
Contributions to the Study of Autonomous Chaotic

Circuits and Cellular Automata

Bharathwaj Muthuswamy

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-164

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-164.html

December 9, 2009

Copyright © 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Contributions To The Study of Autonomous Chaotic Circuits and Cellular
Automata

by

Bharathwaj Muthuswamy

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Leon O. Chua, Chair
Professor Pravin P. Varaiya

Professor Andrew Szeri

Fall 2009

Contributions To The Study of Autonomous Chaotic Circuits and

Cellular Automata

Copyright 2009

by

Bharathwaj Muthuswamy

1

Abstract

Contributions To The Study of Autonomous Chaotic Circuits and Cellular
Automata

by

Bharathwaj Muthuswamy

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Leon O. Chua, Chair

This work focuses on autonomous chaotic circuits and cellular automata. In the realm
of chaotic systems, it is often difficult to rigorously prove the existence of chaos. For
example, the Lorenz system that was discovered in 1963 was rigorously proved to be
chaotic only in 1999, after a span of 36 years. Hence, the first part of this thesis
concerns rigorous proofs of chaos. The first approach uses a combination of linear
dynamics, trajectory analysis in the Jordan space and describing function techniques
for period-doubling bifurcations. This approach is applied to a rigorous proof of chaos
in the Four-Element Chua’s circuit, the simplest chaotic circuit. To our knowledge,
this is the first rigorous proof of chaos in the Four-Element Chua’s circuit. The second
approach involves topological horseshoe theory and is applied to memristor based
chaotic systems. This thesis also proposes a realization of a memristor based chaotic
system on the breadboard. To our knowledge, this is the first analog realization of a
memristor which is not based on designing a mutator for converting a v-i curve into
a phi-q curve and also the first rigorous verification of chaos in a memristor based
chaotic system. Both these approaches provide the reader with mathematical tools for
investigating the behavior of continuous time chaotic systems. In the second part of
this thesis, the relationship between bit length and attractor periods of totalistic one
dimensional cellular automata are classified. Specifically, the relationship between
integer factorization and dynamics of totalistic one dimensional cellular automata is
explored for the first time.

The organization of this thesis is: in Chapter 1 we discuss background material
necessary for understanding this thesis. Chapter 2 discusses the rigorous proof of
chaos in the Four-Element Chua’s circuit. Chapter 3 involves memristor based (higher
dimensional) chaotic circuits and topological horseshoe theory. Chapter 4 explores
the relationship between integer factorization and cellular automata. This is followed
by conclusions with suggestions for future work, bibliography and appendices with
simulation code.

i

Dedicated To God

ii

Contents

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Mathematical Notation . 1
1.2 Autonomous Chaotic Circuits . 2

1.2.1 A Brief History of Chaos . 2
1.2.2 The Four Basic Circuit Elements 5
1.2.3 An Introduction to Chua’s Circuit 5
1.2.4 References for Chaotic Systems 8

1.3 Cellular Automata . 9
1.3.1 A Brief History of Cellular Automata 9
1.3.2 Wolfram’s work on Cellular Automata 11
1.3.3 Nonlinear Dynamics Perspective of Cellular Automata 11
1.3.4 References for Cellular Automata 11

1.4 A Summary of Thesis Contributions 11

I Autonomous Chaotic Circuits 14

2 Rigorous Proof of Chaos in the Four-Element Chua’s Circuit 15
2.1 Introduction and Chapter Organization 15
2.2 Introduction to the Four-Element Chua’s circuit and Main Result . . 15
2.3 Intuitive Ideas Behind the Proof . 20
2.4 Rigorous proof of chaos via Shilnikov’s Theorem 26

2.4.1 Definitions for proving that xe is a hyperbolic saddle 26
2.4.2 Proving that xe is a hyperbolic saddle 28
2.4.3 Proving that a homoclinic orbit exists at xe and related definitions 30

2.5 Bifurcation analysis using Describing Functions 35
2.5.1 One Parameter Bifurcation Diagram for the Four-Element Chua’s

circuit . 35

iii

2.5.2 Introduction to Describing Functions 35
2.5.3 Period-Doubling Criterion Based on the Describing Function . 36
2.5.4 Period-Doubling Route to Chaos in the Four-Element Chua’s

circuit . 37
2.6 Conclusion . 38

3 Memristor Based Chaotic Circuits and Topological Horseshoe The-
ory 39
3.1 Introduction and Chapter Organization 39
3.2 Memristor Based Chaotic Circuits and Main Result 39
3.3 Canonical Memristor Based Chaotic Circuit 42
3.4 Four Element Memristor Based Chaotic Circuit 44
3.5 Four Element Memristor Based chaotic circuit with one negative element 45
3.6 Five Dimensional Memristor Based Chaotic Circuit 48
3.7 Lyapunov Exponent Calculations . 50
3.8 Topological Horseshoe Theory and Rigorous Verification of Chaos . . 54

3.8.1 Intuitive Ideas Behind the Proof 54
3.8.2 Rigorous Verification of Chaos in Canonical Memristor Based

Chaotic Circuit . 55
3.9 Implementing Memristor Based Chaotic Circuits 58

3.9.1 Practical Implementation of a Memristor 58
3.9.2 Limit Cycles, Strange Attractors and Power Spectra from the

Memristor Chaotic Circuit . 62
3.10 Lyapunov Exponents for The Practical Memristor Based Chaotic Circuit 66
3.11 A Note On Implementation Issues . 67
3.12 Conclusion . 67

II Cellular Automata 69

4 Integer Factorization and Cellular Automata 70
4.1 Introduction and Chapter Organization 70
4.2 Important Definitions and Main Result 70
4.3 Rigorous Proof of Factorization Property of Rule 46 72
4.4 A New Classification Scheme for Cellular Automata Evolution 72
4.5 Conclusion . 73

III End Matter 76

5 Conclusions and Future Work 77

Bibliography 78

iv

A Mathematica 6.0 and MATLAB R2007b Code 82
A.1 The Lorenz Butterfly . 82
A.2 Four Element Chua’s circuit . 82
A.3 Four Element Chua’s circuit - eigenvalues and eigenspaces 83
A.4 Mathematica code for the Four-Element Bifurcation Diagram 84
A.5 MATLAB simulation code for Canonical Memristor Based Chaotic Cir-

cuit . 85
A.6 MATLAB simulation code for Rescaled Canonical Memristor Based

Chaotic Circuit . 87
A.7 MATLAB simulation code for four element memristor based chaotic

circuit . 89
A.8 MATLAB simulation code for four element memristor based chaotic

circuit with single negative element 92
A.9 Lyapunov Exponent programs . 94
A.10 Mathematica Code for Rigorous Verification of Chaos in Memristor

Chaotic Circuit . 98
A.11 Mathematica Demonstration for Cubic Memristor Based Chaotic Circuit100
A.12 Mathematica code for Cellular Automata evolution and Integer Fac-

torization . 101

v

List of Figures

1.1 A trajectory of a tiny mass in the three-body problem 3
1.2 The Lorenz butterfly in phase space, observed from simulating Equa-

tion 1.1 for 100 seconds. Parameters are σ = 10, ρ = 28, β = 8
3
.

Initial conditions are x0 = 10, y0 = 20, z0 = 30. 4
1.3 The Four Basic Circuit Elements . 6
1.4 Chua’s circuit is a simple autonomous circuit with a chaotic attractor. 7
1.5 Realization of Chua’s circuit using two op amps and six linear resistors

to implement the nonlinear resistor 8
1.6 The oscilloscope showing the double-scroll, X-axis is measuring vC1

(scale is 1.00 V/div) and the Y-axis measuring vC2 (scale is 0.5 V/div). 9
1.7 Example of Cellular Automata evolution, the local rule used is 110.

Here 1101 is the initial condition for a 1-D 4-cell CA. The cells can
be in state 0 or state 1 (binary CA). The truth table for rule 110 is
given. Consider the first cell that contains a 0 (the rightmost cell is
numbered 0). The left and right neighbor cells are the second and zero
cell, respectively, both containing 1. The output of the first cell would
be the output mapped from the 3-tuple (1,0,1) from the truth table of
local rule 110. According to the truth table, when xi−1 = 1, xi = 0,
and xi+1 = 1, the output yi = 1 and hence the output of the first cell
at iteration 1 is ”1”. The same process is repeated for each cell listed
in the initial condition, resulting in the new evolution 0,1,1,1. 10

1.8 Removing the linear resistor (i.e..replacing it with a short circuit) in
Chua’s circuit leads to a two dimensional system because C1 and C2

can be combined in parallel . 12
1.9 Alternate version of Chua’s Circuit 12
1.10 A chaotic circuit with only four elements 13

2.1 The Four-Element Chua’s Circuit . 16
2.2 A plot of v2(t) vs. v1(t) for the Four-Element Chua’s circuit 17
2.3 Plot of i(t) for the first 5 ms . 17
2.4 v2(t) vs. v1(t) from an oscilloscope. The Printed Circuit Board real-

ization of the Four-Element Chua’s circuit is shown. 18

vi

2.5 Alternate version of Chua’s Circuit 18
2.6 Period doubling route to chaos in a synthetic inductor version of Chua’s

circuit. The bifurcation parameter is a capacitance. The oscilloscope
is setup in X-Y mode and is probing the voltages across two capacitors. 21

2.7 Illustration of a typical homoclinic orbit [37] in R3. The arrowheads
indicate forward evolution of time. The homoclinic orbit H is based at
a hyperbolic saddle focus xe having a positive real equilibrium eigenvalue. 22

2.8 Illustration of Poincare map P : U → Σ local to a periodic orbit ∆ [37].
We call the plane Σ a local cross section at x∗. The transversality of Σ
to the flow means that ξ(x) is not parallel to Σ for all x in Σ. A sample
orbit initiating at x1 ∈ Σ and intersecting Σ twice more at x2 and x3

is shown. In terms of P , this implies that x2 = P (x1), x3 = P (x2) and
hence, x3 = P (2)(x1). 23

2.9 The Shilnikov map P : V → Σ0 ∪ Σ̃0 for the case of a homoclinic
orbit H based at the saddle focus xe [37]. Here, V is a small section
of the cylindrical surface Σ0. The map ψe : Σ0 → Σ1 characterizes
the behavior local to xe whereas ψh : Σ1 → Σ0 ∪ Σ̃0 takes care of the
behavior local to the portion of H that is not in the neighborhood of xe. 24

2.10 Geometric illustration of the simplified Smale horseshoe map fs [37].
Its basic characteristics of 1) mapping disjoint regions (such as H0

and H1) over themselves and 2) ”strong” stretching and contraction in
complementary directions are representative of the Poincare maps for
many of the continuous dynamical systems that exhibit chaotic behavior. 25

2.11 Plot of stable and unstable eigenspaces associated with the Jacobian
in each region for the Four-Element Chua’s circuit. Also shown is a
homoclinic orbit H. This will be discussed in the section on homoclinic
orbits at xe. 27

2.12 Geometrical structure and typical trajectories of our system in the Jor-
dan space. Half-return maps are also shown. Note that for simplicity,
for the Jordan space, we have reused the figure from [8]. 31

2.13 The bifurcation diagram showing the onset of period doubling route to
chaos as γ∗ decreases from 1 to 0.8. Notice the onset of period-doubling
bifurcation at γ∗ = 1. This property will be proved rigorously in this
section. 35

2.14 Lure form, for autonomous systems r = 0. 36

3.1 The four basic circuit elements . 40
3.2 The simplest Chua’s circuit and its typical attractor [2] 44
3.3 A realization of the four-element Chua’s circuit [2] 45
3.4 Four-element memristor-based chaotic circuit 46
3.5 Four-element memristor-based chaotic circuit showing only the basic

circuit elements. The effect of op-amp A1 from Fig. 3.4 is the set −κ. 46

vii

3.6 Memristance function W (φ) as defined in Mathematica. 47
3.7 3D attractor from the four-element memristor-based chaotic circuit. . 48
3.8 2D Projections of the attractor from the four-element memristor-based

chaotic circuit. 49
3.9 3D attractor from the four-element memristor-based chaotic circuit

with only one negative element. 50
3.10 2D Projections of the attractor from the four-element memristor-based

chaotic circuit with only one negative element. 51
3.11 Note that the addition of the inductor L1 results in a five dimensional

circuit. We can obtain chaos for an inductor value of 180 mH. 52
3.12 Attractors obtained from the five dimensional circuit. Note that state

scaling has already been incorporated. 53
3.13 A cross section of the attractor obtained by the plane φ = −1. Note

that the variables have been linearly scaled to realistic values. 55
3.14 Subset Q of X for calculating the cross number. The two compact

subsets Q1 and Q2 of Q are shown as parallelograms a′ and b′ 57
3.15 Practical Circuit for Realizing a memristor. 59
3.16 Plot of Charge vs. Flux along with a plot of the menductace function

for our memristor . 59
3.17 Schematic of the memristor based chaotic circuit. 61
3.18 Phase plot, time domain waveforms and power spectra for a limit cy-

cle and a strange attractor from the memristor based chaotic circuit.
Channel 1 (X) is across φ(t) (Node 15 in Fig. 3.17) and Channel 2 (Y)
is across v2(t) (Node 9 in Fig. 3.17). 63

3.19 Schematic of the memristor based chaotic circuit for illustrating bifur-
cation phenomenon . 64

3.20 Phase portrait, power spectrum and time domain waveform for (a)
through (c), period-1 limit cycle Rpot = 2.24k;(d) through (f) period-
2 limit cycle, Rpot = 2.20k. Here, C2 = 47 nF and C1 = 4.7 nF . The
menductance parameters remain the same. Channel 1 (X) is across
φ(t) (Node 15 in Fig. 3.19) and Channel 2 (Y) is across v2(t) (Node 9
in Fig. 3.19). 65

3.21 Phase portrait, power spectrum and time domain waveform for (g)
through (i), period-4 limit cycle Rpot = 2.18k; (j) through (l) attractor,
Rpot = 2.16k. Here, C2 = 47 nF and C1 = 4.7 nF . The menductance
parameters remain the same. Channel 1 (X) is across φ(t) (Node 15 in
Fig. 3.19) and Channel 2 (Y) is across v2(t) (Node 9 in Fig. 3.19). . . 66

3.22 A screenshot from a Mathematica demonstration showing the v2(t) vs
φ(t) attractor, among other plots. 67

4.1 Structure of a Cellular Automata . 71
4.2 Evolution of Rule 46 (L = 6) for a specific initial condition 74

viii

List of Tables

3.1 In order to obtain the memristor based chaotic circuit, we replaced the
nonlinear resistor in Chua’s circuit with a memristor. 41

3.2 Attractors from the state-scaled canonical memristor-based circuit . . 43
3.3 Summary of Lyapunov exponent computations via QR method and

Time Series method . 51

4.1 Cellular Automaton Update Function 71
4.2 Rule 46 Update Function . 74
4.3 Rule 46 Attractor List and Period(s) for a few bit lengths 75

ix

Acknowledgments

First, I want to thank Ferenc Kovac of the Electronic Support Group and Carl Chun
from the Connectivity Lab for funding me all these years. They have also been
professional and personal mentors. Many thanks to Hugo Andrade from National
Instruments for the additional funding. The EECS department was generous enough
to let me be a teaching assistant all these years. Coming to the faculty side, Dr.
Pravin Varaiya was instrumental for all my success at the University of California,
Berkeley. I owe my PhD and my career to Pravin. My advisor, Dr. Leon Chua, has
provided me with the necessary emotional and intellectual support for finishing this
thesis. It will always be a pleasure to interact with Leon. I will always be sad that
I did not get to work with Leon since the 1960s! Dr. Andrew Szeri, the external
committee member and Head of the Graduate Division at UC Berkeley, has taken
the time to be on my qualifying exam committee. He was also very helpful when I
met him in February 2009 and offered me valuable advice that helped me finish this
thesis.
My friends - Sandra, Andrea, Tamara, Pracheta, Alex, Prahalika, Priyanka, and
Shimul - where would I be without you? A shout-out to the IEEE lab folks in Spring
2009, my family away from family! Ian, Prashant, Ronnie, Raffi (East LA City
College) and Sergei - all those hours of CounterStrike kept me going. The one-two
punch of Donovan and Joanna kept me motivated. Sheila Ross and Ashwin Ganesan
were there for me during the dark ages. ”Crazy” Joe Makin, Alessandro Abate and
John Secord helped me pass my prelims.
My dad, with the help of my mom, made a Michael Jordanesque comeback from a
life threatening illness to see me graduate with a PhD. My brother has always been
there for me and will always be there for me. Ruth Gjerde helped me navigate the
minefield that is graduate bureaucracy. A round of thanks to the Cory hall folks and
everyone who has worked with me throughout the years for all their help. Last but
not least I want to thank my wife, Deepika, who has been with me always.

1

Chapter 1

Introduction

In this chapter we will go through the background material required for under-
standing this dissertation. The first section of this chapter explains the mathematical
notation used in the dissertation.

Next we will give an introduction to autonomous chaotic circuits. First we look at
a brief history of chaos. We will then discuss the four basic elements that serve as the
building blocks of circuits. This is followed by a discussion of the first autonomous
chaotic circuit, Chua’s circuit [28]. This section will be concluded with a list of
references for studying chaos.

The Cellular Automata section of this chapter also begins with a brief history
followed by an overview of Wolfram’s work on the algebraic properties of Cellular
Automata [47]. Next Chua’s application of nonlinear dynamics to Cellular Automata
is discussed [12]. The section concludes with a list of references for Cellular Automata.
The chapter concludes with a summary of the main contributions of this thesis.

1.1 Mathematical Notation

The mathematical notation used in this thesis is standard; nevertheless, this sec-
tion clarifies the notation used in this thesis [27]. First, crucial terms and ideas in
the text are emphasized in italic font. Main results are emphasized in bold italics
font.

Lowercase letters from the Latin alphabet (a - z) are used to represent variables,
with italic script for scalars and bold invariably reserved for vectors. The letter t is
of course always reserved for time.

Real-valued functions, whether scalar- or vector-valued, are usually taken (as con-
ventionally) from lowercase Latin letters f through h, plus r and s. Vector-valued
functions and vector fields are bolded as well, the difference between the two being
indicated by the argument font; hence f(x) and f(x) respectively. When these letters
have been exhausted, functions resort to the back of the Greek alphabet, capitaliza-

2

tion there indicating vector outputs.
Integers are represented by the lowercase Latin letters from i to q - excluding l

and o for their likeness to 1 and 0, and k for its use as a generic rate constant - with
n usually reserved for the dimension of the state.

(Constant) matrices and vectors are represented with capital and lowercase letters,
respectively, from the beginning of the Latin alphabet. Vectors are again bolded. In
the context of linear time-invariant systems, the usual conventions are respected: A is
the state matrix and B (b) is the input matrix (vector). Constant scalars are usually
drawn from the beginning of the Greek alphabet, although the sampling interval is
always symbolized by T .

Calligraphic script is reserved for sets, which use capital Latin letters. Elements
of sets are then represented with the corresponding lowercase letter. Excepted are
the well known number sets, which are rendered in blackboard bold: N, Z, R, and
C for the naturals, integers, reals, and complex numbers, respectively. The natural
numbers are taken to include 0; restrictions to the positive or negative subsets are
indicated by a superscripted + or −. As usual, C0 is the set of continuous functions.

