
Local Constraints in Combinatorial Optimization

Madhur Tulsiani

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-175

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-175.html

December 16, 2009

Copyright © 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Local Constraints in Combinatorial Optimization

by

Madhur Tulsiani

B. Tech. (IIT Kanpur) 2005

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Luca Trevisan, Chair
Professor Alistair Sinclair
Professor Satish Rao
Professor David Aldous

Fall 2009

Local Constraints in Combinatorial Optimization

Copyright Fall 2009

by

Madhur Tulsiani

1

Abstract

Local Constraints in Combinatorial Optimization

by

Madhur Tulsiani

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Luca Trevisan, Chair

Hard combinatorial optimization problems are often approximated using linear or semidefinite pro-

gramming relaxations. In fact, most of the algorithms developed using such convex programs have

special structure: the constraints imposed by these algorithms are local i.e. each constraint involves

only few variables in the problem. In this thesis, we study the power of such local constraints in

providing an approximation for various optimization problems.

We study various models of computation defined in terms of such programs with local con-

straints. The resource in question for these models is are the sizes of the constraints involved in the

program. Known algorithmic results relate this notion of resources to the time taken for computation

in a natural way.

Such models are provided by the “hierarchies” of linear and semidefinite programs, like the ones

defined by Lovász and Schrijver[LS91]; Sherali and Adams[SA90]; and Lasserre [Las01]. We study

the complexity of approximating various optimization problems using each of these hierarchies.

This thesis contains various lower bounds in this computational model. We develop techniques

for reasoning about each of these hierarchies and exhibiting various combinatorial objects whose

local properties are very different from their global properties. Such lower bounds unconditionally

rule out a large class of algorithms (which captures most known ones) for approximating the prob-

lems such as MAX 3-SAT, Minimum Vertex Cover, Chromatic Number and others studied in this

thesis.

We also provide a positive result where a simple semidefinite relaxation is useful for approxi-

2

mating a constraint satisfaction problem defined on graphs, if the underlying graph is expanding. We

show how expansion connects the local properties of the graph to the global properties of interest,

thus providing a good algorithm.

Professor Luca Trevisan
Dissertation Committee Chair

iii

Acknowledgements

The past four years that I spent in Berkeley have been an extremely interesting and educative expe-

rience, much of which I owe to my advisor Luca Trevisan. I arrived at Berkeley, quite unconfident

and unsure of myself. I am indebted to Luca for being a very patient and inspiring mentor, for

introducing me to a lot of beautiful theory while always giving me my own space (and time), and

for innumerable espressos at Brewed Awakenings; all of which were instrumental in giving me the

confidence to pursue my own research ideas.

Besides being an encouraging mentor, Luca has also been a great friend and a wonderful source

of advice about academia, the theory community and Asian food. I benefitted greatly from his

unique perspective on theory, and also research in general. I hope I have acquired at least some bit

of his ability for “not understanding” seemingly simple things (and asking very interesting questions

in the process).

I thank the theory faculty at Berkeley for the many discussions, seminars, courses and theory

lunches that I was fortunate to attend. I was greatly inspired by the gentle personality of Dick Karp

and the extremely enthusiatic one of Christos Papadimitriou, and the beautiful questions asked by

both of them. I thank Satish Rao for many conversations about metric embeddings and politics,

Alistair Sinclair and David Aldous for removing my initial fears of probability theory and Umesh

Vazirani for his research koans and various discussions on semidefinite programming and complex-

ity theory. Also, many thanks to David, Satish and Alistair for serving on my quals and thesis

committees and for kindly accommodating all my requests.

I worked with many excellent collaborators over the past few years. I thank: Sanjeev Arora,

Anindya De, Costis Georgiou, Subhash Khot, Alexandra Kolla, Avner Magen, Omer Reingold,

Grant Schoenebeck, David Steurer, Luca, Salil Vadhan and Nisheeth Vishnoi; for the things I learnt

from each one of them.

I would not have even half of my fond memories of Berkeley without my fellow students.

Thanks to Grant Schoenebeck, for always being a great companion, be it explorations of the Lovász-

Schrijver hierarchy or of restaurants in Beijing. Thanks to Costis Daskalakis, Omid Etesami, Henry

Lin, Alex Fabrikant, Alexandra Kolla, Mani Narayanan and Lorenzo Orecchia for everything they

taught me in my initial years at Berkeley. Thanks to Per Austrin for many discussions about CSPs

during his stay at Berkeley, and to Anindya De for many enjoyable conversations. Thanks to my

other fellow students: Anand Bhaskar, Siu-Man Chan, Siu-On Chan, James Cook, Rafael Frongillo,

iv

Omar Khan, Anupam Prakash, Jonah Sherman, Yaron Singer, Isabelle Stanton, Alexandre Stauffer,

Greg Valiant, Thomas Vidick and Thomas Watson; for the many group retreats, reading groups,

TGIFs and whiteboard battles in general.

My journey through graduate school was greatly aided by the support of many other friends.

I thank my house-mates Debopriyo Chowdhury and Arkaprabha Sengupta for always being very

helpful and tolerant of my idiosyncrasies. Thanks to Pulkit Grover, Subhranshu Maji, Vinayak

Nagpal, Koushik Pal, Nikhil Shetty and Ambuj Tewari for all the fun moments I shared with them.

As a graduate student, I spent a semester at Princeton University, one month at Tsinghua Univer-

sity and two summers at Microsoft Research India. I thank my hosts at each one of these places for

their kind hospitality. Thanks to Sushobhan Avasthi, Abhishek Bhattacharjee, Eugene Brevdo, Eden

Chlamtac, Shougata Ghosh, Parikshit Gopalan, Moritz Hardt, Aman Jain, Rajsekar Manokaran,

Prasad Raghavendra and David Steurer; whose company I enjoyed while at Princeton.

It would not have been possible for me to embark on this journey without the unwavering

support of family, who instilled in me a love for independent and original thought (and did not hang

up the phone whenever I tried explaining what is it that I actually do). To them, with love, I dedicate

this thesis.

v

To my family

vi

Contents

List of Figures ix

1 Introduction 1
1.1 Programs with Local Constraints . 2

1.2 The Lovász - Schrijver Hierarchies . 4

1.2.1 Definitions of the hierarchies . 4

1.2.2 The Prover-Adversary Game . 6

1.3 The Sherali-Adams Hierarchy . 7

1.4 The Lasserre Hierarchy . 9

1.5 A comparison . 10

1.6 Results in this thesis . 11

2 Integrality Gaps for Lovász-Schrijver SDP relaxations 12
2.1 Preliminaries . 14

2.2 Overview of Our Result . 16

2.3 The Prover Algorithm . 17

2.3.1 Some Intuition . 18

2.3.2 Fractional Solutions and Protection Matrices Based on Partial Assignments 19

2.3.3 Expansion and Satisfiability . 23

2.3.4 Expansion-Correction . 25

2.3.5 The Output of the Prover Algorithm . 26

2.3.6 Putting Everything Together . 28

3 LP relaxations of Vertex Cover and Max-Cut 29
3.1 Our Results . 33

3.2 Overview of the Proof . 34

3.3 Distributions of Vertex Covers in Trees . 37

CONTENTS vii

3.4 Distribution of Vertex Covers in Sparse Graphs 39

3.5 The Main Lemma . 42

3.6 Lower bounds for MAX-CUT . 48

4 Lasserre Gaps for Constraint Satisfaction Problems 52
4.1 Preliminaries and notation . 55

4.1.1 Constraint Satisfaction Problems . 55

4.1.2 Linear Codes . 57

4.1.3 The Lasserre relaxation for MAX k-CSPq 57

4.2 Results . 58

4.3 Proof Overview . 59

4.4 Lasserre vectors for linear equations . 60

4.5 Deriving the gaps for MAX k-CSPq . 66

4.6 Implications for Random Predicates . 70

5 Sherali-Adams Gaps from Pairwise Independence 73
5.1 Preliminaries and Notation . 75

5.1.1 Expanding CSP Instances . 75

5.1.2 The Sherali-Adams relaxation for CSPs 75

5.1.3 Pairwise Independence and Approximation Resistant Predicates 77

5.2 Towards Defining Consistent Distributions . 77

5.2.1 Finding Advice-Sets . 78

5.2.2 Defining the Distributions Pµ(S) . 80

5.3 Constructing the Integrality Gap . 82

6 Reductions in the Lasserre Hierarchy 85
6.1 Overview of proofs . 87

6.2 Integrality Gap for Maximum Independent Set 89

6.2.1 Vectors for products of the FGLSS graph 89

6.2.2 Obtaining the Integrality Gap . 92

6.3 Gaps for Graph Coloring . 93

6.3.1 Gaps for Approximate Graph Coloring 95

6.3.2 Gaps for Chromatic Number . 98

6.4 Integrality Gaps for Vertex Cover . 101

6.4.1 The starting graphs for the Dinur-Safra reduction 104

6.4.2 The graphs with block-assignments . 104

CONTENTS viii

6.4.3 The long-code step . 108

6.4.4 Putting things together . 110

7 Algorithms for Unique Games on Expanding Graphs 111
7.1 Main result . 114

7.1.1 Overview . 115

7.1.2 Rounding procedure and correctness proof 116

7.1.3 Proof of Lemma 7.2 . 118

7.1.4 Proof of Lemma 7.3; the tensoring trick 119

7.2 Stronger relaxations of expansion . 121

7.3 Parallel Repetition for expanding Unique Games 124

8 Conclusions and Open Problems 127

Bibliography 130

A Deferred Proofs 137
A.1 Random instances of MAX k-CSPq . 137

A.2 Proofs from Chapter 3 . 139

A.2.1 Proof of Lemma 3.1 . 139

A.2.2 Proofs of claims about splashes . 140

ix

List of Figures

1.1 The integrality gap . 2

1.2 LP and SDP relaxations for Maximum Independent Set 3

1.3 Sherali-Adams relaxation for Maximum Independent Set 8

1.4 Lasserre SDP for Maximum Independent Set . 10

1.5 A comparison of the hierarchies . 11

4.1 Lasserre SDP for MAX k-CSPq . 58

5.1 Sherali-Adams LP for MAX k-CSPq . 76

6.1 Level-t Lasserre SDP for l-coloring of a graph . 94

7.1 SDP for Unique Games . 115

7.2 Lasserre SDP for Sparsest Cut . 122

7.3 Lasserre SDP for Unique Games . 123

7.4 Feige-Lovász SDP for Unique Games . 124

1

Chapter 1

Introduction

Combinatorial optimization problems play an important role in computer science. However,

most such problems like MAX 3-SAT, MAX-CUT, Minimum Vertex Cover etc. are NP-complete

and a common way to deal with it is to settle for an approximately optimal solution.

The approximation algorithms developed for these problems have a special structure. Most

approximation algorithms are developed by formulating the problem at hand as an integer program.

One then relaxes the integer program to a convex program which can be solved in polynomial time:

such as a program with linear constraints over real variables (called a linear program or an LP) or

a program with linear matrix inequalities over positive semidefinite matrices (called a semidefinite

program or an SDP). One is then left with the task of designing an algorithm to convert the solution

of such a convex relaxation, to an integer solution for the combinatorial problem, often referred to

as “rounding”.

If we are dealing with (say) a maximization problem for which the true combinatorial optimum

is OPT, then the convex relaxation will achieve a value FRAC which is at least as large as OPT

(as the integer solution is also a feasible solution to the convex program). The rounding algorithm

then uses the solution of the convex relaxation with objective value FRAC to produce an integer

solution with (possibly suboptimal) value ROUND. The analysis of the algorithm then boils down

to a comparison of these three quantities which satisfy ROUND ≤ OPT ≤ FRAC. The inequalities

are reversed for a minimization problem.

If one just thinks of the combinatorial problem as a question of finding the optimum value of

the objective (e.g. the size of the minimum vertex cover in a graph), then the rounding algorithm

CHAPTER 1. INTRODUCTION 2

ROUND OPT FRAC

Integrality Gap

Figure 1.1: The integrality gap

is not needed and the quantities of interest are the values OPT and FRAC. If instead, the question

is to search for an optimum integer solution (e.g. a minimum vertex cover), then one is interested

in comparing the quantities ROUND and OPT. However, in the analysis of the problem, it is often

not possible to compare the solution against the value OPT, simply because OPT is not known for

an arbitrary instance of the problem! Hence, the approximation guarantees for algorithms are given

by giving an upper bound on the ratio FRAC/ROUND, which in turn is an upper bound on the ratio

OPT/ROUND. To establish a lower bound for both these notions, we need to establish a lower

bound on the ratio FRAC/OPT (for an explicit instance where we know OPT), which is called the

integrality gap of the program. Figure 1.1 shows the relationship between these quantities.

Definition 1.1 Let IΠ denote an arbitrary instance of a maximization problem Π formulated as

an integer program. Then for a given convex relaxation of the program, let OPT(IΠ) denote the

optimum of the integer program and let FRAC(IΠ) denote the optimum of the convex relaxation.

Then the integrality gap of the relaxation is defined as

Integrality Gap = sup
IΠ

FRAC(IΠ)
OPT(IΠ)

For a minimization problem, the integrality gap is defined to be the supremum of the inverse ratio.

Note that according to the above definition, the integrality gap is always at least 1 and a large

gap indicates a poor approximation ratio. In cases when the integrality gap is infinite, we express it

as a function of the size of the instance IΠ.

1.1 Programs with Local Constraints

The convex relaxations for most problems have, in fact, another feature in common. Most

relaxations only impose local constraints on the variables i.e. each constraint only affects a few

variables. Consider for example the following linear and semidefinite1 relaxations for the problem

1The program here is written in terms of vectors, but the constraints can be verified to be linear matrix inequalities on
the positive semidefinite matrix X with Xi j =

〈
ui,u j

〉
.

CHAPTER 1. INTRODUCTION 3

of finding the Maximum Independent Set (the largest subset of vertices not containing any edges)

in a graph G = (V, E). Constraints in both programs correspond to at most two vertices of the graph.

LP relaxation

maximize
∑
i∈V

xi

subject to xi + x j ≤ 1 ∀(i, j) ∈ E

xi ∈ [0, 1]

SDP relaxation

maximize
∑
i∈V

|ui|
2

subject to
〈
ui,u j

〉
= 0 ∀(i, j) ∈ E

〈ui,u0〉 = |ui|
2 ∀i ∈ V

|u0| = 1

Figure 1.2: LP and SDP relaxations for Maximum Independent Set

The strengthenings of these relaxations that have been considered before, involve adding con-

straints on a larger number of variables (but the number is still small compared to the size of the

problem instance). This process of generating stronger relaxations by adding larger (but still, lo-

cal) constraints is captured by various hierarchies of convex relaxations such as the ones defined by

Lovász and Schrijver [LS91], Sherali and Adams [SA90] and Lasserre [Las01]. These hierarchies

define various levels of convex relaxations for a problem, with the relaxations at a higher level being

more powerful than the ones at lower levels.

These hierarchies are known to capture the best available algorithms for many problems, such

as the SDP for Sparsest Cut by Arora, Rao and Vazirani [ARV04] and the ϑ-function of Lovász

for Maximum Independent Set [Lov79], within a constant number of levels. It is also known that

for an integer program with n variables taking values in {0, 1}, the program obtained by n levels of

any of the above hierarchies has integrality gap 1 i.e. it gives the exact solution. However, solving

the program obtained by t levels of these hierarchies takes time nO(t) which is exponential in n for

t = Ω(n/ log n).

A lower bound for a convex program obtained after many levels (say Ω(n)) of such a hierarchy,

is then a strong lower bound against a class of algorithms capturing most known ones. Such a lower

bound is proved by showing that the integrality gap of the program obtained after many levels of

the hierarchy remains large. Note that such a lower bound is unconditional (it does not assume

P , NP!) and rules out exponential time algorithms in a powerful algorithmic model.

Another motivation for studying lower bounds for these hierarchies is to study the effect of

local constraints in globally constraining the optimum of a combinatorial problem. Levels in these

CHAPTER 1. INTRODUCTION 4

hierarchies provide a natural notion of increasingly powerful local constraints. A lower bound,

then involves study of problem instances whose local properties are very different from their global

properties, which are interesting objects in their own right.

We describe below each of these hierarchies. We shall use the example of Maximum Indepen-

dent Set throughout this chapter to illustrate the differences in the programs obtained by the various

hierarchies. An excellent comparison of all the three hierarchies mentioned above is also available

in [Lau03].

1.2 The Lovász - Schrijver Hierarchies

Lovász and Schrijver [LS91] describe two versions of a “lift-and-project” method. This can be

thought of as an operator which when applied to a convex programming relaxation K of a 0/1 integer

linear program, produces a tighter relaxation. A weaker version of the method, denoted LS, adds

auxiliary variables and linear inequalities, and the projection of the new relaxation on the original

variables is denoted by N(K); a stronger version, denoted LS+, adds semidefinite programming

constraints as well, and the projection on the original variables is denoted by N+(K).

Starting from a basic relaxation and iteratively applying the operator N (N+) one gets higher

and higher levels (which are called rounds for the Lovász-Schrijver hierarchies due to their iterative

nature) of the LS (LS+) hierarchy. Thus, the relaxation obtained by r rounds of the hierarchy is

given by N(· · ·N(K) · · ·) where the operator is applied t times. We denote it as Nt(K).

Lovász and Schrijver also prove that if we start from a linear programming relaxation of a 0/1

integer program with n variables, then n applications of the LS procedures are sufficient to obtain a

tight relaxation where the only feasible solutions are convex combinations of integral solutions. If

one starts from a linear program with poly(n) inequalities, then it is possible to optimize over the

set of solutions defined by t rounds of LS or LS+ in O(nO(t)) time.2

1.2.1 Definitions of the hierarchies

To describe these hierarchies it will be more convenient to work with convex cones rather than

arbitrary convex subsets of [0, 1]n. Recall that a cone is a subset K of Rd such that if x, y ∈ K and

2It is also possible to optimize over feasible solutions for N t(K) and N t
+(K) in time nO(t) provided that a separation

oracle for K is computable in time poly(n). (That is, it is not necessary for K to be a linear or semidefinite programming
relaxation with a polynomial number of inequalities.)

CHAPTER 1. INTRODUCTION 5

α, β ≥ 0 then αx + βy ∈ K, that is, a cone is a set of vectors that is closed under non-negative linear

combinations. (Note that, in particular, a cone is always convex.)

If we are interested in a convex set R ⊆ [0, 1]n (which might be the feasible region of our

starting convex relaxation), we first convert it into the cone K ⊆ Rn+1 defined as the set of all

vectors (λ, λy1, . . . , λyN) such that λ ≥ 0 and (y1, . . . , yn) ∈ R. For example, in the “cone” linear

programming relaxation of the Maximum Independent Set problem (y0, y1, . . . , yn) is in the feasible

region (denoted by IS (G)) if and only if

yi + yi ≤ y0 ∀(i, j) ∈ E

0 ≤ yi ≤ y0 ∀i ∈ V

y0 ≥ 0 (IS (G))

We would now like to “tighten” the relaxation by adding inequalities (on the solution obtained

after scaling to get y0 = 1) that are valid for 0/1 solutions but that are violated by other solutions.

Ideally, we would like to say that a solution (1, y1, . . . , yn) must satisfy the conditions y2
i = yi,

because such a condition is satisfied only by 0/1 solutions. Equivalently, we could introduce n2 new

variables Yi, j and add the conditions (i) Yi, j = yi · y j and (ii) Yi,i = yi. Unfortunately, condition (i) is

neither linear nor convex, and so we will instead “approximate” condition (i) by enforcing a set of

linear conditions that are implied by (but not equivalent to) (i). This is formalized in the definition

below.

Definition 1.2 For a cone K ⊆ Rd we define the set N(K) (also be a cone in Rd) as follows: a vector

y = (y0, . . . , yd−1) ∈ Rd is in N(K) if and only if there is a matrix Y ∈ Rd×d such that

1. Y is symmetric;

2. For every i ∈ {0, 1, . . . , d − 1}, Y0,i = Yi,i = yi

3. Each row Yi is an element of K

4. Each vector Y0 − Yi is an element of K

In such a case, Y is called the protection matrix of y. If, in addition, Y is positive semidefinite,

then y ∈ N+(K). We define N0(K) and N0
+(K) as K, and Nt(K) (respectively, Nt

+(K)) as N(Nt−1(K))

(respectively, N+(Nt−1
+ (K))).

CHAPTER 1. INTRODUCTION 6

If y = (1, y1, . . . , yd−1) ∈ {0, 1}d, then we can set Yi, j = yi ·y j. Such a matrix Y is clearly positive

semidefinite, and it satisfies Yi.i = y2
i = yi if the yi are in {0, 1}. Consider now a row Yi of Y , that is,

the vector r such that r j := Yi, j = yi · y j. Then, either yi = 0, in which case r = (0, . . . , 0) is in every

cone, or yi = 1, and r = y. Similarly, if we consider r j := Y0, j − Yi, j = (1 − yi) · y j we find that it

either equals the all-zero vector or it equals y. This shows that if y = (1, y1, . . . , yd−1) ∈ {0, 1}d and

y ∈ K, then also y ∈ Nt
+(K) for every t. Hence, if K ∩ {y0 = 1} defines a relaxation of the integral

problem, so does Nt
+(K) ∩ {y0 = 1}, and hence also Nt(K) ∩ {y0 = 1}.

For a graph G, the relaxation of the Maximum Independent Set problem resulting from t rounds

of LS+ is the result of

maximize
n∑

i=1

yi

subject to (y0, . . . , yn) ∈ Nt
+(IS (G))

y0 = 1

1.2.2 The Prover-Adversary Game

It is sometimes convenient to think of the LS and LS+ hierarchies in terms of a prover-adversary

game. This formulation was first used by Buresh-Oppenheim et. al. [BOGH+03] who used it to

prove lower bounds on the LS+ procedure as a proof system. For example, the following is a

formulation of which is convenient to use for proving that a certain vector belongs to Nt
+(IS (G)).

The treatment for relaxations of other problems is identical. Also, the formulation remains the

same for talking about N(IS (G)), except that we omit the positive semidefiniteness constraint in the

matrix below.

A prover P is an algorithm that, on an input vector (y0, . . . , yn), either fails or outputs a matrix

Y ∈ R(n+1)×(n+1) and a set of vectors O ⊆ Rn+1 such that

1. Y is symmetric and positive semidefinite.

2. Yi,i = Y0,i = yi.

3. Each vector Yi and Y0 − Yi is a non-negative linear combination of vectors of O.

4. Each element of O is in IS (G).

Consider now the following game played by a prover against another party called the adversary.

We start from a vector y = (y0, . . . , yn), and the prover, on input y, outputs Y and O as before. Then

CHAPTER 1. INTRODUCTION 7

the adversary chooses a vector z ∈ O, and the prover, on input z, outputs a matrix Y ′ and a set O′,

and so on. The adversary wins when the prover fails.

Lemma 1.3 Suppose that there is a prover such that, starting from a vector y ∈ IS (G), every

adversary strategy requires at least t + 1 moves to win. Then y ∈ Nt(IS (G)).

Proof: We proceed by induction on t, with t = 0 being the simple base case. Suppose that, for

every adversary, it takes at least t + 1 moves to win, and let Y and O be the output of the prover

on input y. Then, for every element z ∈ O, and every prover strategy, it takes at least t moves

to win starting from z. By inductive, hypothesis, each element of O is in Nt−1
+ (IS (G)), and since

Nt−1
+ (IS (G)) is closed under non-negative linear combinations, the vectors Yi and Y0 − Yi are all in

Nt−1
+ (IS (G)), and so Y is a protection matrix that shows that y is in Nt

+(IS (G)),

1.3 The Sherali-Adams Hierarchy

The Sherali-Adams hierarchy [SA90] defines a hierarchy of linear programs which give increas-

ingly tighter relaxations. To see the intuition behind the hierarchy, we can see it as an extension of

the LS procedure. Recall that the solution to a 0/1 integer program can be specified by a vector

y ∈ {0, 1}n. In the Lovász-Schrijver hierarchy we defined auxiliary variables Yi j and wanted to ex-

press the constraint that Yi j = yi · y j. We then expressed it by some implied linear conditions on the

variables Yi j.

Consider a solution (1, y1, . . . , yn) which is feasible at the second level of the LS hierarchy. Then

the row Yi of the protection matrix must also define a feasible solution to the “cone” version of the

relaxation, say IS (G). Since, Yi0 = 1 the solution y′ = (1,Yi1/yi, . . . ,Yin/yi) must also be feasible

(assuming yi , 0), for the first level, there exists a protection matrix Y ′ for it. Now, we would also

like to think of Y ′jk = (Yi j/yi)(Y jk/yi) = yiy jyk. However, notice that the choice of Y ′ was dependent

on the fact that we chose the row Yi. In particular, if we looked at the protection matrix Y ′′ for the

solution y′′ = (1,Y j0/y j, . . . ,Y jn/y j), it need not be true that Y ′jk = Y ′′ik .

The Sherali-Adams hierarchy solves this problem by introducing all the auxiliary variables at

once instead of an inductive process. In particular, we define a variable YS for each S ⊆ [n] with

|S | ≤ t + 1. The intuition again is that we want to impose YS =
∏

i∈S yi. However, we instead

impose some linear conditions implied by this. For every constraint aTy − b ≤ 0 of the starting

LP relaxation, we consider sets S ,T such that |S | + |T | ≤ t and impose a linear implication of

CHAPTER 1. INTRODUCTION 8

(aTy − b) ·
∏

i∈S yi ·
∏

j∈T (1 − y j) ≤ 0, by requiring that

∑
T ′⊆T

(−1)|T
′ | ·

 n∑
i=1

ai · YS∪T ′∪{i} − b · YS∪T ′

 ≤ 0

Note again that the number of variables and constraints in the LP at level t is nO(t) and hence

it can be solved in time nO(t). Also, each such program is a relaxation, since for any y ∈ {0, 1}n

satisfying the initial constraints, YS =
∏

i∈S yi defines a valid level-t solution. The program below

gives the relaxation of Maximum Independent Set obtained at the tth level of the Sherali-Adams

hierarchy.

maximize
n∑

i=1

Y{i}

subject to
∑
T ′⊆T

(−1)|T
′ | ·

[
YS∪T ′∪{ j} + YS∪T ′∪{i} − YS∪T ′

]
≤ 0 |S | + |T | ≤ t, (i, j) ∈ E

0 ≤
∑
T ′⊆T

(−1)|T
′ | · YS∪T ′∪{i} ≤

∑
T ′⊆T

(−1)|T
′ | · YS∪T ′ |S | + |T | ≤ t

Y∅ = 1

Figure 1.3: Sherali-Adams relaxation for Maximum Independent Set

Since the above program is a convex relaxation, any convex combination of 0/1 solutions is

also a solution to the program. It is convenient to think of the convex combination as defining a

distribution over 0/1 solutions. With this interpretation, we can think of YS as the probability that

all variables in set S are equal to 1. The following lemma says that a solution which “locally” looks

like a valid distribution, is a feasible solution for the above relaxation.

Lemma 1.4 Consider a family of distributions {D(S)}S⊆[n]:|S |≤t+2, where eachD(S) is defined over

{0, 1}S . If the distributions satisfy

1. For all (i, j) ∈ E and S ⊇ {i, j}, PD(S)[(yi = 1) ∧ (y j = 1)] = 0, and

2. S ′ ⊆ S ⊆ [n] with |S | ≤ t + 1, the distributionsD(S ′),D(S) agree on S ′

then YS = PD(S)
[∧

i∈S (yi = 1)
]

is a feasible solution for the above level-t Sherali-Adams relaxation.

Proof: We have Y∅ = 1 by definition. We first verify the second constraint. For given S ,T, i, let W

CHAPTER 1. INTRODUCTION 9

denote S ∪ T ∪ {i}. Using the fact that distributions are consistent over subsets, we can write

∑
T ′⊆T

(−1)|T
′ | · YS∪T ′∪{i} =

∑
T ′⊆T

(−1)|T
′ | · P
D(S∪T ′∪{i})

 ∧
j∈S∪T ′∪{i}

(y j = 1)


=

∑
T ′⊆T

(−1)|T
′ | · P
D(W)

 ∧
j∈S∪T ′∪{i}

(y j = 1)


= P

D(W)

 ∧
j∈S∪{i}

(y j = 1)
∧
k∈T

(yk = 0)


where the last equality follows from inclusion-exclusion. With the manipulation on the RHS, the

second constraint becomes

0 ≤ P
D(W)

 ∧
j∈S∪{i}

(y j = 1)
∧
k∈T

(yk = 0)

 ≤ P
D(W)

∧
j∈S

(y j = 1)
∧
k∈T

(yk = 0)


which is obviously satisfied sinceD(W) is a distribution. Similarly, for W1 = S ∪ T ∪ {i, j}, we can

transform the first constraint to (probabilities below are taken with respect toD(W1))

P

 ∧
k∈S∪{i}

(yk = 1)
∧
l∈T

(yl = 0)

 + P

 ∧
k∈S∪{ j}

(yk = 1)
∧
l∈T

(yl = 0)

 ≤ P
∧

k∈S

(yk = 1)
∧
l∈T

(yl = 0)


which is satisfied since the assumptions of the lemma imply that the events{∧

k∈S∪{i}(yk = 1)
∧

l∈T (yl = 0)
}

and
{∧

k∈S∪{ j}(yk = 1)
∧

l∈T (yl = 0)
}

are disjoint.

1.4 The Lasserre Hierarchy

The Lasserre hierarchy gives a sequence of increasingly tight semidefinite programming re-

laxations for a quadratic integer program for variables taking values 0 and 1. As in the case of

the Sherali-Adams hierarchy, the semidefinite program after t rounds of the Lasserre hierarchy also

introduces a new (vector valued) variable for the product of every t variables in the original program.

For concreteness, we consider the program for Maximum Independent Set. The same pro-

cedure can be used to derive the level-t SDP for any problem formulated as a quadratic integer

program, with variables taking values in {0, 1}. Given a graph G = (V, E), the integer program

would have a variable Xi for each i ∈ V with yi = 1 if i is in the independent set and 0 otherwise. To

ensure that the solution is an independent set, we would enforce that yi · y j = 0 for all (i, j) ∈ E.

To obtain the Lasserre relaxation, we first think of a an integer program which has a variable YS

for each S ⊆ V, |S | ≤ t where the intended solution, as before, is YS = 1 iff all vertices in S are in

CHAPTER 1. INTRODUCTION 10

the independent set. We can then add the constraint that the product YS 1 · YS 2 must only depend on

S 1 ∪ S 2. For homogenization, we introduce an extra variable Y∅ which is always supposed to be 1.

Replacing the integer variables YS by vectors US gives the semidefinite relaxation as below.

maximize
∑
i∈V

∣∣∣U{i}∣∣∣2
subject to

〈
U{i},U{ j}

〉
= 0 ∀ (i, j) ∈ E〈

US 1 ,US 2

〉
=

〈
US 3 ,US 4

〉
∀ S 1 ∪ S 2 = S 3 ∪ S 4〈

US 1 ,US 2

〉
∈ [0, 1] ∀S 1, S 2

|U∅| = 1

Figure 1.4: Lasserre SDP for Maximum Independent Set

Note that the program for level t only has vectors for sets of size at most t. It can be shown

that for any set S with |S | ≤ t, the vectors US ′ , S ′ ⊆ S induce a probability distribution over valid

independent sets of the subgraph induced by S . However, unlike the Sherali-Adams hierarchy, the

existence of such distributions is not a sufficient condition for the existence of a feasible solution

for the semidefinite program.

1.5 A comparison

Let S A(t)(P) denote the feasible set of the program obtained by starting from a basic 0/1 relax-

ation P and augmenting variables for t levels of the Sherali-Adams hierarchy. Similarly, let LS (t)(P),

LS (t)
+ (P), Las(t)(P) represent feasible sets corresponding respectively to t levels of the LS, LS+ and

Lasserre hierarchies. We summarize in the facts below, a comparison of these relaxations. The

reader is referred to the excellent survey by Laurent [Lau03] for a more detailed comparison.

1. LS (n)(P) = LS (n)
+ (P) = S A(n)(P) = Las(n)(P) = I, where I denotes the convex hull of the

0/1 solutions to the starting integer program with n variables.

2. For all t ≤ n, LS (t)(P) ⊆ LS (t)
+ (P) ⊆ Las(t)(P), and also LS (t)(P) ⊆ S A(t)(P) ⊆ Las(t)(P).

Hence, the relaxations provided by the Lasserre hierarchy at each level are the strongest (most

constrained) among the relaxations at the corresponding level of all the hierarchies discussed

above.

CHAPTER 1. INTRODUCTION 11

SA(t) LS
(t)
+

LS(t)

Las(t)

Figure 1.5: A comparison of the hierarchies

3. If the starting relaxation P has nO(1) constraints, then one can optimize over the sets

LS (t)(P), LS (t)
+ (P), S A(t)(P) and Las(t)(P) in time nO(t). This is known to be true for

LS (t)(P), LS (t)
+ (P) and S A(t)(P) even if we only assume that P has a weak separation ora-

cle running in time nO(1). It is not known if one can optimize efficiently over Las(t)(P) using

an efficient separation oracle for P.

1.6 Results in this thesis

This thesis primarily contains lower bounds for various hierarchies. Chapters 2 and 3 inves-

tigate the problem of approximating Minimum Vertex Cover using the LS and LS+ hierarchies.

Chapter 2 is based on [STT07a] and shows that Ω(n) levels of the LS+ hierarchy do not provide an

approximation factor better than 7/6. Chapter 3 contains an optimal lower bound (factor 2) for Ω(n)

levels of the (weaker) LS hierarchy and is based on results in [STT07b].

Chapters 4 and 5 consider various constraint satisfaction problems. Chapter 4, based on work in

[Tul09], provides optimal lower bounds for approximating the number of satisfiable constraints, for

a general class of constraint satisfaction problems. Chapter 5, drawing on work in [GMT09] further

extends this class and proves optimal lower bounds in the Sherali-Adams hierarchy.

In Chapter 6, we explore the topic of “reductions” and whether lower bounds for one problem

can be translated to lower bounds for other problems as in the case of NP-hardness. Using the

results from Chapter 4, we obtain lower bounds for Maximum Independent Set, Minimum Vertex

Cover and graph coloring problems, in the Lasserre hierarchy. This is based on work in [Tul09].

Chapter 7 uses SDP relaxations to get algorithms for special cases of Unique Games, which

is an important constraint satisfaction problem in complexity theory. These results appear in

[AKK+08].

12

Chapter 2

Integrality Gaps for Lovász-Schrijver

SDP relaxations

In this chapter we will prove an integrality gap for the Lovász-Schrijver SDP relaxations of

Minimum Vertex Cover. Recall that the problem requires one to find a minimum subset S of

vertices in a graph G = (V, E), such that S contains at least one vertex from every edge of the graph.

We will prove that for graphs on n vertices, the integrality gap may be as large as 7/6 − ε for the

relaxation obtained by Ωε(n) rounds1 of the LS+ hierarchy.

This result is actually subsumed by a later result of Schoenebeck [Sch08], who showed a gap

of 7/6− ε, even after Ωε(n) levels of the Lasserre hierarchy. We choose to present it here, primarily

because it provides a nice illustration of the proof techniques of inductive nature, used for reasoning

about the Lovász-Schrijver hierarchy. The arguments in this chapter are technically much simpler

than the ones in Chapter 3, where we present strong results for Minimum Vertex Cover in the LS

hierarchy (the analogues of which are not known in the other hierarchies).

Previous work

The study of Lovász-Schrijver relaxations of Vertex Cover was initiated by Arora, Bollobás,

Lovász, and Tourlakis [ABL02, ABLT06, Tou06] who lower bounds for the LS hierarchy (of linear

programs). They showed that even after Ωε(log n) rounds the integrality gap is at least 2 − ε, and

that even after Ωε((log n)2) rounds the integrality gap is at least 1.5 − ε.

1Due to the iterative nature of its definition, the levels of Lovász-Schrijver hierarchy are often referred to as “rounds”.

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 13

Buresh-Oppenheim, Galesy, Hoory, Magen and Pitassi [BOGH+03], and Alekhnovich, Arora,

Tourlakis [AAT05] studied the LS+ hierarchy and proved Ω(n) LS+ round lower bounds for proving

the unsatisfiability of random instances of 3SAT (and, in general, kSAT with k ≥ 3) and Ωε(n)

round lower bounds for achieving approximation factors better than 7/8 − ε for MAX 3-SAT, better

than (1 − ε) ln n for Minimum Set Cover, and better than k − 1 − ε for Hypergraph Vertex Cover

in k-uniform hypergraphs. They left open the question of proving LS+ round lower bounds for

approximating the Vertex Cover problem.

The standard reduction from Max 3SAT to Vertex Cover shows that if one is able to approximate

Vertex Cover within a factor better than 17/16 then one can approximate MAX 3-SAT within a factor

better than 7/8. This fact, and the 7/8−ε integrality gap for MAX 3-SAT of [AAT05], however do not

suffice to derive an integrality gap result for Vertex Cover. The reason is that reducing an instance

of MAX 3-SAT to a graph, and then applying a Vertex Cover relaxation to the graph, defines a

semidefinite program that is possibly tighter than the one obtained by a direct relaxation of the MAX

3-SAT problem.

Feige and Ofek [FO06] were able to analyze the value of the Lovász Theta function of the graph

obtained by taking a random 3SAT instance and then reducing it to an instance of Independent Set

(or, equivalently, of Vertex Cover). Their result immediately implies a 17/16 − ε integrality gap for

one round of LS+, and the way in which they prove their result implies also the stronger 7/6 − ε

bound. For one round of LS+ (or, equivalently, for the function defined as number of vertices minus

the Theta function) Goemans and Kleinberg [KG98] had earlier proved a 2 − o(1) integrality gap

result by using a different family of graphs. Charikar [Cha02] proves a 2−o(1) integrality gap result

for a semidefinite programming relaxation of Vertex Cover that includes additional inequalities.

Charikar’s relaxation is no tighter than 3 rounds of LS+, and is incomparable with the relaxation

obtained after two rounds.

It was compatible with previous results that after a constant number of rounds of LS+ or after

poly log n rounds of LS the integrality gap for Vertex Cover could become 1 + o(1).

Our Result

We prove that after Ωε(n) rounds of LS+ the integrality gap remains at least 7/6 − ε. (For a

stronger reason, the lower bound applies to LS as well.)

We combine ideas from the work of Alekhnovich, Arora and Tourlakis [AAT05] and Feige and

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 14

Ofek [FO06]. As in [FO06], we study the instance obtained by starting from a random instance

of 3XOR and then reducing it to the independent set problem; we also define our semidefinite

programming solutions in a way that is similar to [FO06] (with the difference that we need to define

such solutions inside an inductive argument, while only one solution is needed in [FO06]). As in

[AAT05], our argument proceeds by considering an “expansion” property of the underlying instance

of 3XOR and maintaining it as an invariant throughout the proof. Our way of modifying the instance

at every step to ensure expansion (called “expansion correction” in previous works) is new.

Subsequent to this work, such a result was also shown for the more powerful Lasserre hierarchy,

by Schoenebeck[Sch08]. A larger gap (1.36) was also exhibited for Ω(nδ) levels of the Lasserre

hierarchy in a result presented in Chapter 6.

2.1 Preliminaries

Recall that the LS+ hierarchy is defined by considering the cone of feasible solutions to the

(homogenized version of) starting LP and repeatedly applying the N+ operator which applies certain

constraints to the solutions in the cone. The cone of solutions for the vertex cover problem on a

graph G = (V, E) where V = {1,N} is

yi + y j ≥ y0 ∀(i, j) ∈ E

0 ≤ yi ≤ y0 ∀i ∈ V

y0 ≥ 0 (VC(G))

We shall be interested in optimizing over a smaller cone which is obtained by t applications of the

N+ operator to the above. In particular, we are interested in the following SDP

Minimize
N∑

i=1

yi

subject to: (y0, . . . , yN) ∈ Nt
+(VC(G))

y0 = 1

Even though we are interested in the LS+ relaxations of vertex cover, it shall be more convenient

to argue about the maximum independent set problem i.e. for the cone IS (G) where the constraint

yi + y j ≥ y0 is replaced by yi + y j ≤ y0. The following lemma shows that the two settings are

equivalent.

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 15

Lemma 2.1 Let G = (V, E) be a graph and V = 1, . . . ,N. Then, for every k ≥ 0, (y0, y1, . . . , yN) ∈

Nk
+(VC(G)) if and only if (y0, y0 − y1, . . . , y0 − yN) ∈ Nk(IS (G)).

Proof: We prove it by induction, with the k = 0 base case being clear. If (y0, y1, . . . , yN) ∈

Nk+1
+ (VC(G)) then there is a protection matrix Y that is symmetric, positive semidefinite, and such

that Yi,i = Y0,i = yi, and such that the vectors Yi and Y0 − Yi are in Nk(VC(G)). Since Y is positive

semidefinite, there must be vectors u0, . . . ,uN such that Yi, j = ui · u j.

Consider now the vectors c0, . . . , cN defined as follows: c0 := u0 and ci := u0 − ui for i > 0.

Define the matrix Z as Zi, j := ci · c j. Thus the matrix Z is symmetric and positive semidefinite. We

will argue that Z is a protection matrix by showing that the vector z := (y0, y0 − y1, . . . , y0 − yN) ∈

Nk+1
+ (IS (G)).

First, we see that Z0,0 = Y0,0 = y0 and that, for i > 0,

Zi,i = (u0 − ui) · (u0 − ui) = Y0,0 − 2Y0,i + Yi,i = y0 − yi

Consider now the row vector Zi, which is equal to (r0, . . . , rN) where

r0 = u0 · (u0 − ui) = y0 − yi

and, for j > 0,

r j = (u0 − u j) · (u0 − ui) = y0 − y j − yi + Yi, j

We need to show (r0, . . . , rN) ∈ Nk
+(IS (G)) which, by the inductive hypothesis, is equivalent to

(r0, r0 − r1, . . . , r0 − rN) ∈ Nk
+(VC(G)). But (r0, r0 − r1, . . . , r0 − rN) = Y0 − Yi which belongs to

Nk
+(VC(G)) by our assumption that Y is a protection matrix for y. The other conditions are similarly

verified.

We recall the formulation membership problem in N+(IS (G)) as a prover-adversary game which

shall be useful in our argument. Recall that a prover P is an algorithm that, on an input vector

(y0, . . . , yN), either fails or outputs a matrix Y ∈ R(N+1)×(N+1) and a set of vectors O ⊆ RN+1 such

that

1. Y is positive semidefinite

2. Yi,i = Y0,i = yi

3. Each vector Yi and Y0 − Yi is a non-negative linear combination of vectors of O

4. Each element of O is in IS (G)

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 16

To prove that a vector y ∈ N+(IS (G)), the prover plays the following game against an adversary.

On input y, the prover outputs Y and O as before. Then the adversary chooses a vector z ∈ O, and

the prover, on input z, outputs a matrix Y ′ and a set O′, and so on. The adversary wins when the

prover fails. The following lemma connects the game to the LS+ hierarchy.

