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I. INTRODUCTION 

The continuous downscaling of CMOS technologies has resulted in a strong 

improvement in the RF performance of MOS devices [1].  The scaling of CMOS leads to 

MOSFET with high unity-gain frequencies, which becomes very attractive option for analog RF 

applications and RF systems-on-chip. [2], [3].    The statistical flicker noise (1/f noise) in planar 

bulk MOSFET has received increasing attention with the proliferation of RF applications.  At 

low frequencies, 1/f noise is the dominant source of noise in MOSFET devices [1].  The low 

frequency 1/f noise in deep-submicron MOSFET causes a significant increase in noise that 

impacts the performance of analog and RF CMOS circuits, such as high performance operational 

amplifiers, precision ADC/DACs, and low IF mixers [4].   Flicker noise has a serious impact on 

RF CMOS circuits such as voltage-controlled oscillators (VCOs), where it causes a significant 

increase in the phase noise [1], [4].  Accurate modeling of flicker noise in modern CMOS 

technologies is a prerequisite low-noise RF circuit design.  

 Flicker noise exhibits different characteristics for large and small MOSFETs.  For a large 

device, flicker noise shows a clean 1/f behavior across all frequency range shown in Fig. 1(a)[1].  

As a device scales down and the transistor area becomes smaller, flicker noise begins to exhibit 

more Lorenztian-like shape and thus more device-to-device variation characteristics shown in 

Fig. 1(b) [5].  Due to this large noise variation in scaled MOSFETs, it is necessary to develop a 

feasible statistical flicker noise compact model. In Fig. 1, noise power can be denoted as either 

the current noise power SId(f) or the input referred noise power SVg (f).  The relationship between 

SId (f) and SVg (f) is SVg (f) = SId(f)/gm
2, where gm is the MOSFET trans-conductance [1].  In this 

report, noise power is expressed as current noise power SId(f). 
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(a)                                                               (b) 
Figure 1:  Measured flicker noise characteristics for (a) large area devices which shows clean 1/f 
shape [1], and for (b) small area devices which shows Lorenztian-like shape with large device-
to-device variation [5].  

  

This report is organized into eight sections.  Section I introduces the significance of 

accurate statistical noise compact model. Section II reviews the most commonly accepted 

mechanism of flicker noise and the cause of differences in noise spectra between large and small 

area devices.  Section III discusses the three key variables in the previously developed statistical 

Monte Carlo model.  Section IV proposes the new statistical Analytical model for flicker noise in 

scaled MOSFET.  Section V discusses three important experimental observations.  In Section VI, 

the experimental data which supports and verifies the Analytical model is presented. Section VII 

proposes the future usage and application of the Analytical model.  Section VIII concludes the 

paper. 

W/L=10μm/0.28μm W/L = 0.16μm/0.13μm 
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II. FLICKER NOISE MECHANISM 

According to the Carrier Number Fluctuation Theory, the flicker noise is attributed to the 

trapping and detrapping of charge carriers in traps located in the gate dielectric [1].  Fig. 2 shows 

a schematic drawing of charge carrier exchange process between the oxide traps and the 

inversion layer in a MOSFET.  Every single trap that is located in the dielectric oxide leads to a 

Lorentzian noise power spectrum.  For a uniform spatial trap distribution, the Lorentzian spectra 

add up to give a 1/f characteristic [1].   

 

Figure 2: Schematic of traps in the dielectric oxide layer in a MOSFET.  Flicker noise is caused 
by carrier trapping and detrapping process according to the Carrier Number Fluctuation Theory. 

 

Although a quantitative understanding of the flicker noise generation mechanism has not 

been fully established, the prevailing mechanism points to the trapping and de-trapping of charge 

carriers from the oxide dielectric for both NMOS and PMOS.  The capture and emission of a 

carrier by the trap result in discrete modulations of the channel current referred to as Random 

Telegraphic Noise (RTN) in the time domain [6].  Flicker noise is the frequency domain 

representation of RTN, which is measured by total drain current noise power, SId (f).   
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The current Unified model describes the measured 1/f noise characteristics of both large 

area NMOS and PMOS using a single model [1].  The Unified model extends the Carried 

Number Fluctuation Theory to include carrier mobility fluctuation due to Coulombic scattering 

effect of the fluctuating oxide charge [7].  Therefore, both the number of charge carriers in the 

channel and their mobility fluctuations are correlated since they originate from the same source 

[1].  The Unified model can predict the correct magnitude and bias dependence of parameters 

used for modeling the flicker noise [7].  This model is used in many of today’s compact 

MOSFET models, such as BSIM3 and BSIM4.   

