andtagemaximization. In this proof, we assume that
is small enough so that only one transmitter toggles its @lasny iteration.

A. Proof of Linearity with respect to the Number of Transmitters

Because our proposed distributed beamforming algoritherpiobabilistic algorithm, we demonstrate the linearity
of the running time’s lower bound by showing that the loweubhd on the expected value of the running time of
the algorithm scales with the number of transmitters in thgvork. To demonstrate the linearity of the lower bound
of the running time’s expected value, we must first formulhte definition of the termination of the algorithm.

We define the termination of the algorithm as the iteratiorethe probability of the phase of any transmitter
having a value betweeirccos(3) and— arccos(/3) rises above — ¢, wheree is a very small positive number aritl
is the percentage of total transmit power required for theniteation of the algorithm. When this condition occurs,
virtually all of the transmitters have phases betweettos(3) and — arccos(3), which means thatos(X;) >
for virtually everyi. Since there are N transmitters:

N
Z cos(X;) > BN
i=1

This is the desired termination condition as the total gjtierof the received signal is greater thA&. For the
probability of the phase of any transmitter to lie betweeeacos(3) and — arccos(), that transmitter must have
on average toggled a certain number of times

xr =

(

o1 3

— arccos(3))

EYIFS



Running Times at Different Noise Levels
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Fig. 3. This is a plot of the running times of the few switchaithm at different noise levels

~ is the improvement phase range. In the average case, thagavaiitial phase difference between any given
transmitter and the boundaries of the target phase ranges(3) and — arccos(3) is (5 — arccos(3)) since
initially, a transmitter's phase differs frof by 7/2 in the average case. The probability that a transmitter&ssph
improves on any iteration is approximate%y provided thaty is sufficiently small, and if the transmitter does
improve its phase, the expected amount of phase improveiment This means that the expected value for the
phase improvement ig if a transmitter is toggled. Since the average phase impnene per toggle is; and the
goal is to improve the initial phase by an average phagg ef arccos(3)), the average number of toggles needed
to reach the goal would be = 7 (% — arccos(/3)).

The probability that a given transmitter has toggled attleasmes after?" total toggles is:

> (5)ra-yr==1- > (})ra-pr

1= 1=0
To reach termination condition,
iyl AU 1.,

1 _ _ KA _ —1 > _
> () @ra-grizi-e
=0

or .
.
T\ 1. I
=) (1 — — <L
> (7) e s

Using Chernoff's inequality:



Let C = = — 1. The previous inequality implies:
6_%(%_0)2 <€

which implies— 2% (% — C)? < Ine. Solve the quadratic inequality for T:

T >N(C—1Ine++/(Ine)2 —2C1ne)

Sincee < 1 andC > 0, the expression inside the square root is always positivéchwmeans that the expression
above is always real. This result implies that the lower lmbon the number of iterations taken on average to
toggle (1 — €) NV transmitters x times is linear with respect to the numberafigmitters in the system.

B. Correspondence of phase synchronization and magnitude

To justify decomposing the magnitude maximization problewo a phase synchronization problem, we now
prove that moving the phase of one transmitter away from tnes@ of the total summed signal almost always
results in a decrease in magnitude and vice versa. This jsani assumption that only one transmitter is chosen
to toggle on a particular iteration. Without loss of gengyabssign a phase df radians to the initial resultant
received signaR. Let ¢ be the initial phase of the one transmitter chosen to toggkhe next iteration ang be
the phase of that same transmitter after toggling. Theeefibre initial signal of the transmitter selected to toggle
is t = cos(0) + jsin(f) andt’ = cos(¢) + jsin(¢) is the signal of the same transmitter after toggling (seeirféig
4). The difference vector between the total received sigp&dre and after toggling is representedzas t' — ¢, or
breakingt’ andt¢ into components; = cos ¢ — cos 6 + j sin(¢) — j sin(6) since all of the signals of the transmitters
lie on the unit circle||R'|| represents the magnitude of the new received signal witle is the magnitude of the
old received signal.

IRl = V/(IR] + cos(¢) — cos(8))? + (sin(¢) — sin(f))2

or

IR = V/IRI? + 2[Rl (cos(@) — cos(8)) + (cos() — cos(8))? + (sin(@) — sin())?
For | R'|l < IR,
2| Rl (cos(6) — cos(6)) + (cos() — cos(8))? + (sin(@) — sin(9))? < 0
or
2|[Rl|(cos(9) — cos(8)) + (cos())? — 2cos(@) cos(8) + (cos(8))? + (sin(6))* — 2sin(6) sin(9) — (sin(6))? < 0

which is equal to
2||R||(cos(¢) — cos(f)) + 2(1 — cos(¢) cos(f) — sin(¢) sin(h)) < 0

or
2| R||(cos(¢) — cos(#)) +2(1 — cos(¢p — ) < 0
Working out the algebra, this expression is equal to:
cos(¢p—0) — 1
IR
If |R] is large enough, this inequality can be approximatedcby — cos# < 0. This happens only iff| < |¢],
i.e. the new phase is further from the phase of the resultant than the old plasénce cosine is monotonically

decreasing front) to 7. This means that perturbing a transmitter’s phase away thenphase of the total received
signal results in a decrease in magnitude of the total redesignal.

cos¢p —cosf <




Fig. 4. This is a figure of the signals in an iteration of theoailtpm with one transmitter toggling

V. CONCLUSION AND FUTURE WORK

In our work, we have devised a novel beamforming method famdmitters transmitting complex signals with
unit power and shown that the lower bound on the time requioedhe algorithm to complete is proportional
to the number of transmitters. Linearity is hard to achiemean inherently nonlinear problem like beamforming,
and creating a beamforming technique that exhibits limgdar a relatively general class of signals represents a
breakthrough in the development of efficient beamformimgpathms. In addition to the linearity of the lower bound
of the convergence time of our beamforming technique, tihé feedback nature of the algorithm greatly reduces
the computational complexity and power usage of the tratbsraiin the communication network. One problem
that remains to be solved is the issue with the robustnesseolgorithm to noise. Currently, this beamforming
technique exhibits linear running time provided that tharoiels through which transmitters transmit signals are
noise free. However, the algorithm loses the ability to @vge in linear time when the SNR of the channels drop
below 50 dB. The solution to this robustness issue remainspan topic for further research.
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