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Abstract

Sparse signal recovery using sparse random projections

by

Wei Wang

Doctor of Philosophy in Engineering –Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Chair

The problem of estimating a high-dimensional signal based on an incomplete set of

noisy observations has broad applications. In remote sensing, network traffic mea-

surement, and computational biology, the observation process makes it difficult or

costly to obtain sample sizes larger than the ambient signal dimension. Signal recov-

ery is in general intractable when the dimension of the signal is much larger than the

number of observations. However, efficient recovery methods have been developed

by imposing a sparsity constraint on the signal. There are different ways to impose

sparsity, which has given rise to a diverse set of problems in sparse approximation,

subset selection in regression, and graphical model selection.

This thesis makes several contributions. First, we examine the role of sparsity in

the measurement matrix, representing the linear observation process through which

we sample the signal. We develop a fast algorithm for approximation of compress-
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ible signals based on sparse random projections, where the signal is assumed to be

well-approximated by a sparse vector in an orthonormal transform. We propose

a novel distributed algorithm based on sparse random projections that enables re-

finable approximation in large-scale sensor networks. Furthermore, we analyze the

information-theoretic limits of the sparse recovery problem, and study the effect of

using dense versus sparse measurement matrices. Our analysis reveals that there is a

fundamental limit on how sparse we can make the measurements before the number

of observations required for recovery increases significantly. Finally, we develop a gen-

eral framework for deriving information-theoretic lower bounds for sparse recovery.

We use these methods to obtain sharp characterizations of the fundamental limits of

sparse signal recovery and sparse graphical model selection.

Professor Kannan Ramchandran
Dissertation Committee Chair
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Chapter 1

Introduction

A fundamental problem in high-dimensional statistics is to estimate data based

on noisy observations, when the dimensionality of the data is much larger than the

number of samples. This problem arises in a wide variety of applications, including

remote sensing, network traffic measurement, and computational biology. In many

settings, the data is not directly accessible and the observation process makes it

difficult or costly to obtain sample sizes greater than the ambient data dimension.

However, many classical procedures assume that the problem dimension p is fixed

while the number of samples n grows, and are known to break down when p/n does

not go to zero. Moreover, recovery is frequently intractable when p � n unless

some additional structure is imposed on the data or underlying model. Accordingly,

a line of recent research has focused on developing efficient recovery methods for

high-dimensional estimation by imposing sparsity.

Sparsity can be exhibited in various forms in different problem settings. In subset
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Chapter 1. Introduction

selection in regression [42], the regression vector may include a large number of irrel-

evant variables, and the goal is to select the sparse subset of variables that linearly

influence the observations. In sparse approximation [43, 23] and signal denoising [16],

the data may be well-approximated by a sparse vector of coefficients in an orthonor-

mal basis or overcomplete dictionary. Similarly, in compressed sensing [14, 25], the

problem of interest is to recover a sparse vector that satisfies a set of observed linear

constraints, where the sparsity on the signal may be imposed in the signal domain

or the transform domain. Finally, in graphical model selection [41], sparsity may

be imposed on an underlying graph that determines the conditional independence

properties of a Markov random field, and the goal is to correctly estimate the graph

structure.

Sparsity is an abstract concept, but a powerful one with diverse applications. The

common underlying phenomenon in all these problems is that although the ambient

dimensionality of the problem is high, the data actually lies in some low dimensional

subspace. This sparse structure can be exploited to obtain computationally effi-

cient recovery methods. The development of methods to solve such sparse recovery

problems has varied from field to field. We now provide a broad overview of these

developments in several areas.

1.1 Research areas related to sparse recovery

There is a long history in signal processing of studying sparse representations

of signals, from classical Fourier analysis to wavelets and overcomplete dictionar-
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ies [22, 40]. Such representations are used in transform-based coding and compression

schemes for images and audio [29]. Since signal decomposition in overcomplete dictio-

naries is not unique, sparse approximation algorithms [43, 23] were developed to find

the sparsest representation with respect to a given dictionary. In particular, matching

pursuit [39] uses greedy iterative algorithms, while basis pursuit [16] formulates the

problem as an `1-minimization which can be solved using linear programming. A sub-

stantial body of recent work in compressive sensing [14, 25, 27, 13, 56] has analyzed

the behavior of `1-relaxations for sparse approximation and established conditions on

the signal sparsity and choice of measurement matrix under which they succeed.

In statistics, a great deal of work has similarly focused on `1 and other convex

relaxations for high-dimensional inference. In particular, subset selection [42] refers

to the problem of recovering the sparsity pattern of an unknown vector based on noisy

observations. For applications in computational biology and group testing, it is the

underlying support set that is of primary interest. Considerable research has analyzed

the behavior of `1-constrained quadratic programming [13, 26, 56], also known as the

Lasso [55, 41, 64, 58], for sparsity recovery. In graphical model selection, the problem

of interest is to recover the underlying graph structure based on observed samples

from a Markov random field. These problems have applications in image analysis,

natural language processing, and computational biology. When the graph is known

to be sparse, various `1-regularized methods [11, 63, 21, 46] have been shown to yield

consistent estimators for high-dimensional graph selection.

Finally, in computer science and applied math, related problems in dimension-

ality reduction have been studied from an algorithmic perspective. The Johnson-
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Chapter 1. Introduction

Lindenstrauss (JL) lemma [36] states that a point set in high-dimensional Euclidean

space can be embedded in a low-dimensional space while preserving pairwise dis-

tances between the points. Most known constructions for JL embeddings use random

projections [35, 20, 1], which provide both efficient algorithms for constructing such

embeddings and simpler and sharper proofs of the lemma. A line of work in sketch-

ing [6, 34] has used such geometry-preserving embeddings to develop fast probabilistic

algorithms for approximating frequency moments, histograms, and the top-k wavelet

coefficients of streaming data. Such algorithms are used to estimate large flows in net-

work traffic measurement and monitor statistics in massive databases. Furthermore,

recent results [8] have shown that matrices which satisfy the Johnson-Lindenstrauss

lemma also satisfy the restricted isometry property needed for `1-recovery, thereby

establishing a mathematical connection between Johnson-Lindenstrauss and com-

pressed sensing.

The deep connections between these seemingly disparate problem settings and

research areas underscore the power and broad applicability of sparse recovery models.

In this context, this thesis focuses on three main problems: estimation of compressible

signals (i.e. signals which are approximately sparse in an orthonormal transform),

exact support recovery of sparse vectors, and model selection for sparse graphical

models. In particular, we address both computationally tractable recovery methods,

as well as information-theoretic bounds on the performance of any recovery method.
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+n

measurement matrix signal

p

n

p

obs

=

noise

Figure 1.1. Sparse signal recovery refers to the problem of estimating an unknown
signal based on n noisy observations, when the number of samples n is much less
than the ambient signal dimension p.

1.2 Thesis overview

In this section, we provide an overview of the problems addressed in this thesis

and discuss some of our contributions.

1.2.1 Sparse approximation in sensor networks

We first consider the problem of data approximation in large-scale distributed

sensor networks. The traditional approach to data recovery in wireless sensor net-

works is to collect data from each sensor to one central server, and then process and

compress the data centrally. The physical phenomena measured by sensor networks

are typically smooth signals (e.g. temperature and humidity), and the sparse rep-

resentation and compressibility of such classes of signals are well understood [40].

Consequently, the aggregate data vector containing all the sensor values can often be

well-approximated by a sparse vector of coefficients in an orthonormal basis. In this
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setting, an interesting question is whether we can collect a set of samples from any-

where in the network, and recover an approximation of the data comparable to the

best k-term approximation with respect to a given basis. Of course, this is possible

when the sample size n is equal to the data dimension p; we are interested in regimes

in which n� p.

As we discussed in the previous section, there is an extensive literature on recovery

methods for classes of signals with some underlying sparse structure. However, when

the data is distributed across many nodes in a large-scale network, new challenges

arise. In particular, communication is a dominant cost in wireless networks when

nodes are power-limited. Most known constructions in compressed sensing and related

areas use dense measurement matrices, for example containing entries drawn from a

standard Gaussian or Bernoulli{+1,−1} distribution. Computing a single random

projection of the sensor data using such dense measurements would require accessing

the values at all the sensor nodes. The key idea we exploit in Chapter 2 is that

sparse measurement matrices can greatly reduce the communication, storage and

computational cost associated with sparse recovery.

Sparse recovery using sparse random projections

In Chapter 2, we show that a simple sketching decoder can recover compress-

ible signals from sparse random projections in the presence of noise. We consider

sparse measurement matrices with a γ-fraction of non-zero entries per row. Our

results apply to general random ensembles of matrices that satisfy certain moment

conditions, which includes γ-sparsified Bernoulli and γ-sparsified Gaussian matrices.

6
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The sketching decoder is computationally cheaper than the `1-recovery methods used

in compressed sensing, at the cost of requiring more measurements to recover at a

given fidelity. In sensor network scenarios, this tradeoff may be desirable to allow

resource-limited agents or sensors to recover coarse approximations of the network

data. Our results establish conditions on the signal under which it is possible to have

very sparse measurement matrices (e.g. with a constant number of nonzeros per row)

without affecting the sampling efficiency of sketching. More generally, we characterize

the tradeoff between measurement sparsity and sampling efficiency.

It is worth noting that compressed sensing results on `1 recovery of compressible

signals (e.g. [13]) rely on certain mutual incoherence properties between the mea-

surement matrix and the sparsifying basis. For example, measurement matrices with

entries drawn from the standard Gaussian distribution are rotation invariant when

multiplied by any orthonormal matrix. In this case, the problem of recovering com-

pressible signals can be formulated equivalently as a problem of recovering sparse

vectors. However, sparse measurement matrices are not generally spherically sym-

metric. To the best of our knowledge, our approach is the only method that uses

sparse random projections to approximate compressible signals, when the measure-

ments are made directly on the signal itself.

Distributed approximation for sensor networks

As we discussed in the previous section, we can recover an approximation of the

data based on sparse random projections. A natural question, then, is whether the

sensors can pre-process the data in a distributed manner to produce these random

7



Chapter 1. Introduction

projections. The key ideas underlying Chapter 2 are that, (1) sparse random projec-

tions can be used to recover compressible data, and (2) sparsity can be exploited to

reduce the amount of communication needed to pre-process the data in the network.

We propose a distributed algorithm based on sparse random projections, which

has the useful properties of universality, refinability, and robustness. More specifically,

the sensors need no knowledge of the data model, meaning the basis in which the data

is approximately sparse and the value of the signal sparsity parameter k. Only the

decoder needs to know this information, and thus the decoder can choose the number

of sensors to query according to the desired quality of the approximation. The error

of the approximation depends only on the number of measurements collected, and

not on which sensors are queried.

1.2.2 Information-theoretic bounds for sparse recovery

Sparsity recovery refers to the problem of recovering the sparsity pattern or sup-

port set of an unknown vector based on noisy linear observations. This problem –

also known as support recovery or variable selection – arises in subset selection in

regression [42], graphical model selection [41], signal denoising [16] and compressed

sensing [14, 25]. There is a large body of work focused on developing computationally

efficient methods to solve this problem (e.g., [16, 14, 25, 55, 56, 58]); one prominent

approach is the use of `1-relaxation methods which can be solved with convex op-

timization. The discovery of polynomial-time algorithms to solve this vastly under-

determined inverse problem has generated considerable excitement in the literature.

However, the computational complexity can still be quite high: in the noiseless case,
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`1-recovery methods using linear programming have complexity O(p3) in the signal

dimension p. One way to reduce this complexity is to use sparse measurement matri-

ces.

Most known constructions use dense measurement matrices, for example matrices

with entries drawn from a standard Gaussian distribution or a Bernoulli{+1,−1}

distribution. These matrices consist entirely of nonzero entries with probability one,

and as such are expensive to store and process. In contrast, sparse measurement

matrices can directly reduce encoding complexity and storage costs, and can also

lead to fast decoding algorithms by exploiting problem structure. Accordingly, a

line of recent work has studied the use of measurement sparsity to reduce complex-

ity [53, 60, 61, 44, 10]. On the other hand, measurement sparsity can potentially

hurt performance by requiring more measurements to recover the signal. Intuitively,

if both the signal and the measurement matrix are very sparse, then the random

measurements will rarely align with the nonzero locations of the signal.

In this context, two key questions arise about the relationship between the sparsity

of the measurement matrix and the number of measurements needed to recover the

signal. First, how sparse can we make the measurement matrix without affecting the

sampling efficiency? And second, when we increase the sparsity beyond this limit,

what is the tradeoff between measurement sparsity and sampling efficiency?

Fundamental limits of sparsity

There is a substantial literature on computationally tractable methods for estimat-

ing high-dimensional sparse signals. Of complementary interest are the information-
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theoretic limits of the problem, which apply to the performance of any recovery

method regardless of its computational complexity. Such analysis has two purposes:

first, to demonstrate where known polynomial-time methods achieve the information-

theoretic bounds, and second, to reveal situations in which current methods are sub-

optimal.

Chapter 3 addresses the effect of the choice of measurement matrix on the

information-theoretic limits of sparse signal recovery, in particular the effect of using

dense versus sparse measurement matrices. Our analysis yields sharp characteriza-

tions of when the optimal decoder can recover for a general class of dense measurement

matrices (including non-Gaussian ensembles). In addition, our results show the effect

of measurement sparsity, and reveal that there is a critical threshold beyond which

sparsity significantly increases the number of observations necessary for recovery.

Surprisingly, this limit is fundamental, and not an artifact of a particular recovery

method.

1.2.3 Graphical model selection bounds

Markov random fields or undirected graphical models are families of multivariate

probability distributions whose factorization and conditional independence properties

are characterized by the structure of an underlying graph. For example, in statistical

image processing, the dependencies among the gray-scale values of the image pixels

can be specified by a graphical model. For tasks such as image denoising and feature

extraction, it is the structure of the underlying graph that is of interest. Graphical

model selection refers to the problem of estimating the graph structure based on

10



Chapter 1. Introduction

observed samples from an unknown Markov random field. For Gaussian Markov

random fields, this problem is equivalent to estimating the sparsity pattern of the

inverse covariance matrix. A line of recent work [63, 32, 21, 49, 46] has shown that

`1-regularization methods provide consistent estimators for graphical model selection

when the underlying graph is known to be sparse.

Chapter 4 focuses on the information-theoretic limits of this problem, which bound

the performance of any algorithm regardless of its computational complexity. More

specifically, our analysis yields a set of necessary conditions for consistent graphical

model selection over Gaussian Markov random fields. Compared to previously known

sufficient conditions using `1-penalized maximum likelihood [46], we obtain sharp

characterizations in certain regimes of interest, while revealing a gap in other regimes.

Furthermore, our results establish necessary conditions for estimation of the inverse

covariance matrix with error measured in the elementwise `∞-norm, which implies

similar conditions in other recovery norms as well.

At a high level, our general approach is to apply Fano’s inequality [19] to restricted

ensembles of graphical models, in which we view the observation process as a com-

munication channel. The problem of establishing necessary conditions for recovery is

then reduced to obtaining bounds on the mutual information between the observa-

tions and a random model index. From this perspective, our approach is related to

a line of work on non-parametric estimation in statistics (e.g. [62]). In contrast to

that literature, the spaces of possible codewords in our setting are not function spaces

but instead classes of graphical models. We take a similar approach when deriving

11
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necessary conditions for subset selection in Chapter 3. Our analysis techniques may

be more generally applicable to other recovery problems as well.

12



Chapter 2

Distributed approximation using

sparse random projections

2.1 Introduction

Suppose a wireless sensor network measures data which is compressible in an

orthonormal transform, so that p data values can be well-approximated using only

k � p transform coefficients. In this setting, an interesting question is whether we

can pre-process the data in the network so that only k values need to be collected to

recover the data with an acceptable approximation error. However, it is difficult to

reliably compute a deterministic transform in a distributed manner over large-scale

wireless networks. Furthermore, even if the data is sparse in the identity basis, one

still must locate the largest non-zero coefficients in the network to recover the best

k-term approximation.

13
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There is a rich literature on the use of random projections to approximate func-

tions of data. In particular, a large body of work in compressed sensing (e.g., [? 25])

and related areas has analyzed conditions under which sparse or compressible signals

can be recovered from random linear projections of the data. Similarly, in the AMS

sketching literature (e.g., [6, 34, 17]), random projections are used to approximate

wavelet representations of streaming data. Moreover, random projections are also

used in variations of the Johnson-Lindenstrauss (JL) lemma [36, 1, 38, 4] to perform

geometry-preserving embeddings for dimensionality reduction. However, most of the

known results in these fields rely on the use of dense measurement matrices, for ex-

ample with entries drawn from a standard Gaussian distribution. Computing such

matrices in a distributed setting would require Ω(p2) communications, equivalent to

flooding the network with data.

The focus of this chapter is on the use of sparse measurement matrices for ap-

proximation of compressible signals. First, we show that O(k2 log p) sparse random

projections are sufficient to recover a data approximation which is comparable to the

optimal k-term approximation. Our analysis establishes conditions under which the

average number of non-zeros in each random projection vector can be O(1). More

generally, we characterize the trade-off between the sparsity of the random projec-

tions and the number of random projections needed for recovery. Second, we present

a distributed algorithm based on sparse random projections, which guarantees the

recovery of a near-optimal approximation by querying any O(k2 log p) sensors. Our

algorithm effectively acts as an erasure code over real numbers, generating p sparse

random projection coefficients out of which any subset of O(k2 log p) is sufficient

14



Chapter 2. Distributed approximation using sparse random projections

to decode. The communication cost can be reduced to a constant O(1) number of

packets per sensor, routed to randomly selected nodes in the network. There is a cor-

responding trade-off between the pre-processing communication cost and the number

of sensors that need to be queried to recover an approximation at a given fidelity.

Our distributed algorithm has the interesting property that the decoder can choose

how much or how little to query, depending on the desired approximation error. The

sensors do not need any knowledge of the data model or the sparsifying transform,

including the value of the sparsity parameter k. The decoder can choose k according

to the desired quality of the approximation, and collect a sufficient number of random

measurements from anywhere in the network. The error of the approximation depends

only on the number of measurements collected, and not on which sensors are queried.

Thus, our distributed algorithm enables robust refinable approximation.

The remainder of the chapter will be organized as follows. In Section 2.2, we

define the problem setup and modeling assumptions, and discuss connections to pre-

vious work. In section 2.3, we state our main results on sparse approximation using

sparse random projections. In Section 2.4, we then describe our distributed algorithm

based on sparse random projections. Section 2.5 contains the analysis of the recovery

method, while Section 2.6 contains some comparisons and numerical experiments.

2.2 Sparse approximation

We consider a wireless network of p sensors, each of which measures a real data

value βi. Suppose the aggregate data β ∈ Rp is compressible, so that it can be well-

15
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approximated using k � p coefficients of some orthonormal transform. For simplicity,

we assume that each sensor computes and stores one random projection. We want

to be able to query any n sensors and recover an approximation of the p data values,

with reconstruction error comparable to the best k-term approximation.

2.2.1 Compressible data

There is a long history in signal processing of studying sparse representations for

classes of signals, including smooth signals with bounded derivatives and bounded

variation signals [57, 40]. Sensor networks measuring a smooth temperature field, for

example, may efficiently represent the data using only a few large transform coeffi-

cients, which record useful structure such as average temperature and sharp temper-

ature changes. The remaining small transform coefficients may be discarded without

much loss in the total signal energy.

