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Abstract

Design, Implementation and Evaluation of a Storage System for Delay-Tolerant
Networks

by

Bowei Du

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Eric A. Brewer, Chair

Simple applications of networked information technology have been shown to have
an impact in the developing regions in the areas of health care, education, commerce
and productivity. However, use of information technology in developing regions set-
ting is hampered by a lack of inexpensive reliable telecommunications infrastructure.
In particular, existing applications relevant to this space are built using software
architectures which assume always-on, low-latency, end-to-end connectivity.

One potential connectivity solution is the Delay-Tolerant Networking (DTN) stack,
an overlay network protocol that can route across network partitions and heteroge-
neous forms of network infrastructure. However, the DTN message-based interface
is a poor fit for many applications as they are more naturally structured in terms of
shared state.

To address these issues, we present TierSync, a distributed eventually-consistent
shared-storage synchronization primitive for DTNs. TierSync enables applications
to share persistent data among TierSync nodes in an efficient and flexible manner.
Novel features of the TierSync protocol include efficient support for fine grained par-
tial sharing and the ability to arbitrarily order updates for data prioritization. We
demonstrate an implementation of the TierSync protocol as a file-system and show
useful applications can be easily ported to the TierSync system.
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Chapter 1

Introduction

Simple applications of information technology have been shown to have an im-
pact on the developing region in the areas of health care, education, commerce and
productivity [50, 84]. For example, in Tanzania, data collection related to causes of
child deaths led to a reallocation of resources and a 40% reduction in child mortality
(from 16% to 9%) [8, 17]. In the Philippines, use of a computerized medical record
system in health clinics has significantly reduced the time spent by health workers in
book keeping and information management tasks [12].

However, use of information technology in developing regions setting is hampered
by several factors. Telecommunications infrastructure is limited and in many places
the options for network connectivity are quite limited. Although cellular networks
are growing rapidly, they remain a largely urban and costly phenomenon. Satellite
networks have coverage in most rural areas, they too are prohibitively expensive [74].
For these and other networking technologies, a lack of reliable power and coverage
gaps cause connectivity to vary over time and location.

To address these challenges, various groups have used novel approaches for connec-
tivity in real-world applications. The Wizzy Digital Courier system [89] distributes
educational content among schools in South Africa by delaying dial-up access until
night time, when rates are cheaper. DakNet [58] provides e-mail and web connectivity
by copying data to a USB drive or hard disk and then physically carrying the drive,
sometimes via motorcycles. Finally, the Ca:sh Project [1] uses PDAs to gather rural
health care data, also relying on physical device transport to overcome the lack of
connectivity.

Although there is a demand for networked applications that can operate in en-
vironments with unreliable and intermittent network infrastructure, it remains the
case that building distributed, asynchronous applications is difficult due to the lack
of a common platform and infrastructure. As the projects listed above demonstrate,
there is value in information distribution applications in developing regions, yet each
project essentially started from scratch and thus uses ad-hoc solutions with little
leverage from previous work.
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Figure 1.1: Applications and their requirements with respect to communication laten-
cies. The horizontal axis is the round trip time. At the left most side are applications
that require real-time, end-to-end connectivity. On the right most side are applica-
tions that are insensitive to long network latencies.

In addition, many of the applications that could work in a potentially partitioned,
asynchronous network environment are built on frameworks that assume a low-latency
Internet connection. Applications lie on a wide spectrum in terms of their communi-
cations latency requirements (Figure 1.1). What we find to date is that the systems
that are widely used in practice are built around a read-only caching architecture or
Internet-based cloud services. The challenge lies in implementing systems and pro-
tocols to adapt applications to the demands of the environment. In this thesis, we
propose a general architecture for building applications for such “challenged” envi-
ronments.

1.1 Network Infrastructure

We expect the network infrastructure in the developing world to followed a “tiered”
structure, as depicted in Figure 1.1. We assume that there is a data center that is sit-
uated in an urban area with a high-speed Internet connection and is well-provisioned
in terms of computing and storage. We expect the properties of these urban servers
to have the same properties as well-connected nodes in industrialized regions.

As we move out towards the end users of the system, we find decreased computing
and storage power as well as intermittent forms of connectivity. For example in Figure
1.1, we have the second tier of nodes connected via satellite and dial-up links, which
may vary in availability due to power or cost-savings.

Finally, we have a tertiary tier of users who operate mostly disconnected and
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Figure 1.2: A “tiered” network infrastructure.

communicate with the rest of the system intermittently as they come into network
range or communicate via physical transport of the data (e.g. sneaker-net).

We have encountered examples of such a computing infrastructure in the field.
As an example, doctors from the University of Philippines, Manila have deployed an
electronic medical records system (CHITS [12]) in health centers in urban Manila as
well as in rural provincial health centers. In addition to working with the patients in
the health centers, health workers perform visits to smaller health clinics in remote
areas or work with patients in the field.

In this setting, we have a natural data center at the machine room servers in
the University in Manila, which are reliably connected to the wider Internet. On the
next level are the urban and rural health centers, which have desktop-class computers
and have on-demand network connectivity via dial-up, GPRS or municipal wireless.
Finally, in the tertiary tier of users, we have any computing devices that the health
workers use in their visits to remote health clinics and field work.

1.2 Dissertation Overview

In this thesis, we make the following contributions:

• Design and Evaluation of TierSync, a protocol for synchronizing distributed
shared object system in a intermittently connected network with long-lasting
partitions.

The first contribution of this thesis is the design of TierSync, a synchronized
distributed shared storage system protocol for use with asynchronous commu-
nications network stacks with long-lasting partitions in a “tiered” network en-
vironment. TierSync enables applications to share persistent data among Tier-
Sync nodes in an efficient and flexible manner. Novel features of the TierSync
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protocol include efficient support for fine-grained partial sharing and the ability
to arbitrarily order updates for data prioritization.

• Design and Evaluation of TierStore, a new weak-consistency file-system.

The second contribution of this thesis is the design of TierStore, a new dis-
tributed file system that simplifies the development and deployment of applica-
tions in challenged network environments, such as those in developing regions.
For effective support of bandwidth-constrained and intermittent connectivity, it
uses the Delay Tolerant Networking store-and-forward network overlay and the
TierSync publish/subscribe-based multicast replication protocol. TierStore pro-
vides a standard filesystems interface and a single-object coherence approach
to conflict resolution, which, when augmented with application-specific han-
dlers, is both sufficient for many useful applications and simple to reason about
for programmers. We show how these properties enable easy adaptation and
robust deployment of applications even in highly intermittent networks and
demonstrate the flexibility and bandwidth savings of our prototype with initial
evaluation results.

• A Disconnected Wiki System Built Using TierSync and TierStore.

The third contribution of this thesis is the design and implementation of Tier-
Wiki, wiki system that explicitly addresses the problem of operating a in an in-
termittent environment. The TierWiki system is able to cope with long-lasting
partitions and bad connectivity while providing the functionality of popular
wiki software such as MediaWiki and TWiki.

1.2.1 Organization

This thesis is organized as follows: First, in Chapter 2 we give a background on
DTNs and related work in the area of weakly-consistent distributed storage. The
system architecture is then introduced in three parts. First, we describe the under-
lying replication layer in Chapter 3. We then show how a file system TierStore can
be mapped onto the replication system in Chapter 4. Chapter 5 describes a Wiki
application that is mapped onto the replication system. Finally, we conclude with
future directions in Chapter 6.
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Chapter 2

Background

In this chapter we define Delay-Tolerant Networks, the network environment we
are targeting with our weak-consistency distributed storage system. We then review
past approaches to weak-consistency distributed storage and give a context for the
contributions of this thesis.

2.1 Delay-Tolerant Networks

A Delay-Tolerant Network (DTN) [11] is a message-based store-and-forward net-
work in which communicating nodes may not always have an end-to-end connection
available. This is in contrast to most of the computer networks in common use to-
day, such as the Internet, which assume a low-latency path between communication
endpoints. The DTN network protocol is an overlay networking protocol that has
network transport implementations for standard network protocols such as TCP/IP,
Bluetooth as well as more esoteric forms of communication such as sneaker-nets (phys-
ical transport of storage media).

Some examples of real world DTNs include:

• Interplanetary Networks [10]

The IPN network is formed by communicating spacecraft. Delays and dis-
connections in network connectivity result from both radio propagation delay
as well as loss of line of sight due to the movements of spacecraft.

• Postal mail-based networks

Postmanet [85] is a communications network formed by sending data on
high capacity storage media. Information sent in Postmanet has high delay (on
the order of days), but also high bandwidth.

• Transportation-based ad-hoc Wi-Fi networks
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DieselNet [4], DakNet [58] and KioskNet [72] are networks formed by Wi-Fi
base stations installed on buses and motorcycles. When a Wi-Fi enabled vehicle
comes in contact with another base station, a short-lived communication link
is established.

• Scheduled Dial-up networks

The Wizzy Digital Courier [89] project is an e-mail system for public schools.
Because dial-up connection costs are lower in the evening as compared to the day
time, the Wizzy system delays all communication until the night time. Thus,
for much of the day, the computers in the Wizzy network are disconnected.

At a high level, a DTN networking stack offers the following services to client
applications:

• A protocol independent namespace based on Uniform Resource Identifiers (URIs) [6]
for naming DTN endpoints. An endpoint denotes one or more destination DTN
nodes.

• A message oriented interface for sending and receiving bundles to DTN end-
points. Bundles are application delimited messages opaque to the DTN stack
with a priority label, expiration time and other metadata.

• Delivery of messages despite failures both in network links as well as intermedi-
ate routers. Not only are there delivery acknowledgments across network links,
but bundles sent into the DTN stack are recorded in durable storage making
the messages resilient to intermittent failures of the routers themselves.

• Robust routing of bundles to endpoints. For example, the DTN reference im-
plementation offers both static routing as well as a OSPF-based routing algo-
rithm [20] that discovers available paths in the network.

• Convergence layers that adapt various networking layers, such as UDP, TCP,
sneaker-net, SMS to be used as a DTN overlay transport layer.

• Bundle prioritization that allows for differentiated message traffic.

An important aspect of the DTN protocol is the use of custody transfer, a reliabil-
ity mechanism which guarantees that the bundles transmitted at each hop between
DTN nodes are stored on durable storage. Applications can use custody transfer for
reliability. A bundle sent with custody implies that at least one DTN router along
the path must durably retain the contents of the bundle while an delivery acknowl-
edgement is still pending, thus ensuring that the bundle survives unexpected failures
along the delivery path.

Figure 2.1 summarizes the main application interface functions of the DTN refer-
ence implementation [19] available to the programmer.
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status ← dtn send(source endpoint, destination endpoint,

reply to endpoint, priority, delivery options,

expiration time, bundle)

status, bundle ← dtn recv(timeout)
status ← dtn poll(timeout)

Figure 2.1: DTN application interface for sending, receiving and waiting for bundles.
Interface functions for session management with the DTN bundle daemon have been
omitted.

2.1.1 DTN and Developing Regions

The DTN protocol is well suited to computer networks found in developing regions.
First, because of an unreliable communications infrastructure, it is common to find
that network disconnection is the common case rather than a rare occurrence. For
example, in our field experience in Cambodia, a rural Internet cafe experienced daily
service interruptions at noon, and it was well known to the staff that the connection
was unusable in the middle of the week. Enabling popular applications such as e-mail
or offline web browsing to use the DTN protocol rather than TCP/IP would increase
the availability of the Internet cafe for their customers.

Second, there may be a diversity of communications technologies available, each
with different cost and delivery properties. For example, a network computer may
have access to SMS messaging most of the time, dial-up modem communications
in the evenings and a weekly sneaker-net delivery. DTN offers a uniform overlay
interface that not only encompasses all of these heterogeneous kinds of transports
but also allows control through prioritization of the traffic across the transports to
suit the needs of the client application.

An example of such a use case can be found in the experience of the users of an
electronic medical record system [44] at a rural health center in Capiz, the Philippines,
we interviewed during a field visit. Currently, health information is sent from the
health center to higher-level institutions by courier. This involves physically traveling
from the health center to the closest municipality, which can take up to a day of time
for a health worker. Delays in the information due to travel and hand processing
of health information frequently results in higher aggregate health information being
weeks or months out of date.

With the introduction of electronic medical records, there is interest in automated
processing and the use of telecommunications to submit aggregate health information.
Unfortunately, the health centers are too cost sensitive to be able to afford even the
lowest cost forms of connection to the Internet. Furthermore, the dial-up coverage in
the area of the center is spotty at best. The most reliable (and inexpensive) form of
telecommunications available in the region is SMS.
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Despite these challenges, we found that the communications needs of the health
centers fit well in the DTN framework. Each health center has the following commu-
nication requirements:

• A high priority health alert: e.g. an incident of filarisis or tuberculosis at the
health center.

• Weekly reports to the municipal health official with patient summaries.

• Monthly reports to the central government Department of Health.

Each of these reports can be submitted asynchronously without an end-to-end
connection. The weekly and monthly reports can tolerate a large degree of latency
and may even be transferred via a sneaker-net style transport system, while high
priority traffic can go over SMS. Use of a DTN-enabled communications of health
information will increase accuracy of health information reported in the system and
decrease the latency of the information flows.

2.1.2 DTN and Storage Systems

There has been much work on the networking aspects of DTNs such as routing [3,
33, 55], reliability [32] and multicast [91]. For the purpose of this thesis, we will focus
instead on the design requirements that a DTN transport layer imposes on higher level
application development. Although some applications may map well to the message-
based interface of the DTN layer, we have found that many of the applications we
built were better expressed in terms of a shared storage architecture rather than a
messaging architecture.

Haggle [73] is a clean-slate design for networking and data distribution targeted
for mobile devices. It shares many design characteristics with DTN, including a
flexible naming framework, multiple network transports, and late binding of message
destinations. The Haggle system model incorporates a notion of shared state between
applications and the network, but is oriented around publishing and querying for
messages and does not provide a replicated storage abstraction.

2.1.3 Availability versus Consistency

In a DTN environment, it is normal for network messages between various remote
computers to be delayed on the order of hours or days. Long transmission times
effectively separate DTN nodes into network partitions for duration of the round trip
time of a message and response.

The CAP principle [25] states that for any networked storage system, it is only
possible to guarantee two of the following three properties: single-copy arbitrary
consistency, service availability and partition tolerance. A distributed storage system
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working under in a DTN environment must either become unavailable or give up
some flexibility with respect to possible consistency requirements. Because we expect
that DTN network partitions will occur on human perceivable time scales, making
the system unavailable during outages is unacceptable in most applications. Thus,
any generic storage system built for DTNs must use a weaker consistency model than
arbitrary single-copy consistency.

2.2 Weakly-consistency Storage Systems

There has been a enormous amount of work in the area of weak-consistency stor-
age, spanning the file system and databases worlds. Table 2.1 gives an overview of
important systems in this space. Because there is frequently a tight coupling between
the semantics of the application using the system and the underlying mechanisms,
the features of these systems are not cleanly orthogonalizable. However, every system
must have the following essential features:

• The system must define a notion of an update, which is a change to the shared
state. An update can be a range of bytes or a logical operation such as a
database query.

• The system must define a replication unit, the extent of sharing of the updates.
A replication unit defines the smallest set of items that can be shared among
the nodes.

• The system must be able to identify which updates are not yet received by a
remote system(s) and deliver them to the remote host.

• The system must be able to detect violations of application invariants due to
updates to the system during a network partition.

There are different general strategies which are used to distribute updates between
peers. At a high level the strategies can be grouped into the following four categories.
We discuss the specific algorithms used in each system below.

• Object comparison

All of the shared objects on two peers are scanned. Changes are detected
and propagated during the comparison.

• Operation log transfer

Operations on shared state are recorded to a log. During connectivity, the
operation log is transferred to the remote peer and applied to the state at the
peer. The log is then discarded.
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• Operation log merge

Operations on shared state are recorded to a log. During connectivity, the
operation log is transferred to the remote peer. The operation log is merged
with the log on the peer.

• Changed object traversal

Changed objects are traversed and the state of the object is transferred to
the remote peer.

When looking at the state in a weakly-consistency storage system, it is useful to
classify data stored as being in one of the following states:

• Stable or committed data

State guaranteed by the system not change with future updates to the
system.

• Tentative and non-conflicting data

The assumed common operating state of the data, where application and
user invariants are met by the data stored in the system.

• Conflicting data

Data stored in the system which violates application or user invariants.
Data in a conflicting state require action either through user intervention or a
programmatic resolver to repair. Conflicts are normally the result of actions
taken in the external world based on incomplete information due to network
partitions.

We find that systems have been designed to target a number of different kinds
of network topologies. Networking topologies restrict the flow of updates in the
system and thus allow for stronger properties and optimizations. Figure 2.2 shows
the topologies that appear among the systems surveyed, in order from most restrictive
to least restrictive.

There is an interplay between communications topology and the state of the data
stored. Many systems designate certain nodes to be a special primary node which
is used to serialize and commit tentative data into stable data. For client/server
topologies, the server is a natural choice as the primary as it is a serializing cut point
in the communications network and ensures tentative state does not cross between
clients. In more unstructured topologies such as the peer-to-peer topology, tentative
state may propagate arbitrarily in the system.
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Table 2.1: Weakly consistent storage systems.
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...
...

pairwise client/server hierarchical peer-to-peer
Figure 2.2: Synchronization topologies. Pairwise: this is a topology which consists
of two nodes. Client/Server: This topology has a single server that communicates
with a number of client nodes. All communication is between the client and the
server. Hierarchical: The communication pattern in the distributed system forms a
tree. Communications in the tree is either to the parent of a node or the child of a
node. Peer-to-peer: An unrestricted communications pattern.