A.  Single Trap Random Telegraphic Noise (RTN) 

 The origin of flicker noise comes from carrier captured and emitted by the traps in the 

oxide.  Since carrier capture and emission processes are primarily tunneling process, each trap is 

associated with a specific tunneling rate.  The probability of a charge carrier penetrating into the 

oxide decreases exponentially with the increasing distance from the silicon interface to the gate 

interface.  The tunneling rate decreases exponentially with the increase of the depth of the trap in 

the dielectric (y) from the silicon-oxide interface.  Thus, the trapping/tunneling time constant (τ), 

which is the inverse of the tunneling rate, increases exponentially with the increase of y.   

         (1) 

τ0 is defined as the trapping time constant at the silicon-oxide interface, γ is the tunneling or 

attenuation coefficient [7] , and y is the depth of the trap in the dielectric measured from the 

silicon-dielectric interface.  γ depends on temperature, frequency, and material properties [8].  

Typically, τ0 is 10-10sec and γ is 108 cm-1 for SiO2 dielectric. 

ye .
0

γττ =
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Every single trap that is located in the dielectric oxide leads to a Lorentzian noise power 

spectrum. RTN for a single trap level which is associated with a time constant τ is responsible 

for each Lorenzian noise.  According to the Carrier Number Fluctuation Theory, RTN can be 

expressed by [9], where ω is the angular frequency which is equal to 2 π f. 

(2) 

 

B.  Flicker Noise SId (f) for both Large and Small Area Devices 

In MOSFET, multiple-trap levels contribute to the total drain current noise power, SId (f).  

In a large area device, flicker noise is the integral of RTN over the total dielectric depth Tox.  

Assuming a spatially uniform trap density inside the dielectric, the flicker noise for a large area 

device can be written as [7]: 

 

(3) 

For a small area device, there are only a few traps present in the gate dielectric and the 

spatially uniform trap density assumption in large area device may not be entirely valid for small 

area device.  SId (f) is the numerical discrete sum of the RTN from all individual traps in the 

dielectric.   

(4) 

For each trap, the noise power spectrum shows a Lorenztian shape associated with a 

specific corner frequency defined by the trapping time constant in Eq. 1.  The origin of flicker 

noise for both large and small area devices is illustrated in Fig. 3.  For a large area device with 

221 τω
τ

+
∝RTN

dyRTNfS
trNi

i
iid ∑

=

=

=
0

)(

∫=
oxT

Id RTNdyfS
0
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uniform density traps, the sum of many Lorenztian spectra with corner frequencies that are 

exponentially distributed yields a 1/f straight line as shown in Fig. 3(a).  Since the number of 

traps in large area device is large, device to device variation is small because the sum of all 

Lorenztian averages out the trap variations.  However, for a small area device, even though the 

origin of noise is the same, the noise characteristics look dramatically different.  For a small area 

device with few traps, only a few time constants exist and SId (f) yields a Lorenztian-like 

spectrum shown in Fig. 3(b).   

 

 

 

 

 

 

Figure 3:  Schematic illustration of (a) 1/f noise in a large area device and (b) Lorenztian-like 
noise spectrum in a small area device.  The individual Lorentzian represents the RTN from a 
single trap in the dielectric.  Flicker noise is the discrete number of RTN from all traps. 
 

 This discrete sum flicker noise concept can explain the large variation observed in small 

area devices.  For two small devices of the same area, even though the number of traps could be 

identical, the location of the traps may be different resulting in different RTNs.  Hence, the same 

number of traps in different small area devices may have different impact on noise, which can 

result in very different Lorenztian spectra.    The discrete sum flicker noise concept is used as a 

foundation to build both the statistical Monte Carlo and the Analytical compact models. 

f

f f f f

f f

(a)

(b)

Trap1 Trap2
Trapn

1/fmany
traps

Trap1 Trap2 ≠1/f
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III. KEY VARIABLES IN THE MONTE CARLO MODEL 

Statistical Flicker Noise Monte Carlo Compact Model introduced by Dunga Mohan, Ph.D 

consists of three key variables.  The three key variables are the number of traps (Ntr), the location 

of traps along the dielectric oxide depth (y), and the energy level of traps (Etr). 