Lemma 2.2 Suppose that there is a prover such that, starting from a vector y ∈ IS (G), every

adversary strategy requires at least t + 1 moves to win. Then y ∈ Nt(IS (G)).

2.2 Overview of Our Result

Let ϕ be an instance of 3XOR, that is, a collection of linear equations mod 2 over variables

x1, . . . , xn such that each equation is over exactly 3 variables. We denote by OPT(ϕ) the largest

number of simultaneously satisfiable equations in ϕ.

Given a 3XOR instance ϕ with m equation, we define the FGLSS graph Gϕ of ϕ as follows:

Gϕ has 4m vertices, one for each equation of ϕ and for each assignment to the three variables that

satisfies the equation. We think of each vertex as being labeled by a partial assignment to three

variables. Two vertices u and v are connected if and only if the partial assignments that label u and

v are inconsistent. For example, for each equation, the four vertices corresponding to that equation

form a clique. It is easy to see that OPT(ϕ) is precisely the size of the largest independent set of Gϕ.

Note that, in particular, the independent set size of Gϕ is at most N/4, where N = 4m is the number

of vertices.

We say that ϕ is (k, c)-expanding if every set S of at most k equations in ϕ involves at least c|S |

distinct variables. Our main result is that if ϕ is highly expanding, then even after a large number of

rounds of Lovász-Schrijver, the optimum of the relaxation is N/4, the largest possible value.

Lemma 2.3 (Main) Let ϕ be a (k, 1.95)-expanding instance of 3XOR such that any two clauses

share at most one variable, and let Gϕ be its FGLSS graph.

Then (1, 1
4 , . . . ,

1
4) is in N(k−4)/44

+ (IS (Gϕ)).

Our integrality gap result follows from the well known fact that there are highly expanding

instances of 3XOR where it is impossible to satisfy significantly more than half of the equations.

Lemma 2.4 For every c < 2 and ε > 0 there are η, β > 0 such that for every n there is an instance

ϕ of 3XOR with n variables and m = βn equations such that

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 17

• No more than (1/2 + ε)m equations are simultaneously satisfiable;

• Any two clauses share at most one variable

• ϕ is (ηn, c)-expanding.

The rest of the chapter is devoted to the proof of Lemma 2.3. We prove it in Section 2.3 by

describing a prover strategy that survives for at least (k−4)/44 rounds. Proofs of variants of Lemma

2.4 have appeared before in the literature, for example in [BSW01, BOT02]; we give a proof of a

more general version in the in the Appendix.

The two lemmas combine to give our lower bound.

Theorem 2.5 For every ε > 0 there is a cε > 0 such that for infinitely many t there is a graph G

with t vertices such that the ratio between the minimum vertex cover size of G and the optimum of

Ncεt(VC(G)) is at least 7/6 − ε.

Proof: Using Lemma 2.4, construct an instance ϕ of 3XOR with n clauses and Oε(m) equations

such that (i) no more than an 1/2 + ε fraction of equations can be simultaneously satisfied; (ii) any

two clauses share at most one variable; and (iii) ϕ is (Ωε(n), 1.95)-expanding.

The minimum vertex size in the graph Gϕ is at least 4m − (1/2 + ε)m, but, by Lemma 2.3, the

solution (1, 3/4, · · · , 3/4) is feasible for NΩε(n)(VC(Gϕ)), and so the optimum of NΩε(n)(VC(Gϕ)) is

at most 3m.

2.3 The Prover Algorithm

For the sake of this section, we refer to a fixed formula ϕ with n variables X = {x1, . . . , xn} and

m clauses which is (k, 1.95)-expanding and such that two clauses share at most one variable. The

graph Gϕ has N = 4m vertices, which is also the number of variables in our starting linear program.

Recall that each vertex i of Gϕ corresponds to an equation C of ϕ and to an assignment of values to

the three variables of C that satisfies C. (In the following, if i is one of the vertices corresponding

to an equation C, we call C the equation of i.)

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 18

2.3.1 Some Intuition

Suppose that ϕ were satisfiable, and let D be a distribution over satisfying assignments for ϕ.

Then define the vector y = y(D) as follows: y0 = 1 and

yi := P
a∈D

[a agrees with i]

We claim that this solution is in Nk
+(IS (G)) for all k. This follows from the fact that it is a convex

combination of 0/1 solutions, but it is instructive to construct the protection matrix for y. Define the

matrix Y such that Y0,i = Yi,0 = yi and

Yi, j := P
a∈D

[a agrees with i and with j]

It is easy to see that this matrix is positive semidefinite.

Consider now the i-th row of Y . If yi = 0, then the row is the all-zero vector. Otherwise, it is y0

times the vector z := (1,Y1, j/y0, . . . ,YN,i/y0). Observe that, for j , 0,

z j =
Pa∈D[a agrees with j and with i]

Pa∈D[a agrees with i]
= P

a∈D
[a agrees with j|a agrees with i]

This is the vector y(D|i) where (D|i) is the distribution D conditioned on assignments that agree with

i.

Consider now the vector Y0 − Yi. If yi = 1, then this is the all-zero vector. Otherwise, it is

(y0 − yi) times the vector z := (1, (y1 − Y1,i)/(1 − yi), . . . , (yn − Yn,i)/(1 − yi)). We have

zi =
Pa∈D[a agrees with j but not with i]
Pa∈D[a does not agree with j]

= P
a∈D

[a agrees with j|a does not agree with i]

And this is the same as y(D|¬i), where (D|¬i) is the distribution D conditioned on assignments

that do not agree with i. Note, also, that y(D|¬i) can be realized as a convex combination of vectors

y(D| j), where j ranges over the other vertices that correspond to satisfying assignments for the

equation of i.

These observations suggest the following prover algorithm: on input a vector of the form y(D),

output a matrix Y as above, and then set

O := {y(D|i) : i ∈ V and P
a∈D

[a consistent with i] > 0}

To prove Lemma 2.3, we need to find a prover strategy that succeeds for a large number of

rounds starting from the vector (1, 1
4 , . . . ,

1
4). The above prover strategy would work if there is

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 19

a distribution over satisfying assignments for ϕ such that, for each equation C, each of the four

satisfying assignments for C occurs with probability 1
4 in the distribution. Since we want to prove

an integrality gap, however, we will need to work with highly unsatisfiable instances, and so no such

distribution exists.

In our proof, we essentially proceed by pretending that such a distribution exists. Every time we

“look” at certain equations and have certain conditions, we refer to the distribution that is uniform

over all assignments that satisfy the equations and meet the conditions; this will mean that, for

example, when defining the matrix Y we will refer to different distributions when filling up different

entries. If the instance is highly expanding, however, it will take several rounds for the adversary to

make the prover fail. This is because if there is an adversary strategy that makes the prover fail after

k rounds, we can find a non-expanding subset of the formula of size O(k).

2.3.2 Fractional Solutions and Protection Matrices Based on Partial Assignments

All the fractional solutions and protection matrices produced by the prover algorithm have a

special structure and are based on partial assignments to the variables of ϕ. Before describing the

prover algorithm, we will describe such solutions and matrices, and prove various facts about them.

A partial assignment α ⊆ X × {0, 1} is a set of assignments of values to some of the variables

of ϕ such that each variable is given at most one value. For example, {(x3, 0), (x5, 1)} is a partial

assignment. A partial assignment α contradicts an equation of ϕ if it assigns values to all the

three variables of the equations, and such values do not satisfy the equation; a partial assignment is

consistent with ϕ if it contradicts none of the equations of ϕ.

If α is a consistent partial assignment, then the restriction of ϕ to α, denoted ϕ|α, is the set of

equations that we obtain by applying the assignments of values to variables prescribed by α. (We

remove the equations in which all variables are assigned, and that are reduced to 0 = 0.)

ϕ|α contains some equations with three variables, some equations with two variables and some

equations with one variable (as we said, we remove the equations with zero variables). If an equation

has two variables, we say those variables are α-equivalent. Note that α-equivalence is an equiva-

lence relation, and so the variables in X not fixed by α are split into a collection of equivalence

classes.

We make the following observations.

Claim 2.6 If ϕ|α is (2, 1.51)-expanding, then

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 20

1. Each equivalence class contains at most two variables;

2. If an equation contains three variables, then those variables belong to three distinct classes.

The first part of the claim follows from the fact that, under the expansion assumption, all equations

of size two are over disjoint sets of variables (otherwise, two equations of size two with a variable

in common would form a set of two equations with only three occurring variables). The second part

of the claim follows from the first part and from the assumption that in ϕ (and, for a stronger reason,

in ϕ|α) two clauses can share at most one variable.

Definition 2.7 (Good partial assignment) A partial assignment α is good for a formula ϕ if: (i) it

is consistent with ϕ; (ii) ϕ|α has no equation with only one variable; (iii) the set of all equations of

ϕ|α with two variables is satisfiable.

The third condition seems very strong, but it is implied by expansion.

Claim 2.8 Suppose that α is consistent with ϕ and that ϕ|α is (2, 1.51)-expanding. Then α is a good

partial assignment.

Proof: ϕ|α cannot contain an equation with a single variable, otherwise it would not even be

(1, 1.1)-expanding. Furthermore, any pair of equations with two variables cannot have any variable

in common (otherwise we would have two equations involving only 3 variables), and so it is trivial

to simultaneously satisfy all the size-2 equations.

Definition 2.9 (α-Consistent Assignment) If α is a good partial assignment for ϕ, then we say that

an assignment r ∈ {0, 1}n is α-consistent if it agrees with α and if it satisfies all the equations with

two variables in ϕ|α.

Definition 2.10 (Fractional solution associated to a good partial assignment) Let α be a good

partial assignment for ϕ. We describe the following fractional solution y = y(α) of the independent

set problem in Gϕ: y(α)0 := 1, and for every vertex i

y(α)i := P
r∈{0,1}n

[r agrees with i | r agrees with α and satisfies C]

where C is the equation of i.

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 21

Another way of thinking of y(α) is to remove from Gϕ all the vertices that are inconsistent with

α, and then, for each equation, split equally among the surviving vertices for that equation a total

weight of 1. Note that, in y(α) each entry is either 1, or 1/2, or 1/4 or 0.

Claim 2.11 Let α be a good partial assignment for ϕ. Then y(α) is a feasible solution in the cone

IS (G).

Proof: If two vertices i and j are connected in G, then there is a variable x such that i and j assign

different values to x. If y(α) assigns non-zero weight to both i and j, then it means that x is not

assigned a value by α, and so both y(α)i and y(α) j are at most 1/2.

We also define the following “semidefinite solution.”

Definition 2.12 (Protection Matrix Associated to a Partial Assignment) Let α be a good partial

assignment. To every vertex v we associate a (d + 1)-dimensional vector ui = ui(α), where d is the

number of equivalence classes in the set of variables of ϕ|α. When two variables are α-equivalent,

we choose a representative. (Recall the earlier discussion about variables being α-equivalent.)

• If v is inconsistent with α, then we simply have ui := (0, . . . , 0).

• If α assigns values to all the variables of v (consistently with v), then ui = (1, 0, . . . , 0).

• If the equation of v has only two free variables in ϕ|α, they are in the same class, say the t-th

class, and one of them is the representative. Then ui = (1, 0, . . . , 0,± 1
2 , 0, . . . , 0), where the

only non-zero entries are the 0th and the tth. The tth entry is 1/2 if i requires the representative

of the tth class to be 1; the tth entry is −1/2 otherwise.

• If the equation of v has three free variables in ϕ|α, then they are in three distinct classes, say

the t1th, the t2th and the t3th. Then ui = (1
4 , 0, . . . ,±

1
4 , . . . ±

1
4 , . . . ,±

1
4 , . . . , 0), where the only

nonzero entries are the 0th, the t1th, the t2th and the t3th. The t1th entry is 1/4 if i requires

the representative of the t1th class to be 1, and −1/4 otherwise, and similarly for the other

classes.

• Finally, let u0(α) = (1, 0 . . . , 0).

Define the matrix Y(α) as

Yi, j(α) := ui(α) · u j(α) (2.1)

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 22

Note that, by definition, Y(α) is positive semidefinite. The matrix has the following equivalent

characterization

Claim 2.13 Let α be a good partial assignment such that ϕ|α is (4, 1.51)-expanding. Then, for two

vertices i, j, let C1,C2 be their equations; we have:

Yi, j(α) = P
r∈{0,1}n

[r agrees with i and j |r satisfies C1,C2, r is α-consistent]

Furthermore, Y0,i(α) = yi(α).

Proof: To simplify notation we will omit the dependency on α.

If i and j correspond to two distinct assignments for the same equation, then it is easy to see

that Yi, j = 0.

If the equation of i and the equation of j have variables in disjoint classes, then Yi, j = ui · ui =

ui,0u j,0, where

ui,0 = P
r∈{0,1}n

[r agrees with i | r is α-consistent]

and

u j,0 = P
r∈{0,1}n

[r agrees with j | r is α-consistent]

and, using independence

ui,0u j,0 = P
r∈{0,1}n

[r agrees with i and j | r is α-consistent]

If the equation of i and the equation of j each share precisely one variable from the same class t,

then either both equations must involve three variables, or one equation involves two variables and

the second involves two variables from the same class. In either case we have Yi, j = ui,0u j,0 +u j,tu j,t.

In the first case, if the label of i and the label of j assign consistent values to the variable(s) in class

t, then Yi, j = 1/8, otherwise Yi, j = 0, in accordance with the claim. In the second case, if the label

of i and the label of j assign consistent values to the variable(s) in class t, then Yi, j = 1/4, otherwise

Yi, j = 0, again, in accordance with the claim.

Finally, it is impossible for two distinct equations to have each two variables in common classes.

Otherwise, we would have four equations involving at most six variables and contradict expansion.

The matrix has also the following useful property.

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 23

Claim 2.14 For a vertex i, let S denote the set of vertices corresponding to the equation of i which

are consistent with α.

Then

Y0 − Yi =
∑

j∈S−{i}

Y j

Proof: The claim follows from the fact that∑
j∈S

u j(α) = u0(α) = (1, 0, . . . , 0)

a fact that can be established by a simple cases analysis:

• If S contains only one element, then that element must be i, and it must be the case that

ui(α) = (1, 0, . . . , 0).

• If S = {i, j} contains two elements, then i and j have 1/2 in the first coordinate and then one

has 1/2 and another has −1/2 in the coordinate corresponding to the equivalence class of the

two unassigned variables in the equation.

• If S = {i1, i2, i3, i4} has four elements, then each one has 1/4 in the first coordinates and

then they have ±1/4 entries in the three coordinates corresponding to the three classes of the

variables occurring in the equation. Each variable is given value zero in 2 vertices and value

one in 2 vertices, so the entries in these three coordinates all cancel out.

2.3.3 Expansion and Satisfiability

Let α be a good partial assignments for ϕ, let C be an equation whose three variables are not

assigned in α, and i be one of the vertices in Gϕ corresponding to C. For the sake of this subsection,

we think of i as being itself a partial assignment.

We define the “closure” of α ∪ i as the output of the following algorithm

• β := α ∪ i;

• while ϕβ has at least an equation with only one variable, of the form xi = b

– β := β ∪ {(xt, b)}

• return β

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 24

If ϕα is highly expanding, then the above algorithm terminates almost immediately, and it out-

puts an assignment β such that every small enough subset of the equations of ϕβ are mutually

satisfiable.

Lemma 2.15 Suppose that ϕα is a (k, 1.9)-expanding instance of 3XOR let i be a vertex of Gϕ that

is not inconsistent with α. Let β be the closure of α ∪ i. Then β is a consistent partial assignment,

and it fixes at most one variable not fixed in α ∪ v.

Proof: First, we note that ϕ|α∪i has at most one equation with only one variable. (Otherwise we

would have three equations with a total of only 5 variables in ϕ|α.)

Let α′ be α ∪ i possibly extended to assign a value to the only equation of size one in ϕ|α∪i so

that the equation is satisfied.

Then α′ is a consistent partial assignment for ϕ such that ϕ|α′ has no equation of size one. (Oth-

erwise, if ϕ|α′ had an equation of size one, then there would be three equations with five variables in

ϕ|α.) We conclude that β = α′ and the lemma follows.

Lemma 2.16 (Satisfiability of Subsets of Expanding Instances) Suppose that ϕα is a (k, 1.9)-

expanding instance of 3XOR, let i be a vertex of Gϕ corresponding to an equation involving variables

not assigned by α. Let β be the closure of α ∪ i.

Let S be any subset of at most k − 2 equations of ϕ|β. Then there is assignment that satisfies all

the equations of S . Furthermore, for every equation C in S and every assignment to the variables

of C that satisfies C, it is possible to extend such an assignment to an assignment that satisfies all

the equations in S .

Proof: Recall that the difference between ϕ|β and ϕ|α is that ϕ|β has either one fewer equation and

at most three fewer variables than ϕ|α, or two fewer equations and at most four fewer variables than

ϕα. (Depending on whether the closure algorithm performs zero steps or one step.)

Let C be an equation in ϕ|β, let a be an assignment to the free variables in C that satisfies C, and

let S be a smallest set of equations in ϕβ such that S cannot be satisfied by an extension of a.

Suppose towards a contradiction that S contains at most k − 3 equations.

Observe that, in ϕ|β∪a, every variable that occurs in S must occur in at least two equations of S ,

otherwise we would be violating minimality.

We will need to consider a few cases.

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 25

1. S cannot contain just a single equation C1, because C1 must have at least two variables in ϕ|β,

and it can share at most one variable with C.

2. Also, S cannot contain just two equations C1 and C2, because, for this to happen, C1 and

C2 can have, between them, at most one variable not occurring in C, so that C, C1 and C2

are three clauses involving at most 4 variables in ϕ|β; this leads to having either 4 equations

involving at most 7 variables in ϕ|α, or to 5 equations involving at most 8 variables. In either

case, we contradict the expansion assumption.

3. Consider now the case |S | = 3. We note that no equation in S can have three free variables in

ϕ|β∪a, because then one of those three variables would not appear in the other two equations.

Thus, each equation has at most two variables, each variable must occur in at least two equa-

tions, and so we have at most three variables occurring in S in ϕ|β∪a. In ϕ|α, this corresponds

to either 5 clauses involving at most 9 variables, or 6 clauses involving at most 10 variables,

and we again violate expansion.

4. If |S | = 4, then we consider two cases. If each equation in S has three free variables in ϕ|β∪a,

then there can be at most 6 variables occurring in S , and we have a set of 4 equations in ϕ|α

involving only 6 variables.

If some of the equations in S have less than three free variables, then at most a total of 5

variables can occur S in ϕ|β∪a. This means that we can find either 6 equations in ϕα involving

at most 11 variables, or 7 equations involving at most 12 variables.

5. If |S | ≥ 5, then at most 1.5 · |S | variables can occur in S in ϕ|β∪a, and so we find either |S | + 2

equations in ϕ|α involving at most b1.5 · |S |c + 6 variables, or |S | + 3 equations involving at

most b1.5 · |S |c + 7 variables. Either situation violates expansion if |S | ≥ 5.

2.3.4 Expansion-Correction

We will make use of the following simple fact.

Lemma 2.17 Let ψ be an instance of 3XOR, and k be an integer. Then there is a subset |S | of at

most k equations such that:

• The instance ψ − S is a (k − |S |, 1.9)-expanding instance of 3XOR;

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 26

• There is at most a total of 1.9|S | variables occurring in the equations in S .

Proof: Take a largest set S of equations in ψ such that |S | ≤ k and at most 1.9|S | variables occur in

S . (Note that, possibly, S is the empty set.)

Suppose towards a contradiction that ψ− S is not (k − |S |, 1.9)-expanding. Then there is a set T

of equations in ψ − S such that |T | ≤ k − |S | and at most 1.9|T | variables occur in T . Then the union

of S and T and observe that it contradicts te maximality assumption about S .

2.3.5 The Output of the Prover Algorithm

The prover algorithm takes in input a vector y = y(α) such that α is a consistent partial assign-

ment and ϕ|α is (k, 1.9)-expanding, k ≥ 4. The output is a positive semidefinite matrix Y that is

a protection matrix for y and a set of vectors O ⊆ R1+4m such that each column Yi of Y and each

difference Y0 − Yi are positive linear combinations of elements of O.

As we will see, each element of O is itself a vector of the form y(β), where β is an extension of

α.

The Positive Semidefinite Matrix

The matrix Y is the matrix Y(α) defined in (2.1). By definition, Y is positive semidefinite. It

also follows from the definition that Y0,i = Yi,i = yi.

The Set of Vectors

Because of Claim 2.14, each vector Y0 − Y j is a non-negative linear combination of vectors Yi,

and so it is enough to prove that Yi can be obtained as a non-negative combination of O.

In order to define the set O, we will define a set Oi for each vertex of the graph, and show that

Yi is a positive linear combination of elements of Oi. We will then define O to be the union of the

sets Oi.

Let us fix a vertex i and let β be the closure of α∪ i. Let us now find a set |S | of equations of ϕ|β

as in Lemma 2.17 with parameter k − 3. The equations in S (if any), are simultaneously satisfiable

by Lemma 2.16. Let A be the set of assignments that satisfy all equations in S . Define

Oi = {y(β ∪ a)|a ∈ A}

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 27

Lemma 2.18 The vector Yi is a non-negative combination of elements of Oi.

Proof: We will argue that

Yi = Y0,i ·
1
|A|

∑
a∈A

y(β ∪ a)

As a warm-up, we note that Yi,i = Y0,i (as observed before) and that yi(β ∪ a) = 1 for every a

(because β already sets all the variables of i consistently with the label of i).

Let us now consider j , i, and let C be the equation of i. Recall that Yi, j has the following

probabilistic interpretation:

Yi, j = P
r∈{0,1}n

[r agrees with i and j | r preserves α-consistency, r satisfies C,C′]

where C is the equation of i and C′ is the equation of j. We can also derive a probabilistic interpre-

tation of the right-hand side of the equation we wish to prove

1
|A|

∑
a∈A

yi(β ∪ a) = P
a∈A,r∈{0,1}n

[r agrees with j | r satisfies C and agrees with β ∪ a] (2.2)

Now we claim that the probability (2.2) is precisely the same as

P
r∈{0,1}n

[r agrees with j | r satisfies C and agrees with β] (2.3)

This is clear if the clauses in S and C share no variable outside β, because the conditioning on

a has no influence on the event we are considering.

If C shares some, but not all, of its variables outside β with the clauses in S , then a random

element a of A assigns uniform and independent values to such variables. This is because A is an

affine space, and so if the above were not true, then A would force an affine dependency among a

strict subset of the variables of C outside β; this would mean that there is a satisfying assignment

for C that is inconsistent with each assignment in A, that is, there is a satisfying assignment for C

that is inconsistent with S (in ϕ|β), thus violating Lemma 2.16.) If C shares all its variables with the

clauses of S , then a random a in A must assign to the variables of C a random satisfying assignment.

(Otherwise, we would again conclude that there is a satisfying assignment for C that is inconsistent

with S in ϕ|β.)

The next step is to observe that, thus,

1
|A|

∑
a∈A

y(β ∪ a)

CHAPTER 2. INTEGRALITY GAPS FOR LOVÁSZ-SCHRIJVER SDP RELAXATIONS 28

is the same as the probability that a random extension of α is consistent with j conditioned on:

(i) being consistent with i; (ii) satisfying the equation of j; (iii) preserving α-consistency. If we

multiply by Y0,i, what we get is the probability that a random extension of α is consistent with the

labels of i and j conditioned on: (i) satisfying the equation of i; (ii) satisfying the equation of j; (iii)

preserving α-consistency. And this is just the definition of Yi, j.

2.3.6 Putting Everything Together

Let ϕ be a (k, 1.95)-expanding instance of 3XOR, and suppose that there is an adversary strategy

that makes the game terminate after t steps.

The game begins with the solution (1, 1/4, . . . , 1/4), which is y(∅), and, at each round, the

prover picks a solution of the form y(α) for a partial assignment α. The game ends when ϕ|α is not

a (4, 1.9)-expanding instance of 3XOR.

Let us denote by y(∅), y(α1), . . . , y(αt) the solutions chosen by the adversary. Note that αr is an

extension of αr−1 in which the variables occurring in a set S r of clauses have been fixed, in addition

to the the variables occurring in one or two clauses (call this set Tr). We also have that S r contains

at most 1.9|S r | variables that do not occur in Tr′ r′ ≤ r or in S r′ , r′ ≤ i − 1. By the properties of the

expansion correction, y(αr) is (k −
∑

r′≤r |S r′ | + |Tr′ |, 1.9)-expanding.

When the game terminates, we have

k ≥
∑

r

|S r | + |Tr | ≥ k − 4

Let v be total number of variables occurring in the S r and Tr. We have

tv ≥ 1.95(
∑

r

|S r | + |Tr |)

because of the expansion in ϕ. But we also have

tv ≤ 3|Tr | + 1.9
∑

r

|S r |

so ∑
r

|S r | ≤ 21
∑

r

|Tr |

and

k ≤ 4 + 22
∑

r

|Tr | ≤ 4 + 44t

which gives t ≥ k/44 − 1/11.

29

Chapter 3

LP relaxations of Vertex Cover and

Max-Cut

In this chapter we study the effectiveness of the linear programs in the Lovász-Schrijver hierar-

chy in approximating Minimum Vertex Cover and Maximum Cut. The study of integrality gaps for

these programs was initiated by Arora, Bollobás, Lovász, and Tourlakis [ABL02, ABLT06, Tou06]

who proved gaps for LS relaxations of Vertex Cover. They show that even after Ωε(log n) rounds

the integrality gap is at least 2 − ε [ABLT06], and that even after Ωε((log n)2) rounds the integrality

gap is at least 1.5 − ε [Tou06]. We show that the integrality gap is at least 2 − ε even after Ωε(n)

rounds. We also show that the integrality gap for Maximum Cut is at least 2 − ε after Ωε(n) rounds.

Let G = (V, E) be a graph, and assume V = {1, . . . , n}. Recall that the cone of the linear

programing relaxation of the vertex cover problem is the set of vectors y ∈ Rn+1 such that

yi + y j ≥ y0 ∀(i, j) ∈ E

0 ≤ yi ≤ y0 ∀i ∈ V

y0 ≥ 0 (VC(G)).

The linear programming relaxation for MAX-CUT is a set of constraints on n vertex variables

and m edge variables. For a vector ỹ ∈ Rn+m+1, let ỹ0 be the extra coordinate for homogenization,

(ỹ1, . . . , ỹn) denote the vertex variables and (ỹe1 , . . . , ỹem) denote the the edge-variables. Then the

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 30

cone is the solution set of the constraints

ỹe ≤ ỹi + ỹ j ∀e = (i, j) ∈ E

ỹe ≤ 2ỹ0 − (ỹi + ỹ j) ∀e = (i, j) ∈ E

0 ≤ ỹi ≤ ỹ0 ∀i ∈ V

0 ≤ ỹe ≤ ỹ0 ∀e ∈ E

ỹ0 ≥ 0 (MC(G))

The integrality gap for vertex cover is taken to be the ratio of the size of the minimum vertex

cover in the graph to the optimum of the linear program. In case of MAX-CUT, we take the gap to

be the inverse of this ratio. Note that in both cases the integrality gap is at least 1.

The instances for which we prove the integrality gap results are (slight modifications of) sparse

random graphs. In such graphs, the size of the minimum vertex cover is ≈ n, where n is the number

of vertices, while we show the existence of a fractional solution of cost n · (1
2 + ε) that remains

feasible even after Ωε(n) rounds. The size of a maximum cut is ≈ m
2 , where m is the number of

edges, while we show the existence of a fractional solution of cost m · (1 − ε) that also remains

feasible after Ωε(n) rounds.

We use two properties of (modified) sparse random graphs. The first property is large girth; it

suffices for our application that the girth be a large constant depending on ε. The second property is

that for every set of k = o(n) vertices, such vertices induce a subgraph containing at most (1+o(1))k

edges. The same properties are also used in [ABLT06, Tou06].

In order to prove that a certain fractional solution y is feasible for a relaxation Nk(K), it is

sufficient to construct a matrix Y such that certain vectors obtained from the rows and columns of Y

are all feasible solutions for Nk−1(K). (By convention, N0(K) := K.) As before, we use an inductive

approach, where we have a theorem that says that all solutions satisfying certain conditions are

feasible from Nk(K); to prove the theorem we take a solution y that satisfies the conditions for a

certain value of k, and then we construct a matrix Y such that all the derived vectors satisfy the

conditions of the theorem for k−1, and hence, by inductive hypothesis, are feasible from N(k−1)(K),

thus showing that y is feasible for Nk(K). We will also use the fact that the set Nk−1(K) is convex.

This gives that, once we define the matrix Y , and we have to prove that the associated vectors are in

Nk−1(K), it suffices to express each such vector as a convex combination of vectors that satisfy the

conditions of the theorem for k − 1.

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 31

Roughly speaking, in the work of Arora et al. [ABLT06] on Vertex Cover, the appropriate

theorem refers to solutions where all vertices are assigned the value 1/2 + ε, except for a set of

exceptional vertices that belong to a set of constant-diameter disks. Oversimplifying, to prove

a lower bound of k rounds, one needs to consider solutions that have up to k disks, and for the

argument to go through one needs the union of the disks to induce a forest, hence the lower bound

is of the same order as the girth of the graph. Tourlakis [Tou06] does better by showing that, due to

extra conditions in the theorem, the subgraph induced by k “disks” has diameter O(
√

k), and so it

contains no cycle provided that the girth of the graph is sufficiently larger than
√

k. This yields an

integrality gap result that holds for a number of rounds up to a constant times the square of the girth

of the graph.1

The solutions in our approach have a similar form, but we also require the disks to be far

away from each other. When we start from one such solution y, we construct a matrix Y , and

consider the associated vectors, we find solutions where disks are closer to each other than allowed

by the theorem, and we have to express such solutions as convex combinations of allowed solutions.

Roughly speaking, we show that such a step is possible provided that the union of the “problematic”

disks (those that are too close to each other) induces a very sparse graph. Due to our choice of

random graph, this is true provided that there are at most cε · n disks, where cε is a constant that

depends only on ε. We also show that, in order to prove an integrality gap for k rounds, it is sufficient

to consider solutions with O(k) disks, and so our integrality gap applies even after Ωε(n) rounds.

Hence (again, roughly speaking) our improvement over previous work comes from the fact that it

suffices that the union of the disks induce a sparse graph (something which is true for a sublinear

number of disks) rather than induce a forest (a requirement that fails once we have a logarithmic

or polylogarithmic number of disks). This oversimplified sketch ignores some important technical

points: We will give a more precise overview in Section 3.2.

Linear versus Semidefinite Relaxations

It is interesting to compare our results for Maximum Cut in the LS hierarchy with the known

results for the LS+ hierarchy. After applying one round of LS+ to the basic linear programming

relaxation of Max Cut one obtains the Goemans-Williamson relaxation, which yields a .878 approx-

imation. In contrast, we show that even after Ωε(n) rounds of LS the integrality gap remains 1
2 + ε.

1Arora et al. [ABLT06, Tou06] present their proofs in the language of a “prover-verifier” game, but they can be
equivalently formulated as inductive arguments.

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 32

This gives a very strong separation between the approximability of LS versus LS+ for a natural

problem.

Also, for vertex cover, proving strong integrality gaps for the LS+ hierarchy of semidefinite

programs is likely to require significantly different techniques than the ones used here. For proving

LS integrality gaps discussed in this chapter, we rely on random graphs. However, it is known that

the Theta function of a random sparse graph is very small, and so already one round of LS+ provides

a good approximation to Vertex Cover on random graphs.

For one round of LS+ (or, equivalently, for the function defined as number of vertices minus

the Theta function) Goemans and Kleinberg [KG98] had earlier proved a 2 − o(1) integrality gap

result by using a different family of graphs studied initially by Frankl and Rödl [FR87]. Charikar

[Cha02] proves a 2− o(1) integrality gap result for a semidefinite programming relaxation of Vertex

Cover that includes additional inequalities using the same family of graphs. Charikar’s relaxation is

no tighter than 3 rounds of LS+, and is incomparable with the relaxation obtained after two rounds.

These results were later extended to a gap of 2 − ε for Ωε(
√

log n/ log log n) rounds of LS+ by

Georgiou et. al. [GMPT07]. Proving optimal gaps in the LS+ hierarchy (for Ω(n)) rounds remains

a challenging open problem.

Other Related Work

Independently of this work, Fernandez de la Vega and Kenyon [dlVKM07] proved, for every

ε > 0, that the integrality gap of Max Cut remains at least 2 − ε even after a constant number of

rounds of LS. Their result also applies to the more powerful Sherali-Adams method [SA90]. (The

relaxation obtained after r levels of Sherali-Adams is at least as tight as the relaxation obtained after

r round of Lovász-Schrijver.) The techniques used by them were very similar the ones discussed in

this chapter.

These techniques were also used later by Charikar, Makarychev and Makarychev [CMM07a]

in construction of metrics on n points, such that the metric defined by any k of these points embeds

isometrically into `1 (in fact, into `2) but embedding the entire metric on n points into `1 requires

distortion at least Ω(log n/(log k + log log n)). They also used these metrics to show that integrality

gap for Minimum Vertex Cover and Maximum Cut remains at least 2 − ε for the linear program

obtained by Ω(nδ) levels of the Sherali-Adams hierarchy, for δ = δ(ε) [CMM09], and to establish

integrality gaps for Unique Games.

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 33

3.1 Our Results

Define an (α, δ, γ, η) graph G on n vertices as a graph with girth δ log(n), and such that no vertex

cover of size (1 − α)n exists and each induced subgraph of G with k ≤ γn vertices, has at most

(1 + η)k edges.

Lemma 3.1 For every 0 < α < 1/125, η > 0, there exists a d = d(α) ∈ N, δ, γ > 0, and N ∈ N such

that for n ≥ N there exists an (α, δ, γ, η) graph with max cut less than 1
2 |E|(1 + α) and maximum

degree at most d on n vertices. Here d(α) is an explicit function that depends only on α.

Lemma 3.2 For every η, δ, γ > 0, 0 < ε < 1/20, d ∈ N if G is an (α, δ, γ, η) graph with maximum

degree at most d on n vertices then (1, 1/2+ε, . . . , 1/2+ε) ∈ NΩε,η,δ,γ,d(n)(VC(G)) if η ≤ η(ε, d) where

η(ε, d) is an explicit function that depends only on ε and d.

Lemma 3.3 For every η, δ, γ > 0, 0 < ε < 1/20, d ∈ N if G is an (α, δ, γ, η) graph with maximum

degree at most d on n vertices then the solution y defined as y0 := 1, yi := 1/2 + ε and ye := 1 − 2ε

is in NΩε,η,δ,γ,d(n)(MC(G)) if η ≤ η(ε, d) where η(ε, d) is an explicit function that depends only on ε

and d.

Theorem 3.4 For all 0 < ζ < 1/50, there is a constant cζ > 0 such that, for all sufficiently large n,

the integrality gap for vertex cover after cζn rounds is at least 2 − ζ.

Proof: Let α = ζ/6 and ε = ζ/6. Let d = d(α) where d(α) is as in Lemma 3.1. Let η = η(ε, d)

where η(ε, d) is as in Lemma 3.2. Then by Lemma 3.1, there exists a δ, γ > 0, N ∈ N such that

such that for n ≥ N there exists an (α, δ, γ, η) graph with maximum degree at most d on n vertices.

By Lemma 3.2, the vector (1, 1/2 + ε, . . . , 1/2 + ε) ∈ NΩε,η,δ,γ,d(n)(VC(G)) because η = η(ε, d). This

exhibits an integrality gap of 1−α
1/2+ε =

1−ζ/6
1/2+ζ/6 ≥ 2 − ζ.

Similarly, we have

Theorem 3.5 For all 0 < ζ < 1/50, there is a constant cζ > 0 such that, for all sufficiently large n,

the integrality gap for max cut after cζn rounds is at least 2 − ζ.

Lemma 3.1 is very similar to results already known in the literature (for example [ABLT06])

and so we only prove the additional properties that we require in the appendix. Most of this chapter

is dedicated to a proof of Lemma 3.2. Lemma 3.3 will follow via a relative simple “reduction” to

Lemma 3.2.

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 34

3.2 Overview of the Proof

If D is a random variable ranging over vertex covers, then the solution yD where y0 = 1 and

yi = P[i ∈ D] is a convex combination of integral solutions, and so it survives an arbitrary number

of rounds of LS. The protection matrix for yD is the matrix Y = YD such that Yi, j = P[i ∈ D∧ j ∈ D].

In trying to show that a given vector y survives several rounds of LS, it is a good intuition to

think of y as being derived from a probability distribution over vertex covers (even if y is not a

convex combination of integral solutions, and cannot be derived in this way) and, in constructing

the protection matrix Y , to think of Y as being derived from the said distribution as above.

Note that for the above matrix, the vectors z = Yi/yi and w = (Y0 − Yi)/(1 − yi) correspond

to conditional distributions with z j = P[j ∈ D|i ∈ D] and w j = P[j ∈ D|i < D]. To show that

y ∈ Nk(VC(G)), we must show that z,w ∈ Nk−1(VC(G)) for the vectors z and w corresponding to

every i. The kth row in the protection matrices may now be interpreted as the distribution obtained

by further conditioning on k. Intuitively, more rounds of LS correspond to further conditioning on

other vertices which do not already have probability 0 or 1 in these conditional distributions. We

often refer to vertices having probability 0/1 as being fixed in the distribution.

Since only r vertices can be conditioned upon in r rounds, we only need to create solutions

that look “locally” like distributions over vertex covers for small sized subgraphs. Also, because

the given graph has large girth, subgraphs of size O(log n) are trees. We thus start by expressing

the vector y = (1, 1/2 + ε, . . . , 1/2 + ε) as a probability distribution over vertex covers for a tree.

This distribution we define has the property that conditioning on a vertex i only affects the vertices

upto a constant distance ` from i. In fact, the effect of conditioning decreases exponentially with the

distance from i and we explicitly truncate it at distance ` = O(1
ε log(1

ε)). The conditional distribution

is referred to as a splash around i as it creates “ripples” (change in probabilities) which decrease

with distance from i. Fernandez de la Vega and Kenyon [dlVKM07, Section 5] describe essentially

the same distribution of vertex covers over trees in their paper, suggesting its usefulness for proving

integrality gaps for the vertex cover problem.

We start with the vector (1, 1/2 + ε, . . . , 1/2 + ε) for the given graph G. After one round of LS,

each row i of the protection matrix is defined by changing only weights of vertices within distance

a distance ` of vertex i according to a splash. Since it affects only a small subgraph, which is a tree

rooted at i, the solution “looks” locally like a valid conditional distribution.

Now consider trying to extend this strategy to a second round. Say we want to show that the ith

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 35

row of the protection matrix above survives another round. We thus need to create another protection

matrix for this row. Each row of this new matrix corresponds to conditioning on some other vertex

j. If i and j are at distance greater than 2`, the weights (probabilities) of vertices within a distance

` from j are still 1/2 + ε. The conditional distribution can then be created by replacing these values

according to a splash around j and leaving the weights of the other vertices as unchanged. If the

distance between i and j is less than 2` and k is a vertex within distance ` of either i or j, we modify

the weight of k according to the probability that both i and j are in the vertex cover.

It would become, unfortunately, very complex to proceed for a large number of rounds with

this kind of analysis, and it would appear that the girth of the graph would be a natural limit for the

number of rounds for which we can extend this line of argument. (See indeed [ABLT06, Tou06].)

We note however that certain cases are simpler to handle. Suppose that we are given a vector y

that is 1/2 + ε everywhere except in a number of balls, all at distance at least 5` from each other,

in which the values of y are set according to splashes. Then the above ideas can be used to define

a valid protection matrix. Unfortunately, this does not seem to help us in setting up an inductive

argument, because the structure of the vector that we start from is not preserved in the rows of the

protection matrix: we may end up with splash areas that are too close to each other, or with the

more special structures that we get by conditioning on a vertex less than distance 2` from the root

of a splash.

Our idea, then, is to take such more complex vectors and express them as convex combinations

of vectors that are 1/2 + ε everywhere except in splash areas that are at distance at least 5` from

each other. We will refer to such solutions as canonical solutions. Since we are trying to show that

the complex vector belongs to some convex cone, it suffices to show that each one of these simpler

vectors is in the cone. Now we are back to the same type of vectors that we started from, and we

can set up an inductive argument.

Our inductive argument proceeds as follows: we start from a solution y in a “canonical” form,

that is, such that all vertices have value 1/2+ε except for the vertices belonging to at most k splashes;

furthermore, the roots of any two splashes are at distance at least 5` from each other. We need to

construct a protection matrix Y for this vector. To define the jth row Y j of the protection matrix we

reason as follows: if j is far (distance > 2`) from the roots of all the splashes in y, then Y j looks

like y, plus a new splash around j. If j is at distance ≤ 2` from a splash (and, necessarily, far from

all the others) rooted at a vertex r, then we replace the splash rooted at r with a new splash which

corresponds to our original distribution over trees conditioned on both r and j.

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 36

If Y j happens to be a vector in canonical form, we are done, otherwise we need to express it as

a convex combination of vectors in canonical form. There are two ways in which Y j can fail to be

canonical: j may be at distance more than 2` but less than 5` from the closest splash; in this case the

new splash we create around j is too close to an already existing one. The other possibility is that j

is at distance less than 2` from an existing splash, in which case Y j contains a “doubly-conditioned”

splash which is not an allowed structure in a canonical solution.

Our idea is then to define a set S of “problematic vertices,” namely, the vertices in the two close

splashes, in the first case, or the vertices in the doubly-conditioned splash, in the second case. Then

we prove that2 that the restriction of Y to small (sub-linear) subset S of vertices can be expressed as

a distribution of valid integral vertex covers over S . We would then like to use this fact to express y

itself as a convex combination of solutions that are integral over S and agreeing with y outside S ; if

we could achieve this goal, we would have expressed y as a convex combination of vectors where

the “problematic” coordinates of y are fixed, and the other coordinate are as nice as they were in y.

Unfortunately, some complications arise. In order to express y as a convex combination
∑

a λaya

of vectors such that each ya is fixed in S , it is necessary that each ya contains a splash around each

of the newly fixed variables. The new splashes may themselves be at distance less than 5` from

each other, making the ya not canonical. To remedy this problem, we define S (the set of vertices

that will be fixed in the ya) via the following process: we initialize S to the initial set of problematic

vertices, then we add all vertices that are at distance less than ` from S and that can be connected via

a path of length ≤ 5` that does not pass through S , and so on. At the end of this process, we express

y restricted to S as a convex combination of integral covers, and we extend each of these integral

covers over S to a fractional solution over all vertices (by putting splashes around the vertices of S)

and so express y as a convex combination of solutions that, now, are canonical.