Subscripts denote the elements of a matrix or vector: di is the ith column of D; xj
is the jth element of x. Plain numerical superscripts on the other hand may indicate
exponentiation, a recursive operation, or simply a numbering, depending on context.

Differentiation is expressed as follows. Time derivatives use Liebniz’s notation or
Newton’s notation: one, two, or three dots over a variable for the corresponding num-
ber of derivatives, and a parenthetical superscripted numeral for higher derivatives.
Leibniz’s notation is used explicitly for non-time derivatives.

Finally:
∑

i is used for summations; a superscripted T indicates the matrix trans-
pose; ∈ denotes set inclusions; I is reserved for the identity matrix. All vectors are
assumed to be columns.

1.2 Autonomous Chaotic Circuits

1.2.1 A Brief History of Chaos

In 1889, to commemorate the 60th birthday of King Oscar II of Sweden and Nor-
way, a contest was held to produce the best research in celestial mechanics pertaining
to the three-body problem. The problem involved a system of three masses inter-
acting exclusively through gravitational acceleration. The winner was declared to be
Henri Poincare, a professor at the University of Paris [1].

Poincare submitted an entry full of seminal ideas. In order to make progress on
the problem, he made three simplifying assumptions. First, he assumed that the three
bodies were all moving in a plane. Second, he assumed that two of the bodies were
massive and that the third had negligable mass, so small that it did not affect the
motion of the other two. We can imagine two stars and a small asteroid. In general,

3

Figure 1.1: A trajectory of a tiny mass in the three-body problem
.

the two large stars would travel in ellipses. But Poincare made another assumption,
that the initial condition was chosen such that the two massive bodies moved in circles
at a constant speed about their center of mass. Fig. 1.1 shows a typical trajectory of
the tiny mass in such a configuration [1]. The two larger bodies are in circular motion
around one another. This view is of a rotating coordinate system in which the two
larger bodies lie at the left and right ends of the horizontal line segment. The tiny
mass is eventually ejected toward the right. Other trajectories starting close to one
of the bodies can be forever trapped. Poincare’s method of analysis was based on
the fact that the motion of the small mass could be studied, in a rather nonobvious
manner, by studying the orbit of a plane map. He discovered the crucial ideas of
stable and unstable manifolds which are special curves in the plane [1]. Poincare’s
final article Sur les equations de la dynamique et le problema des trois corps (on the
equations of dynamics and the three-body problem) was published in 1890. In this
270-page work, Poincare established convincingly that no general exact formula exists
for making predictions of the positions of the three bodies in the future [1]. However,
even after Poincare’s seminal work, chaos was largely forgotten till the middle of the
20th century [1].

In the late 1950s, a meteorologist at MIT named Edward Lorenz acquired a Royal-
McBee LGP-30 computer. It was the size of a refrigerator carton and contained 16KB
of internal memory. It could calculate at the rate of 60 multiplications per second.
For the time, it was a staggering cache of computational power to be assigned to a
single scientist [1]. Although Lorenz initially started with a system of 12 ordinary
differential equations, he eventually simplified the model to a system of three ordinary

4

Figure 1.2: The Lorenz butterfly in phase space, observed from simulating Equation
1.1 for 100 seconds. Parameters are σ = 10, ρ = 28, β = 8

3
. Initial conditions are

x0 = 10, y0 = 20, z0 = 30.

differential equations, the Lorenz equations, shown in Eq. 1.1:

ẋ = −σ · x+ σ · y
ẏ = −x · z + ρ · x− y (1.1)

ż = x · y − β · z

In this highly idealized model of a fluid, the warm fluid below rises and the cool
fluid above sinks, setting up a clockwise or counterclockwise current. The Prandtl
number σ, the Rayleigh (or Reynolds) number ρ and β are parameters of the system.
The variable x is proportional to the circulatory fluid flow velocity. If x > 0, the
fluid circulates clockwise while x < 0 means the fluid circulates counterclockwise.
The variable y is proportional to the temperature difference between ascending and
descending fluid elements, and z is proportional to the distortion of the vertical tem-
perature profile from its equilibrium [1]. Fig. 1.2 shows the result of simulating the
system above. The relevant Mathematica code is in the Appendix. Using such com-
puter simulations, Lorenz identified the presence of sensitive dependence on initial
conditions and aperiodicity, the hall marks of chaos. Lorenz’s original paper [26] on
this work is deep, prescient and readable.

5

Since Lorenz observed chaotic behavior via computer simulations, a natural ques-
tion to ask is whether chaos is an artifact of computer simulation or whether there
is an underlying mathematical theory behind the behavior. Although Lorenz used a
variety of powerful geometric arguments to explore the trajectories in phase space, a
rigorous proof of chaotic behavior was absent. But, researchers found other chaotic
systems [33], implying that chaos was not unique to the Lorenz model. Yet, these
chaotic systems were difficult to realize using either electronic or mechanical com-
ponents. Although electronic circuits were easy to construct, both the Lorenz and
Rossler systems had product terms. This required the use of analog multipliers, these
were expensive and unreliable during the 1970s and 1980s. Hence, although there
was mounting evidence that chaos was a field of study in its own right, a system that
was easy to build practically and also had an associated rigorous proof of chaos was
frustratingly absent. This changed in 1984, when Dr. Leon O. Chua, invented Chua’s
circuit. Before discussing this circuit, we will briefly go through the four basic circuit
elements.

1.2.2 The Four Basic Circuit Elements

From our basic electronics courses, we know that the fundamental variables for
circuit theory are flux (denoted by φ) and charge (denoted by q). Voltage is defined
as:

v ≡ dφ

dt
(1.2)

Current is defined as

i ≡ dq

dt
(1.3)

Based on the quantities above, we can define the circuit elements shown in Fig. 1.3.
Notice that we have a fourth circuit element (in addition to the usual three from
basic electronics) that defines a relationship between φ and q. This element is the
memristor, more will be said about the memristor in the chapter on memristor based
chaotic circuits.

1.2.3 An Introduction to Chua’s Circuit

In 1984 Dr. Leon O. Chua, as a visiting professor in Japan, systematically dis-
covered Chua’s circuit [6]. The circuit is shown in Fig. 1.4. The equations associated
with the circuit in Fig. 1.4 are:

C1 ˙vC1 = G(vC2 − vC1)− g(vC1)

C2 ˙vC2 = G(vC1 − vC2) + iL (1.4)

L ˙iL = −vC2

6

Figure 1.3: The Four Basic Circuit Elements

7

Figure 1.4: Chua’s circuit is a simple autonomous circuit with a chaotic attractor.

8

Figure 1.5: Realization of Chua’s circuit using two op amps and six linear resistors
to implement the nonlinear resistor

Here, vC1, vC2 and iL denote the voltage across C1, C2 and the current through L
respectively. g(vC1) is the piecewise-linear function in Fig. 1.4 given by:

g(vC1) = m0vC1 +
1

2
(m1 −m0)(|vC1 +Bp| − |vC1 −Bp|) (1.5)

It is simple to realize the electronic circuit above. Fig. 1.5 shows the classic two op-
amp implementation by M.P. Kennedy [22]. A 2D projection of the ”double-scroll”
on an oscilloscope screen from the circuit above is shown in Fig. 1.6. The parameters
of the circuit used for obtaining Fig. 1.6 are L = 18 mH, C2 = 100 nF, C1 = 10 nF,
R = 1.5 kΩ, R1 = R2 = 220 Ω, R3 = 2.2 kΩ, R4 = R5 = 22 kΩ and R6 = 3.3 kΩ.
All resistors and capacitors have 5% tolerance, the inductor has 10% tolerance. The
op-amps are LMC6482AINs from National Semiconductor. The circuit is powered by
two 9 V batteries.

1.2.4 References for Chaotic Systems

A good introduction to chaos is given in the book by Strogatz [40]. Alligood’s
book [1] is an intermediate introduction to chaos. Wiggins’ book [43] covers very
advanced topics and is an all-in-one reference. A good introduction to linear and
nonlinear circuit theory is [7]. An excellent starting point for further understanding
Chua’s circuit is [6].

9

Figure 1.6: The oscilloscope showing the double-scroll, X-axis is measuring vC1 (scale
is 1.00 V/div) and the Y-axis measuring vC2 (scale is 0.5 V/div).

1.3 Cellular Automata

1.3.1 A Brief History of Cellular Automata

Cellular automata (henceforth abbreviated CA) are simple models of computation
which exhibit fascinatingly complex behavior [35]. They were originally proposed
by John von Neumann as formal models of self-reproducing organisms. The struc-
ture studied was mostly on one- and two-dimensional infinite grids, though higher
dimensions were also considered. Computation universality and other computation-
theoretic questions were considered important.

The simplest description of a CA is a one-dimensional array of infinite cells. Time
is discrete, at each time point each cell is in one of a finite set of possible states. The
cells change state at each iteration, and the new state is completely determined by
the present state of the cell, its left neighbor and right neighbor. The function (called
the local rule) which determines this change of state is the same for all cells. The
automaton does not have any input, and hence is autonomous. The collection of cell
states at any time point is called a configuration or a global state of the CA, and
describes the stage of evolution of the CA. At time t = 0, the CA is in some initial
configuration, and henceforth proceeds deterministically under the effect of the local
rule, which is applied to each cell at every iteration [35] (see Fig. 1.7 [31]).

10

Figure 1.7: Example of Cellular Automata evolution, the local rule used is 110. Here
1101 is the initial condition for a 1-D 4-cell CA. The cells can be in state 0 or state
1 (binary CA). The truth table for rule 110 is given. Consider the first cell that
contains a 0 (the rightmost cell is numbered 0). The left and right neighbor cells are
the second and zero cell, respectively, both containing 1. The output of the first cell
would be the output mapped from the 3-tuple (1,0,1) from the truth table of local
rule 110. According to the truth table, when xi−1 = 1, xi = 0, and xi+1 = 1, the
output yi = 1 and hence the output of the first cell at iteration 1 is ”1”. The same
process is repeated for each cell listed in the initial condition, resulting in the new
evolution 0,1,1,1.

11

1.3.2 Wolfram’s work on Cellular Automata

The mid-1980s are an important period in the history of CA, largely due to the
work carried out by Wolfram. The nature of his questions represent a paradigm
shift in CA research. Wolfram carried out an extensive experimental analysis of the
growth patterns of CA. An early paper by Wolfram [47] discusses several statistical
parameters of the space-time patterns of CA evolution. Later work extended and
clarified much of the intuition in several directions. The approach taken is to consider
CA as models of complex systems, in the sense that very simple CA rules can give
rise to extremely complex patterns. Wolfram published a conglomerate of his ideas
in a 2002 book [46].

1.3.3 Nonlinear Dynamics Perspective of Cellular Automata

Starting in 2002, Dr. Leon. Chua published a series of papers ([12], [9], [10], [11])
that explained Wolfram’s observations in [46] using a nonlinear dynamics perspec-
tive. In particular, Chua developed a geometrical approach for defining an integer
characterization of all Boolean functions arising from binary 1D CA with nearest
neighbors.

1.3.4 References for Cellular Automata

Wolfram’s collection of papers in his 1986 book [45] serves as a good starting point
for understanding the basics of Cellular Automata. Dr. Chua’s paper series: [12], [9],
[10], [11] connects nonlinear dynamics to Cellular Automata.

1.4 A Summary of Thesis Contributions

Ever since Lorenz’s seminal paper [26], many more chaotic systems have been
discovered [6]. However providing a rigorous proof of chaos in such systems is difficult
[28]. Chua’s circuit (from Fig. 1.4) was the first system that was proved to be chaotic
rigorously [28]. But, a consequence of the Poincare-Bendixson theorem [23] is that
for an autonomous continuous-time dynamical system to be chaotic, we need 3 or
more dimensions. In the case of circuits, we need three independent energy storage
elements. Therefore if we try and simplify Chua’s circuit, the only element we can
replace is the linear resistor, leading to Fig. 1.8. Notice that we no longer have a 3
dimensional system since the two capacitors can be combined in parallel.

Nevertheless, Barboza [2] in 2008 derived the circuit shown in Fig. 1.9. This circuit
is linearly conjugate to the original Chua’s circuit.

12

Figure 1.8: Removing the linear resistor (i.e..replacing it with a short circuit) in
Chua’s circuit leads to a two dimensional system because C1 and C2 can be combined
in parallel

Figure 1.9: Alternate version of Chua’s Circuit

But notice that in the limiting case of R→ 0, we get the circuit shown in Fig. 1.10.
Note that this circuit has only four elements, yet is modeled by three differential
equations. Therefore, this is the simplest possible autonomous chaotic circuit, the
Four-Element Chua’s circuit.

13

Figure 1.10: A chaotic circuit with only four elements

However a rigorous proof of chaos in the circuit above was still lacking in [2].
Hence the first contribution of this work is to provide a rigorous proof of chaos in
this circuit. This proof utilizes the simplified Jordan form and coordinate transform
approach proposed in [28]. Also bifurcation analysis is done using describing function
methods [17] since we have a one-parameter bifurcation family for the Four-Element
Chua’s circuit (for details, please refer to the chapter on Rigorous Proof of Chaos in
the Four-Element Chua’s circuit).

Looking back at our review of the four fundamental circuit elements, a natural
question to ask is whether memristors can be used to build chaotic circuits. The
answer is yes, this thesis proposes memristor based (four and higher dimensional)
chaotic circuits (systems). We first systematically derive a memristor based chaotic
circuit from the canonical Chua’s circuit. We next demonstrate that the four dimen-
sional chaotic circuit can be linearly extended to five dimensions by simply adding an
inductor. We also use topological horseshoe theory to rigorously verify the existence
of chaos in the memristor based chaotic circuits. We also implement a memristor
based chaotic circuit on the breadboard. In a nutshell, the second contribution of
this thesis is design and implementation of memristor based chaotic systems.

From the perspective of Cellular Automata, this thesis explores the relationship
between integer factorization and cellular automata.

14

Part I

Autonomous Chaotic Circuits

15

Chapter 2

Rigorous Proof of Chaos in the
Four-Element Chua’s Circuit

2.1 Introduction and Chapter Organization

In this chapter, a mathematically rigorous proof of chaos is provided for the Four-
Element Chua’s circuit. Although Chua et. al. provided a rigorous proof of chaos for
the canonical Chua’s circuit [8], the Four-Element Chua’s circuit [2] is a limiting case
of the classic Chua’s circuit. Thus the circuit requires a separate rigorous justification
of chaos. In the next section, the Four-Element Chua’s circuit is introduced and
the main theorem to be proved in this chapter is stated. Note that we actually
prove chaos in a general class of alternative Chua’s circuit of which the Four-Element
Chua’s circuit is a special case. Section three gives the intuitive ideas behind the
proof. The subject of the fourth section is the rigorous proof of chaos. The final
section uses describing function methods to verify period-doubling route to chaos in
the Four-Element Chua’s circuit [17], [20], [39].

2.2 Introduction to the Four-Element Chua’s cir-

cuit and Main Result

In this section, the circuit diagram and equations are given. For details on the
linear conjugacy between this circuit and the canonical Chua’s circuit, please refer
to [2].

16

Figure 2.1: The Four-Element Chua’s Circuit

Figure 2.1 is the circuit diagram, the equations for the circuit are given in Eq. 2.1.

C1
dv1

dt
= i− g2(v1)

κL1
di

dt
= v1 − v2 (2.1)

C2
dv2

dt
= κi

The nonlinear function g2(v1) is given by:

g2(v1) = 9.333 · 10−4v1 + (
−5 · 10−4 − 9.333 · 10−4

2
)(|v1 + 1| − |v1 − 1|) (2.2)

The parameter values that gives rise to the strange attractor in Fig. 2.2 and the
time domain waveform in Fig. 2.3 are: κ = 8.33, C1 = 33 · 10−9, C2 = 100 · 10−9,
L1 = 10 · 10−3. The relevant Mathematica code is in the Appendix.

17

Figure 2.2: A plot of v2(t) vs. v1(t) for the Four-Element Chua’s circuit

Figure 2.3: Plot of i(t) for the first 5 ms

Fig. 2.4 shows a screen shot of an oscilloscope in XY mode, sampling v2(t) and
v1(t) from a physical implementation of Chua’s circuit.

18

Figure 2.4: v2(t) vs. v1(t) from an oscilloscope. The Printed Circuit Board realization
of the Four-Element Chua’s circuit is shown.

This chapter actually provides a proof of chaos in the more general circuit shown
in Fig. 2.5. Notice that we get the Four-Element Chua’s circuit when R→ 0.

Figure 2.5: Alternate version of Chua’s Circuit

First it would be useful to transform the circuit equations representing Fig. 2.5 to

19

dimensionless form with the following change of variables:

κ =
R1

R2

τ =
t

κ ·
√
L1C2

α = κ
C2

C1

β = κ2

γ∗ = ρκ

x =
v1

Bp

y =

√
L1

C2

i

Bp

z =
−v2

Bp

f(x) =

√
L1

C2

g2(Bpx)

Bp

(2.3)

In thef(x) above, Bp = 1. The dimensionless form of Chua’s circuit is thus:

dx

dτ
= α(y − f(x))

dy

dτ
= x− γ∗y + z (2.4)

dz

dτ
= −βy

f(x) = m1x+
1

2
(m0 −m1)(|x+ 1| − |x− 1|)

The theorem below is the main result that will be proved in this chapter. The
methodology used in the proof is general and can be applied to prove chaos in a
three-dimensional autonomous piecewise-linear system.

20

Result 1. The alternative Chua’s system in Eq. 2.4 is chaotic in the sense

of Shilnikov if α = 25.24, β = 69.39,m0 = −0.16,m1 = 0.29, γ∗ ∈ J 4
= [0, 0.75].

Notice that γ∗ = 0 is the Four-Element Chua’s circuit. This circuit also
undergoes a period-doubling route to chaos, as γ∗ decreases from 1 to 0.

Before giving a formal proof of chaos, we will give some intuitive ideas behind the
proof. This is important to gain physical insights into the problem and also appreciate
the intricacies of the mathematics involved.

2.3 Intuitive Ideas Behind the Proof

As the study of chaos evolved, a working definition was developed that is used
to this day [37]. A dynamical system is informally called chaotic if it exhibits the
following features:

1. A basically continuous and possibly banded, Fourier or power spectrum. This
property indicates that the motion is nonperiodic and justifies the often made
analogy of chaos with noise.

2. Nearby orbits that diverge exponentially fast, thus causing extreme sensitivity
to initial conditions. Although this attribute is shared by many dynamical
systems (for example, linear time-invariant dynamical systems), this alone does
not gaurantee chaotic behavior.

3. State trajectories are bounded. This third property is probably the most im-
portant. This property seemingly contradicts the two properties above. How
can we have aperiodic trajectories that are sensitive to initial conditions, yet
bounded? The answer to this can be seen in the phase space of a chaotic sys-
tem. For the correct choice of parameters we will get a fractal structure in phase
space called a strange attractor or chaotic attractor.

Notice that the correct choice of parameters is important. All chaotic systems
exhibit complex behavior only in a certain range of system parameters. The system
also follows a specific route to chaos like period-doubling, intermittency etc. For
example, period-doubling route to chaos is illustrated in Fig. 2.6.