2.2.1 File Systems

A distributed weakly-consistent file system aims to replicate a set of files and
directories across potentially network partitioned nodes. As most work in this space
was constructed using the Unix virtual file system (VFS), user updates to the shared
data are made in terms of the POSIX defined interface [78]. Conflicting user updates
can occur in two different ways. User updates to the file system can create a conflict
in the metadata of the file (e.g. a conflicting rename, chmod, link and unlink) or
user updates can create a conflict in the contents of the file.

Because of the limited number of operations available, it is possible to develop
reasonable models of user intent in the face of concurrent modifications to the file
system. The CODA [37] and Ficus [31] systems develop their own directory merge [38,
68] routines regarding metadata semantics of files. The Unison system [61] gives a
formal model of conflicting file system operations and shows that the above models
used are essentially equivalent.

Pairwise Synchronization

The rsync program represents the simplest method of sharing weakly-consistent
state. Rsync [81] was designed to provide fast incremental file system contents syn-
chronization between a source node and a destination node. The rsync algorithm
compares file subtrees between source and destination using modification times and
content hashes. If a file was found to be more recently changed on the source peer,
then the file contents are copied to the destination peer. Rudimentary update conflict
support consists of creating backup copies of files detected to have been changed in
the destination peer.
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The Unison [61] system improves upon rsync by defining a formal specification for
the behavior of a file system synchronizer based on an abstraction of the file system
as a set of mappings from paths (i.e. absolute file names) to file contents. Thus,
Unison is able to track additional file system operations such as the movement of a
file independent from changes to the file contents.

The use of pairwise synchronization becomes awkward and unscalable with in-
creasing numbers of peers, as there needs to be O(n2) communications to fully syn-
chronize a set of n peers.

Client/Server

The CODA [37] file system is a client/server file system in which the clients may
operate while partitioned from the server1. Users configure a set of cached files (the
user’s hoard) which are available offline.

Operations on the CODA client’s files are written to a log while the client is
disconnected. When the client reconnects to the server, the log is transferred and
operations from the client are applied to the files on the server. During log playback,
the validity of each operation is checked. If a conflict is detected, CODA has two
conflict resolution strategies.

The first approach is to abort the log replay and give the user a snapshot of the
files on the server and the files on the client. The user can then use the snapshot to
manually find and resolve conflicts.

The second approach is via a user-configured application specific resolver [38] that
is executed when a system call references a file that has conflicts. The functionality
of the user-configured resolver is akin to the Unix program make. For each type of
conflicting file, the user specifies a set of dependencies and a set of merge commands.
Dependencies are additional files for which conflicts must be resolved before the cur-
rent file can be resolved. Merge commands are arbitrary applications which take as
input the conflicting versions of the file. Once the resolution commands have been
executed, the changes are written locally to the client and then reintegrated to the
server.

Peer-to-Peer

The Ficus [56] file system is a peer-to-peer file system which supports one-copy
availability, which means that any replica of a file in the shared system can be mod-
ified locally with having to notify remote copies. Metadata regarding operations on
files such as whether they were created or deleted are used in a custom directory
resolver [67]. Conflicts in the Ficus system are detected through the use of version
vectors attached to each file in the system.

1There can be multiple server replicas in CODA, but the inter-server protocol is not designed to
handle network partitions as a common case.
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The Rumor [30] file system is an implementation of the Ficus system as a portable
user-level process. Instead of trapping file system operations at the system call level,
the Rumor system runs a periodic reconciliation process during which changes in the
file volume shared are scanned and propagated to remote peers.

The Roam [66] file system seeks to address storage and communication scalability
issues in the Ficus and Rumor systems. Roam improves scalability with the following
techniques. First, Roam organizes peers in the system into subsets of “nearby” peers
called wards. Each ward has a ward leader and communications is restricted (modulo
mobility between wards) to two cases: peers within a single ward, and among ward
masters. Second, version vector entries are only stored for versions greater than zero,
and a distributed algorithm is periodically run to decrement version numbers to zero,
reducing the size of vectors stored.

2.2.2 Database Systems

Database systems operate on data typed by a data schema. Updates to a database
are made through database queries. Consistency in traditional databases supports
the notion of ACID (atomic, consistent, independent and durable) transactions. How-
ever, in an environment with large communications latencies and long-living network
partitions, it is impossible to guarantee all of the ACID properties and each system
must choose a subset of the properties to support.

Client/Server

The two-tier database replication [28] system is a client/server database in which
clients, while disconnected from the server may execute tentative transactions. When
a client reconnects to the server, it transfers the log of tentative transactions to the
server and the transactions are executed on the server. Any transaction that fails
application invariants (i.e. transaction abort) is rolled back. This scheme sacrifices
the durability from the ACID transaction during a network partition.

There are several advantages of the two-tier database replication system. First,
there is no point in time in which committed data on the server is in a conflicting state.
Second, this scheme allows for arbitrary application invariants on the committed
data. Third, the single primary server reduces the amount of possible deadlocks and
rollbacks that occur with supporting arbitrary transactions.

The disadvantage of the scheme is that clients cannot directly communicate with
each other and partitions containing only clients cannot make forward progress to-
wards resolving their tentative updates. In addition, support for arbitrary transac-
tions may not be required in many of the target applications.
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Peer-to-Peer

The Bayou [59] system is a hybrid peer-to-peer, client/server log-based DB system.
Bayou consists of a set of peers and a single special “primary” server. The state in
the Bayou system is stored as a log of updates applied to a random access database.
Each update operation in Bayou is annotated with the peer that made the update
and a commit timestamp or a tentative timestamp. An update is assigned a tentative
timestamp when it is made, but is reassigned a commit timestamp when the update
is first received by the primary.

The Bayou update log is applied in timestamp order, with commit timestamps
sorted before tentative timestamps. Bayou peer synchronization always maintains
the prefix property, meaning that if a peer stores an update with timestamp t made
by peer n, it will always have all updates made by n with timestamp t′ < t already
in its log. The prefix property allows Bayou to summarize all of the updates seen
by a particular peer with a single version vector. Note that the prefix property does
not preclude a peer from receiving an unseen update which occurs before updates
the peer has already applied. When this occurs, the Bayou system must rollback
database updates which follow the unseen update in timestamp order, apply the
unseen update and then reapply the update log. Once an update has been assigned
a commit timestamp, its ordering in the update log becomes fixed and the effects of
the update “committed”.

Because the write log size is O(updates), Bayou supports truncation of the update
log entries which have received a commit timestamp, as these log entries will never
be subject to rollback. During synchronization, if a peer is missing log entries that
have been truncated, an entire database snapshot must be sent.

Bayou updates [77] consist of a dependency check, a write operation and a merge
operation. The dependency check is a predicate that must be satisfied before apply-
ing the write operation. If the dependency check fails, the merge operation is run.
There are several consequences of this scheme. First, it is important to note that
the dependency check is not the same as an application invariant. The check only
determines whether or not the write operation can be applied. There is no guaran-
tee that the merge procedure will result in state that satisfies the dependency check.
Second, reordering of updates due to commit order and synchronization can result in
a “butterfly effect” in which a sequences of dependent updates result in large changes
in tentative state upon rollback.

2.2.3 Object-based Systems

Object-based systems are based on objects, application defined units of sharing
that are opaque to the storage system. Objects are identified by a name or globally
unique object id (GUID) and the system tracks updates to objects in the system,
namely creation, modification and deletion. Object-based systems can be viewed as
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a lower level abstraction on which file systems, databases and other applications can
be built.

Client/Server

The Rover [34] system is toolkit for building client/server mobile applications.
The main data structure in Rover applications is the relocatable dynamic object
(RDO), which is an application defined object containing both data and executable
code. RDOs can be cached on the client side during network partitions. Applications
interact with the cached RDOs through method calls on the object. Each method
call results in queued remote procedure calls (QRPCs) recorded to durable storage.
The QRPC tentatively changes local RDO state until the QRPCs are delivered to the
server. Update/update conflicts to an RDO is detected by the use of version vectors.
QRPCs can be delivered in non-FIFO order to satisfy application priority and cost
constraints.

Peer-to-Peer

The Lotus Notes system [35] is an early peer-to-peer object storage system. Syn-
chronization between two Lotus Notes instances is done with object store comparison
between two Lotus Notes peers. Conflicts are (unreliably) detected via timestamps
and generation numbers. The Notes system relies primarily on commutative opera-
tions, such as append, in order to avoid conflicts. Conflicts that are detected trigger
a user prompt for proper resolution action. Microsoft Groove [13] is the spiritual suc-
cessor to the Notes system and employs a hybrid model that allows both peer-to-peer
synchronization as well as client/server interaction with a designated central reposi-
tory. Conflicts are kept in the system and visible to the user as differing versions of
the same document. The Groove system also supports user annotation of updates
and deep integration into applications.

The PRACTI system [5] is an extension of the Bayou update exchange algorithm
with partial sharing mechanisms. PRACTI accomplishes this by replacing the Bayou
database with an object-based storage model, by separating update invalidation meta-
data from the update bodies and by allowing for conservative invalidation summaries
to be sent in lieu of per object invalidations. The object model allows for PRACTI to
store only a partial set of update bodies while maintaining multi-object consistency;
in contrast Bayou updates can range over the entire database and therefore requires
a node to have received all of the prior updates in its log.

An object in the PRACTI system exists in two states, precise and imprecise. A
precise object is an object whose state is consistent with the invalidation metadata,
e.g. the object state incorporates all of the updates for which the peer was sent an
invalidation. An imprecise object is an object which has been invalidated but whose
state has not been updated. PRACTI supports both a blocking precise read which
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loads the updates on demand or a potentially inconsistent imprecise read of the object
contents. The PRACTI system by default uses a last-writer wins conflict resolution
system, although there is support for shadow copies of conflicting object versions.

The WinFS [52] system is an object-based system used to implement a shared
peer-to-peer file system. WinFS uses a novel version vector compression scheme [43]
(knowledge vectors) to reduce the size of versions stored from O(objects× nodes) to
O(objects) if synchronization sessions are not disrupted. WinFS achieves this com-
pression by limiting conflicts in the system to updates to the same object; precedence
relationships between different objects are not maintained. Deleted objects in WinFS
are discarded after a conservative timeout. Improvements to the WinFS system [42]
use vector sets, an extension of the knowledge vector algorithm with better runtime
storage characteristics.

The Cimbiosys [65] system extends the WinFS object store with the concept of
object filters. Every peer in the Cimbiosys system has a set of filters (predicates on
object contents) that determine which objects should be stored on the peer. Cim-
biosys introduces two new system properties: eventual filter consistency and eventual
knowledge singularity. Filter consistency means that each peer (if all updates to the
system stop) will eventually receive and store all objects that match the peer’s filters
and no out of filter objects. Eventual knowledge singularity is the property that the
version state needed to summarize the objects stored at each peer becomes small,
O(peers) rather than O(objects) or O(updates).

Cimbiosys enhances these two properties through the use of an authoritative syn-
chronization tree. Synchronizations can occur between any two peers; however, each
peer has a designated parent with a less restrictive filter and children with more re-
strictive filters. The tree of filter relationships allow Cimbiosys peers to handle cases
when updates occur outside a peer’s filter that affect the peer’s state. The tree is also
used to aggregate knowledge vector information and cause convergence of the knowl-
edge (knowledge singularity). While Cimbiosys allows for any-to-any synchronization,
communications within the tree result in the most efficient metadata compression.

Amazon Dynamo [18] is a peer-to-peer key/value store replication scheme for
potentially partitioned data center clusters. After a network partition, Dynamo de-
termines changed objects to transfer based on a Merkle hash tree similar in structure
to SNAP [64]. Version vector length is capped to a fixed maximum length is by drop-
ping of the oldest entries in the vector. This potentially introduces false conflicts, but
in practice has not been found to be an issue.

2.2.4 Revision Control Systems

Revision control systems (RCS) are used to manage and track the history of a
set of shared files. The interactions of the user with a RCS consists of a series of
commits, in which modifications along with user comments and metadata are applied
to the shared repository. We discuss two approaches below that are prototypical of
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the many different popular RCS in use today.
CVS [83] is a client/server-based revision system. History in CVS is stored on the

server as log of edit deltas from the most current version of the file. As in the two-tier
database replication system above, clients store a tentative version locally. During a
commit, CVS uses file timestamps to determine conflicts. Conflicting updates result
in a text merge on the client which the user must fix before the local changes can be
committed to the server. The Subversion [75] version control system is structured in
a similar manner.

Mercurial [46] is a decentralized revision system in which there is no authoritative
copy of the files. Each Mercurial repository stores a database of deltas (patches) of the
entire repository, each identified by content hash and linked (by hash value reference)
to the parent revisions(s) from which the delta was created. The deltas in Mercurial
form a directed acyclic graph (DAG) showing the history of the changes, similar to
hash history [36] of an object. Synchronization between Mercurial peers works via
a comparison of revision DAGs. The set of revisions shared and synchronized are
specified manually by the user at synchronization time. Other decentralized revision
control systems, such as Git [26] and Darcs [16], are also built around manual peer-
to-peer synchronization of a database of partial-ordered deltas.

2.3 Implications for TierSync

The design of the TierSync system represents a new design point in the space
of distributed, partition tolerant storage systems. In the target environment of our
shared storage system, partitions will be long-lived and often consist of more than
single clients operating in isolation, thus any approach that designates a single pri-
mary or commit point will not feasible. While there exist experimental sneaker-net
update shipping implementations in the Bayou, CODA and Ficus systems, none of the
systems reviewed above are designed specifically for use in a high-RTT DTN environ-
ment. In a high RTT environment, extended disconnection from the primary would
result in loss of availability. This excludes the approaches taken by the client/server
and Bayou systems. We do expect, however, a “tiered” model as described in Chap-
ter 1, in which nodes form a hierarchy with respect to computing resources, network
connectivity and administrative domains. This implies that we can take advantage
of tree-based algorithms for aggregation and object management.

We decide not to explicitly support a distinction between tentative and committed
state in the TierSync system. In many cases, the state transition between tentative
and committed state can be expressed at the application level. For example, if an
application has used tentative state from the system to take an action in the exter-
nal world, the state can be expressed as a “commit” record made immutable at the
application level. We find that there is a large class of applications, such as a shared
file system, in which the concept of tentative versus committed state does not make
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sense, as the interface does not support such concepts. We also note that an invali-
dation oriented protocol such as PRACTI is not appropriate for our environment, as
requests for invalid objects will most likely block or fall back to simpler consistency
models.

TierSync is an object-based system, as it is a lower level abstraction on top of
which log-based and file system-based systems can be constructed. The use of objects
also naturally define boundaries for consistency of data in the system. For example, it
is easy to guarantee self-consistency of an object via atomic updates. More expressive
approaches such as expressing updates as logical operations on the data store run
into issues such as the need for expensive update rollbacks to guarantee consistency
and the potentially for a cascade of changed state as newly acquired information is
incorporate into the system.

Prioritization of data traffic across different kinds of transports with different costs
and latencies is an important application requirement. Updates to independent ob-
jects in the data store should be able to be routed through the system with different
priorities and delivery requirements. TierSync supports these policies with custom
application-specific queue management plug-ins. In many systems, the order of up-
date delivery has implications for semantics and consistency. The TierSync system
takes an agnostic approach and does not impose any ordering on the updates; it is up
to the application above to handle reordering and commit updates at the appropriate
time. In the Rover system, updates to the remote objects can be scheduled while
they are queued pending delivery. Predecessor version set systems such as WinFS
and Cimbiosys allow for the updates to different sets of objects to be delivered sepa-
rately, allowing for reordering while preserving the causal metadata. Finally, PRACTI
integrates prioritization into the definition of the imprecise and precise update sets.

One tricky issue that must be dealt with in any weakly-consistent system is the
matter of conflicts. Broadly speaking, there are two types of conflicts: those caused
by differing user intent versus those caused as a consequence of the synchronization
protocol and network delivery reordering. Given the high RTT environment, we want
most of the conflicts in the system to be the former. A design theme that is pervasive
in the applications that use TierSync is the structuring the data stored in the system
in a way that avoids conflicts ; we try to ensure that conflicts of user intent map
as much as possible to conflicts detected by the system, and vise versa. This can
be achieved by techniques such as the partitioning of data into independent objects
and via the use of conflict free identifiers. Often times data structures that normally
require time ordering can be relaxed to operate in terms of casual ordering, which is
a concept easily supported by TierSync.

In terms of reliability in the presence of failures, the TierSync system needs to
deal with two kinds of failures: failures in network transmission and failures at the
local node. Failures in network transmissions are handled with DTN mechanisms for
reliability. Reliability techniques such as retransmissions and multipath routing are
abstracted below the DTN interface. As for failures in the state of the local node, we
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partially punt this problem to local means of backup such as RAID. We do require
(and the implementation guarantees) that operations on the TierSync data store are
atomic and durable. In the event that a node does lose all of its data, it is possible
to restore node state from a remote node via the normal synchronization protocol.