The argument works provided that S is of sublinear size. A careful accounting guarantees that,

if we want to show that our solution survives k rounds, we only need to consider instances where

S is of size O(k). Intuitively, this is due to the fact that each time we make S larger we discover

a short path of length t ≤ 5` in the graph, and we add to the subgraph induced by S t − 1 new

vertices and t new edges. The subgraph induced by S can only include at most |S |(1 + η) edges,

for some very small η, so it cannot happen that S grows too much at each step, because it is not

possible to consistently add more edges than vertices to the subgraph induced by S without causing

a contradiction to the sparsity condition.

2Assuming some added conditions on the fractional solution y, called saturation.

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 37

Since this ensures that it takes Ω(n) rounds before the set of fixed vertices grows to size γn, we

can survive Ω(n) rounds.

3.3 Distributions of Vertex Covers in Trees

As a first (and useful) idealized model, suppose that our graph is a rooted tree. Consider the

following distribution over valid vertex covers:

• The root belongs to the cover with probability 1/2 + ε

• For every other vertex i, we make (independently) the following choice: if the parent of i does

not belong to the vertex cover, then i is in the cover with probability one; if the parent of i is

in the cover, then with probability 2ε/(1
2 + ε) we include i in the cover, and with probability

1 − 2ε/(1
2 + ε) we do not include i in the cover.

(The distribution is sampled by considering vertices in the order of a BFS, so that we make a

decision about a vertex only after having made a decision about the parent.)

This is an instantiation of the Ising Model, about which much is known, but we will need only

very elementary facts about it. The proofs of these facts are contained in the appendix.

A first observation is that each vertex has probability 1/2 + ε of being in the cover and 1/2 − ε

of not being in the cover. The second observation is that, if we condition on the event that, say, the

root is in the cover, then this condition affects very heavily the vertices that are close to root, but this

effect decreases exponentially with the distance. In particular, for each vertex whose distance from

the root is about 4ε−1 · (log ε−1), the probability of the vertex being in the cover condition on the

root being in the cover is between 1/2 + ε − ε4 and 1/2 + ε + ε4, and the same is true conditioning

on the root not being in the cover.

This second observation will show that reasoning about this distribution is useful to deal with

graphs that are only locally like trees, that is, graphs of large girth. Before discussing this applica-

tion, we slightly change the distribution so that, after a certain distance from the root, there is no

effect (rather than a small effect) if we condition on the root being or not being in the cover. Hence

the effect of conditioning on the root is explicitly cut-off after a certain distance.

In particular, consider the following two distributions which sample from the vertex covers of a

tree rooted at a vertex i. The conditioning on the root only affects vertices upto a distance ` = 8
ε log 1

ε

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 38

of i.

Definition 3.6 For b ∈ {0, 1} we define a b-Splash around a vertex i as the distribution which

modifies vertices upto a distance of 2` as follows

1. i = b

2. For every vertex upto distance ` (and at distance greater than `+ 1), we independently decide

to include it with probability 1 if its parent is not in the vertex cover and with probability

2ε/(1
2 + ε) if its parent is already in the vertex cover.

3. For u and v at distances `, ` + 1 respectively, we include v with probability 1 if u is not in the

vertex cover and with probability

P[u = 1|i = b] −
(

1
2 − ε

)
P[u = 1|i = b]

otherwise.

Where u = 1 denotes the event u ∈ D for a random variable D (with distribution defined by the

splash) ranging over the vertex covers of the graph.

For the above to be well defined, we need P[u = 1|i = b] > 1/2 − ε for a vertex u at distance `

from i. Claim 3.7 shows that in fact P[u = 1|i = b] ∈ [1/2 + ε − ε4, 1/2 + ε + ε4] for u at distance

greater than `/2 and hence the probability at distance ` is non-negative.

Claim 3.7 Consider a b-Splash around any vertex i such that all vertices upto distance ` are labeled
1
2 + ε. Let j be a vertex such that d(i, j) ≤ `. Then,

1. P[j = 1|i = 1, d(i, j) = k] = (1/2 + ε)
[
1 + (−1)k

(
1/2−ε
1/2+ε

)k+1
]

for 0 ≤ k ≤ `

P[j = 1|i = 0, d(i, j) = k] = P[j = 1|i′ = 1, d(i′, j) = k − 1] for 1 ≤ k ≤ `

2. |P[j = 1|i = b, d(i, j) = `/2] − (1/2 + ε)| ≤ ε4

3. P[j = 1|i = 1, d(i, j) = k] + P[j = 1|i = 1, d(i, j) = k + 1] ≥ 1 + 4ε2 for 0 ≤ k ≤ `

Note, in particular, that the probabilities are independent of i and j and depend only on their

distance d(i, j). Also, the difference of the probabilities from 1/2 + ε decreases exponentially with

distance. The following claim shows that the vertices outside a radius of ` from i are independent

of whether or not i is in the cover.

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 39

Claim 3.8 If we pick a 0-Splash with probability 1/2 − ε and a 1-Splash with probability 1/2 + ε,

then all vertices have probability 1/2 + ε. Furthermore, vertices at distance ` + 1 or more from i

have weight 1/2 + ε in the 0-Splash as well as 1-Splash around i.

The vectors that appear in our argument may involve conditioning on a vertex i that has value

different from 1/2 + ε based on a splash distribution around a vertex r close to it. The following

claims allow us to compute P[i = 1, j = 1|r = b], the probability of two vertices i, j being simulta-

neously present in a b-Splash at r, and also P[i = 0, j = 1|r = b], which is the probability that j is

present and i is not. We defer the proofs to the appendix.

Claim 3.9 Let i = v0, v1, . . . , vm−1, vm = j be the path to j, m ≤ `, and let u be the vertex on this

path which is closest to r. Then

1. P[i = 1, j = 1|r = b] = P[u = 1|r = b] · P[i = 1|u = 1] · P[j = 1|u = 1]
+P[u = 0|r = b] · P[i = 1|u = 0] · P[j = 1|u = 0]

2. If P[u = 1|r = b] = 1/2 + ε, then P[i = 1, j = 1|r = b] = (1/2 + ε)P[j = 1|i = 1]

The first part of the above claim states that once we condition on u, then i and j are independent.

The second part states that if u is sufficiently far r, we can ignore r completely and just compute the

probability of j as determined by a splash around i.

Claim 3.10 Let i be a vertex and (j,k) be an edge in a b-Splash around r and let b′ ∈ {0, 1}.

P[i = b′, j = 1|r = b] + P[i = b′, k = 1|r = b] ≥ P[i = b′|r = b] · (1 + 4ε3)

The next claim allows us to treat vertices that are sufficiently far from each other as almost

independent in the distribution conditioned on r.

Claim 3.11 Let i and j be two vertices in a b-Splash around r, such that d(i, j) ≥ `. Then∣∣∣P[i = b′, j = 1|r = b] − P[i = b′|r = b] · P[j = 1|r = b]
∣∣∣ ≤ 2ε4

3.4 Distribution of Vertex Covers in Sparse Graphs

To reduce solutions with more complicated structure to simpler solutions, we will need to show

that if we look at a sufficiently small subgraph of our original graph obtained in Lemma 3.1, then

the more complicated solution can be expressed as a convex combination of 0/1 solutions.

The following result is proved in [ABLT06].

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 40

Lemma 3.12 ([ABLT06]) Let η ≤ 2ε
3+10ε and let G = (V, E) be a graph such that

1. for each S ⊆ V, G(S) = (VG(S), EG(S)), then |EG(S)| ≤ (1 + η)|VG(S)|.

2. girth(G) ≥ 1+2ε
ε .

Then there exists a distribution over vertex covers on G such that each vertex belongs to the vertex

cover with probability 1/2 + ε.

We will need a slight generalization. Instead of requiring the solution to have the value 1/2 + ε

everywhere, we only require that the sum of the values on each edge should be at least 1 + 2ε, if

both of its endpoints are not already fixed.

Definition 3.13 We call a fractional solution y for a graph G ε-saturated if for each edge (i, j) in

graph G either:

• Both i and j are fixed and yi + y j ≥ 1 or,

• yi + y j ≥ 1 + 2ε.

We now show that the under the conditions of the previous lemma, every ε-saturated solution

can be written as a convex combination of vertex covers of the graph.

Lemma 3.14 Let η ≤ 2ε
3+10ε and let G = (V, E) be a graph such that

1. for each S ⊆ V, G(S) = (VG(S), EG(S)), then |EG(S)| ≤ (1 + η)|VG(S)|.

2. girth(G) ≥ 1+2ε
ε .

and let y be an ε-saturated solution. Then there exists a distribution over vertex covers on G such

that each vertex i belongs to the vertex cover with probability yi.

Proof: For the graph G, we will create a set of feasible fractional solutions y(k) ∈ {0, 1/2 + ε, 1}|V |

such that y is a convex combination of these vectors.

We partition V into V0, V1/2+ε, and V1, as follows:

i ∈


V0 yi < 1/2 + ε

V1/2+ε yi = 1/2 + ε

V1 yi > 1/2 + ε

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 41

We define t(i) as follows:

t(i) =


1 − yi

1/2+ε i ∈ V0

1 i ∈ V1/2+ε

yi−(1/2+ε)
1/2−ε i ∈ V1

We can order the t(i)’s: 0 ≤ t(i1) ≤ t(i2) ≤ · · · ≤ t(i|V |) ≤ 1. For each k : 1 ≤ k ≤ |V | we create

the vector y(k) where

y(k)i =


0 i ∈ V0 and t(i) ≤ t(ik)

1 i ∈ V1 and t(i) ≤ t(ik)

1/2 + ε otherwise

We claim the distribution where y(k) occurs with probability tik − tik−1 gives us y.

If i ∈ V0, then it will be 0 with probability ti and 1/2 + ε with probability 1 − ti =
yi

1/2+ε .

Therefore the probability that i is in the vertex cover is yi. If i ∈ V1, then it will be 1 with probability

ti =
yi−(1/2+ε)

1/2−ε and 1/2 + ε with probability 1 − ti = 1 − yi−(1/2+ε)
1/2−ε . Therefore the probability that i is

in the vertex cover is yi−(1/2+ε)
1/2−ε + (1/2 + ε)(1 − yi−(1/2+ε)

1/2−ε) = yi. If i ∈ V1/2+ε, then it is clear that the

probability that i is in the vertex cover is 1/2 + ε.

Note that all the weights in each y(k) are 0, 1 or 1/2 + ε. It remains to show that in each of these

y(k) any edge which contains one vertex fixed to 0 has the other vertex fixed to 1. First, note that all

neighbors of vertices in V0 are in V1. It suffices to show that if i and j are adjacent, i ∈ V1, j ∈ V0,

that t(i) ≥ t(j). However

t(i) − t(j) =
yi − (1/2 + ε)

1/2 − ε
−

(1/2 + ε) − y j

1/2 + ε

=
(yi + y j)/2 + ε(yi − y j) − (1/2 + ε)

1/4 − ε2

≥
(1 + 2ε)/2 + ε(yi − y j) − (1/2 + ε)

1/4 − ε2

=
ε(yi − y j)
1/4 − ε2 ≥ 0

which concludes the proof of the lemma.

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 42

3.5 The Main Lemma

We now define the type of solutions that will occur in our recursive argument.

Let G = (V, E) be an (α, δ, γ, η) graph with n vertices and degree at most d, as in the assumption

of Lemma 3.2. We define the constant C =
∑`+1

i=1 di as the maximum number of vertices within a

distance ` from some vertex and D = 5`C as the maximum number of vertices within distance ` of

all the vertices in a path of length 5`. Choose η = 1
3D . Note that η depends on only ε and d. Also,

we assume that n is large enough that the girth of the graph is larger than various fixed constants

throughout. We fix G for the rest of this section.

Let R =
γn

C+2D

Let G|S = (S , E|S) be the subgraph of G induced by S ⊆ V . For some set S ⊆ V , define

NS (i) = { j : there exists path of length ` from i to j using only edges in E\E|S).

Definition 3.15 We say that a vector y = (y0, . . . , yn) is r-canonical if there exists a set S ⊆ V such

that:

• ∀ j ∈ S y j ∈ {0, 1} and y|S is a vertex cover of G|S

• For every two vertices in S the shortest path between them that uses only vertices not in S

has length > 5`. (Therefore if i, j ∈ S , i , j, then NS (i) ∩ NS (j) = ∅).

•

yi =

 P[i = 1| j = y j] ∃ j ∈ S s.t. i ∈ NS (j)

1/2 + ε o.w

• |S | ≤ rC + 2rD

• Let |S | = rC + kD (k ≤ 2r) and G|S = (S , E|S) is the subgraph of G induced by S , then

|E|S | − |S | ≥ k − r

We call a set S as in Definition 3.15 a witness.

Claim 3.16 If y is an r-canonical vector then, y ∈ VC(G). Moreover, y is ε2-saturated.

Proof: This follows from the fact all edges are either internal to S , internal to some NS (i), internal

to V \ ∪i∈S N(i) or between some N(i) and V \ ∪i∈S N(i). In the first case, it follows because y|S is a

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 43

valid vertex cover having only 0/1 values. In the second because of the fact that a N(i) is weighted

according to a splash and Claim 3.7. In the third case, because the weights are all 1/2 + ε. The final

case just concerns the vertices at distance ` and ` + 1 from the center of a splash and again follows

from Claim 3.7.

Lemma 3.2 follows from the above claim, the following result and the fact that

(1, 1/2 + ε, . . . , 1/2 + ε) is 0-canonical.

Lemma 3.17 Let y be an r-canonical solution, and r ≤ R. Then y is in NR−r(VC(G)).

Proof: We prove it by induction on R − r. By Claim 3.16, an R-canonical solution is feasible for

VC(G), and this gives the basis for the induction.

Let y be an r-canonical solution and let S be a witness to y. We show that there is a protection

matrix Y for y such that (Yi)/yi and (Y0−Yi)/(y0−yi) are distributions over (r+1)-canonical vectors

for yi , 0, y0. If yi = 0, then we take Yi = 0 which is in Nk(VC(G)) for all k and Y0 − Yi = Y0

which is r-canonical.

The protection matrix is defined as follows. (When we talk about distance between vertices, we

mean distance via paths that do not go through any vertex in S .)

• Yi,0 = Y0,i = Yi,i = yi.

• If i and j are at distance greater than ` from each other, then Yi, j = yi · y j

• If i is at distance greater than 2` from the closest vertex in S , and j is at distance at most `

from i, then Yi, j is the probability that i and j both belongs to a vertex cover selected according

to a splash distribution around Yi j = yi P[j = 1|i = 1]

• If i is at distance at most 2` from a vertex r ∈ S , and j is at distance at most ` from i, then Yi j

is the probability that i and j both belong to a vertex cover selected according to a b-Splash

distribution around r i.e. Yi j = P[i = 1, j = 1|r = b]

Claim 3.18 The matrix Y is symmetric.

Proof: If d(i, j) > `, clearly Yi j = Y ji. There remain three additional cases.

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 44

• First, if both i and j are at distance greater than 2` from any vertex in S , then yi = y j = 1/2+ε

and also P[j = 1|i = 1] = P[j = 1|i = 1] as it depends only on the distance by Claim 3.7, and

hence Yi j = Y ji.

• Second, both i and j are at distance at most 2` from any vertex in S . Both i and j cannot be

close to two different vertices in S because then d(i, j) ≤ ` would imply a path of length at

most 5` between the two vertices which is not possible. Hence, in this case, Yi j = Y ji = P[i =

1, j = 1|r = b], where r is the vertex in S close to both i and j.

• Finally, if d(i, r) ≤ 2` for some r ∈ S and d(j, r) > 2` ∀r ∈ S , then the path from i to j cannot

come closer than distance ` + 1 to r. If l is the vertex on this path closest to r, then we have

Pb
r (l) = 1/2 + ε and by Claim 3.9, P[i = 1, j = 1|r = b] = (1/2 + ε)P[j = 1|i = 1] = yi P[j =

1|i = 1] . Therefore, Yi j = P[i = 1, j = 1|r = b] = yi P[j = 1|i = 1] = Y ji.

Let us fix a vertex i, and consider the vectors z := Yi/yi and w := (Yi − Y0)/yi. We will show

that they are (convex combinations of) (r+1)-canonical vectors. (If yi = 0 we do not need to analyze

z, and if yi = 1 we do not need to analyze w.)

Note that z and w are same as y except for vertices that are within distance ` of i.

Lemma 3.19 If y is an r-canonical solution and Y is the matrix as defined above, then ∀1 ≤ i ≤ n,

the solutions z := Yi/yi and w := (Yi − Y0)/yi are ε3-saturated

Proof: We first give the proof for z. Note that for d(i, j) > ` z j = y j and hence edges as distance

greater than ` from i are ε2 saturated because they were in y by Claim 3.16. If d(i, r) > 2` ∀r ∈ S

then the distribution up to distance 2` from i is same as a 1 − S plash, which is in fact ε2-saturated

by Claim 3.7 and Claim 3.8.

Let i be within distance 2` of r ∈ S and let (j, k) be an edge such that d(i, j) ≤ ` or d(i, k) ≤ `.

If both j and k are within distance ` of i, then by Claim 3.10

Yi j + Yik = P[i = 1, j = 1|r = b] + P[i = 1, k = 1|r = b]

≥ (1 + 4ε3)P[i = 1|r = b] = (1 + 4ε3)yi

and we are done. Finally, if d(i, j) = ` and d(i, k) = ` + 1, then we know by Claim 3.11 that

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 45

|P[i = 1, k = 1|r = b] − P[i = 1|r = b]P[k = 1|r = b]| ≤ 2ε4. This gives

Yi j + Yik = P[i = 1, j = 1|r = b] + P[i = 1|r = b]P[k = 1|r = b]

≥ P[i = 1, j = 1|r = b] + P[i = 1, k = 1|r = b] − 2ε4

≥ (1 + 4ε3)P[i = 1|r = b] − 2ε4 ≥ (1 + 3ε3)yi

using the fact that P[i = 1|r = b] is at least 2ε. We prove this for w similarly.

We shall now express z and w as a convex combination of (r + 1)-canonical vectors.

Claim 3.20 If i ∈ S , or if ∀r ∈ S , d(i, r) > 5`, then z is r + 1 canonical.

Proof: If i ∈ S , then zk = yk (or wk = yk) for all k ∈ V by construction of protection matrix.

Because y is r-canonical z (or w) is also and this thus also (r + 1)-canonical.

If ∀r ∈ S , d(i, r) > 5`, then it is easily seen that S ∪ {i} is a witness to z and w being (r + 1)-

canonical.

If neither of these cases is true, we treat only z, because the same argument works for w. We

first define the subset of vertices which is fixed in these vectors.

Recall that for i ∈ S , NS (i) = { j : there exists path of length at most ` from i to j using only

edges in E\E|S). In addition let ∂NS (i) = { j : d(i, j) = ` + 1 in the graph (V, E\E|S)}. Also, let

N′S (i) = NS (i) ∪ ∂NS (i).

Then we make the following definition:

Definition 3.21 For a fixed vertex i, we construct F ⊆ V \ S as follows:

Start with F = N′S (i). If there is a path P of length less that 5` between any two vertices in

F ∪ S that uses only edges in V \ (F ∪ S), then F = F ∪ P. Also, if P intersects NS (j) for j ∈ S ,

then F = F ∪ P ∪ (N′S (j)\{ j}).

Note that it follows from the above definition that for every j ∈ S , either NS (j) ∩ F = ∅ or

N′S (j) ⊆ F. Also if ∂F = { j ∈ F : j has neighbors in V\(S ∪ F)}, then ∀ j ∈ ∂F, z j = 1/2 + ε

(because for every intersecting NS (j′), we also included ∂NS (j′)). We now bound the size of F.

Claim 3.22 |F| ≤ C + (2r + 2 − k)D, where |S | = rC + kD.

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 46

Proof: Every path added in the construction of F has length at most 5`. Also, each vertex in a path

can be within distance ` of at most one j ∈ S . Thus, the number of vertices added due to a path is at

most 5`C = D. Thus, if p paths are added during the construction, then |F| ≤ C + pD since C is the

size of the N′S (i), which we start with.

Since the paths are added incrementally, it suffices to show that adding 2r +2−k paths implies a

contradiction. This would imply that p ≤ 2r + 2− k and hence the claim. Let F′ be F after addition

of 2r + 2 − k paths. Then

|E|S∪F′ |

|S ∪ F′|
= 1 +

|E|S∪F′ | − |S ∪ F′|
|S ∪ F′|

Note that |E|S∪F′ | − |S ∪ F′| ≥ (k − r) + (2r + 2 − k) − 1, since |E|S | − |S | ≥ (k − r) to begin with and

addition of N′S (i), which is a tree adds one more vertex than edge (hence contributing −1), while

the addition of each path adds one more edge than vertex. For any j ∈ S including the region NS (j)

intersected by the path includes a tree of which at least one vertex is already in F and can only

contribute positively. This gives

|E|S∪F′ |

|S ∪ F′|
≥ 1 +

k − r + 2r − k + 1
|S | + |F′|

≥ 1 +
r + 1

rC + kD + C + (2r + 2 − k)D
= 1 +

1
C + 2D

> 1 + η

since η = 1
3D < 1

C+2D . But this is a contradiction since |S ∪ F′| ≤ γn and hence |E|S∪F′ | ≤

(1 + η)|S ∪ F′|.

Now, because r ≤ R =
γn

C+2D , |S ∪ F| ≤ γn and we employ Lemma 3.14 to T = S ∪ F using the

fact that z is ε3-saturated.

We obtain vertex covers on S ∪ F, T 1, . . . ,T m such that λ1T 1 + . . . + λmT m = z |T where∑m
l=1 λl = 1. Note that the values for the vertices in S are 0/1 and are hence unchanged in all these

solutions. To extend these solutions to fractional solutions over the whole graph, we look at each

vertex j on the boundary of the set F and change the values of vertices upto a distance ` from it in

V \ (S ∪ F) according to a splash around j. We first prove that all the vertices upto distance ` from

the boundary of F have value 1/2 + ε in z.

Claim 3.23 For all j ∈ F, either

• all neighbors of j are in S ∪ F, or

• For all k ∈ NS∪F(j), zk = 1/2 + ε

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 47

Proof: Assume not, then for some j ∈ F which has some neighbor not in S ∪ F, there exists

k ∈ NS∪F(j) such that zk , 1/2 + ε. First, we show that it must be that z j = 1/2 + ε. The only

elements of z which do not have weight 1/2 +ε are elements of NS (l) for l ∈ F and NS (i). However,

N′S (i) ⊆ F ∪ S so no element of NS (i) has a neighbor outside of F. Similarly, if j ∈ NS (l), then

because j ∈ F, it must be that N′S (l) ⊆ F ∪ S and thus j has no neighbors outside S ∪ F.

So, say that k , j, then k < S ∪ F. But there exists a path P of length ≤ ` which avoids S ∪ F

from j to k. Because y is r-canonical, and z is the same as y except possibly at the vertices in NS (i),

it must be that k ∈ NS (i) or k ∈ NS (j′) for some j′ ∈ S . But, it cannot be that k ∈ NS (i) because

NS (i) ⊆ F. Also if k ∈ NS (j′) for some j′ ∈ S , then there is a path from j to j′ length at most 2` and

so either k must be in S ∪ F or j = j′. The former cannot be true by assumption. The later cannot

be true because j ∈ F which is disjoint from S .

Create y(l) as follows.

y(l)
k =

P
[
k = 1| j = y(l)

j

]
k ∈ NS∪F(j) for some j ∈ F

y(l)
k = zi o. w.

First note that this is well defined, because if any vertex were in NS∪F(j) and NS∪F(j′) for

j, j′ ∈ F, j , j′, then there would be path between two vertices in F of length 2` which does not go

through S ∪ F.

We wish to show that λ1y(1), . . . , λmy(m) = z. Consider first some k ∈ NS∪F(j) for some j ∈ F.

First note that λ1y(1)
j +. . .+λmy

(m)
j = z j. By Claim 3.23 if k , j, then it must be that z j = zk = 1/2+ε.

Therefore by Claim 3.8

λ1y
(1)
k + . . . + λmy

(m)
k = z j P[k = 1| j = 1] + (1 − z j)P[k = 1| j = 0] = 1/2 + ε = zk

If k < ∪ j∈F NS∪F(j), then y(l)
k = zk for all k, and so λ1y

(1)
k , . . . , λmy

(m)
k = zk. We now must show that

for each k, y(k) is an (r + 1)-canonical solution. We show that T = S ∪ F is a witness for y(k).

Since the solution T (k) given by Lemma 3.14 is a vertex cover y(k)
|T = T (k) is a vertex cover for

T . Also, by construction of F, there is no path of length less than 5` between any vertices of S ∪ F

using only vertices outside S ∪ F. By Claim 3.22 |T | = |S | + |F| ≤ rC + kD + C + (2r + 2 − k)D =

(r+1)C+2(r+1)D. If the number of paths added in constructing F is p, then |T | ≤ (r+1)C+(k+p)D.

Also, as argued in Claim 3.22, |E|S∪F | − |S ∪ F| ≥ (k − r) + p − 1 = (k + p) − (r + 1).

Finally, we need to show that y(k)
j = P[j = 1| j′ = y j′] if j ∈ NS∪F(j′) and 1/2 + ε otherwise. Let

y(k)
j , 1/2+ε. Then either j ∈ NS∪F(j′) for some j′ ∈ F (since these vertices were set according to a

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 48

splash pattern while creating y(k)) and we are done, or zk , 1/2+ε. However, z = Yi/yi differs from

y only in NS (i). Therefore, zk , 1/2 + ε in turn implies j ∈ NS (i) and hence j ∈ F, or y j , 1/2 + ε.

To finish off, we note that y j , 1/2 + ε would mean j ∈ NS (j′) for some j′ ∈ S (by assumption on

S). Since NS (j′) is either contained in or disjoint with F, we must have j ∈ S ∪ F or j ∈ NS∪F(j′)

respectively.

Since each y(k) is an (r + 1)-canonical solution, by our inductive hypothesis ∀1 ≤ k ≤ m y(k) ∈

NR−r−1(VC(G)) and hence z ∈ NR−r−1(VC(G)). Using a similar argument for show w, we get that

y ∈ NR−r(VC(G)). This completes the proof of Lemma 3.17.

3.6 Lower bounds for MAX-CUT

Let G = (V, E) be a graph with n vertices and m edges. We prove a 1/2 + ζ integrality gap for

Ω(n) rounds of LS on MAX-CUT.

The solutions we define for MAX-CUT are simple extensions of vertex cover solutions. For a

vector y ∈ Rn+1, we define an extension Ext(y) as the vector ỹ ∈ Rn+m+1 such that, ui = yi ∀0 ≤

i ≤ n and ue = 2y0 − yi − y j for e = (i, j) ∈ E. Also, we define Res(ỹ) as the inverse operation

i.e. the projection of the first n + 1 coordinates of ỹ. It is easy to verify that if y ∈ VC(G) then

Ext(y) ∈ MC(G). Notice that with R =
γn

C+D as defined in the previous section, it is sufficient to

prove the following

Lemma 3.24 If y ∈ Rn+1 is a 2r-canonical solution for VC(G), then Ext(y) ∈ NR/2−r(MC(G)).

The integrality gap follows because y = (1, 1/2 + ε, . . . , 1/2 + ε) is 0-canonical and for ỹ =

Ext(y),
∑

e∈E ue = (1 − 2ε)m.

Proof: We proceed by induction on R/2 − r. The base case follows because if y is an R-canonical

solution, then y ∈ VC(G) which implies Ext(y) ∈ MC(G) = N0(MC(G)). For the inductive step,

let y be an 2r-canonical solution and let ỹ = Ext(y). We create a protection matrix U, such that

∀1 ≤ i ≤ n and ∀e ∈ E, Res(Ỹi),Res(Ỹe),Res(U0 − Ỹi) and Res(Ỹ0 − Ỹe) can be expressed

as convex combinations of (2r + 2)-canonical solutions. This suffices because for a vector ỹ if

Res(ỹ) = λ1ỹ(1) + . . . + λmỹ(m) then ỹ = Ext(λ1ỹ(1)) + . . . + Ext(λmỹ(m)), since the coordinates of

Ext(v) are affine functions of the coordinates of v.

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 49

Let Y be the protection matrix of a 2r-canonical solution as defined in the previous section. We

define the matrix Ỹ as

Ỹi = Ext(Yi) ∀0 ≤ i ≤ n

Ỹe = Ext(2Y0 − (Yi + Y j)) ∀e = (i, j) ∈ E

We can write out the entries of Ỹ as follows, showing that it is symmetric.

Ỹi, j = Yi j 0 ≤ i, j ≤ n

Ỹi,e = Ỹe,i = 2Yi0 − Yi j − Yik 0 ≤ i ≤ n, e = (j, k) ∈ E

Ỹe1,e2 = 4Y00 − 2(Yi0 + Y j0 + Yk0 + Yl0) + (Yik + Y jk + Yil + Y jl) e1 = (i, j), e2 = (k, l) ∈ E

Note that for i ∈ V and e = (j, k) ∈ E, Res(Ỹi) = Yi,Res(Ỹ0 − Ỹi) = Y0 − Yi and Res(Ỹe) =

Y0 −Y j + Y0 −Yk, which are convex combinations of (2r + 1)-canonical solutions as proved in the

previous section. It only remains to tackle Res(Ỹ0 − Ue) = Y j + Yk − Y0. We first prove that it is

ε3-saturated.

Claim 3.25 If Y is the protection matrix of a 2r-canonical solution and (i, j), (u, v) are two edges,

then
(Yi + Y j − Y0)u

yi + y j − y0
+

(Yi + Y j − Y0)v
yi + y j − y0

≥ 1 + 4ε3

Proof: Without loss of generality, we can assume that j and u are the closer endpoints of the edges

(i, j) and (u, v). We first handle the case when d(j, u) > `. Then Yiu = yiyu,Yiv = yiyv,Y ju = y jyu and

Y jv = y jyv. Hence, the LHS is yu + yv, which is greater than 1 + 2ε2 since a 2r-canonical solution is

ε2 saturated.

When d(j, u) ≤ `, all the four vertices are within distance ` + 2 of each other. Now, in any

subgraph H of diameter 3`, we may think of the restriction of y to H as the probabilities of the

vertices being present in a distribution over vertex covers of H. Notice that if y is a 2r-canonical

solution, H may contain vertices close to (within distance ` of) at most one fixed vertex. In case

there is such a vertex r, ∀i ∈ H yi = P[i = 1|r = 1]. If there is no such vertex, all vertices in H

have yi = 1/2 + ε and we can these as probabilities for a distribution which chooses a 1-splash with

probability 1/2 + ε and 0-splash with probability 1/2 − ε around any arbitrary vertex in H (Claim

3.8). Also, we can interpret Ypq as P[p = 1, q = 1] for the same distribution as above.

Consider the distribution over the subgraph within a radius ` + 2 from i. We first note that since

(Y0 −Yi)/(1 − yi) is a valid vertex cover solution and (Y0 −Yi)i = 0, (Y0 −Yi) j/(1 − yi) = 1 which

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 50

gives yi + y j − 1 = Yi j. Using this and the fact that P[(i = 1) ∨ (j = 1)|u = 1] = 1, we have

(Yi + Y j − Y0)u

yi + y j − y0
=
yu(P[i = 1|u = 1] + P[j = 1|u = 1] − 1)

P[i = 1, j = 1]

=
yu P[(i = 1) ∧ (j = 1)|u = 1]

P[i = 1, j = 1]

= P[u = 1|i = 1, j = 1]

Therefore, we get

(Yi + Y j − Y0)u

yi + y j − y0
+

(Yi + Y j − Y0)v
yi + y j − y0

− 1 = P[u = 1|i = 1, j = 1] + P[v = 1|i = 1, j = 1] − 1

= P[(u = 1) ∧ (v = 1)|i = 1, j = 1]

= P[(u = 1) ∧ (v = 1)| j = 1]

The last equality following from the fact that it is sufficient to condition on the closer of the two

vertices i and j. Also,

P[(u = 1) ∧ (v = 1)| j = 1] = P[u = 1| j = 1] + P[v = 1| j = 1] − 1

=
Yu j

y j
+

Yv j

y j
− 1

≥ 4ε3 (by Lemma 3.19)

We now want to express w = (Yi + Y j −Y0)/(yi + y j − 1) as a convex combination of (2r + 2)-

canonical solutions. Let S be the witness to y being 2r-canonical. We now find a set T ⊇ S such

that w is a convex combination of solutions w(1), . . . ,w(m) which take 0/1 values over T and which

are (2r + 2)-canonical, with T being the witness. There are two cases:

Case 1: i < S and ∃r ∈ S s.t. d(i, r) ≤ 5` (with d(i, r) being length of the shortest path not

passing through S)

By the proof in the previous section, we know that the vector z = Yi/yi is a convex combination

of (2r + 1)-canonical solutions with a set S 1 being the witness for all of them. Also, j ∈ S 1 as it

includes every vertex within distance ` of i. We take T = S 1.

Case 2: i ∈ S or d(i, r) > 5` ∀r ∈ S

In this case z = Yi/yi is (2r + 1)-canonical with S ∪ {i} the witness. We now look at the protection

CHAPTER 3. LP RELAXATIONS OF VERTEX COVER AND MAX-CUT 51

matrix Z for z and consider the vector z′ = Zj/z j. This is a convex combination of (2r+2)-canonical

solutions having a common witness S 2 which contains S ∪ {i}. Take T = S 2.

In both cases |T | ≤ (2r + 2)C + (4r + 4)D. We now employ Lemma 3.14 to T to obtain vertex

covers T 1, . . . ,T m on T such that λ1T 1 + . . . + λmT m = w|T with
∑m

l=1 λl = 1. We can extend them

to create (2r + 2)-canonical solutions w(1), . . . ,w(m) as in the previous section. By the arguments in

the previous section, all these have T as the witness. This completes the proof.

52

Chapter 4

Lasserre Gaps for Constraint

Satisfaction Problems

An instance of the MAX k-CSP problem consists of a set of constraints over n variables. Each

constraint is a boolean function depending on the values of at most k variables and is said to be

satisfied when the value of the function is 1. The objective is to find an assignment to the variables

from a specified domain, which satisfies as many constraints as possible. The most common setting

is the one where the domain of the variables is {0, 1} or {true, false} and the constraints are disjunc-

tions of variables or their negations. If each constraint involves at most k variables, this gives the

MAX k-SAT problem. Other examples involve Max-Cut, MAX All-Equal etc. In the case when the

variables take values in some larger domain [q] for q > 2, we denote the problem as MAX k-CSPq.

Algorithms and hardness results for MAX k-CSP

It is obvious from the the fact that MAX k-SAT is a special case of MAX k-CSP, that the general

MAX k-CSP problem is NP-hard to solve exactly. We will say that an algorithm achieves an (ρ)-

approximation if the algorithm produces an assignment satisfying at least v/ρ of the constraints,

when the best assignment satisfies a v fraction of all the constraints. Note that in keeenping with our

notation of the integrality gaps, we also always define the approximation ratio to be always greater

than 1. For the case when the domain of the variables is {0, 1} the most trivial approximation is to

assign all variables randomly. Since every constraint involves at most k variables and has at least

one satisfying assignment, the algorithm satisfies 1/2k fraction of all the constraints in expectation.

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 53

Since the optimum fraction v is at most 1, this is a 2k-approximation.

The first non-trivial approximation for the problem in the case of binary domain was obtained by

Trevisan [Tre98] who obtained a 2k/2-approximation algorithm using linear programming. Using

semidefinite programs, Hast[Has05] achieved an approximation ratio of O((log k · 2k)/k). The best

known algorithm is due to Charikar, Makarychev and Makarychev [CMM07b], which achieves an

approximation ratio of 2k/ck, where c > 0.44 is an absolute constant. For the case when each

variable has domain size q, which we denote by MAX k-CSPq, their algorithm can be extended to

give an approximation ratio of qk/ck. Independently, Guruswami and Raghavendra [GR08] obtained

a qk/C(q)k-approximation algorithm, where C(q) is a small constant which decreases with q.

It is also known that it is NP-hard to approximate the maximum fraction of constraints satisfi-

able, within some factor ρ depending on k and the domain size of each variable. For the setting of

boolean variables, Samorodnitsky and Trevisan [ST00] showed that it is hard to approximate MAX

k-CSP within a factor better than 2k/22
√

k, which was later improved to 2k/2
√

2k by Engebretsen

and Holmerin [EH05]. Assuming the Unique Games Conjecture (UGC) of Khot [Kho02], Samorod-

nitsky and Trevisan [ST06] later showed that MAX k-CSP is hard to approximate within a factor of

2k/2dlog(k+1)e ≥ 2k/2k. For MAX k-CSPq, Guruswami and Raghavendra [GR08] extended the tech-

niques of [ST06] to obtain a hardness ratio of qk/q2k when q is a prime. The best known results are

due to Austrin and Mossel [AM08] who obtained a ratio of qk/q(q − 1)k when q is a prime power,

and qk/qdlog2 k+1e for general q. They also improved the Samorodnitsky-Trevisan lower bound to

2k/(k + O(k0.525)) from 2k/2k in the worst case. The results of [GR08] and [AM08] are also proved

assuming the UGC.

Also under the UGC, Håstad [Hås07] showed a lower bound for generic problems of the type

MAX k-CSP (P), where each constraint is of the form of a fixed predicate P : {0, 1}k → {0, 1}

applied to k variables or their negations. He shows that if we pick a predicate P at random, then it is

NP-hard to approximate MAX k-CSP (P) within a factor better than 2k/|P−1| with high probability

over the choice of P (2k/|P−1| can be achieved by just randomly assigning each variable). Here

P−1(1) denotes the set of inputs that P accepts.

Lower bounds for semidefinite hierarchies

Arora, Alekhnovich and Tourlakis showed an integrality gap of 2k/(2k−1) for MAX k-SAT after

Ω(n) levels of the Lovász-Schrijver hierarchy. Also [STT07a] reasoned about the inapproximability

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 54

of 3-XOR although they were interested in proving results for Vertex Cover. Recently, a beautiful

result of Schoenebeck [Sch08] gave the first construction of integrality gaps in the Lasserre hierar-

chy. He proves an integrality gap of 2 for MAX k-XOR and this implies gaps for other CSP problems

which can be easily “reduced” to k-XOR (we discuss more on these reductions later).

Our contribution

We show that the integrality gap for MAX k-CSP is at least 2k/2dlog k+1e even after Ω(n) levels of

the Lasserre hierarchy. This is optimal in terms of the number of levels since the Lasserre relaxation

is tight after n levels. Also, this matches the UGC hardness results of Samorodnitsky and Trevisan.

For MAX k-CSPq, we handle the case of prime q. Here we can prove optimal integrality gaps

equal to qk/(kq(q − 1)) which match the lower bounds of Austrin and Mossel. The lower bounds

also match the results obtained by the algorithm of Charikar, Makarychev and Makarychev upto a

constant independent of k (but depending on q).

As an added bonus, we get integrality gaps for random predicates. This is an artifact of the

property that the Lasserre hierarchy is very amenable to “reductions by inclusion” i.e. if one proves

a gap for a predicate P1, and if P1 (or some simple transformation of it) implies P2 (i.e. every

satisfying assignment of P1 satisfies P2), then it is very easy to also prove a gap for P2. For example,

Schoenebeck [Sch08] shows a gap for MAX k-XOR, but k-XOR (or its negation if k is even) implies

k-SAT and hence his result immediately implies a result for MAX k-SAT as well. By a theorem

of Håstad, for almost every randomly chosen predicate P, there is a simple transformation of the

predicates we consider, that implies P. Hence, we immediately get integrality gaps for almost every

randomly chosen predicate.

This is the first instance of integrality gaps which are upto Ω(n) levels, ruling out exponential

time algorithms in the hierarchy, and at the same time are better than the best known NP-hardness

results. The hardness results corresponding to the above integrality gaps, as well as the random

predicates result, are known only when assuming the UGC. The only other instance (for supercon-

stant number of levels) is that of Vertex Cover, where an integrality gap of 2 − ε was proved by

Georgiou et al. [GMPT07], but it holds only for Ω(
√

log n/ log log n) levels of the Lovász-Schrijver

(SDP) hierarchy which is weaker than the Lasserre hierarchy.

On the technical side, we extend the technique of constructing vectors from linear equations

used in [FO06], [STT07a], [Sch08] in two ways. The technique was used in [FO06] to show a

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 55

gap for the Lovász θ-function for an instance created by reduction of 3-XOR to Independent Set.

They looked at how two variables were correlated by the clauses of the XOR formula and created

coordinates in the vectors according to these correlations. [STT07a] proved gaps for such instances

for Ω(n) levels of LS+ and looked at more variables at every round, but this fact was not explicit

in the proof. Schoenebeck [Sch08] made it explicit and used it to prove strong gaps in the Lasserre

hierarchy.

We generalize the technique to deal with equations over Fq for any prime q, instead of just

F2. This actually follows just by a simple trick of constructing the vectors out of small “building

blocks”, each of which is a q − 1 dimensional vector corresponding to a vertex of the q − 1 dimen-

sional simplex. More importantly, we “decouple” the equations from the constraints to some extent.

Previous works worked by combining constraints as a whole to study correlations and worked in

the setting when each constraint was a single equation. The independence of equations in a random

instance was used to show the gaps. However, as we explain in Section 4.3, it turns out to be more

useful to simply think of vectors corresponding to a system of linear equations which satisfy certain

properties, as it allows more freedom in the choice of the constraints.

4.1 Preliminaries and notation

4.1.1 Constraint Satisfaction Problems

For an instance Φ of MAX k-CSPq, we denote the variables by {x1, . . . , xn}, their domain

{0, . . . , q − 1} by [q] and the constraints by C1, . . . ,Cm. Each constraint is a function of the form

Ci : [q]Ti → {0, 1} depending only on the values of the variables in an ordered tuple1 Ti with |Ti| ≤ k.

We denote the number of constraints satisfied by the best assignment by OPT(Φ).

For a given set S ⊆ [n], we denote by [q]S the set of all mappings from the set S to [q]. In

context of variables, these mappings can be understood as partial assignments to a given subset of

variables. For α ∈ [q]S , we denote its projection to S ′ ⊆ S as α(S ′). Also, for α1 ∈ [q]S 1 , α2 ∈ [q]S 2

such that α1(S 1 ∩ S 2) = α2(S 1 ∩ S 2), we denote by α1 ◦ α2 the assignment over S 1 ∪ S 2 defined by

α1 and α2. Hence, (α1 ◦ α2)(j) equals α1(j) for j ∈ S 1 and α2(j) for j ∈ S 2 \ S 1. We only use the

notation α1 ◦ α2 when it is well defined for α1, α2, S 1, S 2.

We shall prove results for constraint satisfaction problems where every constraint is specified

1We will often ignore the order of the variables in Ti and also refer to Ti as a set of variables.

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 56

by the same predicate P : [q]k → {0, 1}. We denote the set of inputs which the predicate accepts

(outputs 1 on) by P−1(1). To generate an instance of the problem each constraint is of the form of

P applied to a k-tuple of literals. For variable x over domain [q], we can generalize the notion of a

literal as x + a (computed modulo q) for a ∈ [q].