21

Figure 2.6: Period doubling route to chaos in a synthetic inductor version of Chua’s
circuit. The bifurcation parameter is a capacitance. The oscilloscope is setup in X-Y
mode and is probing the voltages across two capacitors.

Notice that we get the strange attractor in (d) after the state goes through a
period-1, period-2 and period-4 limit cycle in (a) through (c) respectively. The system
goes through an infinite period-doubling cascade but only three are shown here since
it is impossible to visually distinguish limit cycles with higher periods.

Thus, any proof of chaos and bifurcation analysis of chaos requires two steps: a
rigorous proof that a strange attractor exists in a given parameter space and the route
to chaos (or bifurcation analysis). But why do we even need a rigorous proof? The
reason is that computer simulations have finite precision and experimental measure-
ments have finite ranges (e.g., time or frequency) [37]. The behavior witnessed might
either be an artifact of the observation device or it might actually be regular with
a period or bandwidth beyond the limits capturable by the device. To allay these
anxieties, we need to rigorously prove the existence of chaos.

One of the most useful tools for studying chaos in autonomous systems is based on
the fundamental work of Shilnikov [36]. The formal statement of Shilnikov’s theorem
and application is given later in this chapter. In this section, we will give a self-
contained description of the basic concepts and terminology needed to understand

22

the results of Shilnikov theory. We need to understand three concepts before using
Shilnikov’s theorem.

Fig. 2.7 presents a very special orbit that lies at the heart of the Shilnikov approach
- the homoclinic orbit. This means a bounded dynamical trajectory of our system
that is doubly asymptotic to an equilibrium point. That is, at time approaches ±∞
the system approaches the equilibrium point [29].

Figure 2.7: Illustration of a typical homoclinic orbit [37] in R3. The arrowheads
indicate forward evolution of time. The homoclinic orbit H is based at a hyperbolic
saddle focus xe having a positive real equilibrium eigenvalue.

The next concept needed is that of a Poincare map, which is a stroboscopic means
of analyzing the dynamics of nonlinear systems (refer to Fig. 2.8). For a three-
dimensional system (like the Four-Element Chua’s circuit), this technique amounts
to using a plane Σ ⊂ R2 to cut traversely across recurrent behavior (as occurs local
to a homoclinic orbit); this in turn defines a 2-D map P : U ⊂ Σ → Σ, called the
Poincare map. Here, the neighborhood U designates those points that return to Σ
at least once under the flow. This map takes a point x0 in U to the first intersection
P (x0) = φtr(x0) of the dynamical orbit from x0 with the Σ-plane (tr is the transit
time for this orbit). Fig. 2.8 depicts a case in which the Poincare map is constructed
in the neighborhood of a periodic orbit ∆ (which itself is seen to correspond to a
first-order fixed point of P , that is, P (x∗) = x∗).

23

Figure 2.8: Illustration of Poincare map P : U → Σ local to a periodic orbit ∆ [37].
We call the plane Σ a local cross section at x∗. The transversality of Σ to the flow
means that ξ(x) is not parallel to Σ for all x in Σ. A sample orbit initiating at x1 ∈ Σ
and intersecting Σ twice more at x2 and x3 is shown. In terms of P , this implies that
x2 = P (x1), x3 = P (x2) and hence, x3 = P (2)(x1).

Observe that P defines a 2-D discrete dynamical system

xk + 1 = P (xk), k = 0, 1, · · · (2.5)

Thus, with the Poincare map approach one may study the reduced system above
instead of the original 3-D system. For the case of a homoclinic orbit a characteristic
local Poincare map P (called the Shilnikov map) can be constructed from two con-
stituent maps: ψe, which corresponds to the linearized flow near the equilibrium point
while the second one ψh, describes the behavior in a neighborhood of the homoclinic
orbit away from the equilibrium point (see Fig. 2.9).

24

Figure 2.9: The Shilnikov map P : V → Σ0 ∪ Σ̃0 for the case of a homoclinic orbit
H based at the saddle focus xe [37]. Here, V is a small section of the cylindrical
surface Σ0. The map ψe : Σ0 → Σ1 characterizes the behavior local to xe whereas
ψh : Σ1 → Σ0 ∪ Σ̃0 takes care of the behavior local to the portion of H that is not in
the neighborhood of xe.

But, what is the point of computing a Shilnikov map? The answer lies in the
third important concept - the Smale horseshoe. The Smale horseshoe [37] is the set
analytically detected by the Shilnikov method in the discrete dynamics generated by
the Shilnikov map (that is, in Eq. 2.5). In fact, it can be shown that when the Smale
horseshoe is embedded in Eq. 2.5, then there exist orbits in the original dynamical
system that typify chaotic behavior.

25

Figure 2.10: Geometric illustration of the simplified Smale horseshoe map fs [37].
Its basic characteristics of 1) mapping disjoint regions (such as H0 and H1) over
themselves and 2) ”strong” stretching and contraction in complementary directions
are representative of the Poincare maps for many of the continuous dynamical systems
that exhibit chaotic behavior.

In its simplest form, the Smale horseshoe map can be written as fs : S → R2,
where S is the unit square in R2. Its basic operation (see Fig. 2.10) is that of con-
tracting S in the x-direction, expanding it in the y-direction, folding the result (which
is in the shape of a horseshoe) and placing this result back over S. Note how pieces
of S fall outside of S under the action of fs and how the horizontal rectangles H0

and H1 become the vertical ones V0 and V1 respectively. By repeating iterations
under fs, which corresponds to evolving the discrete dynamics generated by fs and
retaining only those points in S that remain invariant under fs , one arrives at a very
complex set of points in S (in the limit of an infinite number of iterations) that is
the Smale horseshoe. This set is reminiscent of a 2-D version of the familiar Cantor
middle-thirds set.

Thus, the basic intuitive idea behind the Shilnikov method is then to show that
the Shilnikov map behaves qualitatively the same as the map fs, thereby ensuring the
existence of the Smale horseshoe in the map’s discrete dynamics - and hence finally
chaos in the original third-order continuous dynamical system. We will now state
Shilnikov’s theorem and prove Theorem 1.

26

2.4 Rigorous proof of chaos via Shilnikov’s Theo-

rem

We will provide a rigorous proof of chaos in this section and then show the bifur-
cationan analysis in the next section. Shilnikov’s theorem [8] is stated below:

Theorem 1 (Shilnikov’s Theorem). Consider ẋ = f(x), x ∈ R3 where f : R3 → R3.
If the following conditions are satisfied:

1. The origin is an equilibrium point xe and xe is a hyperbolic saddle.i.e..the eigen-
values of the Jacobian are of the form γ, σ ± jω, σγ < 0, ω 6= 0, γ > |σ| > 0

2. There exists a homoclinic orbit based at xe.

Then, an infinitesimal perturbation of this homoclinic orbit will lead to a countable
set of horseshoes on that orbit.

Our approach in using Shilnikov’s theorem is quite general and can be applied
to a much larger class of piecewise-linear differential equations (of which Eq. 2.4 is
a special case). We first define a set of normalized eigenvalue parameters in terms
of the eigenvalues of the corresponding linear system in Eq. 2.4. Next, we obtain
symbolic expressions for the normalized eigenvalue parameters in terms of system
parameters (α, β, γ∗,m1,m0) from Eq. 2.4. These symbolic expressions will then be
used to prove condition 1 in Shilnikov’s theorem. Next, we will use the normalized
eigenvalue parameters along with a transformation of Eq. 2.4 to the Jordan form to
derive exact parametric equations for Poincare map(s). These Poincare map(s) will be
used to show the existence of homoclinic orbits in Eq. 2.4 thereby satisfying condition
2 of Shilnikov’s theorem. After the rigorous proof of chaos, bifurcation analysis will
be carried out using the describing function method [3].

First, definitions related to the proof of condition 1 in Shilnikov’s theorem are
summarized next.

2.4.1 Definitions for proving that xe is a hyperbolic saddle

Please refer to Fig. 2.11 for a pictorial representation of the definitions below. Note
that we have computed expressions for the definitions below relevant to Fig. 2.11 using
the parameters for the Four-Element Chua’s circuit from Theorem 1.

27

Figure 2.11: Plot of stable and unstable eigenspaces associated with the Jacobian in
each region for the Four-Element Chua’s circuit. Also shown is a homoclinic orbit H.
This will be discussed in the section on homoclinic orbits at xe.

Definition 1. There are two planes U1 and U−1 which are symmetric with respect to
the origin and they partition R3 into three closed regions D1, D0 and D−1 as shown
in Fig. 2.11.

Definition 2. Let ξ be the continuous vector field:

ξ(x)
4
=

f1(x)

f2(x)

f3(x)

 4=
α(y − f(x))

x− γ∗y + z

−βy

 (2.6)

From Eq. 2.4, f(x) = m1x+ 1
2
(m0 −m1)(|x+ 1| − |x− 1|).

Definition 3. ξ has three equilibrium points, one at the origin O, one in the inte-
rior of D1 (labeled P+) and one in the interior of D−1 (labeled P−). For γ∗ = 0
(the Four-Element Chua’s circuit), O is (0,0,0), P+ is (1.16, 0,−1.16) and P− is
(−1.16, 0, 1.16).

Definition 4. In each region Di (i = −1, 0, 1), the vector field (ξ) is affine, i.e.,

Dξ(x, y, z) = Mi for (x, y, z) ∈ Di (2.7)

where Dξ deontes the Jacobian matrix of ξ(x) and Mi denotes 3x3 real constant
matrix.

28

Definition 5. Each matrix Mi has a pair of complex conjugate eigenvalues (labeled
σ̃0 ± jω̃0 for M0 and σ̃1 ± ω̃1 for M−1 and M1 where ω̃0 > 0 and ω̃1 > 0) and a real
eigenvalue (labeled γ̃0 for M1 and γ̃1 for M−1 and M1, where γ̃0 6= 0 and γ̃1 6= 0).

Definition 6. Ec(0)
4
= 2-D eigenspace cooresponding to complex eigenvalue σ̃0± jω̃0

at 0. In Fig. 2.11, Ec(0)
4
= 9.3x+ 12.9y + 2.4z = 0.

Er(0)
4
= 1-D eigenspace corresponding to real eigenvalue γ̃0 at 0. In Fig. 2.11, Er(0)

4
=

t · (−0.817,−0.045, 0.57), t ∈ R.

Ec(P+)
4
= 2-D eigenspace corresponding to complex eigenvalue σ̃1 ± jω̃1 at P+. In

Fig. 2.11, Ec(P+)
4
= 0.1x− 0.153y + 0.017z = 0.129.

Er(P+)
4
= 1-D eigenspace corresponding to real eigenvalue γ̃1 at P+. In Fig. 2.11,

Er(P+)
4
= (1.16, 0,−1.16) + t · (−0.903, 0.054, 0.425), t ∈ R.

Definition 7. We define the following normalized eigenvalue parameters
(σ0, γ0, σ1, γ1, κ):

σ0
4
=
σ̃0

ω̃0

, γ0
4
=
γ̃0

ω̃0

, σ1
4
=
σ̃1

ω̃1

, γ1
4
=
γ̃1

ω̃1

, κ
4
=
−̃γ0

γ̃1

(2.8)

Definition 8. Some important line segments (not shown in Fig. 2.11 for clarity
purposes):

L0
4
= U1 ∩ Ec(0), L1

4
= U1 ∩ Ec(P+), L2

4
= {x ∈ U1 : ξ(x) || U1} (2.9)

Definition 9. The following points called fundamental points of ξ will play an im-
portant role in the proof of chaos:

A
4
= L0 ∩ L1, B

4
= L1 ∩ L2, C

4
= U1 ∩ Er(0), D

4
= U1 ∩ Er(P+),

E
4
= L0 ∩ L2, F

4
= {x ∈ L2 : ξ(x) || L2} (2.10)

Now that we have these definitions in hand, we can prove Theorem 1 stated in
this chapter. We will first prove condition 1 of Shilnikov’s theorem (Theorem 1)
using our eigenvalues and normalized eigenvalue parameters.

2.4.2 Proving that xe is a hyperbolic saddle

We will use the abbreviated notation:

λ ↑ a ≤ λ ≤ b (resp., λ ↓ in b ≥ λ ≥ a) (2.11)

29

to mean the variable λ = λ(γ∗) increases (resp., decreases) monotonically and satisfies
a ≤ min(λ) ≤ max(λ) ≤ b as γ∗ increases monotonically in the range J in Theorem
1.

Lemma 1. As γ∗ increases monotonically from γ∗1 = 0 to γ∗2 = 0.75 in Theorem 1,
the following parameters also vary monotonically as indicated:

σ̃0 ↓ in − 0.69275 ≥ σ̃0 ≥ −1.037

ω̃0 ↓ in 7.15435 ≥ ω̃0 ≥ 6.8972

γ̃0 ↓ in 5.4239 ≥ γ̃0 ≥ 5.36324 (2.12)

σ̃1 ↓ in 0.7562 ≥ σ̃1 ≥ 0.416375

ω̃1 ↑ in 7.5456 ≤ ω̃1 ≤ 7.92795

γ̃1 ↓ in − 8.832 ≥ γ̃1 ≥ −8.90235 (2.13)

σ0 ↓ in − 0.0968298 ≥ σ0 ≥ −0.15047

σ1 ↓ in 0.100217 ≥ σ1 ≥ 0.0525199

γ0 ↑ in 0.758126 ≤ γ0 ≤ 0.778215

γ1 ↑ in − 1.17048 ≤ γ1 ≤ −1.12291 (2.14)

κ ↓ in 0.614119 ≥ κ ≥ 0.602452 (2.15)

Moreover, the above bounds can be calculated to any desired accuracy.

Proof. It follows from Eq. 2.4 that the real eigenvalue γ̃i corresponding tom = mi (i =
0, 1) is a real root of the characteristic polynomial equation:

s3 + (α ·m+ γ∗) · s2 + (α ·m · γ∗ − α + β) · s+ αβm = 0 (2.16)

Solving Eq. 2.16 for γ∗, we obtain:

γ∗ = γ∗(s)
4
= −s+

1

s+ α ·m

(
α− β − αβm

s

)
(2.17)

For the parameter range from Theorem 1 we find from Eq. 2.17 above that γ̃0, γ̃1

decrease and they satisfy:

γ̃0 ↓ in 5.4239 ≥ γ̃0 ≥ 5.36324

γ̃1 ↓ in − 8.832 ≥ γ̃1 ≥ −8.90235 (2.18)

30

Now the solutions of Eq. 2.16 (i.e., the eigenvalues in each region) are related to its
coefficients as follows:

2σ̃i + γ̃i = −(αmi + γ∗)

σ̃i
2 + ω̃i

2 + 2σ̃iγ̃i = α(miγ
∗ − 1) + β (2.19)

γ̃i(σ̃i
2 + ω̃i

2) = −αβmi

Solving for σ̃i and ω̃i
2 from the equation above we obtain for i = 0, 1

σ̃i =
−1

2
(αmi + γ∗ + γ̃i)

ω̃i
2 =

−1

4
(αmi − γ∗ − γ̃i)2 − α2mi

γ̃i + αmi

(2.20)

Combining Eq. 2.18 and Eq. 2.20 we obtain properties 2.12 and 2.13. Properties
2.14 and 2.15 follow from properties 2.12, 2.13 and the definition of normalized
eigenvalues in Eq. 2.8. Finally note that the bounds in properties 2.12 to 2.15 can
be calculated to be exact to any number of digits because Eqs. 2.17 and 2.20 are
rational expressions.

Lemma 2. Theorem 1 satisfies hypothesis 1 of Shilnikov’s theorem 1.

Proof. Property 2.12 (proved above) implies:

−3.75741 ≥ σ̃0γ̃0 ≥ −5.56168 (2.21)

Also, γ̃0 > |σ̃0| > 0. Thus, hypothesis 1 of Shilnikov’s Theorem is satisfied by Theorem
1.

2.4.3 Proving that a homoclinic orbit exists at xe and related
definitions

Consider trajectory H shown in Fig. 2.11 through the origin and moving upward
along the unstable eigenvector Er(0) until it hits U1 at point C. Under the dynamics
in the D1 region, C is taken to a point C∗1 . If we can prove that C∗1 (which would be
the first return point of the map ψH discussed at the beginning of this chapter) lies
on the stable eigenspace Ec(0) of the origin, we have found a homoclinic orbit [8].
Unfortunately, the coordinates of the return point C∗1 cannot be calculated explic-
itly because it would involve solving a pair of transcendental equations [8]. But by
working in the Jordan space, the coordinates of C∗1 (and other necessary points) can
be calculated. Computing these points and the necessary return maps are the main
topics of this section.

31

Figure 2.12: Geometrical structure and typical trajectories of our system in the Jordan
space. Half-return maps are also shown. Note that for simplicity, for the Jordan space,
we have reused the figure from [8].

Further definitions are necessary for this section, refer to Fig. 2.12 as we go through
the definitions below.

Definition 10. Let ψ0 and ψ1 be the appropriate affine transformations that reduce
the matrix representation of ξ in D0 and D1 to the Jordan form. Specifically,

1. ψ0 : D0 → R3. Thus, we have the following transformations:

(a) ψ0(0) = 0, ψ0(U1) = V0
4
= {(x, y, z) : x+ z = 1}

(b) ψ0(U−1) = V −0
4
= {(x, y, z) : x+ z = −1}

(c) 1
ω̃0
Dψ0

(
ξ(ψ−1

0 (x))
)

= ξ0(x)
4
=

σ0 −1 0

1 σ0 0

0 0 γ0

 · x. Note that the matrix

above is M0, the Jordan form of ξ in D0.

2. ψ1 : D1 → R3. Thus, we have the following transformations:

(a) ψ1(P) = 0, ψ1(U1) = V1
4
= {(x, y, z) : x+ z = 1}

32

(b) 1
ω̃1
Dψ1

(
ξ(ψ−1

1 (x))
)

= ξ1(x)
4
=

σ1 −1 0

1 σ1 0

0 0 γ1

 · x. Note that the matrix

above is M1, the Jordan form of ξ in D1.

We will call ξ0(x) and ξ1(x) as the normalized Jordan forms of M0 and M1 respec-
tively. In other words, via this definition, we have defined two local coordinate systems
(the D0 unit and D1 unit in Fig. 2.12). We will abuse notation and label both coor-
dinate systems as (x, y, z).

Definition 11. Now the images of the fundamental points defined earlier will be
labeled in an obvious way:

D0 : A0 = ψ0(A), B0 = ψ0(B), C0 = ψ0(C)

D0 = ψ0(D), E0 = ψ0(E), F0 = ψ0(F) (2.22)

D1 : A1 = ψ1(A), B1 = ψ1(B), C1 = ψ1(C)

D1 = ψ0(D), E1 = ψ1(E), F1 = ψ1(F) (2.23)

Now we have to compute the coordinates of the points above. Since the points
A through F are located on the intersections of various lines (Definition 8 and
Definition 9), their images must lie on the corresponding lines in the new reference
frame. Computing the coordinates of these points is an exercise in linear algebra,
here we list only the coordinates of these points.