The first variable is Ntr.  Due to the discrete nature of the number of traps, Ntr is expected 

to follow Poisson statistics [5].  The average number of traps < Ntr > has an expected value of 

WLNt, where WL is the device area and Nt is the average trap density fixed for all devices in a 

given technology.  When applying the Monte Carlo process, if the random number generator 

produces a cumulated probability of 0.82, the random device sample with <Ntr> = 5 will have 6 

traps based on Poisson statistics.   

The second variable is the trap location inside the insulator (y).  Large area 1/f noise in 

MOSFETs has a spectrum with a slope that varies between ~-0.8 and ~-1.2 on a double-log plot 

[10].  In the unified model, the model parameter EF represents the slope of the 1/f line shown in 

Fig. 4, which can be extracted from large area device noise spectrum.  A uniformly spatial 

density of traps (EF=1) is a special case and yields 1/f noise for large device.  However, the 

measurement of noise in large area devices allows for 1/fEF suggesting a non-uniform trap 

distribution.  EF not equaling to 1 suggests non-uniform trap density in the dielectric [10].  To 

describe the trap distribution along the depth of the dielectric, an exponential trap distribution 

model is proposed below [11]. 

(5) 

NT0 represents the trap density at silicon-oxide interface and γ is the attenuation coefficient of the 

electron wave function in the oxide.  When EF=1, the exponential term is reduced to 1 and Ntr = 

yEF
tr eNN

T

)1(
0

−= γ
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NT0 in all y direction, which indicates that the trap distribution is uniform along y axis.  When 

EF<1, the number of traps exponentially decreases from the substrate surface to the gate surface.  

When EF>1, the number of traps exponentially increase from the substrate surface to the gate 

surface.  The distribution of traps as a function of EF is illustrated in Fig. 5. 

10-1 101 103 105 1071E-21

1E-19

1E-17

1E-15

1E-13

1E-11

 

 
S id

 (A
2 /H

z)

Frequency (Hz)

 EF=0.8
 EF=1.0
 EF=1.2

 

Figure 4:  EF represents the slope of 1/f line in noise spectrum double-log plot and has a typical 
value between ~0.8 and ~1.2 [10]. 

 

Figure 5:  Trap density distributions can be represented as a function of y and EF in the flicker 
noise statistical model. The exponential trap density distribution enables the modeling of 
experimentally observed 1/fEF noise spectrum where EF≠ 1. 
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The third variable is the trap energy (Etr) associated with each trap.  The difference between the 

energy of the trap level and the Fermi-level of the device (Ef) has an impact on the magnitude of noise.  

The trap energy levels which are located close to Ef   exchange carriers easily and contribute more to noise.  

The traps energy levels which are away from Ef are relatively inactive and contribute less to noise.  The 

trap contributes maximum noise when its energy is aligned with Ef.  The impact on noise decreases 

exponentially as the trap moves away from Ef [12].  In the Monte Carlo model, trap energy is assumed to 

be uniformly distributed.  By changing gate bias (Vg), one can modulate the trap energy level and thus its 

impact on noise [13].   

IV. STATISTICAL ANALYTICAL MODEL 

The Analytical model which describes the mean and the standard deviation can be used as an 

alternative to the Monte Carlo model.  The population mean describes the central location, which is the 

arithmetic average of the all noise powers from all devices across the frequency range.  The standard 

deviation is the most common indicator of the dispersion of the noise, measuring how widely the noise 

power spreads.  With the correctly modeled mean and standard deviation, it is sufficient to describe the 

flicker noise statistics. 

A. Statistical Mean, <SId (f)> 

The statistical mean <SId (f)> of flicker noise is the arithmetic average noise power generated by 

all devices of a same area in a given technology (Eq. 6), where N is the number of devices in a 

small area device sample.   

(6) 

Conceptually, if many small-area devices of the same area are placed side by side, the 

resultant combined device area will be large, which is equivalent to a single large-area device.  

N

fS
fS

Ni

i
iId

Id

∑
=

=>=< 1
)(

)(
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Equivalently, the numerical summation of all Lorenztian-shape spectrums observed in small 

devices will be a single 1/f straight line shape observed in large area device.  Therefore, the 

average small area noise power <SId (f)> will resemble large area device noise characteristics, in 

which there is a single 1/f straight line.  Since the currently available Unified model can model 

large-area device flicker noise accurately and has been successfully used in the industry for many 

years, small area device flicker noise mean <SId (f)> should be modeled by the Unified model as 

well.  Alternatively, if the Unified model can accurately simulate noise for a large area device, 

the same model parameters in the Unified model can also be used to predict <SId(f)>  of the 

small area devices in the same technology. 