TierSync supports two partial sharing approaches, one akin to file volumes, the
other, a novel more flexible publish/subscribe model based on the “tiered” commu-
nications tree. The sharing mechanisms in most systems reviewed above are static
and lack flexibility. Our work is concurrent with the approach taken by in Cimbiosys
system and shares many of the properties of their filter-based approach.
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Chapter 3

The TierSync Protocol

In this section we describe TierSync, the synchronization algorithm used by Tier-
Store to distribute and synchronize updates. The discussion will start from a simple
epidemic propagation model and build up the features of the system.

3.1 Topology

TierSync nodes are organized logically into a single rooted tree. Communication of
data among nodes is not limited by the tree, but some aspects of the synchronization
algorithm relies on the logical tree structure. If two nodes m and n are coincident on
an edge in the tree and m is closer to the root of the tree in link distance, then we
denote m to be the parent of n and n to be the child of m.

For the time being, we assume that the tree topology is statically configured by
the administrators, roughly along the lines of a network infrastructure with the well-
connected data center as the root of the tree. This follows the “tiered” structure of
the computing infrastructure we have described in Chapter 1.

3.2 Connectivity

The use of a DTN for transport leads to two connectivity assumptions. First,
we assume that nodes communicate via a protocol that has both widely varying
round-trip times and message reordering. This assumptions scales from the case
of a standard Internet connection to physical sneaker-nets. In addition we assume
that the underlying transport offers the capability of reliable delivery of messages
through retransmissions across node restarts and transmission failures. This models
the custody transfer feature of DTNs.

Finally, we assume there are no permanent network partitions in the network.
That is to say, there is no subset of the nodes P and a time t such that after t, there
is no communication link from a node in P to a node not in P .
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Application

TierSync

Network

newLocalUpdate(update) newRemoteUpdate(update)

msgReceived(node, msg)
canSend(node)reliableSend(node)

Figure 3.1: Flow of data and events between the application, TierSync and the net-
work layer.

3.3 Network and Application Layers

The synchronization protocol has to interact with the application layer from above
when new shared data is created or modified and from the network layer below when
messages arrive or when there is network capacity to delivery messages. Figure 3.1
illustrates the flow of data between the layers. For the purposes of the protocol
description, the synchronization protocol is implemented in terms of the following
externally triggered events:

• msgReceived(node, msg): Event triggered when a message msg is received from
node. This is triggered from the network layer when a remote message comes
in.

• canSend(node): Event signaling that there is capacity in the network to send a
msg to node. This occurs when there have been new updates generated locally
and there is network capacity to send to the node. This call is elided from the
algorithm descriptions below for clarity.

• newLocalUpdate(update): Event triggered when there is a new local update
created. This occurs when the application creates a new update.

We assume that the code running in the handlers are atomic, i.e. there is no con-
currency when they are run. In addition, we assume the following interface to the
network and application:

• reliableSend(node, msg): Send a message reliably to node. The sent message
is durable across temporary node failures as in DTN custody transfer mecha-
nisms.

• newRemoteUpdate(update): Inform the application layer that a new update has
arrived. This call is elided from the algorithm descriptions below for clarity.
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3.4 SimpleSync

The SimpleSync algorithm synchronizes a set of immutable updates between Tier-
Sync nodes in an eventually consistent manner. Each update u can be uniquely
identified by an integer number u.ver and each is introduced into the system at a
single node at time t. In this simplified algorithm, once an update object has been
created, it will exist forever in the shared state. Finally, there are no consistency
requirements on the update object other than its existance, i.e. there are no con-
straints on obsolesence, ordering or higher-level invariants on the updates. Thus the
only goal of the algorithm is to ensure that all updates are delivered to all nodes in
an eventually consistent manner.
The SimpleSync algorithm keeps the following durable state at each node n:

• A data store D which is the set of updates currently stored at the node. D.get(v)
retrieves the update data from the data store with version v. Initially empty.

• The local update state L, which is a set containing the integer versions of the
updates that are at this node. This differs from D as D contains the actual
value of the update object, while this is simply the set of versions numbers, i.e.
L = {u.ver | u ∈ D}. Initially empty.

• For each child c and parent p of the node, remote update sets Rc and Rp of
integer versions that represent cached information of which of the updates have
been seen by the children and parent nodes. Initially empty.

The SimpleSync algorithm uses a single network message:

• <UPDATE, update>: Message contains the data in a single update.

Figure 3.2 gives the callback handlers for the SimpleSync algorithm.
This is the epidemic update propagation algorithm [27] with the addition of a cache

of the received state at other nodes. The standard epidemic update propagation is
a two-way protocol in which a summary of the received information of the receiver
of updates is sent to the sender before data transfer. In this algorithm, we elect to
cache which updates that we have sent (i.e. Rnode) to avoid having to incur a round
trip for each synchronization. This adaptation of the algorithm enables the use of
transports with long round-trip times.

Claim 1 SimpleSync: If U is the set of all updates, and if no further updates are
created after some finite time t, then at a finite time, all nodes in the system will have
received all of U .
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canSend cb(node):
v := version ∈ L \ Rnode

update := D.get(v)
reliableSend(node,<UPDATE, update>)
Rnode := Rnode ∪ {v}

msgReceived cb(node, msg):
if (msg is UPDATE):

D := D ∪ {msg.update}
Rnode := Rnode ∪ {msg.update.ver}
L := L ∪ {msg.update.ver}

newLocalUpdate cb(update):
D := D ∪ {update}
L := L ∪ {update.ver}

Figure 3.2: The SimpleSync algorithm.

Proof: Consider an update u ∈ U . Let S be the set of nodes which stores u and T
be the set of nodes which does not have u. At some point in time u will be created
at some node n. Because there are no permanent network partitions, there will be
an infinite number of canSend() events from a node in S to a node in T . Because
there are only a finite number of updates U , it must be the case that at some point
in time, u is sent from S to T . Thus all of the nodes will eventually store u.

3.5 Obsoletion

In a state-based eventual consistency system, the only update objects we need to
preserve are the most current updates to an object. When a version of an object has
been superseded by a more recent update, we say that the update has been obso-
leted and may be removed from the data store. Obsoletion forms a partial ordering
among all of the updates and is typically encoded using version vectors [57] or hash
histories [36].

We assume that there exists a deterministic comparison operator ≺ for which u ≺
v is true if v obsoletes u. We also assume that the comparison is transitive, that is, for
any updates u, v and w, u ≺ v and v ≺ w, then u ≺ w. An additional assumption we
require is that the operator u ≺ v can be computed from the data stored in the updates
u and v without the need for additional information. This is important because the
synchronization algorithm does not itself maintain any ordering information.

Obsoletion introduces the following complication to SimpleSync: in state-based
eventual consistency system, when an update becomes obsolete, the update is removed
from the data store. Thus, there are some versions for which there is no corresponding
update in D and thus nothing to send.
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Figure 3.3: In this figure, we have two nodes A and B, with data store D, local
update state L and remote update state RA and RB respectively. At time = 1, node
A creates update u1 and sends an update to node B. At time = 2, node B creates
two new updates u2 and u3. u2 ≺ u3 and u2 becomes obsolete and removed from the
data store (strikeout text). At time = 3, node B sends to A a NOP for u2 because it
no longer exists in the data store and also sends an UPDATE for u3. Time = 4 shows
the final state of the system.

In addition, even if a node has received all of the outstanding updates in the
system, the node’s update state (L and Rx) will still contain many “holes” left in
the version space by the obsoleted updates. Maintaining information about the holes
will make the size of the update state a function of the total number of updates that
have occurred in the system, rather than the number of non-obsolete updates in the
system.

Denote any version in the update state that has no corresponding update in the
data store a NOP version. In order to handle this problem, we introduce a new
network message which represents the NOP version and thus fills the hole in the
update state:

• <NOP, version>: Message which indicates that a particular version has become
obsolete and thus is no longer in the data store.

Figure 3.3 gives a two-node example of the behavior of the NOP messages. Figure 3.4
shows the pseudo-code for the modified algorithm. The only significant change to the
algorithm is the addition of logic to handle sending and receiving of the NOP.

Claim 2 SimpleSync + obsoletes: If U is the set of all updates, and if no further
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canSend cb(node):
v := version ∈ L \ Rnode

update := D.get(v)
if (update doesn’t exist):

reliableSend(node,<NOP, v>)
else:

reliableSend(node,<UPDATE, update>)
Rnode := Rnode ∪ {v}

msgReceived(node, msg):
if (msg is UPDATE):

if (no u ∈ D such that msg.update ≺ u):
D := D ∪ {msg.update}

foreach (u ∈ D such that u ≺ msg.update): D := D \ {u}
Rnode := Rnode ∪ {msg.update.ver}
L := L ∪ {msg.update.ver}

else if (msg is NOP):

Rnode := Rnode ∪ {msg.version}
L := L ∪ {msg.version}

newLocalUpdate(update):
D := D ∪ {update}
foreach (u ∈ D such that u ≺ update): D := D \ {u}
L := L ∪ {update.ver}

Figure 3.4: The Obsoletes algorithm. Changes from the SimpleSync algorithm are
marked in gray.
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updates are created after some finite time t, then at a finite point in time, all nodes
in the system will have all non-obsolete updates and no obsolete updates.

Definition: Denote an update u as maximal in a set S if it is true that there is no
v ∈ S such that v � u. If set S is not specified then we are implicitly referring to U ,
the set of all updates. Let max(S) be the set of all maximal updates in S.

Proof: Consider M , the maximal set of updates u ∈ U . This is the set of updates u
such that there is no update v ∈ U where v � u. We note that for an update u ∈M ,
the behavior of the algorithm is the same as in SimpleSync:

First, we note that since u is maximal, it will always be the case that it will be
added to the data store in msgReceived(). Second, it will always be the case that
u.ver ∈ L means that u ∈ D. This is because the only way to remove u from D
is through obsoletion or the receipt of a NOP for the version. This NOP cannot exist.
Suppose the NOP message did exist for u.ver at a node n. Then trace the sequence
of NOP messages sent with version u.ver ending with n. At some point, there must a
node n′ which did not receive a NOP message with version u.ver. The only way for n′

to have u.ver ∈ L is to have received u as an update and have u obsoleted. However,
because u is maximal, this is impossible.

Therefore every node will store the set of maximal updates at some point in
time. Now consider any obsolete update v either stored or received by a node. v ≺
one or more updates maximal updates u. If u and v are received in either order,
msgReceived() will remove v from D, and therefore there will be no obsolete message
stored at any node.

3.6 Partial sharing

Partial sharing is the ability for nodes to only receive an application defined por-
tion of the updates in the system, rather than every update created. There are several
approaches to this problem, each with a different set of semantics for the behavior of
the system, and these approaches were reviewed in detail in Chapter 2.

3.6.1 Static Partitioning

One method of implementing partial sharing mechanism is to statically partition
the data into predetermined disjoint sets and run a separate synchronization algo-
rithm instance for each of the disjoint sets. This is the strategy used by the TierStore
file system described in Chapter 4. Data in the system are placed in separate do-
mains determined by the application programmer. Then at runtime, the nodes can
choose which of the domains to store. Although this scheme is appropriate for some
applications, it suffers from several limitations:
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• Lack of flexibility: The application must determine data partitioning a priori.
Once the partitions are determined, the data partitions cannot change without
stopping the system.

• Problems with sharing granularity: Partitions are disjoint sets and cannot over-
lap. This also means that partitions cannot be nested. If the application needs
to share a subset of a predetermined partition, this cannot be easily done.

• No causal relationship between updates in different partitions: As the updates
in each partition are shared using a separate instance of the synchronization
protocol, it is impossible to express an operation such as the movement of data
between different partition. In this case, the movement of data will appear as
a decoupled deletion in the source partition and a deletion in the destination
partition. This is not a problem for nodes that are only sharing just one of
source or destination but may be awkward for the node that is sharing both
partitions.

3.6.2 Partial Sharing

To address some of these issues, we introduce a more flexible mechanism for man-
aging sharing of subsets of the data store. Let π(u) be a deterministic predicate on an
update u which can be computed based on the contents of u. Then let a publication
pubπ be the set of updates {u | π(u), u ∈ U} where U is the set of all updates. We
say that a predicate is contained in another, e.g. π ⊆ π′ if pubπ ⊆ pubπ′ . We assume
for the predicates used in the system that the subset comparison can be computed
efficiently. Finally, let > be a predicate that is true for every update, i.e. pub> ≡ U .

Let the set of all predicates used in the system be Π. For the present moment,
assume that Π is fixed and a finite set. Each node n in the system can subscribed to
some subset Sn of Π and the set of predicates forms the node’s subscription. Being
subscribed to a publication means that the node desires to receive all of the updates
contained in the publication and not receive any updates that fall outside of the
publication. Note that the set S can change through time as the kinds of updates
that are relevant to the applications changes.

We require one important invariant to be maintained on the subscription predi-
cates, which we call containment. For every parent node p and child node c, it must
always be the case that

⋃
Sc ⊆

⋃
Sp, i.e. the set of updates that a child subscribes

to must be smaller than the set of updates to which its parent subscribes to. This
also matches the assumptions of a “tiered” infrastructure in which the data stored
decreases as one moves away from the central data center at the root. Figure 3.5
gives an example of the relationship of the publications between parent and child.
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π bπ a

π c
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Figure 3.5: Graphical representation of updates and publications. U is the set of all
updates. The parent node is subscribed to publications pubπa (vertical lines) and pubπb

(diagonal lines) while the child is subscribed to pubπc (dotted). Note that publications
can overlap and that the set subscribed by the child is completely contained by the
parent.

3.6.3 Fixed Subscriptions

We will first introduce the synchronization algorithm assuming that the predicates
to which a node is subscribed are statically determined. In section 3.6.4, we describe
an enhancement of the algorithm to allow for dynamic node subscriptions. Figure 3.6
gives the pseudo-code for the synchronization algorithm.

Handling NOP versions

Note that for each update version considered for sending from a parent to its child,
there are three different cases:

1. Update exists in the data store and is in the child’s subscription.

2. Update exists in the data store and is not in the child’s subscription.

3. The version is a NOP.

In the first case, we can see that the protocol behavior will be the same as in
SimpleSync. In the second case, we note that we have a similar situation as in the
case of the NOP version; an update for the corresponding version will never be sent
to the child node and hence there will be a “hole” in the update state at the child.
Thus, we can use the NOP message to fill this hole. Finally, the third case is resolved
using the containment invariant; because the subscription of a child must be a subset
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of the subscription of the parent, we know that a NOP for a parent must be a NOP for
the child.

For updates sent from a child to the parent, there are two cases: Either there
is an update in the data store, or it is a NOP version. Because of the containment
invariant, every update at the child will be part of the parent’s subscription and must
be sent to the parent. In the latter case there is a complication; we would like to send
a NOP to the parent, however, the update could be missing because it was obsolete
or because it was not part of the child node’s subscription. If it was not part of the
child’s subscription, it may still be part of the parent’s subscription, which means
that sending a NOP to the parent would be incorrect.

Fortunately, it is always the case that any version that the parent has not received
that is a NOP version at the child is a result of obsolescence. Consider the base case
of a leaf node and its parent. Any NOP version is one of the following:

1. Version of an obsolete update resulting from a new local update.

2. Version of an obsolete update resulting from a remote update from the parent.

3. Version of an update that is outside the node’s subscription because of a NOP

from the parent.

Note that in the second and third cases, the version will be in Rparent in the leaf
node and therefore never be sent back to the parent. This leaves only the first case,
which is what we want. Now consider a non-leaf node in the tree. At a non-leaf node,
the situation is the same except we have the added complication that a non-leaf node
may receive updates from its children. However, by induction, the messages from the
children are a result of an update becoming obsolete, so again the NOP to the parent
is safe.

Discarding all obsolete updates

Partial sharing via subscriptions introduces an additional problem of handling
off-subscription updates. It is possible for an update to become obsolete, but for
a node storing the update to be unaware because the changes occur outside of its
subscription.

We introduce a new network message DISCARD to the system that will be sent by
a parent node to a child node in order to obsolete updates due to off-subscription
updates.

• <DISCARD, update>: Message that indicates that any existing updates that are
made obsolete by update are to be discarded from the data store.
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In addition, we require that the nodes preserve the DISCARD messages that they
receive in their internal state. Thus we add this variable to the durable node state.
For now, assume that the messages are stored permanently. We will discuss when it
is safe to drop DISCARD message below in section 3.6.3. We add to the durable state
stored at each node:

• A set of discard messages DISCARDS, which is the set of DISCARD messages
received by the node. Initially empty.

Note that receiving spurious DISCARD messages are always safe, independent of
whether or not the update is part of the node’s subscription. We could naively flood
a DISCARD message to each child for every update received, however, this defeats the
purpose of the subscriptions, which is to reduce network traffic.

Fortunately, it is sufficient that we send a DISCARD message to a child in the
following two cases: The first case is when a new update that does not belong to the
child subscription obsoletes an existing update that is in the child subscription. The
second case occurs when a DISCARD message arrives and obsoletes an update that is
in the child subscription.

Claim 3 SimpleSync + obsoletes + partial sharing: If U is the set of all updates,
and if no further updates are created after some finite time t, then at a finite point in
time greater than t, all nodes in the system will have only maximal updates to which
the node is subscribed to.

Proof: We will prove this in two parts (Lemmas 1 and 2). First, we show that if
an update is maximal and is part of the subscription of a node, then at some finite
time, it will be stored at the node. Second, we show that if an update u is obsolete
(i.e. non-maximal) and was stored (transiently) at a node, at some point in time, u
is either obsoleted by an update v or a <DISCARD, v> message such that u ≺ v.