Definition 12. Points in the D0 unit:

A0 = (1, p0, 0), p0
4
= σ0 +

κ

γ0

(σ2
0 + 1) (2.24)

B0 =

(
γ0(γ0 − σ0 − p0)

Q0

,
γ0(1− p0(σ0 − γ0))

Q0

,
1− γ0(γ0 − σ0 − p0)

Q0

)
Q0 = (σ0 − γ0)

2 + 1 (2.25)

C0 = (0, 0, 1) (2.26)

E0 = (1, σ0, 0) (2.27)

F0 =

(
γ0(γ0 − 2σ0)

Q0

,
γ0(1− σ0(σ0 − γ0))

Q0

,
σ2

0 + 1

Q0

)
(2.28)

33

Definition 13. Strategic points in the D1 unit:

A1 = (1, p1, 0), p1
4
= σ1 +

1

κγ1

(σ2
1 + 1) (2.29)

B1 = (1, σ1, 0) (2.30)

C1 = (xc, yc, 0)

xc =
1− (σ2

1 + 1)((σ0 + γ0
κ

) + 1)

(σ2
0 + 1)Q1

yc =
γ1(1− σ1(σ1 − γ1))

Q1

−
(σ2

1+1)γ0
κ

(σ2
0 + 1)γ1Q1

(2.31)

E1 =

(
γ1(γ1 − σ1 − p1)

Q1

,
γ1(1− p1(σ1 − γ1))

Q1

,
1− γ1(γ1 − σ1 − p1)

Q1

)
Q1 = (σ1 − γ1)

2 + 1 (2.32)

F1 =

(
γ1(γ1 − 2σ1)

Q1

,
γ1(1− σ1(σ1 − γ1))

Q1

,
σ2

1 + 1

Q1

)
(2.33)

Notice that some of the points in the D0 unit and D1 unit have z = 0. This means
that we actually have projected the point onto the x− y plane in Jordan space, this
obviously simplifies computations. We will also be able to write expressions for the
Poincare maps π1 and π0 in Fig. 2.12 (these correspond to ψh and ψe in Fig. 2.9
respectively) in the Jordan space. To prove the existence of a homoclinic orbit we
apply π−1

1 to the line segment E1A1 since this segment corresponds to the intersection
of the stable eigenspace at the origin with the D1 unit (ψ1(C

∗
1) in Fig. 2.12 is a point

on E1A1). That is, we need C1 ∈ π−1
1 (E1A1) (C1 corredponds to point C in the D1

unit) for some γ∗ ∈ [0, 0.75]. Finally, we prove that the trajectory does not leave the
D0 unit with the π0 map. First, the definitions for π1 and π0:

Definition 14. Given x1
4
= (x1, y1)

T ∈ ∆A1B1E1 → V1, the half-return map π1(x1)
is given by:

π1(x1) = eσ1τ1

(
cos(τ1) −sin(τ1)

sin(τ1) cos(τ1)

)
· x1 (2.34)

Here τ1 is the first return time for π1

Definition 15. Similarly, given x0
4
= (x0, y0)

T ∈ ∆A0B0E0 → V0, the half-return
map π0(x0) is given by:

π0(x0) = eσ0τ0

(
cos(τ0) −sin(τ0)

sin(τ0) cos(τ0)

)
· x0 (2.35)

Here τ0 is the first return time for π0

34

Lemma 3. C1 defined in Eq. 2.31 is a continuous function of γ∗ for the range given
in Theorem 1.

Proof. Since γ̃i is a continuous function of γ∗ in view of Eq. 2.17, it follows from
Eq. 2.20 that σ̃i, ω̃i and κ are also continuous functions of γ∗ for i = 0, 1. Since
C1 = (xc, yc) is given in Eq. 2.31, C1 is also a continuous function of γ∗.

Lemma 4. C1 ∈ π−1
1 (E1A1) for some γ∗ ∈ [0, 0.75].

Proof. The coordinates of E1 and A1 can be obtained from Eq. 2.32 and Eq. 2.29,
since we have already defined and computed the range of the normalized eigenvalues.
Using these ranges and the definition of π1 above, we find that the magnitude of
π−1

1 (E1A1) is bounded between:

1.021826e−0.100217τ1 ≤ |π−1
1 (E1A1)| ≤ 1.13213 · e−0.0525199τ1 (2.36)

The left hand side of the inequality above corresponds to σ1 from Eq. 2.13 when
γ∗ = 0 and the right hand side corresponds to σ1 from Eq. 2.13 when γ∗ = 0.75.
Now, from the definition of C1 in Eq. 2.31, the range for C1 is for γ∗ ∈ [0, 0.75]:

0.312167 ≤ C1 ≤ 0.394493 (2.37)

But,C1 is continuous from Lemma 3. Therefore, from Eqns. 2.36 and 2.37, we have
the necessary result. Notice that we did not have to explicitly calculate the value
of τ1, the first return time. Of course if we need to determine the exact γ∗ for the
homoclinic orbit, we need the first return time.

Lemma 5. For the parameter range in Theorem 1, in the D0 unit, no trajectory
starting from points in the line segment E0A0 in the eigenspace z = 0 intersects the
boundary line x = −1.

Proof. Similar to Lemma 4, we can compute the bounds on |π0(x)|, x ∈ E0A0 (for
γ∗ ∈ [0, 0.75]) to be:

0.81775e−0.0968298τ0 ≥ |π0(x)| ≥ 0.794243 · e−0.15047τ0 (2.38)

Hence, Eq. 2.38 implies that points on E0A0 will never leave the D0 unit.

Lemma 6. Theorem 1 satisfies hypothesis 2 of Shilnikov’s Theorem 1.

Proof. Lemmas 4 and 5 imply that there exists a γ∗ ∈ [0, 0.75] such that the second
condition of Shilnikov’s theorem is satisfied.

Hence, Lemma 2 and 6 imply that Shilnikov’s theorem is satisfied by Theorem
1.

35

2.5 Bifurcation analysis using Describing Functions

2.5.1 One Parameter Bifurcation Diagram for the Four-Element
Chua’s circuit

A bifurcation diagram obtained from Mathematica is shown below. Refer to the
appendix for the corresponding Mathematica code.

Figure 2.13: The bifurcation diagram showing the onset of period doubling route to
chaos as γ∗ decreases from 1 to 0.8. Notice the onset of period-doubling bifurcation
at γ∗ = 1. This property will be proved rigorously in this section.

Of course, the bifurcation diagram above has not been rigorously derived. The
aim of this section is to rigorously justify the period doubling bifurcation above via
describing functions [17], [20], [3].

2.5.2 Introduction to Describing Functions

Thorough description of describing functions can be found in [39] and [16]. A
quick overview is given here. Let G(s) deonte the laplace transform of the linear

36

element(s) in our system andN(a) be the describing function of the nonlinear element.
The definition of the describing function is the complex ratio of the fundamental
component of the output of the nonlinear element to the input sinusoid. A block
diagram view of a system represented in this form is shown in Fig. 2.14.

Figure 2.14: Lure form, for autonomous systems r = 0.

The above form of the system is called the Lure Form. The advantage of rep-
resenting a system in Lure form is that the following expression is true (s = jω):

1 +N(a)G(jω) = 0 (2.39)

In other words, we have the following expression involving the describing function
and our linear transfer function:

G(jω) =
−1

N(a)
(2.40)

2.5.3 Period-Doubling Criterion Based on the Describing Func-
tion

In order to derive the period-doubling criterion, we will relate the concept of the
Loeb Criterion [39] to the concept of a harmonically linearized Poincare map [20].
Suppose a limit-cycle solution a(t) = a0e

jω0t exists in Eq. 2.40. Then, the classic
Loeb Criterion says that if ∆a and ∆σ are perturbations to a0 and ω0 resp.,

∆a

∆σ
=

(
∂U
∂ω

)2
+
(
∂V
∂ω

)2
U∂N∂V
N∂a∂ω

(2.41)

37

In Eq. 2.41, U(ω0) + jV (ω0)
4
= G(jω0). The describing function N is evaluated at

a0. [20] relates the harmonically linearized Poincare map P (an) to the Loeb Criterion:

∂P

∂a
= 1 +

2πa0∂N∂V
ω0N2∂a∂ω(

∂U
∂ω

)2
+
(
∂V
∂ω

)2 (2.42)

Feigenbaum’s criterion for period-doubling route to chaos in harmonically linearized
Poincare maps is [15]:

∂P

∂a
< −1 when P (a) has a hump characteristic (2.43)

Now, it turns out that the hump characteristic for P (a) can be replaced by a constraint
of piecewise-linearity on N(a) [20]. Substituting Eq. 2.43 in Eq. 2.42 for ∂P

∂a
, we get

the following period-doubling criterion in terms of G(jω0 and N(a0):

∂V

∂ω

∂N

∂a
< −

((
∂U
∂ω

)2
+
(
∂V
∂ω

)2
π
ω0

a0

N2

)
(2.44)

2.5.4 Period-Doubling Route to Chaos in the Four-Element
Chua’s circuit

Proof. Based on Eq. 2.44, the following steps are necessary to confirm period-doubling
route to chaos in the Four-Element Chua’s circuit.

1. Rewrite the Four-Element Chua’s circuit in Lure form so that we can obtain
N(a) and G(jω) in Eq. 2.40.

2. Determine a period-1 limit cycle for the given choice of parameters.

3. Check if Eq. 2.44 is satisfied for (1) and (2) above.

Rewriting the Four-Element Chua’s circuit in Lure form, we obtain the following
expression for G(jω):

G(s) |s=jω=
α(s2 + γ∗s+ β)

s3 + (α + 1)s2 + βγ∗s+ αβ
(2.45)

Fortunately, N(a) for the nonlinearity in the Four-Element Chua’s circuit can be
easily determined from [16]:

N(a) =

m0 |a| ≤ 1

2
(
m0−m1

π

)
·
(

sin−1
(

1
a

)
+ 1

a

√
1 +

(
1
a

)2) |a| > 1
(2.46)

38

Notice that our describing function is purely real, this is a consequence of our nonlin-
earity [39]. The first step is to find a0 and ω0. This can be done by equating the real
and imaginary parts of the expressions in Eqs. 2.45 and 2.46. The parameters are
given in Result 1. Although the expressions above are exact, we can only solve them
numerically. Doing so, we get a0 ≈ 1.4 and ω0 ≈ 8.149 rad/s. Using these values,
the LHS of Eq. 2.44 becomes approximately 16.998 and the RHS of Eq. 2.44 becomes
approx 37.63. Since 16.998 < 37.63, the period-doubling criterion is satisfied.

2.6 Conclusion

In this chapter, we studied the Four-Element Chua’s circuit in rigorous detail.
We particularly provided a rigorous proof of chaos via circuit analysis in the Jordan
space. Bifurcation analysis was carried out using describing function techniques.

The next chapter moves on to higher dimensional chaotic circuits using the mem-
ristor, which are derived from the classical Chua’s circuit.

39

Chapter 3

Memristor Based Chaotic Circuits
and Topological Horseshoe Theory

3.1 Introduction and Chapter Organization

In this chapter, we will go through higher dimensional chaotic circuits based on
the memristor. We will also supply rigorous verification of chaos in such systems via
topological horseshoe theory.

An example of a memristor based chaotic circuit can be found in [21] . However,
although this circuit is based on the canonical Chua’s circuit, it does not have the
classic three-segment piecewise-linear nonlinearity with a negative slope in each seg-
ment. In contrast, this thesis derives a four dimensional memristor based chaotic
circuit from the classical Chua’s circuit (in section three). Another feature of this
system is that very few parameters are changed between the classical Chua’s circuit
and the four dimensional memristor based chaotic circuit. We also derive three other
circuits from the four dimensional memristor based chaotic circuit, these circuits are
the subject of sections four, five and six. Empirical evidence of chaos is provided via
Lyapunov exponents in section seven. Section eight provides a rigorous verification of
chaos in the canonical circuit via topological horseshoe theory. The chapter concludes
by proposing a breadboard implementation of this circuit.

3.2 Memristor Based Chaotic Circuits and Main

Result

The memristor was postulated as the fourth circuit element by Leon O. Chua in
1971 [5]. It thus took its place along side the rest of the more familiar circuit elements
such as the resistor, capacitor, and inductor. The common thread that binds these
four elements together as the four basic elements of circuit theory is the fact that

40

the characteristics of these elements relate the four variables in electrical engineering
(voltage, current, flux and charge) intimately. Fig. 3.1 (reproduced from Chapter 1)
shows this relationship graphically [41].

Figure 3.1: The four basic circuit elements

The memristor is a two terminal element, in which the magnetic flux (φ) between
the terminals is a function of the electric charge that passes through the device [41]
[32]. The memristor M used in this work is a flux controlled memristor that is
characterized by its incremental menductance [41] function W (φ) describing the flux-
dependent rate of change of charge:

W (φ) =
dq(φ)

dφ
(3.1)

The relationship between the voltage across (v(t)) and the current through (i(t)) the
memristor is thus given by:

i(t) = W (φ(t))v(t) (3.2)

Memristor is an acronym for memory-resistor because in Eq. 3.2, since W (φ(t)) =
W (
∫
v(t)), the integral operator on the menductance function means the function

remembers the past history of voltage values. Of course, if W (φ(t)) = W (
∫
v(t)) =

constant, a memristor is simply a resistor. For over thirty years, the memristor was
not significant in circuit theory. In 2008, Williams et. al. [41] fabricated a solid state

41

implementation of the memristor and thereby cemented its place as the 4th circuit
element. They used two titanium dioxide films, with varying resistance which is
dependent on how much charge has been passed through it in a particular direction.
As a result of this realization, it is possible to have nonvolatile memory on a nano
scale. Since memristive devices function at the nano-scale, high frequency oscillators
can possibly be constructed using the memristor [42] and these have potential for
applications in secure communication [34].

One of the first memristor based chaotic circuits have been proposed by Itoh and
Chua [21]. However, their paper uses a passive nonlinearity based on the memristor
characteristics obtained by Williams et. al.. Hence, their circuits are not suitable for
secure communications because active nonlinearities are essential for high signal-to-
noise ratio (SNR) [14]. The canonical Chua’s circuit uses an active nonlinearity for
obtaining chaos, and hence it has found a variety of applications ever since inception
in 1984 in secure communications [19]. Therefore, a natural question to ask is: can
we obtain a memristor based chaotic circuit from the classical Chua’s circuit? This

Table 3.1: In order to obtain the memristor based chaotic circuit, we replaced the
nonlinear resistor in Chua’s circuit with a memristor.

chapter answers yes to the question posed above. We obtain a memristor based chaotic
circuit by simply increasing the dimensionality of the canonical Chua’s circuit. We
define simply increasing as adding a memristor with the same nonlinearity as the
canonical Chua’s circuit. This circuit is the subject of the next section. First, the

42

main result from this chapter:

Result 2. Table 3.1 is the canonical memristor based chaotic circuit that
has been derived from Chua’s circuit. This circuit is canonical since
other chaotic circuits can be derived from this one. It also shares some
similar properties to Chua’s circuit, for example, we can replace the
piecewise-linear menductance with a smooth nonlinearity and still ob-
tain chaos (refer to the implementation section of this chapter for de-
tails). A rigorous verification of chaos in the canonical memristor based
chaotic circuit is provided via topological horseshoe theory (refer to the
topological horsetheory section of this chapter for details).

3.3 Canonical Memristor Based Chaotic Circuit

As stated in the introduction section, our first circuit dimensionally extends the
canonical Chua’s circuit. Refering to Table 3.1, we derived the memristor-based
chaotic circuit by simply replacing the nonlinear resistor in Chua’s circuit with a flux-
controlled memristor. Note that we derived the menductance nonlinearity by using
the constraint of hyperbolic equilibrium points (condition 1 of Shilnikov’s Theorem
[28]). Below are the equations governing our memristor-based chaotic circuit:

dφ

dt
= v1(t)

dv1(t)

dt
=

1

C1

(
v2(t)− v1(t)

R
−W (φ(t)) · v1(t)

)
dv2(t)

dt
=

1

C2

(
v1(t)− v2(t)

R
− iL(t)

)
(3.3)

diL(t)

dt
=

v2(t)

L

The intuitive justification for dimensional extension is that an active nonlinearity is
very important for obtaining a chaotic circuit. The dimensional extension not only
preserves the active nonlinearity, it also introduces another nonlinearity in terms of
the product (W (φ(t))v1(t)) in the equation above. These two nonlinearities should
combine to give rise to chaos, as we observed. The Q(φ) function is obtained from
the canonical Chua’s circuit:

Q(φ) = −0.5 · 10−3 · φ+
−0.8 · 10−3 + 0.5 · 10−3

2
· (|(φ+ 1)| − |(φ− 1)|) (3.4)

43

Table 3.2: Attractors from the state-scaled canonical memristor-based circuit

The menductance function that is obtained from the Q(φ) function is:

W (φ) =
dqm(φ)

dφ
=

−0.5 · 10−3 φ ≤ −1

−0.8 · 10−3 −1 < φ < 1

−0.5 · 10−3 φ ≥ 1

(3.5)

44

Choosing the parameters as C1 = 5.5nF, C2 = 49.5nF, L = 7.07mH, R = 1428Ω
and setting the initial conditions to φ(0) = 0, v1(0) = 0, v2(0) = 0, i(0) = 0.1 we
can see that this dimensionally extended circuit indeed generates chaotic behaviour.
The simulation results in values for the states that are far beyond what is physically
realizable. The system states can be rescaled to the appropriate (constrainted) values
for v1(t) and v2(t). Table 3.2 shows the attractors obtained from the rescaled canonical
memristor-based chaotic circuit. The appendix has the simulation code.

In the next section, we try to answer the question of whether we can reduce the
number of elements in this circuit and still obtain chaos. Fewer elements in a circuit
mean a more compact form for implementation on an integrated circuit. Since one
of the greatest advantages of a memristor is a reduction in space (since the device
functions at the nanoscale level), it is desirable to exploit this property.

3.4 Four Element Memristor Based Chaotic Cir-

cuit

We simplified the circuit from the previous section a’la Barboza and Chua’s four-
element chaotic circuit. This circuit is significant since it is the simplest possible
circuit in terms of the number of elements and it also displays bifurcation phenomenon
not seen in the canonical Chua’s circuit. Fig. 3.2 and Fig. 3.3 shows the four Element
Chua’s circuit and its realization respectively. Fig. 3.4 shows our version of the four-

Figure 3.2: The simplest Chua’s circuit and its typical attractor [2]

element Chua’s circuit in which the nonlinear resistor is replaced by the memristor.
Fig. 3.5 shows this circuit reduced down to the basic circuit elements. In order
to choose the menductance for the memristor M in Fig. 3.5 we used the hyperbolic
equilibrium point constraint from Shilnikov’s theorem [28]. The resulting function is

45

shown in Fig. 3.6. The system equations for Fig. 3.5 are:

dφ

dt
= v1

i−W (φ)v1 = C1
dv1

dt
(3.6)

κL1
di

dt
= v1 − v2

i =
C2

κ

dv2

dt

The parameters for (3.6) are: C1 = 33 nF , C2 = 100 nF , L1 = 10 mH and κ = 8.33.
In (3.6), we are free to pick W (φ). Using MATLAB, we get the results shown in
Fig. 3.7 and Fig. 3.8. The appendix has the MATLAB code used to obtain these
results. One surprising result we obtained from this circuit is the fact that it can
be simplified even further. The next section describes how this may be possible and
suggests how the simplification may be advantageous.