B. Statistical Standard Deviation, σ (f) 

In statistics, standard deviation is defined as the root-mean-square (RMS) deviation of the 

values from the mean.  Since <SId(f)>  has the 1/f shape resembling large area noise simulated by 

the Unified model, the standard deviation σ (f) which is defined as in Eq. 7 [5] also has the 1/f 

characteristics, and thus is a function of the frequency.   

            

(7) 

 

Since both σ(f) and <SId(f)> are frequency-dependent and follows similar 1/f shape, it is 

convenient to model the normalized standard deviation σn defined by the ratio of the standard 

deviation to the mean [5].  

           (8) 

 

22 )()()( ><−><= fSfSf IdIdσ
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=
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Previously, we have showed in Eq. 4 that small area device noise power SId (f) is the 

summation of each RTN from all Ntr traps.  For the same reason, the mean < SId (f)> is also 

proportional to the average number of traps <Ntr>.   

          (9) 

Since <SId (f)> is proportional to the average trap number <Ntr>, the variance of the noise 

σ(f)2 is also proportional to the variance of trap number σNtr
2.   

22)(
trNf σσ ∝    (10) 

We have also stated previously that the number of trap Ntr can be described by Poisson 

statistic.  In Poisson statistics, the variance of a Poisson random variable, which is the square of 

standard deviation, is equal to its mean value shown in Eq. 11 [14].    

trtr

tr

tr

N

NN
N

N
tr 1

=
><
><

=
><

σ
  (11) 

Combining Eq. 9, 10, and 11, we obtain that the normalized standard deviation σn. which 

is inversely proportional to the square root of average trap number <Ntr>. 

><
=

><
=

><
=

trtr

N

Id
n NNfS

f tr 1
)(
)( σσσ   (12)  

Although the number of traps varies from device to device, the average number of traps 

<Ntr> for a device is fixed for a given technology, which depends on the existing fabrication 

>>∝<< trId NfS )(
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process.  <Ntr> can be further defined as a function of average trap density NT and the transistor 

area WL, where W is the gate width and L is the gate length [14]. 

             (13) 

The tunneling time constant τ can be expressed as the inverse of frequency: 

          (14)   

and 

          (15) 

In Eq. 1, the time constant can be replaced by the frequency terms: 

          (16) 

  

Plug Eq. 16 into Eq. 5: 

(17) 

From Eq. 17, we obtain Ntr as a function of frequency: 

          (18) 

Combining Eq. 13 and Eq. 18, Ntr has a final expression: 

          (19) 

Substitute Ntr from Eq 19 into Eq. 12, σn can be expressed as:  

(20) 

EF
tr fN −∝ 1

EF
Ttr fLWNN −×××∝ 1
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Here, a new parameter NOIS is introduced and defined in Eq. 21.  NOIS, like many other 

parameters in the model card, needs to be extracted in order to use this statistical Analytical 

model.    Here we have assumed that NOIS is a constant and does not have a bias dependence.  

The bias dependence of σ (f) originates from the bias dependence of <SId (f) > only.  

          (21) 

 

          (22) 

 

Eq. (22) is the final form of the model and σn is inversely proportional to the square root 

of the device area and has a frequency dependence.  For small area devices, noise variance σn
2 

is large.  As the device area gets larger, the noise variance becomes smaller.  Fig. 6 illustrates 

the relationship between σn and EF.  

 

Figure 6: Schematic representation of normalized standard deviation σn vs. frequency on a log 
scale.  σn is a function of EF for devices of the same area.    

 

For EF=1, the traps are uniformly distributed along the dielectric depth y.  Since the 

number of traps contributing to all frequency noise is the same, σn is a constant for all 

frequencies.  For EF<1, there are more traps close to the substrate-oxide surface, the number of 

2
1
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traps contributing to high frequency noise is larger, and thus σn  at high frequency is smaller than 

that at low frequency.  For EF>1, there are more traps close to the gate-oxide surface, the number 

of traps contributing to the low frequency noise is large, and σn  at low frequency is smaller than 

that at high frequency.  The slope of the σn vs. frequency in the log scale plot is (EF-1)/2.   