Lemma 1 If an update is maximal and is part of the subscription of a node, then
after some finite point in time, it will be stored at the node.

Proof: Let u be a maximal update. We note that because of containment, the set
of nodes subscribed to receive u will be a tree. Thus we can assume without loss
of generality that all of the nodes in the network are subscribed to u by ignoring
nodes that are not subscribed. Because u is maximal, it is not possible for the
code processing DISCARD message to have an effect on u. (DISCARD messages only
affect updates that precede them). Thus, we can see that for maximal updates, the
algorithm behaves the same as in the Obsoletes algorithm and thus the maximal
updates are stored at all the nodes.
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canSend(node):
v := version ∈ L \ Rnode

update := D.get(v)
if (update doesn’t exist or node is a child and update /∈

⋃
Snode ):

reliableSend(node,<NOP, v>)
else:

reliableSend(node,<UPDATE, update>)
Rnode := Rnode ∪ {v}

msgReceived(node, msg):
if (msg is UPDATE):

if (discard ∈ DISCARDS such that discard � u):

foreach (child such that u ∈ Schild):

reliableSend(child, discard)
else if (no u ∈ D such that msg.update ≺ u):

D := D ∪ {msg.update}
foreach (u ∈ D such that u ≺ msg.update): D := D \ {u}
Rnode := Rnode ∪ {msg.update.ver}
L := L ∪ {msg.update.ver}

else if (msg is NOP):
Rnode := Rnode ∪ {msg.version}
L := L ∪ {msg.version}

else if (msg is DISCARD):

DISCARDS := DISCARDS ∪ {msg.update}
foreach (u ∈ D such that u ≺ msg.update):

D := D \ {u}
foreach (child such that u ∈ Schild):

reliableSend(child, <DISCARD, msg.update>)

newLocalUpdate(update):
D := D ∪ {update}
foreach (u ∈ D such that u ≺ update):

D := D \ {u}
L := L ∪ {update.ver}

Figure 3.6: Partial Sharing with Static Subscriptions algorithm. Changes from the
Obsoletes algorithm are marked in gray.
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Lemma 2 If an update u is obsolete (i.e. non-maximal) and was stored (transiently)
at a node, at some point in time, u is either obsoleted by an update v or a <DISCARD,
v> such that u ≺ v.

Proof: We prove this lemma via induction on the depth of the node in the tree.
We note that the root of the tree is subscribed to all of the updates and thus at some
point in time receives all of the max(U). Every obsolete update u must be made
obsolete by at least one of the updates in max(U). Note: it may be the case that u is
made obsolete by an update /∈ max(U), but if this does not happen, then an update
from max(U) will eventually remove u from the data store.

Now assume that every obsolete update u stored at a node at depth i− 1 in the
tree is at some point removed from the data store by an update v or a <DISCARD, v
> such that u ≺ v. We will show this is true for all obsolete updates u in a node at
depth i.

Let u be an obsolete update that is stored at some point in time on node n, which
is at tree depth i. Let p be the parent node to n. Now consider the origin of update
u. u either was a local update at node n, a remote update sent from parent p or a
remote update sent from a child of n. In the first case, it must be true that u was
stored at p at some point. Otherwise the algorithm would not have been able to send
u to n. In the second and third cases, consider the call of the canSend(parent) that
considers version u.ver. This call must exist because the network is partition free.

If u is no longer part of the data store, then there must have been an update v or
DISCARD that removed it, satisfying the inductive hypothesis. Otherwise, node n will
send u to parent p.

Now consider the processing of u at the parent p upon reception of <UPDATE, u>.
There are three cases depending on what already has been stored at p: either there
is a <DISCARD, v> such that v � u or there exists an update v � u or there is no
update v such that v � u.

In the first case, the algorithm will send a <DISCARD, v> message to n. For the
second case, we note that if v is maximal, then at some point in time <UPDATE, v> or
<DISCARD, v> will be sent from p to n, obsoleting u at n. For the second case where
v is not maximal and the third case, consider the closure C of the set of updates and
DISCARDs formed by the repeatedly applying the inductive hypothesis. This is the
set of updates and DISCARD which are � u that are received at p. We note that C
cannot be empty. Let (c1, . . . , cl) be the sequence of members of C in the order as
processed by p.

Consider the earliest <DISCARD, cj > received in that sequence. It must be the
case that there is an update ci in the data store such that cj � ci � u. This is because
we started with u and the only way to remove u from the data store other than a
DISCARD is an UPDATE. If ci ∈ Sn, then we are done, as the <DISCARD, cj> will be sent
to n. Otherwise, if ci /∈ Sn, there must have been an update ck � u processed earlier
in the sequence such that ck � ck−1 � u and ck /∈ Sn and ck−1 ∈ Sn, thus generating
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<DISCARD, ck> and ck � u. We note that the above reasoning still applies if there
was no DISCARD message in the sequence.

Dropping stored DISCARDs

In the previous description of the algorithm, there is no provision for removing
DISCARDs from the node state. However, if a node has received all of the updates
u ≺ v, it is safe to drop the <DISCARD, v> from the node state, as DISCARD can only
affect updates that precede the discard message.

3.6.4 Partial Sharing: Dynamic Subscriptions

We now extend the partial sharing scheme with dynamic subscriptions in which
the set of publications that a node can be subscribed to can change over time. Figure
3.9 gives the pseudo-code algorithm for the dynamic subscription scheme.

New subscriptions

New subscriptions need to be coordinated with the parent and are managed via
a new set of messages:

• <SUB REQ, id, π>: Request a subscription from a parent node matching the
predicate π. id is a unique identifier that identifies the subscription request
response from the server.

• <SUB REJ, id>: Parent rejects request for subscription.

• <SUB OK, id, catchup set>: Parent accepts the request for the new subscription.
The purpose of the catchup set is a set of update versions the purpose of which
is described below.

• <CATCHUP NOP, π, version>: A NOP message that only applies the catchup set
for publication pubπ.

A parent will reject a request for a subscription if it is for an invalid publication or
if the subscription would violate the containment property. Alternatively, the parent
can recursively request for the missing subscription upstream and add the newly
requested subscription to its subscription set.

When a child subscribes to a new publication, there may be updates that belong
to the publication for which the child has received NOP messages. For a subscription
to predicate π, this is the set of updates pubπ ∩ L, where L is the set of versions in
the child node’s local store. Figure 3.7 illustrates this situation. In addition, there
are messages that are in transit from the parent to the child that may contain NOP

messages for updates that exist in pubπ ∩ L.
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parent

child

π

L, Rchild

Figure 3.7: An example of the update versions involved in a new subscription. The
child wants to request a new subscription of the publication π, marked in dotted
lines. The lightly shaded area represents versions for which the child has either been
sent a NOP or an UPDATE. This area is represented in the local update state L at the
child node and the sent state Rchild at the parent node. The darkly area shaded
area represents the version information about the new subscription that needs to be
“caught up” to L and Rchild.

To keep track of the versions in pubπ ∩ L that still need to be sent to the child,
we add a set Rchild,π to the parent state and a set Lπ to the child state. Rchild,π are
the versions in publication pubπ that have been sent to the child from the parent. Lπ

are the local versions in the publication that have been received by the child. We
denote these two sets as the “catchup sets” for pubπ as they represent the missing
version information that still needs to be received by the child to be caught up with
the version information stored in L.

Catchup sets do not need to be retained permanently. We only need to reconsider
versions that the parent has marked as already sent to the child at the time that
the SUB REQ message was received. Any updates that arrive later at the parent can
be handled by the normal mechanisms in the static subscriptions case, as the parent
already knows about the child’s expanded subscription. If a node can determine that
it has received information for all of the versions that were missing from the new
subscription, it can safely discard the catchup sets. Thus, the set of versions that the
parent node has already sent to the child is sent with the SUB OK message to the child.
Once the child has received an UPDATE or a NOP for all in this set, then the catchup
information is discarded. Figure 3.8 is an example of the messages exchanged on a
new subscription.
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Figure 3.8: An example of the messages sent during a new subscription. There are
two nodes, a parent and a child. Data the child is already subscribed to is shown
boxed with solid lines, while the data in the new subscription requested (π) is boxed
with dashed lines. Note that at time = 1 because the child is not subscribed to the π
subscription, versions 1 and 3 are NOP versions for the child. Once the SUB REQ has
been accepted by the parent at time = 2, the parent sends a SUB OK message which
includes the set of versions that it has already sent the child. This information allows
the child to determine when it can safely drop the catchup set Cπ. Note that the
parent sends a NOP for version 2 for catchup set Cπ, as it is a NOP version in pubπ.
At time = 3, the catchup set on the parent’s side is removed because the parent has
finished sending all of the versions that needed to be reconsidered in the context of
the new subscription. After receiving <UPDATE, u3> at time = 4, the child removes
the catchup set, as it has received all of the versions that needed to be reconsidered.
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Removing subscriptions

A node can drop a subscription as long as the removal of a subscription does
not violate the containment property. Removal of a subscription is done through
additional protocol messages:

• <UNSUB REQ, id, π>: Request to remove a subscription from a parent node
matching the predicate π. id is a unique identifier that identifies the subscription
request response from the server.

• <UNSUB OK, id>: Request to unsubscribe from a publication is confirmed and
accepted.

• <UNSUB REJ, id>: Parent rejects request for subscription because the request
is invalid. This should not happen unless the child sends a malformed request.

When a child receives an UNSUB OK message to its parent, it goes through its
database and removes all updates that do not belong to the new subscription. If
there was a catchup set associated with the publication that is being unsubscribed,
the catchup set information is removed as well.

Pending events

There are several race conditions associated with message reordering that could
occur between when a child sends a SUB REQ and UNSUB REQ and when the child
receives a response. These are handled by buffering the messages until the response
message is received. The cases where this is an issue are:

• <UPDATE, u> where u is in a requested publication before receiving SUB OK from
the parent. Before the SUB OK, this update will be discarded as it is not part of
the node’s subscription.

• <CATCHUP NOP, ver, π> for a catchup set for requestion publication pubπ before
receiving SUB OK from the parent. The NOP will be ignored, whereas it should
be applied after the SUB OK from the parent.

• <DISCARD, u> where u is in a dropped publication before receiving UNSUB OK.
This DISCARD should be applied even though the u is in the current subscription
for the node.

• <DISCARD, u> where u is in a requested publication before receiving SUB OK.
The update u should be applied as an <UPDATE, u> instead of a DISCARD.
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msgReceived(node, msg):
if (msg is UPDATE):

if (discard ∈ DISCARDS such that discard � u):
foreach (child such that u ∈ Schild):

reliableSend(child, discard)
else if (no u ∈ D such that msg.update ≺ u):

D := D ∪ {msg.update}
foreach (u ∈ D such that u ≺ msg.update): D := D \ {u}
Rnode := Rnode ∪ {msg.update.ver}
L := L ∪ {msg.update.ver}
for each catchup set Cπ:

Cπ = Cπ ∪ {msg.update.ver}:
if Cπ is caught up: discard Cπ.

else if (msg is NOP):
Rnode := Rnode ∪ {msg.version}
L := L ∪ {msg.version}

else if (msg is CATCHUP NOP):
if catchup set Cmsg.π exists:

Cmsg.π = Cmsg.π ∪ {msg.version}
if Cmsg.π is caught up: discard Cmsg.π.

else if (msg is DISCARD):
DISCARDS := DISCARDS ∪ {msg.update}
foreach (u ∈ D such that u ≺ msg.update):

D := D \ {u}
foreach (child such that u ∈ Schild):

reliableSend(child, <DISCARD, msg.update>)
else if (msg is SUB REQ):

if msg.π is in our subscriptions:
reliableSend(child, <SUB OK, msg.π, Rnode>)

else if (msg is SUB OK):
create new catchup set Cπ = {}
Add π to our subscriptions.

Figure 3.9: Partial Sharing with Dynamic Subscriptions algorithm, msgReceived().
Changes from the static algorithm are marked in gray. We have omitted handling for
SUB REJ, UNSUB REQ, UNSUB OK and UNSUB REJ as well as the cases where messages
need to be queued pending a response from a child request. Changes from the static
partial sharing algorithm are highlighted in gray.
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3.7 Deleting Updates

In the system described so far there is no mechanism for removing updates from
the system other than through the obsoletion by a another update. This means
that operations that reclaim space from the distributed storage such as deleting an
update cannot be expressed in the framework. We note that the delete problem can be
handled by well-known techniques of distributed garbage collection [40, 41]. However,
in our current implementation of the sync algorithm, we use a time-based approach
to expire data from the system. Updates are labeled with timeouts after which they
are discarded from the system. We make two assumptions: that the timeouts is set
to be longer than the longest round-trip time between nodes in the system and that
the system clocks in sync with real-time within the bounds of human perception, e.g.
within minutes. Any violations of these assumptions can result in incorrect behavior
of the protocol.

Another strategy for deleting updates from the system is to move the update to
a special deleted publication to which no node subscribes. In this case the standard
protocol will discard all instances of the update from the rest of the system. The root
can then retire the update in the deleted publication with a conservative timeout.
Because the root of a TierSync system will be a well-connected data center, clock
synchronization to realtime at the root node will not be an issue.

3.8 Implementation

Our prototype of the TierSync protocol was implemented in 20k lines of Java. The
prototype architecture is depicted in Figure 3.10 and consists of three major compo-
nents: the transport module, the synchronization module and the storage module.
Each component is separated by socket IPC, allowing for different interchangeable
implementations.

Transport Module

At the lowest layer is the transport module that abstracts the network into a
“pull-based” interface. Our implementation supports three networking stacks that
can be interchangeably used: a DTN adaptation layer, a simulator adaptation layer
and a TCP/IP adaptation layer. The DTN adaptation layer uses the DTN2 reference
implementation as the transport mechanism. The simulation adaptation layer allows
for the TierSync stack to be tested with an event-driven simulator. We use this
simulator to explore the behavior of the protocol below. Finally, a simple TCP/IP
adaptation layer was written for testing purposes.

The transport module has the following interface:

• sendData(network descriptor, bytes) → send id: A message to the transport
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Figure 3.10: TierSync system block diagram
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module to send a block of bytes out the networking transport named by network
descriptor. The data sent is identified by send id.

• pullData(network descriptor, attributes): A message from the transport mod-
ule to the synchronization module that network descriptor has capacity to send
data with the following attributes.

• dataSent(send id, status): A message from the transport module that the send
id has either been acknowledged or sending has failed.

The use of a pull-based interface is important for several reasons. First, it better
reflects the asynchronous nature of the underlying network mechanisms. The network
is intermittent and may come and go, thus all communications should be driven by
the availability of the network. Second, it may be the case that some of the updates
created by the system are ephemeral and should not be sent unless there is band-
width available to send the update. An earlier prototype of the system aggressively
“pushed” updates to be sent into the DTN network layer. We found that, for perfor-
mance reasons, the “push” design necessitated back-pressure mechanisms and use of
DTN mechanisms for cancellation of data transmissions already in flight, producing
a complex and error-prone design.

Synchronization Module

The synchronization module manages TierSync protocol state and stores metadata
about which updates have been sent/received by peer nodes. The synchronization
module receives new update notifications from the storage module above as well as
pull requests for data to send from the transport module below.

Each update is uniquely identified by an update GUID (global unique id) (id, version)
where id is a opaque byte string and version is an integer. As most of the updates
are sent by peers in numerical order, the set of updates received is run-length encoded
(RLE), resulting in a compact representation. This metadata is stored for each peer
in a durable database on the disk.

The synchronization module also manages prioritization and selection of which
updates are sent. Each pullData() call from the transport module is matched with an
update from a queue of unsent updates. By default, the policy of the synchronization
module is to send unseen updates to peers in (numerical) guid order. This policy
helps ensure that peer state representation is unfragmented and small due to the
RLE storage scheme described above.

However, clients of TierSync can replace standard queuing behavior with their
own controls via a queuing plugin. Each plugin has the following interface:

• enqueueUpdate(version, metadata): Register a new update with the metadata
used by the queue management system.
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• pullData(network descriptor, attributes) → version: Pull an update from the
queue for sending on network descriptor.

Storage Module

The storage module services update contents requests from the synchronization
module when the synchronization needs to send updates to the network. The storage
module implements the following interface:

• integrate(update) → obsolete update list: Add update to the data store. This
may cause old updates to become invalid, and those updates are returned as a
list.

• getUpdate(guid) → update, metadata: Retrieve the update referenced by guid.
May return null for an update which has become obsolete. metadata is the
prioritization metadata used for queue management.

• remove(guid): Remove the update referenced by guid from the data store.

• query(publication)→ guid list: Query the data store and return a list of update
guids that belong to publication. This function is used by the synchronizer to
manage publication state during changes to node subscriptions.

• newUpdate(guid, metadata): A notification from the storage module to the syn-
chronization module that a new update has been created with the prioritization
metadata.

3.9 Evaluation

In this section, we evaluate our prototype to determine the behavior of the pro-
tocol in various expected usage traffic patterns and scenarios. Direct comparison to
existing protocols is a somewhat “apples to oranges” comparison due to the different
capabilities and semantics of the systems in this space. Given an appropriately large
RTT, any of the existing protocols will fail due to timeouts in their bidirectional
exchanges. We expect network bandwidth to be the dominant factor in the perfor-
mance of the protocol. TierSync transfers a constant amount of metadata for each
non-obsolete update that exists in the system and in this respect is comparable to
PRACTI, WinFS and Cimbiosys with respect to the order of magnitude of metadata
transferred.
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... ...