3.5 Four Element Memristor Based chaotic circuit

with one negative element

Unlike Barboza and Chua’s four element chaotic circuit, we discovered that our
circuit requires only one negative element. Hence, we can simplify the circuit from
the previous section even further. Specifically, in the circuit shown in Fig. 3.5, if we

Figure 3.3: A realization of the four-element Chua’s circuit [2]

46

Figure 3.4: Four-element memristor-based chaotic circuit

Figure 3.5: Four-element memristor-based chaotic circuit showing only the basic cir-
cuit elements. The effect of op-amp A1 from Fig. 3.4 is the set −κ.

let C2 be the only negative element and set κ to 1, we still get chaotic behaviour.

47

Figure 3.6: Memristance function W (φ) as defined in Mathematica.

System equations are:

dφ

dt
= v1

i−W (φ)v1 = C1
dv1

dt
(3.7)

κL1
di

dt
= v1 − v2

i =
−C2

κ

dv2

dt

The other parameters, initial conditions and the menductance function (W (φ)) are
the same as the previous section. The simulation results are shown in Fig. 3.9 and
Fig. 3.10, MATLAB simulation code is given in the appendix. Having a single negative
element is advantageous because we have reduced the number of active elements in

48

Figure 3.7: 3D attractor from the four-element memristor-based chaotic circuit.

the circuit. This leads to a reduction in power consumption.
Although the above circuit and the two circuit(s) from the previous section(s) seem

to exhibit chaotic attractors via simulation, a strong empirical indicator of chaos are
Lyapunov exponents [28]. Lyapunov exponents characterize the rate of separation
of infinitesimally close trajectories in state-space [28]. The rate of separation can be
different for different orientations of the initial separation vector, hence the number
of Lyapunov exponents is equal to the number of dimensions in phase space. If we
have a positive Lyapunov exponent, that means we have an expanding direction.
However, if the sum of the Lyapunov exponents is negative, that means we have
contracting volumes in phase space. These two seemingly contradicting properties
of the Lyapunov exponents are indications of chaotic behaviour in the dynamical
system. Lyapunov exponents for our three systems are computed in the next section.

3.6 Five Dimensional Memristor Based Chaotic Cir-

cuit

Fig. 3.11 shows that if we add inductor L1 to the canonical memristor based chaotic
circuit and set its value to 180 mH we still obtain chaos (all the other parameters,

49

Figure 3.8: 2D Projections of the attractor from the four-element memristor-based
chaotic circuit.

nonlinearity and initial conditions remain the same). The equations describing the
five dimensional circuit are:

dφ

dt
= v1(t)

dv1(t)

dt
=

1

C1

(iL1 −W (φ) · v1)

dv2(t)

dt
=

1

C2

(−iL1 − iL2) (3.8)

diL1(t)

dt
=

1

L1

(v2 − v1 − iL1 ·R)

diL2(t)

dt
=

v2

L2

Fig. 3.12 shows the attractors obtained from the rescaled canonical memristor-based
chaotic circuit. Note that MATLAB simulation code for the circuit above has not been
given since the MATLAB code can be easily extrapolated from the other appendices.

50

Figure 3.9: 3D attractor from the four-element memristor-based chaotic circuit with
only one negative element.

The point to note here is the ease of extending the four-dimensional system to a
higher dimension. We simply added another element to the circuit and just had
to tune its value. Moreover, as pointed out in literature [25], higher dimensional
systems are suitable for secure communication because their attractors do not have
an easily identifiable structure unlike lower dimensional chaotic systems. This directs
the attention of secure communication to higher-dimensional systems [24], [4]. Hence,
an interesting question that warrants further study is whether even higher dimensional
(6th order, 7th order,...) circuits can be obtained from this five dimensional circuit.

3.7 Lyapunov Exponent Calculations

Before computing the Lyapunov exponents, the time scales for the circuits are
scaled to the order of seconds by: τ = t√

|L1C2|
. This is necessary because the Lya-

punov exponent algorithms numerically converge for these time scales. At lower time
scales, we need really small step sizes for the ode solvers. This causes huge round-off
errors. As mentioned earlier, we use two independent methods to estimate the Lya-
punov exponents: the QR method from [13] and the time-series method from [44].

51

Figure 3.10: 2D Projections of the attractor from the four-element memristor-based
chaotic circuit with only one negative element.

The LET toolbox from [38] and the Lyapunov time series toolbox from [18] have been
used to estimate the exponents. Table 3.3 summarizes our results. The appendix has
the MATLAB code used for obtaining the values in Table 3.3. Let us analyze each

Table 3.3: Summary of Lyapunov exponent computations via QR method and Time
Series method

Type of Memristor Based Chaotic Circuit QR Time Series
canonical 0.085,0,-3e-3,-0.668 0.086,0,5e-4,-0.672
four-element 0.11,0,0,-1.16 0.1,0,0,-1.2
four-element with only negative C2 0.1,0,0,-0.7 0.1,0,0,-0.7
five dimensional 0,0.22,0,-2.99,-3.05 0,0.22,0,-3.38,-1.85

row in the Table 3.3.

1. For the canonical memristor based chaotic circuit , we notice that we have four
Lyapunov exponents. This alludes to the possibility of hyperchaos. However,
in the circuit presented in this paper, hyperchaos seems to be absent. Although
the time series method indicates a second positive Lyapunov exponent of 0.0005,

52

Figure 3.11: Note that the addition of the inductor L1 results in a five dimensional
circuit. We can obtain chaos for an inductor value of 180 mH.

this is probably numerical error and this Lyapunov exponent may tend towards
zero as t→∞.

2. The four-element Chua’s circuit with a memristor has one positive Lyapunov
exponent, indicating the presence of chaos [18].

3. The four-element circuit with only a negative capacitance also gives to rise to
chaotic behaviour because of the positive Lyapunov exponent [18]. However,
Barboza and Chua’s four-element circuit without the memristor does not seem
to have chaotic behavior for the same set of C1, L1, C2 and κ values. No
matter what NR function we choose for the Barboza circuit, we do not seem
to get hyperbolic saddle equilibria if we have only one negative element. This
difference between the Barboza-Chua circuit and the memristor circuit warrants
further study.

4. The five dimensional memristor based chaotic circuit also has one positive Lya-
punov exponent.

Also note that the sum of the Lyapunov exponents is negative for all the circuits.
This implies that volumes contract in phase space, however the positive Lyapunov

53

Figure 3.12: Attractors obtained from the five dimensional circuit. Note that state
scaling has already been incorporated.

exponent indicates an expanding trajectory. Therefore the trajectories eventually
converge to a fractal structure, namely, the chaotic attractor.

So far we have presented four memristor based chaotic circuits and provided nu-
merical evidence of chaos in these circuits via Lyapunov exponents. The next section
of this chapter provides a rigorous verification of chaos for these systems. We pro-
vide the general theory and prove chaos rigorously in the canonical memristor baed
chaotic circuit. Proofs for the other circuits follow in a similar fashion and will not
be pursued in this chapter.

54

3.8 Topological Horseshoe Theory and Rigorous

Verification of Chaos

3.8.1 Intuitive Ideas Behind the Proof

Recall the Canonical Memristor Based chaotic circuit from Result . 2 and Eq.
3.3. The system equations are repeated below for convenience:

dφ

dt
= v1(t)

dv1(t)

dt
=

1

C1

(
v2(t)− v1(t)

R
−W (φ(t)) · v1(t)

)
dv2(t)

dt
=

1

C2

(
v1(t)− v2(t)

R
− iL(t)

)
(3.9)

diL(t)

dt
=

v2(t)

L

The Q(φ) function is:

Q(φ) = −0.5 · 10−3 · φ+
−0.8 · 10−3 + 0.5 · 10−3

2
· (|(φ+ 1)| − |(φ− 1)|)(3.10)

The parameters of our system have already been defined as C1 = 5.5 nF,C2 =
49.5 nF, L = 7.07 mH,R = 1428 Ω. Since the system above is four-dimensional (~x ∈
R4), Shilnikov’s theorem is not applicable. However we can use higher-dimensional
(topological horseshoes) [48] to rigorously prove the existence of chaos. The idea is
to check if a Poincare map of the attractor leads to crossing conditions [49] similar in
principle to the crossing conditions of the Smale horseshoe in three-dimensions [48].

But an important feature of our system is that it is not hyperchaotic because
we have two Lyapunov exponents which are zero. Therefore we need only a two-
dimensional Poincare map because we have only one expanding direction correspond-
ing to the single positive Lyapunov exponent.

Hence the intuitive idea is to take a two-dimesional Poincare crossection of a three-
dimensional attractor and check to see if a horseshoe is embedded in this Poincare
map. Then using elementary symbolic dynamics [49] we can check if crossing condi-
tions are satisfied. Our approach will basically mirror the approach in [49].

55

3.8.2 Rigorous Verification of Chaos in Canonical Memristor
Based Chaotic Circuit

Figure 3.13: A cross section of the attractor obtained by the plane φ = −1. Note
that the variables have been linearly scaled to realistic values.

Consider the plane φ = −1 as shown in Fig. 3.13. Note that picking a suitable
cross-section takes time and knowledge of the phase space. It took the author approx-
imately 5 hours to pick a suitable Poincare section! The code for obtaining Fig. 3.13
is in the Appendix. Next, we will pick a rectangle |ABCD| on this plane, refer to
Fig. 3.14. Now, consider the Poincare map:

P : |ABCD| → Π (3.11)

For every x ∈ |ABCD|, P (x) is defined to be the second return point, i.e., the point
where the orbit φ(x, t) of Eq. 3.3 intersects the plane Π a second time. Before we
study the dynamics of P , we need the following result from topological horseshoe
theory [48].

Theorem 2 (Topological Horseshoe Theorem). Let X be a separable metric space.
Consider a continuous map f : Q → X where Q ⊂ X is locally connected and
compact. Suppose Q satisfies the following conditions:

56

1. There exist two subsets of Q, denoted by Q1 and Q2, which are disjoint and
compact.

2. Each connected component of Q intersects both Q1 and Q2.

3. The cross number m of Q with respect to f is ≥ 2.

Then, there exists a closed invariant set Ql ⊂ Q for which f |Ql is semiconjugate to
a m− shift map.

We need the following two definitions [48] for using Theorem 2. The first is the
conventional definition of a semiconjugate shift map. The second is the definition of
the cross number.

Definition 16. If there exists a continuous and onto map: h : Ql → Σm such that
h ◦ f = σ ◦ h, then f is said to be semiconjugate to σ.

Definition 17. We will define the cross number in (3) below.

1. A connection Γ for Q1 and Q2 is a compact subset of Q that intersects both Q1

and Q2.

2. A preconnection γ is a compact connected subset of Q for which f(γ) is a con-
nection.

3. The cross number m is now defined to be the largest number such that every
connection contains at least m mutually disjoint preconnections.

We now state the main theorem that is to be proved in this section.

Theorem 3. For the Poincare map P corresponding to the cross section |ABCD|,
there exists a closed invariant set Λ ⊂ |ABCD| for which P |Λ is semiconjugate to a
2-shift map.

57

Figure 3.14: Subset Q of X for calculating the cross number. The two compact
subsets Q1 and Q2 of Q are shown as parallelograms a′ and b′

Proof. Now, in our case, the separable metric space X is obviously R2. Thus Q is the
rectangle |ABCD|. Hence we need to prove that the the cross number of Q is 2. In
order to do this, we fill find two subsets of |ABCD| (i.e..Q1 and Q2 in Theorem 2)
such that the cross number can be easily found. Consider the two parallelograms a′

and b′ in Fig. 3.14. It can be seen that the Poincare map sends the subset a (interior
of a′), au (upper edge of a′) and al (lower edge of a′) to its image as follows.

a→ ā, au → āu, al → āl (3.12)

Also, the Poincare map affects parallelogram b as follows:

b→ b̄, bu → b̄u, bl → b̄l (3.13)

Hence, f(Q1) and f(Q2) are connections. Therefore from Definition 17, we have
m = 2.

On a concluding remark to this section, note that although topological horseshoe
theory can be used to rigorously prove the existence of chaos, we provided a rigorous
verification of chaos. This is because we numerically determined the Poincare map. A
rigorous proof would involve estimating the errors from the numerical approximation,
this could be the subject of future work.

58

3.9 Implementing Memristor Based Chaotic Cir-

cuits

In this section, we will propose a circuit design for the canonical memristor based
chaotic circuit. Since memristors (as of the writing of this thesis) are commercially
unavailable, we will implement a memristor using analog circuitry. In the interests of
simplicity, we replaced the piecwise linear characteristic with a smooth nonlinearity
(similar to Zhong’s [50] implementation of Chua’s circuit with a cubic nonlinearity).

3.9.1 Practical Implementation of a Memristor

Consider the Q(φ) given below.

Q(φ) = αφ+ βφ3 (3.14)

The expression for im(t) can be derived from Eq. 3.14 and basic definitions Eqs. 3.1
and 3.2:

im(t) =
dq

dφ

dφ

dt

=
d

dφ

(
αφ+ βφ3

)
· v(t)

=
(
α + β · 3φ2

)
· v(t)

= W (φ(t)) · v(t)

Since φ(t)
4
=
∫
v(t)dt, we have the following expression for the current through our

memristor with a cubic nonlinearity:

im(t) =

(
α + β · 3

(∫
v(t)dt

)2
)
· v(t) (3.15)

The basic circuit to realize the current expression above is the multiplier circuit in a
feedback loop from [50]. A block diagram view of the circuit along with an integrator
is shown in Fig. 3.15. The circuit in Fig. 3.15 is the analog implementation of our
memristor. In Fig. 3.15, U1 is the integrator for implementing φ(t) =

∫
v(t)dt. U2 is

the multiplier that implements φ(t)2

10
. Multiplier U3 implements φ(t)2

10
· v(t)(R4+R5)

10·R4
. Refer

to the AD633 four-quadrant analog multiplier datasheet for further information. U4,
op-amp AD711kN, is the current inverter and implements the function (if R1 = R2):

i(t) =
−v
R3

+

((∫
v(t)dt

)2
10

v · (R4 +R5)

10 ·R4

)
1

R3

(3.16)

59

Figure 3.15: Practical Circuit for Realizing a memristor.

Figure 3.16: Plot of Charge vs. Flux along with a plot of the menductace function
for our memristor

In Eq. 3.15, we will choose α = −0.599 ·10−3 and β = 0.0677 ·10−3. These parameters
were obtained from [50]. For these parameters, a Mathematica plot of the charge

60

versus flux and the menductance function is shown in Fig. 3.16. Using the values
of α and β in Eq. 3.16, we get the following values for the components in Fig. 3.15:
R1 = R2 = 2k, R3 = 1.69k, R4 = 3k, R5 = 100k. Now, the ”memory” for the system
is in the integrator in Eq. 3.16. Therefore, in order to realize a practical integrator
circuit we rescaled the state variables in Eq. 3.3 to get the equations below.

dφ

dt
= −1000 · v1(t)

dv1(t)

dt
=

1

C1

(
v2(t)− v1(t)

R
− (α + β3 · φ2) · v1(t)

)
dv2(t)

dt
=

1

C2

(
v1(t)− v2(t)

R
− iL(t)

)
(3.17)

diL(t)

dt
=

v2(t)

L

Now suppose φm
4
= −φ

1000
. Then we can rewrite Eq. 3.17 above as:

dφm
dt

= v1(t)

dv1(t)

dt
=

1

C1

(
v2(t)− v1(t)

R
− (α + β3 · (1000)2 · φ2

m) · v1(t)

)
dv2(t)

dt
=

1

C2

(
v1(t)− v2(t)

R
− iL(t)

)
(3.18)

diL(t)

dt
=

v2(t)

L

Thus the menductance function that we implement in reality is:

W (φm) = −α + 3β · (1000)2 · (φm)2 (3.19)

The menductance parameters have already been defined. The circuit parameters in
Eq. 3.18 are C2 = 68 nF, C1 = 6.8 nF, L = 18 mH (parameters from [50]). We
now have all the parameters necessary to synthesize the circuit. The complete circuit
schematic is shown in Fig. 3.17. We use a voltage buffer U1 1 to avoid loading effects.

61

Figure 3.17: Schematic of the memristor based chaotic circuit.

62

3.9.2 Limit Cycles, Strange Attractors and Power Spectra
from the Memristor Chaotic Circuit

Fig. 3.18 shows a limit cycle and a chaotic attractor from the memristor based
chaotic circuit. The images were taken using a Agilent Intuilink and National Instru-
ments software. The oscilloscope used is an Agilent 54600D.

Notice the difference in the frequency spectra between the limit cycle and the at-
tractor. The fourier transform suggests that the limit cycle is periodic. The frequency
spectrum of the attractor is wideband, suggesting chaotic behavior.

In order to illustrate bifurcation phenomenon and test the robustness of the circuit,
we used a different set of capacitor values: C2 = 47 nF, C1 = 4.7 nF . The schematic
for this circuit is shown in Fig. 3.19. The bifurcation of a limit cycle into a strange
attractor is shown in Fig. 3.20 and Fig. 3.21 for different values of Rpot. Notice that
the crossing trajectories in two dimensional phase space indicate the presence of a
limit cycle in three dimensions.

63

Figure 3.18: Phase plot, time domain waveforms and power spectra for a limit cycle
and a strange attractor from the memristor based chaotic circuit. Channel 1 (X)
is across φ(t) (Node 15 in Fig. 3.17) and Channel 2 (Y) is across v2(t) (Node 9 in
Fig. 3.17).

64

Figure 3.19: Schematic of the memristor based chaotic circuit for illustrating bifur-
cation phenomenon

65

Figure 3.20: Phase portrait, power spectrum and time domain waveform for (a)
through (c), period-1 limit cycle Rpot = 2.24k;(d) through (f) period-2 limit cycle,
Rpot = 2.20k. Here, C2 = 47 nF and C1 = 4.7 nF . The menductance parameters
remain the same. Channel 1 (X) is across φ(t) (Node 15 in Fig. 3.19) and Channel 2
(Y) is across v2(t) (Node 9 in Fig. 3.19).

66

Figure 3.21: Phase portrait, power spectrum and time domain waveform for (g)
through (i), period-4 limit cycle Rpot = 2.18k; (j) through (l) attractor, Rpot = 2.16k.
Here, C2 = 47 nF and C1 = 4.7 nF . The menductance parameters remain the same.
Channel 1 (X) is across φ(t) (Node 15 in Fig. 3.19) and Channel 2 (Y) is across v2(t)
(Node 9 in Fig. 3.19).

3.10 Lyapunov Exponents for The Practical Mem-

ristor Based Chaotic Circuit

Although we did compute Lyapunov exponents for the Canonical Memristor Based
Chaotic circuit, we recompute them for the circuit in Eq. 3.18. We need to time

scale the equations for numerical stability: τ
4
= t√

L·C2
. The code for computing the

Lyapunov exponents is very similar to the Canonical Memristor based chaotic circuit
case and has been omitted from the Appendix. The resulting exponents from LET [38]
are 0.0803, 0, 0, -1.08 and Time Series analysis [18] are 0.077, 0, 0, -1.078 respectively.
Notice the presence of a positive Lyapunov exponent indicates the presence of chaos.
Also the sum of the Lyapunov exponents is negative indicating that volumes contract
in phase space.