 

V.  EXPERIMENTAL DATA OBSERVATIONS 

The statistical noise behavior of the 90nm CMOS technology was experimentally 

characterized.  A total of 175 devices of two area sizes were selected from the center dies of a 

wafer to minimize the variation due to different locations in the wafer.  The minimum printable 

transistor size for this 90nm node is W = 0.22 µm and L = 0.1 µm and 90 transistors were 

measured.  The next transistor size is W = 1 µm and L = 0.1 µm and 85 transistors were 

measured.  The gate oxide thickness Tox is 2.8 nm and the supply voltage Vdd is 1.2 V.  Flicker 

noise is measured in the saturation mode from 4 Hz to 102.4 KHz at room temperature at Vds = 

Vgs = Vdd.   The noise spectra for both areas are plotted in Fig. 7.  The devices of both areas are 

considered as small area devices because the majority of the noise exhibits Lorentzian 

characteristics and the variation is relatively large.  There are three interesting observations from 

the noise data and each observation will be discussed below in detail. 
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(a) 

 
 

(b) 
Figure 7:  Flicker noise spectra (a) for all 90 transistors with W/L = 0.22 µm /0.1 µm and (b) for 
all 85 transistors with W/L = 1 µm /0.1 µm.  For devices in both areas, each transistor exhibits 
Lorentzian characteristic noise.   
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A.  Poisson Statistics Assumption of the Number of Traps, Ntr  
 

First observation is that there is no trap-free device in the data set, even in the minimum 

area devices.  If each bend in the Lorentzian noise spectrum at a specific corner frequency 

represents the presence of a trap, we can estimate the number of traps for each sample device 

from the noise spectrum.   For example, in Fig. 8, (a) represents a sample device with two traps 

which have two corner frequencies of f1< 1Hz and f2~ 8000Hz whereas (b) presents a sample 

device with only one trap which has one corner frequency at around 4000Hz.   

 

 

(a)       (b) 
Figure 8:  Examples of Lorentzian spectra for single sample device from the minimum size 
transistor (W/L = 0.22 µm /0.1 µm).  One can extract the number of traps from the spectra.  In 
(a), the device may have 2 traps with two corner frequencies of f1<1 Hz and f2~8000Hz.  In (b), 
the device may have only one trap with one corner frequency f~4000Hz. 

 

When one follows the methodology described in Fig. 8 to estimate the number of traps 

for all the 90 sample devices from the minimum size area (W = 0.22 µm and L = 0.1 µm), the 

average number of traps <Ntr> is estimated to be 2.6.  For <Ntr> = 2.6, Poisson statistics predicts 

there will be 7.4% of devices with less than 0.1 traps.  Thus, for the total 90 samples, if the 

f2~8000Hz f1<1Hz f~4000Hz 
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number of traps is a pure Poisson statistics variable, one will observe at least 6 sample devices 

(90 X 7.4%) that are trap-free, which does not generate flicker noise.  Since a trap free device is 

not observed in the experiment, the assumption of pure Poisson statistics for the number of traps 

Ntr may not be an entirely correct assumption.   

One hypothesis that our group propose to explain this observation of the absence of trap 

free devices is that the mechanism of trap formation may be different between the interior and at 

the corners of the gate dielectric.  The traps formed in the interior of the gate dielectric may be 

described by the conventional Poisson statistics.  However, the four corners of the gate dielectric 

may have a higher chance to form traps due to its unique geometry.  If this is true, a pure Poisson 

statistic assumption may not be appropriate to describe the number of traps formed at the 

corners.  As the transistor scales down, the interior area of the dielectric shrinks dramatically but 

the four corners of the rectangular gate will still remain.   

B.  Single Short Time Constant Assumption 
 

The second interesting observation made from the noise spectra is that there is not a 

single device that has only one short time constant.  The simulated noise spectrum which 

assumes the probability of having single short time constants shown in Fig. 9 (a) is compared to 

the experimental noise spectrum data in Fig. 9 (b).  The two spectra look very different.  Fig. 9 

(a) was simulated using the statistical Monte Carlo model with an average trap number <Ntr> = 

2.6 and EF=1.  In the Monte Carlo model, the assumption of single short time constant is a used 

and some Lorentzian spectra flatten out at a high corner frequency due to this assumption.  