... ...
Figure 3.11: Experimental topologies, from left to right: linear topology, a tree with
branching factor two, a star topology.

3.9.1 Protocol Overhead

In order to evaluate the overhead imposed by the protocol, we used the event-
driven simulator implementation of the transport layer to evaluate the protocol soft-
ware stack. Figure 3.12 gives a comparison of the protocol overhead (i.e. bytes
transferred due to protocol messages) as a function of different topologies and con-
nectivity. We note that the experiments are design to be illustrative of the behavior
of the protocol under a wide variety of conditions. Experiments were also performed
with updates taken from a uniform rate stream, a Poisson process driven random
stream as well as with other node topologies; these additional experiments are not
shown here as the results were not sensitive to the input parameters. The experimen-
tal parameters are as follows:

• To evaluate behavior under different topologies, we used three ten-node topolo-
gies in the experiment, a linear topology, a tree topology with a branching factor
of two and a star topology. These topologies were chosen to test extremes in
potential topological properties such as branching factor and network diameter.
Figure 3.11 depicts the topologies tested.

• Each network link was modeled as a 56k modem connection (7,000 bytes/sec).
Three different types of connectivity was evaluated: always connected, links
that were periodically connected for 20% of each hour and links that were
periodically connected for 5% of each hour.

• Updates at each node are taken from a trace of the Wikiversity edit dump
history. The trace contains an entry for each update made to the Wiki site1.
Because the entire trace is too large to replay directly as the trace spans several
years of updates, we sampled updates from the trace to construct a smaller
update stream. The scaled down stream was constructed by taking a large

1http://www.wikiversity.org/, trace taken at the end of April 2009.

http://www.wikiversity.org/
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Figure 3.12: Overhead in bytes (MB) transferred as a function of connectivity, topol-
ogy and degree of sharing, classified by protocol message type. Overhead measured
consists of protocol messages and excludes data payloads. Three levels of subscription
were evaluated: nodes subscribing to 10% of all updates, 50% of updates and all of
the updates. Three different ten-node topologies were evaluated: a linear network, a
tree of with branching factor two and a star network. Within each topology, network
connectivity ranged from always connected (100%) to connected only 5% of the time.

enough subset of the articles such that there was on average an update every
five minutes. Articles were chosen from the trace uniformly. The entire trace
consists of around 12k updates with 64 MB of content over a 100-hour period.

• Three levels of partial sharing were evaluated. First, each article in the wiki
trace was assigned to one of ten publications. Then each node in the system was
randomly subscribed to 100%, 50% and 10% of the publications respectively.

There are several things to note about the experimental results in Figure 3.12.
First, the protocol overhead is under 1% of the total bandwidth used in all cases.
Second, as the percentage of updates being subscribed to goes down, data messages
are replaced with NOP and DISCARD messages. Finally, as the connectivity becomes
more intermittent, the amount of data sent decreases because updates become obso-
lete before they have a chance to be transmitted.

3.10 Conclusion

In this chapter we have described the TierSync protocol by building on a sim-
ple epidemic propagation algorithm with the addition of obsolescence and two kinds
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of partial sharing mechanisms: static partitioning and dynamically defined subscrip-
tions. We then described and evaluated our prototype implementation of the TierSync
protocol.
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Chapter 4

TierStore

This chapter describes TierStore, a weakly-consistent file system built on the
TierSync platform. TierStore provides a general-purpose framework to support ap-
plications in challenged networks, with the following key properties: First, in order
to adapt existing applications and develop new ones with minimal effort, the sys-
tem offers a familiar and easy-to-use file system interface. To deal with intermittent
networks, the TierStore interface allows applications to operate unimpeded while dis-
connected and easily resolve conflicts that result. Finally, to address the networking
challenges, TierStore is able to leverage a range of network transports, as appropriate
for particular environments, and efficiently distribute application data.

This chapter is organized as follows: Section 4.1 describes the high-level design of
the system. Section 4.2 describes the details of how the system operates. Section 4.3
discusses some applications we have developed to demonstrate flexibility. Section 4.4
presents an initial evaluation, and we conclude in Section 4.5.

4.1 Design

The goal of TierStore is to provide a distributed file system service for applications
in bandwidth-constrained and/or intermittent network environments. To achieve
these aims, we claim no fundamentally new mechanisms, however we argue that
TierStore is a novel synthesis of well-known techniques and most importantly is an
effective platform for application deployment.

TierStore is built on the TierSync framework (see Chapter 3) and uses the Delay
Tolerant Networking (DTN) bundle protocol [22, 71] for all inter-node messaging.

The design and implementation of the TierStore system is the result of a multi-year collabora-
tion with Michael Demmer and Eric Brewer. Some of the material in this chapter was previously
published in the Proceedings of the 6th USENIX Conference on File and Storage Technologies
(FAST), February 2008 [30]. A condensed version of this work also appeared in the June 2008 issue
of USENIX ;login:, Volume 33, Number 3 [31].
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DTN defines an overlay network architecture for challenged environments that for-
wards messages among nodes using a variety of transport technologies. Messages are
buffered in persistent storage during connection outages and/or retransmitted due
to a message loss. TierSync provides underlying mechanisms for object update syn-
chronization and update distribution. The use both of DTN and TierSync allows
TierStore to adapt naturally to a range of network conditions and to use solutions
most appropriate for a particular environment.

To simplify application development, TierStore implements a standard file system
interface that can be accessed and updated at multiple nodes in the network. Any
modifications to the shared file system state are both applied locally and encoded as
update messages that are lazily distributed to other nodes in the network. Because
nodes may be disconnected for long periods of time, the design favors availability at
the potential expense of consistency [23].

The file system layer implements traditional NFS-like semantics, including close-
to-open consistency, hard and soft links, and standard UNIX group, owner, and per-
mission semantics. As such, many interesting and useful applications can be deployed
on a TierStore system without (much) modification, as they often already use the file
system for communication of shared state between application instances. For exam-
ple, several implementations of e-mail, log collection, and wiki packages are already
written to use the file system for shared state and have simple data distribution pat-
terns. Such applications are straightforward to deploy using TierStore. Also, many
applications are either already conflict-free in the ways that they interact with shared
storage or can be easily made conflict-free with simple extensions.

Based in part on these observations, TierStore implements a single-object coher-
ence policy for conflict management, meaning that only concurrent updates to the
same file are flagged as conflicts. We have found that this simple model, coupled with
application-specific conflict resolution handlers, is both sufficient for many useful ap-
plications and easy to reason about for programmers. It is also a natural consequence
from offering a file system interface, as UNIX filesystems do not naturally expose a
mechanism for multiple-file atomic updates.

When conflicts do occur, TierStore exposes all information about the conflicting
update through the file system interface, allowing either automatic resolution by
application-specific scripts or manual intervention by a user. In cases where single-
file coherence is insufficient, the base system is extensible to allow the addition of
application-specific meta-objects (discussed in Section 4.2.11). These objects can be
used to group a set of user-visible files that need to be updated atomically into a
single TierStore object.

To distribute data efficiently over low-bandwidth network links, TierStore allows
the shared data to be partitioned into fine-grained publications, which are defined as
disjoint subtrees of the file system namespace. The TierStore publication system maps
file system partitions into the static partitioning framework of the TierSync system.
Nodes can subscribe to receive updates to only their publications of interest, rather
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than requiring all shared state to be replicated. This model maps quite naturally to
the needs of real applications (e.g. users’ mailboxes and folders, portions of web sites,
or regional data collection). Finally, TierStore nodes are organized into a multicast-
like distribution tree to limit redundant update transmissions over low-bandwidth
links.

4.2 In Detail

This section describes the implementation of TierStore. First we give a brief
overview of the various components of TierStore, shown in Figure 4.1, then we delve
into more detail below.

4.2.1 System Components

As discussed above, TierStore implements a standard file system abstraction, i.e.,
a persistent repository for file objects and a hierarchical namespace to organize those
files. Applications interface with TierStore using one of two file system interfaces,
either FUSE [24] (File system in Userspace) or NFS [70]. Typically we use NFS over
a loopback mount, though a single TierStore node could export a shared filesystem
to a number of users in a well-connected LAN environment over NFS.

File and system data are stored in persistent storage repositories that lie at the
core of the system. Read access to data passes through the view resolver that handles
conflicts and presents a self-consistent filesystem to applications. Modifications to
the filesystem are encapsulated as updates and forwarded to the update manager
where they are applied to the persistent repositories and forwarded to the subscription
manager.

The subscription manager uses the DTN network to distribute updates to and
from other nodes. Updates that arrive from the network are forwarded to the update
manager where they are processed and applied to the persistent repository in the
same way as local modifications.

4.2.2 Objects, Mappings, and Guids

TierStore objects derive from two basic types: data objects are regular files that
contain arbitrary user data, except for symbolic links that have a well-specified format.
Containers implement directories by storing a set of mappings : tuples of <guid, name,
version, view>.

A guid uniquely identifies an object, independent from its location in the filesys-
tem, akin to an inode number in the UNIX filesystem, though with global scope. Each
node in a TierStore deployment is configured with a unique identity by an adminis-
trator, and guids are defined as a tuple <node, time> of the node identity where an
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object was created and a strictly increasing local time counter.
The name is the user-specified filename in the container. The version defines the

logical time when the mapping was created in the history of system updates, and
the view identifies the node that created the mapping (not necessarily the node that
originally created the object). Versions and views are discussed further below.

4.2.3 Versions

Each node increments a local update counter after every new object creation or
modification to the filesystem namespace (i.e. rename or delete). This counter is
used to uniquely identify the particular update in the history of modifications made
at the local node, and is persistently serialized to disk to survive reboots.

A collection of update counters from multiple nodes defines a version vector and
tracks the logical ordering of updates for a file or mapping. As mentioned above,
each mapping contains a version vector. Although each version vector conceptually
has a column for all nodes in the system, in practice, we only include columns for
nodes that have modified a particular mapping or the corresponding object, which is
all that is required for the single-object coherence model.

Thus a newly created mapping has only a single entry in its version vector, in the
column of the creating node. If a second node were to subsequently update the same
mapping, say by renaming the file, then the new mapping’s version vector would
include the old version in the creating node’s column, plus the newly incremented
update counter from the second node. Thus the new vector would subsume the old
one in the version sequence.

We expect TierStore deployments to be relatively small-scale (at most hundreds
of nodes in a single system), which keeps the maximum length of the vectors to a
reasonable bound. Furthermore, most of the time, files are updated at an even smaller
number of sites, so the size of the version vectors should not be a performance problem.
We could, however, adopt techniques similar to those used in Dynamo [18] to truncate
old entries from the vector if this were to become a performance limitation.

We also use version vectors to detect missing updates. The subscription manager
records a log of the versions for all updates that have been received from the network.
Since each modification causes exactly one update counter to be incremented, the
subscription manager detects missing updates by looking for holes in the version
sequence. Although the DTN network protocols retransmit lost messages to ensure
reliable delivery, a fallback repair protocol detects missing updates and can request
them from a peer.

4.2.4 Persistent Repositories

The core of the system has a set of persistent repositories for system state. The
object repository is implemented using regular UNIX files named with the object
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guid. For data objects, each entry simply stores the contents of the given file. For
container objects, each file stores a log of updates to the name/guid/view tuple set,
periodically compressed to truncate redundant entries. We use a log instead of a
vector of mappings for better performance on modifications to large directories.

Each object (data and container) has a corresponding entry in the metadata repos-
itory, also implemented using files named with the object guid. These entries contain
the system metadata, e.g. user/group/mode/permissions, that are typically stored in
an inode. They also contain a vector of all the mappings where the object is located
in the filesystem hierarchy.

With this design, mapping state is duplicated in the entries of the metadata table,
and in the individual container data files. This is a deliberate design decision: knowing
the vector of objects in a container is needed for efficient directory listing and path
traversal, while storing the set of mappings for an object is needed to update an object
mapping without knowing its current location(s) in the namespace, simplifying the
replication protocols.

To deal with the fact that the two repositories might be out of sync after a system
crash, we use a write ahead log for all updates. Because the updates are idempotent
(as discussed below), we simply replay uncommitted updates after a system crash to
ensure that the system state is consistent. We also implement a simple write-through
cache for both persistent repositories to improve read performance on frequently ac-
cessed files.

4.2.5 Updates

The filesystem layer translates application operations (e.g. write, rename, creat,

unlink) into two basic update operations: CREATE and MAP, the format of which is
shown in Figure 4.2. These updates are then applied locally to the persistent reposi-
tory and distributed over the network to other nodes.

CREATE updates add new objects to the system but do not make them visible in
the filesystem namespace. Each CREATE is a tuple <object guid, object type, version,
publication id, filesystem metadata, object data>. These updates have no dependen-
cies, so they are immediately applied to the persistent database upon reception, and
they are idempotent since the binding of a guid to object data never changes (see the
next subsection).

MAP updates bind objects into the filesystem namespace. Each MAP update contains
the guid of an object and a vector of <name, container guid, view, version> tuples
that specify the location(s) where the object should be mapped into the namespace.
Although in most cases a file is mapped into only a single location, multiple mappings
may be needed to properly handle hard links and some conflicts (described below).

Because TierStore implements a single-object coherence model, MAP updates can
be applied as long as a node has previously received CREATE updates for the object
and the container(s) where the object is to be mapped. This dependency is easily
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Figure 4.2: Contents of the core TierStore update messages. CREATE updates add
objects to the system; MAP updates bind objects to location(s) in the namespace.
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checked by looking up the relevant guids in the metadata repository and does not
depend on other MAP messages having been received. If the necessary CREATE updates
have not yet arrived, the MAP update is put into a deferred update queue for later
processing when the other updates are received.

An important design decision related to MAP messages is that they contain no
indication of any obsolete mapping(s) to remove from the namespace. That is because
each MAP message implicitly removes all older mappings for the given object and for
the given location(s) in the namespace, computed based on the logical version vectors.
As described above, the current location(s) of an object can be easily looked up in
the metadata repository using the object guid.

Thus, as shown in Figure 4.3, to process a MAP message, TierStore first looks up the
object and container(s) using their respective guids in the metadata repository. If they
both exist, then it compares the versions of the mappings in the message with those
stored in the repository. If the new message contains more recent mappings, TierStore
applies the new set of relevant mappings to the repository. If the message contains
old mappings, it is discarded. In case the versions are incomparable (i.e. updates
occurred simultaneously), then there is a conflict and both conflicting mappings are
applied to the repository to be resolved later (see below). Therefore, MAP messages
are also idempotent, since any obsolete mappings contained within them are ignored
in favor of the more recent ones that are already in the repository.

4.2.6 Immutable Objects and Deletion

These two message types are sufficient because TierStore objects are immutable.
A file modification is implemented by copying an object, applying the change, and
installing the modified copy in place of the old one (with a new CREATE and MAP).
Thus the binding of a guid to particular file content is persistent for the life of the
system. This model has been used by other systems such as Oceanstore [69], for the
advantage that write-write conflicts are handled as name conflicts (two objects being
put in the same namespace location), so we can use a single mechanism to handle
both types of conflicts.

An obvious disadvantage is the need to distribute whole objects, even for small
changes. To address this issue, the filesystem layer only “freezes” an object (i.e. issues
a CREATE and MAP update) after the application closes the file, not after each call to
write. In addition, we plan to integrate other well-known techniques, such as sending
deltas of previous versions or encoding the objects as a vector of segments and only
sending modified segments (as in LBFS [49]). However, when using these techniques,
care would have to be taken to avoid round trips in long-latency environments.

When an object is no longer needed, either because it was explicitly removed with
unlink or because a new object was mapped into the same location through an edit or
rename, we do not immediately delete it, but instead we map it into a special trash
container. This step is necessary because some other node may have concurrently
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mapped the object into a different location in the namespace, and we need to hold
onto the object to potentially resolve the conflict.

In our current prototype, objects are eventually removed from the trash container
after a long interval (e.g. multiple days), after which we assume no more updates
will arrive to the object. This simple method has been sufficient in practice, although
more sophisticated garbage collection algorithms would be more robust.

4.2.7 Publications and Subscriptions

One of the key design goals for TierStore is to enable fine-grained sharing of
application state. To that end, TierStore applications divide the overall filesystem
namespace into disjoint covering subsets called publications. Our current implementa-
tion defines a publication as a tuple <container, depth> that includes any mappings
and objects in the subtree that is rooted at the given container, up to the given depth.
Any containers that are created at the leaves of this subtree are themselves the root
of new publications. By default, new publications have infinite depth; custom-depth
publications are created through a special administrative interface.

TierStore nodes then have subscriptions to an arbitrary set of publications; once a
node is subscribed to a publication, it receives and transmits updates for the objects
in that publication among all other subscribed nodes. The subscription manager
component handles registering and responding to subscription interest and informing
the DTN layer to set up forwarding state accordingly. It interacts with the update
manager to be notified of local updates for distribution and to apply updates received
from the network to the data store.

Because nodes can subscribe to an arbitrary set of publications and thus receive
a subset of updates to the whole namespace, each publication defines a separate
version vector space. In other words, the combination of <node, publication, update
counter> is unique across the system. This means that a node knows when it has
received all updates for a publication when the version vector space is fully packed
and has no holes.