67

3.11 A Note On Implementation Issues

If we simulate the system in Eq. 3.18 using a Mathematica demonstration [30], we
get the results shown in Fig. 3.22. The demonstration code is given in the Appendix.

Figure 3.22: A screenshot from a Mathematica demonstration showing the v2(t) vs
φ(t) attractor, among other plots.

Notice the difference in attractor shapes between Fig. 3.18 and Fig. 3.22. This
can be attributed to the non-idealities in the op-amp implementing the integrator in
Fig. 3.19. Since the op-amp input terminal currents are never exactly zero they intro-
duce offset voltages across the capacitor. This implies that we do not get the exact
integral term from Eq. 3.18 in the physical circuit. This approximation translates to
a distortion of the attractor. Techniques for removing this implementation issue are
the subject of future work.

3.12 Conclusion

In this chapter, we discussed memristor based (higher dimensional) chaotic cir-
cuits. We studied a variety of circuits and concentrated on one circuit in particular.

68

The most important contribution of this chapter is a practical realization of a mem-
ristor based chaotic circuit.

In the next section of this thesis, we will study a different area of nonlinear dy-
namics, Cellular Automata.

69

Part II

Cellular Automata

70

Chapter 4

Integer Factorization and Cellular
Automata

4.1 Introduction and Chapter Organization

In this chapter, the relationship between integer factorization and Cellular Au-
tomata are investigated. This provides an alternate classification scheme for Cellular
Automata evolution as opposed to Wolfram’s [47] and Chua’s [12]. The advantage
of this scheme is that it relates Cellular Automata to a fundamental property of
numbers, factorization.

In the next section, important definitions for understanding Cellular Automata
and the main result from this chapter are provided. This is followed by a rigorous
proof of the integer factorization property in Rule 46. The classification scheme is
then derived from the behavior of Rule 46, followed by conclusions.

4.2 Important Definitions and Main Result

Fig. 4.1 shows that a Cellular Automata consists of L cells (L = n+ 1 in Fig. 4.1)
with periodic boundary conditions [12]. The state of each cell is either a 0 or 1. Each
cell i interacts with only its nearest neighbors i − 1 and i + 1. Table 4.1 shows how
the state, xni , of each cell at iteration n is updated based on the state of its nearest
neighbors xni−1 and xni+1. Here, βk ∈ {0, 1} ∀k ∈ {0, 1, ..., 7}. The cellular automaton
rule that we are interested in is Rule 46. Table 4.2 shows the update function for
Rule 46. Now, consider the evolution of a Cellular Automaton with L = 6 and initial
condition 001001, shown in Fig. 4.2. Notice how the last row in Fig. 4.2 is equal to
the second row. This shows that the we have a repeating sequence, this sequence is
called as an attractor [12].

Fig. 4.2 is more informative if we view the evolution in the decimal number system

71

Figure 4.1: Structure of a Cellular Automata

(least significant bit is Cell 0, in accordance with convention):

{{9}, {27, 54, 45, 27}}

In our notation above, {27, 54, 45, 27} is called as the attractor and {9} is the basin
of attraction. The period of our attractor above is 3. Consider Table 4.3. We
list the bit length, the corresponding attractors and the periods for each attractor.

Table 4.1: Cellular Automaton Update Function

xni−1 xni xni+1 xn+1
i

0 0 0 β0

0 0 1 β1

0 1 0 β2

0 1 1 β3

1 0 0 β4

1 0 1 β5

1 1 0 β6

1 1 1 β7

72

Mathematica 6 was used to obtain all the results, the code is given in the Appendix.
Based on Table 4.3, we have the following result.

Result 3. Given a Cellular Automaton of length L that is evolving under
Rule 46, if L is even, then the attractor with period L

2
(a factor of L)

starts at the decimal number (2
L
2 + 1) · 3.

4.3 Rigorous Proof of Factorization Property of

Rule 46

Proof. In order to prove Result 3, consider a Cellular Automaton of length L that
is evolving under rule 46. Suppose the smallest integer in the attractor is (2

L
2 + 1)3.

Since Rule 46 is a σ = 1, τ = 1 Bernoulli Cellular Automaton [11], the bits shift left
by 1 at every iteration in the evolution of the attractor. Therefore, after L

2
iterations

we have:

2
L
2 · ((2

L
2 + 1)3) = 2

L
2 · (2

L
2 (2 + 1) + (2 + 1))

= 2
L
2 · (2

L
2
+1 + 2

L
2 + 2 + 1)

= 2L+1 + 2L + 2
L
2
+1 + 2

L
2

But since the attractor evolution is modulo L, we have:

2L+1 + 2L + 2
L
2
+1 + 2

L
2 = 2 + 1 + 2

L
2
+1 + 2

L
2

= 2 + 1 + 2
L
2 (2 + 1)

= (2
L
2 + 1)3

4.4 A New Classification Scheme for Cellular Au-

tomata Evolution

From [11], Rule 46 is not the only Bernoulli Cellular Automaton. Therefore, we
have the following result.

Result 4. Result 3 also applies to the following Bernoulli σ = 1,τ = 1
rules: 2, 10, 16, 24, 34, 42, 56, 130, 138, 162, 170 and 184.

Results 3 and 4 imply that we can rigorously predict the elements of an attractor
for even L in the case of Bernoulli σ = 1, τ = 1 rules.

73

4.5 Conclusion

In this chapter, we rigorously predicted the evolution of attractors in Bernoulli
totalistic one-dimensional Cellular Automata for even L. Nevertheless, referring to
Table 4.3, we have the two following conjectures for Rule 46 (and possibly other
Bernoulli σ = 1, τ = 1) evolution:

Conjecture 1. Given a Cellular Automaton of length L that is evolving under Rule
46, the attractor periods are:

1. 1 and L if L is prime

2. 1 and the factors of L (excluding 2) if L is composite

Conjecture 2. Given a Cellular Automaton of length L that is evolving under Rule
46, then any attractor always starts at x0A such that x0A ≡ 0 (mod 3) . In other
words, x0A is divisible by 3.

A natural topic for future work would be to try and prove the conjectures above.

74

Table 4.2: Rule 46 Update Function

xni−1 xni xni+1 xn+1
i

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

Figure 4.2: Evolution of Rule 46 (L = 6) for a specific initial condition

75

Table 4.3: Rule 46 Attractor List and Period(s) for a few bit lengths

L Attractor(s) Period(s)

7 {{0}, {3, 6, 12, 24, 48, 96, 65}},
{27, 54, 108, 89, 51, 102, 77} 1,7

8 {{0}, {51, 102, 204, 153},
{3, 6, 12, 24, 48, 96, 192, 129},

{27, 54, 108, 216, 177, 99, 198, 141}} 1,4,8

12 {{0}, {1755, 3510, 2925},
{819, 1638, 3276, 2457},

{195, 390, 780, 1560, 3120, 2145},
{3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 2049},

{27, 54, 108, 216, 432, 864, 1728, 3456, 2817, 1539, 3078, 2061},
{51, 102, 204, 408, 816, 1632, 3264, 2433, 771, 1542, 3084, 2073},
{99, 198, 396, 792, 1584, 3168, 2241, 387, 774, 1548, 3096, 2097},
{219, 438, 876, 1752, 3504, 2913, 1731, 3462, 2829, 1563, 3126, 2157},
{411, 822, 1644, 3288, 2481, 867, 1734, 3468, 2841, 1587, 3174, 2253},
{435, 870, 1740, 3480, 2865, 1635, 3270, 2445, 795, 1590, 3180, 2265} 1,3,4,6,12

76

Part III

End Matter

77

Chapter 5

Conclusions and Future Work

This thesis studied autonomous chaotic circuits and cellular automata. The main
results along with suggestions for future work are summarized below:

1. Result 1: The alternative Chua’s system in Eq. 2.4 is chaotic in the sense of

Shilnikov if α = 25.24, β = 69.39,m0 = −0.16,m1 = 0.29, γ∗ ∈ J
4
= [0, 0.75].

Notice that γ∗ = 0 is the Four-Element Chua’s circuit. This circuit also under-
goes a period-doubling route to chaos, as γ∗ decreases from 1 to 0.

2. Result 2: Table 3.1 is the canonical memristor based chaotic circuit that has
been derived from Chua’s circuit. This circuit is canonical since other chaotic
circuits can be derived from this one. It also shares some similar properties to
Chua’s circuit, for example, we can replace the piecewise-linear menductance
with a smooth nonlinearity and still obtain chaos (refer to the implementa-
tion section of this chapter for details). A rigorous verification of chaos in the
canonical memristor based chaotic circuit is provided via topological horseshoe
theory.

Future work could include investigating further implementations of memristor
based chaotic circuits. For instance, once memristors are commercially avail-
able, once could design chaotic circuits which are free of the distortion intro-
duced by nonideal op-amps emulating memristors. Future work could also in-
clude rigorously estimating the errors in the computations of the Poincare maps
(thereby providing a rigorous proof of chaos) and also rigorously analyzing other
(period-adding, intermittency) possible routes to chaos in these circuits.

3. Results 3 and 4: Given a Cellular Automaton of length L that is evolving
under the rules 2, 10, 16, 24, 34, 42, 46, 56, 130, 138, 162, 170 and 184, if L
is even, then the attractor with period L

2
(a factor of L) starts at the decimal

number (2
L
2 + 1) · 3.

Future work would be proving conjectures 1 and 2.

78

Bibliography

[1] Alligood, K. T., Sauer, T. D., and Yorke, J. A. Chaos: An Intro-
duction to Dynamical Systems. Springer-Verlag, New York, 1996.

[2] Barboza, R., and Chua, L. O. The Four Element Chua’s Circuit.
International Journal of Bifurcation and Chaos 18, 4 (2008), 1–13.

[3] Bonani, F., and Gilli, M. Analysis of Stability and Bifurcations of
Limit Cycles in Chua’s Circuit Through the Harmonic-Balance Ap-
proach. IEEE Transactions on Circuits and Systems I - Fundamental Theory
and Applications 46, 8 (August 1999), 881–890.

[4] Carroll, T. L., Heagy, J. F., and Pecora, L. M. Transforming Signals
With Chaotic Synchronization. Physical Review E 54 (1996), 4676–4680.

[5] Chua, L. O. Memristor - The Missing Circuit Element. IEEE Transac-
tions on Circuit Theory CAT-18, 5 (1971), 507–519.

[6] Chua, L. O. The Genesis Of Chua’s Circuit. Archiv fur Elektronik und
Uebertragungstechnik 46, 4 (July 1992), 250–257.

[7] Chua, L. O., Desoer, C. A., and Kuh, E. S. Linear and Nonlinear
Circuit Theory. McGraw-Hill, New York, 1987.

[8] Chua, L. O., Komuro, M., and Matsumoto, T. The Double Scroll
Family. IEEE Transactions on Circuits and Systems 32, 11 (November 1986),
1072–1118.

[9] Chua, L. O., Sbitnev, V. I., and Yoon, S. A Nonlinear Dynamics Per-
spective if Wolfram’s New Kind of Science, Part II: Universal Neuron.
International Journal of Bifurcation and Chaos 13, 9 (2003), 2377–2491.

[10] Chua, L. O., Sbitnev, V. I., and Yoon, S. A Nonlinear Dynamics
Perspective if Wolfram’s New Kind of Science, Part III: Predicting
the Unperdictable. International Journal of Bifurcation and Chaos 14, 11
(2004), 3689–3820.

79

[11] Chua, L. O., Sbitnev, V. I., and Yoon, S. A Nonlinear Dynamics Per-
spective if Wolfram’s New Kind of Science, Part IV: From Bernoulli
Shift to 1

f
Spectrum. International Journal of Bifurcation and Chaos 15, 4

(2005), 1045–1183.

[12] Dogaru, R., Yoon, S., and Chua, L. O. A Nonlinear Dynamics Per-
spective if Wolfram’s New Kind of Science, Part I: Threshold of Com-
plexity. International Journal of Bifurcation and Chaos 12, 12 (2002), 2655–
2766.

[13] Eckmann, J. P., and Ruelle, D. Ergodic Theory of Chaos and Strange
Attractors. Review of Modern Physics 57, 3 (July 1985), 617–656.

[14] Elwakil, A. S., and Kennedy, M. P. Construction of Classes of Circuit-
Independent Chaotic Oscillators Using Passive-Only Nonlinear De-
vices. IEEE Transactions on Circuits and Systems - I 48, 3 (2001), 289–308.

[15] Feigenbaum, M. J. Quantitative Universality for a Class of Nonlinear
Transformations. Journal of Statistical Physics 19 (1978), 25–52.

[16] Gelb, A., and Velde, W. E. V. Multiple-Input Describing Functions
and Nonlinear System Design. McGraw Hill, NEW YORK, 1968.

[17] Genesio, R., and Tesi, A. A Harmonic Balance Approach for Chaos
Prediction: Chua’s Circuit. International Journal of Bifurcation and Chaos
2, 1 (1992), 61–79.

[18] Govorukhin, V. Lyapunov Exponents for ODEs.
http://www.mathworks.com/matlabcentral/fileexchange/ (June 2008).

[19] Hasler, M., Kennedy, M., and Schweizer, J. Secure Communications
Via Chua’s Circuit. International Symposium on Nonlinear Theory and its
Applications, 4 (1993), 87–92.

[20] Heyns, L. J., and Kruger, J. J. A Describing-Function Based Crite-
rion for a Route to Chaos in Autonomous Nonlinear Systems. Interna-
tional Journal of Control 61, 1 (1995), 211–228.

[21] Itoh, M., and Chua, L. O. Memristor Oscillators. International Journal
of Bifurcation and Chaos 18, 11 (November 2008), 3183 – 3206.

[22] Kennedy, M. P. Robust Op-Amp Realization of Chua’s Circuit. Fre-
quenz 46, 3-4 (March-April 1992), 66–80.

[23] Khalil, H. K. Nonlinear Systems. Prentice Hall, New Jersey, 2001.

80

[24] Kocarev, L., Parlitz, U., and Stojanovski, T. An Application Of Syn-
chronized Chaotic Dynamic Arrays. Physical Letters A 217 (1996), 280–284.

[25] Li, Z., and Xu, D. A Secure Communication Scheme Using Projective
Chaos Synchronization. Chaos, Solitons and Fractals 22, 2 (2004), 477–481.

[26] Lorenz, E. N. Deterministic Nonperiodic Flow. Journal of Atmospheric
Sciences 20 (January 1963), 130–141.

[27] Makin, J. G. A Computational Model of Human Blood Clotting: Sim-
ulation, Analysis, Control, and Validation. Tech. Rep. UCB/EECS-2008-
165, Electrical Engineering and Computer Sciences Department, University of
California, Berkeley, Berkeley, California, Dec. 2008.

[28] Matsumoto, T., Chua, L. O., and Komuro, M. The Double Scroll.
IEEE Transactions on Circuits and Systems 32 (August 1985), 797–818.

[29] Medrano, R. O., Baptista, M. S., and Caldes, I. L. Homoclinic Orbits
in a Piecewise System and Their Relation with Invariant Sets. Physica
D 183 (2003), 133–147.

[30] Muthuswamy, B. Memristor Based Chaotic Circuit - Mathematica Demon-
stration. http://demonstrations.wolfram.com/MemristorBasedChaoticSystem/
(November 2009).

[31] Muthuswamy, B., and Chang, J. Optimal CNN Templates for Lin-
early Separable Cellular Automata. International Journal of Bifurcation
and Chaos 17, 3 (April 2007), 747 – 791.

[32] Muthuswamy, B., and Kokate, P. P. Memristor-Based Chaotic Cir-
cuits. IETE Technical Review 26, 6 (November 2009), 415–426.

[33] Rossler, O. E. An Equation for Continuous Chaos. Physics Letters 57A,
5 (1976), 397–398.

[34] Roy, P. K., and Basuray, A. A High Frequency Chaotic Signal Gen-
erator: A Demonstration Experiment. American Journal of Physics 71
(2003), 34–37.

[35] Sarkar, P. A Brief History of Cellular Automata. ACM Computing
Surveys 32, 1 (March 2000), 80–107.

[36] Shilnikov, L. P. A Case of the Existence of a Countable Number of
Periodic Motions. Sov. Math. Doklady 6 (January 1965), 163–166.

81

[37] Silva, C. P. Shilnikov’s Theorem - A Tutorial. IEEE Transactions on
Circuits and Systems 40, 10 (October 1993), 675–682.

[38] Siu, S. LET. http://www.mathworks.com/matlabcentral/fileexchange/ (June
2008).

[39] Slotine, J. J. E., and Li, W. Applied Nonlinear Control. Prentice-Hall,
New Jersey, 1991.

[40] Strogatz, S. H. Nonlinear Dynamics and Chaos with Applications
to Physics, Biology and Engineering. Perseus Books Publishing, Mas-
sachusetts, 1994.

[41] Strukov, D. B., Snider, G. S., Stewart, G. R., and Williams, R. S.
The Missing Memristor Found. Nature 453 (2008), 80–83.

[42] Sudheer, K. S., and Sabira, M. Adaptive Function Projective Syn-
chronization of two-cell Quantum-CNN Chaotic Oscillators with Un-
certain Parameters. Physics Letters A 373 (2009), 1847–1851.

[43] Wiggins, S. An Introduction to Dynamical Systems and Chaos.
Springer, New York, 2003.

[44] Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A. Determining
Lyapunov Exponents from a Time Series. Physica 16D (1985), 285–317.

[45] Wolfram, S. Theory and Applications of Cellular Automata: Includ-
ing Selected Papers 1983-1986. WorldScientific Inc., New Jersey, 1986.

[46] Wolfram, S. A New Kind of Science. Wolfram Media, Champaign, Ilinois,
2002.

[47] Wolfram, S., Martin, O., and Odlyzko, A. M. Algebraic Properties
Of Cellular Automata. Communications in Mathematical Physics 93 (March
1984), 219–258.

[48] Yang, X. S. Topological Horseshoes And Computer Assisted Verifica-
tion of Chaotic Dynamics. International Journal of Bifurcation and Chaos
19, 4 (2009), 1127–1145.

[49] Yang, X. S., and Yangi, F. A Rigorous Verification of Caos in an Iner-
tial Two-Neuron System. Chaos, Solitons and Fractals 20 (2004), 587=591.

[50] Zhong, G. Implementation of Chua’s Circuit with a cubic nonlinearity.
IEEE Transactions on Circuits and Systems 41, 12 (1994), 934–941.

82

Appendix A

Mathematica 6.0 and MATLAB
R2007b Code

Note: Each numbered equation must be entered on a separate line in Mathematica
or MATLAB. If there is no numbering, then the entire script file should be used in
Mathematica or MATLAB.