We consider a real data vector β ∈ Rp, and fix an orthonormal transform Ψ ∈ Rp×p

consisting of a set of orthonormal basis vectors
{
ψ(1), . . . , ψ(p)

}
. The transform Ψ

can be, for example, a wavelet or a Fourier transform. The transform coefficients θ =(
βTψ(1), . . . , βTψ(p)

)T
of the data can be ordered in magnitude, so that |θ|(1) ≥ |θ|(2) ≥

· · · ≥ |θ|(p). The best k-term approximation keeps the largest k transform coefficients

and sets the remaining coefficients to zero. The corresponding approximation error

is
∥∥β − β̂

∥∥2

2
=
∥∥θ − θ̂

∥∥2

2
=
∑p

m=k+1 |θ|2(m).

We now specify the model of compressible data as defined in the compressed

sensing literature [13, 25]. We say that the data is compressible if the magnitude of
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its transform coefficients decay like a power law. That is, the mth largest transform

coefficient satisfies

|θ|(m) ≤ Cr m
−r (2.1)

for each 1 ≤ m ≤ p, where Cr is a constant, and r ≥ 1. Note that r controls the

compressibility (or rate of decay) of the transform coefficients. The approximation

error obtained by taking the k largest transform coefficients and setting the remaining

coefficients to zero, is then

∥∥β − β̂k

∥∥
2

=
∥∥θ − θ̂k

∥∥
2
≤ C ′

r k
−r+1/2

where C ′
r is a constant that depends only on r.

2.2.2 Noisy observation setting

We study the problem of recovering an approximation of compressible signals

based on noisy linear measurements. In particular, suppose we are given n noisy

observations of the form

Y = Xβ +W ∈ Rn, (2.2)

where W ∈ Rn is the noise vector, and X ∈ Rn×p is the measurement matrix. We

consider the problem of estimating the signal β based on Y , where the quality of the

approximation is measured with respect to an `2-norm error metric, ‖β − β̂‖2. We

assume that the noise vector W has independent entries drawn from any distribution

with mean zero and variance σ2 (which includes for example the Gaussian distribution

17
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Figure 2.1. The compressible data model assumes that the largest k transform
coefficients of θ in magnitude captures most of the signal energy.

N(0, σ2I)). Our results apply to general ensembles of measurement matrices which

satisfy some moment conditions (defined in Section 2.3), which include γ-sparsified

Bernoulli and γ-sparsified Gaussian matrices.

2.2.3 Random projections

Recent results in compressed sensing [15, 25] and related areas have shown that

random projections of the data can be used to recover an approximation with error

comparable to the best approximation using the k largest transform coefficients. More

concretely, consider the random projection matrix X ∈ Rk×p containing i.i.d. entries

Xij =

 +1 w.p. 1
2

−1 w.p. 1
2

(2.3)

Given k random projections 1√
p
Xβ ∈ Rk, we can produce an approximation β̂ of the

data β satisfying ∥∥β − β̂
∥∥

2
≤ αr

(
k

log p

)−r+1/2

,

with high probability, where the constant αr depends on r. Compressed sensing

decoding is performed by solving a linear program, which has O(p3) computational

18
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complexity. More recent work [53, 61, 10] in compressed sensing has examined the use

of sparse measurement matrices to reduce decoding complexity. However, these re-

sults assume that the signal itself is sparse, and are not applicable to the compressible

signal model considered here.

Random projections have also been used to recover approximate wavelet repre-

sentations of streaming data in the AMS sketching literature (e.g. [6, 34, 17]). In

sketching, the random projection matrix has entries Xij defined as in (2.3), except

only four-wise independence is required within each row. This relaxation allows the

matrix to be generated pseudo-randomly and stored in small space. The decoding

process estimates the largest k wavelet coefficients using random projections of the

data and the wavelet bases. The sketching decoder requires O(k2 log p) random pro-

jections to produce an approximation with error comparable to the best-k wavelet

coefficients. However the decoding computational complexity is reduced to O(np),

where n is the number of random projections used. For some applications, it would be

useful for sensors or other low-powered collectors to be able to decode a coarse approx-

imation of the data cheaply and quickly. Meanwhile, collectors with greater resources

can obtain more random projections and reconstruct a better approximation.

Finally, random projections have also been used for geometry-preserving embed-

dings in dimensionality reduction. The Johnson-Lindenstrauss (JL) lemma [36, 1, 38,

4] states that any set of p ≥ d points can be mapped from Rd to Rk while preserv-

ing all pairwise distances within a factor of (1 ± ε), where k = O
(

log p
ε2

)
. A line of

work [1, 38, 4] has explored the use of sparsity for efficient JL embedding.
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2.2.4 Distributed data processing

Most of the known results in both compressed sensing and sketching use dense

measurement matrices. The key idea of this chapter is that sparse random projec-

tions can reduce computational complexity, and in our distributed problem setting,

minimize communication cost. Sparsity in the random measurement matrix may also

be exploited to reduce decoding complexity.

Distributed compressed sensing schemes have been proposed in [9, 45, 7]. How-

ever, the problem formulations in these earlier works are very different from our

set-up. In particular, the papers [9, 7] consider the scenario in which all sensors com-

municate directly to a central fusion center, without any in-network communication.

The paper [9] defines a joint sparsity model on the data, and uses knowledge of this

correlation structure to reduce communications from the sensors to the fusion center.

The work in [7] uses uncoded coherent transmissions through an AWGN multiple ac-

cess channel to simultaneously communicate and compute random projections from

the sensors to the fusion center. Finally, the paper [45] poses the scenario where

ultimately every sensor has a full approximation of the network data, by using gossip

algorithms to compute each random projection.

2.3 Sparse random projections

For real data vectors β ∈ Rp, our goal is to find the minimum number of observa-

tions n that is sufficient to recover an approximation of β with error comparable to

the best k-term approximation. We consider γ-sparsified measurement matrices with
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sparse random projections

• sparsity communications per sensor

obsrandom vector data
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Figure 2.2. Sparsity of the random projection matrix leads to a more efficient
distributed algorithm with fewer communications.

entries that are set to zero with probability 1 − γ, so that on average there are γp

non-zeros per row. Our results depend on the maximum value of the signal, defined

as

ω : =
‖β‖∞
‖β‖2

(2.4)

so that it is invariant to rescaling of the data. This parameter bounds the ratio

of the largest component of the data to the `2-norm, and guarantees that the total

energy of the signal is not concentrated in a few elements. Intuitively, sparse random

projections will not work well when the data is also very sparse. Interestingly, we can

relate ω to the compressibility of the signal, as defined in (2.1).

2.3.1 Sufficient conditions for recovery

Our results apply to general ensembles of measurement matrices whose entries

satisfy some moment conditions (defined in (2.6)), which allow for a variety of sparse

matrices, including the γ-sparsified Gaussian ensemble or the γ-sparsified Bernoulli
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ensemble. In particular, consider the sparse random projection matrix X ∈ Rn×p

containing i.i.d. entries drawn accordingly to

Xij =
1
√
γ


+1 w.p. γ

2

0 w.p. 1− γ

−1 w.p. γ
2

. (2.5)

Note that the parameter γ controls the sparsity of the random projections. If γ =

1, then the measurement matrix is dense. On the other hand, if γ = Θ(1
p
), then

the average number of non-zeros in each row of the measurement matrix is Θ(1).

Furthermore, our results hold more generally than the setting in which the entries of

X are assumed to be i.i.d.. More specifically, we only need to assume that the entries

within each row are four-wise independent, while the entries across different rows

are fully independent. This limited independence assumption allows each random

projection vector to be pseudo-randomly generated and stored in small space [6].

Note however, that we can directly exploit the sparsity of the measurement matrix

to reduce storage costs, and hence we state our results using the i.i.d. assumption.

We first show a variant of the Johnson-Lindenstrauss embedding result for sparse

measurement matrices, namely, that sparse random projections preserve inner prod-

ucts within an ε-interval. To do this, we show that pairwise inner products between a

set of points are preserved in expectation under sparse random projections, and that

they are concentrated about the mean using a standard Chebyshev-Chernoff argu-

ment. Lemma 3 states that an estimate of the inner product between two vectors,

using only the random projections of those vectors, are correct in expectation and

have bounded variance.
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Lemma 1. Consider a random matrix X ∈ Rn×p with entries Xij satisfying the

following conditions:

(a) Xij are i.i.d., (b) E[Xij] = 0, (c) E[X2
ij] = 1, (d) E[X4

ij] = 1
γ
.(2.6)

Suppose a random vector W ∈ Rn has independent entries satisfying E[Wi] = 0 and

E[W 2
i ] = σ2. For any two vectors β, ψ ∈ Rp, define the random projections of these

vectors as Y = Xβ +W, Z = Xψ ∈ Rn. Then the mean and variance of ZTY/n are

E
[

1

n
ZTY

]
= ψTβ (2.7)

var

(
1

n
ZTY

)
=

1

n

{
(ψTβ)2 +

(
‖β‖2

2 + σ2
)
‖ψ‖2

2 +

(
1

γ
− 3

) p∑
j=1

ψ2
jβ

2
j

}
.(2.8)

Note that Lemma 3 and all subsequent results require only the sufficient cond-

tions (2.6) on the random projection matrix. The sparse random projection matrix X

defined in equation (2.5) satisfies the conditions (2.6), with the fourth moment E[X4
ij]

corresponding to the sparsity parameter of the matrix 1/γ. It is interesting to note

that these conditions also hold for other random projection matrices. For example,

the non-sparse matrix containing Gaussian i.i.d. entries Xij ∼ N(0, 1) satisfies (2.6)

with E[X4
ij] = 3. Similarly, E[X4

ij] = 1 for the non-sparse random projection matrix

containing i.i.d. entries Xij = ±1 as defined in equation (2.3).

Theorem 1 now states that sparse random projections of the data vector and any

set of p vectors can produce estimates of their inner products to within a small error.

Thus, sparse random projections can produce accurate estimates for the transform

coefficients of the data, which are inner products between the data and the set of

orthonormal bases.
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Theorem 1 (Sparse-Noisy JL). For any real data vector β ∈ Rp, define the maximum

value of β as

ω : =
‖β‖∞
‖β‖2

. (2.9)

In addition, let Ψ be a set of orthonormal basis vectors {ψ(1), . . . , ψ(p)} ∈ Rp. Sup-

pose a sparse random matrix X ∈ Rn×p satisfies the conditions (2.6) with sparsity

parameter γ. For any ε and δ > 0, if

n ≥ 32(1 + δ)

ε2

(
2 +

σ2

‖β‖2
2

+
ω2

γ

)
log p,

then given the noisy projections Y = Xβ + W , one can produce estimates θ̂m for

θm = βTψ(m) satisfying

∣∣θ̂m − θm

∣∣ ≤ ε ‖β‖2

with probability greater than 1− 1/pδ uniformly over all m = 1, . . . , p.

Using these low-distortion embeddings, Theorem 2 now states our main result,

that sparse random projections can produce a data approximation with error compa-

rable to the best k-term approximation with high probabiliy.

Theorem 2. Consider a real vector β ∈ Rp satisfying condition (2.9), and a sparse

random matrix X ∈ Rn×p satisfying conditions (2.6). Suppose that the best k-term

approximation in an orthonormal transform Ψ has approximation error ‖β − β̂k‖2
2 ≤

η‖β‖2
2. For any ε and δ > 0, if the number of observations satisfies

n ≥ C(1 + δ)

ε2

(
2 +

σ2

‖β‖2
2

+
ω2

γ

)
k2 log p (2.10)
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for some constant C, then given the noisy observations Y = Xβ+W , one can produce

an approximation β̂ satisfying

‖β − β̂‖2
2 ≤ (ε+ η)‖β‖2

2

with probability at least 1− 1/pδ.

The signal-to-noise ratio for this noisy observation model is

SNR : =
E[‖Xβ‖2

2]

E[‖W‖2
2]

=
‖β‖2

2

σ2
. (2.11)

If σ2 = 0, then the problem reverts to the noiseless setting and the number of obser-

vations in (2.10) reduces to n ≥ Ω
((

2 + ω2

γ

)
k2 log p

)
. If σ2 > 0, then Theorem 2

implies that the number of observations that are sufficient for recovery behaves the

same as in the noiseless case (in scaling terms), provided that the SNR does not go

to zero.

The effect of measurement sparsity is the ω/γ term in (2.10). A straightforward

calculation shows that the maximum value of the signal defined in (2.9) is bounded

between

1

p
≤ ω2 ≤ 1. (2.12)

In one extreme, ω = 1 if and only if β has exactly one non-zero, and the remaining

components are all equal to zero. In this case, if the measurement matrix is also

very sparse (e.g. γ → 0), then the non-zeros in the measurement matrix will rarely

align with the non-zeros of the signal, making recovery very difficult. In the other

extreme, ω = 1
p

if and only if β is constant (i.e. βi = c for all i). In this case, the
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Compressibility Measurement sparsity γ Number of observations n

r = 1

ω = O
(

log p√
p

) γ = 1 n = Ω(k2 log p)

γ = log2 p
p

n = Ω(k2 log p)

γ = log p
p

n = Ω(k2 log2 p)

γ = 1
p

n = Ω(k2 log3 p)

r > 1
ω = O

(
1√
p

) γ = 1
p

n = Ω(k2 log p)

Table 2.1. The sufficient condition in Theorem 2 is shown under various scalings of
the compressibility r of the signal and the measurement sparsity γ. The conditions
shown in this table assume that the signal-to-noise ratio SNR = ‖β‖22

σ2 does not go
to zero.

measurement matrix can be made quite sparse (e.g. γ = 1
p
) without affecting the

sampling efficiency. In general, ω is bounded between these two extremes. As the

Lemma 2 shows, we can relate the maximum value ω in (2.9) to the compressibility

of the data as defined in (2.1).

Lemma 2. Suppose the vector β is compressible in the discrete Fourier transform as

in (2.1) with compressibility parameter r.

(a) If r = 1, then

ω = O

(
log p
√
p

)
. (2.13a)

(b) If r > 1, then

ω = O

(
1
√
p

)
. (2.13b)

Sparsity in the measurement matrix produces an extra factor of ω2

γ
in the number

of random projections that are sufficient for recovery. Consequently, there is an
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interesting trade-off between the number of random projections n, the average number

of non-zeros γp in the random projections, and the peak-to-total energy ratio (or

compressibility) of the data ω. For data compressible in the discrete Fourier transform

(as in (2.1)) with r = 1, if the sparsity is γp = log2 p, then ω2

γ
= O(1). In this case,

there is no hit in the number of sparse random projections needed for approximation.

If the sparsity is γp = log p, there is a hit of ω2

γ
= O(log p) in the number of sparse

random projections. If γp = 1, then the hit in the number of projections is ω2

γ
=

O(log2 p). For more compressible data with r > 1, if γp = 1, then the hit in the

number of sparse random projections is ω2

γ
= O(1).

We shall see in Section 2.4 that this trade-off, between the sparsity of the random

projections and the number of projections, will have a corresponding trade-off in

pre-processing communication cost and querying latency.

2.4 Distributed algorithms for sensor networks

We now describe an algorithm by which the p sensors of a wireless network each

measure a data value βi, and each computes and stores one sparse random projection

of the aggregate data β. Consider an p × p sparse random matrix X with entries

as defined in (2.5). For concreteness, let the probability of a non-zero entry be

γ = 1
p
. Each sensor will compute and store the inner product

∑p
j=1Xijβj between

the aggregate data β and one row of X. We think of this as generating a bipartite

graph between the p data nodes and the p encoding nodes (see Figure 2.3).
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2.4.1 Push-based algorithm

When the entries of X are independent and identically distributed, they can be

generated at different sensor locations without any coordination between the sensors.

To compute one random projection coefficient, each sensor j locally generates a ran-

dom variable Xij. If that random variable is zero the sensor does nothing, and if it’s

non-zero the sensor sends the product of Xij with its own data βj to one receiver

sensor i. The receiver simply stores the sum of everything it receives, which is equal

to the random projection coefficient
∑p

j=1Xijβj. This process is repeated until every

sensor has stored a random projection coefficient. Thus, computation of the sparse

random projections can be achieved in a decentralized manner with the following

push-based algorithm.

Distributed Algorithm I:

• Each data node j generates a set of independent random variables

{X1j, . . . , Xpj}. For each i, if Xij 6= 0, then data node j sends to encod-

ing node i the value Xijβj. Repeat for all 1 ≤ j ≤ p.

• Each encoding node i computes and stores the sum of the values it receives,

which is equal to
∑p

j=1Xijβj. Repeat for all 1 ≤ i ≤ p.

Since the probability that Xij 6= 0 is γ = 1
p
, each sensor independently and

randomly sends its data to on average O(1) sensors. Assuming that SNR does

not go to zero, the decoder can query any n = O
((

1 + ω2

γ

)
k2 log p

)
sensors in the

network and obtain a noisy version of Xn×pβ, where Xn×p is the matrix containing n
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any n

nodes
p data
nodes

p encoding

Figure 2.3. Every sensor stores a sparse random projection, so that a data approx-
imation can be reconstructed by collecting coefficients from any k out of p sensors.

rows of X ∈ Rp×p. By Theorem 2, the decoder can then use the noisy observations

Y = Xn×pβ+W , the measurement matrix Xn×p, and orthonormal basis Ψ to recover

a near-optimal approximation of the data β. The decoding algorithm proceeds as

described in the proofs of Theorems 1 and 2.

2.4.2 Pull-based algorithm

We present an alternate, pull-based, distributed algorithm, which takes greater

advantage of the limited independence of the sparse random projections. Each sensor

i locally generates a set of four-wise independent random variables, corresponding to

one row of the sparse random projection matrix. If a random variable Xij is non-

zero, sensor i sends a request for data to the associated data node j. Sensor j then

sends its data βj back to sensor i, who uses all the data thus collected to compute
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its random projection coefficient. Therefore, different sensors still act with complete

independence.

Distributed Algorithm II:

• Each encoding node i generates a set of four-wise independent random variables

{Xi1, . . . , Xip}. For each j, if Xij 6= 0, then encoding node i sends a request for

data to node j.

• If data node j receives a request for data from encoding node i, node j sends

the value βj to node i.

• Encoding node i computes and stores
∑p

j=1Xijβj using the values it receives.

Repeat for all 1 ≤ i ≤ p.

Since the average number of non-zeros per row of the sparse random projection

matrix X is γp = 1, the expected communication cost is still O(1) packets per sensor,

routed to random nodes. Algorithm II has twice the communication cost of Algorithm

I, but the four-wise independence in Algorithm II allows the random projections to

be generated pseudo-randomly. This further decreases the querying overhead cost for

the collector seeking to reconstruct an approximation.

Both algorithms we described above perform a completely decentralized compu-

tation of p sparse random projections of the p distributed data values. In the end,

collecting any subset of O
((

1+ ω2

γ

)
k2 log p

)
sparse random projections will guarantee

near-optimal signal recovery, as long as the SNR does not go to zero. Thus, our
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algorithms enables ubiquitous access to a compressed approximation of the data in a

sensor network.