Comparing Fig. 9 (a) to Fig. 9 (b), the single short time constant assumption predicts much 

larger variation for low frequency noise.    
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(a) 

 

(b) 

Figure 9: Comparison between (a) simulated noise spectrum with the single time constant 
assumption and (a) the experimental noise spectrum.  The single time constant assumption 
predicts large variation for low frequency noise, which was not observed in experimental data. 

 

W/L=0.22μm/0.1µm 

90 transistors 

Noise 
predicted by 
single short τ 
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Based on the conventional assumption of time constant, single short time constant means 

that there is only one trap in the device and that trap is located very close to the substrate surface.  

However, in the experimental data, when there is a short time constant (or large corner 

frequency), it is always associated with a second or third larger time constants (or smaller corner 

frequencies).  As a result, the noise power spectrum in the low frequency range does not have a 

large variation as expected in Monte Carlo simulation.  Since the possibility of having only one 

trap that is close to the substrate surface exists, we could hypothesize that single trap may be 

associated with more than one time constant.  If there is a possibility that a second electron may 

get trapped after the trapping of the first electron, a single trap may have more time constants 

reflecting the additional electron/electrons trapped.  In this case, the time constant of the second 

electron getting trapped will depend on the charge state (+, 0, -) of the trap.   

C. Lognormal Distribution of Flicker Noise at Each Frequency 
 

The third observation is very crucial in developing the Analytical model.  We have 

discovered that at each frequency the distribution of the noise power follows a lognormal 

statistics.  Lognormal distribution is a single-tailed probability distribution of a random variable 

whose logarithm is normally distributed.  Flicker noise power is a lognormal distribution at each 

frequency observed from the experimental data, which means that the natural log of noise power 

is normally distributed.  A randomly selected example at frequency f = 13056 Hz from the 

minimum device size (W/L = 0.22µm/0.1µm) is shown in Fig. 10.  In the histogram, when the 

number of transistors (90 transistors total) is plotted against the natural log of flicker noise 

power, the distribution is normal with R2= 0.97 suggesting a good fit.    
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Figure 10:  At a randomly selected frequency ( f = 13056 Hz), the flicker noise from the 90 
transistors with device area W/L = 0.22µm/0.1µm is best fitted by lognormal distribution with 
R2= 0.97.   

 

If a random number X is perfectly lognormal distributed, one can obtain the mean µlog 

and the standard deviation σlog of ln(X) from the mean µ and the standard deviation σ of X.  The 

relationships among µlog , µ ,σlog , and σ are shown in Eq. 23 and Eq.24 [15]. 
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One can also use a cumulative distribution function (CDF) to describe the accumulated 

probability distribution of a lognormal random variable.  CDF is the probability that the variable 

takes less than or equal to a specific value [16].  CDF for a lognormal distribution is defined as a 
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function of µlog and σlog in Eq. 25 [15].  Thus, if one can obtain µlog  and σlog, a lognormal CDF 

plot can be constructed easily.    
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Fig. 11 shows that the CDF of the experimental flicker noise data at a randomly selected 

frequency is best fitted by lognormal.  Lognormal CDF is extremely useful for quickly finding 

the flicker noise magnitude corresponding to any given percentile. For example, in Fig. 11, from 

the CDF plot for a device with W/L = 0.22µm/0.1µm and f = 13056 Hz, the median (50th 

percentile) of the noise distribution corresponds to 3.315e-20 A2/Hz and 90th percentile 

corresponds to 3.521e-19 A2/Hz.   

 

 

 

 

 

 

 

Figure 11:  At any randomly selected frequency, the CDF of experimental noise data is best 
fitted by a lognormal CDF.  For the CDF produced by flicker noise from W/L = 0.22µm/0.1µm 
and f = 13056 Hz, the median (50th percentile) of the noise distribution corresponds to 3.315e-20 
A2/Hz and 90th percentile corresponds to 3.521e-19 A2/Hz.   
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The observation of lognormal distribution of noise at each frequency is important.  If one 

can relate the mean <SId (f)> and standard deviation σ (f) of the flicker noise modeled in Section 

IV to the lognormal statistics parameters µlog and σlog that allow us to construct the lognormal 

CDF plot, one can predict noise power magnitude at any percentage yield of CDF.  The 

relationship of µlog , σlog , <SId (f)>, and σ (f) is proposed in Section VI. 

VI. ANALYTICAL MODEL VERIFICATION 

The verification of the Analytical model using the experimental data is done in two steps. 