Definition 4.1 For a given P : [q]k → {0, 1}, an instance Φ of MAX k-CSP (P) is a set of constraints

C1, . . . ,Cm where each constraint Ci is over a k-tuple of variables Ti = {xi1 , . . . , xik } and is of the

form P(xi1 + ai1 , . . . , xik + aik) for some ai1 , . . . , aik ∈ [q].

Given a predicate P, we will consider a random instance Φ of the MAX k-CSP (P) problem. To

generate a random instance with m constraints, for every constraint Ci, we randomly select a k-tuple

of distinct variables Ti = {xi1 , . . . , xik } and ai1 , . . . , aik ∈ [q], and put Ci ≡ P(xi1 + ai1 , . . . , xik + aik). It

is well known and used in various works on integrality gaps and proof complexity (e.g. [BOGH+03],

[AAT05], [STT07a] and [Sch08]), that random instances of CSPs are highly unsatisfiable and at the

same time highly expanding i.e. for every set of constraints which is not too large, most variables

occur only in one constraint. We capture the properties we need in the lemma below. A proof is

provided in the appendix for the sake of completeness.

Lemma 4.2 Let ε, δ > 0 and a predicate P : [q]k → {0, 1} be given. Then there exist

β = O(qk log q/ε2), η = Ω((1/β)5/δ) and N ∈ N, such that if n ≥ N and Φ is a random instance of

MAX k-CSP (P) with m = βn constraints, then with probability 1 − o(1)

1. OPT(Φ) ≤ |P
−1(1)|
qk (1 + ε) · m.

2. For all s ≤ ηn, every set of s constraints involves at least (k − 1 − δ)s variables.

The instances we will mostly be concerned with, are described by systems of equations over

finite fields. Let q be prime and A ∈ (Fq)d×k be a matrix with rank(A) = d ≤ k. We define the

predicate PA : [q]k → {0, 1} such that

PA(x1, . . . , xk) = 1 ⇔ A · (x1 . . . xk)T = 0

To generate a constraint Ci in an instance of MAX k-CSP (PA), we consider PA(xi1 +ai1 , . . . , xik +

aik) which is 1 iff A · (xi1 . . . xik)
T = b(i) for b(i) = −A · (ai1 . . . aik)

T. We define the problem MAX

k-CSP (PA) below which is a special case of the MAX k-CSP (P) problem.

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 57

Definition 4.3 For a given A ∈ (Fq)d×k, an instance Φ of MAX k-CSP (PA) is a set of con-

straints C1, . . . ,Cm where each constraint Ci is over a k-tuple Ti = {xi1 , . . . , xik } and is of the form

A · (xi1 , . . . , xik)
T = b(i) for some b(i) ∈ (Fq)d.

4.1.2 Linear Codes

Recall that a linear code of distance 3 and length k over Fq is a subspace of (Fq)k such that every

non-zero vector in the subspace has at least 3 non-zero coordinates. We shall prove our results for

predicates PA where A is a matrix whose rows form a basis for such a code. Such a matrix is called

the generator matrix of the code. To get the optimal bounds, we shall use Hamming codes which

have the largest dimension for the fixed distance 3. We refer to the code below as Hamming code

of length k.

Fact 4.4 Let (qr−1 − 1)/(q − 1) < k ≤ (qr − 1)/(q − 1). Then there exists a linear code of length k

and distance 3 over Fq, with dimension k − r.

Proof: Let l = (qr − 1)/(q − 1). We can first construct a code of length equal to l and dimension

l − r by specifying the r × l check matrix (a matrix whose rows span the space orthogonal to the

code). The requirement that the code must have distance 3 means that no two columns of the check

matrix should be linearly dependent. We can choose (for example) all non-zero vectors in (Fq)r

having their first nonzero element as 1 to get a matrix with r rows having this property. It is easy to

check that there are l = (qr − 1)/(q − 1) such columns. To reduce the code length, we delete the last

l−k columns of the matrix to get the check matrix of a code with length k, distance 3 and dimension

k − r.

4.1.3 The Lasserre relaxation for MAX k-CSPq

We describe below the Lasserre relaxation for the MAX k-CSPq problem. Note that an integer

solution to the problem will be given by a single mapping α0 ∈ [q][n], which is an assignment to all

the variables. Using this, we can define 0/1 variables X(S ,α) for each S ⊆ [n] such that |S | ≤ t and

α ∈ [q]S . The intended solution is X(S ,α) = 1 if α0(S) = α and 0 otherwise. As before, we introduce

X(∅,∅) which is intended to be 1. Replacing them by vectors gives the SDP relaxation. We denote

the vectors corresponding to a set of variables and a partial assignment by V(S ,α).

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 58

maximize
m∑

i=1

∑
α∈[q]Ti

Ci(α)
∣∣∣V(Ti,α)

∣∣∣2
subject to

〈
V(S 1,α1),V(S 2,α2)

〉
= 0 ∀ α1(S 1 ∩ S 2) , α2(S 1 ∩ S 2)〈

V(S 1,α1),V(S 2,α2)
〉

=
〈
V(S 3,α3),V(S 4,α4)

〉
∀ S 1 ∪ S 2 = S 3 ∪ S 4, α1 ◦ α2 = α3 ◦ α4∑

j∈[q]

∣∣∣V({i}, j)
∣∣∣2 = 1 ∀i ∈ [n]

〈
V(S 1,α1),V(S 2,α2)

〉
≥ 0 ∀S 1, S 2, α1, α2∣∣∣V(∅,∅)

∣∣∣ = 1

Figure 4.1: Lasserre SDP for MAX k-CSPq

For any set S with |S | ≤ t, the vectors V(S ,α) induce a probability distribution over [q]S such

that the assignment α ∈ [q]S appears with probability
∣∣∣V(S ,α)

∣∣∣2. The constraints can be understood

by thinking of valid solution as coming from a distribution of assignments for all the variable and of〈
V(S 1,α1),V(S 2,α2)

〉
as the probability of the event that variables in S 1 get value according to α1 and

those in S 2 according to α2. The last two constraints simply state the fact that a probability must be

positive and the probability of the event which does not restrict any variable to anything must be 1.

The first constraint says that the probability of a variable simultaneously getting two different

values must be 0. The second one says that if we calculate the probability that all variables in

(S 1 ∪ S 2) (= S 3 ∪ S 4) get values according to α1 ◦ α2 (= α3 ◦ α4) in two different ways, it must still

be the same. In the third constraint, V({i}, j) denotes the map which assigns value to j to variable xi.

The constraint can be understood as saying that the variable xi must take exactly one value. This

constraint is sometimes also written as
∑

i∈[q] V({i}, j) = V(∅,∅), which is equivalent as can be seen by

noting that
∣∣∣∑i∈[q] V({i}, j) − V(∅,∅)

∣∣∣2 =
∑

j∈[q]

∣∣∣V({i}, j)
∣∣∣2 − 1.

For a CSP instance Φ we denote the optimum of the above SDP by FRAC(Φ). The integrality

gap of both the SDPs is then given by (SDP optimum)/(integer optimum).

4.2 Results

The main result is an integrality gap for predicates PA : [q]k → {0, 1}, whenever q is a prime

and A is the matrix of a distance 3 code over Fq. The result for general q-ary predicates then simply

follows by optimizing parameters.

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 59

Theorem 4.5 Let A ∈ (Fq)d×k be the generator matrix of a distance 3 code and let ζ > 0 be given.

Then there is a constant c = c(q, k, ζ) such that for large enough n, the integrality gap for the

Lasserre SDP relaxation of MAX k-CSP (PA) on n variables obtained by cn levels is at least qd − ζ.

Corollary 4.6 Let k ≥ 3, q be a prime number and let ζ > 0 be given. Then there exists c =

c(k, q, ζ) > 0 such that the for sufficiently large n, the integrality gap for the Lasserre relaxation of

the MAX k-CSP problem on n variables with domain size q is at least
qk

kq(q − 1) − q(q − 2)
− ζ after

cn levels.

Using the results of Håstad [Hås07], we also get integrality gaps for random predicates. Let

Q(p, q, k) denote the distribution over predicates, where we choose P(x) to be 1 with probability p,

independently for each x ∈ [q]k. Then, we have the following result for random predicates:

Theorem 4.7 Let a prime q and ζ > 0 and k ≥ 3 be given and let (qr−1 − 1)/(q − 1) < k ≤

(qr − 1)/(q − 1) for some r. Then there exist constants c = kq−r(1 − o(1)) and c′ = c′(q, k, ζ) such

that if P is a random predicate chosen according to Q(p, q, k) with p ≥ k−c, then with probability

1− o(1) over the choice of P, the integrality gap for MAX k-CSP (P) after c′n levels of the Lasserre

hierarchy is at least qk/|P−1(1)| − ζ.

4.3 Proof Overview

For proving integrality gaps for CSPs, our starting point is the result by Schoenebeck [Sch08].

Even though the result is stated as an integrality gap for MAX-k-XOR, it is useful to view the

argument as having the following two parts:

1. Given a system of equations over F2 with no “small contradictions”, it shows how to construct

vectors V(S ,α) (satisfying consistency conditions), such that for every set S of variables with

|S | ≤ t,
∣∣∣V(S ,α)

∣∣∣ > 0 if and only if α satisfies all equations involving variables from S .

2. If one considers a random instance Φ of a CSP, with every constraint being a linear equation

on at most k variables (MAX k-XOR), then the system obtained by combining them has no

“small contradictions”.

It can be shown that the first step implies FRAC(Φ) = m (m is the number of constraints) even after

t levels. On the other hand, in a system of equations with each chosen randomly, only about half

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 60

are satisfiable by any assignment. Hence, one gets an integrality gap of factor 2, for t levels. Here t

depends on the size of “small contradictions” for step 2 and can be chosen to be Ω(n).

We note that every constraint does not have to be a single equation for the second step to work.

In particular, we consider each constraint to be of the form A·(x1, . . . , xk)T = b for some A ∈ (F2)d×k,

which is the same for all constraints and b ∈ Fd
2. The constraint is said to be satisfied only when

all these d equations are satisfied. Now, if A is full rank, then one can show that in a random CSP

instance Φ, only about 1/2d fraction of the constraints are satisfiable by any assignment.

Note that all equations obtained by combining all the ones in the constraints are no longer

independent (the ones in each constraint are correlated because of a fixed choice of A). However,

one can still show that if A satisfies some extra properties, like any linear combination of the d

equations given by A involves at least 3 variables (i.e. A is the generator matrix of a distance 3

code over F2), then the conclusion in the second step can still be made. Step 1 still allows us to

conclude that FRAC(Φ) = m, thereby obtaining an integrality gap of factor 2d. Optimizing over d

gives the claimed results for MAX k-CSP. We also generalize the first step, to work for equations

over arbitrary prime fields Fq, to obtain a gap for MAX k-CSPq.

4.4 Lasserre vectors for linear equations

We first prove a generalization of Schoenebeck’s result [Sch08] that we shall need. As men-

tioned before, it is more convenient to view it as constructing vectors for a system of linear equa-

tions. We show that if the width-t bounded resolution (defined below) of the system of equations

cannot derive a contradiction then there exists vectors for sets of size up to t/2 which satisfy all

consistency constraints in the Lasserre relaxation. Also these vectors “satisfy” all the equations in

the sense that if we think of
∣∣∣V(S ,α)

∣∣∣2 as the probability that the variables in set S get the assignment

α, then for any set S , the only assignments having non-zero probability are the ones which satisfy

all the equations involving variables from S .

We write a linear equation in variables {x1, . . . , xn} as ω ·x = r where ω is a vector of coefficients

and x is the vector containing all variables. We also denote by
−→
0 the coefficient vector with all

coefficients equal to 0. For a system Λ of linear equations over Fq, we formally define resolution as

below

Definition 4.8 Let Λ be a system of linear equations over a prime field Fq. Then Res(Λ, t) is defined

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 61

as the set of all equations involving at most t variables, each of which can be derived by a linear

combination of at most two equations from Λ.

Also, for a set S ⊆ [n], let AS denote the set of all partial assignments to variables in S , which

satisfy all equations in Λ involving only variables from S . We then have the following theorem

Theorem 4.9 Let q be a prime. Suppose Λ is a system of linear equations in Fq such that (
−→
0 · x =

r) ∈ Λ⇔ r = 0 and Res(Λ, 2t) = Λ. Then there are vectors V(S ,α), for all S with |S | < t and for all

α ∈ [q]S , such that

1.
〈
V(S 1,α1),V(S 2,α2)

〉
≥ 0 for all S 1, S 2, α1, α2.

2.
〈
V(S 1,α1),V(S 2,α2)

〉
= 0 if α1(S 1 ∩ S 2) , α2(S 1 ∩ S 2).

3. If αi ∈ [q]S i , 1 ≤ i ≤ 4 are such that α1 ◦ α2 and α3 ◦ α4 are both defined and equal, then

〈
V(S 1,α1),V(S 2,α2)

〉
=

〈
V(S 3,α3),V(S 4,α4)

〉
4. V(S ,α) = 0 for α < AS and

∑
α∈AS

∣∣∣V(S ,α)
∣∣∣2 = 1

Note that the theorem is stated in terms of a system Λ, which is closed under the applications

of the operator Res(·, 2t). Our proof of the theorem essentially follows Schoenebeck’s proof except

for one modification, which allows the generalization to the q-ary case.

We shall require some additional notation for the proof. For a linear equation ω · x = r, we

denote by S upp(ω) the set of non-zero coordinates in ω and by ΩS the set of all coefficient vectors

ω such that S upp(ω) ⊆ S . ΛS denotes all equations (ω · x = r) ∈ Λ such that ω ∈ ΩS .

Suppose ∃r1 , r2 such that (ω · x = r1) ∈ Λ and (ω · x = r2) ∈ Λ with |S upp(w)| < t. Then,

(
−→
0 · x = r1 − r2) ∈ Res(Λ, 2t). Conversely, if we know that (

−→
0 · x = r) < Res(Λ, 2t) for any r , 0,

then we can assume that for any ω ∈ Ω, there is at most one value of r such that (ω, r) ∈ Λ. We will

abuse notation to write ω ∈ Λ when some such r exists and is guaranteed to be unique. Also, for ω

such that (ω · x = r) ∈ Λ we define the function λ(ω), which specifies what the value of ω · x should

be for any satisfying assignment (or partial assignment) according to Λ. We take λ(ω) = r if there

exists a unique r such that (ω · x = r) ∈ Λ and undefined otherwise.

Proof Idea: The idea of the proof is to “encode” the partial assignments in the vectors in such

a way so that it is easy to enforce consistency according to the given system of constraints. Since

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 62

the constraints are in the form of linear equations, it is easiest to specify the value of all the linear

forms ω · x.

In the binary case, one can think that in the vector V(S ,α) we have a coordinate for each ω in

which we specify E(−1)ω·x, where the expectation is over all x which agree with the assignment

α. This specifies all the Fourier coefficients of the function which is 1 iff x is consistent with α,

and hence “encodes” α. When S upp(ω) * S , this expectation vanishes and hence one only needs

to bother about ω in the set Ω = ∪|S |<tΩS . Furthermore, because of the nature of dependencies by

linear constraints, the value of (ω1−ω2)·x is either completely determined by Λ (when (ω1−ω2) ∈ Λ)

or is completely undetermined and hence ω1 · x and ω2 · x are independent of each other. We thus

partition Ω into various equivalence classes based on the set of equations Λ such that all linear forms

within a class are completely determined by fixing the value of any one of them. The vectors we

construct will have one coordinate corresponding to each of these classes which will enforce the

dependencies due to Λ automatically.

Finally, to generalize this to q-ary equations, the natural analogue would be to consider the

powers of the roots of unity i.e. expressions of the form exp(2πi(ω·x)
q). However, this is not an option,

since the coordinates of the vectors are not allowed to be complex. It is easy to check though that

the proof in the binary case requires only one property of the coordinates that if two vectors disagree

on the value in one coordinate (i.e. the product is -1), then the disagreements and agreements are

balanced over all the coordinates and hence the inner product of the vectors is zero.

In the q-ary case, it can be proved that if the difference in the value of ω · x in some coordinate

according to two vectors is ∆ ∈ [q],∆ , 0, then over all the coordinates, all values of ∆ (including

0) occur equally often. We then choose each “coordinate” to be a small q − 1 dimensional vector

such that the product of the vectors at a coordinate is −1/(q − 1) if ∆ , 0 and 1 if ∆ = 0. This,

combined with the balance property, still gives the orthogonality of the vectors which correspond to

inconsistent assignments, and suffices for our purposes. The details are given in the proof below.

Proof of Theorem 4.9: Let Ω = ∪|S |<tΩS . For ω1, ω2 ∈ Ω, we say ω1 ∼ ω2 if (ω1 − ω2) ∈ Λ.

Since this is an equivalence relation, this partitions Ω into equivalence classes C1, . . . ,CN . We write

C(ω) to denote the class containing ω. Next, we choose a representative (say the lexicographically

first element) for each class. We use [C] to denote the representative for the class C.

For constructing the vector V(S ,α), we assign it a q − 1 dimensional “coordinate” corresponding

to each equivalence class of the above relation i.e. for each class we choose a q − 1 dimensional

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 63

vector and the final vector V(S ,α) is the direct sum of all these vectors. Let e0, e1, . . . , eq−1 denote

the q maximally separated unit vectors in q − 1 dimensions such that
〈
ei, e j

〉
= − 1

q−1 if i , j and 1

if i = j. Using V(S ,α)(C) to denote the coordinate corresponding to C, we define V(S ,α) as:

V(S ,α)(C) =


0 if α disagrees with some equation in ΛS

0 if C ∩ΩS = ∅

1
|AS |
· eω·α+λ([C(ω)]−ω) for any ω ∈ C ∩ΩS

Hereω·α is defined as
∑

i∈S ωiα(i) is the inner product ofωwith the partial assignment α, which

can be computed since S upp(ω) ⊆ S . The expression ω · α + λ ([C(ω)] − ω) is computed modulo

q. To show that the vector is well defined, we first need to argue that the coordinate V(S ,α)(C) does

not depend on which ω we choose from C ∩ΩS .

Claim 4.10 If α ∈ [q]S satisfies all equations in ΛS , then for any class C and ω1, ω2 ∈ C ∩ΩS

ω1 · α + λ ([C] − ω1) = ω2 · α + λ ([C] − ω2)

Proof: Since ([C] − ω1), ([C] − ω2), (ω1 − ω2) ∈ Λ and each have support size at most 2t, it must

be the case that λ([C] − ω2) − λ([C] − ω1) = λ(ω1 − ω2) otherwise we can derive
−→
0 · x = r for

r , 0. Also, since α is consistent with ΛS , it must satisfy (ω1 − ω2) · α = λ(ω1 − ω2). The claim

follows.

The next claim shows that the only way two vectors V(S 1,α1) and V(S 2,α2) can have non-zero

inner product is by having
〈
V(S 1,α1)(C),V(S 2,α2)(C)

〉
= 1
|AS 1 ||AS 2 |

for each coordinate C in which it is

non-zero. The theorem essentially follows from this claim using a simple counting argument.

Claim 4.11 Let α1 ∈ [q]S 1 and α2 ∈ [q]S 2 be two partial assignments. If
〈
V(S 1,α1)(C),V(S 2,α2)(C)

〉
<

0 for some class C, then
〈
V(S 1,α1),V(S 2,α2)

〉
= 0.

Proof: For any class C′ with
〈
V(S 1,α1)(C′),V(S 2,α2)(C′)

〉
, 0, we have some ω′1 ∈ C

′ ∩ ΩS 1 and

ω′2 ∈ C
′∩ΩS 2 . We will work with the quantity λ

([
C(ω′1)

]
− ω′1

)
+ω′1 ·α1−λ

([
C(ω′2)

]
− ω′2

)
−ω′2 ·α2

denoted by ∆(C′), which is the difference of the indices of V(S 1,α1)(C′) and V(S 2,α2)(C′). It is easy to

see that

〈
V(S 1,α1)(C′),V(S 2,α2)(C′)

〉
=


1

|AS 1 ||AS 2 |
if ∆(C′) = 0

− 1
(q−1)|AS 1 ||AS 2 |

otherwise

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 64

For any r1, r2 we will give an injective map which maps a class Ci1 having ∆(Ci1) = r1 to a class

Ci2 having ∆(Ci2) = r2. Hence over all the classes, all values of ∆(C′) must occur equally often.

This would imply the claim, since if
〈
V(S 1,α1)(C′),V(S 2,α2)(C′)

〉
, 0 for N0 classes C′, then

〈
V(S 1,α1),V(S 2,α2)

〉
=

N0

q
·

1
|AS 1 ||AS 2 |

+
N0(q − 1)

q
·

(
−

1
(q − 1)|AS 1 ||AS 2 |

)
= 0

We now construct the above map using the class C. Let ω1 ∈ C ∩ ΩS 1 and ω2 ∈ C ∩ ΩS 2 . If〈
V(S 1,α1)(C),V(S 2,α2)(C)

〉
< 0, then we have that

λ (ω2 − ω1) + ω1 · α1 − ω2 · α2 = ∆(C) , 0

Here we used the fact that

λ ([C] − ω1) − λ ([C] − ω2) = λ(ω2 − ω1)

Let C′ be any class such that
〈
V(S 1,α1)(C′),V(S 2,α2)(C′)

〉
, 0 Let ω′1 ∈ C ∩ ΩS 1 and ω′2 ∈ C

′ ∩ ΩS 2 .

Then

λ
(
ω′2 − ω

′
1

)
+ ω′1 · α1 − ω

′
2 · α2 = ∆(C′)

where ∆(C′) may now also be 0. Thus, for all µ ∈ [q], we get that

µλ (ω2 − ω1) + λ
(
ω′2 − ω

′
1

)
+ (µω1 + ω′1) · a1 − (µω2 + ω′2) · a2 = µ∆(C) + ∆(C′) (4.1)

Since (ω2 − ω1) ∈ Λ and (ω′2 − ω
′
1) ∈ Λ and each involves at most t variables, we also have

(µω1 +ω′1)− (µω2 +ω′2) ∈ Λ. Hence, (µω1 +ω′1) and (µω2 +ω′2) must be in the same class, say C′′,

and we can write

µλ (ω2 − ω1) + λ
(
ω′2 − ω

′
1

)
= λ

(
(µω2 + ω′2) − (µω1 + ω′1)

)
= λ

(
[C′′] − (µω1 + ω′1)

)
− λ

(
[C′′] − (µω2 + ω′2)

)
Combining this with equation 4.1, we get that

∆(C′′) = µ∆(C) + ∆(C′)

Since ∆(C) , 0, for any r1, r2, choosing µ = (r2 − r1)/∆(C) gives a mapping in which the image

of a class C′ with ∆(C′) = r1 is the class C(C′′) with ∆(C′′) = r2. It is also easy to check that this

mapping is injective and hence the claim follows.

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 65

From the above claim, we get property (1) in the theorem, since if two vectors have non-zero

inner product, it must be positive in every coordinate. From the above claim it also follows that the

inner product is only non-zero for vectors corresponding to partial assignments which are “mutually

consistent” in the sense described below. The following also proves property (2) as stated in the

theorem.

Claim 4.12 If
〈
V(S 1,α1),V(S 2,α2)

〉
, 0, then α1 and α2 agree on all the variables in S 1 ∩ S 2. More-

over, the assignment over S 1 ∪ S 2 defined by α1 and α2 satisfies all the equations in ΛS 1∪S 2 .

Proof: By Claim 4.11, it suffices to show that when α1 and α2 disagree on some variable in

S 1 ∩ S 2 or when α1 ◦ α2 violates some equation in ΛS 1∪S 2 , then there exists a class C such that

that
〈
V(S 1,α1)(C),V(S 2,α2)(C)

〉
< 0. Consider the case when for i ∈ S 1 ∩ S 2, α1(i) , α2(i). Let

ω be the vector which has coefficient 1 corresponding to xi and all has other coefficients as zero.

Then λ ([C(ω)] − ω) + ω · α1 − λ ([C(ω)] − ω) − ω · α2 = α1(i) − α2(i) , 0, which implies that〈
V(S 1,α1)(C(ω)),V(S 2,α2)(C(ω))

〉
= 1
|AS 1 | |AS 2 |

〈
eω·α1+λ([C(ω)]−ω), eω·α2+λ([C(ω)]−ω)

〉
< 0.

Next, suppose that α1 and α2 agree on S 1 ∩ S 2, but α1 ◦ α2 violates some equation (ω · x = r) ∈

ΛS 1∪S 2 i.e. (α1 ◦ α2) · ω , r. Let ω1 be the vector which is the same as ω for all coordinates in S 1

and is zero otherwise. It is clear that ω1 ∈ ΩS 1 and (ω1 − ω) ∈ ΩS 2 . Also ω1 ∼ (ω1 − ω) as their

difference is ω which is in Λ. Let both of them be in the class C and consider λ ([C] − ω1) + α1 ·

ω1 − λ ([C] − (ω1 − ω)) − α2 · (ω1 − ω). This is equal to (α1 ◦ α2) · ω − λ (ω) which is non-zero by

assumption. Hence,
〈
V(S 1,α1)(C),V(S 2,α2)(C)

〉
< 0 and the claim follows.

Properties (2) and (3) will now follow from the claim below.

Claim 4.13 If α1(S 1 ∩ S 2) = α2(S 1 ∩ S 2) and α1 ◦ α2 satisfies all equation in ΛS 1∪S 2 , then〈
V(S 1,α1),V(S ,α2)

〉
=

1
|AS 1∪S 2 |

Proof: Let C be any class such that
〈
V(S 1,α1)(C),V(S ,α2)(C)

〉
, 0. Then there exist some elements

ω1 ∈ C ∩ ΩS 1 and ω2 ∈ C ∩ Ω2. Since α1 ◦ α2 satisfies all equations in ΛS 1∪S 2 , we must have that

λ (ω1 − ω2) = (α1 ◦ α2) · (ω1 − ω2) = α1 · ω1 − α2 · ω2. This gives that λ ([C] − ω1) − α1 · ω1 =

λ ([C] − ω2)−α2 ·ω2 and hence
〈
V(S 1,α1)(C),V(S ,α2)(C)

〉
= 1
|AS 1 ||AS 2 |

. So to compute the inner product,

we only need to know how many classes intersect both ΩS 1 and ΩS 2 .

Note that ΛS (as a set of linear combinations without the RHS) is a subgroup of ΩS under

addition. For calculating the inner product
〈
V(S 1,α1),V(S 2,α2)

〉
, we consider the quotient group

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 66

ΩS 1∪S 2/ΛS 1∪S 2 with ΩS 1/ΛS 1∪S 2 and ΩS 2/ΛS 1∪S 2 being subgroups of it. ΩS 1/ΛS 1 (which is

the same as ΩS 1/ΛS 1∪S 2) has one element for each class which has non-empty intersection with

ΩS 1 (similarly for S 2). Hence, the number of classes intersecting both ΩS 1 and ΩS 2 is equal to∣∣∣ΩS 1/ΛS 1 ∩ΩS 2/ΛS 2

∣∣∣.
For A and B which are subgroups of a group G, we know that |A + B| = |A||B|/|A ∩ B|. Using

this gives ∣∣∣ΩS 1∪S 2/ΛS 1∪S 2

∣∣∣ =
∣∣∣ΩS 1/ΛS 1∪S 2 + ΩS 2/ΛS 1∪S 2

∣∣∣ =
|ΩS 1/ΛS 1∪S 2 ||ΩS 2/ΛS 1∪S 2 |

|ΩS 1/ΛS 1∪S 2 ∩ΩS 2/ΛS 1∪S 2 |

Finally, noting that ΩS 1/ΛS 1∪S 2 is the same as ΩS 1/ΛS 1 and |ΩS 1/ΛS 1 | = |AS 1 | (similarly for S 2),

we get that ∣∣∣ΩS 1/ΛS 1 ∩ΩS 2/ΛS 2

∣∣∣ =
|AS 1 ||AS 2 |

|AS 1∪S 2 |

Thus, we have

〈
V(S 1,α1),V(S 2,α2)

〉
=

∣∣∣ΩS 1/ΛS 1 ∩ΩS 2/ΛS 2

∣∣∣ · 1
|AS 1 ||AS 2 |

=
1

|AS 1∪S 2 |

which proves the claim.

To check property (3) we note that

〈
V(S 1,α1),V(S 2,α2)

〉
=

〈
V(S 3,α3),V(S 4,α4)

〉
= 0

by Claim 4.12 when α1 ◦ α2 violates any constraint in ΛS 1∪S 2 . When it does not violate any con-

straints, Claim 4.13 applies and we have

〈
V(S 1,α1),V(S 2,α2)

〉
=

〈
V(S 3,α3),V(S 4,α4)

〉
=

1
|AS 1∪S 2 |

From Claims 4.12 and 4.13, it is also immediate that
∣∣∣V(S ,α)

∣∣∣2 = 1/|AS | if α ∈ AS and is 0

otherwise. Hence,
∑
α∈AS

∣∣∣V(S ,α)
∣∣∣2 = 1 which proves property (4).

4.5 Deriving the gaps for MAX k-CSPq

We will prove an integrality gap for general instances of MAX k-CSP (PA). Specializing these

to Hamming codes will then give the claimed results for MAX k-CSPq. Let A ∈ (Fq)d×k be a

matrix with linearly independent rows. Recall that an instance of MAX k-CSP (PA) is specified by

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 67

constraints C1, . . . ,Cm where each constraint Ci is a system of linear equations over Fq of the form

A · (xi1 . . . xik)
T = b(i). We first show that if an instance Φ of MAX k-CSP (PA) has good expansion,

then FRAC(Φ) = m even after large number of levels. The integrality gap will then follow as an

easy consequence.

Theorem 4.14 Let A ∈ (Fq)d×k be the generator matrix of a distance 3 code. Let Φ be an instance

of MAX k-CSP (PA) with m = βn constraints such that for s ≤ ηn, every set of s constraints contains

at least (k − 1 − δ)s variables for δ ≤ 1/4. Then, FRAC(Φ) = m for the SDP relaxation of MAX

k-CSP (PA) obtained by ηn/16 levels of the Lasserre hierarchy.

Proof: We take Λ0 to the set of all linear equations appearing in Φ, and take Λ to be the closure

of it under Res(·, t) for t = ηn/8. It will follow easily from Theorem 4.9 that FRAC(Φ) = m once

we establish that Λ satisfies the necessary conditions to apply the theorem i.e. (
−→
0 · x = r) ∈ Λ ⇔

r = 0. Expansion based arguments have often been used in previous works in proof complexity. For

example, [Sch08] used the argument due to Ben-Sasson and Wigderson [BSW01]. We will show

that even when the equations are not independent as in [BSW01] and [Sch08] (equations for every

constraint come from A), the property that A has distance 3 shall turn out to be sufficient for (a

modification of) the argument.

Let us assume that (
−→
0 · x = r0) ∈ Λ for some r0 , 0. We shall show that any derivation of

this must have an intermediate equation involving too many variables, thus deriving a contradiction.

Consider a minimal derivation tree of (
−→
0 · x = r0) for r0 , 0. By definition of Res(·, t), this will be

a binary tree with the equation (
−→
0 · x = r0) at the root and equations in Λ0 at the leaves.

Let (ω · x = r) be any intermediate equation in the tree. We denote the node by (ω, r). We denote

by ν(ω, r) the number of constraints of Φ used in deriving (ω, r). It is immediate that if (ω3, r3) can

be derived from (ω1, r1) and (ω2, r3), then ν(ω3, r3) ≤ ν(ω1, r1) + ν(ω2, r2). We first observe that

ν(
−→
0 , r0) must be large.

Claim 4.15 ν(
−→
0 , r0) ≥ ηn

Proof: let ν(
−→
0 , r0) = s. Then, the derivation for (

−→
0 , r0) involves a linear combination of equations

from s constraints. Since every constraint comes from a distance 3 code, every linear combination

of equations within a constraint must involve at least 3 variables. Hence, the linear combination

required to derive (
−→
0 , r0) must include at least 3 variables from each of the s constraints. However,

to derive
−→
0 each of these variables must occur an even number of times and hence the s constraints

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 68

can involve at most ks − 3s/2 variables in total. Since every set of up to ηn constraints is highly

expanding, this is only possible when s ≥ ηn.

In the spirit of [BSW01], we show that one can find a node (ω, r) with ηn/2 ≤ ν(ω, r) ≤ ηn.

Since for less than ηn constraints we can use expansion, we will be able to argue that this node has

an equation involving many variables.

Claim 4.16 There is a node (ω, r) in the tree such that

ηn/2 ≤ ν(ω, r) ≤ ηn

Proof: Let (ω1, r1), (ω2, r2) be the two children of the root (
−→
0 , r0). (ω j, r j). Since ν(ω1, r1) +

ν(ω2, r2) ≥ ν(
−→
0 , r0) ≥ ηn, at least one of them, say (ω1, r1), must require more than ηn/2 constraints

to derive it.

If ν(ω1, r1) ≤ ηn then we are done. Else at least one of the children of (ω1, r1) must require

more than ηn/2 constraints for its derivation and we can continue the argument on this node. Since

we always go down one level in the tree and find a node requiring at least ηn constraints, we must

stop at some node as the leaves require only one constraint. The node we stop at can be taken to be

(ω, r) as required.

Consider the number of variables in ω. Each one of the constraints used in deriving it, con-

tributes at least 3 variable occurrences. Also, since ν(ω, r) ≤ ηn, all the constraints must contain at

least (k − 1 − δ)ν(ω, r) variables in total, which gives that at most (1 + δ)ν(ω, r) variables occurring

in more than one constraint. Out of all the variable occurrences in ω, the ones that can cancel out

are the ones occurring in more than one constraint. Hence, ω must have at least (3− 2(1 + δ))ν(ω, r)

variables. For δ ≤ 1/4, this is greater than ηn/8 which is a contradiction.

Hence, Λ cannot contain an equation of the form
−→
0 · x = r0 for r0 , 0. Since Λ is closed under

Res(·, ηn/8) by definition, we can apply Theorem 4.9 to get vectors for all sets of size upto ηn/8.

The vectors also satisfy all the required consistency conditions. Finally, we note that
m∑

i=1

∑
α∈[q]Ti

Ci(α)
∣∣∣V(Ti,α)

∣∣∣2 =

m∑
i=1

∑
α∈ATi

∣∣∣V(Ti,α)
∣∣∣2 =

m∑
i=1

1 = m

which shows that FRAC(Φ) = m.

Since random instances are both unsatisfiable and expanding, it is now easy to derive the inte-

grality gap for MAX k-CSP (PA).

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 69

Theorem 4.17 Let A ∈ (Fq)d×k be the generator matrix of a distance 3 code and let ζ > 0 be

given. Then there is a constant c = c(q, k, ζ) such that for large enough n, the integrality gap for the

Lasserre SDP relaxation of MAX k-CSP (PA) on n variables obtained by cn levels is at least qd − ζ.

Proof: We take ε = ζ · 1
qd , δ = 1/4 and consider a random instance Φ with m = βn constraints as

in Lemma 4.2, such that the Φ satisfies both the properties in the conclusion of the lemma. Then, by

Theorem 4.14 FRAC(Φ) = m even after ηn/16 levels of the Lasserre hierarchy. On the other hand,

by Lemma 4.2, OPT(Φ) ≤ |P
−1
A (1)|
qk (1 + ε) · m = 1

qd (1 + ε) · m. Hence, the integrality gap is at least

qd/(1 + ε) ≥ 1/qd − ζ.

We now derive near optimal integrality gaps for Ω(n) levels of the Lasserre relaxation of the

binary and q-ary MAX k-CSP problems. Note that the integrality gap becomes larger with the

dimension of the code. Thus, to optimize the gap, we consider Hamming codes which have the

largest dimension for a given length.

Corollary 4.18 Let k ≥ 3, q be a prime number and let ζ > 0 be given. Then there exists c =

c(k, q, ζ) > 0 such that the for sufficiently large n, the integrality gap for the Lasserre relaxation of

the MAX k-CSP problem on n variables with domain size q is at least
qk

kq(q − 1) − q(q − 2)
− ζ after

cn levels.

Proof: Let (qr−1 − 1)/(q − 1) < k ≤ (qr − 1)/(q − 1). We take A to be the generator matrix of the

Hamming code of length k. Note that the above implies that qr − q ≤ (k − 1)q(q − 1) which gives

qr ≤ kq(q − 1) − q(q − 2).

Consider a random instance of MAX k-CSP (PA). By Theorem 4.17, there exists a c and

instances on n variables such that the integrality gap after cn levels for MAX k-CSP (PA) is at

least qd − ζ = qk/qr − ζ. Finally, using that qr ≤ kq(q − 1) − q(q − 2) gives the gap is at least
qk

kq(q − 1) − q(q − 2)
− ζ as claimed.

Note that in case of q = 2, the generator matrix of the binary Hamming code, simply produces

the predicate considered by Samorodnitsky and Trevisan [ST06]. We also state the following more

precise version of the gap for binary k-CSPs. The constants are arbitrary, but we shall need the nature

of the tradeoffs between k, β and c to get the gaps for Independent Set and Chromatic Number.

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 70

Corollary 4.19 Let a number k and ε > 0 be given and let A be the generator matrix for the

Hamming code of length k. Then there exist β = O(2k/ε2) and c = Ω((1/β)25) such that if Φ is

a random instance of MAX k-CSP (PA) on n � 1/c variables and m = βn constraints, then with

probability 1 − o(1)

1. OPT(Φ) ≤ 2k
2k (1 + ε) · m

2. For the SDP given by cn levels of the Lasserre hierarchy, FRAC(Φ) = m.

Proof: Invoking Lemma 4.2 with δ = 1/5 gives β = O(2k/ε2) and η = Ω((1/β)25). Theorem 4.14

gives FRAC(Φ) = m after cn levels, for c = Ω(η) = Ω((1/β)25). The dimension d for a Hamming

code is k − 2dlog(k+1)e ≥ k − log(2k). Hence OPT(Φ) ≤ 2k
2k (1 + ε)m.

4.6 Implications for Random Predicates

We now derive integrality gaps for MAX k-CSP (P) where P : [q]k → {0, 1} is chosen at random

by selecting each input to be in P−1(1) independently with probability p. We denote this distribution

over q-ary predicates with k inputs as Q(p, q, k). For any predicate P, a random assignment satisfies

|P−1(1)|/qk fraction of constraints in MAX k-CSP (P) and hence the largest integrality gap one can

have is qk/|P−1(1)|. We will show that for almost every random predicate P, the integrality gap for

MAX k-CSP (P) is at least qk/|P−1(1)| − ζ even after Ω(n) levels of the Lasserre hierarchy.

The result will follow quite easily using a theorem of Håstad [Hås07] which basically says that

a random predicate “contains a copy of” PA where A is the generator matrix of the Hamming code

over Fq. We first define what it means for a predicate to contain a copy of another.

Definition 4.20 We say that a predicate P1 contains a predicate equivalent to P2 if there exists a

permutation π : [k]→ [k] of the inputs and b1, . . . , bk ∈ [q], such that

P2(xπ(1) + b1, . . . , xπ(k) + bk) = 1 ⇒ P1(x1, . . . , xk) = 1

We can now state the theorem of Håstad referred to above. Håstad actually states the result only

for random boolean predicates but it is easy to verify that the same proof can be extended to q-ary

predicates.

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 71

Theorem 4.21 [Hås07]) Let q be a prime and let (qr−1 − 1)/(q − 1) < k ≤ (qr − 1)/(q − 1). Let A

be the generator matrix of the Hamming code over Fq with length k. Then there is a value c of the

form c = kq−r(1 − o(1)), such that, with probability 1 − o(1), a random predicate chosen according

to Q(p, q, k) with p ≥ k−c contains a predicate equivalent to PA.

Using this theorem, we can now prove optimal integrality gap for almost every predicate in the

distribution Q(p, q, k) with the appropriate value of p.

Theorem 4.22 Let a prime q and ζ > 0 and k ≥ 3 be given and let (qr−1 − 1)/(q − 1) < k ≤

(qr − 1)/(q − 1) for some r. Then there exist constants c = kq−r(1 − o(1)) and c′ = c′(q, k, ζ) such

that if P is a random predicate chosen according to Q(p, q, k) with p ≥ k−c, then with probability

1− o(1) over the choice of P, the integrality gap for MAX k-CSP (P) after c′n levels of the Lasserre

hierarchy is at least qk/|P−1(1)| − ζ.

Proof: Using Theorem 4.21 we know that with probability 1−o(1), a random P contains a predicate

equivalent to PA, where A is the generator matrix of the Hamming code over Fq with length k. For

the rest of the proof, we fix such a P. For this P there exists a permutation π and literals b1, . . . , bk

such that PA(xπ(1) + b1, . . . , xπ(k) + bk) = 1 ⇒ P(x1, . . . , xk) = 1.

With every instance Φ of MAX k-CSP (P), we now associate an instance ΦA of MAX k-CSP

(PA). For every constraint Ci ≡ P(xi1 + ai1 , . . . , xik + aik) in Φ, we add a constraint C′i to ΦA of the

form

C′i ≡ PA(xiπ(1) + aiπ(1) + b1, . . . , xiπ(k) + aiπ(k) + bk)

Thus, if the constraint C′i is satisfied by an assignment, then so is Ci. Also, if Φ is distributed as a

random instance of MAX k-CSP (P), then ΦA is distributed as a random instance of MAX k-CSP

(PA) with the same number of constraints.

Let ε = ζ · |P−1(1)|/qk and δ = 1/4. We consider a random instance Φ of MAX k-CSP (P) with

m = βn constraints as in Lemma 4.2. By Lemma 4.2 we will have with probability 1 − o(1) over Φ

that

• OPT(Φ) ≤
|P−1(1)|

qk (1 + ε) · m, and

• Every set of s ≤ ηn constraints in ΦA contains at least (k − 1 − δ)s variables.

By Theorem 4.14, we have FRAC(ΦA) = m for the SDP obtained by t = ηn/16 levels of the

Lasserre hierarchy. Hence, there exist vectors V(S ,α) for all S ⊆ [n], |S | ≤ t and α ∈ [q]S satisfying

CHAPTER 4. LASSERRE GAPS FOR CONSTRAINT SATISFACTION PROBLEMS 72

all the consistency constraints and such that∑
α∈[q]Ti

C′i (α)
∣∣∣V(Ti,α)

∣∣∣2 = 1 ∀1 ≤ i ≤ m

However, the same vectors also show that FRAC(Φ) = m after t levels, since

m∑
i=1

∑
α∈[q]Ti

Ci(α)
∣∣∣V(Ti,α)

∣∣∣2 ≥ m∑
i=1

∑
α∈[q]Ti

C′i (α)
∣∣∣V(Ti,α)

∣∣∣2 =

m∑
i=1

1 = m

Hence, the integrality gap for MAX k-CSP (P) after ηn/16 levels of the Lasserre hierarchy is at

least FRAC(Φ)/OPT(Φ) ≥
qk

|P−1(1)|(1 + ε)
≥

qk

|P−1(1)|
− ζ.