2.4.3 Trading off communication and query latency

In Section 2.3, we described the trade-off between the sparsity of the random

projection matrix and the number of random projections needed for the desired ap-

proximation error. By Theorem 2, when the probability of a non-zero entry in the pro-

jection matrix is γ, the number of projections is O
((

1+ ω2

γ

)
k2 log p

)
for non-vanishing

SNR. In our distributed algorithms, the average number of packets transmitted per

sensor is O(γp), while the number of sensors that need to be queried to recover an

approximation is O
((

1 + ω2

γ

)
k2 log p

)
. The average computation cost per sensor is

also O(γp). Therefore, there is a trade-off between the amount of work performed

by the sensors to pre-process the data in the network, and the number of sensors the

decoder needs to query. Increasing the sparsity of the random projections decreases

the pre-processing communication, but potentially increases the latency to recover a

data approximation.

2.5 Analysis of sketching decoder

The intuition for our analysis is that sparse random projections preserve inner

products within a small error, and hence we can use random projections of the data

and the orthonormal bases to estimate the transform coefficients. Consequently, we

can estimate all the transform coefficients to within a small error given only the sparse
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random projections of the data. However, we need to bound the sum squared error

of our approximation over all the transform coefficients. If the data is compressible,

and k of the transform coefficients are large and the others are close to zero, then

we only need to accurately estimate k coefficients. The remaining small transform

coefficients can be approximated as zero, incurring the same error as the best k-term

approximation.

2.5.1 Moments of randomly projected vectors

We first derive the mean and variance of the randomly projected vectors given in

Lemma 3. Let X ∈ Rn×p be a random matrix satisfying the conditions in (2.6), and

let W ∈ Rn have independent entries drawn from any distribution with mean zero

and variance σ2. We define the random variables

ui : =

( p∑
j=1

Xijψj

)( p∑
j=1

Xijβj

)

vi : =

( p∑
j=1

Xijψj

)
Wi,

so that we can express the inner products between the randomly projected vectors in

the low-dimensional space as

ZTY = ΨTXTXβ + ΨTXTW

=
n∑

i=1

ui +
n∑

i=1

vi.

Note that by definition the ui’s are independent, and similarly the vi’s are indepen-

dent.

32



Chapter 2. Distributed approximation using sparse random projections

We now compute the mean and variance of the first term. Using the moments of

X, we compute the expectation of each ui as

E[ui] = E
[ p∑

j=1

X2
ijψjβj +

∑
j 6=`

XijXi`ψjβ`

]

=

p∑
j=1

E[X2
ij]ψjβj +

∑
j 6=`

E[Xij] E[Xi`]ψjβ`

= ψTβ.

Hence we have that E
[∑n

i=1 ui

]
= nψTβ. Similarly, we compute the second moment

of ui as

E[u2
i ] = E

[( p∑
j=1

X2
ijψjβj

)2

+

(∑
j 6=`

XijXi`ψjβ`

)2

+ 2

( p∑
j=1

X2
ijψjβj

)(∑
j 6=`

XijXi`ψjβ`

)]

=

p∑
j=1

E[X4
ij]ψ

2
jβ

2
j +

∑
j 6=`

E[X2
ij] E[X2

i`]ψjβjψ`β` +
∑
j 6=`

E[X2
ij] E[X2

i`]ψ
2
jβ

2
`

+
∑
j 6=`

E[X2
ij] E[X2

i`]ψjβ`ψ`βj

=
1

γ

p∑
j=1

ψ2
jβ

2
j + 2

∑
j 6=`

ψjβjψ`β` +
∑
j 6=`

ψ2
jβ

2
`

= 2

( p∑
j=1

ψ2
jβ

2
j +

∑
j 6=`

ψjβjψ`β`

)
+

( p∑
j=1

ψ2
jβ

2
j +

∑
j 6=`

ψ2
jβ

2
`

)
+

(
1

γ
− 3

) p∑
j=1

ψ2
jβ

2
j

= 2(ψTβ)2 + ‖ψ‖2
2 ‖β‖2

2 +

(
1

γ
− 3

) p∑
j=1

ψ2
jβ

2
j .

This yields that the variance of each ui is equal to var(ui) = (ψTβ)2 + ‖ψ‖2
2 ‖β‖2

2 +(
1
γ
− 3
)∑p

j=1 ψ
2
jβ

2
j . Using the fact that the ui’s are independent, we have

var

( n∑
i=1

ui

)
=

n∑
i=1

var(ui)

= n

{
(ψTβ)2 + ‖ψ‖2

2 ‖β‖2
2 +

(
1

γ
− 3

) p∑
j=1

ψ2
jβ

2
j

}
.
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Next, we compute the mean and variance of the vi’s. Using the moments of W

and the fact that W is independent of X, we have

E[vi] =

p∑
j=1

E[Wi] E[Xij]ψj = 0,

so that E
[∑n

i=1 vi

]
= 0. Similarly, we compute the second moment of vi as

E[v2
i ] = E[W 2

i ] E
[( p∑

j=1

Xijψj

)2]

= σ2

p∑
j=1

E[X2
ij]ψ

2
j + σ2

∑
j 6=`

E[Xij] E[Xi`]ψjψ`

= σ2 ‖ψ‖2
2.

Hence the variance of each vi is var(vi) = σ2 ‖ψ‖2
2, and using the fact that the vi’s

are independent, we have

var

( n∑
i=1

vi

)
=

n∑
i=1

var(vi)

= nσ2 ‖ψ‖2
2.

To compute the covariance between ui and vi, note that

E[uivi] = E[Wi] E
[( p∑

j=1

Xijψj

)2( p∑
j=1

Xijβj

)]
= 0,

and hence cov(ui, vi) = 0. Note also that cov(ui, vj) = 0 since ui and vj are indepen-

dent for i 6= j. Thus we have,

cov

( n∑
i=1

ui,

n∑
i=1

vi

)
=

n∑
i=1

n∑
j=1

cov(ui, vj) = 0.

Putting together the pieces, we have

E
[

1

n
ZTY

]
=

1

n
E
[ n∑

i=1

ui

]
+

1

n
E
[ n∑

i=1

vi

]
= ψTβ
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and

var

(
1

n
ZTY

)
=

1

n2
var

( n∑
i=1

ui

)
+

1

n2
var

( n∑
i=1

vi

)
+

2

n2
cov

( n∑
i=1

ui,
n∑

i=1

vi

)

=
1

n

{
(ψTβ)2 +

(
‖β‖2

2 + σ2
)
‖ψ‖2

2 +

(
1

γ
− 3

) p∑
j=1

ψ2
jβ

2
j

}

as claimed.

2.5.2 Sparse noisy JL embeddings

We now prove a sparse noisy variant of the Johnson-Lindenstrauss lemma stated

in Theorem 1. We first evaluate the claim for any pair of vectors β and ψ(m), and

subsequently take the union bound over the set of all p orthonormal basis vectors in

Ψ. Fix any vector ψ ∈ Rp with ‖ψ‖2 = 1. Let n1 and n2 be positive integers, which

we will determine, and set n = n1n2. Partition the (n × p) measurement matrix X

into n2 submatrices

X =


X(1)

...

X(n2)

 ,

where each X(`) is of size (n1 × p). Accordingly, we partition the noisy observation

vector Y into n2 vectors
{
Y (1), . . . , Y (n2)

}
, where each Y (`) ∈ Rn1 is defined as

Y (`) : = X(`)β +W (`)

and W (`) denotes the corresponding subvector of the unknown noise W . In addition,

we define the random projections of ψ as Z(`) : = X(`)ψ ∈ Rn1 , for ` = 1, . . . , n2.
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With this notation, we now form n2 independent estimates {α1, . . . , αn2} for the

inner product ψTβ, defined as

α` : =
1

n1

(
Z(`)

)T
Y (`).

Applying Lemma 3 to each α` yields that E[α`] = ψTβ and

var(α`) =
1

n1

{
(ψTβ)2 +

(
‖β‖2

2 + σ2
)
‖ψ‖2

2 +

(
1

γ
− 3

) p∑
j=1

ψ2
jβ

2
j

}
.

For any ε > 0, applying Chebyshev’s inequality and using the fact that ‖ψ‖2
2 = 1, we

have

P
[
|α` − ψTβ| ≥ ε‖β‖2

]
≤ var(α`)

ε2‖β‖2
2

=
1

ε2n1

{
(ψTβ)2

‖β‖2
2‖ψ‖2

2

+
‖β‖2

2 + σ2

‖β‖2
2

+

(
1

γ
− 3

)∑p
j=1 ψ

2
jβ

2
j

‖β‖2
2

}

≤ 1

ε2n1

{
2 +

σ2

‖β‖2
2

+
ω2‖β‖2

2

∑p
j=1 ψ

2
j

γ‖β‖2
2

}

=
1

ε2n1

(
2 +

σ2

‖β‖2
2

+
ω2

γ

)
where the second inequality follows from the Cauchy-Schwarz inequality and the

fact that β is component-wise upper bounded as β2
j ≤ ω2‖β‖2

2. Let us define q :

= 1
ε2n1

(
2 + σ2

‖β‖22
+ ω2

γ

)
. Consequently, we can guarantee that each estimate α` lies

within an ε-interval around its mean with probability at least 1 − q by setting n1 =

1
qε2

(
2 + σ2

‖β‖22
+ ω2

γ

)
.

From here, we define a new estimate ᾱ as the median of the independent random

variables {α1, . . . , αn2}. If the median ᾱ lies outside the ε-interval, then at least

half of the estimators α` must lie outside the interval. In particular, define the 0-1
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indicator random variable ξ` : = I
[
|α` − ψTβ| ≥ ε‖β‖2

]
, so that

∑n2

`=1 ξ` is equal to

the number of α`’s that lie outside the ε-interval. Since ξ1, . . . , ξn2 are independent

and µ : = E
[

1
n2

∑n2

`=1 ξ`
]
≤ q, by Hoeffding’s inequality we have

P

[
n2∑
`=1

ξ` ≥ (µ+ t)n2

]
≤ exp(−2t2n2)

for any t ∈ (0, 1− µ). Setting q = 1
4

and t = 1
4
, we obtain the bound

P
[
|ᾱ− ψTβ| ≥ ε‖β‖2

]
≤ P

[
n2∑
`=1

ξ` ≥
1

2
n2

]
≤ exp

(
−n2

8

)
.

Putting together the pieces, we have that for any pair of vectors β and ψ(m) ∈

{ψ(1), . . . , ψ(p)}, we can use the above method to produce an unbiased estimate θ̂m

for βTψ(m) that lies outside an ε-interval around its mean with probability at most

exp(−n2/8). Taking the union bound over all p pairs, we have

P
[ ⋃

m=1,...,p

{∣∣θ̂m − βTψ(m)
∣∣ ≥ ε‖β‖2

}]
≤ p exp

(
−n2

8

)
.

For any ε and δ > 0, setting n1 = 4
ε2

(
2 + σ2

‖β‖22
+ ω2

γ

)
, n2 = 8(1 + δ) log p, and the

number of observations n = n1n2 gives the result as claimed.

2.5.3 Estimating top k coefficients

We now prove our main result in Theorem 2. Fix an orthonormal transform Ψ

consisting of the p basis vectors {ψ(1), . . . , ψ(p)} as rows, and let θm = βTψ(m) for m =

1, . . . , p. Note that by orthonormality, we have ‖β‖2
2 = ‖θ‖2

2 and ‖β−β̂‖2
2 = ‖θ−Ψβ̂‖2

2,
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and so the problem of estimating the data vector β is equivalent to the problem of

estimating the coefficient vector θ. Recall that the best k-term approximation of θ,

obtained by keeping the largest k transform coefficients and setting the rest to zero,

is ‖θ − θ̂opt‖2
2 =

∑p
m=k+1 |θ|2(m), and assume that ‖θ − θ̂opt‖2

2 ≤ η ‖θ‖2
2 for some η > 0.

By Theorem 1, if the number of observations is bounded as n ≥(
32(1+δ)

ε2

(
2 + σ2

‖β‖22
+ ω2

γ

)
log p

)
, then we can produce estimates {θ̂1, . . . , θ̂p} sat-

isfying

|θ̂m − θm| ≤ ε‖θ‖2

with high probability. Since by the triangle inequality we have that
∣∣∣|θ̂m| − |θm|

∣∣∣ ≤
|θ̂m − θm|, the above condition implies

|θm| − ε‖θ‖2 ≤ |θ̂m| ≤ |θm|+ ε‖θ‖2 (2.14)

for all m = 1, . . . , p.

We construct an approximation for β by estimating the largest k transform coef-

ficients of β. More specifically, sort the estimates θ̂ in decreasing order of magnitude,

i.e. |θ̂|(1) ≥ |θ̂|(2) ≥ · · · ≥ |θ̂|(p). Define a new vector θ̃ by keeping the k largest

components of θ̂ in magnitude, and setting the remaining components to zero. We

then take the inverse transform of θ̃, and obtain the approximation vector β̂ = ΨT θ̃.

There are two sources of error in our approximation: one is incorrectly estimat-

ing which indices are the top k transform coefficients, and the other is the error in

approximating the transform coefficients that are kept. Let S̃ be the index set of

the k largest estimates θ̂m’s which we keep (and consequently S̃C is the index set

of the estimates we set to zero). Furthermore, let S be the true index set of the k
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largest transform coefficients in θ. With this notation, the approximation error can

be bounded as

‖θ − θ̃‖2
2 =

∑
m∈eS

|θm − θ̂m|2 +
∑

m∈eSC

|θm|2

≤ kε2‖θ‖2
2 +

∑
m∈eSC

|θm|2

In the ideal case, if we correctly estimate the largest-k set S̃ = S, then the

second term above would become
∑

m∈eSC |θm|2 =
∑

m∈SC |θm|2. If S̃ 6= S, then we

must have chosen to keep the estimate of a transform coefficient which was not one

of the k largest, and consequently set to zero the estimate of a coefficient which

was one of the k largest. In other words, there exists some indices m ∈ S̃,m 6∈

S and ` 6∈ S̃, ` ∈ S. This implies that |θ̂m| > |θ̂`|, but |θm| < |θ`|. Since each

estimate lies within an (ε‖θ‖2)-interval around the corresponding transform coefficient

(by (2.14)), this confusion can only happen if |θ`|− |θm| ≤ 2ε‖θ‖2. Furthermore, note

that |θ`|2 + |θm|2 ≤ ‖θ‖2
2 implies that |θ`| + |θm| ≤

√
3‖θ‖2. Hence we have that

|θ`|2 − |θm|2 = (|θ`| − |θm|)(|θ`| + |θm|) ≤ 2
√

3ε‖θ‖2
2. For each time this confusion

happens, we get an additional error of +|θ`|2 − |θm|2, and this confusion can happen

at most k times. Therefore, we obtain the bound∑
m∈eSC

|θm|2 ≤
∑

m∈SC

|θm|2 + k (2
√

3ε) ‖θ‖2
2.

Putting everything together, the approximation error can then be bounded as

‖θ − θ̃‖2
2 ≤ k ε2 ‖θ‖2

2 + k (2
√

3ε) ‖θ‖2
2 +

∑
m∈SC

|θm|2

= k (ε2 + 2
√

3ε) ‖θ‖2
2 + ‖θ − θ̂opt‖2

2

≤ k (ε2 + 2
√

3ε) ‖θ‖2
2 + η‖θ‖2

2
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Setting ε′ = k(ε2 + 2
√

3ε) and solving for the positive root, we have that ε = −
√

3 +√
3 + ε′

k
= O( ε′

k
). Plugging this back into the number of observations, we have n ≥

Ω
(

(1+δ)
(ε′)2

(
2 + σ2

‖β‖22
+ ω2

γ

)
k2 log p

)
as claimed.

2.5.4 Relating compressibility and `∞-norm

We show that the compressibility of a signal is related to its `∞-norm, as stated in

Lemma 2. By the definition of the (orthonormal) inverse discrete Fourier transform,

we have that each component of the vector β can be bounded as

|βi| ≤ 1
√
p

p∑
m=1

|θm|
∣∣∣∣exp

(
j
2π(m− 1)i

p

)∣∣∣∣
=

1
√
p

p∑
m=1

|θm| =
1
√
p
‖θ‖1,

for all i = 1, . . . , p. This gives a bound on the `∞-norm of β of the form ‖β‖∞ ≤
1√
p
‖θ‖1.

For r-compressible signals, the DFT coefficients obey a power law decay as in (2.1),

and consequently

‖θ‖1 ≤ C

p∑
m=1

m−r.

For r = 1, the summation is a Harmonic series, which diverges slowly as p grows

and scales like O(log p). For r > 1, the summation becomes a p-series (or Riemann

zeta function) which converges. In particular, we have
∑p

m=1m
−r ≤ 1 +

∫ p

1
x−r dx =

1 +
(

1
r−1

) (
1− 1

pr−1

)
, which is upper bounded by a constant that depends only on r.

Therefore, if the data is compressible with r = 1, then ‖θ‖1 = O(log p), and

‖β‖∞ = O
(

log p√
p

)
. If r > 1, then ‖θ‖1 = O(1), and ‖β‖∞ = O( 1√

p
). Finally, we can
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verify that compressible signals have finite energy, since by orthonormality, we have

that ‖β‖2
2 = ‖θ‖2

2 ≤ C2
∑p

m=1m
−2r, and

∫ p+1

1
x−2r dx ≤

∑p
m=1m

−2r ≤ 1+
∫ p

1
x−2r dx.

2.6 Comparisons and simulations

In this section, we give a numeric example comparing the approximation of piece-

wise polynomial data using wavelet transforms, sparse random projections, and the

non-sparse schemes of AMS sketching and compressed sensing. We know analytically

that compressed sensing requires only O(k log p
k
) random projections to obtain an

approximation error comparable to the best k-term approximation, while sketching

requires O(k2 log p). However, the compressed sensing decoder has a computational

complexity of O(p3) while the sketching decoding complexity is O(np), where n is

the number of random projections used. The low decoding complexity would make

it possible for sensors and other low-powered collectors to query and decode a coarse

approximation of the data cheaply and quickly. Collectors with greater resources

can still query more sensors and recover a better approximation. Our sparse random

projections recovery method is based on the low-complexity sketching decoder.

We have seen theoretically that there is a trade-off between the sparsity of the

random projections and the number of random projections needed for a good approx-

imation. The degree of sparsity corresponds to the number of packets per sensor that

must be transmitted in the pre-processing stage. Sparse random projections can thus

reduce the communication cost per sensor from O(p) to O(log p) when compared to

the non-sparse schemes.
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Piecewise polynomial data
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Figure 2.4. (a) Piecewise polynomial data. (b) Peak-to-total energy condition on
data.

We now examine experimentally the effect of the sparsity of the random pro-

jections on data approximation. In our experimental setup, p sensors are placed

randomly on a unit square, and measure piecewise polynomial data with two second-

order polynomials separated by a line discontinuity, as shown in Figure 2.4 (a). In

Figure 2.4 (b), we plot the peak-to-total energy (2.9) of the data and verify that it is

bounded between log p√
p

and 1√
p
.

Figure 2.5 compares the approximation error of sparse random projections to non-

sparse AMS sketching and the optimal k-term approximation in the noiseless setting.

The average approximation error using sparse random projections is as good as dense

random projections, and very close to the optimal k-term approximation. However,

the standard deviation of the approximation error increases with greater sparsity.