First, we verified the modeled mean <SId (f) > by plotting it on a regular noise spectrum double-

log plot.  It should be a linear 1/f line even though the flicker noise from each individual device 

sample exhibits Lorentzian characteristics.  Second, we verified the modeled standard deviation 

σ (f) by the following process.  The new model parameter NOIS is extracted from the minimum 

size transistor noise data.  With the known model parameter NOIS, we can predict the standard 

deviation for the other larger transistor size.  The predicted σ (f) using the Analytical model will 

be compared to the experimentally measured σ (f) for model verification.   

A.  Mean <SId (f) > Verification 
 

In the Analytical model, <SId (f) > should be correctly predicted by the current Unified 

model.  Since the Unified model is not a simple expression but involves the use of  many model 

card parameters that must be accurately extracted from IV, CV, and noise data, direct 

verification of <SId (f) > using unified model is difficult.  An alternative way to verify <SId (f) > 

is to examine whether the mean has the 1/f shape as predicted in the unified model in large area 

device.  In Fig. 12, both <SId (f) > s of the two area transistors have 1/f characteristics with 
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slopes close to 1 (0.984 for W/L=0.22µm/0.1µm and 0.98 for W/L=1µm/0.1µm, respectively).  

<SId (f)> of W/L=1µm/0.1µm is larger than that of W/L=0.22µm/0.1µm for all frequency 

because there are more traps in the larger area of W/L=1µm/0.1µm devices. 

 

 

 

 

 

 

 

 

 

 

Figure 12:  The <SId (f)>s  of W/L=1µm/0.1µm and W/L=0.22µm/0.1µm show 1/f 
characteristics.  <SId (f)> of W/L=1µm/0.1µm is larger than that of W/L=0.22µm/0.1µm 
indicating the presence of more traps in the larger area devices. 

 

B. Parameter NOIS Extraction 
 

In order to complete the model, the new parameter NOIS needs to be first extracted from 

the minimum area noise data.  For the W/L=0.22um/0.1um data set, since we know <SId (f)> and 

σ (f), NOIS can be calculated by plugging in W, L, and EF.  Note EF is very close to 1 (0.984), 

so the frequency term in Eq. 22 can be approximated to 1.  NOIS is calculated to be 3.324e-10 

and the model is simplified to Eq. 26.   
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The normalized standard deviation σn vs. frequency is shown in Fig. 13 (a).  Because EF 

is close to 1, dependence of frequency on σn is very small and σn  is close to a constant. The 

experimental and modeled <SId (f) > s and σ (f)s  are plotted in Fig. 13 (b).   The good overlap 

between the experimental data and the model prediction indicates that the NOIS is extracted 

correctly. 
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(b) 

Figure 13:  W/L=0.22µm/0.1µm (a) modeled σn  as a constant overlaps with experimental σn (b) 
modeled σ (f) overlaps with experimental σ (f).  Both graphs indicate NOIS is extracted correctly. 
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Because the flicker noise is best fitted by lognormal distribution at each frequency, we 

could use <SId (f) > and σ (f) to model the lognormal CDF as well.  Although noise is best fitted 

by lognormal distribution, it is not perfectly lognormal distributed (R2 = 1).  Thus, a slight 

modification is introduced in the equations (Eq. 23 and Eq. 24) to find µlog and σlog.  The 

modification is to multiply σ (f) by a constant and the constant is empirically found to be 2.     
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After the modifications in Eq. 27 and Eq. 28 are introduced, µlog and σlog are calculated 

and lognormal CDF is modeled using Eq. 25.  In Fig. 14, the modeled CDF and the experimental 

CDF overlap nicely for both low frequency and high frequency noise.   
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(a)                                                                            (b) 
Figure 14:  For W/L=0.22µm/0.1µm, modeled CDF and the experimental CDF overlap for both 
low frequency and high frequency noise.  (a) f = 500Hz  (b)  f =100096Hz. 
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C. Standard Deviation σ (f) Verification 
 

Once the model is completed as in Eq. 26, it can be used to predict σ (f) of devices with 

any area size in that technology.  Here, we used the completed model with the extract NOIS from 

the minimum area (W/L=0.22µm/0.1µm) to predict σ (f) for the larger area device 

(W/L=1µm/0.1µm).  In Fig. 15, assuming <SId (f)> is modeled correctly by the unified model, σ 

n and σ (f) are predicted using the completed Analytical model and compared to the experimental 

σn and σ (f).   The σn and σ (f) nicely predicted by the Analytical model overlap with the 

experimental counterparts, which verifies the accuracy of the model. 
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(b) 

Figure 15:  noise spectrum of W/L=1µm/0.1µm (a) model-predicted σn  as a constant overlaps 
with experimental σn (b) model-predicted σ (f) overlaps with experimental σ (f).  Both graphs 
indicate the Analytical model is accurate in predicting standard deviation. 