To bootstrap the system, all nodes have a default subscription to the special root
container “/” with a depth of 1. Thus whenever any node creates an object (or a
container) in the root directory, the object is distributed to all other nodes in the
system. However, because the root subscription is at depth 1, all containers within
the root directory are themselves the root for new publications, so application state
can be partitioned.

To subscribe to other publications, users create a symbolic link in a special /.sub
directory to point to the root container of a publication. This operation is detected
by the Subscription Manager, which then sets up the appropriate subscription state.
This design allows applications to manage their interest sets without the need for a
custom programming interface.
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Node A Node B

Step Action FS View Action FS View

write(/foo, “A”) /foo ⇒ “A” write(/foo, “B”) /foo ⇒ “B”

receive C2, M2
/foo ⇒ “A”

receive C1, M1
/foo ⇒ “B”

/foo.#B ⇒ “B” /foo.#A ⇒ “A”

rename(/foo.#B, /foo ⇒ “A” /foo ⇒ “B”

       /bar) /bar ⇒ “B” /foo.#A ⇒ “A”

/foo ⇒ “A”
receive M3

/foo ⇒ “A”

/bar ⇒ “B” /bar ⇒ “B”
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Figure 4.4: Update sequence demonstrating a name conflict and a user’s resolution.
Each row in the table at right shows the actions that occur at each node and the
nodes’ respective views of the filesystem. In step 1, nodes A and B make concurrent
writes to the same file foo, generating separate create and mapping updates (C1, M1

C2, and M2) and applying them locally. In step 2, the updates are exchanged, causing
both nodes to display conflicting versions of the file (though in different ways). In
step 3, node A resolves the conflict by renaming /foo.#B to /bar, which generates a
new mapping (M3). Finally, in step 4, M3 is received at B and the conflict is resolved.

4.2.8 Views and Conflicts

Each mapping contains a view that identifies the TierStore node that created the
mapping. During normal operation, the notion of views is hidden from the user,
however views are important when dealing with conflicts. A conflict occurs when
operations are concurrently made at different nodes, resulting in incomparable logical
version vectors. In TierStore’s single-object coherence model, there are only two types
of conflicts: a name conflict occurs when two different objects are mapped to the same
location by different nodes, while a location conflict occurs when the same object is
mapped to different locations by different nodes.

Recall that all mappings are tagged with their respective view identifiers, so a
container may contain multiple mappings for the same name, but in different views.
The job of the View Resolver (see Figure 4.1) is to present a coherent filesystem to
the user, in which two files can not appear in the same location, and a single file can
not appear in multiple locations. Hard links are an obvious exception to this latter
case, in which the user deliberately maps a file in multiple locations, so the view
resolver is careful to distinguish hard links from location conflicts.

The default policy to manage conflicts in TierStore appends each conflicting map-
ping name with .#X, where X is the identity of the node that generated the conflicting
mapping. This approach retains both versions of the conflicted file for the user to
access, similar to how CVS and Lotus Notes handles an update conflict. However, lo-
cally generated mappings retain their original name after view resolution and are not
modified with the .#X suffix. This means that the filesystem structure may differ at
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different points in the network, yet also that nodes always “see” mappings that they
have generated locally, regardless of any conflicting updates that may have occurred
at other locations.

Although it is perhaps non-intuitive, we believe this to be an important decision
that aids the portability of unmodified applications, since their local file modifications
do not “disappear” if another node makes a conflicting update to the file or location.
This also means that application state remains self-consistent even in the face of
conflicts and most importantly, is sufficient to handle conflicts for many applications.
Still, conflicting mappings would persist in the system unless resolved by some user
action. Resolution can be manual or automatic; we describe both in the following
sections.

4.2.9 Manual Conflict Resolution

For unstructured data with indeterminate semantics (such as the case of general
file sharing), conflicts can be manually resolved by users at any point in the network
by using the standard filesystem interface to either remove or rename the conflicting
mappings. Figure 4.4 shows an example of how a name conflict is caused, what each
filesystem presents to the user at each step, and how the conflict is eventually resolved.

When using the filesystem interface, applications do not necessarily include all
the context necessary to infer user intent. Therefore an important policy decision is
whether operations should implicitly resolve conflicts or let them linger in the system
by default. As in the example shown in Figure 4.4, once the name conflict occurs
in step 2, if the user were to write some new contents to /foo, should the new file
contents replace both conflicting mappings or just one of them?

The current policy in TierStore is to leave the conflicting mappings in the system
until they are explicitly resolved by the user (e.g. by removing the conflicted name),
as shown in the example. Although this policy means that conflicting mappings may
persist indefinitely if not resolved, it is the most conservative policy and we believe
the most intuitive as well, though it may not be appropriate for all environments or
applications. One aspect of the TierStore that helps manage the inevitable conflicts
created due long network latencies is the fact that the view resolver presents a self-
consistent file system to the user, thus enabling the user to continue to work in the
presence of conflicts until an appropriate resolution action can be taken.

4.2.10 Automatic Conflict Resolution

Application writers can also configure a custom per-container view resolution rou-
tine that is triggered when the system detects a conflict in that container. The inter-
face is a single function with the following signature:

resolve(local view, locations, names) → resolved
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The operands are as follows: local view is the local node identity, locations is
a list of the mappings that are in conflict with respect to location and names is a
list of mappings that are in conflict with respect to names. The function returns
resolved, which is the list of non-conflicting mappings that should be visible to the
user. The only requirements on the implementation of the resolve function are that it
is deterministic based on its operands and that its output mappings have no conflicts.

In fact, the default view resolver implementation described above is implemented
as a resolve function that appends the disambiguating suffix for visible filenames.
In addition, the maildir resolver described in Section 4.3.1 is another example of a
custom view resolver that safely merges mail file status information encoded in the
maildir filename. Finally, a built-in view resolver detects identical object contents
with conflicting versions and automatically resolves them, rather than presenting
them to the user as vacuous conflicts.

An important feature of the resolve function is that it creates no new updates.
Instead the resolver takes the updates that exist and presents a self-consistent file
system to the user. This avoids problems in which multiple nodes independently
resolve a conflict, yet the resolution updates themselves conflict [29]. Although a
side effect of this design is that conflicts may persist in the system indefinitely, they
are often eventually cleaned up since modifications to merged files will obsolete the
conflicting updates.

4.2.11 Object Extensions

Another way to extend TierStore with application-specific support is the ability
to register custom types for data objects and containers. The current implementation
supports C++ object subclassing of the base object and container classes, whereby
the default implementations of file and directory access functions can be overridden
to provide alternative semantics.

For example, this extension could be used to implement a conflict-free, append-
only “log object”. In this case, the log object would in fact be a container, though
it would present itself to the user as if it were a normal file. If a user appends a
chunk of data to the log (i.e. opens the file, seeks to the end, writes the data, and
closes the file), the custom type handlers would create a new object for the appended
data chunk and add it to the log object container with a unique name. Reading
from the log object would simply concatenate all chunks in the container using the
partial order of the contained objects’ version vectors, along with some deterministic
tiebreaker. In this way multiple locations may concurrently append data to a file
without worrying about conflicts, and the system would transparently merge updates
into a coherent file.
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4.2.12 Security

Although we have not focused on security features within TierStore itself, security
guarantees can be effectively implemented at complementary layers.

Though TierStore nodes are distributed, the system is designed to operate within
a single administrative scope, similar to how one would deploy an NFS or CIFS share.
In particular, the system is not designed for untrusted, federated sharing in a peer-
to-peer manner, but rather to be provisioned in a cooperative network of storage
replicas for a particular application or set of applications. Therefore, we assume that
configuration of network connections, definition of policies for access control, and
provisioning of storage resources are handled via external mechanisms that are most
appropriate for a given deployment. In our experience, most organizations that are
candidates to use TierStore already follow this model for their system deployments.

For data security and privacy, TierStore supports the standard UNIX file access-
control mechanisms for users and groups. For stronger authenticity or confidentiality
guarantees, the system can of course store and replicate encrypted files as file contents
are not interpreted, except by an application-specific automatic conflict resolver that
depends on the file contents.

At the network level, TierStore leverages the recent work in the DTN community
on security protocols [76] to protect the routing infrastructure and to provide message
security and confidentiality.

4.2.13 Metadata

Currently, our TierStore prototype handles metadata updates such as chown,
chmod, or utimes by applying them only to the local repository. In most cases, the
operations occur before updates are generated for an object, so the intended modifi-
cations are properly conveyed in the CREATE message for the given object. However
if a metadata update occurs long after an object was created, then the effects of the
operation are not known throughout the network until another change is made to the
file contents.

Because the applications we have used so far do not depend on propagation of
metadata, this shortcoming has not been an issue in practice. However, we plan to
add a new META update message to contain the modified metadata as well as a new
metadata version vector in each object. A separate version vector space is preferable
to allow metadata operations to proceed in parallel with mapping operations and
to not trigger false conflicts. Conflicting metadata updates would be resolved by a
deterministic policy (e.g. take the intersection of permission bits, later modification
time, etc). This is similar to the approach taken by many previous replicated file
systems.
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4.3 Applications

In this section we describe the initial set of applications we have adapted to use
TierStore, showing how the simple filesystem interface and conflict model allows us
to leverage existing implementations extensively.

4.3.1 E-mail Access

One of the original applications that motivated the development of TierStore was
e-mail, as it is the most popular and fastest-growing application in developing regions.
In prior work, we found that commonly used web-mail interfaces are inefficient for
congested and intermittent networks [21]. These results, plus the desire to extend
the reach of e-mail applications to places without a direct connection to the Internet,
motivate the development of an improved mechanism for e-mail access.

It is important to distinguish between e-mail delivery and e-mail access. In the
case of e-mail delivery, one simply has to route messages to the appropriate (single)
destination endpoint, perhaps using storage within the network to handle temporary
transmission failures. Existing protocols such as SMTP or a similar DTN-based
variant are adequate for this task.

For e-mail access, users need to receive and send messages, modify message state,
organize mail into folders, and delete messages, all while potentially disconnected,
and perhaps at different locations, and existing access protocols like IMAP or POP
require clients to make a TCP connection to a central mail server. Although this
model works well for high-quality networks, in challenged environments users may
not be able to get or send new mail if the network happens to be unavailable or is
too expensive at the time when they access their data.

In the TierStore model, all e-mail state is stored in the filesystem and replicated
to any nodes in the system where a user is likely to access their mail. An off-the-shelf
IMAP server (e.g. courier [14]) runs at each of these endpoints and uses the shared
TierStore filesystem to store users’ mailboxes and folders. Each user’s mail data is
grouped into a separate publication, and via an administrative interface, users can
instruct the TierStore daemon to subscribe to their mailbox.

We use the maildir [7] format for mailboxes, which was designed to provide safe
mailbox access without needing file locks, even over NFS. In maildir, each message
is a uniquely named independent file, so when a mailbox is replicated using Tier-
Store, most operations are trivially conflict free. For example, a disconnected user
may modify existing message state or move messages to other mailboxes while new
messages are simultaneously arriving without conflict.

However, it is possible for conflicts to occur in the case of user mobility. For
example, if a user accesses mail at one location and then moves to another location
before all updates have fully propagated, then the message state flags (i.e. passed,
replied, seen, draft, etc) may be out of sync on the two systems. In maildir, these
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flags are encoded as characters appended to the message filename. Thus if one update
sets a certain state, while another concurrently sets a different state, the TierStore
system will detect a location conflict on the message object.

To best handle this case, we wrote a simple conflict resolver that computes the
union of all the state flags for a message, and presents the unified name through the
filesystem interface. In this way, the fact that there was an underlying conflict in the
TierStore object hierarchy is never exposed to the application, and the state is safely
resolved. Any subsequent state modifications would then subsume both conflicting
mappings and clean up the underlying (yet invisible) conflict.

4.3.2 Content Distribution

TierStore is a natural platform to support content distribution. The typical usage
would be as follows: At the publisher node, the administrator manipulate files in the
shared repository, divided into publications by content type. Replicas are configured
with read-only access to the publication to ensure that the application is trivially
conflict-free (since all modifications happen at one location). The distributed content
is then served by a standard web server or simply accessed directly through the
filesystem.

As we discuss further in Section 4.4.2, using TierStore for content distribution is
more efficient and easier to administer than traditional approaches such as rsync [81].
In particular, TierStore’s support for multicast distribution provides an efficient deliv-
ery mechanism for many networks that would require ad-hoc scripting to achieve with
point-to-point synchronization solutions. Also, the use of the DTN overlay network
enables easier integration of transport technologies such as satellite broadcast [39] or
sneakernet and opens up potential optimizations such as sending some content with
a higher priority.

4.3.3 Offline Web Access

Although systems for offline web browsing have existed for some time, most op-
erate under the assumption that the client node will have periodic direct Internet
access, i.e. will be “online”, to download content that can later be served when “of-
fline”. However, for poorly connected sites or those with no direct connection at all,
TierStore can support a more efficient model, where selected web sites are crawled
periodically at a well-connected location, and the cached content is then replicated.

Implementing this model in TierStore turned out to be quite simple. We config-
ured the wwwoffle proxy [90] to use TierStore as its filesystem for its cache directories.
By running web crawls at a well-connected site through the proxy, all downloaded
objects are put in the wwwoffle data store, and TierStore replicates them to other
nodes. Because wwwoffle uses files for internal state, if a remote user requests a URL
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that is not in cache, wwwoffle records the request in a file within TierStore. This re-
quest is eventually replicated to a well-connected node that will crawl the requested
URL, again storing the results in the replicated data store.

We ran an early deployment of TierStore and wwwoffle to accelerate web access
in the Community Information Center kiosks in rural Cambodia [9]. For this deploy-
ment, the goal was to enable accelerated web access to selected web sites, but still
allow direct access to the rest of the Internet. Therefore, we configured the wwwoffle
servers at remote nodes to always use the cached copy of the selected sites, but to
never cache data for other sites, and at a well-connected node, we periodically crawled
the selected sites. Since the sites changed much less frequently than they were viewed,
the use of TierStore, even on a continuously connected (but slow) network link, was
able to accelerate the access.

4.3.4 Data Collection

Data collection represents a general class of applications that TierStore can sup-
port well. The basic data flow model for these applications involves generating log
records or collecting survey samples at poorly connected edge nodes and replicating
these samples to a well-connected site.

Although at a fundamental level, it may be sufficient to use a messaging interface
such as e-mail, SMS, or DTN bundling for this application, the TierStore design
offers a number of key advantages. In many cases, the local node wants or needs to
have access to the data after it has been collected, thus some form of local storage
is necessary anyway. Also, there may be multiple destinations for the data; many
situations exist in which field workers operate from a rural office that is then connected
to a larger urban headquarters, and the pub/sub system of replication allows nodes
at all these locations to register data interest in any number of sample sets.

Furthermore, certain data collection applications can benefit greatly from fine-
grained control over the units of data replication. For example, consider a census or
medical survey being conducted on portable devices such as PDAs or cell phones by
a number of field workers. Although replicating all collected data samples to every
device will likely overwhelm the limited storage resources on the devices, it would be
easy to set up publications such that the list of which samples had been collected
would be replicated to each device to avoid duplicates.

Finally, this application is trivially conflict free. Each device or user can be given
a distinct directory for samples, and/or the files used for the samples themselves can
be named uniquely in common directories.

4.3.5 Wiki Collaboration

Group collaboration applications such as online Wiki sites or portals generally
involve a set of web scripts that manipulate page revisions and inter-page references
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in a back-end infrastructure. The subset of common wiki software that uses simple
files (instead of SQL databases) is generally quite easy to adapt to TierStore.

For example, PmWiki [62] stores each Wiki page as an individual file in the config-
ured wiki.d directory. The files each contain a custom revision format that records
the history of updates to each file. By configuring the wiki.d directory to be in-
side of TierStore, multiple nodes can update the same shared site when potentially
disconnected.

Of course, simultaneous edits to the same wiki page at different locations can
easily result in conflicts. In this case, it is actually safe to do nothing at all to
resolve the conflicts, since at any location, the wiki would still be in a self-consistent
state. However, users would no longer easily see each other’s updates (since one of
the conflicting versions would be renamed as described in Section 4.2.8), limiting the
utility of the application.

Resolving these types of conflicts is also straightforward. PmWiki (like many wiki
packages) contains built in support for managing simultaneous edits to the same page
by presenting a user with diff output and asking for confirmation before committing
the changes. Thus the conflict resolver simply renames the conflicting files in such a
way that the web scripts prompt the user to manually resolve the conflict at a later
time.

4.4 Evaluation

In this section we present some initial evaluation results to demonstrate the viabil-
ity of TierStore as a platform. First we run some microbenchmarks to demonstrate
that the TierStore filesystem interface has competitive performance to traditional
filesystems. Then we describe experiments where we show the efficacy of TierStore
for content distribution on a simulation of a challenged network.

4.4.1 Microbenchmarks

This set of experiments compares TierStore’s filesystem interface with three other
systems: Local is the Linux Ext3 file system; NFS is a loopback mount of an NFS
server running in user mode; FUSE is a fusexmp instance that simply passes file
system operations through the user space daemon to the local file system. All of the
benchmarks were run on a 1.8 GHz Pentium 4 with 1 GB of memory and a 40GB
7200 RPM EIDE disk, running Debian 4.0 and the 2.6.18 Linux kernel.