Figure 2.6 compares the approximation using sparse random projections for vary-

ing degrees of sparsity, along with the non-sparse schemes of sketching and compressed
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Figure 2.5. In the noiseless setting, a comparison of the approximation error
of piecewise polynomial data using sparse random projections, non-sparse AMS
sketching, and optimal Haar wavelet based approximation. The relative approxi-

mation error of the data ‖β−bβ‖22
‖β‖22

is plotted versus the number of random projections

n = k2 log p, for p = 2048 sensors. The error bars show the standard deviation of
the approximation error.
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Figure 2.6. The effect of sparsity of the random projections on approximation
error is illustrated in the noiseless setting. Varying degrees of sparsity in the random
projections are compared against the dense projection methods of AMS sketching

and compressed sensing. The relative approximation error of the data ‖β−bβ‖22
‖β‖22

is
plotted versus the number of random projections n, for p = 2048 sensors. The
average number of non-zeros in the sparse random projections is γp.
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Figure 2.7. The effect of measurement sparsity of on approximation error is
illustrated in the noisy setting using additive Gaussian noise. Varying degrees of
measurement sparsity are compared against the dense projection methods of AMS
sketching and compressed sensing. Again, the relative approximation error of the

data ‖β−bβ‖22
‖β‖22

is plotted versus the number of random projections n, for p = 2048
sensors.

sensing in the noiseless case. Sparse random projections with O(log p) non-zeros per

row perform as well as (dense) sketching, while sparse random projections with O(1)

non-zeros per row perform slightly worse. As we would expect from the analysis, the

compressed sensing decoder obtains better approximation error than the sketching

decoder for the same number of random projections. But, the compressed sensing

decoder has a higher computational complexity, which was appreciable in our simu-

lations.

Figure 2.7 illustrates the effect of measurement sparsity on approximation error

in the noisy observation setting, using additive Gaussian noise with mean zero and

variance 50. The average approximation error with noise behaves very similarly to the
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Figure 2.8. Communication cost for sparse random projections with varying de-
grees of sparsity. In comparison, compressed sensing and sketching both require
O(p) packets per sensor.

average approximation error without noise, thus confirming numerically the stability

of our algorithm in the presence of noise.

Finally, Figure 2.8 shows the communication cost of computing sparse random

projections in the network for varying degrees of sparsity. Both compressed sensing

and sketching require O(p) packets per sensor to compute the dense random pro-

jections in a network of size p. Thus sparse random projections greatly reduce the

overall communication cost.

2.7 Discussion

In this chapter, we proposed distributed sparse random projections and showed

that they can enable robust and refinable data approximation. In our framework,

sensors store sparse random projections of the data, which allows any decoder to
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recover an approximation by querying a sufficient number of sensors from anywhere

in the network. The communication cost to pre-process the data in the network is

determined by the sparsity of the random projections. The quality of the approxima-

tion depends only on the number of random projections that are collected, and not

which sensors are queried. Our results can be extended to scenarios in which random

projections are collected only from sensors along the boundary of the network, or in

which random projections are computed locally first in a multiresolution hierarchy

(see Chapter 5 for a discussion of open problems).

In addition, we showed that a fast sketching decoder can recover compressible

signals based on sparse random projections, and that the approximation is stable in

the presence of noise. Our results apply to general measurement matrices for which we

have control over the first four moments, and include as special cases the γ-sparsified

Gaussian ensemble and the γ-sparsified Bernoulli ensemble. Our analysis reveals that

the effect of measurement sparsity on the sampling efficiency of the sketching decoder

is characterized by the quantity ω/γ. Intuitively, if the signal and the measurement

matrix are both be very sparse, then the measurements will rarely hit the non-zero

locations of the signal. But this should impede the ability of any decoder to recover

the signal. In Chapter 3, we examine the effect of measurement sparsity on the

information-theoretic limits of the sparse recovery problem.
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Information-theoretic limits on

sparse signal recovery

3.1 Introduction

Sparsity recovery refers to the problem of estimating the support of a p-

dimensional but k-sparse vector β ∈ Rp, based on a set of n noisy linear observa-

tions. The sparsity recovery problem is of broad interest, arising in subset selection

in regression [42], model selection in sparse graphs [41], group testing, signal denois-

ing [16], sparse approximation [43], and compressive sensing [25, 14]. A large body

of work (e.g., [16, 25, 28, 14, 13, 41, 55, 56, 58]) has analyzed the performance of

computationally tractable methods, in particular based on `1 or other convex relax-

ations, for estimating high-dimensional sparse signals. Such results have established
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conditions, on signal sparsity and the choice of measurement matrices, under which

a given recovery method succeeds with high probability.

Of complementary interest are the information-theoretic limits of the sparsity

recovery problem, which apply to the performance of any procedure regardless of

its computational complexity. Such analysis has two purposes: first, to demonstrate

where known polynomial-time methods achieve the information-theoretic bounds, and

second, to reveal situations in which current methods are sub-optimal. An interesting

question which arises in this context is the effect of the choice of measurement matrix

on the information-theoretic limits. As we will see, the standard Gaussian measure-

ment ensemble achieves an optimal scaling of the number of observations required

for recovery. However, this choice produces highly dense matrices, which may lead to

prohibitively high computational complexity and storage requirements1. In contrast,

sparse measurement matrices directly reduce encoding and storage costs, and can also

lead to fast decoding algorithms by exploiting problem structure (see Section 3.2.3

for a brief overview of the growing literature in this area). In addition, measurement

sparsity can be used to lower communication cost and latency in distributed sensor

network and streaming applications. On the other hand, measurement sparsity can

potentially reduce statistical efficiency by requiring more observations to recover the

signal. Intuitively, the non-zeros in the signal may rarely align with the non-zeros in

a sparse measurement matrix2. Therefore, an important question is to characterize

the trade-off between measurement sparsity and statistical efficiency.

1For example, `1-recovery methods based on linear programming have complexity O(p3) in the
signal dimension p.

2Note however that misalignments between the measurements and the signal still reveal some
information about the locations of the non-zeros in the signal.
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This chapter provides two classes of information-theoretic bounds. First, we derive

sharper necessary conditions for exact support recovery, applicable to a general class

of dense measurement matrices (including non-Gaussian ensembles). In conjunction

with the sufficient conditions from previous work [59], this analysis provides a sharp

characterization of necessary and sufficient conditions for various sparsity regimes.

Second, we address the effect of measurement sparsity, meaning the fraction γ ∈

(0, 1] of non-zeros per row in the matrices used to collect measurements. We derive

lower bounds on the number of observations required for exact sparsity recovery, as

a function of the signal dimension p, signal sparsity k, and measurement sparsity γ.

This analysis highlights a trade-off between the statistical efficiency of a measurement

ensemble and the computational complexity associated with storing and manipulating

it.

The remainder of the chapter is organized as follows. We first define the sparsity

recovery problem in Section 3.2, and then discuss our contributions and some connec-

tions to related work in Section 3.2.3. Section 3.3 provides precise statements of our

main results, as well as a discussion of their consequences. Section 3.4 describes our

general approach based on Fano’s method, while Sections 3.5 and 3.6 provide proofs

of the necessary conditions for various classes of measurement matrices. Finally, we

conclude and discuss open problems in Section 3.7.
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3.2 Exact support recovery

Let β ∈ Rp be a fixed but unknown vector, with the support set of β defined as

S(β) : = {i ∈ {1, . . . , p} | βi 6= 0}. (3.1)

We refer to k : = |S(β)| as the signal sparsity, and p as the signal dimension. Suppose

we are given a vector of n noisy observations Y ∈ Rn, of the form

Y = Xβ +W, (3.2)

whereX ∈ Rn×p is the known measurement matrix, andW ∼ N(0, σ2In×n) is additive

Gaussian noise. Our goal is to perform exact recovery of the underlying sparsity

pattern S(β), which we refer to as the sparsity recovery problem. The focus of this

chapter is to find conditions on the model parameters (n, p, k) that are necessary

for any method to successfully recover the support set S(β). Our results apply to

various classes of dense and γ-sparsified measurement matrices, which will be defined

in Section 3.3.

3.2.1 Classes of signals

The difficulty of sparsity recovery from noisy measurements naturally depends on

the minimum value of β on its support, defined by the function

λ∗(β) : = min
i∈S(β)

|βi|. (3.3)

We study the class of signals parameterized by a lower bound λ on the minimum

value

Cp,k(λ) : = {β ∈ Rp | |S(β)| = k, λ∗(β) ≥ λ}. (3.4)
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The associated class of sparsity patterns Cp,k is the collection of all N =
(

p
k

)
possible

subsets of size k. We assume without loss of generality that the noise variance σ2 = 1,

since any scaling of σ can be accounted for in the scaling of β.

3.2.2 Decoders and error criterion

Suppose that nature chooses some vector β from the signal class Cp,k(λ). The

statistician observes n samples Y = Xβ +W ∈ Rn and tries to infer the underlying

sparsity pattern S(β). Our analysis applies to arbitrary decoders. A decoder is a

mapping g : Rn → Cp,k from the observations Y to an estimated subset Ŝ = g(Y ).

We measure the error between the estimate Ŝ and the true support S(β) using the

{0, 1}-valued loss function I[g(Y ) 6= S(β)], which corresponds to a standard model

selection error criterion. The probability of incorrect subset selection is then the

associated 0-1 risk P[g(Y ) 6= S | S(β) = S], where the probability is taken over the

measurement noise W and the choice of random measurement matrix X. We define

the maximal probability of error over the class Cp,k(λ) as

ω(g) : = max
β∈Cp,k(λ)

P[g(Y ) 6= S | S(β) = S]. (3.5)

We say that sparsity recovery is asymptotically reliable over the signal class Cp,k(λ)

if ω(g) → 0 as n→∞.

With this set-up, our goal is to find necessary conditions on the parameters

(n, p, k, λ, γ) that any decoder, regardless of its computational complexity, must sat-

isfy for asymptotically reliable recovery to be possible. We are interested in lower

bounds on the number of measurements n, in general settings where both the sig-
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nal sparsity k and the measurement sparsity γ are allowed to scale with the signal

dimension p.

3.2.3 Related work

One body of past work [31, 52, 2] has focused on the information-theoretic limits

of sparse estimation under `2 and other distortion metrics, using power-based SNR

measures of the form

SNR : =
E[‖Xβ‖2

2]

E[‖W‖2
2]

= ‖β‖2
2. (3.6)

(Note that the second equality assumes that the noise variance σ2 = 1, and that

the measurement matrix is standardized, with each element Xij having zero mean

and variance one.) It is important to note that the power-based SNR (3.6), though

appropriate for `2-distortion, is not suitable for the support recovery problem. Al-

though the minimum value is related to this power-based measure by the inequality

kλ2 ≤ SNR, for the ensemble of signals Cp,k(λ) defined in equation (3.4), the `2-based

SNR (3.6) can be made arbitrarily large while still having one coefficient βi equal

to the minimum value (assuming that k > 1). Consequently, as our results show,

it is possible to generate problem instances for which support recovery is arbitrarily

difficult—in particular, by sending λ → 0 at an arbitrarily rapid rate—even as the

power-based SNR (3.6) becomes arbitrarily large.

The paper [59] was the first to consider the information-theoretic limits of exact

subset recovery using standard Gaussian measurement ensembles, explicitly identify-

ing the minimum value λ as the key parameter. This analysis yielded necessary and
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sufficient conditions on general quadruples (n, p, k, λ) for asymptotically reliable re-

covery. Subsequent work on the problem has yielded sharper conditions for standard

Gaussian ensembles [47, 5, 30, 3], and extended this type of analysis to the criterion of

partial support recovery [5, 47]. We consider only exact support recovery, but provide

results for general dense measurement ensembles, including non-Gaussian matrices.

In conjunction with known sufficient conditions [59], one consequence of our first main

result (Theorem 3, below) is a set of sharp necessary and sufficient conditions for the

optimal decoder to recover the support of a signal with linear sparsity (k = Θ(p)),

using only a linear fraction of observations (n = Θ(p)). As we discuss at more length

in Section 3.3.1, for the special case of the standard Gaussian ensemble, Theorem 3

also recovers some results independently obtained in past work by Reeves [47], and

concurrent work by Fletcher et al. [30] and Aeron et al. [3].

In addition, we study the effect of measurement sparsity, which we assess in terms

of the fraction γ ∈ (0, 1] of non-zeros per row of the the measurement matrix X. In

the noiseless setting, a growing body of work has examined computationally efficient

recovery methods based on sparse measurement matrices, including work inspired by

expander graphs and coding theory [53, 61, 10], as well as dimension-reducing em-

beddings and sketching [18, 33, 60]. In addition, some results have been shown to

be stable in the `2 or `1 norm in the presence of noise [18, 10]; note however that

`2/`1 stability does not guarantee exact recovery of the support set. In the noisy set-

ting, the paper [2] provides results for sparse measurements and distortion-type error

metrics, using a power-based SNR that is not appropriate for the subset recovery

problem. For the noisy observation model (3.2), some concurrent work [44] pro-
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vides sufficient conditions for support recovery using the Lasso (i.e. `1-constrained

quadratic programming) for appropriately sparsified ensembles. These results can

be viewed as complementary to the information-theoretic analysis presented here, in

which we characterize the inherent trade-off between measurement sparsity and statis-

tical efficiency. More specifically, our second main result (Theorem 4, below) provides

necessary conditions for exact support recovery using γ-sparsified Gaussian measure-

ment matrices (see equation (3.7)), for general scalings of the parameters (n, p, k, λ, γ).

This analysis reveals three regimes of interest, corresponding to whether measurement

sparsity has no effect, a small effect, or a significant effect on the number of mea-

surements necessary for recovery. Thus, there exist regimes in which measurement

sparsity fundamentally alters the ability of any method to decode.

3.3 Necessary conditions for sparse recovery

In this section, we state our main results, and discuss some of their consequences.

Our analysis applies to random ensembles of measurement matrices X ∈ Rn×p, where

each entry Xij is drawn i.i.d. from some underlying distribution. The most commonly

studied random ensemble is the standard Gaussian case, in which each Xij ∼ N(0, 1).

Note that this choice generates a highly dense measurement matrix X, with np non-

zero entries. Our first result (Theorem 3) applies to more general ensembles that

satisfy the moment conditions E[Xij] = 0 and var(Xij) = 1, which allows for a

variety of non-Gaussian distributions (e.g., uniform, Bernoulli etc.). In addition, we

also derive results (Theorem 4) for γ-sparsified matrices X, in which each entry Xij
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is i.i.d. drawn according to

Xij =

 N(0, 1
γ
) w.p. γ

0 w.p. 1− γ
. (3.7)

Note that when γ = 1, the distribution in (3.7) is exactly the standard Gaussian

ensemble. We refer to the sparsification parameter γ ∈ (0, 1] as the measurement

sparsity. Our analysis allows this parameter to vary as a function of (n, p, k).

3.3.1 Bounds on dense ensembles

We begin by stating a set of necessary conditions on (n, p, k, λ) for asymptotically

reliable recovery with any method, which apply to general ensembles of zero-mean and

unit-variance measurement matrices. In addition to the standard Gaussian ensemble

(Xij ∼ N(0, 1)), this result also covers matrices from other common ensembles (e.g.,

Bernoulli Xij ∈ {−1,+1}). Furthermore, our analysis can be extended to matrices

with independent rows drawn from any distribution with zero mean and covariance

matrix Σ.

Theorem 3 (General ensembles). Let the measurement matrix X ∈ Rn×p be drawn

with i.i.d. elements from any distribution with zero mean and unit variance. Then a

necessary condition for asymptotically reliable recovery over the signal class Cp,k(λ) is

n > max
{
f1(p, k, λ), . . . , fk(p, k, λ), k

}
, (3.8)

where

fm(p, k, λ) : =
log
(

p−k+m
m

)
− 1

1
2
log
(
1 +mλ2

(
1− m

p−k+m

)) (3.9)
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for m = 1, . . . , k.

The proof of Theorem 3, given in Section 3.5, uses Fano’s inequality [19] to bound

the probability of error in a restricted ensemble, which can then be viewed as a type

of channel coding problem. Moreover, the proof constructs a family of restricted

ensembles that sweeps the range of possible overlaps between subsets, and tries to

capture the difficulty of distinguishing between subsets at various distances.

We now consider some consequences of the necessary conditions in Theorem 3

under two scalings of the signal sparsity: the regime of linear signal sparsity, in which

k/p = α for some α ∈ (0, 1), and the regime of sublinear signal sparsity, meaning

k/p → 0. In particular, the necessary conditions in Theorem 3 can be compared

against the sufficient conditions in Wainwright [59] for exact support recovery using

the standard Gaussian ensemble, as shown in Table 3.1. This comparison reveals

that Theorem 3 generalizes and strengthens earlier results on necessary conditions

for subset recovery [59]. We obtain tight scalings of the necessary and sufficient

conditions in the regime of linear signal sparsity (meaning k/p = α), under various

scalings of the minimum value λ (shown in the first three rows of Table 3.1). We also

obtain tight scaling conditions in the regime of sublinear signal sparsity (in which

k/p→ 0), when kλ2 = Θ(1) (as shown in row 4 of Table 3.1). There remains a slight

gap, however, in the sublinear sparsity regime when kλ2 →∞ (see bottom two rows

in Table 3.1).

In the regime of linear sparsity, Wainwright [59] showed, by direct analysis of the

optimal decoder, that the scaling λ2 = Ω(log(k)/k) is sufficient for exact support
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Necessary conditions Sufficient conditions
(Theorem 3) (Wainwright [59])

k = Θ(p)
λ2 = Θ( 1

k
)

Θ(p log p) Θ(p log p)

k = Θ(p)

λ2 = Θ( log k
k

)
Θ(p) Θ(p)

k = Θ(p)
λ2 = Θ(1)

Θ(p) Θ(p)

k = o(p)
λ2 = Θ( 1

k
)

Θ(k log(p− k)) Θ(k log(p− k))

k = o(p)

λ2 = Θ( log k
k

)
max

{
Θ
(

k log p
k

log log k

)
,Θ
(

k log(p−k)
log k

)}
Θ
(
k log p

k

)
k = o(p)
λ2 = Θ(1)

max
{

Θ
(

k log p
k

log k

)
,Θ(k)

}
Θ
(
k log p

k

)
Table 3.1. Tight scalings of the necessary and sufficient conditions on the number
of observations n required for exact support recovery are obtained in several regimes
of interest.

recovery using a linear fraction n = Θ(p) of observations. Combined with the neces-

sary condition in Theorem 3, we obtain the following corollary that provides a sharp

characterization of the linear-linear regime:

Corollary 1. Consider the regime of linear sparsity, meaning that k/p = α ∈ (0, 1),

and suppose that a linear fraction n = Θ(p) of observations are made. Then the

optimal decoder can recover the support exactly if and only if λ2 = Ω(log k/k).