73

Chapter 5

Sherali-Adams Gaps from Pairwise

Independence

In this chapter we study integrality gaps for a very general class of constraint satisfaction prob-

lems In a result which captures all the precious results on hardness of approximating MAX k-CSPq,

Austrin and Mossel [AM08] showed that if P : [q]k → {0, 1} is a predicate such that the set of ac-

cepted inputs P−1(1) contains the support of a balanced pairwise independent distribution µ on [q]k,

then MAX k-CSP (P) is UG-hard to approximate better than a factor of qk/|P−1(1)|. Considering

that a random assignment satisfies |P−1(1)|/qk fraction of all the constraints, this is the strongest

result one can get for a predicate P. Using appropriate choices for the predicate P, this then implies

hardness ratios of qk/kq2(1 + o(1)) for general q ≥ 2, qk/q(q − 1)k when q is a prime power, and

2k/(k + O(k0.525) for q = 2.

We study the inapproximability of such a predicate P (which we call promising) in the hierarchy

of linear programs defined by Sherali and Adams. In particular, we show an unconditional analogue

of the result of Austrin and Mossel in this hierarchy.

The previous results in the Lasserre hierarchy (and earlier analogues in the Lovász-Schrijver hi-

erarchy) seemed to be heavily relying on the structure of the predicate for which the integrality gap

was proven, as being some system of linear equations. It was not clear if the techniques could be

extended using only the fact that the predicate is promising (which is a much weaker condition).

In this chapter, we try to explore this issue, proving Ω(n) level gaps for the (admittedly weaker)

Sherali-Adams hierarchy.

CHAPTER 5. SHERALI-ADAMS GAPS FROM PAIRWISE INDEPENDENCE 74

Theorem 5.1 Let P : [q]k → {0, 1} be predicate such that P−1(1) contains the support of a balanced

pairwise independent distribution µ. Then for every constant ζ > 0, there exist c = c(q, k, ζ) such

that for large enough n, the integrality gap of MAX k-CSP (P) for the relaxation obtained by cn

levels of the Sherali-Adams hierarchy applied to the standard LP1is at least
qk

|P−1(1)|
− ζ.

We note that Ω(nδ)-level gaps for these predicates can also be deduced via reductions from the recent

result of [CMM09] who obtained Ω(nδ)-level gaps for Unique Games, where δ→ 0 as ζ → 0.

A first step in achieving our result is to reduce the problem of a level-t gap to a question about

family of distributions over assignments associated with sets of variables of size at most t. These

distributions should be (a) supported only on satisfying (partial) assignments and (b) should be

consistent among themselves, in the sense that for S 1 ⊆ S 2 which are subsets of variables, the

distributions over S 1 and S 2 should be equal on S 1. The second requirement guarantees that the

obtained solution is indeed feasible, while the first implies that the solution achieves objective value

that corresponds to satisfying all the constraints of the instance.

The second step is to come up with these distributions! We explain why the simple method of

picking a uniform distribution (or a reweighting of it according to the pairwise independent distri-

bution that is supported by P) over the satisfying assignments cannot work. Instead we introduce

the notion of “advice sets”. These are sets on which it is “safe” to define such simple distributions.

The actual distribution for a set S we use is then the one induced on S by a simple distribution

defined on the advice-set of S . Getting such advice sets heavily relies on notions of expansion

of the constraints graph. In doing so, we use the fact that random instances have inherently good

expansion properties. At the same time, such instances are highly unsatisfiable, ensuring that the

resulting integrality gap is large.

Arguing that it is indeed “safe” to use simple distributions over the advice sets relies on the

fact that the predicate P in question is promising, namely P−1(1) contains the support of a balanced

pairwise independent distribution. We find it interesting and somewhat curious that the condition of

pairwise independence comes up in this context for a reason very different than in the case of UG-

hardness. Here, it represents the limit to which the expansion properties of a random CSP instance

can be pushed to define such distributions.

1See the resulting LP in section 5.1.2.

CHAPTER 5. SHERALI-ADAMS GAPS FROM PAIRWISE INDEPENDENCE 75

5.1 Preliminaries and Notation

We use the same notation for CSPs as in the previous chapter. In particular, an instance Φ of

MAX k-CSPq, has variable {x1, . . . , xn}with domain [q], and constraints C1, . . . ,Cm. Each constraint

is a function of the form Ci : [q]Ti → {0, 1} for some Ti ⊆ [n] with |Ti| ≤ k. For a set of variables

S ⊆ [n], α ∈ [q]S denotes a partial assignment and α(S ′) denotes its projection to S ′ ⊆ S . Also,

for α1 ∈ [q]S 1 , α2 ∈ [q]S 2 such that S 1 ∩ S 2 = ∅, we denote by α1 ◦ α2 the assignment over

S 1 ∪ S 2 defined by α1 and α2. For a predicate P : [q]k → {0, 1}, P−1(1) is the set of assignments

on which the predicate evaluates to 1. A constraint defined according to P is taken to be of the form

P(xi1 + ai1 , . . . , xik + aik) for ai1 , . . . , aik ∈ [q].

5.1.1 Expanding CSP Instances

For an instance Φ of MAX k-CSPq, define its constraint graph GΦ, as the following bipartite

graph from L to R. The left hand side L consists of a vertex for each constraint Ci. The right hand

side R consists of a vertex for every variable x j. There is an edge between a constraint-vertex i and

a variable-vertex j, whenever variable x j appears in constraint Ci. When it is clear from the context,

we will abbreviate GΦ by G.

For Ci ∈ L we denote by Γ(Ci) ⊆ R the neighbors Γ(Ci) of Ci in R. For a set of constraints

C ⊆ L, Γ(C) denotes ∪ci∈CΓ(Ci). For S ⊆ R, we call a constraint Ci ∈ L, S -dominated if Γ(Ci) ⊆ S .

We denote by G|−S the bipartite subgraph of G that we get after removing S and all S -dominated

constraints. Finally, we also denote by C(S) the set of all S -dominated constraints.

Our result relies on set of constraints that are well expanding. We make this notion formal

below.

Definition 5.2 Consider a bipartite graph G = (V, E) with partition L,R. The boundary expansion

of X ⊂ L is the value |∂X|/|X|, where ∂X = {u ∈ R : |Γ(u) ∩ X| = 1}. G is (r, e) boundary expanding

if the boundary expansion for all subsets of L of size at most r is at least e.

5.1.2 The Sherali-Adams relaxation for CSPs

Below we present a relaxation for the MAX k-CSPq problem as it is obtained by applying a

level-t Sherali-Adams relaxation of the standard LP formulation of some instance Φ of MAX k-

CSPq.

CHAPTER 5. SHERALI-ADAMS GAPS FROM PAIRWISE INDEPENDENCE 76

As before, an integer solution to the problem can be given by a single mapping α0 ∈ [q][n],

which is an assignment to all the variables. We define 0/1 variables X(S ,α) for each S ⊆ [n] such that

|S | ≤ t and α ∈ [q]S . The intended solution is X(S ,α) = 1 if α0(S) = α and 0 otherwise. We also

introduce X(∅,∅) which is intended to be 1. By relaxing the integrality constraint on the variables, we

obtain the level-t Sherali-Adams LP relaxation.

maximize
m∑

i=1

∑
α∈[q]Ti

Ci(α)·X(Ti,α)

subject to
∑
j∈[q]

X(S∪{i},α◦ j) = X(S ,α) ∀S s.t. |S | < t, ∀i < S , α ∈ [q]S

X(S ,α) ≥ 0 ∀S s.t. |S | ≤ t, ∀α ∈ [q]S

X(∅,∅) = 1

Figure 5.1: Sherali-Adams LP for MAX k-CSPq

For an LP formulation of MAX k-CSPq, and for a given instance Φ of the problem, we denote

by FRAC(Φ) the LP (fractional) optimum, and by OPT(Φ) the integral optimum. For the particular

instance Φ, the integrality gap is then defined as FRAC(Φ)/OPT(Φ). The integrality gap of the LP

formulation is the supremum of integrality gaps over all instances.

Next we give a sufficient condition for the existence of a solution to the level-t Sherali-Adams

LP relaxation for a MAX k-CSPq instance Φ.

Lemma 5.3 Consider a family of distributions {D(S)}S⊆[n]:|S |≤t, where each D(S) is defined over

[q]S . If for every S ⊆ T ⊆ [n] with |T | ≤ t, the distributionsD(S),D(T) are equal on S , then

X(S ,α) = P
D(S)

[α]

satisfy the above level-t Sherali-Adams relaxation.

Proof: Consider some S ⊆ [n], |S | < t, and some i < S . Note that the distributionsD(S),D(S ∪{i})

CHAPTER 5. SHERALI-ADAMS GAPS FROM PAIRWISE INDEPENDENCE 77

are equal on S , and therefore we have∑
j∈[q]

X(S∪{i},α◦ j) =
∑
j∈[q]

P
β∼D(S∪{i})

[β = α ◦ j]

=
∑
j∈[q]

P
β∼D(S∪{i})

[(β(i) = j) ∧ (β(S) = α)]

= P
β∼D(S∪{i})

[β(S) = α]

= P
β′∼D(S)

[β′ = α]

= X(S ,α).

The same argument also shows that if S = ∅, then X(∅,∅) = 1. Finally, it is clear that all linear

variables are assigned non negative values completing the lemma.

5.1.3 Pairwise Independence and Approximation Resistant Predicates

We say that a distribution µ over variables x1, . . . , xk, is a balanced pairwise independent distri-

bution over [q]k, if we have

∀ j ∈ [q].∀i. P
µ
[xi = j] =

1
q

and ∀ j1, j2 ∈ [q].∀i1 , i2. P
µ
[(xi1 = j1) ∧ (xi2 = j2)] =

1
q2 .

A predicate P is called approximation resistant if it is hard to approximate the MAX k-CSPq (P)

problem better than using a random assignment. Assuming the Unique Games Conjecture, Austrin

and Mossel [AM08] show that a predicate is approximation resistant if it is possible to define a

balanced pairwise independent distribution µ such that P is always 1 on the support of µ.

Definition 5.4 A predicate P : [q]k → {0, 1} is called promising, if there exist a distribution sup-

ported over a subset of P−1(1) that is pairwise independent and balanced. If µ is such a distribution

we say that P is promising supported by µ.

5.2 Towards Defining Consistent Distributions

To construct valid solutions for the Sherali-Adams LP relaxation, we need to define distributions

over every set S of bounded size as is required by Lemma 5.3. Since we will deal with promising

predicates supported by some distribution µ, in order to satisfy consistency between distributions

we will heavily rely on the fact that µ is a balanced pairwise independent distribution.

CHAPTER 5. SHERALI-ADAMS GAPS FROM PAIRWISE INDEPENDENCE 78

Consider for simplicity that µ is uniform over P−1(1) (the intuition for the general case is not

significantly different). It is instructive to think of q = 2 and the predicate P being k-XOR, k ≥ 3.

Observe that the uniform distribution over P−1(1) is pairwise independent and balanced. A first

attempt would be to define for every S , the distribution D(S) as the uniform distribution over all

consistent assignments of S . We argue that such distributions are in general problematic. This

follows from the fact that satisfying assignments are not always extendible. Indeed, consider two

constraints Ci1 ,Ci2 ∈ L that share a common variable j ∈ R. Set S 2 = Ti1 ∪ Ti2 , and S 1 = S 2 \ { j}.

Assuming that the support of no other constraint is contained in S 2, we get that distribution D(S 1)

maps any variable in S 1 to {0, 1} with probability 1/2 independently, but some of these assignments

are not even extendible to S 2 meaning thatD(S 2) will assign them with probability zero.

Thus, to define D(S), we cannot simply sample assignments satisfying all constraints in C(S)

with probabilities given by µ. In fact the above example shows that any attempt to blindly assign

a set S with a distribution that is supported on all satisfying assignments for S is bound to fail. At

the same time it seems hard to reason about a distribution that uses a totally different concept. To

overcome this obstacle, we take a two step approach:

1. For a set S we define a superset S such that S is “global enough” to contain sufficient infor-

mation, while it also is “local enough” so that C(S) is not too large. We require the property

of such sets that if we remove S and C(S), then the remaining graph G|
−S still has good

expansion. We deal with this in Section 5.2.1.

2. The distribution D(S) is going to be the uniform distribution over satisfying assignments in

S . In the case that µ is not uniform over P−1(1), we give a natural generalization to the above

uniformity. We show how to define distributions, which we denote by Pµ(S), such that for

S 1 ⊆ S 2, the distributions are guaranteed to be consistent if G|−S 1 has good expansion. This

appears in Section 5.2.2.

We then combine the two techniques and define D(S) according to Pµ(S). This is done in sec-

tion 5.3.

5.2.1 Finding Advice-Sets

We now give an algorithm below to obtain a superset S for a given set S , which we call the

advice-set of S . It is inspired by the “expansion correction” procedure in [BOGH+03].

CHAPTER 5. SHERALI-ADAMS GAPS FROM PAIRWISE INDEPENDENCE 79

Algorithm Advice

The input is an (r, e1) boundary expanding bipartite graph G = (L,R, E), some e2 ∈ (0, e1), and

some S ⊆ R, |S | < (e1 − e2)r, with some order S = {x1, . . . , xt}.

Initially set S ← ∅ and ξ ← r

For j = 1, . . . , |S | do

M j ← ∅

S ← S ∪ {x j}

If G|
−S is not (ξ, e2) boundary expanding then

Find a maximal M j ⊂ L in G|
−S , such that |M j| ≤ ξ in G|

−S and |∂M j| ≤ e2|M j|

S ← S ∪ ∂M j

ξ ← ξ − |M j|

Return S

Theorem 5.5 Algorithm Advice, with internal parameters e1, e2, r, returns S ⊆ R such that (a) G|
−S

is (ξS , e2) boundary expanding, (b) ξS ≥ r − |S |
e1−e2

, and (c) |S | ≤ e1 |S |
e1−e2

.

Proof: Suppose that the loop terminates with ξ = ξS . Then
∑t

j=1 |M j| = r − ξS . Since G is (r, e1)

boundary expanding, the set M = ∪t
j=1M j has initially at least e1(r − ξS) boundary neighbors in

G. During the execution of the while loop, each set M j has at most e2|M j| boundary neighbors in

G|
−S . Therefore, at the end of the procedure M has at most e2(r − ξS) boundary neighbors in G|−S .

It follows that |S | + e2(r − ξS) ≥ e1(r − ξS), which implies (b).

From the bound size of S we know that ξS > 0. In particular, ξ remains positive throughout the

execution of the while loop. Next we identify a loop invariant: G|
−S is (ξ, e2) boundary expanding.

Indeed, note that the input graph G is (ξ, e1) boundary expanding. At step j consider the set

S ∪ {x j}, and suppose that G
−(S∪{x j}) is not (ξ, e2) boundary expanding. We find maximal M j,

|M j| ≤ ξ, such that |∂M j| ≤ e2|M j|. We claim that G
−(S∪{x j}∪∂M j) is (ξ−|M j|, e2) boundary expanding

(recall that since ξ remains positive, |M j| < ξ). Now consider the contrary. Then, there must be

M′ ⊂ L such that |M′| ≤ ξ − |M j| and such that |∂M′| ≤ e2|M′|. Consider then M j ∪ M′ and note

that |M j ∪ M′| ≤ ξ. More importantly |∂(M j ∪ M′)| ≤ e2|M j ∪ M′|, and therefore we contradict the

maximality of M j; (a) follows.

Finally note that S consists of S union the boundary neighbors of all M j. From the arguments

CHAPTER 5. SHERALI-ADAMS GAPS FROM PAIRWISE INDEPENDENCE 80

above, the number of those neighbors does not exceed e2(r − ξS) and hence |S | ≤ |S | + e2(r − ξS) ≤

|S | + e2 |S |
e1−e2

=
e1 |S |
e1−e2

, which proves (c).

5.2.2 Defining the Distributions Pµ(S)

We now define for every set S , a distribution Pµ(S) such that for any α ∈ [q]S , PPµ(S)[α] > 0

only if α satisfies all the constraints in C(S). For a constraint Ci with set of inputs Ti, defined as

Ci(xi1 , . . . , xik) ≡ P(xi1 + ai1 , . . . , xik + aik), let µi : [q]Ti → [0, 1] denote the distribution

µi(xi1 , . . . , xik) = µ(xi1 + ai1 , . . . , xik + aik)

so that the support of µi is contained in C−1
i (1). We then define the distribution Pµ(S) by picking

each assignment α ∈ [q]S with probability proportional to
∏

Ci∈C(S) µi(α(Ti)). Formally,

P
Pµ(S)

[α] =
1

ZS
·

∏
Ci∈C(S)

µi(α(Ti)) (5.1)

where α(Ti) is the restriction of α to Ti and ZS is a normalization factor given by

ZS =
∑
α∈[q]S

∏
Ci∈C(S)

µi(α(Ti)).

To understand the distribution, it is easier to think of the special case when µ is just the uniform dis-

tribution on P−1(1) (like in the case of MAX k-XOR). Then Pµ(S) is simply the uniform distribution

on assignments satisfying all the constraints in C(S). When µ is not uniform, then the probabilities

are weighted by the product of the values µi(α(Ti)) for all the constraints 2. However, we still have

the property that if PPµ(S)[α] > 0, then α satisfies all the constraints in C(S).

In order for the distribution Pµ(S) to be well defined, we need to ensure that ZS > 0. The

following lemma shows how to calculate ZS if G is sufficiently expanding, and simultaneously

proves that if S 1 ⊆ S 2, and if G|−S 1 is sufficiently expanding, then Pµ(S 1) is consistent with Pµ(S 2)

over S 1.

Lemma 5.6 Let Φ be a MAX k-CSP (P) instance as above and S 1 ⊆ S 2 be two sets of variables

such that both G and G|−S 1 are (r, k−2−δ) boundary expanding for some δ ∈ (0, 1) and |C(S 2)| ≤ r.

Then ZS 2 = q|S 2 |/qk|C(S 2)|, and for any α1 ∈ [q]S 1∑
α2∈[q]S 2
α2(S 1)=α1

P
Pµ(S 2)

[α2] = P
Pµ(S 1)

[α1].

2Note however that Pµ(S) is not a product distribution because different constraints in C(S) may share variables.

CHAPTER 5. SHERALI-ADAMS GAPS FROM PAIRWISE INDEPENDENCE 81

Proof: Let C = C(S 2) \ C(S 1) be given by the set of t many constraints Ci1 , . . . ,Cit with each Ci j

being on the set of variables Ti j . Some of these variables may be fixed by α1. Also, any α2 consistent

with α1 can be written as α1 ◦ α for some α ∈ [q]S 2\S 1 . Below, we express these probabilities in

terms the product of µ on the constraints in C(S 2) \ C(S 1).

Note that the equations below are still correct even if we haven’t shown ZS 2 > 0 (in that case

both sides are 0). In fact, replacing S 1 by ∅ in the same calculation will give the value of ZS 2 .

ZS 2 ·
∑

α2∈[q]S 2
α2(S 1)=α1

P
Pµ(S 2)

[α2] =
∑

α∈[q]S 2\S 1

∏
Ci∈C(S 2)

µi((α1 ◦ α)(Ti))

=

 ∏
Ci∈C(S 1)

µi(α1(Ti))

 ∑
α∈[q]S 2\S 1

t∏
j=1

µi j((α1 ◦ α)(Ti j))

=

(
ZS 1 · P

Pµ(S 1)
[α1]

) ∑
α∈[q]S 2\S 1

t∏
j=1

µi j((α1 ◦ α)(Ti j))

=

(
ZS 1 · P

Pµ(S 1)
[α1]

)
· q|S 2\S 1 | E

α∈[q]S 2\S 1

 t∏
j=1

µi j((α1 ◦ α)(Ti j))


The following claim lets us calculate this expectation conveniently using the expansion of G|−S 1 .

Claim 5.7 Let C be as above. Then there exists an ordering Ci′1 , . . . ,Ci′t of constraints in C and a

partition of S 2 \ S 1 into sets of variables F1, . . . , Ft such that for all j, F j ⊆ Ti′j , |F j| ≥ k − 2, and

∀ j F j ∩
(
∪l> jTi′l

)
= ∅.

Proof: (of Claim 5.7) We build the sets F j inductively using the fact that G|−S 1 is (r, k − 2 − δ)

boundary expanding.

Start with the set of constraints C1 = C. Since |C1| = |C(S 2) \ C(S 1)| ≤ r, this gives that

|∂(C1) \ S 1| ≥ (k − 2 − δ)|C1|. Hence, there exists Ci j ∈ C1 such that |Ti j ∩ (∂(C1) \ S 1)| ≥ k − 2. Let

Ti j ∩ (∂(C1) \ S 1) = F1 and i′1 = i j. We then take C2 = C1 \ {Ci′1} and continue in the same way.

Since at every step, we have F j ⊆ ∂(C j) \ S 1, and for all l > j Cl ⊆ C j, F j shares no variables

with Γ(Cl) for l > j. Hence, we get F j ∩
(
∪l> jTi′l

)
= ∅ as claimed.

Using this decomposition, the expectation above can be split as

E
α∈[q]S 2\S 1

 t∏
j=1

µi j(α1 ◦ α(Ti j))

 = E
βt∈[q]Ft

µi′t . . . E
β2∈[q]F2

µi′2 E
β1∈[q]F1

[
µi′1

] . . .

CHAPTER 5. SHERALI-ADAMS GAPS FROM PAIRWISE INDEPENDENCE 82

where the input to each µi′j depends on α1 and β j, . . . , βt but not on β1, . . . , β j−1.

We now reduce the expression from right to left. Since F1 contains at least k − 2 variables and

µi′1 is a balanced pairwise independent distribution,

E
β1∈[q]F1

[
µi′1

]
=

1
q|F1 |

· P
µ
[(α1 ◦ β2 . . . ◦ βt)(Ti′1 \ F1)] =

1
qk

irrespective of the values assigned by α1 ◦ β2 ◦ . . . ◦ βt to the remaining (at most 2) variables in

Ti′1 \ F1. Continuing in this fashion from right to left, we get that

E
α∈[q]S 2\S 1

 t∏
j=1

µi j((α1 ◦ α)(Ti j))

 =

(
1
qk

)t

=

(
1
qk

)|C(S 2)\C(S 1)|

Hence, we get that

ZS 2 ·
∑

α2∈[q]S 2
α2(S 1)=α1

P
Pµ(S 2)

[α2] =

(
ZS 1 ·

q|S 2\S 1 |

qk|C(S 2)\C(S 1)|

)
P

Pµ(S 1)
[α1]. (5.2)

Summing over all α1 ∈ [q]S 1 on both sides gives

ZS 2 = ZS 1 ·
q|S 2\S 1 |

qk|C(S 2)\C(S 1)| .

Since we know that G is (r, k − 2 − δ) boundary expanding, we can replace S 1 by ∅ in the above

equation to obtain ZS 2 = q|S 2 |/qk|C(S 2)| as claimed. Also note that since C(S 1) ⊆ C(S 2), ZS 2 > 0

implies ZS 1 > 0. Hence, using equation (5.2) we get∑
α2∈[q]S 2
α2(S 1)=α1

P
Pµ(S 2)

[α2] = P
Pµ(S 1)

[α1]

which proves the lemma.

5.3 Constructing the Integrality Gap

We now show how to construct integrality gaps using the ideas in the previous section. For a

given promising predicate P, our integrality gap instance will be random instance Φ of the MAX

k-CSP q(P) problem. To generate a random instance with m constraints, for every constraint Ci,

we randomly select a k-tuple of distinct variables Ti = {xi1 , . . . , xik } and ai1 , . . . , aik ∈ [q], and put

Ci ≡ P(xi1 + ai1 , . . . , xik + aik). It is well known and used in various works on integrality gaps and

CHAPTER 5. SHERALI-ADAMS GAPS FROM PAIRWISE INDEPENDENCE 83

proof complexity (e.g. [BOGH+03], [AAT05], [STT07a] and [Sch08]), that random instances of

CSPs are both highly unsatisfiable and highly expanding. We capture the properties we need in the

lemma below (a proof is provided in the appendix).

Lemma 5.8 Let ε, δ > 0 and a predicate P : [q]k → {0, 1} be given. Then there exist

γ = O(qk log q/ε2), η = Ω((1/γ)10/δ) and N ∈ N, such that if n ≥ N and Φ is a random instance of

MAX k-CSP (P) with m = γn constraints, then with probability 1 − o(1)

1. OPT(Φ) ≤ |P
−1(1)|
qk (1 + ε) · m.

2. For any set C of constraints with |C| ≤ ηn, we have |∂(C)| ≥ (k − 2 − δ)|C|.

Let Φ be an instance of MAX k-CSPq on n variables for which GΦ is (ηn, k − 2 − δ) boundary

expanding for some δ < 1/2, as in Lemma 5.8. For such a Φ, we now define the distributionsD(S).

For a set S of size at most t = ηδn/4k, let S be subset of variables output by the algorithm

Advice when run with input S and parameters r = ηn, e1 = (k−2− δ), e2 = (k−2−2δ) on the graph

GΦ. Theorem 5.5 shows that

|S | ≤ (k − 2 − δ)|S |/δ ≤ ηn/4.

We then use (5.1) to define the distributionD(S) for sets S of size at most δηn/4k as

P
D(S)

[α] =
∑
β∈[q]S
β(S)=α

P
Pµ(S)

[β].

Using the properties of the distributions Pµ(S), we can now prove that the distributions D(S)

are consistent.

Claim 5.9 Let the distributions D(S) be defined as above. Then for any two sets S 1 ⊆ S 2 ⊆ [n]

with |S 2| ≤ t = ηδn/4k, the distributionsD(S 1),D(S 2) are equal on S 1.

Proof: The distributions D(S 1),D(S 2) are defined according to Pµ(S 1) and Pµ(S 2) respectively.

To prove the claim, we show that Pµ(S 1) and Pµ(S 2) are equal to the distribution Pµ(S 1 ∪ S 2) on

S 1, S 2 respectively (note that it need not be the case that S 1 ⊆ S 2).

Let S 3 = S 1∪S 2. Since |S 1|, |S 2| ≤ ηn/4, we have |S 3| ≤ ηn/2 and hence |C(S 3)| ≤ ηn/2. Also,

by Theorem 5.5, we know that both G|
−S 1

and G|
−S 2

are (2ηn/3, k − 2 − 2δ) boundary expanding.

CHAPTER 5. SHERALI-ADAMS GAPS FROM PAIRWISE INDEPENDENCE 84

Thus, using Lemma 5.6 for the pairs (S 1, S 3) and (S 2, S 3), we get that

P
D(S 1)

[α1] =
∑

β1∈[q]S 1
β1(S 1)=α1

P
Pµ(S 1)

[β1]

=
∑

β3∈[q]S 3
β3(S 1)=α1

P
Pµ(S 3)

[β3]

=
∑

β2∈[q]S 2
β2(S 1)=α1

P
Pµ(S 2)

[β2]

=
∑

α2∈[q]S 2
α2(S 1)=α1

P
D(S 2)

[α2]

which shows thatD(S 1) andD(S 2) are equal on S 1.

It is now easy to prove the main result.

Theorem 5.10 Let P : [q]k → {0, 1} be a promising predicate. Then for every constant ζ > 0,

there exist c = c(q, k, ζ), such that for large enough n, the integrality gap of MAX k-CSP (P) for the

relaxation obtained by cn levels of the Sherali-Adams hierarchy is at least
qk

|P−1(1)|
− ζ.

Proof: We take ε = ζ/qk, δ = 1/4 and consider a random instance Φ of MAX k-CSP (P) with

m = γn as given by Lemma 5.8. Thus, OPT(Φ) ≤ |P
−1(1)|
qk (1 + ε) · m.

On the other hand, by Claim 5.9 we can define distributions D(S) over every set of at most

δηn/4k variables such that for S 1 ⊆ S 2, D(S 1) and D(S 2) are consistent over S 1. By Lemma 5.3

this gives a feasible solution to the LP obtained by δηn/4k levels. Also, by definition of D(S), we

have that PD(S)[α] > 0 only if α satisfies all constraints in C(S). Hence, the value of FRAC(Φ) is

given by

m∑
i=1

∑
α∈[q]Ti

Ci(α)X(Ti,α) =

m∑
i=1

∑
α∈[q]Ti

Ci(α) P
D(Ti)

[α] =

m∑
i=1

∑
α∈[q]Ti

P
D(Ti)

[α] = m.

Thus, the integrality gap after δηn/4k levels is at least

FRAC(Φ)
OPT(Φ)

=
qk

|P−1(1)|(1 + ε)
≥

qk

|P−1(1)|
− ζ.

85

Chapter 6

Reductions in the Lasserre Hierarchy

Taking the analogy of the hierarchies as a computational model a bit further, in this chapter

we study if integrality gaps for one problem can be used to show an integrality gap for another

problem using reductions (see proof overview for the structure of reductions for integrality gaps).

We remark that (simple) reductions between integrality gaps were considered before, for example

by [AAT05] and [Sch08] - we develop techniques to do somewhat more complicated ones. We use

the arguments from known reductions in hardness of approximation literature, which usually start

from the hardness of a constraint satisfaction problem and use it to conclude the hardness of another

problem. Using the integrality gaps proved in Chapter 4, we derive integrality gaps for the following

problems:

1. Maximum Independent Set: This is the problem of finding the largest set of vertices in a

graph, not containing any edges. The best known approximation algorithm by Boppana and

Haldórsson [BH92] achieves an approximation ratio of O
(

n
(log n)2

)
. Also, Feige [Fei97] showed

that the integrality gap for the Lovász ϑ-function, which is an SDP relaxation equivalent to 1

round of Lasserre, is at least n/2c
√

log n for some constant c.

2. Approximate Graph Coloring: This is the problem of coloring a graph (with different colors

for adjacent vertices) with minimum number of colors, when the graph is known to be colorable

with a small constant number of colors. The best known algorithm, due to Chlamtac [Chl07]

colors a 3-colorable graph with at most n0.2072 colors.

3. Chromatic Number: This is the general problem of finding the minimum number of colors

for coloring a graph when no guarantee as the one above is given. For this problem, Feige,

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 86

Langberg and Schechtman [FLS04] show that a gap can be as large as n/polylog(n) for an SDP

relaxation which is weaker than 1 round of Lasserre.

4. Minimum Vertex Cover: As discussed before, in this problem, it is required to find the smallest

possible subset of vertices in a graph, which touches every edge. Integrality gap of a factor

7/6 for Ω(n) levels of the Lovász-Schrijver SDP hierarchy was discussed in Chapter 2. These

were later strengthened to the Lasserre hierarchy by the result of Schoenebeck [Sch08]. An

integrality gap of factor 2 − ε was also shown by for Ω(
√

log n/log log n) levels of the Lovász-

Schrijver hierarchy by Georgiou et. al. [GMPT07].

Our Results

We develop techniques to carry out PCP based reductions between SDPs, to obtain gaps for

the problems above. We present a summary of the known NP-hardness results and the integrality

gap results we obtain, in the table below. UG-hardness denotes the hardness assuming the Unique

Games Conjecture. For Approximate Graph Coloring the hardness mentions the tradeoff for a graph

known to be l-colorable.

NP-hardness UG-hardness Integrality Gap No. of levels

Maximum Independent Set n
2(log n)3/4+ε [KP06] n

2c1
√

log n log log n
2c2
√

log n log log n

Approximate Graph Coloring l vs. 2
log2 l

25 [Kho01] l vs. 2l/2

4l2 Ω(n)

Chromatic Number n
2(log n)3/4+ε [KP06] n

2c1
√

log n log log n
2c2
√

log n log log n

Minimum Vertex Cover 1.36 [DS05] 2 - ε [KR03] 1.36 Ω(nδ)

It can be shown that the integrality gap for the relaxations of Maximum Independent Set and

Chromatic Number number obtained by t levels of the Lasserre hierarchy is at most n/t after t

levels. Hence the the number of levels in the above results is optimal up to the difference in the

constants c1 and c2. We give the proof of this fact for Maximum Independent Set for the sake of

illustration.

Claim 6.1 Let Φ = (V, E) be an instance of the Maximum Independent Set problem of size n. Let

OPT(Φ) denote the size of the largest independent set and let FRAC(Φ) denote the value of the SDP

obtained by t levels of the Lasserre hierarchy. Then, FRAC(Φ)/OPT(Φ) ≤ n/t.

Proof: Let the SDP solution be described by vectors US for |S | ≤ t. Since
∑

i∈[n]

∣∣∣U{i}∣∣∣2 =

FRAC(Φ), there exists a set S of size t such that
∑

i∈S

∣∣∣U{i}∣∣∣2 ≥ (t/n) · FRAC(Φ). Also, the vec-

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 87

tors {US ′}S ′⊆S define a probability distribution over the independent sets of the subgraph induced

by S (see Lemma 6.14 for a formal proof of this and related facts) with the expected size of the

independent sets as
∑

i∈S

∣∣∣U{i}∣∣∣2. The proof follows by observing

t
n
· FRAC(Φ) ≤

∑
i∈S

∣∣∣U{i}∣∣∣2 ≤ OPT(Φ)

since the size of the largest independent set can be at most OPT(Φ) .

6.1 Overview of proofs

Consider a reduction from a constraint satisfaction problem, to another problem, say Maximum

Independent Set for concreteness. Starting from a CSP instance Φ, this reduction creates a graph

GΦ and one needs to argue the following two things:

• Completeness: If Φ has an assignment satisfying many constraints, then GΦ has a large inde-

pendent set.

• Soundness: If Φ has no good assignment, then GΦ has no large independent sets.

If Φ is an integrality gap instance for an SDP, then Φ has no good assignment but has a good SDP

solution. Showing that GΦ is an integrality gap instance, amounts to making the following two

claims simultaneously:

• Vector Completeness: Since Φ has a good SDP solution, so does GΦ.

• Soundness: Since Φ has no good assignment, GΦ has no large independent sets.

Notice that if we are using a known NP-hardness reduction, then the soundness condition is already

available. Showing an integrality gap reduces to generalizing “completeness” to “vector complete-

ness”. We do this by giving various transformation, that transform an SDP solution for Φ, into one

for the problem we are reducing to.

Maximum Independent Set

The transformations for independent set are conceptually the simplest and form a basis for our

other results as well. We consider a graph GΦ obtained from Φ (called the FGLSS graph), which

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 88

has vertices of the form (Ci, α), where Ci is a constraint and αi is a partial assignment to variables

in Ci. Vertices corresponding to contradicting assignments are connected.

Since Φ has an SDP solution for t levels of Lasserre (say for a large t), we have vectors V(S ,α)

where S is a set of at most t variables and α is a partial assignment to those variables. We need to

produce vectors US where S is a set of vertices in the FGLSS graph. However, a set of vertices is

simply a set of constraints and partial assignments to all the variables involved. Let S ′ be the set

of all variables in all the constraints in S and let α′ be the joint partial assignment defined by all

vertices in S (assuming for now, that no partial assignments in S contradict). We take US = V(S ′,α′).

The reduction (by [BGS98]) proceeds by taking products of the graph GΦ to get Gr
Φ

and ran-

domly sampling a certain vertex-induced subgraph. It turns out to be sufficient however, to create

an SDP solution for Gr
Φ

. Each vertex in Gr
Φ

is an r-tuple of vertices in GΦ with an edge between two

r-tuples if vertices in any of the r coordinates are adjacent in GΦ. A set S of vertices in Gr
Φ

is a set

of r-tuples and we consider sets S1, . . . ,Sr where S j is the projection of S to the jth coordinate. For

Gr
Φ

, we simply take US = US1 ⊗ . . . ⊗USr . This corresponds to the intuition that every independent

set in Gr
Φ

corresponds to picking one independent set in each copy of GΦ.

Approximate Graph Coloring and Chromatic Number

To obtain a gap for Approximate Graph Coloring, we modify the FGLSS reduction slightly.

The gap for Chromatic Number is derived from this by taking graph products and tensoring vectors

as before. The modified reduction below is in the spirit of randomized PCPs of Feige and Killian

[FK98].

Consider an instance Φ when the constraints are known to be of the type A · (x1, . . . , xk)T = b

and consider GΦ as before. Supposing that we had an assignment satisfying all constraints, this

would give a large independent set. For the graph to be l colorable, we need l independent sets

covering the graph. Let l be the nullity of the matrix A and consider the vectors w1, . . . , wl such that

A · wl = 0. If α is a partial assignment to variables (x1, . . . , xk) which satisfies the above constraint,

then so is α + w j for 1 ≤ j ≤ l. 1

The problem is this does not give us an independent set. If x1, . . . , xn was an assignment, and we

looked at the restriction of this assignment to every constraint and added w j to every restriction, this

does not give a consistent assignment to x1, . . . , xn. However, this is an independent set if we slightly
1A reader familiar with [FK98] may recognize this as an attempt to get a zero-knowledge protocol for showing that Φ

is satisfiable. However, we do not argue the soundness of this protocol - we simply enforce it in the choice of Φ.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 89

modify the FGLSS graph. Every constraint Ci is on an ordered tuple Ti of vertices. For assignment

α1 to Tii and α2 to Ti2 , we connect them only if α1, α2 differ on a variable in the same coordinate

in Ti1 ,Ti2 . One can then verify that the transformation above takes us from one independent set to

another. Changing the graph may affect the soundness, but it is possible to choose Φ so that the

resulting graph still has no large independent sets.

Using this intuition, we now need to produce a vector every for small set of vertices and every

assignment of colors to the same. For a vertex (Ci, α) in GΦ, we take the vectors corresponding to

the l colors as V(Ti,α+w1), . . . ,V(Ti,α+wl). The vectors for sets can be created similarly.

Minimum Vertex Cover

For Minimum Vertex Cover, we use the reduction by Dinur and Safra [DS05], which is a little

complicated to describe. However, an interesting point comes up in analyzing a (small) step which

is not “local”, as opposed to all the steps in the previous reductions. The step is a simple Chernoff

bound in the completeness part, showing how large independent sets intersect certain other sets

of vertices in a graph. Generalizing this to “vector-completeness” seems to require analyzing the

“local distributions” defined by the vectors, and combining the bounds globally using properties

of the SDP solution. Another component of the proof is a transformation of vectors for long-code

based reductions.

6.2 Integrality Gap for Maximum Independent Set

To obtain the integrality gaps for Maximum Independent Set we use the reductions by Feige

et. al. [FGL+91] and by Bellare, Goldreich and Sudan [BGS98]. However, before getting to the

proof of the integrality gap, we describe how to transform vectors for a general FGLSS reduction.

This transformation shall be useful for our other results as well.

6.2.1 Vectors for products of the FGLSS graph

Let Φ be an instance of MAX k-CSP with constraints C1, . . . ,Cm on tuples T1, . . . ,Tm and the

domain of variables as {0, 1}. Assume that each constraint has exactly l satisfying assignments. We

describe below the reduction by [BGS98] from Φ to an independent set problem.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 90

1. Given Φ, create the FGLSS graph GΦ = (VΦ, EΦ) with a vertex for every constraint Ci and

every partial assignment to variables in the corresponding tuple Ti which satisfies the con-

straint Ci. Two vertices (Ci1 , α1), (Ci2 , α2) are connected if α1 and α2 assign different values

to some variable. Formally

VΦ = {(Ci, α) | α ∈ {0, 1}Ti , Ci(α) = 1}

EΦ = {{(Ci1 , α1), (Ci2 , α2)} | α1(Ti1 ∩ Ti2) , α2(Ti1 ∩ Ti2)}

2. Construct the product graph Gr
Φ

= (Vr
Φ
, E′) with vertices of Gr

Φ
being r-tuples of vertices

in GΦ. Two vertices {(Ci1 , α1), . . . , (Cir , αr)} and {(Ci′1 , α
′
1), . . . , (Ci′r , α

′
r)} are connected if for

some j, {(Ci j , α j), (Ci′j , α
′
j)} ∈ EΦ.

Note that if Φ had m constraints, then Gr
Φ

has lr ·mr vertices, with there being mr disjoint cliques

of lr vertices, corresponding to every r-tuple of constraints. We denote the clique corresponding to

constraints Ci1 , . . . ,Cir as C(i1, . . . , ir). Formally,

C(i1, . . . , ir) =
{
{(Ci1 , α1), . . . , (Cir , αr)} | ∧r

j=1 Ci j(α j) = 1
}

The largest independent set in Gr
Φ

can have at most mr vertices. We claim that a good SDP solution

for Φ can be transformed into a good solution for the independent set SDP on Gr
Φ

.

Lemma 6.2 Let Φ be an instance of MAX k-CSP as above with m constraints. If FRAC(Φ) = m

after t levels of the Lasserre hierarchy, then FRAC(Gr
Φ

) ≥ mr for the independent set SDP obtained

after t/k levels. Moreover, the contribution to the SDP value from vertices in each clique C(i1, . . . , ir)

is 1.

Proof: We first define an independent set solution for t/k levels on GΦ and then show how to

extend it to Gr
Φ

. Consider a set S of h ≤ t/k vertices in GΦ. It is specified by h constraints and

partial assignments {(Ci1 , α1), . . . , (Cih , αh)}. Define US as

US =

 0 ∃ j1, j2 ≤ h s.t. α j1(Ti j1
∩ Ti j2

) , α j2(Ti j1
∩ Ti j2

)

V(∪ jTi j ,α1◦...◦αh) otherwise

We now consider a set S of vertices in Gr
Φ

. It is a set of r-tuples of vertices in GΦ. Let S j denote the

set of vertices of GΦ which occur in the jth coordinate of the r-tuples in S . Define the vector US as

US = US1 ⊗ . . . ⊗ USr

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 91

Let U
∅

denote the vector for the empty set of vertices in Gr
Φ

. We take U
∅

= U∅ ⊗ . . . ⊗ U∅. The

vectors US are defined for all sets S with at most t/k vertices. We now show that they satisfy all

Lasserre constraints.

Claim 6.3 The vectors US satisfy all conditions of the (t/k)-round independent set SDP on Gr
Φ

.

Proof: Since all vectors US are tensors of valid Lasserre vectors for the SDP for Φ, all inner

products are between 0 and 1. We only need to verify that the vectors corresponding to two vertices

connected by an edge are orthogonal, and that
〈
US 1

,US 2

〉
depends only on S 1 ∪ S 2.

• Consider two vertices {(Ci1 , α1), . . . , (Cir , αr)} and {(Ci′1 , α
′
1), . . . , (Ci′r , α

′
r)} connected by an

edge. The corresponding vectors are V(Ti1 ,α1) ⊗ . . . ⊗ V(Tir ,αr) and V(Ti′1
,α′1) ⊗ . . . ⊗ V(Ti′r

,α′r).