For each filesystem, we ran several benchmark tests: CREATE creates 10,000 se-
quentially named empty files. READ performs 10,000,000 16 kilobyte read() calls
at random offsets of a one megabyte file. WRITE performs 10,000,000 16k write()

calls to append to a file; the file was truncated to 0 bytes after every 1,000 writes.
GETDIR issues 1,000 getdir() requests on a directory containing 800 files. STAT is-
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Local NFS FUSE TierStore

CREATE 1.72 (0.04) 11.69 (0.09) 3.88 (0.1) 7.13 (0.06)
READ 16.75 (0.08) 19.75 (0.06) 20.31 (0.08) 21.54 (0.2)
WRITE 1.61 (0.01) 42.56 (0.6) 2.75 (0.3) 1.90 (0.8)
GETDIR 7.39 (0.01) 8.17 (0.01) 8.46 (0.01) 15.38 (0.01)

STAT 3.00 (0.01) 3.76 (0.01) 3.18 (0.005) 3.19 (0.01)
RENAME 27.00 (0.2) 36.03 (0.03) 30.04 (0.07) 38.39 (0.05)

Table 4.1: Microbenchmarks of various file system operations for local Ext3, loopback-
mounted NFS, passthrough FUSE layer and TierStore. Runtime is in seconds aver-
aged over five runs, with the standard error in parenthesis. Note: TierStore is faster
than FUSE in the write operation due to two factors: First, the TierStore caching
implementation keeps the file object in memory without immediately writing the con-
tents of the object to disk. Second, in the FUSE null implementation, each write

adds an additional open and close system call.

sues 1,000,000 stat calls to a single file. Finally, RENAME performs 10,000 rename()

operations to change a single file back and forth between two filenames. Table 4.1
summarizes the results of our experiments. Run times are measured in seconds, av-
eraged over five runs, with the standard error in parentheses.

The goal of these experiments is to show that existing applications, written with
standard filesystem performance in mind, can be deployed on TierStore without wor-
rying about performance barriers. These results support this goal, as in many cases
the TierStore system performance is as good as traditional systems. The cases where
the TierStore performance is worse are due to some inefficiencies in how we interact
with FUSE and the lack of optimizations on the backend database.

4.4.2 Multi-node Distribution

In another set of experiments, we used the Emulab [87] environment to evaluate
the TierStore replication protocol on a challenged network similar to those found in
developing regions.

To simulate this target environment, we set up a network topology consisting of
a single root node, with a well-connected “fiber” link (100 Mbps, 0 ms delay) to two
nodes in other “cities”. We then connect each of these city nodes over a “satellite” link
(128 kbps, 300 ms delay) to an additional node in a “village”. In turn, each village
connects to five local computers over “dialup” links (56 kbps, 10 ms delay). Note that
while these numbers may not be entirely representative of the operating environment,
we have found that the experimental results were not sensitive to minor perturbations
in the parameters. Figure 4.5 shows the network model for this experiment.

To model the fact that real-world network links are both bandwidth constrained
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Figure 4.5: Network model for emulab experiments.

and intermittent, we ran a periodic process to add and remove firewall rules that block
transfer traffic on the simulated dialup links. Specifically, the process ran through each
link once per second, comparing a random variable to a threshold parameter chosen
to achieve the desired downtime percentage, and turning on the firewall (blocking
the link) if the threshold was met. It then re-opened a blocked link after waiting 20
seconds to ensure that all transport connections closed.

We ran experiments to evaluate TierStore’s performance for electronic distribution
of educational content, comparing TierStore to rsync [81]. We then measured the time
and bandwidth required to transfer 7MB of multimedia data from the root node to
the ten edge nodes.

We ran two sets of experiments, one in which all data is replicated to all nodes
(single subscription), and another in which portions of the data are distributed to
different subsets of the edge nodes (multiple subscriptions). The results from our
experiments are shown in Figure 4.6.

We compared TierStore to rsync in two configurations. The end-to-end model
(rsync e2e) is the typical use case for rsync, in which separate rsync processes are run
from the root node to each of the edge nodes until all the data is transferred. As can
be seen from the graphs, however, this model has quite poor performance, as a large
amount of duplicate data must be transferred over the constrained links, resulting in
more total traffic and a corresponding increase in the amount of time to transfer. This
is shown in Figure 4.7. As a result, TierStore uses less than half of the bandwidth
of rsync in all cases. This result, although unsurprising, demonstrates the value of
the multicast-like distribution model of TierStore to avoid sending unnecessary traffic
over a constrained network link.

To offer a fairer comparison, we also ran rsync in a hop-by-hop mode, in which each
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node distributed content to its downstream neighbor. In this case, rsync performs
much better, as there is less redundant transfer of data over the constrained link.
Still, TierStore can adapt better to intermittent network conditions as the outage
percentage increases. This is primarily because rsync has no easy way to detect when
the distribution is complete, so it must repeatedly exchange state even if there is no
new data to transmit. This distinction demonstrates the benefits of the push-based
distribution model of TierStore as compared to state exchange when running over
bandwidth-constrained or intermittent networks.

Finally, although this latter mode of rsync essentially duplicates the multicast-like
distribution model of TierStore, rsync is significantly more complicated to adminis-
ter. In TierStore, edge nodes simply register their interest for portions of the content,
and the multicast replication occurs transparently, with the DTN stack taking care
of re-starting transport connections when they break. In contrast, multicast distri-
bution with rsync requires end-to-end application-specific synchronization processes,
configured with aggressive retry loops at each hop in the network, making sure to
avoid re-distributing partially transferred files multiple times, which is both tedious
and error prone.

4.5 Conclusions

In this chapter we described TierStore, a distributed filesystem for challenged
networks in developing regions. Our approach stems from three core beliefs: the
first is that dealing with intermittent connectivity is a necessary part of deploying
robust applications in developing regions, thus network solutions like DTN are critical.
Second, a replicated filesystem is a natural interface for applications and can greatly
reduce the burden of adapting applications to the intermittent environment. Finally,
a focus on conflict avoidance and a single-object coherence model is both sufficient
for many useful applications and also eases the challenge of programming. Our initial
results are encouraging, and we hope to gain additional insights through deployment
experiences.
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Chapter 5

Disconnected Wiki

The online collaborative encyclopedia Wikipedia [88] constitutes (as of October,
2009) approximately 9.23 million user-contributed articles and is among the top ten
most visited websites in the world. Although article growth has tapered off with the
project’s maturity, the web site has grown organically since its inception in 2001. A
critical piece of the success of Wikipedia has been the ease with which the users can
participate in writing Wikipedia articles. The popularity of “wikis” [15] as website
content management software also speaks to the usefulness of the medium. Generally
speaking, wikis have proven to be an excellent tool for collaboration and content
generation.

Several aspects of wikis are interesting for the emerging regions context. First,
there is a great need in emerging regions for content that is locally relevant. Local
content can take a variety of forms, from a local translation of existing online material
to community knowledgebases. Most of the content on the web today is written in
English and targeted towards in the industrialized world. Many Information Com-
munications and Technology for development (ICT4D) programs seek to address this
issue with local content generation effort using website creation tools [2, 48]. Training
is needed to become proficient in website authoring. Wikis are well suited to fill this
niche because they combine both content creation and content sharing into a tool
that is easy to use. The Wikipedia experience shows that an interested user base can
quickly generate a large amount of wiki content.

Second, the wiki model satisfies many organizational needs for collaboration and
document sharing. Because wiki documents are unstructured, users can use shared
pages as a whiteboard without being overly burdened by system-enforced semantics
and schemas. Annotations and discussions are easily incorporated into a wiki page
along with the main content. Many wikis also implement some form of revision control

Some of the material presented in this chapter was previously published as “DTWiki: A Discon-
nection and Intermittency Tolerant Wiki” in 17th Annual International WWW Conference, April
2008 in collaboration with Eric Brewer.
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system, which is a powerful tool for managing multiple concurrent user modifications.
Finally, there is a large demand for the content generated in existing online wikis.

Education-focused non-governmental organizations (NGOs) distribute snapshots of
Wikipedia content as part of their digital classroom material. [47, 54, 89] Although
snapshots are useful, they result in a unidirectional flow of information. A wiki that
has a bidirectional information flow would allow local student discussions to connect
with the wider community on the Internet. This is something that is not possible
with existing snapshot or caching-based approaches.

To date, the use of wiki software in the emerging region context has been hampered
by a lack of reliable Internet connectivity. This is primarily due to the centralized
web architecture of wiki software. For example, the data backend for the popular
Wikipedia website consists of a single database master replicated in a cluster envi-
ronment. This kind of architecture precludes the use of wikis in environments where
there are long-lasting network partitions separating “well-connected” islands of users
from each other and the Internet. Common examples of such environments include
Internet cafés and schools that are disconnected from the network due to poor in-
frastructure or a desire to reduce connection costs. In these scenarios, users are
able to communicate within the local network, but cannot always reach the Internet.
More esoteric examples include locations serviced by “sneaker net” or a mechanical
backhaul [58, 72].

Despite wiki’s centralized provenance, the basic wiki data model is a good can-
didate for intermittent networks and disconnected operation. Wiki systems already
have to handle the possibility of conflicting concurrent user edits that can occur due to
stale browser data. In addition, the central metaphor of the wiki, that of a page, pro-
vides an obvious boundary for data sharing and data consistency. The loose semantics
of the wiki application also tempers user expectations for conflict resolution. On the
Wikipedia website for example, users frequently perform minor edits to “fix” content
such as correcting spelling or grammar. User intervention in resolving conflicts fits
this usage pattern.

Finally, we note that many of the auxiliary operations of wikis, e.g. presentation
and search, are functions that can be implemented with the information available
locally with no need for distributed state.

5.1 Wiki Nature

Because wiki software ranges in implementation size from a two-hundred byte
shell script to full-blown content-management systems, we took the top five wikis
as referenced by the popular wiki website c2 [86] as a basis for determining the key
functionality needed for wiki software. The methodology used by c2 to rank wiki
engines is to compare Google search hit counts for each of the wiki engines. We
are careful to note that this is not a scientific sampling, however, it should serve to
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Wiki Implementation Features

MediaWiki PHP, SQL storage Revision history, ACLs, discussion pages, rich me-
dia, search, plugins

TWiki PHP, RCS, SQL Revision history, ACLs, SQL database integration
(forms), rich media, search, plugins

TikiWiki PHP, SQL Revision history, ACLs, full fledged content man-
agement system, search, plugins

PukiWiki PHP, file system Revision history, file attachments
PhpWiki PHP, SQL Revision history, file attachments

Table 5.1: Popular wiki packages and their feature set.

provide a flavor of the feature sets of wiki software. We note that most of the code
in a wiki software stack concerns rendering and formatting. Although presentation
is important, it is the semantics of the shared data that affects how the system is
constructed. Table 5.1 summarizes the features of the top five wiki platforms [45, 60,
63, 80, 82].

At the most basic level, wikis comprise a set of user-editable web pages written
in a simplified markup language. Referenced pages in the wiki are automatically
generated as they are linked. The general aim of the wiki application is fast and easy
content creation. All of the top five wiki systems track edit history in addition to
page contents. A version control system allows users to retrieve previous versions of a
page. Version control brings all of the benefits of automatic revisioning to concurrent
multi-user environments.

As wikis have moved away from their original open “free for all” model of user
contribution to one with more structure, the management of user accounts has become
part of the wiki system. User accounts determine access control for pages on the wiki
site.

Content creation is the product of a collaboration among participating users. Most
of the top five popular wikis use a separate content namespace for discussions among
users. The discussion page could be implemented as an ordinary wiki page, although
it may be more appropriate to structure it as an append-only chat log, which more
closely matches the desired semantics.

Finally, all five wiki systems have search and indexing functionality to enable users
to browse created content efficiently. Thus for DTWiki to be considered to be feature
complete, we need to have revision tracked hypertext pages, some form of integrated
user account storage, a discussion oriented set of pages, and text search and indexing
capabilities.
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Figure 5.1: A comparison between the proxy/caching architecture and the DTWiki
architecture. Each cloud represents a potentially long-lasting partition of the network.
In the proxy architecture, updates only flow from the Internet-based server, while in
the DTWiki architecture, wiki updates can be made and disseminated from any of
the clouds.

5.1.1 Wikis For Intermittent Environments

The current approach to bringing wikis and wiki content to poorly networked
environments is to create a mirror of the wiki site, either by taking a static web crawl
of the site or by running a copy of the wiki software on a server on the partitioned side
of the network from a database snapshot. Figure 5.1a depicts such a setup. Content
hosted on the Internet-based wiki server is cached or pushed out to the disconnected
clients in each network partition. Clients view wiki content on the local server on the
intranet but have no interaction with the site hosted on the Internet.

The problem with using snapshots and local caching schemes is that the local
content becomes divorced from updates to the main content. In addition, contribu-
tions by local users are either not possible or they are difficult to share with other
parts of the network. This turns the user contribution based wiki model into a static,
read-only web page.

In the DTWiki system architecture (Figure 5.1b), built on the TierStore shared
file system, clients can locally modify their wiki state at any time. Changed con-
tent from the Internet site as well as those in the intermittently connected networks
are synchronized across temporary network partitions and bad communication links.
Entry into the wiki system only involves connecting the local DTWiki server to an
upstream DTWiki host via DTN. Once the underlying network routing has been
established, wiki content is transparently shared among DTWiki hosts.

Finally we note that using an external synchronization mechanism such as rsync [81]
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to keep wiki databases in each partition up to date does not work well because it is
not integrated into the wiki semantics nor does it handle concurrent update conflicts.
Also, replacing the underlying IP protocol with a delay-tolerant transport is not suffi-
cient because the HTTP protocol between the client and server behaves poorly given
long network round-trip times.

5.2 Implementation

In this section we detail how DTWiki is implemented. First, we briefly summarize
the interface of TierStore, which is the file system platform we used to construct
DTWiki. We then describe how each component of a wiki as described in Section 5.1
is implemented in DTWiki.

5.2.1 TierStore

TierStore is a file system for building distributed, delay-tolerant applications and
is described in detail in Chapter 4. TierStore uses the Delay-Tolerant Networking
(DTN) stack [19] for network transport, which enables the file system to be robust
across intermittent connectivity and to work over diverse kinds of network connectiv-
ity. The abstraction that TierStore presents to the application is that of a transpar-
ently synchronized shared file system. TierStore has three major components:

• Transparent synchronization of file system contents via the TierSync protocol
over a DTN network.

• Partial replication of shared data through disjoint publications.

• Detection and resolution of concurrent update conflicts on single files.

Changes to the shared TierStore file system are automatically synchronized with
other TierStore hosts in the network. TierStore guarantees that changes to a file
will not be visible to remote hosts until all local file handles have been closed. This
provides the application with a mechanism to ensure that inconsistent partial edits
to a file never appear remotely.

Portions of the file system namespace are divided into disjoint publications that
are shared among subscribing TierStore nodes. Publication boundaries are delineated
by a directory and depth. For example, subscribers of a publication rooted at folder
images/ with depth two will share files in images/ and its first level of subdirectories.
Figure 5.2 shows the three TierStore file systems sharing two publications: text/ and
images/. In Figure 5.2, node A is subscribed to images/ and text/ while nodes B
is only subscribed to text/ and C is only subscribed to the images/ publication.
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Figure 5.2: Figure on the left, the data layout of the DTWiki. The arrow indicates
a symbolic link. Figure on the right, three TierStore nodes A, B and C sharing
publications images/ and text/. The file test/notes.txt received a conflicting
update on nodes A and B resulting in a conflict files notes.txt.A and notes.txt.B

Because hosts in the TierStore system may be temporarily partitioned, applica-
tions using TierStore will inevitably concurrently update shared state. TierStore is a
system that only guarantees coherence rather than general consistency. This means
that it can only detect conflicts resulting from concurrent updates to the same file
or file name but cannot impose any ordering constraints across updates to multiple
files. When concurrent updates occur, the TierStore system detects and informs the
local application through application configured resolver functions.

In the default case, the TierStore system resolves conflicting file versions by ap-
pending a unique suffix to the remote file in the file system. For example, as shown in
Figure 5.2, suppose two TierStore nodes A and B concurrently update the same file
/notes.txt. After synchronization, the TierStore application on node A will see local
edits in /notes.txt while the edits from node B will be in /notes.txt.B. However,
at node B, local edits will be in notes.txt and node A’s edits in notes.txt.A. Al-
though the default resolution procedure is primitive, it turns out that this is sufficient
for implementing all of the functionality needed by DTWiki.

Finally, TierStore has support for application specified callback hooks that notify
the application when updates occur to the file system, similar to the inotify function
available in Linux. These are useful for maintaining structured data such as search
indices that are derived from the state stored within TierStore.

5.2.2 Data Schema

Most existing wiki software stores data using a SQL database. Data layout in
DTWiki is complicated due to three concerns. First, because the underlying store is
a file system, we need to organize the layout in a manner that is efficient to access.
Second, because TierStore only supports object coherence, we need to guarantee that
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the wiki does not require consistency across multiple files. Finally, shared files in
the TierStore system may result in conflicting versions. Conflicts must be dealt with
in a way that makes sense to the user and does not result in invalid states for the
application.