Theorem 3 has some consequences related to results proved in recent and concur-

rent work. Reeves and Gastpar [47] have shown that in the regime of linear sparsity

k/p = α > 0, and for standard Gaussian measurements, if any decoder is given only a

linear fraction sample size (meaning that n = Θ(p)), then one must have kλ2 → +∞

in order to recover the support exactly. This result is one corollary of Theorem 3,
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since if λ2 = Θ(1/k), then we have

n >
log(p− k + 1)− 1
1
2
log(1 + Θ(1/k))

= Ω(k log(p− k)) � Θ(p),

so that the scaling n = Θ(p) is precluded. In concurrent work, Fletcher et al. [30] used

direct methods to show that for the special case of the standard Gaussian ensemble,

the number of observations must satisfy n > Ω
(

log(p−k)
λ2

)
. The qualitative form of this

bound follows from our lower bound f1(p, k, λ), which holds for standard Gaussian

ensembles as well as more general (non-Gaussian) ensembles. However, we note that

the direct methods used by Fletcher et al. [30] yield better control of the constant

pre-factors for the standard Gaussian ensemble. Similarly, concurrent work by Aeron

et al. [3] showed that in the regime of linear sparsity (i.e., k = Θ(p)) and for standard

Gaussian measurements, the number of observations must satisfy n > Ω
(

log p
λ2

)
. This

result also follows as a consequence of our lower bound f1(p, k, λ).

The results in Theorem 3 can also be compared to an intuitive bound based on

classical channel capacity results, as pointed out previously by various researchers

(e.g., [52, 5]). Consider a restricted problem, in which the values associated with

each possible sparsity pattern on β are fixed and known at the decoder. Then support

recovery can be viewed as a type of channel coding problem, in which the N =
(

p
k

)
possible support sets of β correspond to messages to be sent over a Gaussian channel.

Suppose each support set S is encoded as the codeword Xβ, where X has i.i.d.

Gaussian entries. The effective code rate is then R =
log (p

k)
n

, and by standard Gaussian

channel capacity results, we have the lower bound,

n >
log
(

p
k

)
1
2
log (1 + ‖β‖2

2)
. (3.10)
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This bound is tight for k = 1 and Gaussian measurements, but loose in general. As

Theorem 3 clarifies, there are additional elements in the support recovery problem

that distinguish it from a standard Gaussian coding problem: first, the signal power

‖β‖2
2 does not capture the inherent problem difficulty for k > 1, and second, there is

overlap between support sets for k > 1. Note that ‖β‖2
2 ≥ kλ2 (with equality in the

case when |βj| = λ for all indices j ∈ S), so that Theorem 3 is strictly tighter than

the intuitive bound (3.10). Moreover, by fixing the value of β at (k − 1) indices to

λ and allowing the last component of β to tend to infinity, we can drive the power

‖β‖2
2 to infinity, while still having the minimum λ enter the lower bound.

3.3.2 Effect of measurement sparsity

We now turn to the effect of measurement sparsity on subset recovery, considering

in particular the γ-sparsified ensemble (3.7). Since each Xij has zero mean and unit

variance for all choices of γ by construction, Theorem 3 applies to the γ-sparsified

Gaussian ensemble (3.7); however, it yields necessary conditions that are indepen-

dent of γ. Intuitively, it is clear that the procedure of γ-sparsification should cause

deterioration in support recovery. Indeed, the following result provides more refined

bounds that capture the effects of γ-sparsification. We first state a set of necessary

conditions on (n, p, k, λ, γ) in general form, and subsequently bound these conditions

in different regimes of sparsity. Let φ(µ, σ2) denote the Gaussian density with mean

µ and variance σ2, and define the family of mixture distributions
{
ψm

}
m=1,...,k

with

ψm : =
m∑

`=0

(
m

`

)
γ`(1− γ)m−` φ

(
0, 1 +

`λ2

γ

)
. (3.11)
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Figure 3.1. The rate R =
log (p

k)
n , defined as the logarithm of the number of possible

subsets the decoder can reliably estimate based on n observations, is plotted using
equation (3.12) in three regimes, depending on how the quantity γk scales. In
particular, γk corresponds to the average number of non-zeros in β that align with
the non-zeros in each row of the measurement matrix.

Furthermore, let h(·) denote the differential entropy functional. With this notation,

we have the following result.

Theorem 4 (Sparse ensembles). Let the measurement matrix X ∈ Rn×p be drawn

with i.i.d. elements from the γ-sparsified Gaussian ensemble (3.7). Then a necessary

condition for asymptotically reliable recovery over the signal class Cp,k(λ) is

n > max
{
g1(p, k, λ, γ), . . . , gk(p, k, λ, γ), k

}
, (3.12)

where

gm(p, k, λ, γ) : =
log
(

p−k+m
m

)
− 1

h(ψm)− 1
2
log(2πe)

(3.13)

for m = 1, . . . , k.
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The proof of Theorem 4, given in Section 3.6, again uses Fano’s inequality, but

explicitly analyzes the effect of measurement sparsification on the entropy of the

observations. The necessary condition in Theorem 4 is plotted in Figure 3.1, showing

distinct regimes of behavior depending on how the quantity γk scales, where γ ∈ (0, 1]

is the measurement sparsification parameter and k is the signal sparsity index. In

order to characterize the regimes in which measurement sparsity begins to degrade the

recovery performance of any decoder, Corollary 2 below further bounds the necessary

conditions in Theorem 4 in three cases. For any scalar γ, let Hbinary(γ) denote the

entropy of a Bernoulli(γ) variate.

Corollary 2 (Three regimes). The necessary conditions in Theorem 4 can be simpli-

fied as follows.

(a) If γm→∞, then

gm(p, k, λ, γ) ≥
log
(

p−k+m
m

)
− 1

1
2
log (1 +mλ2)

. (3.14a)

(b) If γm = τ for some constant τ , then

gm(p, k, λ, γ) ≥
log
(

p−k+m
m

)
− 1

1
2
τ log

(
1 + mλ2

τ

)
+ C

, (3.14b)

where C = 1
2
log(2πe(τ + 1

12
)) is a constant.

(c) If γm→ 0, then

gm(p, k, λ, γ) ≥
log
(

p−k+m
m

)
− 1

1
2
γm log

(
1 + λ2

γ

)
+mHbinary(γ)

. (3.14c)
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Necessary conditions
(Theorem 4)

k = o(p) k = Θ(p)

λ2 = Θ( 1
k
)

γ = o( 1
k log k

)
Θ

(
k log(p−k)

γk log 1
γ

)
Θ

(
p log p

γp log 1
γ

)
λ2 = Θ( 1

k
)

γ = Ω( 1
k log k

)
Θ(k log(p− k)) Θ(p log p)

λ2 = Θ( log k
k

)
γ = o( 1

k log k
)

Θ

(
k log(p−k)

γk log 1
γ

)
Θ

(
p log p

γp log 1
γ

)
λ2 = Θ( log k

k
)

γ = Θ( 1
k log k

)
Θ(k log(p− k)) Θ(p log p)

λ2 = Θ( log k
k

)
γ = Ω( 1

k
)

max
{

Θ
(

k log p
k

log log k

)
,Θ
(

k log(p−k)
log k

)}
Θ(p)

Table 3.2. Necessary conditions on the number of observations n required for exact
support recovery is shown in different regimes of the parameters (p, k, λ, γ).

Corollary 2 reveals three regimes of behavior, defined by the scaling of the mea-

surement sparsity γ and the signal sparsity k. Intuitively, γk is the average number of

non-zeros in β that align with the non-zeros in each row of the measurement matrix.

If γk →∞ as p→∞, then the recovery threshold (3.14a) is of the same order as the

threshold for dense measurement ensembles. In this regime, sparsifying the measure-

ment ensemble has no asymptotic effect on performance. In sharp contrast, if γk → 0

sufficiently fast as p → ∞, then the denominator in (3.14c) goes to zero, and the

recovery threshold changes fundamentally compared to the dense case. Hence, the

number of measurements that any decoder needs in order to reliably recover increases

dramatically in this regime. Finally, if γk = Θ(1), then the recovery threshold (3.14b)

transitions between the two extremes. Using the bounds in Corollary 2, the neces-

sary conditions in Theorem 4 are shown in Table 3.2 under different scalings of the

parameters (n, p, k, λ, γ). In particular, if γ = o( 1
k log k

) and the minimum value λ2

does not increase with k, then the denominator γk log 1
γ

goes to zero.
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3.4 Fano’s method

In this section, we describe a general framework for deriving necessary conditions,

which sets the stage for the proofs of Theorems 3 and 4 in later sections. Estab-

lishing necessary conditions for exact sparsity recovery amounts to finding conditions

on (n, p, k, λ) (and possibly γ) under which the probability of error of any recovery

method stays bounded away from zero as n → ∞. At a high-level, our general ap-

proach is quite simple: we consider restricted problems in which the decoder has been

given some additional side information, and then apply Fano’s inequality [19] to lower

bound the probability of error. In order to establish the collection of necessary condi-

tions (e.g.,
{
f1(p, k, λ), . . . , fk(p, k, λ)

}
), we construct a family of restricted ensembles

which sweeps the range of possible overlaps between support sets. At the extremes

of this family are two classes of ensembles: one which captures the bulk effect of

having many competing subsets at large distances, and the other which captures the

effect of a smaller number of subsets at very close distances (this is illustrated in Fig-

ure (3.2a)). Accordingly, we consider the family of ensembles
{
C̃p−k+m,m(λ)

}
m=1,...,k

,

where the mth restricted ensemble is defined as follows.

We use the notation Xj ∈ Rn to denote column j of the matrix X, and XU ∈

Rn×|U | to denote the submatrix containing columns indexed by set U . Similarly, let

βU ∈ R|U | denote the subvector of β corresponding to the index set U . In addition,

let H(·) and h(·) denote the entropy and differential entropy functionals, respectively.
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(

p

k

)

− 1

1

k(p− k)
subsets

k
(

1− k
p

)

subsets

(a)

k − 1

p− k + 1 k − 1

∗

p− k + 1

(b)

Figure 3.2. Illustration of restricted ensembles. (a) In restricted ensemble C̃p,k(λ),
the decoder must distinguish between

(
p
k

)
support sets with an average overlap of

size k2

p , whereas in restricted ensemble C̃p−k+1,1(λ), it must decode amongst a subset

of the k(p−k)+1 supports with overlap k−1. (b) In restricted ensemble C̃p−k+1,1(λ),
the decoder is given the locations of the k−1 largest non-zeros, and it must estimate
the location of the smallest non-zero from the p− k + 1 remaining possible indices.

3.4.1 Constructing restricted ensembles

Suppose that the decoder is given the locations of all but the m smallest non-zero

values of the vector β, as well as the values of β on its support. More precisely, let

S represent the true underlying support of β and let T denote the set of revealed

indices, which has size |T | = k − m. Let U = S \ T denote the set of unknown

locations, and assume that βj = λ for all j ∈ U . Given knowledge of (T, βT , λ), the

decoder may simply subtract XTβT =
∑

j∈T Xjβj from Y , so that it is left with the

modified n-vector of observations

Ỹ : =
∑
j∈U

Xjλ+W. (3.15)

By re-ordering indices as need be, we may assume without loss of generality that

T = {p − k + m + 1, . . . , p}, so that U ⊂ {1, . . . , p − k + m}. The remaining sub-
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problem is to determine, given the observations Ỹ , the locations of the m non-zeros in

U . Note that when we assume the support of β is uniformly chosen over all
(

p
k

)
possible

subsets of size k, then given T , the remaining subset U is uniformly distributed over

the
(

p−k+m
m

)
possible subsets of size m.

We will now argue that analyzing the probability of error of this restricted problem

gives us a lower bound on the probability of error in the original problem. Consider

the restricted signal class C̃p−k+m,m(λ) defined as

C̃p−k+m,m(λ) : =
{
β̃ ∈ Rp−k+m

∣∣∣ |U(β̃)| = m, β̃j = λ ∀j ∈ U(β̃)
}

(3.16)

where we denote the support set of vector β̃ as U(β̃) : =
{
j | β̃j 6= 0

}
. For any

β̃ ∈ C̃p−k+m,m(λ), we can concatenate β̃ with a vector v of k − m non-zeros (with

minj |vj| ≥ λ) at the end to obtain a p-dimensional vector. If a decoder can recover

the support of any p-dimensional k-sparse vector β ∈ Cp,k(λ), then it can recover the

support of the augmented β̃, and hence the support of β̃. Furthermore, providing

the decoder with the non-zero values of β cannot increase the probability of error.

Thus, we can apply Fano’s inequality to lower bound the probability of error in the

restricted problem, and so obtain a lower bound on the probability of error for the

general problem.

3.4.2 Applying Fano to restricted ensembles

Consider the class of signals C̃p−k+m,m(λ) defined in (3.16), which consists of

M =
(

p−k+m
m

)
models

{
β̃(1), . . . , β̃(M)

}
corresponding to the M possible subsets

U ⊂ {1, . . . , p− k +m} of size k. Suppose that a model index θ is chosen uniformly
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at random from {1, . . . ,M}, and we sample n observations Ỹ ∈ Rn via the measure-

ment matrix X̃ ∈ Rn×(p−k+m). For any decoding function f : Rn → {1, . . . ,M}, the

average probability of error is defined as

perr(f) =
1

M

M∑
i=1

P
[
f(Ỹ ) 6= i | θ = i

]
,

while the maximal probability of error over the class C̃p−k+m,m(λ) is defined as

ω(f) = max
i=1,...,M

P
[
f(Ỹ ) 6= i | θ = i

]
.

We first apply Fano’s lemma [19] to bound the error probability over C̃p−k+m,m(λ) for

a particular instance of the random measurement matrix X̃, and subsequently average

over the ensemble of matrices. Thus by Fano’s inequality, the average probability of

error, and hence also the maximal probability of error, is lower bounded as

perr(f) ≥
H
(
θ
∣∣Ỹ , X̃)− 1

logM
= 1−

I
(
θ; Ỹ

∣∣X̃)+ 1

logM
. (3.17)

Consequently, the problem of establishing necessary conditions for asymptotically

reliable recovery is reduced to obtaining upper bounds on the conditional mutual

information I
(
θ; Ỹ

∣∣X̃).

3.5 Analysis of general measurement ensembles

In this section, we derive the necessary conditions stated in Theorem 3 for the

general class of measurement matrices, by applying Fano’s inequality to bound the

probability of decoding error in each of the k restricted ensembles in the family{
C̃p−k+m,m(λ)

}
m=1,...,k

.
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We begin by performing our analysis of the error probability over C̃p−k+m,m(λ) for

any m ∈ {1, . . . , k}. Let X̃ ∈ Rn×(p−k+m) be a matrix with independent, zero-mean

and unit-variance entries. Conditioned on the event that U is the true underlying

support of β̃, the vector of n observations can be written as

Ỹ : = X̃U β̃U +W = λ
∑
j∈U

X̃j +W.

Accordingly, the conditional mutual information in equation (4.15) can be expanded

as

I
(
θ; Ỹ

∣∣X̃) = h
(
Ỹ
∣∣X̃)− h

(
Ỹ
∣∣θ, X̃) = h

(
Ỹ
∣∣X̃)− h(W ).

We bound the first term using the fact that the differential entropy of the observation

vector Ỹ for a particular instance of matrix X̃ is maximized by the Gaussian distri-

bution with a matched variance. More specifically, for a fixed X̃, the distribution of

Ỹ is a Gaussian mixture with density ψ
(
y
∣∣ X̃) = 1

(p−k+m
m )

∑
U φ
(
X̃U β̃U , I

)
, where we

are using φ to denote the density of a Gaussian random vector with mean X̃U β̃U and

covariance I. Let Λ
(
X̃
)

denote the covariance matrix of Ỹ conditioned on X̃. (Hence

entry Λii

(
X̃
)

on the diagonal represents the variance of Ỹi given X̃.) With this nota-

tion, the entropy associated with the marginal density ψ
(
yi

∣∣ X̃) is upper bounded by

1
2
log
(
2πe Λii

(
X̃
))

. When X̃ is randomly chosen, the conditional entropy of Ỹ given

X̃ (averaged over the choice of X̃) can be bounded as

h
(
Ỹ
∣∣X̃) ≤

n∑
i=1

h
(
Ỹi

∣∣X̃)
≤

n∑
i=1

E eX
[
1

2
log
(
2πe Λii

(
X̃
))]

.
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The conditional entropy can be further bounded by exploiting the concavity of the

logarithm and applying Jensen’s inequality, as

h
(
Ỹ
∣∣X̃) ≤

n∑
i=1

1

2
log
(
2πe E eX[Λii

(
X̃
)])

.

Next, the entropy of the Gaussian noise vector W ∼ N(0, In×n) can be computed as

h(W ) = n
2

log(2πe). Combining these two terms, we then obtain the following bound

on the conditional mutual information,

I
(
θ; Ỹ

∣∣X̃) ≤
n∑

i=1

1

2
log
(
E eX[Λii

(
X̃
)])

.

It remains to compute the expectation E eX[Λii

(
X̃
)]

, over the ensemble of matrices

X̃ drawn with i.i.d. entries from any distribution with zero mean and unit variance.

The proof of the following lemma involves some relatively straightforward but lengthy

calculation, and is given in Section 3.5.1.

Lemma 3. Given i.i.d. X̃ij with zero mean and unit variance, the averaged covariance

matrix of Ỹ given X̃ is

E eX[Λ(X̃)] =

(
1 +mλ2

(
1− m

p− k +m

))
In×n. (3.18)

Finally, combining Lemma 3 with equation (4.15), we obtain that the average

probability of error is bounded away from zero if

n <
log
(

p−k+m
m

)
− 1

1
2
log
(
1 +mλ2

(
1− m

p−k+m

)) ,
as claimed.
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3.5.1 Averaging over the ensemble

We now derive Lemma 3. We begin by defining some additional notation.

Recall that for a given instance of the matrix X̃, the observation vector Ỹ has

a Gaussian mixture distribution with density ψ
(
y
∣∣ X̃) = 1

(p−k+m
m )

∑
U φ
(
X̃U β̃U , I

)
,

where φ denotes the Gaussian density with mean X̃U β̃U and covariance I. Let

µ
(
X̃
)

= E
[
Ỹ
∣∣X̃] ∈ Rn and Λ

(
X̃
)

= E
[
Ỹ Ỹ T

∣∣X̃] − µ
(
X̃
)
µ
(
X̃
)T ∈ Rn×n be the

mean vector and covariance matrix of Ỹ given X̃, respectively. Accordingly we have

µ
(
X̃
)

=
1(

p−k+m
m

)∑
U

X̃U β̃U

and

E
[
Ỹ Ỹ T

∣∣X̃] =
1(

p−k+m
m

)∑
U

(
X̃U β̃U

)(
X̃U β̃U

)T
+ I.

With this notation, we can now compute the expectation of the covariance matrix

E eX[Λ(X̃)], averaged over any distribution on X̃ with independent, zero-mean and

unit-variance entries. To compute the first term, we have

E eX
[
E
[
Ỹ Ỹ T

∣∣X̃]] =
λ2(

p−k+m
m

)∑
U

E eX
[∑

j∈U

X̃jX̃
T
j +

∑
i6=j∈U

X̃iX̃
T
j

]
+ I

=
λ2(

p−k+m
m

)∑
U

∑
j∈U

I + I

=
(
1 +mλ2

)
I

where the second equality uses the fact that E eX[X̃jX̃
T
j

]
= I, and E eX[X̃iX̃

T
j

]
= 0 for
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i 6= j. Next, we compute the second term as,

E eX
[
µ
(
X̃
)
µ
(
X̃
)T]

=

(
λ(

p−k+m
m

))2

E eX
[∑

U,V

∑
j∈U∩V

X̃jX̃
T
j +

∑
U,V

∑
i∈U,j∈V

i6=j

X̃iX̃
T
j

]

=

(
λ(

p−k+m
m

))2∑
U,V

∑
j∈U∩V

I

=

( λ(
p−k+m

m

))2∑
U,V

|U ∩ V |

 I.