The fact that there is an edge between the vertices means that for some j ≤ r, α j(Ti j ∩ Ti′j) ,

α′j(Ti j ∩ Ti′j). Hence
〈
V(Ti j ,α j),V(Ti′j

,α′j)

〉
= 0 since the vectors V(·,·) form a valid Lasserre

solution. This gives〈
V(Ti1 ,α1) ⊗ . . . ⊗ V(Tir ,αr),V(Ti′1

,α′1) ⊗ . . . ⊗ V(Ti′r
,α′r)

〉
=

r∏
j=1

〈
V(Ti j ,α j),V(Ti′j

,α′j)

〉
= 0

• Next, consider sets S 1, S 2, S 3, S 4 such that S 1 ∪ S 2 = S 3 ∪ S 4. For 1 ≤ u ≤ 4, let S(u)
j denote

the union of elements in the jth coordinate of the r-tuples in S u. S 1∪S 2 = S 3∪S 4 means that

in particularS(1)
j ∪S

(2)
j = S

(3)
j ∪S

(4)
j for all 1 ≤ j ≤ r. For a fixed j, letS(1)

j ∪S
(2)
j = S

(3)
j ∪S

(4)
j =

{(Ci1 , α1), . . . , (Cih , αh)}. If the set contains two contradicting partial assignments, then either

one of U(j)
S1

and U(j)
S2

is 0, or they are equal to Lasserre vectors corresponding to contradicting

partial assignments. In either case
〈
U(j)
S1
,U(j)
S2

〉
= 0 and similarly

〈
U(j)
S3
,U(j)
S4

〉
= 0. If there

are no contradicting partial assignments, then the tuples in S(j)
1 ∪ S

(j)
2 can be extended to a

unique partial assignment α1 ◦ . . . ◦ αh over ∪h
j=1T j j . Since the set of all tuples, and hence the

assignment, is same for S(j)
3 ∪ S

(j)
4 , and the corresponding CSP vectors are consistent, we get〈

U(j)
S1
,U(j)
S2

〉
=

〈
U(j)
S3
,U(j)
S4

〉
for all j, which implies

〈
US 1

,US 2

〉
=

〈
US 3

,US 4

〉
.

We show that the value for all the vertices in any clique C(i1, . . . , ir) is 1. Letting α1, . . . , αr range

over all satisfying assignments to Ci1 , . . . ,Ci j , the contribution of vertices in this clique to the SDP

objective value is∑
α1,...,αr

r∏
j=1

〈
V(Ti j ,α j),V(∅,∅)

〉
=

r∏
j=1

〈∑
α j

V(Ti j ,α j),V(∅,∅)

〉
=

r∏
j=1

(1) = 1

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 92

where
〈∑

α j V(Ti j ,α j),V(∅,∅)
〉

= 1 since the contribution of the constraint Ci j to the SDP for MAX

k-CSP is 1.

6.2.2 Obtaining the Integrality Gap

We can now prove the following integrality gap for Maximum Independent Set.

Theorem 6.4 There exist constants c1, c2 > 0 and graphs on N vertices for arbitrarily large N,

such that the integrality gap for the SDP for independent set obtained by 2c2
√

log N log log N levels of

the Lasserre hierarchy, is at least
N

2c1
√

log N log log N
.

Proof: Our integrality gap instance will be a subgraph of Gr
Φ

for appropriate choices of Φ and

r. We construct the graph G = (V, E) by randomly picking M cliques of the form C(i1, . . . , ir),

and taking G to be the subgraph induced by the vertices in these cliques. An easy Chernoff bound

shows that if only a small fraction of constraints in Φ were satisfiable, then the size of the largest

independent set in G is small.

Claim 6.5 Let s = OPT(Φ)/m. Then for M ≥ 100nr
sr , with probability 1 − o(1), all independent sets

in G have size at most 2sr M.

Proof: It is easy to see that any independent set in GΦ can be extended to an assignment to the

variables x1, . . . , xn and has size equal to the number of constraints in Φ satisfied by the assignment.

Hence, the size of the largest independent set in GΦ is at most s ·m. Also, an independent set in Gr
Φ

is a set of r-tuples of vertices in GΦ such that if we consider the set of vertices in the jth coordinate

for any j, they form an independent set in GΦ. Hence, any independent set in Gr
Φ

has size at most

(s·m)r. Also, note that since an independent set of Gr
Φ

can be extended to an assignment to x1, . . . , xn

in each of the r coordinates, there are at most 2nr different independent sets.

Any independent set in the sampled graph G also extends to an assignment to x1, . . . , xn in each

coordinate and can be thought of as the intersection of an independent set I of Gr
Φ

with the sampled

blocks. Fix any independent set I of Gr
Φ

. We sample M out of the mr blocks in GΦ and each block

has at most one vertex belonging to I (because each block is a clique). Hence, by Chernoff bounds,

the probability that more than 2sr ·M vertices in G belong to I is at most exp(−sr ·M/50). Taking a

union bound over all choices of I, we get that with probability at least 1 − exp(−sr · M/50 + nr), all

independent set of G have size at most 2sr ·M. Choosing M ≥ 100nr/sr ensures that the probability

is 1 − o(1).

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 93

We now make the choices for all the parameters involved. For a large n, let k = δ log n for some

small constant δ, and let r = log n/(log log n). Consider an instance Φ of MAX k-CSP as given by

Corollary 4.19. By choosing ε = 1/2, we can get that k/2k ≤ s ≤ 3k/2k. Also, since the constraints

are based on the Hamming code, the number of satisfying assignments to each constraint is at most

l ≤ 2k. We pick M = 100nr · (2kr/kr).

By the previous claim, the size of the maximum independent set in G is at most 2Msr (w.h.p.

over the choice of G). We take the SDP solution to be the same as constructed for Gr
Φ

. By Lemma

6.2, the contribution of the vectors in each clique to the SDP value is 1. Hence, the value of the SDP

solution for G is M, which gives an integrality gap of (1/2sr) ≥ (1/2) · (2k/3k)r. On the other hand,

the number of vertices in G is

N = M · lr ≤ (100nr · 2kr/kr) · (2k)r = O(nr · 2(k+1)r)

With our choice of parameters, the integrality gap is at least
N

2c1
√

log N log log N
for some constant c1.

To verify the number of levels, note that Corollary 4.19 gives β = O(2k) = O(nδ) and c =

Ω((1/nδ)25). Hence, we have SDP solutions for cn = Ω(n1−25δ) levels for Φ and consequently for

Ω(n1−25δ/k) levels for the independent set SDP on G. For δ < 1/25, this is at least 2c2
√

log N log log N

for some constant c2.

6.3 Gaps for Graph Coloring

In this section, we show that SDPs in the Lasserre hierarchy fail to approximate the chromatic

number of a graph. Gaps for chromatic number are syntactically different from the usual integrality

gaps for SDPs because the value of the chromatic number is not a linear function of the inner

products of vectors in an SDP. Instead for any l, one can write down an SDP for which a feasible

solution gives a vector l-coloring of the graph. We show graphs for which an l-coloring remains

feasible even after many levels of the Lasserre hierarchy, even though the actual chromatic number

of the graph is much larger than l.

We show that for any constant l, there are graphs with chromatic number at least 2l/2

4l2 which

admit a vector l-coloring even after Ω(n) levels of the Lasserre hierarchy. For Chromatic Number,

we show that the ratio of the chromatic number of the graph and the number of colors in the vector

coloring obtained by 2Ω(
√

log n log log n) levels of the Lasserre hierarchy can be as high as n
2O(
√

log n log log n)
.

We write the Lasserre SDP for l-coloring as a constraint satisfaction problem, with the additional

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 94

restriction that all the constraints which say colors of two adjacent vertices must be different, are

satisfied. This formulation is equivalent to the one considered by Chlamtac [Chl07]. 2 To avoid

confusion with the SDP for MAX k-CSP we denote the sets of vertices here byS, partial assignments

by γ and vectors for coloring by V(S,γ).

Minimize l s.t. there exist vectors V(S,γ) for all |S| ≤ t, γ ∈ [l]S satisfying

〈
V({u1},γ),V({u2},γ)

〉
= 0 ∀(u1, u2) ∈ E, γ ∈ [l]〈

V(S1,γ1),V(S2,γ2)

〉
= 0 ∀ γ1(S1 ∩ S2) , γ2(S1 ∩ S2)〈

V(S1,γ1),V(S2,γ2)

〉
=

〈
V(S3,γ3),V(S4,γ4)

〉
∀ S1 ∪ S2 = S3 ∪ S4, γ1 ◦ γ2 = γ3 ◦ γ4∑

j∈[l]

∣∣∣V({u}, j)
∣∣∣2 = 1 ∀u ∈ V

〈
V(S1,γ1),V(S2,γ2)

〉
≥ 0 ∀S1,S2, γ1, γ2∣∣∣V(∅,∅)

∣∣∣ = 1

Figure 6.1: Level-t Lasserre SDP for l-coloring of a graph

The reduction we describe in this section is a slightly modified version of the reduction for

independent set and is specifically designed to work for problems of the type MAX k-CSP (PA),

where the constraints being linear equations in F2. It is inspired by what could be a “zero-knowledge

protocol” for such predicates, in the sense of Feige and Killian [FK98]. Here, we describe the

reduction without going through the protocol, at the cost of defining the following additional (and

somewhat unnatural) solution concept for a CSP instance.

Definition 6.6 Let Φ be an instance of MAX k-CSP with constraints C1, . . . ,Cm on ordered k-tuples

T1, . . . ,Tm of variables. For a constraint Ci on variables (xi1 , . . . , xik), we say that the constraint

k-satisfied by assignments Π1, . . . ,Πk if Ci(Π1(xi1), . . . ,Πk(xik)) = 1. We denote by OPTk(Φ), the

maximum number of constraints in Φ that are k-satisfied by any assignments Π1, . . . ,Πk.

Note that the above definition crucially uses the fact that the constraint is defined on an ordered

tuple of variables as we read the value of the first variable from Π1, the second from Π2 and so on.

By slightly strengthening the notion of unsatisfiability for a random CSP instance in Lemma 4.2,

we can strengthen Corollary 4.19 as below.

2In fact, the SDPs in Lasserre hierarchy are fairly independent of the representation used. It is easy to switch between
different SDPs for a problem, by losing at most a constant factor in the number of levels.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 95

Corollary 6.7 Let a number k and ε > 0 be given and let A be the generator matrix for the Ham-

ming code of length k. Then there exist β = O(k2k/ε2) and c = Ω((1/β)25) such that if Φ is a random

instance of MAX k-CSP (PA) on n � 1/c variables and m = βn constraints, then with probability

1 − o(1)

1. OPTk(Φ) ≤ 2k
2k (1 + ε) · m

2. For the SDP given by cn levels of the Lasserre hierarchy, FRAC(Φ) = m.

6.3.1 Gaps for Approximate Graph Coloring

We reduce from a CSP instance Φ as in Corollary 6.7. For an instance Φ of MAX k-CSP (PA),

consider the vectors w ∈ {0, 1}k such that A · wT = 0 over F2. If A is the generator matrix of the

Hamming code of length k, there are 2dlog(k+1)e such vectors. We shall show that the graph produced

by our reduction has a vector coloring with l = 2dlog(k+1)e colors, where we shall identify the domain

[l] of the coloring CSP with the vectors w1, . . . , wl satisfying A · wT
j = 0.

We now give the reduction from Φ as above, to Approximate Graph Coloring. Similar to the

case of independent set, we create the FGLSS graph with a vertex for every constraint and every

satisfying partial assignment to the variables in that constraint. However, we have fewer edges: we

connect two vertices (Ci1 , α1) and (Ci2 , α2) iff α1 and α2 disagree on a variable that occurs at the

same position in the ordered tuples Ti1 and Ti2 . Formally, we create the graph GΦ = (VΦ, EΦ) such

that

VΦ = {(Ci, α) | α ∈ {0, 1}Ti , Ci(α) = 1}

EΦ = {{(Ci1 , α1), (Ci2 , α2)} | ∃1 ≤ j ≤ k. [Ti1, j = Ti2, j] ∧ [α1(Ti1, j) , α2(Ti2, j)]}

where Ti, j is used to denote the variable in the jth position in the ordered tuple corresponding to the

ith constraint. To show that GΦ has large chromatic number, we claim that all independent sets in

GΦ are small.

Claim 6.8 The size of the maximum independent set in GΦ is OPTk(Φ).

Proof: Let I be an independent set in Φ. Hence I is a set of pairs of the form (Ci, α), where

Ci is a constraint and α is a partial assignment giving values for variables in Ti. Since all vertices

corresponding to a single constraint are connected, I can include at most one vertex corresponding

to one constraint.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 96

Consider the values given to all the variables x1, . . . , xk by all the partial assignments in I,

when the variable is present in the jth position in the tuple. Since all the partial assignments to

constraints must be consistent in the values at the jth position, these values can be extended to

a unique assignment, say Π j = (a1, . . . , an) to the variables x1, . . . , xn. Similarly, we can define

assignments Π1, . . . ,Πk for each of the k positions.

Hence, the independent set corresponds to picking at most one of the satisfying assignments for

every constraint, with the jth variable in the tuple set according to Π j. This gives that the size of the

largest independent set is at most OPTk(Φ).

Lemma 6.9 Let Φ be an instance of MAX k-CSP (PA), with m constraints such that each constraint

has exactly l satisfying assignments. If FRAC(Φ) = m after t levels of the Lasserre hierarchy, then

there is a feasible solution to the SDP for l-coloring of GΦ obtained by t/2k levels of the Lasserre

hierarchy.

Proof: We now define the vectors V(S,γ) for a set S ⊆ VΦ, |S| ≤ t/k and γ ∈ [l]S. Let (S, γ) =

({(Ci1 , α1), . . . , (Cih , αh)}, γ) Recall that the domain [l] is identified with the vectors w1, . . . , wl ∈

{0, 1}k which satisfy A · wT
j = 0 for 1 ≤ j ≤ l. Hence the partial assignment γ assigns a vector in

Fk
2 to each vertex (Ci j , α j). We use the vectors given by γ to modify the assignments to each Ci j .

This can be viewed as the zero-knowledge step of randomizing over all the satisfying assignments

to each constraint. Formally, we change α j to α j + γ((Ci j , α j)) where γ((Ci j , α j)) is the vector in

Fk
2 (the “color”) assigned by γ to the vertex (Ci j , α j) and the ‘+’ is over F2. Let [α j, γ] denote this

assignment to Ti j which is shifted by γ.

With this interpretation, we define the vectors as 0 if these shifted partial assignments contradict,

and otherwise as the Lasserre vectors corresponding to the assignment defined collectively by all

the shifted assignments. For all |S| ≤ t/k and γ ∈ [l]S, we define

V(S,γ) =

 0 ∃ j1, j2. [α j1 , γ](Ti j1
∩ Ti j2

) , [α j2 , γ](Ti j1
∩ Ti j2

)

V(∪Ti j ,[α1,γ]◦...◦[αh,γ]) otherwise

We now need to verify that the vectors satisfy all the SDP conditions.

• For an edge {(Ci1 , α1), (Ci2 , α2)}, we must have that
〈
V({(Ci1 ,α1)},γ),V({(Ci2 ,α2)},γ)

〉
= 0. Note that

if (Ci1 , α1) and (Ci2 , α2) have an edge, then for some j, Ti1 and Ti2 have the same variable in

the jth position and α1, α2 disagree on that variable. Then [α1, γ] and [α2, γ], which are equal

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 97

to α1 + w and α2 + w for some w in the null space of A, would also disagree on that variable.

Hence, by validity of the Lasserre solution for the CSP〈
V({(Ci1 ,α1)},γ),V({(Ci2 ,α2)},γ)

〉
=

〈
V((Ti1 ,[α1,γ]),V(Ti2 ,[α2,γ])

〉
= 0

• We next verify that
〈
V(S1,γ1),V(S2,γ2)

〉
= 0 whenever γ1, γ2 disagree on S1∩S2. The disagree-

ment means that there is some vertex (Ci j , α j) ∈ S1∩S2 such that γ1((Ci j , α j)) , γ2((Ci j , α j)).

If Ti j is the tuple of variables corresponding to Ci j , then [α j, γ1](Ti j) , [α j, γ2](Ti j). As-

suming neither of V(S1,γ1) and V(S2,γ2) is zero, we must have that V(S1,γ1) = V(S ′1,α
′
1) and

V(S2,γ2) = V(S ′2,α
′
2) for some S ′1, S

′
2 ⊆ [n] and partial assignments α′1, α

′
2. Also, we have

that Ti j ⊆ S1 ∩ S2 and α′1(Ti j) = [α j, γ1](Ti j) , [α j, γ2](Ti j) = α′2(Ti j). This gives〈
V(S ′1,α

′
1),V(S ′2,α

′
2)
〉

= 0.

• We also need to show that
〈
V(S1,γ1),V(S2,γ2)

〉
=

〈
V(S3,γ3),V(S4,γ4)

〉
wheneverS1∪S2 = S3∪S4

and γ1 ◦ γ2 = γ3 ◦ γ4. For convenience, we only show this when all sets have size at most

t/2k by showing that
〈
V(S1,γ1),V(S2,γ2)

〉
=

〈
V(S1∪S2,γ1◦γ2),V(∅,∅)

〉
. Again, assuming neither of

these vectors are zero, let V(S1,γ1) = V(S ′1,α
′
1) and V(S2,γ2) = V(S ′2,α

′
2).

If α′1 and α′2 contradict (note that this may happen even when γ1 ◦ γ2 is defined) then there

must be some vertices (Ci1 , α1) ∈ S1 and (Ci2 , α2) ∈ S2 such that Ci1 and Ci2 involve a

common variable, on which the shifted assignments [α1, γ1] and [α2, γ2] disagree. But then

both these vertices will also be present in S1 ∪ S2 and the assignments shifted according to

γ1 ◦ γ2 will also disagree. Hence, V(S1∪S2,γ1◦γ2) = 0 which satisfies the condition in this case.

If not, we must have that V(S1∪S2,γ1◦γ2) = V(S ′3,α
′
3). Since the vectors V(·,·) for a valid CSP

solution, it will be sufficient to show that S ′3 = S ′1 ∪ S ′2 and α′3 = α′1 ◦ α
′
2. Since S ′3 contains

all the variables involved in constraints present either in S1 or S2, it must include all variables

in S ′1 ∪ S ′2. Finally, for any (Ci j , α j) ∈ S1 ∪ S2, α′3(Ti j) = [α j, γ1 ◦ γ2](Ti j) = (α′1 ◦ α
′
2)(Ti j),

which proves the required condition.

• Finally, we need to verify that for every vertex (Ci, α) of GΦ,
∑

j∈[l]

∣∣∣V({(Ci,α)}, j)
∣∣∣2 = 1. Note

that V({(Ci,α)}, j) = V(Ti,α+w j) where w j is a vector on F2 such that A · wT
j = 0. If the constraint

Ci is of the form A · x = bi and if α is a satisfying assignment, then as j ranges from 1 to l,

(α + w j) ranges over all the satisfying assignments to the constraint Ci. Hence, we have that∑
j∈[l]

∣∣∣V({(Ci,α)}, j)
∣∣∣2 =

∑
j∈[l]

∣∣∣V(Ti,α+w j)
∣∣∣2 =

∑
α∈{0,1}Ti

Ci(α)
∣∣∣V(Ti,α)

∣∣∣2 = 1

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 98

where the last equality used the fact that FRAC(Φ) = m and hence the contribution to the

SDP value, from assignments of each constraint, is 1.

This now gives the claimed gap for Approximate Graph Coloring.

Theorem 6.10 For every constant l there is a c = c(l) and an infinite family of graphs G = (V, E)

with chromatic number Ω
(

2l/2

l2

)
, and such that G has a vector coloring with l colors for the SDP

obtained by c · |V | levels of the Lasserre hierarchy.

Proof: For any l, there is a k such that l/2 ≤ 2dlog(k+1)e ≤ l. For this k, consider an instance Φ of

MAX k-CSP with n variables and m = βn constraints as given by Corollary 6.7, choosing ε = 1/2.

We take our graph G to be GΦ as defined above. Claim 6.8 shows that the largest independent set

has size at most OPTk(Φ), which is at most (3l/2k+1) · m by Corollary 6.7. Since the number of

vertices in G (say N) is at least k · m, its chromatic number is Ω(2k/l2) = Ω(2l/2/l2).

On the other hand, we have SDP solutions for Φ for c′n levels (with c′ = c′(k)) with FRAC(Φ) =

m. By Lemma 6.9 G has a vector coloring 2dlog(k+1)e colors for the SDP obtained by c′n/k = cN

levels of Lasserre, where c depends only on k (which depends only on l).

6.3.2 Gaps for Chromatic Number

We now modify the graph and the SDP solution constructed in the previous section to get strong

gaps for Chromatic Number. As in the case of independent sets, we define the product graph Gr
Φ

=

(Vr
Φ
, E′) for GΦ defined above. Two vertices {(Ci1 , α1), . . . , (Cir , αr)} and {(Ci′1 , α

′
1), . . . , (Ci′r , α

′
r)} in

Vr
Φ

are connected if for some j, {(Ci j , α j), (Ci′j , α
′
j)} ∈ EΦ. Note that the edge set EΦ is slightly

different than it was in the case of independent set. C(i1, . . . , ir) is defined as before

C(i1, . . . , ir) = {{(Ci1 , α1), . . . , (Cir , αr)} | ∧r
j=1 Ci j(α j) = 1}

We argue that if GΦ has a vector coloring with l colors, then GΦ has a vector coloring with lr

colors. We think of the lr colors as r-tuples of values in [l]. Hence, a partial assignment assigns to

each vertex a tuple in [l]r.

Claim 6.11 If there is a feasible solution for the l-coloring SDP for GΦ obtained by t levels of the

Lasserre hierarchy, then there is also a feasible solution for the SDP for lr-coloring the graph Gr
Φ

obtained by t levels.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 99

Proof: We define the vector V(S ,γ) for all S ⊆ Vr
Φ

, |S | ≤ t and γ ∈ ([l]r)S . Each vertex v ∈ S is of

the form {((Ci1 , α1), . . . , (Cir , αr))}. For a such vertex v, let [v] j denote the element in jth coordinate

of v i.e. (Ci j , α j). Also, γ(v) is an r-tuple (l1, . . . , lr) and we denote the jth coordinate l j by [γ(v)] j.

Given a pair (S , γ), we break it into different projection sets P j for each 1 ≤ j ≤ r

P j = {([v] j, [γ(v)] j) | v ∈ S }

Each element in P j corresponds to a vertex in GΦ (given by [v] j) and a color in [l] for the vertex

(given by [γ(v)] j). Note that there can be two different elements ((Ci, α), l j) and ((Ci, α), l′j) which

assign different colors to the same vertex. If this is the case for any set P j, we take V(S ,γ) = 0.

Otherwise, for each set P j, we can define the set S j of vertices of GΦ that are contained in P j and

also a partial assignment γ j ∈ [l]S j , since every vertex of S j gets a unique color by assumption. In

this case, we define V(S ,γ) by tensoring assignment vectors in each coordinate. Formally,

V(S ,γ) =

 0 ∃1 ≤ j ≤ r & ((Ci, α), l j), ((Ci, α), l′j) ∈ P j s.t. l j , l′j
V(S1,γ1) ⊗ . . . ⊗ V(Sr ,γr) otherwise

It is easy to verify that the vectors satisfy all the required SDP conditions.

• Let u1 = {(Ci1 , α1), . . . , (Cir , αr)} and u2 = {(Ci1 , α1), . . . , (Cir , αr)} be two adjacent vertices,

and let γ ∈ [l]r be any color (l1, . . . , lr). Then, by adjacency, we must have that for some j ≤ r,

{(Ci j , α j), (Ci′j , α
′
j)} ∈ EΦ. Hence,

〈
V({u1},γ),V({u2},γ)

〉
=

r∏
j=1

〈
V({(Ci j ,α j)},l j),V({(Ci′j

,α′j)},l j)

〉
= 0

• Similarly, if (S 1, γ1) and (S 2, γ2) have a contradiction, or S 1 ∪ S 2 = S 3 ∪ S 4 and γ1 ◦ γ2 =

γ3◦γ4, then these conditions will also hold in each of the coordinate-wise projections. Hence,

the SDP conditions will be satisfied in these cases.

• To verify that for each u ∈ V ,
∑

j∈[l]r

∣∣∣V({u}, j)
∣∣∣2 = 1 we again note that

∑
l1,...,lr

∣∣∣V({(Ci1 ,α1),...,(Cir ,αr)},(l1,...,lr))
∣∣∣2 =

∑
l1,...,lr

r∏
j=1

〈
V({(Ci j ,α j)},l j),V({(Ci j ,α j)},l j)

〉
=

r∏
j=1

∑
l j

∣∣∣∣V({(Ci j ,α j)},l j)

∣∣∣∣2 = 1

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 100

We now prove the integrality gap for Chromatic Number by similar arguments as in Theorem

6.4.

Theorem 6.12 There exist constants c1, c2, c3 > 0 and graphs G on N vertices, for arbitrarily large

N such that

1. The chromatic number of G is Ω

(
N

2c1
√

log N log log N

)
.

2. The SDP for coloring G obtained by Ω

(
2c2
√

log N log log N
)

levels of the Lasserre hierarchy

admits a vector coloring with O
(
2c3
√

log N log log N
)

colors.

Proof: We construct the graph G by sampling M cliques of the form C(i1, . . . , ir) from Gr
Φ

, and

considering the subgraph induces by their vertices. The size of the independent sets is small w.h.p.

over the choice of G.

Claim 6.13 Let s = OPTk(Φ)/m. Then for M ≥ 100nr
sr , with probability 1 − o(1), all independent

sets in G have size at most 2sr M.

Proof: By Chernoff bound arguments identical to those in Claim 6.5.

We again choose k = δ log n for some small constant δ, and let r = log n/(log log n) for a large n.

Applying Corollary 6.7 with ε = 1/2 gives an instance Φ of MAX k-CSP (PA) with k/2k ≤ s ≤

3k/2k. (Note that here s = OPTk(Φ)/m). The number of assignments to each constraint is exactly

l = 2dlog(k+1)e ≤ 2k. We again pick M = 100nr · (2kr/kr).

With high probability over the choice of G, the size of the maximum independent set in G is at

most 2Msr. The number of vertices in G is

N = M · lr ≤ (100nr · 2kr/kr) · (2k)r = O(nr · 2(k+1)r)

and hence the chromatic number of G is at least (lr/2sr), which is
N

2c1
√

log N log log N
for some constant

c1, with our parameters.

We can again take the Lasserre vectors corresponding to sets of vectors in G, to be the same

as the vectors for the corresponding sets in Gr
Φ

. By Claim 6.11 the number of colors in the vector

coloring is lr, which is at most 2c2
√

log N log log N for some constant c2. Also, the number of levels is

Ω

(
n

k·β25

)
, which is Ω

(
2c3
√

log N log log N
)

for c3 > 0, if δ (in choosing k = δ log n) is small enough.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 101

6.4 Integrality Gaps for Vertex Cover

In this section, we prove an integrality gap of 1.36 for Minimum Vertex Cover using the re-

duction by Dinur and Safra [DS05]. One can start with an integer program for Minimum Vertex

Cover and obtain the Lasserre SDP for Vertex Cover by introducing vector variables for every set

of t vertices in the graph. Equivalently (and this is the form we will be using), one can simply work

with the t-round SDP for Maximum Independent Set and modify the objective.

We collect the relation between SDP solutions for Maximum Independent Set and Minimum

Vertex Cover, together with some other (known) characterizations of the independent set solu-

tion which we shall need, in the lemma below. We provide a proof below for the sake of self-

containment.

Lemma 6.14 Let the vectors US for |S | ≤ t form a solution to the t-round Lasserre SDP for Max-

imum Independent Set on a weighted graph G = (V, E), with SDP value FRAC(G). Then there

exist vectors V(S ,α) for all |S | ≤ t/2, α ∈ {0, 1}S , determined by the vectors US , such that

1. U∅ = V(∅,∅) and US = V(S ,1S)∀S , where 1S is the partial assignment which assigns 1 to all

elements in S .

2. The vectors V(S ,α) satisfy all conditions of the SDP for constraint satisfaction problems.

3. For any S , the vectors {V(S ,α) | α ∈ {0, 1}S } induce a probability distribution over {0, 1}S . The

events measurable in this probability space correspond to all α′ ∈ {0, 1}S
′

for all S ′ ⊆ S , and

P[α′] =
∣∣∣V(S ′,α′)

∣∣∣2.

4. The vectors V(S ,0S) form a solution to the t-round SDP for Minimum Vertex Cover with ob-

jective value
∑
v∈V w(v)−FRAC(G), where w(v) denotes the weight of vertex v and 0S denotes

the all-zero assignment.

Proof: We shall define the vectors for all sets of size upto t. However, for convenience, we shall

only prove the SDP conditions for vectors corresponding to sets of size at most t/2. For a pair (S , α)

where α ∈ {0, 1}S , we denote by α−1(0) the set {i ∈ S | α(i) = 0} and by α−1(1), the set S \ α−1(0).

We define the vectors V(S ,α) using inclusion-exclusion, as

V(S ,α) =
∑

T⊆α−1(0)

(−1)|T |UT∪α−1(1)

Also, we define V(∅,∅) = U∅.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 102

• Property (1) is then immediate from the definition of the vectors. We also note that for any

i ∈ α−1(0), we can write

V(S ,α) = V(S \{i},α(S \{i})) − V(S ,α′)

where α′ ∈ {0, 1}S is such that α′(j) = α(j) ∀ j , i and α′(i) = 1.

• We now show that the vectors satisfy the SDP conditions. For all S 1, S 2 such that |S 1∪S 2| ≤ t,

we will show that

〈
V(S 1,α1),V(S 2,α2)

〉
=

 0 when α1(S 1 ∩ S 2) , α2(S 1 ∩ S 2)〈
V(S 1∪S 2,α1◦α2),V(∅,∅)

〉
otherwise

It is easy to check that this will show that all SDP conditions are satisfied for sets of size at

most t/2. We will proceed by induction on the total number of “zeroes” in the assignments

α1 and α2 i.e. on |α−1
1 (0)| + |α−1

2 (0)|. The base case is when α1 = 1S 1 and α2 = 1S 2 . Then, the

product on the left is simply equal to
〈
US 1 ,US 2

〉
, which is equal to

∣∣∣US 1∪S 2

∣∣∣2 since the vectors

US form a valid solution to the independent set SDP.

For the induction step, first consider the case when α1 and α2 disagree on some i ∈ S 1 ∩ S 2.

Say α1(i) = 0 and α2(i) = 1. Then we can rewrite the inner product as〈
V(S 1,α1),V(S 2,α2)

〉
=

〈
V(S 1\{i},α1(S 1\{i})) − V(S 1,α

′
1),V(S 2,α2)

〉
=

〈
V(S 1\{i},α1(S 1\{i})),V(S 2,α2)

〉
−

〈
V(S 1,α

′
1),V(S 2,α2)

〉
where, as before, α′1 is equal to α1 for all j , i and has α′1(i) = 1. By the induction hypothesis,

the terms on the right are either both equal to 0 or both equal
〈
V(S 1∪S 2,α

′
1◦α2),V(∅,∅)

〉
depending

on whether α′1 and α2 disagree or not. In either case, their difference is 0.

Next, we consider
〈
V(S 1,α1),V(S 2,α2)

〉
when α1 ◦ α2 is well defined. For all i ∈ S 1 ∩ S 2 such

that α1(i) = α2(i) = 0, we can always write V(S 2,α2) = V(S 2\{i},α2(S 2\{i})) −V(S 2,α
′
2) and note that

V(S 2,α
′
2) will be orthogonal to V(S 1,α1) by the previous case, since it contradicts α1 on i. Hence,

we can always reduce to the case when there is an i in only one of the sets, say S 1, such that

α1(i) = 0. Now we again decompose V(S 1,α1), and note that〈
V(S 1,α1),V(S 2,α2)

〉
=

〈
V(S 1\{i},α1(S 1\{i})),V(S 2,α2)

〉
−

〈
V(S 1,α

′
1),V(S 2,α2)

〉
=

〈
V(S 1∪S 2\{i},α1(S 1\{i})◦α2),V(∅,∅)

〉
−

〈
V(S 1∪S 2,α

′
1◦α2),V(∅,∅)

〉
=

〈
V(S 1∪S 2,α1◦α2),V(∅,∅)

〉
where we used the induction hypothesis in the second step.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 103

• We claim that to show property (3), it is sufficient to prove that for all S ,
∑
α∈{0,1}S

∣∣∣V(S ,α)
∣∣∣2 = 1

(It is clearly necessary if we intend to interpret these values as probabilities). Before proving

it, we note that it is equivalent to the condition that
∑
α∈{0,1}S V(S ,α) = V(∅,∅) because it implies∣∣∣∣∣∣∣∣

∑
α∈{0,1}S

V(S ,α) − V(∅,∅)

∣∣∣∣∣∣∣∣
2

=
∑

α∈{0,1}S

∣∣∣V(S ,α)
∣∣∣2 − 1 = 0 (6.1)

Using the above equivalence, we can then conclude the consistency of the probability dis-

tributions as defined in the lemma. Consider a set S and the distribution over α ∈ {0, 1}S

given by P[α] =
∣∣∣V(S ,α)

∣∣∣2. In this distribution, if α′ ∈ {0, 1}S
′

is an event, then the probability

of α′ can be calculated by summing the probabilities of all the events α ∈ {0, 1}S such that

α(S ′) = α′. This must also equal
∣∣∣V(S ′,α′)

∣∣∣2, which would be the probability of α′ if we just

considered the distribution over S ′. This follows from (6.1) because,∑
α(S ′)=α

∣∣∣V(S ,α)
∣∣∣2 =

∑
α(S ′)=α′

〈
V(S ,α),V(∅,∅)

〉
=

∑
α1∈{0,1}S \S

′

〈
V(S \S ′,α1),V(S ′,α′)

〉
=

〈
V(∅,∅),V(S ′,α′)

〉
=

∣∣∣V(S ′,α′)
∣∣∣2

To prove that
∑
α∈{0,1}S

∣∣∣V(S ,α)
∣∣∣2 = 1 for all S with |S | ≤ t/2, we proceed by induction on |S |.

The base case (empty set) is trivial. To do the induction step, note that for any i ∈ S∑
α∈{0,1}S

∣∣∣V(S ,α)
∣∣∣2 =

∑
α1∈{0,1}S \{i}

〈
V(S \{i},α1),V({i},0)

〉
+

∑
α1∈{0,1}S \{i}

〈
V(S \{i},α1),V({i},1)

〉
=

〈
V(∅,∅),V({i},1)

〉
+

〈
V(∅,∅),V({i},1)

〉
=

〈
V(∅,∅),V(∅,∅)

〉
= 1

• Finally, to show that the vectors V(S ,0S) form a valid solution to the vertex cover SDP, we

note that they satisfy all the consistency conditions by the previous arguments. The only extra

condition that the SDP would impose is that for any edge (i, j) ,
〈
U − V({i},0),U∅ − V({ j},0)

〉
=

0. But this is immediate because U∅ − V({i},0) = U{i} (similarly for j) and
〈
U{i},U{ j}

〉
= 0.

Through the remaining part of this section, we shall only consider the independent set SDP on

all the graphs in the reduction. We will show that the value of the fractional independent set is large

for all intermediate graphs obtained in the reduction. On the other hand, it will be possible to con-

clude directly from the correctness of the Dinur-Safra proof that the size of the actual independent

set in these graphs is small. Comparing the corresponding values for vertex cover will give us the

required integrality gap.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 104

6.4.1 The starting graphs for the Dinur-Safra reduction

We first describe the graphs required for the reduction by Dinur and Safra [DS05]. They require

few key properties of the graph which they use to argue the soundness of the reduction i.e. the

graphs produces by the reduction have no large independent set. In fact, graphs of the form Gr
Φ

as

defined in section 6.2 turn out to satisfy all the required conditions. Also, we already have vector

solutions for the independent set SDP on these graphs. We only need to argue that these vectors can

be transformed appropriately through the steps of the reduction. Dinur and Safra define the notion

of “co-partite” graphs as below.

Definition 6.15 We say that a graph G = (M×L, E) is (m, l) co-partite, if it is composed of m = |M|

disjoint cliques, each of size l = |L|. The edges that go between the cliques may be arbitrary.

Formally, for all i ∈ M and j1 , j2 ∈ L, we require that {(i, j1), (i, j2)} ∈ E.

Let Φ be any CSP instance with m constraints and each constraint having exactly l satisfying as-

signments. Then it is easy to see that the FGLSS graph GΦ is (m, l) co-partite. Also, the graph Gr
Φ

is (mr, lr) co-partite. The reduction in [DS05] also requires an (m, l) co-partite graphs such that for

some fixed constants ε0, h > 0 every subset of vertices I ⊆ M×L with |I| ≥ ε0m, contains a clique of

size h. It also follows from their argument (proof of Theorem 2.1 in [DS05]) 3 that if OPT(Φ) ≤ s ·m

for some s < 1, then Gr
Φ

satisfies this property for an appropriate r.

Theorem 6.16 ([DS05]) Let Φ be a CSP instance with m constraints, each having l satisfying as-

signments, and such that any assignment satisfies at most s < 1 fraction of the constraints. Also, let

ε0, h > 0 be given. Then there exists an r = O(log(h/ε)) such that any set of vertices in Gr
Φ

, which

does not contain an h-clique, has size at most ε0 · mr.

6.4.2 The graphs with block-assignments

The next step of the reduction, which is crucial for the soundness, transforms a graph G = (V, E)

which is (m0, l0) co-partite into a new graph GB which is (m1, l1) co-partite and has some additional

properties required for the soundness.

3The result in [DS05] is actually stated not for the graph Gr
Φ

, but for a graph G′ obtained by converting the CSP Φ to a
two-player game and considering the graph obtained by parallel repetition. However, the graph G′ defined in their paper
is a spanning subgraph of Gr

Φ
, and hence if a subset of vertices contains an h-clique in G′, then it also contains one in Gr

Φ
.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 105

We consider the set of blocks of d vertices in V , i.e. the set

B =

(
V
d

)
= {B ⊆ V | |B| = d}

Also, for each block B, let LB denote all “large” partial assignments to vertices in B. Formally,

LB = {α ∈ {0, 1}B | |α| ≥ dT}, where dT = d/2l0 and |α| is the number of 1s in the image of α. The

vertex set of the graph GB is taken to be set of all pairs of the form (B, α), where α ∈ LB. To define

the edges, we consider a pair of blocks whose symmetric difference is just a pair of vertices (v1, v2)

such that (v1, v2) ∈ E. We connect two partial assignments corresponding to such a pair of blocks, if

they form an “obvious contradiction” i.e. they disagree on the intersection or they assign 1 to both

the vertices in the symmetric difference. It is important for the soundness analysis in [DS05] that for

any such pair of blocks (B1, B2), any α1 ∈ LB1 is not connected to at most two partial assignments

in B2 (and vice-versa). We also add edges between all partial assignments within a block. Thus, we

define

VB = {(B, α) | B ∈ B, α ∈ LB}

E(1)
B

=
⋃

B̂∈(V
d−1)

(v1 ,v2)∈E

{
(B̂ ∪ {v1}, α1), (B̂ ∪ {v2}, α2) | α1(B̂) , α2(B̂) or α1(v1) = α2(v2) = 1

}

EB = E(1)
B
∪

⋃
B

{(B, α1), (B, α2) | α1 , α2, α1, α2 ∈ LB}


Note that GB is also (m1, l1) co-partite with m1 = |B| and l1 = |LB| (which is the same for all B). We

now show that if G has a good SDP solution, then so does GB.

Lemma 6.17 Let G = (V, E) be an (m0, l0) co-partite graph such that for the independent set SDP

obtained by t levels of the Lasserre hierarchy, FRAC(G) = m0. For given ε > 0 and dT > 2/ε1, let

GB be constructed as above. Then, for the independent set SDP obtained by t/d levels, FRAC(GB) ≥

(1 − ε1)|B|.

Proof: Since G admits a solution for t levels of the Lasserre SDP, we also have vectors V(S ,α) for

all |S | ≤ t, α ∈ {0, 1}S as described in Lemma 6.14. We now use these vectors to define the vector

solution for the SDP on GB. Each vertex of GB is of the form (B, α) where B ∈ B and α ∈ LB.

Consider a set S of i ≤ t/d vertices, S = {(B1, α1), . . . , (Bi, αi)}. As in the Section 6.2, we let the

vector corresponding to this set be 0 if any two assignments in the set contradict and equal to the

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 106

vector for the partial assignment jointly defined by α1, . . . , αi otherwise.

US =

 0 ∃ j1, j2 s.t. α j1(B j1 ∩ B j2) , α j2(B j1 ∩ B j2)

V(∪ jB j,α1◦...◦αi) otherwise

If (B1, α1) and (B2, α2) have an edge between them because α1 and α2 contradict, then we must have〈
U{(B1,α1)},U{(B2,α2)}

〉
=

〈
V(B1,α1),V(B2,α2)

〉
= 0 since CSP vectors corresponding to contradicting

partial assignments must be orthogonal. For an edge between (B̂∪ {v1}, α1) and (B̂∪ {v2}, α2) where

(v1, v2) ∈ E, α1(v1) = α2(v2) = 1 and α1(B̂) = α2(B̂) = α (say), we have〈
U{(B̂∪{v1},α1)},U{(B̂∪{v2},α2)}

〉
=

〈
V(B̂,α),V({v1,v2},(1,1))

〉
=

〈
V(B̂,α), 0

〉
= 0

because in the independent solution on graph G∣∣∣V({v1,v2},(1,1))
∣∣∣2 =

〈
V({v1},1),V({v2},1)

〉
= 0

The proof that the vectors defined above satisfy the other SDP conditions is identical to that in Claim

6.3 and we omit the details.

The interesting part of the argument will be to show that the value of the independent set SDP

for GB will be large. In the completeness part of the Dinur-Safra reduction, one needs to say

that if G has a large independent set then so does GB, and it follows very easily using a Chernoff

bound on how different blocks intersect the large independent set of G. We need to make the same

conclusion about the SDP value and the argument is no longer applicable. However, it is possible to

get the conclusion by looking at the “local distributions” defined by the vector V(B,α) as mentioned

in Lemma 6.14. We then combine the bounds obtained in each block globally using properties of

the vector solution.