Using predicted σ (f), one can model CDF as discussed in the previous section.  Fig. 16 

shows for the larger area (W/L=1µm/0.1µm), the model-predicted CDF and the experimental 

CDF overlap nicely for both low frequency and high frequency noise.   

 

 

 

 

 

 

 

(a)                                                                  (b) 
Figure 16:  For W/L=1µm/0.1µm, model-predicted CDF and the experimental CDF overlap for 
both low frequency and high frequency noise.  (a) f = 147Hz  (b)  f =100608Hz. 
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VII. PROPOSED ANALYTICAL MODEL USAGE  

A. NOIS Extraction Procedure 
 

In order to extract the new Analytical model parameter NOIS, one needs to initially 

measure the flicker noise from a statistical sample of small area transistors to get <SId (f)> and σ 

(f).  The minimum sample size is determined when <SId (f)> is approaching a linear 1/f shape.  

As long as <SId(f)> has the 1/f characteristics, it can be modeled by the current BSIM 4 Unified 

flicker noise model (UFN).  In the first scenario, if the noise simulation from UFN 

(FNOIMOD=1) agrees with <SId (f)> as in the theory, NOIS can be extracted directly from Eq. 

22.  In the second scenario, if  <SId (f)> and the noise simulation from UFN does not agree with 

each other, then the Unified model noise parameters such as EF, NOIA, NOIB, NOIC need to be 

re-extracted to well fit <SId (f)> instead.   The purpose of modeling <SId (f)> well by UFN is 

because σ (f) in the Analytical model is very sensitive to the change in <SId (f)>.  If <SId(f)> 

cannot be accurately modeled by UFN, σ (f)  cannot be accurately modeled.  NOIS can be 

extracted when the re-extracted noise parameters can fit <SId (f)>.   Fig. 17 summarizes the 

procedure to exact NOIS in BSIM4.   
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Figure 17:  NOIS extraction procedure in BSIM4. 

 

B. Proposed Analytical Model User Input and Output 
 

The user input and output for the Analytical model should be simple.  In BSIM4, the 

Analytical model will be activated by selecting FNOIMOD=X where X indicates the Analytical 

model in BSIM.  Input parameters will be the frequency (f) and the percentage yield of CDF (%).  

BSIM will first calculate <SId (f)> using the existing flicker noise UFN.  With the extracted 

NOIS, BSIM then calculates σ (f) using the Analytical model.  Once <SId (f)> and σ(f)  are 

obtained, they can be transformed into lognormal mean µlog and standard deviation σlog   as in Eq. 

27 and 28.  µlog and σlog are used to construct the lognormal CDF at the requested frequency f.  

The noise magnitude at the requested percentage yield of CDF will be calculated using the 

inverse function of CDF (CDF -1(%)).  The final output will be <SId(f)>, σ(f) , and the noise 
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magnitude at the percentile yield CDF at frequency f.  Fig. 18 outlines the input and output of the 

analytical flicker noise model in BSIM4. 

 

Figure 18:  Input and output of the Statistical Flicker Noise Analytical model in BSIM4 

 

The Analytical model accurately predicts flicker noise magnitude for a single bulk 

MOSFET.  Because this model offers detailed statistics for a single device, the potential 

application for the model is very specific.  In order to use this model, circuit designers will need 

to identify the most critical one or two transistors that they are most concerned about noise.     
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VIII. CONCLUSION 

A novel Statistical Flicker Noise Analytical Compact Model for scaled transistor is 

presented.  The model includes an analytical mean and a standard deviation with just one new 

model parameter.  The extraction of the new parameter requires a statistical noise data of at least 

one small device size.  Because the standard deviation is sensitive to the model error of the 

mean, it is advisable to model the mean well.  The model can predict noise magnitude at given 

frequencies and yield percentiles in CDF, which will serve as a valuable guide for circuit 

designers in their analog and RF design.   
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