From here, note that there are
(

p−k+m
m

)
possible subsets U of size m. For each U , a

counting argument reveals that there are
(

m
δ

)(
p−k
m−δ

)
subsets V of size m which have

|U ∩ V | = δ overlaps with U . Thus the scalar multiplicative factor above can be

written as (
λ(

p−k+m
m

))2∑
U,V

|U ∩ V | =
λ2(

p−k+m
m

) m∑
δ=1

(
m

δ

)(
p− k

m− δ

)
δ.

Finally, using a substitution of variables (by setting δ′ = δ− 1) and applying Vander-

monde’s identity [48], we have(
λ(

p−k+m
m

))2∑
U,V

|U ∩ V | =
λ2(

p−k+m
m

) mm−1∑
δ′=0

(
m− 1

δ′

)(
p− k

m− δ′ − 1

)
=

λ2(
p−k+m

m

) m(p− k +m− 1

m− 1

)
=

m2λ2

p− k +m
.

Combining these terms, we conclude that

E eX[Λ(X̃)] =

(
1 +mλ2

(
1− m

p− k +m

))
I.
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3.6 Analysis of sparse measurement ensembles

This section contains proofs of the necessary conditions in Theorem 4 for the

γ-sparsified Gaussian measurement ensemble (3.7). We proceed as before, applying

Fano’s inequality to each restricted class in the family
{
C̃p−k+m,m(λ)

}
m=1,...,k

, in order

to derive the corresponding k conditions in Theorem 4.

In analyzing the probability of error over C̃p−k+m,m(λ), the initial steps proceed

as in the proof of Theorem 3, by expanding the conditional mutual information in

equation (4.15) as

I
(
θ; Ỹ

∣∣X̃) = h
(
Ỹ
∣∣X̃)− h(W )

≤
n∑

i=1

h
(
Ỹi

∣∣X̃)− n

2
log(2πe),

using the Gaussian entropy for W ∼ N(0, In×n).

From this point, the key subproblem is to compute the conditional entropy of

Ỹi = λ
∑

j∈U(eβ) X̃ij +Wi, when the support of β̃ is uniformly chosen over all
(

p−k+m
m

)
possible subsets of size m. To characterize the limiting behavior of the random

variable Ỹi, note that for a fixed matrix X̃, each Ỹi is distributed according to the

density defined as

ψm

(
yi

∣∣ X̃) =
1(

p−k+m
m

)∑
U

1√
2π

exp

(
−1

2

(
yi − λ

∑
j∈U

X̃ij

)2
)
.

This density is a mixture of Gaussians with unit variances and means that depend on

the values of {X̃i1, . . . , X̃i(p−k+m)}, summed over subsets U ⊂ {1, . . . , p−k+m} with

|U | = m. At a high-level, our immediate goal is to characterize the entropy h(ψm).
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Note that as X̃ varies over the sparse ensemble (3.7), the sequence
{
ψm

(
yi

∣∣ X̃)}
p
,

indexed by the signal dimension p, is actually a sequence of random densities. As an

intermediate step, the following lemma characterizes the average pointwise behavior

of this random sequence of densities, and is proven in Section 3.6.1.

Lemma 4. Let X̃ be drawn with i.i.d. entries from the γ-sparsified Gaussian ensem-

ble (3.7). For any fixed yi and m, E eX[ψm

(
yi

∣∣ X̃)] = ψm(yi), where

ψm(yi) = EL

 1√
2π
(
1 + Lλ2

γ

) exp

(
− y2

i

2
(
1 + Lλ2

γ

))
 (3.19)

is a mixture of Gaussians with binomial weights L ∼ Binomial(m, γ).

For certain scalings, we can use concentration results for U -statistics [54] to prove

that ψm converges uniformly to ψm, and from there that h(ψm)
p→ h(ψm). In general,

however, we always have an upper bound, which is sufficient for our purposes. Indeed,

since differential entropy h(ψm) is a concave function of ψm, by Jensen’s inequality

and Lemma 4, we have

E eX [h(ψm)] ≤ h
(
E eX [ψm]

)
= h(ψm).

With these ingredients, we conclude that the conditional mutual information in

equation (4.15) is upper bounded by

I
(
θ; Ỹ

∣∣X̃) ≤
n∑

i=1

h
(
Ỹi

∣∣X̃)− n

2
log(2πe)

=
n∑

i=1

E eX [h(ψm)]− n

2
log(2πe)

≤ nh(ψm)− n

2
log(2πe),
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where the last inequality uses the fact that the entropies h(ψm) associated with the

densities ψm(yi) are the same for all i. Therefore, the probability of decoding error,

averaged over the sparsified Gaussian measurement ensemble, is bounded away from

zero if

n <
log
(

p−k+m
m

)
− 1

H(ψm)− 1
2
log(2πe)

,

as claimed.

3.6.1 Limiting behavior

We now provide the proof of Lemma 4. Consider the following sequences of

densities,

ψm

(
yi

∣∣ X̃) =
1(

p−k+m
m

)∑
U

1√
2π

exp

(
−1

2

(
yi − λ

∑
j∈U

X̃ij

)2
)

and

ψm(yi) = EL

 1√
2π
(
1 + Lλ2

γ

) exp

(
− y2

i

2
(
1 + Lλ2

γ

))
 ,

where L ∼ Binomial(m, γ). Our goal is to show that for any fixed yi, the pointwise

average of the stochastic sequence of densities ψm over the ensemble of matrices X̃

satisfies E eX[ψm

(
yi

∣∣ X̃)] = ψm(yi).

By symmetry of the random measurement matrix X̃, it is sufficient to compute this

expectation for the subset U = {1, . . . ,m}. When each X̃ij is i.i.d. drawn according

to the γ-sparsified ensemble (3.7), the random variable Z : =
(
yi − λ

∑m
j=1 X̃ij

)
has
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a Gaussian mixture distribution which can be described as follows. Denoting the

mixture label by L, then Z ∼ N
(
yi,

`λ2

γ

)
if L = `, for ` = 0, . . . ,m. Moreover, define

the modified random variable Z̃ : = γ
Lλ2

(
yi − λ

∑m
j=1 X̃ij

)2

. Then, conditioned on the

mixture label L = `, the random variable Z̃ has a noncentral chi-square distribution

with 1 degree of freedom and parameter
γy2

i

`λ2 . Letting M`(t) = E
[
exp(tZ̃) |L = `

]
denote the `th moment-generating function of Z̃, we have

E eX
[

1√
2π

exp

(
−1

2

(
yi − λ

m∑
j=1

X̃ij

)2
)]

=
m∑

`=0

1√
2π

E eX
[

exp

(
−1

2

(
yi − λ

m∑
j=1

X̃ij

)2
) ∣∣∣∣∣ L = `

]
P(L = `)

=
m∑

`=0

1√
2π
M`

(
−`λ

2

2γ

)
P(L = `)

Evaluating the moment generating function [12] of a noncentral chi-square random

variable then gives the desired quantity,

E eX[ψm

(
yi

∣∣ X̃)] = EL

 1√
2π
(
1 + Lλ2

γ

) exp

(
− y2

i

2
(
1 + Lλ2

γ

))


as claimed.

3.6.2 Bounding three regimes

In this section, we derive the bounds in Corollary 2 on the necessary conditions

gm(p, k, λ, γ) stated in Theorem 4. We begin by applying a simple yet general bound

on the entropy of the Gaussian mixture distribution with density ψm defined in (3.11).

The variance associated with the density ψm is equal to σ2
m = 1+mλ2, and so h(ψm)
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is bounded by the entropy of a Gaussian distribution with variance σ2
m, as

h(ψm) ≤ 1

2
log(2πe(1 +mλ2)).

This yields the first set of bounds in (3.14a).

Next, to derive more refined bounds which capture the effects of measurement

sparsity, we will make use of the following lemma to bound the entropy associated

with the mixture density ψm.

Lemma 5. For the Gaussian mixture distribution with density ψm defined in (3.11),

h(ψm) ≤ EL

[
1

2
log

(
1 +

Lλ2

γ

)]
+H(L) +

1

2
log(2πe),

where L ∼ Binomial(m, γ).

Proof. Let Z be a random variable distributed according to the density (3.19) with

mixture label L ∼ Binomial(m, γ). To compute the entropy of Z, we expand the

mutual information I(Z;L) and obtain

h(Z) = h(Z|L) +H(L)−H(L|Z).

The conditional distribution of Z given that L = ` is Gaussian, and so the conditional

entropy of Z given L can be written as

h(Z|L) = EL

[
1

2
log

(
2πe

(
1 +

Lλ2

γ

))]
.

Using the fact that 0 ≤ H(L|Z) ≤ H(L), we obtain the upper and lower bounds on

h(Z),

h(Z|L) ≤ h(Z) ≤ h(Z|L) +H(L),
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as claimed.

We can further bound the expression in Lemma 5 in three cases, delineated by

the quantity γm. The proof of the following claim in given in Section 3.6.3.

Lemma 6. Let E : = EL

[
1
2
log
(
1 + Lλ2

γ

)]
, where L ∼ Binomial(m, γ).

(a) If γm > 3, then

1

4
log

(
1 +

mλ2

3

)
≤ E ≤ 1

2
log
(
1 +mλ2

)
. (3.20)

(b) If γm = τ for some constant τ , then

1

2
(1− e−τ ) log

(
1 +

mλ2

τ

)
≤ E ≤ 1

2
τ log

(
1 +

mλ2

τ

)
. (3.21)

(c) If γm ≤ 1, then

1

4
γm log

(
1 +

λ2

γ

)
≤ E ≤ 1

2
γm log

(
1 +

λ2

γ

)
. (3.22)

Finally, combining Lemmas 5 and 6 with some simple bounds on the entropy of

the binomial variate L (summarized in Lemmas 7 and 8 in Section 3.6.4), we obtain

the bounds on gm(p, k, λ, γ) in equations (3.14b) and (3.14c).

3.6.3 Binomial concentration

We now derive the bounds in Lemma 6 on the expectation E : = EL

[
1
2
log
(
1 +

Lλ2

γ

)]
, where L ∼ Binomial(m, γ). We first derive a general upper bound on E and
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then show that this bound is reasonably tight in the case when γm ≤ 1. We can

rewrite the binomial probability as

p(`) : =

(
m

`

)
γ`(1− γ)m−` =

γm

`

(
m− 1

`− 1

)
γ`−1(1− γ)m−`

and hence

E =
1

2
γm

m∑
`=1

log
(
1 + `λ2

γ

)
`

(
m− 1

`− 1

)
γ`−1(1− γ)m−`.

Taking the first two terms of the binomial expansion of
(
1 + λ2

γ

)`

and noting that all

the terms are non-negative, we obtain the inequality(
1 +

λ2

γ

)`

≥ 1 +
`λ2

γ

and consequently log
(
1 + λ2

γ

)
≥ 1

`
log
(
1 + `λ2

γ

)
. Using a change of variables (by

setting `′ = ` − 1) and applying the binomial theorem, we thus obtain the upper

bound

E ≤ 1

2
γm

m∑
`=1

log

(
1 +

λ2

γ

)(
m− 1

`− 1

)
γ`−1(1− γ)m−`

=
1

2
γm log

(
1 +

λ2

γ

)m−1∑
`′=0

(
m− 1

`′

)
γ`′(1− γ)m−`′−1

=
1

2
γm log

(
1 +

λ2

γ

)
.

In the case when γm ≤ 1, we can derive a similar lower bound by first bounding

E as

E ≥ 1

2
log

(
1 +

λ2

γ

) m∑
`=1

p(`)

=
1

2
log

(
1 +

λ2

γ

)
(1− (1− γ)m).
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Now using the fact that 1 + x ≤ ex for all x ∈ R, and e−x ≤ 1 − x
2

for x ∈ [0, 1], we

have

E ≥ 1

2
log

(
1 +

λ2

γ

)
(1− e−γm)

(a)

≥ 1

2
log

(
1 +

λ2

γ

)(γm
2

)
.

This yields the upper and lower bounds in (3.22).

Next, we examine the case when γm = τ for some constant τ . The derivation of

the upper bound for the γm ≤ 1 case holds when γm = τ as well. The proof of the

lower bound follows the same steps as in the γm ≤ 1 case, except that we stop before

applying the last inequality (a). This gives the bounds in (3.21).

Finally, we derive bounds in the case when γm > 3. Since the mean of a L ∼

Binomial(m, γ) random variable is γm, by Jensen’s inequality the following upper

bound always holds,

EL

[
1

2
log

(
1 +

Lλ2

γ

)]
≤ 1

2
log(1 +mλ2).

To derive a matching lower bound, we use the fact that the median of a Binomial(m, γ)

distribution is one of {bγmc − 1, bγmc, bγmc+ 1}. This allows us to bound

E ≥ 1

2

m∑
`=bγmc−1

log

(
1 +

`λ2

γ

)
p(`)

≥ 1

2
log

(
1 +

(bγmc − 1)λ2

γ

) m∑
`=bγmc−1

p(`)

≥ 1

4
log

(
1 +

mλ2

3

)
where in the last step we used the fact that (bγmc−1)λ2

γ
≥ (γm−2)λ2

γ
≥ mλ2

3
for γm > 3,

and
∑m

`=median p(`) ≥
1
2
. Thus we obtain the bounds in (3.20).
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3.6.4 Bounds on binomial entropy

Lemma 7. Let L ∼ Binomial(m, γ), then

H(L) ≤ 1

2
log

(
2πe

(
mγ(1− γ) +

1

12

))
.

Proof. We immediately obtain this bound by applying the differential entropy bound

on discrete entropy [19]. As detailed in [19], the proof follows by relating the entropy

of the discrete random variable L to the differential entropy of a particular continuous

random variable, and then upper bounding the latter by the entropy of a Gaussian

random variable.

Lemma 8. The entropy of a binomial random variable L ∼ Binomial(m, γ) is

bounded by

H(L) ≤ mHbinary(γ).

Proof. We can express the binomial variate as L =
∑m

i=1 Zi, where Zi ∼ Bernoulli(γ)

i.i.d. Since H(g(Z1, . . . , Zm)) ≤ H(Z1, . . . , Zm), we have

H(L) ≤ H(Z1, . . . , Zm) = mHbinary(γ).

Lemma 9. If γ = o
(

1
m log m

)
, then mHbinary(γ) → 0 as m→∞.

Proof. To find the limit of mHbinary(γ) = mγ log 1
γ

+m(1− γ) log 1
1−γ

, let γ = 1
mf(m)

for some function f , and assume that f(m) = ω(logm). We can expand the first
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term as

mγ log
1

γ
=

1

f(m)
log(mf(m)) =

logm

f(m)
+

log f(m)

f(m)
,

and so limm→∞mγ log 1
γ

= 0. The second term can also be expanded as

−m(1− γ) log(1− γ) = −m log

(
1− 1

mf(m)

)
+

1

f(m)
log

(
1− 1

mf(m)

)
= − log

(
1− 1

mf(m)

)m

+
1

f(m)
log

(
1− 1

mf(m)

)
.

Since f(m) →∞ as m→∞, we have the limits

lim
m→∞

(
1− 1

mf(m)

)m

= 1 and lim
m→∞

(
1− 1

mf(m)

)
= 1,

which in turn imply that

lim
m→∞

log

(
1− 1

mf(m)

)m

= 0 and lim
m→∞

1

f(m)
log

(
1− 1

mf(m)

)
= 0.

3.7 Discussion

In this chapter, we have studied the information-theoretic limits of exact support

recovery for general scalings of the parameters (n, p, k, λ, γ). Our first result (Theo-

rem 3) applies generally to measurement matrices with zero-mean and unit-variance

entries. It strengthens previously known bounds, and combined with known suffi-

cient conditions [59], yields a sharp characterization of recovering signals with linear

sparsity with a linear fraction of observations (Corollary 1). Our second result (The-

orem 4) applies to γ-sparsified Gaussian measurement ensembles, and reveals three
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different regimes of measurement sparsity, depending on how significantly they impair

statistical efficiency. For linear signal sparsity, Theorem 4 is not a sharp result (by a

constant factor in comparison to Theorem 3 in the dense case); however, its tightness

for sublinear signal sparsity is an interesting open problem. Finally, Theorem 3 implies

that no measurement ensemble with zero-mean and unit-variance entries can further

reduce the number of observations necessary for recovery, while [59] shows that the

standard Gaussian ensemble can achieve the same scaling. This raises an interesting

open question on the design of other, more computationally friendly, measurement

matrices which achieve the same information-theoretic bounds.
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Chapter 4

Model selection bounds for

Gaussian Markov random fields

4.1 Introduction

Markov random fields or undirected graphical models are families of probability

distributions whose factorization and conditional independence properties are char-

acterized by the structure of an underlying graph. Graphical model selection refers

to the problem of estimating the graph structure based on observed samples from

a Markov random field. This problem arises in a wide variety of settings, including

statistical image analysis, natural language processing, and computational biology.

In many applications, this problem is of interest in the high-dimensional setting, in

which both the graph size p and the number of samples n are large. Classical methods

are known to break down when p/n does not go to zero. Moreover, without addi-
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tional structure, the problem is often intractable when p� n. A line of recent work

has focused on developing computationally efficient methods to solve this problem by

imposing sparsity on the underlying graph structure. In particular, methods based

on `1-regularization [63, 32, 21, 49, 46] have been shown to yield consistent estimators

for high-dimensional graph selection.

Complementary in nature are the information-theoretic limits associated with any

procedure for graphical model selection. Such analysis can serve two purposes. First,

it can demonstrate when known polynomial-time algorithms achieve the information-

theoretic bounds. Second, it can reveal regimes in which there exists a gap between the

performance of current methods and the fundamental limits. With this motivation,

previous work [50] has analyzed the fundamental limits of graphical model selection

for binary Markov random fields.

The focus of this chapter is on the information-theoretic limits of Gaussian graph-

ical model selection, in which the observed random vector has a multivariate Gaus-

sian distribution. For Gaussian Markov random fields, the model selection problem

is equivalent to estimating the off-diagonal sparsity pattern of the inverse covariance

matrix. This chapter contains two types of results. Our first result is to derive

conditions on the sample size n, graph size p, and maximum node degree d, that are

necessary for any method to correctly recover the underlying graph with probability of

error going to zero. Our second result addresses the problem of estimating the inverse

covariance matrix Θ, and establishes necessary conditions for any method to produce

an estimate Θ̂ satisfying ‖Θ̂− Θ‖ < δ. Our results can be compared against known
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sufficient conditions for graph selection and covariance estimation using `1-penalized

maximum likelihood [46].

4.2 Graphical models

We begin with some background on Gaussian Markov random fields. We then

formulate the graphical model selection problem, which for Gaussian models is di-

rectly related to estimation of the inverse covariance matrix. Our goal is to derive

information-theoretic lower bounds on the number of samples required for recovery,

which apply to any procedure regardless of its computational complexity.