For each block B, let DB denote the distribution over {0, 1}B defined by the vectors V(B,α) for all

α ∈ {0, 1}B. For each block, we define a random variable ZB determined by the event α ∈ {0, 1}B

with value ZB = |α|. One can then convert the statement about the SDP value to a statement about

the local distributions, by noting that

FRAC(GB) =
∑
B∈B

∑
α∈LB

∣∣∣V(B,α)
∣∣∣2 =

∑
B∈B

1 − ∑
α<LB

∣∣∣V(B,α)
∣∣∣2 = |B| −

∑
B∈B

P
DB

[ZB < dT]

The problem thus reduces to showing that
∑

B∈B PDB[ZB < dT] ≤ ε1|B|. By a second moment

analysis on every local distribution, we have

P
DB

[ZB < dT] ≤ P
DB

[|ZB − 2dT| > dT] ≤
EDB

[
(ZB − 2dT)2

]
d2

T

(6.2)

The following claim provides the necessary estimates to bound the sum of probabilities.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 107

Claim 6.18 ∑
B∈B

E
DB

[ZB] = 2dT · |B| and
∑
B∈B

E
DB

[Z2
B] ≤ (4d2

T + 2dT) · |B|

Proof: For all blocks B and v ∈ B, define the random variable Xv,B which is 1 if a random α chosen

according to DB assigns 1 to the vertex v and 0 otherwise. By using the fact that the distribution is

defined by the vectors V(B,α), we get that for v ∈ B

E
DB

[Xv,B] = P
DB

[α(v) = 1] =
∣∣∣V({v},1)

∣∣∣2 =
∣∣∣U{v}∣∣∣2

where U{v} denotes the vector for vertex v in the solution for graph G. Similarly,

E
DB

[Xv1,BXv2,B] = P
DB

[α({v1, v2}) = (1, 1)] =
∣∣∣V({v1,v2},(1,1))

∣∣∣2 =
〈
U{v1},U{v2}

〉
With the above relations, and using the facts that each vertex appears in exactly d/m0l0 fraction of

the blocks and FRAC(G) = m0, we can compute the sum of expectations of ZB as∑
B∈B

E
DB

[ZB] =
∑
B∈B

E
DB

∑
v∈B

Xv,B

 =
∑
B∈B

∑
v∈B

∣∣∣U{v}∣∣∣2 =
d

m0l0
|B|

∑
v∈V

∣∣∣U{v}∣∣∣2
=

d
m0l0

|B| · m0 = 2dT · |B|

Similarly, for the expectations of the squares, we get∑
B∈B

E
DB

[Z2
B] =

∑
B∈B

∑
v1,v2∈B

E
DB

[Xv1,BXv2,B] =
∑
B∈B

∑
v1,v2∈B

〈
U{v1},U{v2}

〉
Again, each pair (v1, v2) such that v1 , v2 appears in less than (d2/m2

0l20) fraction of the blocks, and

a pair such that v1 = v2 appears in d/m0l0 fraction. Hence,∑
B∈B

E
DB

[Z2
B] ≤ |B|

 d2

m2
0l20

 ∑
v1,v2

〈
U{v1},U{v2}

〉
+ |B|

(
d

m0l0

)∑
v

∣∣∣U{v}∣∣∣2
= |B|

 d2

m2
0l20


∣∣∣∣∣∣∣∑v U{v}

∣∣∣∣∣∣∣
2

+ |B| · 2dT

Finally, to calculate the first term, we shall need the fact that G is (m0, l0) co-partite. Let V = M0×L0.

We write each v as (i, j) for i ∈ M0, j ∈ L0. Using the fact that all vectors within a single clique are

orthogonal, we get∣∣∣∣∣∣∣∣
∑

(i, j)∈M0×L0

U{(i, j)}

∣∣∣∣∣∣∣∣
2

≤ m0 ·
∑
i∈M0

∣∣∣∣∣∣∣∣
∑
j∈L0

U{(i, j)}

∣∣∣∣∣∣∣∣
2

= m0 ·
∑
i∈M0

∑
j∈L0

∣∣∣U{(i, j)}∣∣∣2 = m2
0.

Using this bound we get that
∑

B∈B EDB[Z2
B] ≤ (4d2

T + 2dT)|B|, which proves the claim.

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 108

Using equation (6.2) and the previous claim, we get that∑
B∈B

P
DB

[ZB < dT] ≤
1
d2

T

∑
B∈B

(E
DB

[Z2
B] − 2dT E

DB

[ZB] + 4d2
T) ≤

2
dT
|B|

Hence, for d > 2/ε1, the SDP value is at least (1 − ε1)|B|.

6.4.3 The long-code step

The next step of the reduction defines a weighted graph starting from an (m1, l1) co-partite

graph. Let G = (V, E) be the given graph and V = M1 × L1. We then define the graph GLC which

has a vertex for every i ∈ M1 and every J ⊆ L1. Also, the graph is weighted with each vertex (i, J)

having a weight w(i, J) depending on |J|.

VLC = {(i, J) | i ∈ M1, J ⊆ L1}

ELC = {{(i1, J1), (i2, J2)} | ∀ j1 ∈ J1, j2 ∈ J2. {(i1, j1), (i2, j2)} ∈ E}

w(i, J) =
1

m1
p|J|(1 − p)|L1\J|

Lemma 6.19 Let G = (V, E) be an (m1, l1) co-partite graph such that independent set SDP for t-

levels on G has value at least FRAC(G). Let GLC be defined as above. Then there is a solution to

the t/2-round SDP for independent set on GLC with value at least p · FRAC(G)
m1

.

Proof: Let us denote the vectors in G by US and those in GLC by US. We define the vectors US
for each S = {(i1, J1), . . . , (ir, Jr)} for r ≤ t as

US =
∑

j1∈J1,..., jr∈Jr

U{(i1, j1),...,(ir , jr)}

We now need to verify that they satisfy all the SDP conditions and the SDP value is as claimed.

• We first check that vectors for adjacent vertices are orthogonal. Let {(i1, J1), (i2, J2)} be an

edge in GLC . Then〈
U{(i1,J1)},U{(i2,J2)}

〉
=

∑
j1∈J1, j2∈J2

〈
U{(i1, j1)},U{(i2, j2)}

〉
= 0

since all pairs {(i1, j1), (i2, j2)} form edges in G.

• For convenience, we shall only verify
〈
US1 ,US2

〉
=

〈
US1∪S2 ,U∅

〉
for all S1,S2 with at most

t/2 elements. This will prove that vectors US with |S| ≤ t/2 satisfy the SDP conditions. First,

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 109

we observe that using the orthogonality of vectors in G corresponding to (i, j1) and (i, j2) for

j1 , j2,

U{(i,J1),(i,J2)} =
∑

j1∈J1, j2∈J2

U{(i, j1),(i, j2)} =
∑

j∈J1∩J2

U{(i, j)} = U{(i,J1∩J2)} (6.3)

By inducting this argument, it is always possible to assume without loss of generality that for

a set S = {(i1, J1), . . . , (ir, Jr)}, the elements i1, . . . , ir are all distinct. We need the above fact

and a little more notation to verify the required condition. For S = {(i1, J1), . . . , (ir, Jr)}, let

F (S) = {(i1, j1), . . . , (ir, jr) | j1 ∈ J1, . . . , jr ∈ Jr}

with this notation, 〈
US1 ,US2

〉
=

∑
T1∈F (S1)
T2∈F (S2)

〈
UT1 ,UT2

〉
Also,

〈
UT1 ,UT2

〉
, 0 if and only if ∀(i, j1) ∈ T1, (i, j2) ∈ T2, we have j1 = j2 (again using

orthogonality of vectors for vertices in a single clique in G). However, this means that T1 ∪

T2 ∈ F (S1 ∪ S2). Also, since all is in S1,S2 are distinct as observed using (6.3), every

element T ∈ F (S1 ∪ S2) corresponds to a unique pair T1 ∈ F (S1),T2 ∈ F (S2). This gives

〈
US1 ,US2

〉
=

∑
T1∈F (S1)
T2∈F (S2)

〈
UT1 ,UT2

〉
=

∑
T∈F (S1∪S2)

〈UT ,U∅〉 =
〈
US1∪S2 ,U∅

〉

• From the above condition, it follows that for all S,
∣∣∣US∣∣∣2 =

〈
US,U∅

〉
≤

∣∣∣US∣∣∣, using
∣∣∣U∅∣∣∣ = 1.

Since the length of all vectors is at most 1, and all inner products are positive in G, all inner

products for the vector solution above are between 0 and 1.

To verify the SDP value, we simply need to use the fact that all vectors within a single clique in G

are orthogonal. Hence the SDP value is equal to

1
m1

∑
i∈M1,J⊆L1

p|J|(1 − p)|L1\J|
∣∣∣U{(i,J)}

∣∣∣2 =
1

m1

∑
i∈M1,J⊆L1

p|J|(1 − p)|L1\J|
∑
j∈J

∣∣∣U{(i, j)}∣∣∣2
=

1
m1

∑
i∈M1, j∈L1

p ·
∣∣∣U{(i, j)}∣∣∣2 =

p
m1
· FRAC(G)

CHAPTER 6. REDUCTIONS IN THE LASSERRE HIERARCHY 110

6.4.4 Putting things together

For an (m0, l0) co-partite graph G, let DS (G, ε1, dT) denote the graph obtained by starting from

G and performing the block assignments step and long-code step, where the reduction has param-

eters dT and ε1 for the block assignments step. Let pmax = 3−
√

5
2 . The soundness analysis of the

Dinur-Safra reduction can be summarized in the following theorem (stated in a way adapted to our

application).

Theorem 6.20 ([DS05]) For given ε1 > 0, p ∈ (1/3, pmax), there exist constants ε0, h, d′T such that

if G is an m0, l0 co-partite graph such that every set of ε0 ·m0 vertices in G contains an h-clique, then

the weight of the maximum independent set in DS (G, ε1, dT) for any dT ≥ d′T is at most 4p3−3p4+ε1.

Using the above theorem and the previous discussion, we can now prove an integrality gap for

Minimum Vertex Cover.

Theorem 6.21 For any given ε > 0, there exists δ = δ(ε) > 0 and an infinite family of graphs such

that for graphs in the family, with N vertices, the integrality gap for the SDP relaxation for Minimum

Vertex Cover obtained by Ω(Nδ) levels of the Lasserre hierarchy, remains at least 1.3606 − ε.

Proof: Let p ∈ (1/3, pmax) be such that 1−4p3+3p4

1−p = 1.3606 and ε1 = ε/10. Let ε0, h be as

given by Theorem 6.20 and let dT = max(d′T, 2/ε1). For large enough n, let Φ be an instance of a

constraint satisfaction problem as given by Corollary 4.19 (by using ε = 1/2 to invoke the corollary)

for k = 3. This is simply an instance of MAX 3-XOR on n variables with m = O(n) constraints in

which s < 2/3 fraction of the constraints are satisfiable and FRAC(Φ) = m even after Ω(n) levels.

By Theorem 6.16, there exists an r = O(log(h/ε0)), such that Gr
Φ

, which is an (m0, l0) co-partite

graph for m0 = mr and l0 = 4r, has no h-clique-free subset with ε0m0 vertices. Then the weight of

the maximum independent set in DS (Gr
Φ
, ε1, dT) is at most 4p3 − 3p4 + ε1, and hence the weight of

the minimum vertex cover is at least 1 − 4p3 + 3p4 − ε1.

On the other hand, by lemmata 6.2, 6.17 and 6.19, FRAC(DS (Gr
Φ
, ε1, dT)) ≥ p(1 − ε1) for the

independent set SDP obtained by Ω(n/l0dT) levels. Hence the gap for Minimum Vertex Cover is at

least 1−4p3+3p4−ε1
1−p(1−ε1) ≥ 1.3606 − ε. It remains to express the number of levels in terms of the number

of vertices in DS (Gr
Φ
, ε1, dT). However, note that at all parameters in the reduction are constants

and the size of the graph grows by a polynomial factor at each step of the reduction. Hence, the

number of levels equals Ω(n) = Ω(Nδ) for constant δ depending on p and ε, where N denotes

|DS (Gr
Φ
, ε1, dT)|.

111

Chapter 7

Algorithms for Unique Games on

Expanding Graphs

In this chapter we give an algorithm for Unique Games, which is a constraint satisfaction

problem defined on a graph (with one constraint for each edge), using a semidefinite program. We

give a performance guarantee for the algorithm which improves with the expansion of the underlying

graph. The analysis works by showing that expansion can be used to translate local correlations

i.e. correlations between the values assigned to variables with an edge between them 1, to global

correlations between arbitrary vertices. We then show that having a good bound on the correlation

between the values assigned to arbitrary pairs of variables can be used to give a good performance

guarantee for the algorithm.

For a special case of Unique Games, in which the constraints are of the form of a linear equation

between the pair of variables sharing an edge, we also study the extension of this algorithm to the

SDPs given by the Lasserre hierarchy.

Unique Games is a constraint satisfaction problem where one is given a constraint graph G =

(V, E), a label set [q] and for each edge e = (i, j), a bijective mapping πi j : [q] 7→ [q]. The goal is to

assign to each vertex in G a label from [q] so as to maximize the fraction of the constraints that are

“satisfied,” where an edge e = (i, j) is said to be satisfied by an assignment if i is assigned a label l

and j is assigned a label l′ such that πi j(l) = l′. The value of a labeling Λ : V → [q] is the fraction

1Note that this notion of “local” is weaker than the one we use in the rest of this thesis. However, this suffices for the
analysis in this chapter.

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 112

of the constraints satisfied by it and is denoted by val(Λ). For a Unique Games instance U, we

denote by opt(U) the maximum value of val(Λ) over all labelings. This optimization problem was

first considered by Cai, Condon, and Lipton [CCL90].

The Unique Games Conjecture (UGC) of Khot [Kho02] asserts that for such a constraint satis-

faction problem, for arbitrarily small constants η, ζ > 0, it is NP-hard to decide whether there is a

labeling that satisfies 1 − η fraction of the constraints (called the YES case) or, for every labeling,

the fraction of the constraints satisfied is at most ζ (called the NO case) as long as the size of the

label set, q is allowed to grow as a function of η and ζ.

Since its origin, the UGC has been successfully used to prove (often optimal) hardness of ap-

proximation results for several important NP-hard problems such as Min-2SAT-Deletion [Kho02],

Minimum Vertex Cover [KR03], Maximum Cut [KKMO04], Chromatic Number [DMR06], and

non-uniform Sparsest Cut [CKK+04, KV05]. However, one fundamental problem that has re-

sisted attempts to prove inapproximability results, even assuming UGC, is the (uniform) Sparsest

Cut problem. This problem has a O(
√

log n) approximation algorithm by Arora, Rao, and Vazirani

[ARV04], but no hardness result beyond NP-hardness is known (recently, in [AMS07], a PTAS is

ruled out under a complexity assumption stronger than P , NP).

In fact, it seems unlikely that there is a reduction from Unique Games to Sparsest Cut, unless

one assumes that the starting Unique Games instance has some expansion property. This is because

if the Unique Games instance itself has a sparse cut, then the instance of Sparsest Cut produced by

such a reduction also has a sparse cut (this is certainly the case for known reductions, i.e. [CKK+04,

KV05]), irrespective of whether the Unique Games instance is a YES or a NO instance. This

motivates the following question: is Unique Games problem hard even with the promise that the

constraint graph is an expander? A priori, this could be true even with a very strong notion of

expansion, leading to a superconstant hardness result for Sparsest Cut and related problems like

Minimum Linear Arrangement.

Here we show that the Unique Games problem is actually easy when the constraint graph is

even a relatively weak expander. One notion of expansion that we consider in this work is when

the second smallest eigenvalue of the normalized Laplacian of a graph G, denoted by λ := λ2(G), is

bounded away from 0. We note that the size of balanced cuts (relative to the total number of edges)

in a graph is also a useful notion of expansion and the results in this work can be extended to work

in that setting.

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 113

Our main result. We show the following theorem in Section 7.1:

Theorem 7.1 There is a polynomial time algorithm for Unique Games that, given η > 0, distin-

guishes between the following two cases:

• YES case: There is a labeling which satisfies at least 1 − η fraction of the constraints.

• NO case: Every labeling satisfies less than 1 − O(ηλ log(λη)) fraction of the constraints.

A consequence of the result is that when the Unique Games instance is (1−η)-satisfiable and λ � η,

the algorithm finds a labeling to the Unique Games instance that satisfies 99% of the constraints.

An important feature of the algorithm is that its performance does not depend on the number of

labels q.

Comparison to previous work. Most of the algorithms for Unique Games (which can be viewed

as attempts to disprove the UGC) are based on the SDP relaxation proposed by Feige and Lovász

[FL92]. Their paper showed that if the Unique Games instance is unsatisfiable, then the value of

the SDP relaxation is bounded away from 1, though they did not give quantitative bounds. Khot

[Kho02] gave a SDP-rounding algorithm to find a labeling that satisfies 1 − O(q2η1/5 log(1/η))

fraction of the constraints when there exists a labeling that satisfies 1− η fraction of the constraints.

The SDP’s analysis was then revisited by many papers.

On an (1 − η)-satisfiable instance, these papers obtain a labeling that satisfies at least 1 −

f (η, n, q) fraction of the constraints where f (η, n, q) is 3
√
η log n in Trevisan [Tre05],

√
η log q in

Charikar, Makarychev, and Makarychev [CMM06a], η
√

log n log q in Chlamtac, Makarychev, and

Makarychev [CMM06b], and η log n via an LP based approach in Gupta and Talwar [GT06]. Tre-

visan [Tre05] also gave a combinatorial algorithm that works well on expanders. On an (1 − η)-

satisfiable instance, he showed how to obtain a labeling satisfying 1 − η log n log 1
λ fraction of the

constraints. All these results require η to go to 0 as either n or q go to infinity in order to maintain

their applicability2.

Our result differs from the above in that under an additional promise of a natural graph property,

namely expansion, the performance of the algorithm is independent of q and n. Furthermore, our

analysis steps away from the edge-by-edge analysis of previous papers in favor of a more global

analysis of correlations, which may be useful for other problems.
2On the other hand, the UGC allows q to grow arbitrarily as a function of η, and therefore, all known algorithms fall

short of disproving UGC.

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 114

Stronger relaxations of expansion. We note that if we impose a certain structure on our con-

straints, namely if they are of the form ΓMAX2LIN, our results continue to hold when λ is replaced

by stronger relaxations for the expansion of G, given by the Lasserre hierarchy [Las01]. In partic-

ular, we show that λ can be replaced by the value of such a relaxation for expansion of G after a

constant number of levels.

Application to parallel repetition. Since our main result shows an upper bound on the integral-

ity gap for the standard SDP, the analysis of Feige and Lovász [FL92] allows us to prove (see

Section 7.2) a parallel repetition theorem for unique games with expansion. We show that the r-

round parallel repetition value of a Unique Games instance with value at most 1 − ε is at most

(1 − Ω(ε · λ/ log 1
ε))r. In addition to providing an alternate proof, when λ � ε2 log(1/ε), this is

better than the general bound for nonunique games, where the best bound is (1 − Ω(ε3/ log q))r by

Holenstein [Hol07], improving upon Raz’s Theorem [Raz98]. We note that Safra and Schwartz

[SS07] also gave an alternate proof of the parallel repetition theorem for games with expansion, and

their result works even for general games. Also, Rao [Rao08] proved a better parallel repetition

theorem for, so called, projection games, which are more general than unique games. His result

does not assume any expansion of the game graph.

Randomly generated games. For many constraint satisfaction problems such as 3SAT, solving

randomly generated instances is of great interest. For instance, proving unsatisfiability of formulae

on n variables and with dn randomly chosen clauses seems very difficult for d �
√

n. Our results

suggest that it will be hard to define a model of probabilistic generation for unique games that will

result in very difficult instances, since the natural models all lead to instances with high expansion.

7.1 Main result

Let U = (G(V, E), [q], {πi j}(i, j)∈E) be a Unique Games instance. We use the standard SDP

relaxation for the problem, which involves finding a vector assignment for each vertex.

For every i ∈ V, we associate a set of q orthogonal vectors {V(i,1), . . . ,V(i,q)}. The intention is

that if l0 ∈ [q] is a label for vertex i ∈ V , then V(i,l0) = 1, and V(i,l) = 0 for all l , l0. Here, 1 is some

fixed unit vector and 0 is the zero-vector. Of course, in a general solution to the SDP this may no

longer be true and {V(i,1), . . . ,V(i,q)} is just any set of orthogonal vectors.

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 115

maximize E
e=(i, j)∈E

∑
l∈[q]

〈
V(i,l),V(j,πi j(l))

〉
subject to

∑
l∈[q]

∣∣∣V(i,l)
∣∣∣2 = 1 ∀ i ∈ V

〈
V(i,l),V(i,l′)

〉
= 0 ∀ i ∈ V, ∀ l , l′〈

V(i,l),V(j,l′)

〉
≥ 0 ∀ i, j ∈ V, ∀ l, l′

Figure 7.1: SDP for Unique Games

Our proof will use the fact that the objective function above can be rewritten as

1 − 1
2 E

e=(i,i)∈E

∑
l∈[q]

∣∣∣V(i,l) − V(j,πi j(l))
∣∣∣2 (7.1)

7.1.1 Overview

Let U = (G(V, E), [q], {πi j}(i, j)∈E) be a Unique Games instance, and let {V(i,l)}i∈V,l∈[q] be an

optimal SDP solution. Assume wlog that its value is 1 − η, since otherwise we know already that

the instance is a NO instance. How do we extract a labeling from the vector solution?

The first constraint suggests an obvious way to view the vectors corresponding to vertex i as a

distribution on labels, namely, one that assigns label l to i with probability
∣∣∣V(i,l)

∣∣∣2. The most naive

idea for a rounding algorithm would be to use this distribution to pick a label for each vertex, where

the choice for different vertices is made independently. Of course, this doesn’t work since all labels

could have equal probability under this distribution and thus the chance that the labels l, l′ picked

for vertices i, j in an edge e satisfy πe(l) = l′ is only 1/q.

More sophisticated roundings use the fact that if the SDP value is 1 − η for some small η, then

the vector assignments to the vertices of an average edge e = (i, j) are highly correlated, in the sense

that for “many” l,
〈
V(i,l),V(j,π(l))

〉
> 1 − Ω(η) where V(i,l) denotes the unit vector in the direction

of V(i,l). This suggests many rounding possibilities as explored in previous papers [Kho02, Tre05,

CMM06a], but counterexamples [KV05] show that this edge-by-edge analysis can only go so far:

high correlation for edges does not by itself imply that a good global assignment exists.

The main idea in our work is to try to understand and exploit correlations in the vector assign-

ments for vertices that are not necessarily adjacent. If i, j are not adjacent vertices we can try to

identify the correlation between their vector assignments by noting that since the V(j,l′)’s are mutu-

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 116

ally orthogonal, for each V(i,l) there is at most one V(j,l′) such that
〈
V(i,l),V(j,l′)

〉
> 1/

√
2. Thus we

can set up a maximal partial matching among their labels where the matching contains label pairs

(l, l′) such that
〈
V(i,l),V(j,l′)

〉
> 1/

√
2. The vector assignments to the two vertices can be thought

of as highly correlated if the sum of squared `2 norm of all the V(i,l)’s (resp, all V(l,l′)’s) involved in

this matching is close to 1. (This is a rough idea; see precise definition later.)

Our main contribution is to show that if the constraint graph is an expander then high correlation

over edges necessarily implies high expected correlation between a randomly-chosen pair of vertices

(which may be quite distant in the constraint graph). We also show that this allows us to construct a

good global assignment. This is formalized below.

7.1.2 Rounding procedure and correctness proof

Now we describe our randomized rounding procedure R, which outputs a labeling Λalg : V →

[q]. This uses a more precise version of the greedy matching outlined in the above overview. For a

pair i, j of vertices (possibly nonadjacent), let σi j : [q]→ [q] be a bijective mapping that maximizes∑
l∈[q]

〈
V(i,l),V(j,σi j(l))

〉
; note that it can be efficiently found using max-weight bipartite matching.

The procedure is as follows:

1. Pick a random vertex i.

2. Pick a label l for i from the distribution, where every label l′ ∈ [q] has probability
∣∣∣V(i,l′)

∣∣∣2.

3. Define Λalg(j) := σi j(l) for every vertex j ∈ V .

(Of course, the rounding can be trivially derandomized since there are only nq choices for i, l.)

To analyze this procedure we define the distance ρ(i, j) of a pair i, j of vertices as

ρ(i, j) :=
1
2

∑
l∈[k]

∣∣∣V(i,l) − V(j,σi j(l))
∣∣∣2 = 1 −

∑
l∈[k]

〈
V(i,l),V(j,σi j(l))

〉
We think of two vertices i, j as highly correlated if ρ(i, j) is small, i.e.,

∑
l∈[q]

〈
V(i,l),V(j,σi j(l))

〉
≈ 1.

The following easy lemma shows that if the average vertex pair in G is highly correlated, then

the above rounding procedure is likely to produce a good a labeling. Here we assume that G is a

regular graph. Using standard arguments, all results can be generalized to the case of non-regular

graphs.

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 117

Lemma 7.2 (Global Correlation⇒ High Satisfiability)

The expected fraction of constraints satisfied by the labeling Λalg computed by the rounding proce-

dure is

E
Λalg←R

[val(Λalg)] ≥ 1 − 6η − 12 E
i, j∈V

[ρ(i, j)].

It is easy to see that if the SDP value is 1 − η then the average correlation on edges is high. For an

edge e = (i, j) in G, let ηe := 1
2
∑

l∈[q]

∣∣∣V(i,l) − V(j,πi j(l))
∣∣∣2. Note, Ee[ηe] = η. Then we have

ρ(i, j) =
1
2

∑
l∈[q]

∣∣∣V(i,l) − V(j,σi j(l))
∣∣∣2 = 1 −

∑
l∈[q]

〈
V(i,l),V(j,σi j(l))

〉
≤ 1 −

∑
l∈[q]

〈
V(i,l),V(j,πi j(l))

〉
= ηe (since σi j is the maximum weight matching).

As mentioned in the overview, we show that high correlation on edges implies (when the constraint

graph is an expander) high correlation on the average pair of vertices. The main technical con-

tribution in this proof is a way to view a vector solution to the above SDP as a vector solution

for Sparsest Cut. This involves mapping any sequence of q vectors to a single vector in a nicely

continuous way, which allows us to show that the distances ρ(i, j) essentially behave like squared

Euclidean distances.

Lemma 7.3 (Low Distortion Embedding of ρ)

For every positive even integer t and every SDP solution {V(i,l)}i∈V,l∈[k], there exists a set of vectors

{Wi}i∈V such that for every pair i, j of vertices

1
2t

∣∣∣Wi −W j
∣∣∣2 ≤ ρ(i, j) ≤

∣∣∣Wi −W j
∣∣∣2 + O(2−t/2)

Corollary 7.4 (Local Correlation⇒ Global Correlation)

E
i, j∈V

[ρ(i, j)] ≤ 2t
λ E

(i, j)∈E
[ρ(i, j)] + O(2−t/2) ≤ 2tη/λ + O(2−t/2).

Proof: We use the following characterization of λ for regular graphs G

λ = min
E(i, j)∈E

∣∣∣zi − z j
∣∣∣2

Ei, j∈V
∣∣∣zi − z j

∣∣∣2 , (7.2)

where the minimum is over all sets of vectors {zi}i∈V . This characterization also shows that λ scaled

by n2/|E| is a relaxation for the Sparsest Cut problem min∅,S⊂V |E(S , S)|/|S ||S | of G . Now using

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 118

the previous Lemma we have

E
i, j∈V

[ρ(i, j)] ≤ E
i, j∈V

∣∣∣Wi −W j
∣∣∣2 + O(2−t/2)

≤ 1
λ E

(i, j)∈E

∣∣∣Wi −W j
∣∣∣2 + O(2−t/2)

≤ 2t
λ E

(i, j)∈E
[ρ(i, j)] + O(2−t/2).

By combining the Corollary 7.4 and Lemma 7.2, we can show the following theorem.

Theorem 7.5 (implies Theorem 7.1)

There is a polynomial time algorithm that computes a labeling Λ with

val(Λ) ≥ 1 − O
(
η
λ log

(
λ
η

))
if the optimal value of the SDP in Figure 7.1 forU is 1 − η.

Proof: By Corollary 7.4 and Lemma 7.2, the labeling Λalg satisfies a 1−O(tη/λ+2−t/2) fraction of

the constraints of U. If we choose t to be an integer close to 2 log(λ/η), it follows that OPT(U) ≥

1 − O(ηλ log(λη)). Since the rounding procedure R can easily be derandomized, a labeling Λ with

val(Λ) ≥ 1 − O(ηλ log(λη)) can be computed in polynomial time.

7.1.3 Proof of Lemma 7.2

We consider the labeling Λalg computed by the randomized rounding procedure R. Recall that

Λalg(j) = σi j(l) where the vertex i is chosen uniformly at random and the label l is chosen with

probability
∣∣∣V(i,l)

∣∣∣2. For notational ease we assume that σii is the identity permutation and σi j is

the inverse permutation of σ ji. The following claim gives an estimate on the probability that the

constraint between an edge e = { j, k} is satisfied by Λalg. Here we condition on the choice of u.

Claim 7.6 For every vertex u and every edge e = (j, k),

P
Λalg

[
Λalg(k) , π jk(Λalg(j)) | i

]
≤ 6 · (ρ(i, j) + ηe + ρ(k, i))

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 119

Proof: We may assume that both σi j and σik are the identity permutation. Let π = π jk. First

note PΛalg

[
Λalg(k) , π(Λalg(j)) | i

]
=

∑
l∈[q]

[∣∣∣V(i,l)
∣∣∣2 χl,π(l)

]
, where χE denotes the indicator random

variable for an event E. By orthogonality of the vectors {V(i,l)}l∈[q], it follows that∑
l∈[q]

[∣∣∣V(i,l)
∣∣∣2 χl,π(l)

]
≤

∑
l∈[q]

[(∣∣∣V(i,l)
∣∣∣2 +

∣∣∣V(l,π(l))
∣∣∣2) χl,π(l)

]
=

∑
l∈[q]

∣∣∣V(i,l) − V(i,π(l))
∣∣∣2 .

By triangle inequality,
∣∣∣V(i,l) − V(i,π(l))

∣∣∣ ≤ ∣∣∣V(i,l) − V(j,l)
∣∣∣ +

∣∣∣V(j,l) − V(k,π(l))
∣∣∣ +

∣∣∣V(k,π(l)) − V(i,π(l))
∣∣∣.

Now we square both sides of the inequality and take summations,
∑

l∈[q]

∣∣∣V(i,l) − V(i,π(l))
∣∣∣2 ≤

3
∑

l∈[q]

∣∣∣V(i,l) − V(j,l)
∣∣∣2 + 3

∑
l∈[q]

∣∣∣V(j,l) − V(k,π(l))
∣∣∣2 + 3

∑
l∈[q]

∣∣∣V(k,π(l)) − V(i,π(l))
∣∣∣2 = 6ρ(i, j) + 6ηe +

6ρ(w, u).

Proof: [of Lemma 7.2] From Claim 7.6 it follows

E
Λalg

[val(Λalg)] ≥ 1 − 6 E
i∈V

E
e=(jk)∈E

[
ρ(i, j) + ηe + ρ(k, i)

]
.

Since G is a regular graph, both (i, j) and (k, i) are uniformly distributed over all pairs of vertices.

Hence EΛalg[val(Λalg)] ≥ 1 − 6η − 12Ei, j∈V [ρ(i, j)].

7.1.4 Proof of Lemma 7.3; the tensoring trick

Let t be a positive even integer and {V(i,l)}i∈V,l∈[q] be an SDP solution for U. Define V(i,l) =

1
|V(i,l)|

V(i,l) and Wi =
∑

l∈[q]

∣∣∣V(i,l)
∣∣∣ V⊗t

(i,l), where ⊗t denotes t-wise tensoring. Notice that the vectors

Wi are unit vectors. Consider a pair i, j of vertices in G. The following claim implies the lower

bound on ρ(i, j) in Lemma 7.3.

Claim 7.7
∣∣∣Wi −W j

∣∣∣2 ≤ 2tρ(i, j) = t ·
∑

l∈[q]

∣∣∣V(i,l) − V(j,σi j(i))
∣∣∣2

Proof: Since Wi is a unit vector for each i, it suffices to prove
〈
Wi,W j

〉
≥ tρ(i, j). Let σ = σi j.

By Cauchy-Schwarz,∑
l

∣∣∣V(i,l)
∣∣∣ ∣∣∣V(j,σ(l))

∣∣∣ ≤ (∑
l

∣∣∣V(i,l)
∣∣∣2)1/2 (∑

i

∣∣∣V(j,σ(l))
∣∣∣2)1/2

≤ 1.

Thus there is some α ≥ 1 such that the following random variable X is well-defined: it takes value〈
V(i,l),V(j,σ(l))

〉
with probability α ·

∣∣∣V(i,l)
∣∣∣ ∣∣∣V(j,σ(i))

∣∣∣. By Jensen’s Inequality, (E[X])t ≤ E[Xt]. Hence,

1 − ρ(i, j)t ≤ (1 − ρ(i, j))t =

∑
l∈[q]

[∣∣∣V(i,l)
∣∣∣ |V jσ(l)| ·

〈
V(i,l),V(j,σ(l))

〉]
t

= (E[X/α])t ≤ (E[X])t/α ≤ E[Xt/α] =
〈
Wi,W j

〉
.

This proves the claim.

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 120

Matching between two label sets. In order to finish the proof of Lemma 7.3, it remains to prove

the upper bound on ρ(i, j) in terms of the distance
∣∣∣Wi −W j

∣∣∣2. For this part of the proof, it is

essential that the vectors Wi are composed of (high) tensor powers of the vectors V(i,l). For a pair

i, j of vertices, consider the following set of label pairs

M =

{
(l, l′) ∈ [q] × [q] |

〈
V(i,l),V(j,l′)

〉2
> 1/2

}
.

Since {V(i,l)}l∈[q] and {V(j,l′)}l′∈[q] are sets of ortho-normal vectors, M as graph on [q] × {L,R} is a

(partial) matching. Let σ be an arbitrary permutation of [q] that agrees with the M on the matched

labels, i.e., for all (l, l′) ∈ M, we have σ(l) = l′. The following claim shows the upper bound on

ρ(i, j) of Lemma 7.3.

Claim 7.8 ρ(i, j) ≤ 1
2
∑

l∈[q]

∣∣∣V(i,l) − V(j,σ(l))
∣∣∣2 ≤ 1

2

∣∣∣Wi −W j
∣∣∣2 + O(2−t/2).

Proof: Let δ =
∣∣∣Wi −W j

∣∣∣2. Note that∑
i, j

∣∣∣V(i,l)
∣∣∣ ∣∣∣V(j,l′)

∣∣∣ 〈V(i,l),V(j,l′)
〉t

= 1 − δ/2. (7.3)

We may assume that σ is the identity permutation. Then, ρ(i, j) is at most

1
2

∑
l∈[q]

∣∣∣V(i,l) − V(j,l)
∣∣∣2 = 1 −

∑
l∈[q]

〈
V(i,l),V(j,l)

〉
≤ 1 −

∑
i∈[k]

∣∣∣V(i,l)
∣∣∣ ∣∣∣V(j,l)

∣∣∣ 〈V(i,l),V(j,l)
〉t

(using
〈
V(i,l),V(j,l)

〉
≥ 0)

= δ/2 +
∑
l,l′

∣∣∣V(i,l)
∣∣∣ ∣∣∣V(j,l′)

∣∣∣ 〈V(i,l),V(j,l′)
〉t

(by (7.3))

= δ/2 + 〈p, A q〉 ,

where pi =
∣∣∣V(i,l)

∣∣∣, q j =
∣∣∣V(j,l′)

∣∣∣, Aii = 0, and for i , j, Ai j =
〈
V(i,l),V(j,l′)

〉t
. Since both p and

q are unit vectors, 〈p, A q〉 is bounded by the largest singular value of A. As the matrix A has

only non-negative entries, its largest singular value is bounded by the maximum sum of a row or a

column. By symmetry, we may assume that the first row has the largest sum among all rows and

columns. We rearrange the columns in such a way that A11 ≥ A12 ≥ . . . ≥ A1q. Since V(i,1) is a

unit vector and {V(j,l)}l∈[q] is a set of orthonormal vectors, we have
∑

l

〈
V(i,1),V(j,l)

〉2
≤ 1. Hence,〈

V(i,1),V(j,l)
〉2
≤ 1/l and therefore A1l ≤ (1/l)t/2. On the other hand, every entry of A is at most 2−t/2,

since all pairs (l, l′) with
〈
V(i,l),V(j,l′)

〉2
> 1/2 participate in the matching M, and hence, All′ = 0 for

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 121

all l, l′ with
〈
V(i,l),V(j,l′)

〉2
> 1/2. It follows that the sum of the first row can be upper bounded by

∑
l∈[q]

A1l ≤ A11 +

∞∑
l≥2

(1
l)t/2 ≤ 2−t/2 +

∞∑
l≥2

(1
l)t/2 = O(2−t/2).

We conclude that the largest singular value of A is at most O(2−t/2), and thus ρ(i, j) can be upper

bounded by δ/2 + O(2−t/2) = 1
2

∣∣∣Wi −W j
∣∣∣ + O(2−t/2), as claimed.

7.2 Stronger relaxations of expansion

In this section, we consider stronger SDP relaxations for for Sparsest Cut. A systematic way

to obtain stronger relaxations is again provided by SDP hierarchies. Here, we state our results in

terms of the relaxations given by the Lasserre hierarchy [Las01]. The results in this section apply

only to a special case of Unique Games, called ΓMAX2LIN. We say a Unique Games instance

U = (G(V, E), [q], {πi j}(i, j)∈E) has ΓMAX2LIN form, if the label set [q] can be identified with the

group Zq in such a way that every constraint permutation πi j satisfies πi j(l + s) = πi j(l) + s ∈ Zq for

all s, l ∈ Zq. In other words, πi j encodes a constraint of the form xi − x j = ci j ∈ Zq. The ΓMAX2LIN

property implies that we can find an optimal SDP solution {V(i,l)}i∈V,l∈[q] forU that is shift-invariant,

i.e., for all s ∈ Zq we have
〈
V(i,l+s),V(j,l′+s)

〉
=

〈
V(i,l),V(j,l′)

〉
. In particular, every vector V(i,l) has

norm 1/
√

q.

Alternative Embedding for ΓMAX2LIN. The following lemma can be seen as alternative to

Lemma 7.3. We emphasize that the lemma only holds for ΓMAX2LIN instances and shift-invariant

SDP solutions.

Lemma 7.9 Let Λopt be a labeling for U with val(Λopt) = 1 − ε. Then the set of vectors {Wi}i∈V

with Wi = V(i,Λopt(i)) has the following two properties:

1. ρ(i, j) ≤ q
2

∣∣∣Wi −W j
∣∣∣2 for every pair i, j of vertices

2. q
2 E(i, j)∈E

[∣∣∣Wi −W j
∣∣∣2] ≤ η + 2ε

Together with Lemma 7.2, the above lemma implies that the randomized rounding procedure R

computes a labeling that satisfies at least a 1 − O(ε/λ) fraction of the constraints of U, whenever

OPT(U) ≥ 1−ε. In this sense, the above lemma allows to prove our main result for the special case

of ΓMAX2LIN.

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 122

Proof: Item 1 holds, since, by shift invariance,

ρ(i, j) = 1
2

∑
l∈[q]

∣∣∣V(i,l) − V(j,σi j(l))
∣∣∣2 =

q
2

∣∣∣V(i,Λopt(i)) − V(j,σi j(Λopt(i)))
∣∣∣2 ≤ q

2

∣∣∣V(i,Λopt(i)) − V(j,Λopt(j))
∣∣∣2 .

Here we could assume, again by shift invariance, that
∣∣∣V(i,l) − V(j,σi j(l))

∣∣∣2 = minl′
∣∣∣V(i,l) − V(j,l′)

∣∣∣2 for

all l. It remains to verify Item 2. By shift invariance,

ηi j = 1
2

∑
l∈[q]

∣∣∣V(i,l) − V(j,πi j(l))
∣∣∣2 =

q
2

∣∣∣V(i,Λopt(i)) − V(j,πi j(Λopt(i)))
∣∣∣2 .

Hence, if Λopt satisfies the constraint on an edge (i, j) ∈ E, then
∣∣∣Wi −W j

∣∣∣ = 2ηi j. On the other

hand,
∣∣∣Wi −W j

∣∣∣2 ≤ 4 because every vector Wi has unit norm. Finally, since a 1 − ε fraction of the

edges is satisfied by Λopt,

E
(i, j)∈E

∣∣∣Wi −W j
∣∣∣2 ≤ (1 − ε) · E

(i, j)∈E
[2ηi j] + ε · 4.

Stronger Relaxations for Sparsest Cut. Let r be a positive integer. Denote by S the set of all

subsets of V that have cardinality at most r. For every subset S ∈ S, we have a variable US . We

consider the strengthening of the spectral relaxation for Sparsest Cut in Figure 7.2.

minimize
E(i, j)∈E

[∣∣∣U{i} − U{ j}
∣∣∣2]

Ei, j∈V

[∣∣∣U{i} − U{ j}
∣∣∣2]

subject to
〈
US 1 ,US 2

〉
=

〈
US 3 ,US 4

〉
∀ S 1 ∪ S 2 = S 3 ∪ S 4〈

US 1 ,US 2

〉
∈ [0, 1] ∀ S 1, S 2

|U∅| = 1

Figure 7.2: Lasserre SDP for Sparsest Cut

The variables US are intended to have values 0 or 1, where 1 is some fixed unit vector. If the

intended cut is (T,T), we would assign 1 to all variables US with S ⊆ T .

Let zr(G) denote the optimal value of the above SDP. We have

λ ≤ z1(G) ≤ . . . ≤ zn(G) = n2

|E| min
∅,T⊂V

|E(T,T)|

|T ||T |
.

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 123

It can also be seen that the relaxation z3(G) is at least as strong as the relaxation for Sparsest Cut

considered in [ARV04]. The relaxations zr(G) are inspired by the Lasserre SDP hierarchy [Las01].

The proof of the following theorem is similar to the proof of Theorem 7.5. The main difference

is that we use Lemma 7.9, instead of Lemma 7.3, in order to show that local correlation implies

global correlation. By strengthening the SDP for Unique Games, the vectors Wi obtained from

Lemma 7.9 can be extended to a solution for the stronger SDP for Sparsest Cut in Figure 7.2. This

allows us to replace the parameter λ by the parameter zr(G) in the below theorem.

Theorem 7.10 There is an algorithm that computes in time (nq)O(r) a labeling Λ with

val(Λ) ≥ 1 − O(ε/zr(G))

if OPT(U) ≥ 1 − ε andU has ΓMAX2LIN form.

Proof: We consider the level-r Lasserre relaxation for Unique Games. Since, Unique Games is

a specific constraint satisfaction problem, the SDP can be written in terms of sets S of at most r

vertices and partial assignments α. We give the relaxation in Figure 7.3.

maximize E
(i, j)∈E

∑
l∈[q]

〈
V({i},l),V({ j},πi j(l))

〉
subject to

〈
V(S 1,α1),V(S 2,α2)

〉
= 0 ∀ α1(S 1 ∩ S 2) , α2(S 1 ∩ S 2)〈

V(S 1,α1),V(S 2,α2)
〉

=
〈
V(S 3,α3),V(S 4,α4)

〉
∀ S 1 ∪ S 2 = S 3 ∪ S 4, α1 ◦ α2 = α3 ◦ α4∑

j∈[q]

∣∣∣V({i}, j)
∣∣∣2 = 1 ∀i ∈ V

〈
V(S 1,α1),V(S 2,α2)

〉
≥ 0 ∀S 1, S 2, α1, α2∣∣∣V(∅,∅)

∣∣∣ = 1

Figure 7.3: Lasserre SDP for Unique Games

An (approximately) optimal solution to the above SDP can be computed in time (nq)O(r). Sup-

pose the value of the solution is 1 − η. Let Wi :=
√

q · V({i},Λopt(i)) for some labeling Λopt with

val(Λopt) ≥ 1 − ε (which exists by assumption).