A.1 The Lorenz Butterfly

Mathematica 6.0 simulation code for Fig. 1.2

lorenz = NDSolve[{x′[t] == −σ ∗ x[t] + σ ∗ y[t], y′[t] == ρ ∗ x[t]− y[t]− x[t] ∗ z[t],

z′[t] == −β ∗ z[t] + x[t] ∗ y[t], x[0] == 10, y[0] == 20, z[0] == 30}/.{σ → 10, ρ→ 28,

β → 8

3
}, {x, y, z}, {t, 0, 100},MaxSteps→∞] (A.1)

ParametricP lot3D[{x[t], y[t], z[t]}]/.lorenz, {t, 0, 100},
AxesLabel→ {Style[”x”, Large,Bold],

Style[”y”, Large,Bold], Style[”z”, Large,Bold]}] (A.2)

A.2 Four Element Chua’s circuit

Mathematica 6.0 simulation code for Fig. 2.2 and Fig. 2.3

g2[v] := 9.33 ∗ 10−4 ∗ v + (
−5 ∗ 10−4 − 9.33 ∗ 10−4

2
) ∗ (Abs[v + 1] − Abs[v − 1])

(A.3)

83

fourElement = NDSolve[{v′1[t] ==
(i[t]− g2[v1[t]])

C1

, i′[t] ==
(v1[t]− v2[t])

κ ∗ L1

,

v′2[t] ==
κ ∗ i[t]
C2

, v1[0] == 0.1, i[0] == 0, v2[0] == 0}/.{C1 → 33 ∗ 10−9,

C2 → 100 ∗ 10−9, L1 → 10 ∗ 10−3, κ→ 8.33},
{v1, i, v2}, {t, 0, 100 ∗ 10−3},MaxSteps→∞] (A.4)

ParametricP lot[Evaluate[{v1[t], v2[t]}/.fourElement], {t, 0, 100 ∗ 10−3},
AxesLabel→ {“v1(t) (volts)′′,′′ v2(t) (volts)′′}, P lotPoints→ 10000] (A.5)

Plot[Evaluate[i[t]/.fourElement], {t, 0, 5 ∗ 10−3},
AxesLabel→ {“t (seconds)′′,′′ i(t) amps′′}] (A.6)

A.3 Four Element Chua’s circuit - eigenvalues and

eigenspaces

Mathematica 6.0 simulation code for Fig. 2.11 The command below plots U−1 and
U1

ParametricP lot3D[{Tooltip[{−1, u, v}, ”U−1
4
= −1”, T ooltip[{1, u, v}, ”U1

4
= 1”]},

{u,−3, 3}, {v,−3, 3}, P lotRange→ {{−3, 3}, {−3, 3}, {−3, 3}},
AxesLabel→ {”x”, ”y”, ”z”},Mesh→ None, P lotStyle→ Opacity[0.5]] (A.7)

The command below plots the eigenspace corresponding to the complex conjugate
eigenvalues at the origin.

Show[%%, P lot3D[Tooltip[
−9.3

2.4
∗x+

−12.9

2.4
∗y, ”Es(0)

4
= 9.3x+12.9y+2.4z = 0”,

{x,−1, 1}, {y,−3, 3}, P lotRange→ {{−1, 1}, {−3, 3}, {−3, 3}},
Mesh→ None, ClippingStyle→ None, P lotStyle→ Opacity[0.5]] (A.8)

The command below adds the unstable eigenspace through the origin along with the
points representing the origin and the other equilibrium points.

Show[%%, ParametricP lot3D[Tooltip[{−0.817 ∗ t,−0.045 ∗ t, 0.574 ∗ t},

”Eu(0)
4
= t(−0.817,−0.045, 0.574)”], {t,−1, 1},

P lotStyle→ Directive[Orange, Thick]], Graphics3D[{PlotStyle→ Directive[Black],

PointSize[Large], Point[{1.16, 0,−1.16}]}],
Graphics3D[{PlotStyle→ Directive[Black], PointSive[Large],

Point[{−1.16, 0, 1.16}]}]] (A.9)

84

Next, we will plot the eigenspaces corresponding to P+. First we will plot the plane
associated with the complex conjugate eigenvale, next we will plot the eigenspace
corresponding to the real eigenvalue.

Show[%%, P lot3D[Tooltip[
0.129

0.017
,
−0.1

0.017
∗ x+

0.153

0.017
∗ y,

”Eu(P+)
4
= 0.1x− 0.153y + 0.017z = 0.129”], {x, 1, 3}, {y,−3,−3},

P lotRange→ {{1, 3}, {−3, 3}, {−3, 3}},
Mesh→ None, ClippingStyle→ None, P lotStyle→ Opacity[0.5]],

ParametricP lot3D[Tooltip[{−0.913t+ 1.16, 0.054t, 0.425t− 1.16], ”Es(P+)
4
=

t(−0.903, 0.054, 0.425) + (1.16, 0,−1.16)”], t,−1, 0.5,

P lotStyle→ Directive[Blue, Thick]] (A.10)

Finally, plot the eigenspaces corresponding to P−. First we will plot the plane associ-
ated with the complex conjugate eigenvale, next will plot the eigenspace corresponding
to the real eigenvalue.

Show[%%, P lot3D[Tooltip[
−0.129

0.017
,
−0.1

0.017
∗ x+

0.153

0.017
∗ y,

”Eu(P+)
4
= 0.1x− 0.153y + 0.017z = −0.129”], {x,−3,−1}, {y,−3,−3},

P lotRange→ {{−3,−1}, {−3, 3}, {−3, 3}},
Mesh→ None, ClippingStyle→ None, P lotStyle→ Opacity[0.5]],

ParametricP lot3D[Tooltip[{−0.913t− 1.16, 0.054t, 0.425t+ 1.16], ”Es(P+)
4
=

t(−0.903, 0.054, 0.425) + (−1.16, 0, 1.16)”], t,−0.5, 1,

P lotStyle→ Directive[Blue, Thick]] (A.11)

A.4 Mathematica code for the Four-Element Bi-

furcation Diagram

Manipulate[Module[{sol, iterate, pts, fsol},

sol[c] :=

NDSolve[{x’[t] ==

a*(y[t] - (0.29*x[t] +

0.5*(-0.16 - 0.29)*(Abs[x[t] + 1] - Abs[x[t] - 1]))),

y’[t] == x[t] - c*y[t] + z[t], z’[t] == -69.39*y[t],

x[0] == 0.01, y[0] == 0, z[0] == 0}, {x, y, z},{t, 0, 300},

MaxSteps -> Infinity];

iterate =

85

Compile[c, {fsol = sol[c];

Map[{c, #} &,

FindMaxValue[z[t] /. fsol, {t, #, # + 1}] & /@

Table[i, {i, 100, 200.0, 1}]]}];

pts = Quiet[

Flatten[Table[iterate[c, {c, 1, 0.8, -0.0005}],

1]]; ListPlot[pts,

PlotStyle ->

Table[{PointSize[0.01], RGBColor[.49, 0, 0]}, {i, 1,

Length[pts]}], Frame -> True, ImageSize -> {400, 350},

FrameLabel -> {Style["c",

Italic], Style["z", Italic]}, ImageSize -> {500, 500},

AspectRatio -> 1, ImagePadding -> {{35, 10}, {35, 10}}]],

{{a, 25.24, "a"}, 25, 26, 0.24, Appearance -> "Labeled"},

ControlPlacement -> Top, SynchronousUpdating -> False]

A.5 MATLAB simulation code for Canonical Mem-

ristor Based Chaotic Circuit

The file below is called Canonical.m. The corresponding W.m is shown after
Canonical.m

%% Memristor based chaotic Chua’s circuit simulation

%% Bharathwaj Muthuswamy,

%% Pracheta Kokate

%% June 13th 2008 - July 13th 2008,

%% June 2009

%% mbharat@cory.eecs.berkeley.edu

%% Ref: Stephen Lynch,

%% Dynamical Systems with Applications

%% using MATLAB

clear;

%% MAKE SURE YOU PUT CODE BELOW ON A

%% SINGLE LINE!

dmemristor=inline(’[y(2);1/5.5e-9*

((y(3)-y(2))/1428

- W(y)*y(2));1/49.5e-9*((y(2)-y(3))/1428

- y(4)); y(3)/7.07e-3]’,’t’,’y’);

options = odeset(’RelTol’,1e-7,’AbsTol’,

1e-7);

86

[t,ya]=ode45(dmemristor,[0 10e-3],

[0,0,0,0.1],options);

plot(ya(:,2),ya(:,4));

title(’Memristor Attractor: 2D Projection,

i vs. v1’)

fsize=15;

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’i(t)’,’Fontsize’,fsize);

figure

plot(ya(:,2),ya(:,3))

title(’Memristor Attractor: 2D Projection,

v2 vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’v2(t)’,’Fontsize’,fsize);

figure

plot(ya(:,2),ya(:,1))

title(’Memristor Attractor: 2D Projection,

phi vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’phi(t)’,’Fontsize’,fsize);

figure

plot(ya(:,3),ya(:,1))

title(’Memristor Attractor: 2D Projection,

phi vs. v2’)

xlabel(’v2(t)’,’Fontsize’,fsize);

ylabel(’phi(t)’,’Fontsize’,fsize);

figure

plot(ya(:,4),ya(:,1))

title(’Memristor Attractor: 2D Projection,

phi vs. i’)

xlabel(’i(t)’,’Fontsize’,fsize);

ylabel(’phi(t)’,’Fontsize’,fsize);

figure

plot(ya(:,3),ya(:,4))

title(’Memristor Attractor: 2D Projection,

i vs. v2’)

xlabel(’v2(t)’,’Fontsize’,fsize);

ylabel(’i(t)’,’Fontsize’,fsize);

87

figure

plot(t,ya(:,2))

hold

plot(t,ya(:,4),’r’)

title(’Memristor chaotic time series:

v1 (blue) and v2 (red)’)

figure

plot(t,ya(:,1))

hold

plot(t,ya(:,3),’r’)

title(’Memristor chaotic time series:

w (blue) and i (red)’)

%% 3d plot: flux, current and voltage

figure

plot3(ya(:,1),ya(:,2),ya(:,3));

grid on

xlabel(’w(t)’,’Fontsize’,fsize);

ylabel(’v1(t)’,’Fontsize’,fsize);

zlabel(’i(t)’,’Fontsize’,fsize);

title(’Memristor 3D attractor’);

%% Menductance function W.m

function r = W(y)

if(y(1) <= -1)

r = -0.5e-3;

elseif((y(1) > -1) && (y(1) < 1))

r = -0.8e-3;

else

r = -0.5e-3;

end

A.6 MATLAB simulation code for Rescaled Canon-

ical Memristor Based Chaotic Circuit

Use the same W.m as in the previous canonical memristor based chaotic circuit
simulation code.

%% Memristor based chaotic Chua’s circuit

%% simulation

%% Bharathwaj Muthuswamy, Pracheta Kokate

88

%% June 13th 2008 - July 13th 2008,

%% June 2009

%% mbharat@cory.eecs.berkeley.edu

%% Ref: Stephen Lynch,

%% Dynamical Systems with Applications

%% using MATLAB

clear;

%% MAKE SURE YOU PUT CODE BELOW ON A SINGLE LINE!

dmemristor=inline(’[y(2); 1/5.5e-9*((y(3)-y(2))/1428-

W(y)*y(2)); 1/49.5e-9*((y(2)-y(3))/1428 -

y(4)); y(3)/7.07e-3]’,’t’,’y’);

options = odeset(’RelTol’,1e-7,’AbsTol’,1e-7);

[t,ya]=ode45(dmemristor,[0 10e-3],[0,0,0,0.1],options);

ya(:,1) = ya(:,1);

ya(:,2) = ya(:,2)./10000;

ya(:,3) = ya(:,3)./5000;

ya(:,4) = ya(:,4)./500;

plot(ya(:,2),ya(:,4));

title(’Memristor Attractor: 2D Projection, i vs. v1’)

fsize=15;

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’i(t)’,’Fontsize’,fsize);

figure

plot(ya(:,2),ya(:,3))

title(’Memristor Attractor: 2D Projection, v2 vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’v2(t)’,’Fontsize’,fsize);

figure

plot(ya(:,2),ya(:,1))

title(’Memristor Attractor: 2D Projection,

phi vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’phi(t)’,’Fontsize’,fsize);

figure

plot(ya(:,3),ya(:,1))

title(’Memristor Attractor: 2D Projection,

phi vs. v2’)

xlabel(’v2(t)’,’Fontsize’,fsize);

ylabel(’phi(t)’,’Fontsize’,fsize);

89

figure

plot(ya(:,4),ya(:,1))

title(’Memristor Attractor: 2D Projection,

phi vs. i’)

xlabel(’i(t)’,’Fontsize’,fsize);

ylabel(’phi(t)’,’Fontsize’,fsize);

figure

plot(ya(:,3),ya(:,4))

title(’Memristor Attractor: 2D Projection,

i vs. v2’)

xlabel(’v2(t)’,’Fontsize’,fsize);

ylabel(’i(t)’,’Fontsize’,fsize);

figure

plot(t,ya(:,2))

hold

plot(t,ya(:,4),’r’)

title(’Memristor chaotic time series:

v1 (blue) and v2 (red)’)

figure

plot(t,ya(:,1))

hold

plot(t,ya(:,3),’r’)

title(’Memristor chaotic time series:

w (blue) and i (red)’)

%% 3d plot: flux, current and voltage

figure

plot3(ya(:,1),ya(:,2),ya(:,3));

grid on

xlabel(’w(t)’,’Fontsize’,fsize);

ylabel(’v1(t)’,’Fontsize’,fsize);

zlabel(’i(t)’,’Fontsize’,fsize);

title(’Memristor 3D attractor’);

A.7 MATLAB simulation code for four element

memristor based chaotic circuit

There are two files: the ode solver (memristorAudio.m) and the memristance
function (W.m). Shown below is memristorAudio.m:

90

%% Memristor based chaotic Chua’s circuit

%% simulation

%% Bharathwaj Muthusway,

%% Pracheta Kokate

%% June 13th 2008 - July 13th 2008,

%% June 2009

%% mbharat@cory.eecs.berkeley.edu

%% Ref: Stephen Lynch,

%% Dynamical Systems with Applications

%% using MATLAB

clear;

%% MAKE SURE YOU PUT CODE BELOW ON A

%% SINGLE LINE!

dmemristor=inline(’[y(2);(y(3)-

W(y)*y(2))/33e-9;

(y(2)-y(4))/(8.33*10e-3);

y(3)*(8.33/100e-9)]’,’t’,’y’);

options = odeset(’RelTol’,1e-7,

’AbsTol’,1e-7);

[t,ya]=ode45(dmemristor,[0 100e-3],

[0,0.1,0,0],options);

plot(ya(:,2),ya(:,4))

title(’Memristor Attractor: 2D Projection,

v2 vs. v1’)

fsize=15;

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’v2(t)’,’Fontsize’,fsize);

figure

plot(ya(:,2),ya(:,3))

title(’Memristor Attractor: 2D Projection,

i vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’i(t)’,’Fontsize’,fsize);

figure

plot(ya(:,2),ya(:,1))

title(’Memristor Attractor: 2D Projection,

phi vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’phi(t)’,’Fontsize’,fsize);

figure

plot(ya(:,3),ya(:,1))

title(’Memristor Attractor: 2D Projection,

91

phi vs. i’)

xlabel(’i(t)’,’Fontsize’,fsize);

ylabel(’phi(t)’,’Fontsize’,fsize);

figure

plot(t,ya(:,2))

hold

plot(t,ya(:,4),’r’)

title(’Memristor chaotic time series:

v1 (blue) and v2 (red)’)

figure

plot(t,ya(:,1))

hold

plot(t,ya(:,3),’r’)

title(’Memristor chaotic time series:

w (blue) and i (red)’)

%% 3d plot: flux, current and voltage

figure

plot3(ya(:,1),ya(:,2),ya(:,3));

grid on

xlabel(’w(t)’,’Fontsize’,fsize);

ylabel(’v1(t)’,’Fontsize’,fsize);

zlabel(’i(t)’,’Fontsize’,fsize);

title(’Memristor 3D attractor’);

Shown below is W.m:

%% Menductance functions for use with

%% memristorAudio.m and

%% memristorAudioSIMPLEST.m

%% Bharathwaj Muthusway,

%% Pracheta Kokate

%% July 17th 2008,

%% June 2009

%% mbharat@cory.eecs.berkeley.edu

function r=W(y)

if y(1) <= -1.5e-4

r = 43.25e-4;

elseif y(1) > -1.5e-4 && y(1) <= -0.5e-4

r = -9.33*y(1)-9.67e-4;

elseif y(1) > -0.5e-4 && y(1) < 0.5e-4

r = -5.005e-4;

92

elseif y(1) >= 0.5e-4 && y(1) < 1.5e-4

r = 9.33*y(1)-9.67e-4;

else

r = 43.25e-4;

end

end

The circuit parameters above were chosen such that the circuit frequencies are in
the audio range. To listen to sounds of chaos, use the MATLAB command:

soundsc(ya(:,1),44000)

A.8 MATLAB simulation code for four element

memristor based chaotic circuit with single

negative element

The file below is called memristorAudioSIMPLEST.m, use the same W.m in the
previous section.

%% Memristor based chaotic Chua’s circuit

%% simulation

%% Bharathwaj Muthusway, Pracheta Kokate

%% June 13th 2008 - July 3rd 2008

%% June 2009

%% mbharat@cory.eecs.berkeley.edu

%% Ref: Stephen Lynch,

%% Dynamical Systems with Applications

%% using MATLAB

clear;

%% MAKE SURE CODE BELOW IS ON A SINGLE LINE.

%% W(y) is the same function from the

%% previous appendix

dmemristor=inline(’[y(2);(y(3)-W(y)*y(2))/33e-9;

(y(2)-y(4))/(1*-10e-3);

y(3)*(1/100e-9)]’,’t’,’y’);

options = odeset(’RelTol’,1e-7,’AbsTol’,

1e-7);

[t,ya]=ode45(dmemristor,[0 100e-3],

[0,0.1,0,0],options);

93

plot(ya(:,2),ya(:,4))

title(’Memristor Attractor: 2D Projection,

v2 vs. v1’)

fsize=15;

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’v2(t)’,’Fontsize’,fsize);

figure

plot(ya(:,2),ya(:,3))

title(’Memristor Attractor: 2D Projection,

i vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’i(t)’,’Fontsize’,fsize);

figure

plot(ya(:,2),ya(:,1))

title(’Memristor Attractor: 2D Projection,

phi vs. v1’)

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’phi(t)’,’Fontsize’,fsize);

figure

plot(ya(:,3),ya(:,1))

title(’Memristor Attractor: 2D Projection,

phi vs. i’)

xlabel(’i(t)’,’Fontsize’,fsize);

ylabel(’phi(t)’,’Fontsize’,fsize);

fsize=15;

xlabel(’v1(t)’,’Fontsize’,fsize);

ylabel(’v2(t)’,’Fontsize’,fsize);

figure

plot(t,ya(:,2))

hold

plot(t,ya(:,4),’r’)

title(’Memristor chaotic time series:

v1 (blue) and v2 (red)’)

figure

plot(t,ya(:,1))

94

hold

plot(t,ya(:,3),’r’)

title(’Memristor chaotic time series:

w (blue) and i (red)’)

%% 3d plot: flux, current and voltage

figure

plot3(ya(:,1),ya(:,2),ya(:,3));

grid on

xlabel(’w(t)’,’Fontsize’,fsize);

ylabel(’v1(t)’,’Fontsize’,fsize);

zlabel(’i(t)’,’Fontsize’,fsize);

title(’Memristor 3D attractor’);

A.9 Lyapunov Exponent programs

The Lyapunov exponent program for the four-element memristor-based chaotic
circuit is shown below.

function OUT = fourElementMemristor(t,X)

%MEMRISTOR Model of memristor based four

%Element chaotic circuit

% Settings:

% ODEFUNCTION: fourElementMemristor

% Final Time: 1000, Step: 0.01,

% Relative & Absolute Tol: 1e-007

% No. of discarded transients: 100,

% update Lyapunov: 10

% Initial Conditions: 0 0.1 0 0,

% no. of linearized ODEs: 16

% The first 4 elements of the input data X

% correspond to the

% 4 state variables. Restore them.