4.2.1 Gaussian Markov random fields

Let X = (X1, . . . , Xp) be a multivariate Gaussian random vector with zero mean

and covariance matrix Σ. Accordingly, its density is determined completely by the

inverse covariance matrix Θ = Σ−1, and has the form

f(x1, . . . , xp) =
1√

(2π)p det(Θ−1)
exp{−1

2
xT Θx}. (4.1)

For a given undirected graph G = (V,E) with vertex set V and edge set E ⊂ V × V ,

we associate a random variable Xi with each vertex i ∈ V . The Gaussian Markov

random field associated with the graph G is the family of Gaussian distributions that

respect the Markov properties of G. In particular, the off-diagonal sparsity pattern of

the inverse covariance matrix Θ is specified by the edge structure of the graph, such

that Θij = 0 if (i, j) 6∈ E (see Figure).
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Figure 4.1. Illustration of Gaussian Markov random fields. (a) Given an undi-
rected graph, associate a random variable Xi with each vertex i in the graph. A
GMRF is the family of probability distributions over the vector X that respect the
structure of the graph. (b) Sparsity pattern of the inverse covariance matrix Θ
associated with the GMRF in (a).

Given i.i.d. samples from an unknown Markov random field, the problem of

estimating the inverse covariance matrix Θ corresponds to recovering the graphical

model instance, while the problem of estimating the underlying graph G corresponds

to graphical model selection. We define the maximum degree of the graph as

d : = max
i∈V

∣∣∣{j ∈ V | (i, j) ∈ E}
∣∣∣, (4.2)

which is equal to the maximum number of non-zeros per row of the inverse covariance

matrix Θ. Note that we are not including self-loops at each vertex in the degree

count, corresponding to the diagonal entries Θii. We often write Θ(G) to emphasize

the graph-based structure of Θ.
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4.2.2 Classes of graphical models

Let Gp,d be a family of undirected graphs on p vertices with edge sets that have

degree at most d. For a given graph G ∈ Gp,d, let Σ(G) be the covariance matrix of a

Gaussian Markov random field (GMRF) defined by the graph G. By definition, the

inverse covariance matrix Θ(G) must have non-zeros only in positions corresponding

to edges in E. In addition to graph structure, the difficulty of graphical model

selection also depends on properties of the inverse covariance matrix entries. We

define the minimum value of each matrix Θ(G) by the function

λ∗(Θ(G)) : = min
(s,t)∈E

|Θst|√
ΘssΘtt

, (4.3)

so that it is invariant to rescaling of the data. We study the class of Gaussian Markov

random fields parameterized by a lower bound on the minimum value, defined as

Gp,d(λ) : =
{
φΘ(G)

∣∣ G ∈ Gp,d, Θst = 0 if (s, t) /∈ E, λ∗(Θ(G)) ≥ λ
}
, (4.4)

which consists of probability distributions of the form φΘ(G) = φ(0,Σ(G)).

4.2.3 Decoders and error metrics

Suppose we are given n i.i.d. samples Xn
1 =

(
X(1), . . . , X(n)

)
∈ Rn×p from an

unknown distribution φΘ(G) in the class Gp,d(λ). Graphical model selection refers to

the problem of estimating the underlying graph G based on the observations Xn
1 . A

decoder ψ : Rn×p → Gp,d maps from the observations Xn
1 to an estimated graph Ĝ =

ψ(Xn
1 ). We define the error metric between the estimate Ĝ and the true underlying

graph G using the 0-1 loss function I[ψ(Xn
1 ) 6= G]. For any decoder ψ, we define the
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maximal probability of error over the class Gp,d(λ) as

perr(ψ) : = max
φΘ(G)∈Gp,d(λ)

PΘ(G)

[
ψ(Xn

1 ) 6= G
]
, (4.5)

where the error probability PΘ(G)

[
ψ(Xn

1 ) 6= G
]

= EΘ(G)

[
I[ψ(Xn

1 ) 6= G]
]

is taken with

respect to the product distribution PΘ(G) = φ(0,Σ(G))n over n i.i.d. samples.

While graphical model selection corresponds to recovering the support set of Θ(G),

the goal of inverse covariance estimation is to recover the entries of the inverse covari-

ance matrix. More precisely, a decoder ψ̄ : Rn×p → Gp,d(λ) maps from the samples

Xn
1 to an estimate Θ̂ = ψ̄(Xn

1 ). We measure the error between the estimate Θ̂ and

the true inverse covariance matrix Θ using the elementwise `∞-norm ‖Θ̂−Θ‖∞, and

define the probability of error PΘ(G)

[
‖Θ̂ − Θ‖∞ ≥ δ/2

]
with respect to the product

distribution PΘ(G) = φ(0,Σ(G))n. The maximal probability of error over the model

class Gp,d(λ) is then defined as

perr(ψ̄) : = max
φΘ(G)∈Gp,d(λ)

PΘ(G)

[
‖Θ̂−Θ‖∞ ≥ δ/2

]
. (4.6)

Although the error metrics for graphical model selection and inverse covariance es-

timation are closely related, neither recovery guarantee is strictly stronger than the

other. In particular, it is possible to recover an estimate Ĝ = G when ‖Θ̂−Θ‖∞ ≥ δ/2;

conversely, it is also possible to recover an estimate satisfying ‖Θ̂−Θ‖∞ < δ/2 when

Ĝ 6= G.

With this set-up, our goal is to derive necessary conditions on the sample size

n(p, d, λ) for any decoder to reliably recover the underlying graph (or estimate the

inverse covariance matrix). We say that recovery is asymptotically reliable over the

graphical model class Gp,d(λ) if perr → 0 as n→ 0. Our analysis is high-dimensional
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in nature, in which the number of samples n, graph size p, and maximum degree of

the graph d are all allowed to tend to infinity in a general manner.

4.3 Main results and consequences

In this section, we state our main results on the information-theoretic limits of

Gaussian graphical model selection and inverse covariance estimation, and then dis-

cuss some of their consequences.

4.3.1 Graphical model selection

We begin with a set of necessary conditions for graphical model selection, appli-

cable to any recovery method regardless of its computational complexity.

Theorem 5. Consider the family Gp,d(λ) of Gaussian Markov random fields with

λ ∈ [0, 1). A necessary condition for asymptotically reliable graphical model selection

over the class Gp,d(λ) is

n > max

{
log
(

p−d+2
2

)
− 1

2λ2
,

log
(

p
d

)
− 1

1
2

(
log(1 + dλ)− dλ

1+dλ

)} . (4.7)

The proof of Theorem 5, given in Section 4.4, constructs restricted ensembles

of graphical models and then, viewing the observation process as a communication

channel, uses Fano’s inequality to bound the probability of error.

The first bound in Theorem 5 captures how the sample size must grow with graph

size p and minimum value λ. In particular, if the minimum value scales as λ = Θ(1
d
),
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then Theorem 5 implies that the sample size must scale as n = Ω(d2 log(p− d)). For

any constant λ ∈ [0, 1), the second bound in Theorem 5 scales as n = Ω
(

d log(p/d)
log(1+dλ)

)
.

Moreover, it implies that n = Ω(d1−ε log(p
d
)) for any ε > 0.

The necessary conditions in Theorem 5 can be compared with previous work on

polynomial-time methods for consistent graph selection. In particular, the inverse

covariance matrix Θ can be estimated by solving the `1-regularized log-determinant

program

Θ̂ : = arg min
Θ�0

{
〈〈Θ, Σ̂n〉〉 − log det(Θ) + λn‖Θ‖1,off

}
(4.8)

where Σ̂n denotes the sample covariance matrix, 〈〈A,B〉〉 : =
∑

i,j AijBij denotes the

trace inner product, λn > 0 is a regularization parameter, and ‖Θ‖1,off : =
∑

i6=j |Θij| is

the off-diagonal `1 regularizer. The underlying graph structure can then be estimated

by the edge set E
(
Θ̂
)

= {(i, j) | i 6= j, Θ̂ij 6= 0}. For Gaussian Markov random fields,

the problem (4.8) is equivalent to `1-regularized maximum likelihood. Ravikumar

et al. [46] showed that a sufficient condition for the problem (4.8) to consistently

estimate the underlying graph is

n = Ω((d2 + λ−2) log p). (4.9)

In the regime in which λ = Θ(1
d
), this scaling matches the information-theoretic

bounds in Theorem 5.

4.3.2 Inverse covariance estimation

We now state some necessary conditions for the closely related problem of inverse

covariance estimation. Let ‖A‖∞ : = maxij |Aij| to denote the element-wise `∞-norm.
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Theorem 6. Consider the class of Gaussian Markov random fields Gp,d(λ). If any

decoder can recover an estimate of the inverse covariance matrix satisfying ‖Θ̂ −

Θ‖∞ < δ/2 in the element-wise `∞-norm with probability of error going to zero, then

the number of samples must be greater than

n >
log
(

pd
4

)
− 1

2δ2
. (4.10)

Theorem 6 captures how the sample size must grow with the minimum separation

between models δ. A consequence of Theorem 6 is that if the recovery error decays at

rate δ = 1/d, then the sample size must scale as n > d2
(
log
(

pd
4

)
−1
)
/2. Furthermore,

Theorem 6 implies that the same necessary condition holds for inverse covariance

estimation with other error metrics as well. In particular, let |||A|||F : = (
∑

ij A
2
ij)

1/2

denote the Frobenius norm.

Corollary 3. A necessary condition for asymptotically reliable inverse covariance

estimation, with recovery error at most δ/2 measured in the Frobenius norm, is n >

log
(

pd
4

)
−1

2δ2 .

Proof. For any two matrices Θ̂ and Θ, the elementwise `∞ norm is upper bounded

by the Frobenius norm as ‖Θ̂− Θ‖∞ ≤ |||Θ̂− Θ|||F . Consequently, the probability of

error can be bounded as

PΘ(G)

[
‖Θ̂−Θ‖∞ ≥ δ/2

]
≤ PΘ(G)

[
|||Θ̂−Θ|||F ≥ δ/2

]
. (4.11)

The necessary condition then follows from Theorem 6.

The necessary condition in Theorem 6 can be compared to known sufficient condi-

tions for `1-regularized maximum likelihood (4.8) to consistently estimate the inverse
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covariance matrix. Ravikumar et al. [46] showed that if the sample size is bounded

as

n = Ω(d2 log p), (4.12)

then with probability going to one the program (4.8) can recover an estimate Θ̂

satisfying

‖Θ̂−Θ‖∞ = O

(√
log p

n

)
. (4.13)

Consequently, the performance of the polynomial-time algorithm (4.8) matches the

scaling of the information-theoretic bound in Theorem 6.

4.4 Applying Fano’s method

4.4.1 Fano’s method

Our general approach is to construct restricted ensembles of graphical models,

and then use Fano’s method to lower bound the probability of error in each restricted

ensemble. Consider a restricted ensemble G̃ consisting of M =
∣∣G̃∣∣ models, and let

model index θ be chosen uniformly at random from {1, . . . ,M}. Given the obser-

vations X̃n
1 ∈ Rn×ν , the decoder ψ̃ estimates the underlying graph structure with

probability of decoding error defined as

perr(ψ̃) = max
j=1,...,M

PeΘ( eGj)

[
ψ̃
(
X̃n

1

)
6= G̃j

]
. (4.14)
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By Fano’s inequality, the maximal probability of error over G̃ can be lower bounded

as

perr(ψ̃) ≥ 1−
I
(
θ; X̃n

1

)
+ 1

logM
. (4.15)

In order to make use of the Fano bound, the key is to design ensembles of matrices

for which logM is large, while the mutual information I
(
θ; X̃n

1

)
is relatively small.

Since it is typically difficult to evaluate the mutual information exactly, we discuss

some upper bounds on it.

1. Entropy-based bound: Define the averaged covariance matrix

Σ̄ : =
1

M

M∑
j=1

Σ̃
(
G̃j

)
. (4.16)

The mutual information is upper bounded by I
(
θ; X̃n

1

)
≤ n

2
F
(
G̃
)
, where

F
(
G̃
)

: = log det Σ̄− 1

M

M∑
j=1

log det Σ̃
(
G̃j

)
. (4.17)

Proof. See Section 4.4.2.

2. KL-based bound: Let Pj = f
(
X̃n

1

∣∣θ = j
)

= φ
(
0, Σ̃

(
G̃j

))n
for j = 1, . . . ,M .

An alternative bound on the mutual information is given by

I
(
θ; X̃n

1

)
= Eθ

[
D

(
Pθ

∥∥∥ 1

M

M∑
j=1

Pj

)]
(4.18)

≤ Eθ[D(Pθ‖Q)] (4.19)

for any distribution Q over X̃n
1 . This upper bound follows from the fact that

the mixture distribution 1
M

∑M
j=1 Pj minimizes the averaged Kullback-Leibler
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distance over the family. Setting Q = φ(0, Iν×ν)
n, the KL distance can be

expressed as

D(Pj‖Q) =
n

2

{
log det Θ̃

(
G̃j

)
+ trace

(
Σ̃
(
G̃j

))
− ν
}
. (4.20)

Note that we are assuming loge throughout; using log2 instead would change our

results by a multiplicative constant of 1
loge 2

.

4.4.2 Bounds on mutual information

In this section we derive bounds on the mutual information that arises in Fano’s

inequality. Consider a restricted ensemble consisting of M models, and let model

index θ be chosen uniformly at random from {1, . . . ,M}. Conditioned on the event

θ = j, we obtain n observations X̃n
1 ∈ Rn×ν , where each observation vector is sampled

i.i.d. according to X̃(i) ∼ φ
(
0, Σ̃

(
G̃j

))
.

We begin by expanding the mutual information as

I
(
θ; X̃n

1

)
= h

(
X̃n

1

)
− h
(
X̃n

1

∣∣θ).
We bound the first term using the fact that differential entropy is maximized by

the Gaussian distribution with a matched covariance matrix. Since each observation

vector has covariance cov(X̃(i)) = 1
M

∑M
j=1 Σ̃

(
G̃j

)
, we have

h
(
X̃(i)

)
≤ 1

2
log

(
(2πe)ν det

(
1

M

M∑
j=1

Σ̃
(
G̃j

)))
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and consequently,

h
(
X̃n

1

)
≤

n∑
i=1

h
(
X̃(i)

)
≤ n

2
log(2πe)ν +

n

2
log det

(
1

M

M∑
j=1

Σ̃
(
G̃j

))
.

To compute the second term, we expand the conditional differential entropy of

each observation vector as

h
(
X̃(i)

∣∣θ) =
1

M

M∑
j=1

1

2
log
(
(2πe)ν det

(
Σ̃
(
G̃j

)))
.

Since the X̃(i)’s are conditionally independent given θ, we have

h
(
X̃n

1

∣∣θ) =
n∑

i=1

h
(
X̃(i)

∣∣θ)
=

n

2
log(2πe)ν +

n

2M

M∑
j=1

log det
(
Σ̃
(
G̃j

))
.

Combining these terms, we obtain the bound on the mutual information

I
(
θ; X̃n

1

)
≤ n

2

{
log det

(
1

M

M∑
j=1

Σ̃
(
G̃j

))
− 1

M

M∑
j=1

log det
(
Σ̃
(
G̃j

))}
,

as claimed.

4.4.3 Comparing bounds on mutual information

We now show that the entropy-based bound on mutual information in (4.17) is

always tighter than the KL-based bound in (4.20). However, the two bounds are

surprisingly close, and the KL-based bound is sometimes easier to compute. Recall
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that the entropy-based bound states that

I
(
θ; X̃n

1

)
≤ n

2

{
log det Σ̄− 1

M

M∑
j=1

log det Σ̃
(
G̃j

)}
, (4.21)

while the KL-based bound gives

I
(
θ; X̃n

1

)
≤ n

2

{
1

M

M∑
j=1

log det Θ
(
G̃j

)
+

1

M

M∑
j=1

trace
(
Σ̃
(
G̃j

))
− ν

}
. (4.22)

First, note that two of the terms are the same, namely

− 1

M

M∑
j=1

log det Σ̃
(
G̃j

)
=

1

M

M∑
j=1

log det Θ
(
G̃j

)
. (4.23)

Next, since trace is a linear function, we have

1

M

M∑
j=1

trace
(
Σ̃
(
G̃j

))
= trace

(
1

M

M∑
j=1

Σ̃
(
G̃j

))
= trace

(
Σ̄
)
. (4.24)

Letting {λ1, . . . , λν} denote the eigenvalues of Σ̄, we can then compare the remaining

terms in (4.22)

trace
(
Σ̄
)
− ν =

ν∑
i=1

(λi − 1) (4.25)

to the remaining term in (4.21)

log det Σ̄ =
ν∑

i=1

log λi =
ν∑

i=1

log(1 + (λi − 1)). (4.26)

Using the fact that log(x) ≤ x for all x, we have that log det Σ̄ ≤ trace
(
Σ̄
)
−ν. Hence

the entropy-based bound (4.17) is always tighter than the KL-based bound (4.20).

4.5 Analysis for graphical model selection

We now use these methods to derive the necessary conditions (stated in Theo-

rem 5) on the sample size n as a function of the number of vertices p, degree d and
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minimum value λ. We obtain two necessary conditions, which can be seen as end

points of an entire family of bounds, by analyzing ensembles of graphs in which a

subset S of d nodes form a d-clique (i.e. fully connected subset), and the remaining

nodes are all isolated.

4.5.1 Restricted ensemble A

We begin by deriving the following bound, which captures how the sample size

must grow with the minimum value λ. Consider a family of graphs on p vertices, in

which each edge set E(S) = {(s, t) | s, t ∈ S} defines a clique over a subset S of size

d. For a given graph G = (V,E(S)) and a parameter a ≥ 0, we define the inverse

covariance matrix

Θ(G) : = I + a1S1
T
S , (4.27)

where 1S is the indicator vector of set S. The covariance matrix can then be computed

as

Σ(G) = (Θ(G))−1 = I − a

1 + da
1S1

T
S . (4.28)

The resulting class of graphical models is a subset of Gp,d(λ) if λ∗(Θ(G)) = a
1+a

≥ λ.

Suppose the decoder is given the indices of (d−2) vertices in S, and the parameter

value a. Estimating the underlying graph structure G now amounts to finding the

remaining pair of nodes in S, out of
(

p−d+2
2

)
possibilities. More precisely, let T ⊂ S

denote the set of revealed vertices and let {s, t} denote the unknown indices of the

remaining two nodes in S. Given (T, a), the decoder can extract the submatrix
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of observations X̃n
1 : = (Xn

1 )T C ∈ Rn×(p−d+2). When the original observations are

sampled i.i.d. from the distribution X(i) ∼ N(0,Σ), the modified observations are

distributed according to X̃(i) ∼ N(0,ΣT CT C ). Since the modified covariance matrix

is of the form

Σ̃
(
G̃
)

: = ΣT CT C = I − a

1 + da
1st1

T
st, (4.29)

the inverse covariance matrix becomes

Θ̃
(
G̃
)

=
(
Σ̃
(
G̃
))−1

= I +
a

1 + (d− 2)a
1st1

T
st. (4.30)

Note that the underlying graph associated with Θ̃
(
G̃
)

is G̃ : = G \ T (i.e. the graph

obtained by removing the vertices in set T and all edges connected to T from graph

G). The remaining sub-problem is to determine, given the observations X̃n
1 , the single

edge graph on (p− d+ 2) vertices.