Our strategies for dealing with these requirements are as follows: We attempt to
make each piece of data (e.g. file) shared in TierStore as self-contained as possible.
For instance, all attributes related to a data object are pushed into the object itself.
The primary way by which an object is named is used to organize the file system
hierarchy. Auxiliary methods of reference (such as external databases indexing the
content) are handled by inserting hooks into the TierStore update notification system
to update an external database with indexing information whenever updates arrive.
Finally, conflicts in shared state are either 1) handled via a semantically well-defined
merge process, or 2) avoided by the use of techniques such as globally unique names
or content-based naming.

We now describe each component of DTWiki data backend in detail. Figure 5.2
is a summary of the general data layout of DTWiki in the TierStore file system.

5.2.3 Pages and Revisions

The central data object in DTWiki is that of a page revision. A new page revision
is created whenever a change is made to a wiki page. A revision stores three things:
metadata about the page edit, the contents of the wiki page itself and the name of
the preceding revisions that the current revision is derived from. Each revision is a
separate file in a revisions/ directory in the TierStore file system. All revision files
are named with a globally unique id. Figure 5.3 shows an example revision file.

A separate directory pages/ contains symbolic links with a name of a page to the
revision representing the most current revision in revisions/. For instance, the page
with the title “Wiki Page” would be symbolically linked to the appropriate revision
file in the revisions directory.

When two users concurrently update the same wiki page, they create conflicting
symbolic links in the pages/ directory. The default TierStore conflict resolver renders
this by appending a suffix to each remotely conflicting copy. The wiki software detects
the presence of the conflict and renders to the user a message stating that a conflict
occurred and displays a merge of the contents of the conflicting revisions. Note that
this is handled very similarly to the case that occurs in current wiki software when
a user edit on their local web browser has become stale due to a concurrent edit, so
the user does not need to learn any new concepts in order to deal with concurrency.
However, it is much more likely that pages will be in conflict with a greater frequency
than in the online case due to the high network latency. This is somewhat moderated
by the fact that multiple updates to the same page while a node is disconnected will
be coalesced before they are transmitted, thus remote nodes will only receive a single
conflict for the page, rather than many.
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Revision File

revision id: 9aba4373

previous revisions: 2487a9e3 544bafe2

date: Wed, 24 Oct 07 8:35:25

user: wikizen@dtn.com 3a424353

page title: Example Page

tags: example wikizen

read: ALL

write: admin

page content. . .

User file

user name: wikizen@dtn.com

user id: 3a424353

password hash: ####

groups: admin

Discussion Entry

user name: wikizen@dtn.com

date: Wed, 24 Oct 07 8:35:25

conversation. . .

Figure 5.3: Example revision file, user file and discussion file.

Previous revision pointers in the metadata allow the wiki system to derive a
revision history of a page. A page may have multiple previous revisions if the edit
occurred during a conflict. When an edit occurs on a page with conflicting updates,
each of the previously conflicting revisions is added to the previous revisions field.

5.2.4 User Accounts

Information about user accounts is stored in the users/ directory. Figure 5.3
shows an example user account file. The user account file contains user login and
passwords as well as their access-control groups. Although update conflicts in the
user account file should be rare, there are natural conflict resolution rules for each of
the mutable fields. For example, the access-control groups that a user belongs is the
intersection of the groups in the conflicting files. In some cases, such as when a user
enters conflicting password entries into the system, administrative action is required
to resolve the conflict.
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5.2.5 Attachments and Media

Each wiki page can contains attachments of binary files. Rich media and file
attachments are stored in the media/ directory in a file named by the MD5 hash
of its contents. The metadata describing the attached file is stored in the linking
wiki page. This scheme accomplishes two things. First, the same attachment can be
linked multiple times without requiring additional storage space. Second, the content
hash ensures that no conflicts can be created by a file upload, eliminating the need
for revision control of the media files in addition to the wiki content.

5.2.6 Discussion Pages

Creation of wiki content requires some amount of coordination among users of the
system. DTWiki facilitates these discussions by creating a separate user conversation
page for each wiki page in the system. Some wiki systems implement the conversation
page as a wiki page. We choose to have different semantics for discussions because
multiple updates to the conversation page by multiple users is expected to be the
norm rather than the exception. This means that the active conversations will be
almost constantly in benign conflict as each user’s conversations should be trivially
mergeable.

Conversations are stored in discussion/page name/ directory. Each new com-
ment post by a user about the wiki page is stored in the directory in a new file named
by a new globally unique id. When viewing the conversation, DTWiki software con-
catenates all of the conversation file entries in the discussion directory sorted by time
stamp. The conversation entries are, in effect, organized as an append-only log. We
note that this is a simplified first-cut implementation towards the implementation of
the discussion page. Techniques for displaying e-mail discussion threads can be used
and fit well with way the updates to the discussion page are structured.

5.2.7 Search/Indexing

Searching and indexing are commonly implemented by leveraging search func-
tionality in the SQL database backend of the wiki. We choose not to replicate search
index state via the shared TierStore file system because all of the category and search
indexes can be derived locally from the shared portion of the wiki. Thus, an off-the-
shelf text search engine can be used. All that is required are the appropriate hooks
to refresh the search index when new content arrives.

The TierStore has a script hook system for specifying external scripts to be run
when an update to the file system arrives. DTWiki uses the update notifications to
run an external indexing engine. Our preliminary implementation uses the Apache
Lucene search engine, but any similar text search application could be used.
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# Revisions Time per Revision (seconds)

5,000 0.079
10,000 0.084
40,000 0.095

Table 5.2: Local scalability of the system with respect to the number of revisions
during an import of revisions from the WikiVersity trace, measured in terms of the
time taken per revision imported.

5.2.8 Partial Sharing

Wiki sites with a great deal of content such as Wikipedia have mechanisms to
organize their data into disjoint namespaces. For example, the Wikipedia website is
actually a conglomeration of several separate wikis split by language and by function.
The dictionary Wiktionary is occupies a separate namespace from Wikipedia. In
DTWiki, each sub-wiki is placed on a separate TierStore publication, which enables
participating TierStore nodes to subscribe to the subset of content in which they are
interested.

5.3 Evaluation

We evaluate our DTWiki prototype for scalability and efficiency. First, we show
that local system can scale to handle content on the order of Wikipedia-sized loads
and that the overhead imposed by our data schema is not an issue. Second, we
show that the DTWiki system does not incur much additional overhead in terms
of bandwidth used. Finally, we provide results for a wiki trace replay on a small
simulated network.

All scalability and bandwidth experiments were run on machines with a Intel Xeon
2.80 GHz processor with 1 gigabyte of memory. The DTWiki software itself never
exceeded 200 MB of resident RAM during the runs. The trace replay was performed
on a set of 1.8GHz Pentium 4 with 1GB of memory.

5.3.1 Scalability

We tested the scalability of the DTWiki software by taking a portion of Wikipedia
and measuring the time required to import the data into a local DTWiki system. The
data file consists of the Wikiversity section of the website, 1.4 gigabytes of data total
consisting of over 41,470 revisions. Our import software takes each Wikipedia revision
and creates a DTWiki revision with the same content. Table 5.2 is a graph of number
of revisions imported versus the amount of time needed for the import to finish. As
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Revisions Network Content Overhead

100 1,000,829 982,369 1.8%
500 5,564,302 5,438,636 2.3%
1000 8,009,046 7,749,412 3.2%

Table 5.3: Overhead of DTWiki in network traffic for synchronization with various
number of revisions. Network and Content sizes are measured in bytes.

shown in the graph, the DTWiki system scales linearly with the number of imported
articles.

We also tested the response time of the DTWiki after the import of the data
in terms of latency per page load. This was done by picking 1,000 pages randomly
from the wiki and loading their contents. (Note: this does not include time spent
rendering the web page in the browser.) This experiment was performed ten times
with different randomized sets of pages, starting with an empty cache. Page loads
took on the average 7.8 ms to retrieve.

5.3.2 Bandwidth

Our DTWiki prototype has be competitive with existing approaches for web
caching and file synchronization. To test whether this is true, we compare the band-
width consumed by two DTWiki synchronizing their contents versus the size of the
content itself. The test data was generated from the Wikiversity dump used above.
The experiment was run using 100, 500 and 1,000 revisions. Table 5.3 summarizes the
result of the experiment. Overhead is measured as the percentage of extra network
traffic versus the total size of the shared content.

5.3.3 Simulated Usage

In order to obtain a sense of the usability of the DTWiki system in a real network
environment, we ran a time-scaled simulated usage pattern from a three month seg-
ment of the same Wikiversity trace on a real DTWiki system. The network consisted
of a star topology with a single central DTWiki node and three leaf DTWiki nodes.
The network connectivity between the nodes was controlled using a network traffic
shaper to simulate disconnections. Two of the leaf nodes were given nightly connec-
tivity (from 18:00 to 6:00) to emulate the conditions of a nightly scheduled dial-up
connection of a remote school. The remaining leaf node was left always connected the
central node to simulate an Internet connected client. In order for the simulation to
finish in a reasonable amount of time, each second in the experiment was simulated
by 0.005 seconds of wall clock time.
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Figure 5.4: The average number of pages updates and conflicts that occur over a
period of 120 days at a node using a replayed WikiVersity trace and simulated network
with scheduled disconnections.

Revision edit history from the months of October, November and December in
year 2007 was used to generate the simulated page edits. The edits were distributed
among the three leaf nodes by randomly dividing the user population in three equal
parts and assigning each set of users to a particular node. The trace data contained
12,964 revisions on 2,677 different pages from a total of 792 authors over the three
month period.

Figure 5.4 shows the average number of updates to pages at a node during the
3-month period versus the number of conflicts detected by the DTWiki system. The
conflict rate was 10 pages or less for 63 of the days in the simulation; however, there
were bursts in the conflict rate above 30 conflicts for four days during the trace run.
We note that the high conflict rate may be due to the random assignment of authors
to nodes. A real-world assignment may exhibit more author locality in edits which
would reduce the edit conflict rate. In addition, the conflict rate is conservative due
to the fact we do not distinguish between conflicts that are automatically mergeable
versus those that require user intervention.

5.4 Related Work

DTWiki is closely related to a class of proxy applications that aim to make tradi-
tionally network-based services available when the hosts are disconnected. WWWOF-
FLE [90], NOFFLE [51] and OfflineIMAP [53], are respectively proxies which provide
clients cached offline access for HTTP, NEWS and IMAP servers. The TEK [79]
project is a web caching proxy which has been designed specifically for addressing
connectivity issues of emerging regions. TEK uses e-mail as transport and supports
transcoding and compression.

The design of these systems has focused mostly on the single disconnection sce-
nario in which the intermittent connection separates the user(s) from the Internet.
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DTWiki provides wiki functionality for arbitrary combination of network topologies
and intermittency. With regard to flexible use of network topology, the DTWiki sys-
tem is related to the Lotus Notes [35], Bayou [77] peer-to-peer groupware systems.
Lotus Notes has similar structure and goals. The central data structure of the Lo-
tus system is the note, which is a semi-structured document that can cross reference
other notes in the system. Bayou is a general system for building applications in
intermittent networks. The authors of the Bayou system implement several struc-
tured collaboration applications such as a shared calendar and a shared bibliographic
database, but did not investigate shared intermittently connected hypertext systems.

The concept of revisions and concurrent edit management is similar to the func-
tionality of version control systems such as CVS and Mercurial [46, 83] which allow
disconnected locals edits and resolution of conflicts cause by remote users. The dif-
ference is that our use of the DTN and TierStore software architecture allows us to
handle arbitrary network topologies and more exotic forms of transport. We also note
that the semantics of the wiki page are simpler than that of an arbitrary file system
operation. For instance, we do not support tracking atomic changes across multiple
pages.

5.5 Conclusion

In this chapter, we presented DTWiki, a system for collaborative content creation
in networks where disconnection is the expected norm. DTWiki offers the full power
of an online wiki coupled with the ability to perform local edits and local content
creation while partitioned from the network. The DTWiki system is adaptable to
arbitrary kinds of network topologies and disconnection patterns. The adaptation of
the wiki feature set to work in a disconnected was surprisingly straightforward. One
factor that worked to our advantage is the simple semantics of the wiki application,
which were easy to map to the TierStore coherency model.

On the technical front, we intend to investigate whether other pieces of online
content management systems are conducive to being built in a manner similar to
DTWiki. There are also opportunities in improving the integration of the data model
to traffic prioritization. As the system is currently implemented, revision data is not
prioritized for newer copies of the wiki page. Ideally, fresher pages should be delivered
in front of older pages, presumably because the older revisions are less useful. Also,
there may also be a better data partitioning algorithms to enable finer grain sharing
than whole wiki namespaces.

Our experience with DTWiki has found that while the consistency model of Tier-
Store is appropriate for the wiki application, the file system programming interface
is somewhat awkward for application programmers. We are investigating a separate
database oriented interface to TierStore to allow for easier integration with existing
database-based software.
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It is our suspicion that there is much to be gained by enabling bidirectional sharing
of information in the unstructured, easy-to-use format of a wiki. Not only will such
a system enable the generation of local content, but the presence of a globally shared
“white board” can be adapted by hand to a myriad number of applications.
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Chapter 6

Conclusion

In this thesis, we presented a design for an application stack for building dis-
tributed applications in environments with unreliable and intermittent network con-
nectivity. Our system, TierSync, builds on the Delay-Tolerant Networking overlay
network protocol and provides a flexible object-based synchronized shared-storage
system. The TierStore file system uses the TierSync synchronization system to
provide a weakly-consistent shared file system abstraction, allowing for easy exten-
sion and porting of existing applications to work in disconnected environments. Fi-
nally, we demonstrate the applicability of the entire system stack with a distributed,
disconnection-tolerant wiki built using the TierStore file system.

6.1 Future Directions

There are several future directions that proceed directly from the research pre-
sented in this thesis:

• TierSync protocol : There are many performance and implementation improve-
ments that can be made to the TierSync protocol. Our protocol description
only addresses transmissions within a predefined tree. However, it can be easily
extended to be applicable for arbitrary peer-to-peer communications in a man-
ner similar to the design of the Cimbiosys [65] system. Second, the separation
of metadata and data has not been used to the fullest extent. For instance,
small metadata updates of the sets of versions stored at each node can also
be tagged with out-of-band information about the new updates. This informa-
tion can easily be used to implement functionality such as alerts and “push”
e-mail. Finally, there are ample opportunities for use of application specific
compression and delta-encoding. One challenge with real-world deployments is
making the protocol packets fit within the frames of an SMS message to reduce
communication costs.
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• Database Mapping : Upon examining some relevant applications that use rela-
tional databases as durable storage, it became apparent that it would be possi-
ble, given some annotations from the programmer, for the relational data to be
mapped to TierSync objects and shared using the TierSync protocol. A simple
object-relational mapping layer would enable easy porting of many additional
applications to the TierSync stack.

• Field deployments : In terms of in the field deployments of the research technol-
ogy, we are continuing our work in integrating TierSync with the medical in-
formatics system from the National Telehealth Unit in the University of Philip-
pines, Manila. TierSync will be used to link and share medical information
among urban and rural community health centers. As a working deployment
with real needs and pressing constraints in both cost and connectivity, the com-
munity health centers will help drive the design choices of the TierSync stack.

• Security : One aspect that has not been addressed is the security model for the
data shared in the system. In the TierSync system, we assume that the network
is under a single administrative domain and the entire infrastructure is trusted.
In this model there are two mechanisms for security: first, network transmissions
can be secured with existing DTN network security mechanisms [76]; second,
individual updates in the system are encrypted to prevent unauthorized access.
However, there are cases in which there is a need for strict limits as to where
data can be shared as well as network topologies with nodes of different trust
levels. One way to address this is to take a vertical system (such as the medical
information system in the Philippines) and explore appropriate security model
that works with the TierSync storage system.

• Federated systems : In our experience in the field, we have found that a com-
mon administrative domain may not be the correct model for some application
areas. For example, the community health organizations mentioned above is
composed of grassroots health centers, municipal departments of health and
regional hospitals. Each of these organizations operate under separate admin-
istrative policies and utilize a heterogeneous set of information technologies. In
this “federated” system, different policies regarding where data is stored and
shared must be reconciled. Extending a shared state storage system such as
TierSync to deal with these policy is open problem.

In this thesis, we presented TierSync, a distributed eventually-consistent shared-
storage synchronization primitive for DTNs. TierSync enables applications to share
persistent data among TierSync nodes in an efficient and flexible manner. Novel fea-
tures of the TierSync protocol include efficient support for fine grained partial sharing
and the ability to arbitrarily order updates for data prioritization. We then demon-
strated an implementation of the TierSync protocol as a file-system (TierStore) and
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show useful applications can be easily ported to the TierSync system such a DTWiki,
distributed e-mail server, offline web caching, log collection and file sharing.

Several design principles pervade the applications constructed using TierSync.
The first principle is that of conflict avoidance, i.e. using appropriate data structures
that have designed to be conflict free as much as possible. The second principle is
the use of self-consistent objects and views. These two principles in concert reduce
the conflicts visible to the application and make conflicts easy to reason about when
they do occur.

In general, we expect that information workflows in the developing regions will
be highly heterogeneous. While general computing and networking infrastructure are
increasingly common, for the foreseeable future, any realistic application will neces-
sarily incorporate a mix of paper, mobile (cellphone) and computer communications.
The TierSync software architecture can adapt to diverse network transports, however,
this will remain only a piece of a larger system. Design and evaluation of information
technology for developing regions must take into account this expanded ecosystem.
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