% The input data X is a 12-element vector

% in this case.

% Note: x is different from X

w = X(1); x = X(2);y = X(3);z = X(4);

%% MAKE SURE CODE IS ON A SINGLE LINE!

95

% Parameters.

L1 = 10e-3;C1=33e-9;C2=100e-9;k=8.33;

% ODE

dw = (sqrt(L1*C2))*x;

dx = (sqrt(L1*C2)/C1)*(y-fourElementW(w)*x);

% dy = (sqrt(L1*C2)/(k*L1))*(x-z);

% comment dy above and uncomment dy

% below for ONE negative element

% this single negative element chaotic

% circuit may be the simplest

% possible four dimensional and

% four-element chaotic circuit

% ALSO, YOU NEED TO CHANGE JACOBIAN!

k = 1;

dy = (sqrt(L1*C2)/(k*-L1))*(x-z);

% end uncomment code

dz = ((sqrt(L1*C2)*k)/C2)*y;

% Q is a 4 by 4 matrix, so it has 12

% elements.

% Since the input data is a column

% vector, rearrange the last 12

% elements of the input data in a

% square matrix.

Q = [X(5), X(9), X(13),X(17);

X(6), X(10), X(14),X(18);

X(7), X(11), X(15),X(19);

X(8), X(12), X(16),X(20)];

% Linearized system (Jacobian)

J = [0 sqrt(L1*C2) 0 0;

0 -(sqrt(L1*C2)/C1)*fourElementW(w)

sqrt(L1*C2)/C1 0

%0 (sqrt(L1*C2)/(k*L1))

% 0 -(sqrt(L1*C2)/(k*L1))

% replace row above with

% row below for one negative element

% memsristor circuit

0 -(sqrt(L1*C2)/(k*L1)) 0

(sqrt(L1*C2)/(k*L1))

96

0 0 ((sqrt(L1*C2)*k)/C2) 0];

% Multiply J by Q to form a variational

% equation

F = J*Q;

OUT = [dw;dx; dy; dz; F(:)];

end

The Lyapunov exponent program for the canonical memristor-based chaotic circuit
is shown below.

function OUT = fourDMemristorCanonical(t,X)

% Lyapunov exponent computation for

% Four-D Canonical Memristor

% Settings: ODEFUNCTION: fourdm

% Final Time: 10000, Step: 1,

% Relative & Absolute Tol: 1e-007

% No. of discarded transients: 100,

% update Lyapunov: 10

% Initial Conditions: 0 0 0 2e-5,

% no. of linearized ODEs: 16

% The first 4 elements of the input

% data X correspond to the

% 4 state variables. Restore them.

% The input data X is a 12-element

% vector in this case.

p = X(1); q = X(2);r = X(3);s = X(4);

% time scaling

tau = 1/sqrt(7.07e-3*49.5e-9);

% ODE

dp = (q*10e3)/tau;

dq = (1/(tau*5.5e-9))*(r/(2*1428)-q/1428

-canonicalW(p)*q);

dr = (1/(tau*49.5e-9))*((2*q)/1428-r/1428

-s/10);

ds = (10*r)/(tau*7.07e-3);

% Q is a 4 by 4 matrix, so it has

% 12 elements.

97

% Since the input data is a column

% vector, rearrange

% the last 12 elements of the input

% data in a square matrix.

Q = [X(5), X(9), X(13),X(17);

X(6), X(10), X(14),X(18);

X(7), X(11), X(15),X(19);

X(8), X(12), X(16),X(20)];

% Linearized system (Jacobian)

J = [0,10e3/tau,0,0;

0,-(1/(tau*5.5e-9))*(1/1428+

canonicalW(p)),

(1/(tau*5.5e-9))*(1/(2*1428)),0;

0,(1/(tau*49.5e-9))*(2/1428),

-(1/(tau*49.5e-9))*(1/1428),

-(1/(tau*49.5e-9))*(1/10);

0,0,10/(tau*7.07e-3),0];

% Multiply J by Q to form a variational

%equation

F = J*Q;

OUT = [dp; dq; dr; ds;F(:)];

end

For the Time-Series method, we use the same programs above, but the call
functions are different and are given below. First is the call function for the four-
element memristor-based chaotic circuits followed by the call function for the canon-
ical memristor-based chaotic circuit.

options = odeset(’RelTol’,1e-7,’AbsTol’,1e-7);

[T,Res]=lyapunov(4,@fourElementMemristor,@ode45,

0,0.01,1000,[0 0.1 0 0],10);

plot(T,Res);

title(’Dynamics of Lyapunov exponents’);

xlabel(’Time’); ylabel(’Lyapunov exponents’);

options = odeset(’RelTol’,1e-7,’AbsTol’,1e-7);

[T,Res]=lyapunov(4,@fourDMemristorCanonical,

@ode45,options,0,1,10000,[0 0 0 2e-5],1);

98

plot(T,Res);

title(’Dynamics of Lyapunov exponents’);

xlabel(’Time’); ylabel(’Lyapunov exponents’);

A.10 Mathematica Code for Rigorous Verification

of Chaos in Memristor Chaotic Circuit

Q[φ] := −0.5∗10−3∗φ+0.5∗(−0.8∗10−3+0.5∗10−3)∗(Abs[φ+1]−Abs[φ−1]) (A.12)

W [φ] :=

−0.5 ∗ 10−3 φ ≤ −1

−0.8 ∗ 10−3 −1 < φ < 1

−0.5 ∗ 10−3 φ ≥ 1

(A.13)

99

Manipulate[Module[{memristorCircuit},
With[{tx = a},

memristorCircuit =

Quiet@NDSolve[{φ′[t] == v1[t],

v′1[t] == 1/(5.5 ∗ 10−9)((v2[t]− v1[t])

1428−Wφ[t]] ∗ v1[t]),

v′2[t] == 1/(49.5 ∗ 10−9) ∗ ((v1[t]− v2[t])

1428− i[t]),
i′[t] == v2[t]/(7.07 ∗ 10−3), φ[0] == 0,

v1[0] == 0.0, v2[0] == 0,

i[0] == −0.2}, {φ, v1, v2,

i}, {t, 0, 50 ∗ 10−3},MaxSteps→ Infinity];

Show[ParametricP lot3D[

Evaluate[{v1[t]/5000, φ[t], i[t]/1000}/.
memristorCircuit], {t, 0, tx},
AxesLabel− > {”v1(t)(volts)”,

”φ(t)(weber)”, ”i(t)(amps)”},
P lotRange→ {{−10, 10}, {−10, 10}, {−0.1, 0.1}},

BoxRatios→ {1, 0.5, 1}],
ParametricP lot3D[{x,−1, z}, {x,−7, 7}, {z,−0.1, 0.1},

Mesh→ None, P lotStyle→ Opacity[1],

P lotRange→ {{−10, 10}, {−10, 10}, {−0.1, 0.1}}],
Switch[First[Evaluate[φ[tx]/.memristorCircuit]] > −1, T rue,

Graphics3D[{PointSize[Large], Blue,
Point[First[

Evaluate[{v1[tx]/5000, φ[tx], i[tx]/

1000}/.memristorCircuit]]]}], ,
Graphics3D[{PointSize[Large], Y ellow,

Point[First[

Evaluate[{v1[tx]/5000, φ[tx], i[tx]/

1000}/.memristorCircuit]]]}]]]]], {a, 0.1 ∗ 10−3, 50 ∗ 10−3, 0.05 ∗ 10−3}] (A.14)

100

A.11 Mathematica Demonstration for Cubic Mem-

ristor Based Chaotic Circuit

Mathematica 6.0 simulation code for Fig. 3.22

Manipulate[[Module[{sol = {φ, v1, v2, i}/.
Quiet[NDsolve[

{φ′[t] == −v1[t] ∗ 1000,

v′1[t] ==
1

C1

(
v2[t]− v1[t]

R
−
((
−0.599 ∗ 10−3 + 0.0677 ∗ 10−3 ∗ φ[t]2 ∗ 3

)
∗ v1[t]

))
,

v′2[t] ==
1

C2

(
v1[t]− v2[t]

R
− i[t]

)
, i′[t] ==

v2[t]

L
, φ[0] == 0,

v[1] = 0.11, v2[0] = 0.11, i[0] == 0.0}/.{C1 → C1val, C2 → C2val, L→ Lval,

R→ Rval}, {φ, v2, v2, i}, {t, 0, tmax},MaxSteps→ Infinity]][[1]]},
Grid[{{ParametricP lot[{First[sol][t], F irst[Rest[Rest[sol]]][t]}, {t, 0, tmax},
AxesLabel→ {”φ[t]”, ”v2[t]”}, ImageSize→ {150, 150}, AspectRatio→ 1],

P lotRange→ All,MaxRecursion→ 8, P erformanceGoal→ 8],

P lot[{First[sol][t], {t, 0, tmax}, AxesLabel→ {”t”, ”φ[t]”},
ImageSize→ {150, 150}, P lotRange→ All,MaxRecursion→ 8,

P erformanceGoal→ 8], ParametricP lot3D[{First[Rest[sol]][t],
F irst[Rest[Rest[sol]]][t], F irst[sol][t]}, {t, 0, tmax}, AxesLabel→ {”v1[t]”, ”v2[t]”,

”φ[t]”}, ImageSize→ {150, 150}, BoxRatios→ {1, 1, 1}, P lotRange→ Full,

MaxRecursion→ 8, P erformanceGoal→ 8, ColorFunction→ ”Rainbow”]}}]],
T ext[Style[”CircuitParameters”, FontSize→Medium, FontWeight→ Bold]],

{{Rval, 1.8 ∗ 103, ”R ∈ {1800Ω, 1801Ω, ..., 2400Ω}”}, 1.8 ∗ 103, 2.4 ∗ 103, 1},
{{Lval, 18∗10−3, ”L ∈ {18 mH, 18.5 mH, ..., 24 mH}”}, 18∗10−3, 24∗10−3, 0.5∗10−3},
{{C2val, 68∗10−9, ”C2 ∈ {68 nF, 68.5 nF, ..., 74 nF}”}, 68∗10−9, 74∗10−9, 0.5∗10−9},
{{C1val, 6.8 ∗ 10−9, ”C1 ∈ {6.8 nF, 6.85 nF, ..., 7.4 nF}”}, 6.8 ∗ 10−9, 7.4 ∗ 10−9,

0.05 ∗ 10−9}, {{tmax, 0.01, ”t ∈ {5 ∗ 10−5, 10e− 5, ..., 0.01 sec, ..., 0.1 sec}”},
5 ∗ 10−5, 0.1, 5 ∗ 10−5}, T ext[Style[”2D Phase Portrait, T ime Domain

Waveform and a 3D Phase Portrait”,

FontSize→Medium, FontWeight→ Bold]], SynchronousUpdating → False]
(A.15)

101

A.12 Mathematica code for Cellular Automata evo-

lution and Integer Factorization

Mathematica 6.0 simulation code for chapter 3.

(* Function to find attractors and ALL basins. *)

(* Usage: BartCA[105,3] *)

BartCA[rule_,bitLength_] :=

Module[{n,l,DynamicsList,p,initPattern,x},

(* Declare some utility functions first *)

(* The function below converts the input in decimal to a *)

(* list of its binary equivalent suitable for use in

CellularAutomaton *)

DecimalToBinaryList[n_] := IntegerDigits[n, 2, bitLength];

(* Convert a binary number (represented as a list) to a decimal

integer *)

BinaryToDecimal[l_] := FromDigits[l, 2];

(* The function below can be used to convert the output from

CellularAutomaton to integers *)

BinaryToDecimalEvolution[DynamicsList_] :=

Map[BinaryToDecimal, DynamicsList];

(* Functions below puts the output in the format we want:

{basin,{attractor}} OR {attractor} *)

(* getEvolutionListAndAttractorPositions works because the

last element in each evolution list is *)

(* repeated again somewhere in the evolution list. Hence, if

we will get an array of two elements if we *)

(* find the positions of the last element in each evolution list.*)

getEvolutionListAndAttractorPositions[l1_] :=

Join[{l1}, {Flatten[Position[l1, Last[l1]]]}];

(* Now, lets say we have the following evolution list and

attractor positions in the list: *)

(* LP = {{{0,0},{1,2}},{{1,3,7,13,7},{3,5}}} *)

(* We want: {{{},{0}},{{1,3},{7,13,7}}} *)

evolutionFormat[LP_] :=

{Flatten[Take[LP[[1]],LP[[2]][[1]]-1]],

Take[LP[[1]],LP[[2]]]};

102

(* Function below is obvious: it computes one iteration

of an evolution rule *)

(* by running CellularAutomaton once *)

OneIteration[p_] := Last[CellularAutomaton[rule,p,1]];

(* Run until you hit an attractor using the NestWhileList

function *)

CARunUntilAttractor[initPattern_] :=

NestWhileList[OneIteration,initPattern, UnsameQ, All];

x = Table[i,{i,0,(2^bitLength)-1}];

Map[evolutionFormat,Map[getEvolutionListAndAttractorPositions,

Map[BinaryToDecimalEvolution,Map[CARunUntilAttractor,

(Map[DecimalToBinaryList,x])]]]]];

(* Function to find unique attractors *)

(* Format: {{attractor 1},{attractor 2},...} *)

(* Example: {{0},{3,12},{6,9}} *)

(* Usage: GetUniqueAttractors[BartCA[105,3]]*)

GetUniqueAttractors[evolutionList_] :=

Module[{tempList},

(* Utility Function to check for empty list *)

CheckIfEmptyQ[l_] := Length[l[[1]]] == 0;

(* Mathematica example function to take union of elements WITHOUT

sorting *)

UnsortedUnion[x_]:=Module[{f},f[y_]:=(f[y]=Sequence[];y);f/@x];

(* This utility function finds the position of the smallest number

in each attractor *)

(* We use this as a predicate in NestWhile to rotate the attractor

until the smallest *)

(* number is the head of the attractor *)

FirstPosSmallestQ[l_] := Position[l, Min[l]] != {{1}};

RotateUntil[l_] := NestWhile[RotateLeft, l, FirstPosSmallestQ];

(* If the first element is empty, then we know that we have an

attractor *)

(* Then, we just extract the second element from each list,

103

that is the attractor. *)

(* Next, we flatten each element in the list for nicer formatting *)

(* By taking an UnsortedUnion, we remove the last duplicate entry

in each attractor *)

(* We then sort the list so that attractors of the same period are

grouped *)

(* Then, we just use RotateUntil so that we can finally take the

Union to get the unique attractors *)

Union[Map[RotateUntil,Sort[Map[UnsortedUnion,

Map[Flatten,Map[Rest,Select[evolutionList,

CheckIfEmptyQ]]]]]]]];

(* Function to find attractor periods *)

(* Output format: {{no-of-attractors of period p1,

{Period, p1}},{no-of-attractors of period p2,{Period, p2}},...*)

(* Example: {{1, {Period, 1}},{2,{Period, 2}}} *)

(* Usage: FindAttractorPeriods[GetUniqueAttractors[BartCA[105,3]]] *)

FindAttractorPeriods[UniqueAttractorList_] :=

Module[{},

OutputFormat[l_] := {Length[l],{Period,First[l]}};

Map[OutputFormat,Split[Map[Length,UniqueAttractorList]]]];

	List of Figures
	List of Tables
	Introduction
	Mathematical Notation
	Autonomous Chaotic Circuits
	A Brief History of Chaos
	The Four Basic Circuit Elements
	An Introduction to Chua's Circuit
	References for Chaotic Systems

	Cellular Automata
	A Brief History of Cellular Automata
	Wolfram's work on Cellular Automata
	Nonlinear Dynamics Perspective of Cellular Automata
	References for Cellular Automata

	A Summary of Thesis Contributions

	I Autonomous Chaotic Circuits
	Rigorous Proof of Chaos in the Four-Element Chua's Circuit
	Introduction and Chapter Organization
	Introduction to the Four-Element Chua's circuit and Main Result
	Intuitive Ideas Behind the Proof
	Rigorous proof of chaos via Shilnikov's Theorem
	Definitions for proving that xe is a hyperbolic saddle
	Proving that xe is a hyperbolic saddle
	Proving that a homoclinic orbit exists at xe and related definitions

	Bifurcation analysis using Describing Functions
	One Parameter Bifurcation Diagram for the Four-Element Chua's circuit
	Introduction to Describing Functions
	Period-Doubling Criterion Based on the Describing Function
	Period-Doubling Route to Chaos in the Four-Element Chua's circuit

	Conclusion

	Memristor Based Chaotic Circuits and Topological Horseshoe Theory
	Introduction and Chapter Organization
	Memristor Based Chaotic Circuits and Main Result
	Canonical Memristor Based Chaotic Circuit
	Four Element Memristor Based Chaotic Circuit
	Four Element Memristor Based chaotic circuit with one negative element
	Five Dimensional Memristor Based Chaotic Circuit
	Lyapunov Exponent Calculations
	Topological Horseshoe Theory and Rigorous Verification of Chaos
	Intuitive Ideas Behind the Proof
	Rigorous Verification of Chaos in Canonical Memristor Based Chaotic Circuit

	Implementing Memristor Based Chaotic Circuits
	Practical Implementation of a Memristor
	Limit Cycles, Strange Attractors and Power Spectra from the Memristor Chaotic Circuit

	Lyapunov Exponents for The Practical Memristor Based Chaotic Circuit
	A Note On Implementation Issues
	Conclusion

	II Cellular Automata
	Integer Factorization and Cellular Automata
	Introduction and Chapter Organization
	Important Definitions and Main Result
	Rigorous Proof of Factorization Property of Rule 46
	A New Classification Scheme for Cellular Automata Evolution
	Conclusion

	III End Matter
	Conclusions and Future Work
	Bibliography
	Mathematica 6.0 and MATLAB R2007b Code
	The Lorenz Butterfly
	Four Element Chua's circuit
	Four Element Chua's circuit - eigenvalues and eigenspaces
	Mathematica code for the Four-Element Bifurcation Diagram
	MATLAB simulation code for Canonical Memristor Based Chaotic Circuit
	MATLAB simulation code for Rescaled Canonical Memristor Based Chaotic Circuit
	MATLAB simulation code for four element memristor based chaotic circuit
	MATLAB simulation code for four element memristor based chaotic circuit with single negative element
	Lyapunov Exponent programs
	Mathematica Code for Rigorous Verification of Chaos in Memristor Chaotic Circuit
	Mathematica Demonstration for Cubic Memristor Based Chaotic Circuit
	Mathematica code for Cellular Automata evolution and Integer Factorization