Let G̃ denote the set of graphs on (p − d + 2) vertices with a single edge, and

let G̃(λ) denote the associated class of Gaussian Markov random fields with inverse

covariance matrices defined as in (4.30). For this restricted ensemble, each matrix

Σ̃
(
G̃
)

has (p− d+ 1) eigenvalues equal to one, and one eigenvalue equal to 1− 2a
1+da

.

Consequently, for any G̃ ∈ G̃, we have

log det
(
Σ̃
(
G̃
))

= log

(
1− 2a

1 + da

)
. (4.31)

We now calculate the averaged covariance matrix Σ̄ = 1

(p−d+2
2 )

∑ eG∈eG Σ̃
(
G̃
)
. When

averaged over all
(

p−d+2
2

)
elements of G̃, each diagonal entry is equal to 1− a

1+da
with

probability p−d+1

(p−d+2
2 )

= 2
p−d+2

, and 1 with probability 1 − 2
p−d+2

. Each off-diagonal
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entry is equal to − a
1+da

with probability 1

(p−d+2
2 )

, and 0 with probability 1 − 1

(p−d+2
2 )

.

Consequently, we have

Σ̄ =

(
1− 2a

(1 + da)(p− d+ 2)
+

a

(1 + da)
(

p−d+2
2

)) I − a

(1 + da)
(

p−d+2
2

)11T .(4.32)

Let us define γ(p, d, a) : = 1− 2a
(1+da)(p−d+2)

+ a

(1+da)(p−d+2
2 )

. The matrix Σ̄ has (p−d+1)

eigenvalues with value γ(p, d, a), and one with value γ(p, d, a)− 2a
(1+da)(p−d+1)

.

Putting together the pieces, we have that the entropy-based bound on mutual

information (4.17) can be expressed as

F
(
G̃(λ)

)
= (p− d+ 1) log γ(p, d, a) + log

(
γ(p, d, a)− 2a

(1 + da)(p− d+ 1)

)
(4.33)

− log

(
1− 2a

1 + da

)
. (4.34)

We will bound each term of F
(
G̃(λ)

)
using the fact that log(1 + x) ≤ x for all x.

Accordingly, the first term can be bounded as

(p− d+ 1) log γ(p, d, a) = (p− d+ 1) log

(
1− 2a(p− d)

(1 + da)(p− d+ 2)(p− d+ 1)

)
(4.35)

≤ − 2a(p− d)

(1 + da)(p− d+ 2)
. (4.36)

Similarly, the second term can be bounded as

log

(
γ(p, d, a)− 2a

(1 + da)(p− d+ 1)

)
= log

(
1− 4a

(1 + da)(p− d+ 2)

)
(4.37)

≤ − 4a

(1 + da)(p− d+ 2)
. (4.38)

Finally, the last term can be bounded as

− log

(
1− 2a

1 + da

)
= log

(
1 +

2a

1 + (d− 2)a

)
(4.39)

≤ 2a

1 + (d− 2)a
. (4.40)
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Combining these terms, we have the following bound

F
(
G̃(λ)

)
≤ 4a2

(1 + da)(1 + (d− 2)a)
(4.41)

≤ 4a2

(1 + a)2
(4.42)

for d ≥ 3. Recalling that λ∗(Θ(G)) = a
1+a

and setting a = λ
1−λ

, we obtain the bound

F
(
G̃(λ)

)
≤ 4λ2. Consequently, applying the Fano bound (4.15), we obtain that the

probability of decoding error is bounded away from zero if

n <
log
(

p−d+2
2

)
− 1

2λ2
(4.43)

as claimed.

4.5.2 Restricted ensemble B

We now derive a second lower bound, again using the ensemble of d-clique graphs

and the entropy-based bound on mutual information (4.17). Consider the ensemble

of graphs consisting of edge sets E(S) = {(s, t) | s, t ∈ S} with |S| = d. For a given

edge set E(S) and paramter a ≥ 0, define the inverse covaraince matrix

Θ(G) : = I + a1S1
T
S (4.44)

and associated covariance matrix

Σ(G) = (Θ(G))−1 = I − a

1 + da
1S1

T
S . (4.45)

Each matrix Θ(G) has (p − 1) eigenvalues equal to 1 and one eigenvalue equal to

1 + da, and thus we have

log det(Σ(G)) = − log det(Θ(G)) = − log(1 + da). (4.46)

99



Chapter 4. Model selection bounds for Gaussian Markov random fields

We compute the averaged covariance matrix Σ̄ over this ensemble as follows.

Each diagonal entry is equal to 1 − a
1+da

with probability
(

p−1
d−1

)
/
(

p
d

)
= d

p
, and 1

with probability 1 − d
p
. Each off-diagonal entry is equal to − a

1+da
with probability(

p−2
d−2

)
/
(

p
d

)
= d(d−1)

p(p−1)
, and 0 with probability 1− d(d−1)

p(p−1)
. The averaged covariance matrix

can thus be written as

Σ̄ =

(
1− da

(1 + da)p
+

da(d− 1)

(1 + da)p(p− 1)

)
I − da(d− 1)

(1 + da)p(p− 1)
11T . (4.47)

The matrix Σ̄ has (p− 1) eigenvalues equal to γ(p, d, a) : = 1− da
(1+da)p

+ da(d−1)
(1+da)p(p−1)

,

and one eigenvalue equal to γ(p, d, a)− da(d−1)
(1+da)(p−1)

.

Using the entropy-based bound on mutual information in equation (4.17), we

obtain

F (G̃) = (p− 1) log γ(p, d, a) + log

(
γ(p, d, a)− da(d− 1)

(1 + da)(p− 1)

)
+ log(1 + da).(4.48)

We now bound each term of F (G̃) in turn, using the fact that log(1 + x) ≤ x for all

x. The first term can be bounded as

(p− 1) log γ(p, d, a) = (p− 1) log

(
1− da(p− d)

(1 + da)p(p− 1)

)
(4.49)

≤ −da(p− d)

(1 + da)p
. (4.50)

Similarly, the second term can be bounded as

log

(
γ(p, d, a)− da(d− 1)

(1 + da)(p− 1)

)
= log

(
1− d2a

(1 + da)p

)
(4.51)

≤ − d2a

(1 + da)p
. (4.52)

Combining these terms, we obtain the following bound on mutual information,

F (G̃) ≤ log(1 + da)− da

1 + da
. (4.53)
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Note that the above bound is of the same form as the KL-based bound on mutual

information (4.20), since trace(Σ(G)) = p− da
1+da

. Recall that the minimum value for

this ensemble must be bounded as λ∗(Θ(G)) = a
1+a

≥ λ. Assuming that λ ∈ [0, 1),

we can set a = λ. Applying Fano’s inequality (4.15) then gives that the probability

of error stays bounded away from zero if

n <
log
(

p
d

)
− 1

1
2

(
log(1 + dλ)− dλ

1+dλ

) (4.54)

as claimed.

4.6 Analysis for inverse covariance estimation

We derive a new set of necessary conditions using an ensemble of graphical models

which share the same underlying graph, but vary by perturbing a single edge weight.

These bounds capture the difficulty of distinguishing between models with inverse

covariance matrices that are δ-close, e.g in the element-wise `∞-norm. Note that

for any two models Θ(i) and Θ(j) in our ensemble, since ‖Θ(i) − Θ(j)‖∞ = δ by

construction, there does not exist a matrix Θ̂ satisfying both ‖Θ̂−Θ(i)‖∞ < δ/2 and

‖Θ̂ − Θ(j)‖∞ < δ/2. Consequently, we can apply Fano’s inequality (4.15) to bound

the probability of error in the restricted ensemble, and the problem is reduced to

bounding the mutual information between the model index and the observations.
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4.6.1 Alternate KL bound

We begin by stating a variant of the KL-based bound on mutual information

in (4.20), using KL distances between all pairs of models in the class, instead of KL

distances between each model and the standard Gaussian distribution.

Pairwise KL-based bound: By convexity of the Kullback-Leibler divergence, we

have the following bound on mutual information

I
(
θ; X̃n

1

)
= Eθ

[
D

(
Pθ

∥∥∥ 1

M

M∑
j=1

Pj

)]
(4.55)

≤ 1

M2

M∑
i=1

M∑
j=1

D(Pi‖Pj) (4.56)

We define the symmetrized Kullback-Leibler divergence,

S(Pi‖Pj) : = D(Pi‖Pj) +D(Pj‖Pi), (4.57)

and rewrite the bound on mutual information as

I
(
θ; X̃n

1

)
≤ 1

M2

M∑
i=1

M∑
j=i+1

S(Pi‖Pj). (4.58)

For Gaussian Markov random fields, a straightforward calculation shows that the

symmetrized KL distance is equal to

S(Pi‖Pj) =
n

2

p∑
`=1

p∑
m=1

(
Θ

(i)
`m −Θ

(j)
`m

)(
Σ

(j)
`m − Σ

(i)
`m

)
(4.59)

4.6.2 Restricted ensemble C

We now use these methods to derive necessary conditions for inverse covariance

estimation (stated in Theorem 6), which capture how the sample size must grow
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with the minimum separation between models δ. Consider a graph on p vertices

consisting of b p
d+1

c cliques, where each clique is of size (d + 1). Let N = b p
d+1

c,

and let {S1, . . . , SN} denote the N cliques with |Si| = d + 1. We define the inverse

covariance matrix associated with this graph as

Θ̄ : = I + a
N∑

i=1

1Si
1T

Si
(4.60)

for some parameter a ≥ 0. From this base model, we generate an ensemble of Gaussian

Markov random fields in which each model perturbs the weight associated with one

edge. Thus the model obtained by perturbing the weight on edge (s, t) is defined by

the inverse covariance matrix

Θ(i) : = Θ̄ + δ(1st1
T
st − Ist) (4.61)

for some parameter δ ∈ (0, 1
2
]. Note that we are using (1st1

T
st − Ist) to denote the

matrix with ones in locations (s, t) and (t, s), and zeros elsewhere. The resulting

ensemble of graphical models has cardinality M = b p
d+1

c
(

d+1
2

)
≥ pd

4
.

For any two models in this ensemble, the perturbation matrix E = Θ(i) − Θ(j)

has exactly four non-zero entries, namely {δ, δ,−δ,−δ}. Suppose matrix Θ(i) has per-

turbed weights corresponding to edge (s, t), and matrix Θ(j) has perturbed weights

corresponding to edge (u, v). Accordingly, the symmetrized KL distance (4.59) be-

tween these two models reduces to

S(Pi‖Pj) =
nδ

2

{(
Σ

(j)
st − Σ

(i)
st

)
+
(
Σ

(j)
ts − Σ

(i)
ts

)
−
(
Σ(j)

uv − Σ(i)
uv

)
−
(
Σ(j)

vu − Σ(i)
vu

)}
.(4.62)

In order to compute the covariance matrix Σ(i), we will use the fact that Θ(i) is a
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block diagonal matrix. In particular, define the submatrices

A : = I + a11T ∈ R(d+1)×(d+1) (4.63)

B : = A+ δ(1`m1T
`m − I`m) ∈ R(d+1)×(d+1). (4.64)

With this notation, the inverse covariance matrix Θ(i) has (N − 1) blocks along

the diagonal equal to A, and one block equal to B. In canonical form, the inverse

covariance matrix can be written as

Θ(i) =



A 0

. . .

A

0 B


, (4.65)

and the corresponding covariance matrix can be expressed as

Σ(i) =
(
Θ(i)

)−1
=



A−1 0

. . .

A−1

0 B−1


. (4.66)

A straightforward calculation yields that the inverse of A is equal to

A−1 = I − a

1 + (d+ 1)a
11T . (4.67)

We can compute the inverse of B in canonical form by setting {`,m} = {d, d + 1},

since for any permutation matrix P , if B̃ = PBP T then B̃−1 = PB−1P T . Let us

define the scalar parameters

α : =
1

1− δ

(
a

1 + (d− 1)a
+ δ

)
(4.68)

γ : =
a

2a+ (1 + δ)(1 + (d− 1)a)
. (4.69)
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Using the matrix inversion formula for block matrices, a little calculation shows that

B−1 =

 B11 B12

B21 B22

 , (4.70)

where

B11 = I − γ(1 + δ)11T ∈ R(d−1)×(d−1) (4.71)

B12 = BT
21 = −γ11T ∈ R(d−1)×2 (4.72)

B22 =
1

1− δ

(
I − α

1 + 2α
11T

)
∈ R2×2. (4.73)

Putting together the pieces, we now compute the symmetrized Kullback-Leibler

divergence (4.59) in three possible cases:

1. In the first case, the perturbed edge weights in Θ(i) and Θ(j) are in different

cliques, and consequently we have

S(Pi‖Pj) =
4nδ

2

{
− a

1 + (d+ 1)a
+

α

(1− δ)(1 + 2α)

}
. (4.74)

2. In the second case, the perturbed edges are in the same clique, but do not share

a vertex, and we have

S(Pi‖Pj) =
4nδ

2

{
−γ(1 + δ) +

α

(1− δ)(1 + 2α)

}
. (4.75)

3. In the third case, the perturbed edges are in the same clique, and they overlap

in exactly one vertex, so that

S(Pi‖Pj) =
4nδ

2

{
−γ +

α

(1− δ)(1 + 2α)

}
. (4.76)
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Note that (1+(d+1)a) ≤ (1+(d+1)a+δ(1+(d−1)a)) = (2a+(1+δ)(1+(d−1)a)),

and consequently the bound in (4.74) is less than or equal to the bound in (4.76).

Similarly, since −γ ≤ 0 and (1 + δ) ≥ 1, the bound in (4.75) is less than or equal to

the bound in (4.76). Finally, the bound in (4.76) can be simplified to

S(Pi‖Pj) = 2nδ

{
δ

(1− δ)

(
1 + da

1 + (d+ 1)a+ δ(1 + (d− 1)a)

)}
(4.77)

≤ 2nδ

{
δ

1− δ

}
(4.78)

≤ 4nδ2 (4.79)

if δ ∈ (0, 1
2
]. Consequently, the mutual information in (4.58) can be bounded as

I
(
θ; X̃n

1

)
≤ 2nδ2, (4.80)

and applying the Fano bound (4.15) over this ensemble then gives the result as

claimed.

4.7 Discussion

In this chapter, we have studied the information-theoretic limitations of Gaus-

sian graphical model selection in the high-dimensional setting. Our analysis yielded

a set of necessary conditions for consistent graph selection with any method, which

matches the scaling of known sufficient conditions for `1-regularized maximum likeli-

hood in certain regimes. Furthermore, we derived a set of necessary conditions for in-

verse covariance estimation, which similarly matches the performance of polynomial-

time recovery methods. At a high-level, our analsis is based on a general frame-

work for deriving information-theoretic bounds in which we view the observation
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process as a communication channel. This framework also underlies the analysis of

the information-theoretic limits of sparse signal recovery in Chapter 3.
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Conclusions and future work

This thesis examined several problems in the area of high-dimensional sparse

recovery, namely sparse approximation, subset selection, and graphical model selec-

tion. The common phenomenon in all these problems is that signal recovery is often

intractable in the high-dimensional setting, but efficient recovery methods can be

obtained by imposing sparsity on the underlying model. In this context, this thesis

focused on two major themes:

• highlighting the power of sparse random projections for sparse signal recovery,

in particular, for reducing computational complexity and storage costs as well

as minimizing communication in distributed network applications

• characterizing the information-theoretic limits of sparse recovery problems, and

providing a general framework for studying the fundamental limitations in such

classes of problems.

108



Chapter 5. Conclusions and future work

More specifically, in Chapter 2, we analyzed a fast sketching algorithm for ap-

proximation of compressible signals based on sparse random projections in the pres-

ence of noise. We proposed a novel distributed algorithm using sparse random pro-

jections that enables robust refinable approximation in sensor networks. In Chap-

ter 3, we showed the effect of using dense versus sparse measurement matrices on the

information-theoretic limits of the sparsity recovery problem. Our analysis revealed

that there is a fundamental trade-off between the sparsity of the measurement ma-

trix and the number of samples needed for recovery. In Chapter 4, we studied the

fundamental limits of graphical model selection and inverse covariance estimation,

obtaining sharp characterizations in several regimes of interest.

5.1 Open problems and future research

We now discuss some open problems which arise from the work in this thesis. One

interesting direction is the design of distributed multiresolution representations for

large-scale networks. In Chapter 2, we proposed the use of distributed sparse ran-

dom projections which allows approximations of the network data to be recovered by

collecting a sufficient number of random projections from anywhere in the network.

Computing these sparse random projections can be accomplished by communicating

with as few as a constant number of sensors per random measurement. However,

the data values must be routed between sensors over some underlying communication

graph. Information could be disseminated more efficiently if the data is mixed locally

first. Accordingly, ideas from gossip algorithms [37, 51, 24] and network coding could
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potentially be used in a hierarchical manner to efficiently combine data in the net-

work. Such hierarchical structure could further be exploited to enable multiresolution

reconstructions, where by querying sensors in a local region the decoder could obtain

a coarse global approximation with fine local detail.

Our work also has implications for data streaming applications. Under the stream-

ing model [6], large quantities of data arrive at high speeds, and it is infeasible to

record in real time information like the most frequent k items. This problem arises

in settings like internet traffic measurement, data center networks, and databases.

Random linear projections of the data can be used to estimate the top k items, and

can be computed over massive data streams in one pass and stored in small space.

The use of sparse random projections could reduce storage and update times, and

could also enable the design of distributed algorithms to infer network-wide traffic

patterns from measurements at multiple routers.

Another interesting open problem is the development of recovery methods for

compressible signals which have linear decoding complexity and optimal sampling

efficiency. The use of sparse measurement matrices is one promising approach to de-

veloping faster recovery methods, for example by using message-passing algorithms

on sparse graphs (e.g. [53, 61]). However, current methods – including the sketching

recovery method analyzed in Chapter 2 – either do not achieve one of those perfor-

mance goals, or cannot be applied to compressible signals.

Complementary to the development of efficient recovery methods are the

information-theoretic bounds on sparse recovery. In Chapter 3, we presented a set of

necessary conditions for sparse support recovery using sparse measurement matrices.
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An interesting question is the tightness of these necessary conditions for sparse ensem-

bles, i.e. whether there exist matching achievable bounds. Moreover, the comparison

of the fundamental limits using dense versus sparse measurement matrices in Chap-

ter 3 highlights the issue of designing more computationally friendly measurement

ensembles which achieve the information-theoretic bounds. Furthermore, necessary

and sufficient conditions for recovery in other error metrics (e.g. approximation in

various `q-norms, partial support recovery, and prediction) remain an open question

for general measurement ensembles.

Finally, we presented necessary conditions for Gaussian graphical model selection

and inverse covariance estimation in Chapter ?? which matched known sufficient

conditions in certain regimes of interest. A question for future research is the tightness

of the bounds in regimes where there currently exists a gap, either by analysis of direct

methods for graph selection (e.g. using exhaustive search) or by obtaining tighter

necessary conditions. Another interesting direction is generalizations of our analysis

to observation models with additive Gaussian noise, which could have applications in

cryptography and image processing.
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