We claim that Ei, j∈V
∣∣∣Wi −W j

∣∣∣2 ≤ 1
zr(G) E(i, j)∈E

∣∣∣Wi −W j
∣∣∣2 . In order to show the claim it is

sufficient to show that the vectors Wi can be extended to a solution for the SDP in Figure 7.2 with

U{i} = Wi ∀i. We can choose the vectors US as US = V(S ,Λopt(S)) and U∅ = V(∅,∅). It is easy to verify

that these vectors satisfy the required constraints.

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 124

Together with Lemma 7.9, this gives that

E
i, j∈V

[ρ(i, j)] ≤ q
2 Ei, j∈V

∣∣∣Wi −W j
∣∣∣2 ≤ q

2zr(G) E(i, j)∈E

∣∣∣Wi −W j
∣∣∣2 ≤ (η + 2ε)/zr(G).

By Lemma 7.2, the rounding procedure R from Section 7.1.2 allows us to compute a labeling Λ

such that val(Λ) ≥ 1 − 6η − 12Ei, j∈V [ρ(i, j)] ≥ 1 − 50ε/zr(G). Here it is important to note that the

rounding procedure R does not depend on the vectors Wi. The existence of these vectors is enough

to conclude that the rounding procedure succeeds.

7.3 Parallel Repetition for expanding Unique Games

In this section, we consider bipartite unique games, i.e., Unique Games instances U =

(G(V,W, E), [q], {πi j}(i, j)∈E) such that G(V,W, E) is a bipartite graph with bipartition (V,W). A bi-

partite unique game can be seen as a 2-prover, 1-round proof system [FL92]. The two parts V,W

correspond to the two provers. The edge set E corresponds to the set of questions asked by the

verifier to the two provers and πi j is the accepting predicate for the question corresponding to the

edge (v, w).

In this section, we give an upper bound on the amortized value ω(U) = supr OPT(U⊗r)1/r of

bipartite unique game U in terms of the expansion of its constraint graph. Here U⊗r denotes the

game obtained by playing the gameU for r rounds in parallel. We follow an approach proposed by

Feige and Lovsz [FL92]. Their approach is based on the SDP in Figure 7.4, which is a relaxation

for the value of a bipartite unique game.

maximize E
e=(i, j)∈E

∑
l∈[q]

〈
V(i,l),V(j,πi j(l))

〉
subject to

〈
V(i,l),V(j,l′)

〉
≥ 0 ∀ i ∈ V, j ∈ W, ∀ l, l′∑

l,l′∈[q]

∣∣∣∣〈V(i,l),V(j,l′)

〉∣∣∣∣ ≤ 1 ∀ i, j ∈ V

∑
l,l′∈[q]

∣∣∣∣〈V(i,l),V(j,l′)

〉∣∣∣∣ ≤ 1 ∀ i, j ∈ W

Figure 7.4: Feige-Lovász SDP for Unique Games

Let σ(U) denote the value of this SDP relaxation. The following theorem is a consequence of

the fact that σ(U⊗r) = σ(U)r.

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 125

Theorem 7.11 ([FL92]) For every bipartite unique gameU, ω(U) ≤ σ(U).

We observe that the SDP in Figure 7.1 cannot be much stronger than the relaxation σ(U). The

proof uses mostly standard arguments.

Lemma 7.12 If σ(U) = 1 − η then the value of the SDP in Figure 7.1 is at least 1 − 2η.

Proof: Let {Ṽ(i,l)}i∈V∪W,l∈[q] be an optimal solution to the SDP in Figure 7.4. We have

E(i, j)∈E
∑

l∈[q]

〈
Ṽ(i,l), Ṽ(j,πi j(l))

〉
= 1 − η.

We first show how to obtain a set of vectors {V(i,l)}i∈V∪W,l∈[q] that satisfies the first two constraints

of the SDP in Figure 7.1 and has objective value E(i, j)∈E
∑

l∈[q]

〈
V(i,l),V(j,πi j(l))

〉
= 1 − η. For each

vertex i, consider the psd matrix M(i) ∈ Rq×q such that M(i)
l,l′ =

〈
Ṽ(i,l), Ṽ(i,l′)

〉
and define the quantities

ei := 1 −
∑
l,l′

∣∣∣∣〈Ṽ(i,l), Ṽ(i,l′)
〉∣∣∣∣ and si,l :=

∑
l′,l

∣∣∣∣〈Ṽ(i,l), Ṽ(i,l′)
〉∣∣∣∣ .

We consider the diagonal matrix D(i) with entries D(i)
l,l =

∣∣∣Ṽ(i,l)
∣∣∣2 + si,l + (ei/q). We will show how to

construct vectors V(i,l) satisfying
〈
V(i,l),V(i,l′)

〉
= D(i)

l,l′ . It is easy to check that this suffices to satisfy

the first two constraints of the SDP in Figure 7.1.

Notice that the matrix D(i) − M(i) is positive semidefinite, since it is diagonally dominant.

Hence, there exist vectors {z(i,l)}l∈[q] such that
〈
z(i,l), z(i,l′)

〉
= D(i)

l,l′ − M(i)
l,l′ . Consider a set of vec-

tors {W(i,l)}i∈V∪W,l∈[q] such that
〈
W(i,l),W(i,l′)

〉
=

〈
z(i,l), z(i,l′)

〉
and

〈
W(i,l),W(j,l′)

〉
for i , j for any

l, l′. Then the vectors V(i,l) = Ṽ(i,l) ⊕W(i,l) satisfy the required properties. Also, observe that since〈
V(i,l),V(j,l′)

〉
=

〈
Ṽ(i,l), Ṽ(j,l′)

〉
for i , j, the objective value is unchanged.

It remains to show how to obtain a set of vectors that satisfies the non-negativity con-

straint and that has objective value at least 1 − 2η. Consider the set of vectors {V′(i,l)}i∈V∪W,l∈[q]

with V′(i,l) =
∣∣∣V(i,l)

∣∣∣ V⊗2
(i,l). The vectors V′(i,l) still satisfy the first two constraints. They also

satisfy the non-negativity constraint because
〈
V′(i,l),V

′
(j,l′)

〉
=

∣∣∣V(i,l)
∣∣∣ ∣∣∣V(j,l′)

∣∣∣ 〈V(i,l),V(j,l′)
〉2
≥ 0.

We can use the same reasoning as in the proof of Claim 7.7 to show that the objective value

E(v,w)∈E
∑

l∈[q]

〈
V′(i,l),V

′
(j,πi j(l))

〉
≥ 1 − 2η.

We can now show a bound on the amortized value for the parallel repetition of the unique game

defined byU.

CHAPTER 7. ALGORITHMS FOR UNIQUE GAMES ON EXPANDING GRAPHS 126

Theorem 7.13 IfU is 2-prover 1-round unique game on alphabet [q] with value at most 1−ε, then

the value U played in parallel for r rounds is at most (1 − Ω(ε · λ/ log 1
ε))r, where G is the graph

corresponding to the questions to the two provers. In particular, the amortized value w(U) is at

most 1 −Ω(ε · λ/ log 1
ε).

Proof: Following the approach in [FL92], it is sufficient to showσ(U) ≤ 1−Ω(ελ/ log 1
ε). Suppose

that σ(U) = 1 − η. Then by Lemma 7.12, the value of the SDP in Figure 7.1 is at least 1 − 2η. By

Theorem 7.5, it follows that OPT(U) ≥ 1 − O(η log λ
η/λ). On the other hand, OPT(U) ≤ 1 − ε.

Hence, ε = O(η log λ
η/λ) and therefore η = Ω(λε log 1

ε), as claimed.

127

Chapter 8

Conclusions and Open Problems

The various results on integrality gaps presented in this thesis illustrate different proof tech-

niques for reasoning about the hierarchies. While the intuition of thinking about “local distribu-

tions” defined by the solutions does seem quite helpful for reasoning about the integrality gaps, it

still does not capture the full power of the semidefinite programs. Extending this intuition to capture

the solutions to semidefinite programs will likely require a better (or different) understanding of the

matrices containing moments of sets of variables, according to the respective distributions.

From these results, one may also conclude that while reductions between integrality gaps are

somewhat difficult in the Lovász-Schrijver hierarchies, they are much easier to reason about in

the Lasserre and Sherali-Adams hierarchies. While transforming an LS+ gap for MAX 3-XOR to

Minimum Vertex Cover requires almost the full reasoning in chapter 3, the proof in [Sch08] for

the Lasserre hierarchy is significantly simpler. Also, more complicated reductions can easily be

reasoned about in the Lasserre hierarchy (and by very similar arguments, also in the Sherali-Adams

hierarchy) as illustrated in chapter 6.

Below we outline some other problems which might be interesting to investigate in the context

of these hierarchies.

Integrality Gaps for Vertex Cover. Even though a gap of factor 7/6 for Minimum Vertex Cover

is known for Ω(n) levels of the Lasserre hierarchy [Sch08], gaps of a factor 2 − ε are only known

for Ω(n) levels of the LS hierarchy [STT07b]. Gaps for fewer levels, in particular, Ω(n f (ε)) levels

of the Sherali-Adams hierarchy and Ω(
√

log n/ log log n) levels of the LS+ hierarchy were proved

by [CMM09] and [GMPT07] respectively. However, proving optimal (factor 2 − ε for Ω(n) levels)

CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS 128

gaps in these hierarchies still remains a very interesting open question, particularly so for the LS+

hierarchy of semidefinite programs.

Also, for the Lasserre hierarchy, no results are known showing a gap of 2−ε even after 2 levels!

Any argument which proves a gap of 2 − ε for a superconstant number of levels of the Lasserre

hierarchy, would possibly contain some interesting new ideas.

Integrality Gaps for Unique Games. At present, very few integrality gaps are known for the

Unique Games problem discussed in chapter 7. Since this problem is of great importance in com-

plexity theory, and integrality gaps for it can be readily translated into gaps for other problems via

reductions; integrality gaps for this problem would be of great interest.

An almost optimal integrality gap (1 − ε vs 1/qO(ε) for alphabet size q) for the basic SDP in

Figure 7.1 was exhibited by Khot and Vishnoi [KV05]. Extending this, Khot and Saket [KS09]

and Raghavendra and Steurer [RS09] show integrality gaps for a new hierarchy, which essentially

adds constraints for existence of “local distributions” to the SDP. Constraints at tth level of this

hierarchy are all the LP constraints given by t levels of the Sherali-Adams hierarchy and also the

SDP constraints in Figure 7.1. The SDP variables are related to the LP variables by requiring

that
〈
V(i,l),V(j,l′)

〉
= X({i, j},{l,l′}) for every pair of vertices i, j and labels l, l′. While [RS09] prove

superconstant gaps for Ω((log log n)1/4) levels of this hierarchy, the results of [KS09] can be used

to obtain a gap for (log log log n)Ω(1) levels. Also, for the Sherali-Adams LP hierarchy, [CMM09]

prove optimal gaps for nΩ(1) levels.

However, obtaining integrality gaps for a strong SDP relaxation of unique games, such as the

ones given by LS+ or Lasserre hierarchies is an important open problem. Using reductions, this

would also translate to Lasserre gaps for Sparsest Cut and many other interesting problems.

Generalizing the techniques of [Sch08]. At present the only available technique for obtaining

lower bounds in the Lasserre hierarchy is the one used by [Sch08] (which extends the techniques

of [FO06] and [STT07a] used in the context of other hierarchies). This technique was generalized

to some extent in chapter 4 and combined with reductions in chapter 6, but it still suffers from two

limitations:

• The technique may only be used when a CSP with m constraints can be shown to have SDP

value m and the assignments in the support of the local distributions can be shown to satisfy all

CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS 129

the constraints in the corresponding variables. However, in cases when the local distributions

can only be shown to satisfy almost all the constraints, it is not clear if a modification of the

technique can be used to argue (at least for some problems) that the SDP value is close to m.

• More importantly, the technique seems to be heavily dependent on the structure of the con-

straints as systems of linear equations. An extension of this technique to constraints which

cannot be expressed in this form will likely involve a more general construction of vector

solutions to the Lasserre SDP which might be useful in other contexts. Some attempts to

understand the relevant local distributions for such constraints were made in chapter 5, but

the question of obtaining Lasserre gaps for these constraints remains temptingly open.

Rank vs Size gaps for hierarchies. The goal of the studies so far has been to prove lower bounds

on the level of the hierarchy one has to go to, in order to obtain a good approximation for the

problem in question. In the language of proof complexity (where such hierarchies are viewed as

proof systems to prove that the solution set of a certain integer program is empty), this corresponds

to a lower bound on the “rank” of the proof.

However, the corresponding notion of “size” lower bounds in proof complexity translates to

the number of constraints generated by these hierarchies that one really needs to obtain a certain

approximation ratio for the given problem. More concretely, one can ask questions of the following

form: what is the integrality gap for a semidefinite program for MAX 3-SAT, which uses only

nO(1) of all the constraints generated by (level n) Lasserre SDP for the same problem. Viewing the

hierarchies as a computational model, the number of constraints has an attractive interpretation as

the “number of basic operations” in the model.

In fact, it is also not known if such lower bounds would be closed under reductions, which was

the case for lower bounds on the number of levels required in the Lasserre hierarchy. In particular,

is it possible to show that result proving a lower bound of nΩ(1) constraints for 2-approximation

of MAX 3-XOR can be translated to a lower bound of nΩ(1) constraints for 7/6-approximation of

Minimum Vertex Cover?

130

Bibliography

[AAT05] Michael Alekhnovich, Sanjeev Arora, and Iannis Tourlakis. Towards strong nonap-

proximability results in the Lovasz-Schrijver hierarchy. In Proceedings of the 37th

ACM Symposium on Theory of Computing, pages 294–303, 2005.

[ABL02] Sanjeev Arora, Béla Bollobás, and László Lovász. Proving integrality gaps without

knowing the linear program. In Proceedings of the 43rd IEEE Symposium on Foun-

dations of Computer Science, pages 313–322, 2002.

[ABLT06] Sanjeev Arora, Béla Bollobás, László Lovász, and Iannis Tourlakis. Proving inte-

grality gaps without knowing the linear program. Theory of Computing, 2(2):19–51,

2006.

[AKK+08] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and

Nisheeth Vishnoi. Unique games on expanding constraint graphs are easy. In Pro-

ceedings of the 40th ACM Symposium on Theory of Computing, 2008.

[AM08] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise

independence. In Proceedings of the 23rd IEEE Conference on Computational Com-

plexity, pages 249–258, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

[AMS07] Christoph Ambhl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability results

for sparsest cut, optimal linear arrangement, and precedence constrained scheduling.

In Proceedings of the 48th IEEE Symposium on Foundations of Computer Science,

pages 329–337, 2007.

[ARV04] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows and a
√

log n-

approximation to sparsest cut. In Proceedings of the 36th ACM Symposium on Theory

of Computing, 2004.

BIBLIOGRAPHY 131

[BGS98] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCP’s and non-approximability –

towards tight results. SIAM Journal on Computing, 27(3):804–915, 1998. Preliminary

version in Proc. of FOCS’95.

[BH92] R. Boppana and M.M. Halldórsson. Approximating maximum independent set by

excluding subgraphs. Bit, 32:180–196, 1992.

[BOGH+03] Josh Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann

Pitassi. Rank bounds and integrality gaps for cutting planes procedures. In Pro-

ceedings of the 44th IEEE Symposium on Foundations of Computer Science, pages

318–327, 2003.

[BOT02] Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lower bound for testing 3-

colorability in bounded degree graphs. In Proceedings of the 43rd IEEE Symposium

on Foundations of Computer Science, pages 93–102, 2002.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow: Resolution made simple.

Journal of the ACM, 48(2), 2001.

[CCL90] Jin-Yi Cai, Anne Condon, and Richard J. Lipton. Playing games of incomplete in-

formation. In Proceedings of the 7th Symposium on Theoretical Aspects of Computer

Science, pages 58–69, 1990.

[Cha02] Moses Charikar. On semidefinite programming relaxations for graph coloring and ver-

tex cover. In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms,

pages 616–620, 2002.

[Chl07] Eden Chlamtac. Approximation algorithms using hierarchies of semidefinite program-

ming relaxations. In FOCS, pages 691–701, 2007.

[CKK+04] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar.

On the hardness of approximating multicut and sparsest-cut. Manuscript, 2004.

[CMM06a] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algo-

rithms for unique games. In Proceedings of the 38th ACM Symposium on Theory of

Computing, 2006.

BIBLIOGRAPHY 132

[CMM06b] Eden Chlamtac, Konstantin Makarychev, and Yury Makarychev. How to play unique

games using embeddings. In Proceedings of the 47th IEEE Symposium on Founda-

tions of Computer Science, 2006.

[CMM07a] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Local global trade-

offs in metric embeddings. In Proceedings of the 48th IEEE Symposium on Founda-

tions of Computer Science, 2007.

[CMM07b] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal al-

gorithms for maximum constraint satisfaction problems. In Proceedings of the 18th

ACM-SIAM Symposium on Discrete Algorithms, pages 62–68, 2007.

[CMM09] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality gaps for

sherali-adams relaxations. In Proceedings of the 41st ACM Symposium on Theory of

Computing, 2009.

[dlVKM07] Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming

relaxations of maxcut. In SODA, pages 53–61, 2007.

[DMR06] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate

coloring. In Proceedings of the 38th ACM Symposium on Theory of Computing, 2006.

[DS05] Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex-

cover. Annals of Mathematics, 162(1):439–486, 2005.

[EH05] Lars Engebretsen and Jonas Holmerin. More efficient queries in PCPs for NP and

improved approximation hardness of maximum CSP. In Proceedings of the 22th Sym-

posium on Theoretical Aspects of Computer Science, pages 194–205, 2005.

[Fei97] Uriel Feige. Randomized graph products, chromatic numbers, and the lovász vartheta-

funktion. Combinatorica, 17(1):79–90, 1997.

[FGL+91] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique

is almost NP-complete. In Proceedings of the 32nd IEEE Symposium on Foundations

of Computer Science, pages 2–12, 1991.

[FK98] Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. Journal of

Computer and System Sciences, 57(2):187–199, 1998.

BIBLIOGRAPHY 133

[FL92] Uri Feige and László Lovász. Two-prover one round proof systems: Their power and

their problems. In Proceedings of the 24th ACM Symposium on Theory of Computing,

pages 733–741, 1992.

[FLS04] Uriel Feige, Michael Langberg, and Gideon Schechtman. Graphs with tiny vector

chromatic numbers and huge chromatic numbers. SIAM J. Comput., 33(6):1338–

1368, 2004.

[FO06] Uriel Feige and Eran Ofek. Random 3CNF formulas elude the Lovász theta function.

Manuscript, 2006.

[FR87] Peter Frankl and Vojtech Rodl. Forbidden intersections. Transactions of the American

Mathematical Society, 300(1):259–286, 1987.

[GMPT07] Konstantinos Georgiou, Avner Magen, Toniann Pitassi, and Iannis Tourlakis. Inte-

grality gaps of 2 - o(1) for vertex cover SDPs in the Lovász-Schrijver hierarchy. In

Proceedings of the 48th IEEE Symposium on Foundations of Computer Science, pages

702–712, 2007.

[GMT09] Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. Optimal sherali-adams

gaps from pairwise independence. In APPROX-RANDOM, 2009.

[GR08] Venkatesan Guruswami and Prasad Raghavendra. Constraint satisfaction over a

non-boolean domain: Approximation algorithms and unique-games hardness. In

APPROX-RANDOM, pages 77–90, 2008.

[GT06] Anupam Gupta and Kunal Talwar. Approximating unique games. In Proceedings of

the 17th ACM-SIAM Symposium on Discrete Algorithms, pages 99–106, 2006.

[Has05] Gustav Hast. Approximating Max kCSP - outperforming a random assignment with

almost a linear factor. In Proceedings of the 32nd International Colloquium on Au-

tomata, Languages and Programming, pages 956–968, 2005.

[Hås07] Johan Håstad. On the approximation resistance of a random predicate. In APPROX-

RANDOM, pages 149–163, 2007.

[Hol07] Thomas Holenstein. Parallel repetition: simplifications and the no-signaling case. In

Proceedings of the 39th ACM Symposium on Theory of Computing, pages 411–419,

2007.

BIBLIOGRAPHY 134

[KG98] Jon M. Kleinberg and Michel X. Goemans. The Lovász Theta function and a semidefi-

nite programming relaxation of vertex cover. SIAM Journal on Discrete Mathematics,

11:196–204, 1998.

[Kho01] Subhash Khot. Improved inaproximability results for maxclique, chromatic number

and approximate graph coloring. In FOCS, pages 600–609, 2001.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of

the 34th ACM Symposium on Theory of Computing, pages 767–775, 2002.

[KKMO04] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inap-

proximability results for MAX-CUT and other two-variable CSPs? In Proceedings

of the 45th IEEE Symposium on Foundations of Computer Science, pages 146–154,

2004.

[KP06] Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for

maxclique, chromatic number and min-3lin-deletion. In ICALP (1), pages 226–237,

2006.

[KR03] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within

2 − ε. In Proceedings of the 18th IEEE Conference on Computational Complexity,

2003.

[KS09] Subhash Khot and Rishi Saket. Sdp integrality gaps with local l1-embeddability. In

Proceedings of the 50th IEEE Symposium on Foundations of Computer Science, 2009.

[KV05] Subhash Khot and Nisheeth Vishnoi. The unique games conjecture, integrality gap for

cut problems and the embeddability of negative type metrics into `1. In Proceedings of

the 46th IEEE Symposium on Foundations of Computer Science, pages 53–63, 2005.

[Las01] Jean B. Lasserre. An explicit exact sdp relaxation for nonlinear 0-1 programs. In

Proceedings of the 8th Conference on Integer Programming and Combinatorial Opti-

mization, pages 293–303, London, UK, 2001. Springer-Verlag.

[Lau03] Monique Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and

Lasserre relaxations for 0-1 programming. Math. Oper. Res., 28(3):470–496, 2003.

[Lov79] L. Lovasz. On the shannon capacity of a graph. Information Theory, IEEE Transac-

tions on, 25(1):1–7, Jan 1979.

BIBLIOGRAPHY 135

[LS91] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.

SIAM J. on Optimization, 1(12):166–190, 1991.

[Rao08] Anup Rao. Parallel repetition in projection games and a concentration bound. In

Proceedings of the 40th ACM Symposium on Theory of Computing, pages 1–10, 2008.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803,

1998. Preliminary version in Proc. of STOC’95.

[RS09] Prasad Raghavendra and David Steurer. Integrality gaps for strong sdp relaxations

of unique games. In Proceedings of the 50th IEEE Symposium on Foundations of

Computer Science, 2009.

[SA90] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the con-

tinuous and convex hull representations for zero-one programming problems. SIAM

J. Discrete Math., 3(3):411–430, 1990.

[Sch08] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-csps. In Pro-

ceedings of the 49th IEEE Symposium on Foundations of Computer Science, 2008.

[SS07] Shmuel Safra and Oded Schwartz. On parallel-repetition, unique-game and max-cut.

Manuscript, 2007.

[ST00] Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with optimal

amortized query complexity. In Proceedings of the 32nd ACM Symposium on Theory

of Computing, pages 191–199, 2000.

[ST06] Alex Samorodnitsky and Luca Trevisan. Gowers uniformity, influence of variables,

and PCPs. In Proceedings of the 38th ACM Symposium on Theory of Computing,

pages 11–20, 2006.

[STT07a] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. A linear round lower bound

for Lovász-Schrijver SDP relaxations of vertex cover. In Proceedings of the 22nd

IEEE Conference on Computational Complexity, 2007.

[STT07b] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. Tight integrality gaps for

Lovasz-Schrijver LP relaxations of vertex cover and max cut. In Proceedings of the

39th ACM Symposium on Theory of Computing, 2007.

BIBLIOGRAPHY 136

[Tou06] Iannis Tourlakis. New lower bounds for vertex cover in the Lovasz-Schrijver hier-

archy. In Proceedings of the 21st IEEE Conference on Computational Complexity,

2006.

[Tre98] Luca Trevisan. Parallel approximation algorithms by positive linear programming.

Algorithmica, 21(1):72–88, 1998. Preliminary version in Proc. of ESA’96.

[Tre05] Luca Trevisan. Approximation algorithms for unique games. In Proceedings of the

46th IEEE Symposium on Foundations of Computer Science, 2005.

[Tul09] Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proceedings

of the 41st ACM Symposium on Theory of Computing, 2009.

137

Appendix A

Deferred Proofs

A.1 Random instances of MAX k-CSPq

The following lemma easily implies lemmata 2.4, 4.2 and 5.8.

Lemma A.1 Let ε, δ > 0 and a predicate P : [q]k → {0, 1} be given. Then there exist β = O(qk/ε2),

η = Ω((1/β)5/δ) and N ∈ N, such that if n ≥ N and Φ is a random instance of MAX k-CSP (P) with

m = βn constraints, then with probability 1 − o(1)

1. OPT(Φ) ≤ |P
−1(1)|
qk (1 + ε) · m.

2. For all s ≤ ηn, every set of s constraints involves at least (k − 1 − δ)s variables.

Proof: Let α ∈ [q]n be any fixed assignment. For a fixed α, the events that a constraint Ci is satisfied

are independent and happen with probability |P−1(1)|/qk each. Hence, the probability over the

choice of Φ that α satisfies more than |P
−1(1)|
qk (1+ε) ·βn constraints is at most exp(−ε2βn|P−1(1)|/3qk)

by Chernoff bounds. By a union bound, the probability that any assignment satisfies more than
|P−1(1)|

qk (1 + ε) · βn constraints is at most qn · exp
(
−
ε2βn|P−1(1)|

3qk

)
= exp

(
n ln q − ε2βn|P−1(1)|

3qk

)
which is

o(1) for β =
6qk ln q
ε2 .

For showing the next property, we consider the probability that a set of s constraints contains at

most cs variables, where c = k − 1 − δ. This is upper bounded by(
n
cs

)
·

((cs
k

)
s

)
· s!

(
βn
s

)
·

(
n
k

)−s

APPENDIX A. DEFERRED PROOFS 138

Here
(

n
cs

)
is the number of ways of choosing the cs variables involved,

((cs
k)
s

)
is the number of ways

of picking s tuples out of all possible k-tuples on cs variables and s!
(
βn
s

)
is the number of ways of

selecting the s constraints. The number
(
n
k

)s
is simply the number of ways of picking s of these

k-tuples in an unconstrained way. Using (a
b)b ≤

(
a
b

)
≤ (a·e

b)b, s! ≤ ss and collecting terms, we can

bound this expression by (s
n

)δs (
e2k+1−δk1+δβ

)s
≤

(s
n

)δs
(β5)s =

(
sβ5/δ

n

)δs

We need to show that the probability that a set of s constraints contains less than cs variables for

any s ≤ ηn is o(1). Thus, we sum this probability over all s ≤ ηn to get

ηn∑
s=1

(
sβ5/δ

n

)δs

=

ln2 n∑
s=1

(
sβ5/δ

n

)δs

+

ηn∑
s=ln2 n+1

(
sβ5/δ

n

)δs

≤ O
(
β5

nδ
ln2 n

)
+ O

((
η · β5/δ

)δ ln2 n
)

The first term is o(1) and is small for large n. The second term is also o(1) for η = 1/(100β5/δ).

Proof of Lemma 2.4: If we take P to 3-XOR, the expansion and unsatisfiability of a random

instance follow directly from lemma A.1. We only need to ensure that at the same time no two

clauses (constraints) share more than one variable.

The probability that there are no two clauses sharing two variables must be at least
∏

s=1,...,m(1−

O(s)/n2) because when we choose the sth clause, by wanting it to not share two variables with

another previously chosen clause, we are forbidding O(s) pairs of variables to occur together. Each

such pair happens to be in the clause with probability O(1/n2). Now we use that for small enough

x, 1 − x > exp(−O(x)) the probability is at least exp(−O((
∑

s=1,...,m s)/n2)) = exp(−O(m2/n2)) =

exp(−O(β2)) which is some positive constant.

Proof of Lemma 5.8: We only need to express the expansion condition in terms of |∂(C)| for a set C

of constraints. We claim that if C involves at least (k−1−δ)|C| variables, then |∂(C)| ≥ (k−2−2δ)|C|.

If we use Γ(C) to denote all the variables contained in C, then it is easy to see that

k|C| ≥ |∂(C)| + 2(|Γ(C)| − |∂(C)|)

since every constraint in C has exactly k variables and each variable in Γ(C)\∂(C) appears in at least

two constraints. Rearranging the terms proves the claim.

APPENDIX A. DEFERRED PROOFS 139

A.2 Proofs from Chapter 3

A.2.1 Proof of Lemma 3.1

Lemma A.2 For every 0 < α < 1/125, η > 0, there exists a d = d(α) ∈ N, δ, γ > 0, and N ∈ N

such that for n ≥ N there exists an (α, δ, γ, η) graph with max cut less than 1
2 |E|(1+α) and maximum

degree at most d on n vertices. Here d(α) is an explicit function that depends only on α.

We use the following lemma from [ABLT06]

Lemma A.3 For every 1 < α < 1/250, η > 0, there exists a δ, γ > 0 such that a random graph from

the Gn,p distribution where p = α−2/n has the following properties with probability 1 − o(n):

• after O(
√

n) edges are removed, the girth is δ log n.

• the minimum vertex cover contains at least (1 − α)n vertices

• every induced subgraph on a subset S of at most γn vertices has at most (1 + η)|S | edges.

Proof: [of Lemma A.2] Given α, η > 0, set α′ = α/2. Use Lemma A.3 with inputs α′, η to randomly

pick a graph on n vertices. Set p = (α′)−2/n as in Lemma A.3. Now, with high probability, we can

remove set of edges R to obtain a (α/2, δ, γ, η)-graph on n vertices. Do not yet remove edges.

Also, it is well known that w.h.p. the max-cut in a random Gn,p has size less than 1
2 |E|(1+1/

√
d),

where d is the average degree. The average degree of a vertex in this model is λ = pn = 4α−2.

Hence the size of the max-cut is at most 1
2 |E|(1 +α/2). The probability that some fixed vertex v0 has

degree greater than 2λ is less than exp(−λ/3) by a Chernoff bound. So by Markov’s inequality the

probability that more than exp(−λ/6)n vertices have degree greater than 2λ is at most exp(−λ/6) ≤

exp(−10000).

If this is the case, then first remove the edge set R. By removing edges we could only decrease

the maximum degree. Then simply remove all vertices with degree more than 2λ from the graph

and any other subset to obtain a graph G′ with n(1 − exp(−d/6)) vertices. Now, it is easy to check

that G′ is a (α, δ, γ, η)-graph with maximum degree at most d(α) = 2λ = 8/α2. Removing the edges

and vertices changes the max cut to 1
2 |E|(1 + α/2 + o(1)) < 1

2 |E|(1 + α).

APPENDIX A. DEFERRED PROOFS 140

A.2.2 Proofs of claims about splashes

We use the following notation for the proofs in this appendix. We denote P[i = 1|r = b] and

P[i = 1, j = 1|r = b] by Pb
r (i) and Pb

r (i, j) respectively. P[i = 0|r = b] and P[i = 0, j = 1|r = b] are

expressed as 1− Pb
r (i) and Pb

r (j)− Pb
r (i, j) respectively. Also, in cases where P[j = 1|i = b] depends

only on d(i, j), we denote it by Qb(d(i, j)).

Claim A.4 Consider a b-Splash around a vertex i such that all vertices upto distance ` are labeled
1
2 + ε. Then,

1. Q1(k) = (1/2 + ε)
[
1 + (−1)k

(
1/2−ε
1/2+ε

)k+1
]

for 0 ≤ k ≤ `

Q0(0) = 0 and Q0(k) = Q1(k − 1) for 1 ≤ k ≤ `

2.
∣∣∣Q0(`/2) − (1/2 + ε)

∣∣∣ ≤ ε4

3. ∀0 ≤ k ≤ `, Q1(k) + Q1(k + 1) ≥ 1 + 4ε2

Proof: We prove the formula for Q1(k) by induction. For k = 0,

(1/2 + ε)

1 + (−1)k
(

1/2 − ε
1/2 + ε

)k+1 = (1/2 + ε)
[

1
1/2 + ε

]
= 1 = Q1(0)

Assuming the correctness of the formula for k = n, we start with the recurrence

Q1(n + 1) = (1 − Q1(n)) +

(
2ε

1/2 + ε

)
Q1(n) = 1 −

(
1/2 − ε
1/2 + ε

)
Q1(n)

since the vertex at distance n (in the same path) might not be present with probability 1 − Q1(n) in
which case the one at distance n + 1 is present with probability 1, and it is present with probability
Q1(n) in which case the one at distance n + 1 is included with probability

(
2ε

1/2+ε

)
. Therefore, we

have

Q1(n + 1) = 1 −
(

1/2 − ε
1/2 + ε

)
(1/2 + ε)

1 + (−1)n
(

1/2 − ε
1/2 + ε

)n+1
= 1 − (1/2 − ε) + (−1)n+1 (1/2 + ε)

(
1/2 − ε
1/2 + ε

)n+2

= (1/2 + ε)

1 + (−1)n+1
(

1/2 − ε
1/2 + ε

)n+2
Also note that if i is labeled 0, then all its neighbors must be set to 1. Hence Q0(0) = 0 and

Q0(1) = 1. The rest of the induction works exactly as above.

Note that∣∣∣Q0(`/2) − (1/2 + ε)
∣∣∣ = (1/2 + ε)

(
1/2 − ε
1/2 + ε

)`/2
< (1 − 2ε)`/2 = (1 − 2ε)(4

ε log 1
ε) ≤ ε4

APPENDIX A. DEFERRED PROOFS 141

Finally for 0 ≤ k < `,

Q1(k) + Q1(k + 1) = (1/2 + ε)

2 + (−1)k
(

1/2 − ε
1/2 + ε

)k+1 (
1 −

1/2 − ε
1/2 + ε

)
= (1/2 + ε)

2 + (−1)k
(

1/2 − ε
1/2 + ε

)k+1 (
2ε

1/2 + ε

)
≥ (1/2 + ε)

2 − (
2ε

1/2 + ε

) (
1/2 − ε
1/2 + ε

)2 = 1 + 2ε − 2ε
(

1/2 − ε
1/2 + ε

)2

≥ 1 + 4ε2

The claim for k = ` follows from part 2 and the fact that Q1(d) = 1/2 + ε for d > `.

Claim A.5 If we pick a 0-Splash with probability 1/2 − ε and a 1-Splash with probability 1/2 + ε,

then all vertices have probability 1/2 + ε. Furthermore, vertices at distance ` + 1 or more from i

have weight 1/2 + ε in the 0-Splash as well as 1-Splash around i.

Proof: We prove it by induction on the length of the path from i to j. Let Pi(j) = (1/2 − ε)P0
i (j) +

(1/2 + ε)P1
i (j). The base case, when the path is of length 0 is clear. If the path between i and j is

i = v0, v1, . . . , vm−1, vm = j, then there are two cases. In the first case vm−1 and vm are both within

distance ` of i. Then

Pi(j) = 1 − (1 −
2ε

1/2 + ε
)Pi(vm−1)

because vm is only excluded with probability 2ε
1/2+ε when vm−1 is present and this event is independent

of whether or not each vertex i = v0, v1, . . . , vm−1 is included in the cover. By induction, Pi(vm−1) =

1/2 + ε, and so 1 − (1 − 2ε
1/2+ε)Pi(vm−1) = 1/2 + ε.

In the second case vm−1 is at distance `. However,

Pb
i (j) = 1 − (1 −

Pb
i (vm−1) − (1/2 − ε)

Pb
i (vm−1)

)Pb
i (vm−1) = 1/2 + ε

because the probability vm−1 is included in a b-Splash is Pb
i (vm−1) and the probability of including

vm when vm−1 is present is
Pb

i (vm−1)−(1/2−ε)
Pb

i (vm−1)
.

Claim A.6 Let i = v0, v1, . . . , vm−1, vm = j be the path to j, m ≤ `, and let u be the vertex on this

path which is closest to r. Then

1. Pb
r (i, j) = Pb

r (u) · P1
u(i)P1

u(j) + [1 − Pb
r (u)] · P0

u(i)P0
u(j)

2. If Pb
r (u) = 1/2 + ε, then Pb

r (i, j) = (1/2 + ε)P1
i (j)

APPENDIX A. DEFERRED PROOFS 142

Proof:

1. Let E be the event that both i and j are in a vertex cover and r = b. Then Pb
r (i, j) = P[E | r = b].

We can also condition on whether u is in the vertex cover.

Pb
r (i, j) = P[u ∈ VC | r = b] · P[E | r = b and u ∈ VC]

+ P[u < VC | r = b] · P[E | r = b and u < VC]

But P[E | r = b and u ∈ VC] = P[E | u ∈ VC]. Because given that u is in or out of the vertex

cover, we can determine if i and j are in the vertex cover by following the edges from u to

each of them. But this information is independent of whether r is in the vertex cover. For the

same reason P[E | r = b and u ∈ VC] = P[E | u ∈ VC]. Therefore

Pb
r (i, j) = Pb

r (u) · P1
u(i)P1

u(j) + [1 − Pb
r (u)]Ṗ0

u(i)P0
u(j)

as claimed.

2. The probability that i and j are in a vertex cover (assume r is not yet fixed) is just (1/2 +

ε)P1
i (j). Now, we can just condition on l, and rewrite this as

P[u ∈ VC] · P1
u(i, j) + P[u < VC] · P0

u(i, j)

We can also not condition on r = b because once l is fixed, that does not affect anything, and

in addition, P[u ∈ VC] = 1/2 + ε = Pb
r (u). So this becomes

Pb
r (u) · P1

u(i, j) + [1 − Pb
r (u)] · P0

u(i, j)

Finally, if we note that Pb
u(i, j) = Pb

u(i)Pb
u(j), we see that we get

Pb
r (l) · P1

u(i)P1
u(j) + [1 − Pb

r (u)] · P0
u(i)P0

u(j)

which by 1) is simply Pb
r (i, j) as claimed.

Claim A.7 Let i be a vertex and (j,k) be an edge in a b-Splash around r. Then if j and k are not

already fixed

Pb
r (i, j) + Pb

r (i, k) ≥ Pb
r (i)(1 + 4ε3)

and

[Pb
r (j) − Pb

r (i, j)] + [Pb
r (k) − Pb

r (i, k)] ≥ (1 − Pb
r (i))(1 + 4ε3)

APPENDIX A. DEFERRED PROOFS 143

Proof: We consider separately the cases when (j, k) lies on or outside the path between r and i.

Case 1: (j, k) lies outside the path connecting r and i

Without loss of generality, let j be the vertex closer to the path from r to i. Let u be the vertex in the

path closest to j. Then by Claim A.6

Pb
r (i, j) = Pb

r (u) · P1
u(i)P1

u(j) + [1 − Pb
r (u)] · P0

u(i)P0
u(j)

Pb
r (i, k) = Pb

r (u) · P1
u(i)P1

u(k) + [1 − Pb
r (u)] · P0

u(i)P0
u(k)

Therefore,

Pb
r (i, j) + Pb

r (i, k) = Pb
r (u)P1

l (i) ·
[
P1

u(j) + P1
u(k)

]
+ [1 − Pb

r (u)]P0
u(i) ·

[
P0

u(j) + P0
u(k)

]

Also by Claim A.4 we know that Pb
u(j) + Pb

u(k) ≥ 1 + 4ε2, if j and k are not already fixed, which

gives

Pb
r (i, j) + Pb

r (i, k) ≥
[
Pb

r (u)P1
u(i) + [1 − Pb

r (u)]P0
u(i)

]
(1 + 4ε2) = Pb

r (u)(1 + 4ε2)

Case 2: (j, k) lies on the path connecting r and i

Let j be the vertex closer to r. Also, let α = Pb
r (j) and β = P1

j(i). Then,

Pb
r (i, j) = Pb

r (j)P1
j(i) = αβ

Pb
r (i, k) = Pb

r (k)P1
k(i) =

[
1 − α +

2ε
1/2 + ε

α

] [
(1 − β)

1/2 + ε

1/2 − ε

]
= (1 − α)(1 − β)

(
1/2 + ε

1/2 − ε

)
+ α(1 − β)

(
2ε

1/2 − ε

)
where the second equation follows from the recurrence Q1(n+1) = (1−Q1(n))+

(
2ε

1/2+ε

)
Q1(n) used

in Claim A.4. Also,

Pb
r (i) = Pb

r (j)P1
j(i) + (1 − Pb

r (j))P0
j(i) = Pb

r (j)P1
j(i) + (1 − Pb

r (j))P1
k(i)

= αβ + (1 − α)(1 − β)
(
1/2 + ε

1/2 − ε

)
This gives

Pb
r (i, j) + Pb

r (i, j)
Pb

r (i)
= 1 +

α(1 − β)
(

2ε
1/2−ε

)
αβ + (1 − α)(1 − β)

(
1/2+ε
1/2−ε

) ≥ 1 + 4ε3

APPENDIX A. DEFERRED PROOFS 144

since α, (1 − β) > 2ε (all probabilities in a splash are at least 2ε, unless one is 0 and the other is 1,

but then both are fixed).

The proof of the second statement follows similarly.

Claim A.8 Let i and j be two vertices in a b-Splash around r, such that d(i, j) ≥ `. Then∣∣∣Pb
r (i, j) − Pb

r (i)Pb
r (j)

∣∣∣ ≤ 2ε4

and ∣∣∣[Pb
r (j) − Pb

r (i, j)] − (1 − Pb
r (i))Pb

r (j)
∣∣∣ ≤ 2ε4

Proof: Let u be the vertex closest to r on the path from i to j. Without loss of generality, assume

that d(i, u) ≥ `/2. Then∣∣∣Pb
r (i, j) − Pb

r (i)Pb
r (j)

∣∣∣ =
∣∣∣Pb

r (u) · P1
u(i)P1

u(j) + [1 − Pb
r (u)] · P0

u(i)P0
u(j) − Pb

r (i)Pb
r (j)

∣∣∣
≤

∣∣∣∣(1/2 + ε)
[
Pb

r (u) · P1
u(j) + [1 − Pb

r (u)] · P0
u(j)

]
− Pb

r (i)Pb
r (j)

∣∣∣∣ + ε4

=
∣∣∣(1/2 + ε)Pb

r (j) − Pb
r (i)Pb

r (j)
∣∣∣ + ε4 ≤ 2ε4

where the two inequalities follow from the fact that |Pb
r (i)− (1/2 + ε)| ≤ ε4 if d(i, r) ≥ `/2 as proved

in Claim A.4.

The second statement can be proven in a similar fashion.

