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Abstract

Predicting and Optimizing System Utilization and Performance via Statistical Machine
Learning

by
Archana Sulochana Ganapathi

Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor David A. Patterson, Chair

The complexity of modern computer systems makes performance modeling an invaluable
resource for guiding crucial decisions such as workload management, configuration manage-
ment, and resource provisioning. With continually evolving systems, it is difficult to obtain
ground truth about system behavior. Moreover, system management policies must adapt
to changes in workload and configuration to continue making efficient decisions. Thus, we
require data-driven modeling techniques that auto-extract relationships between a system’s
input workload, its configuration parameters, and consequent performance.

This dissertation argues that statistical machine learning (SML) techniques are a powerful
asset to system performance modeling. We present an SML-based methodology that extracts
correlations between a workload’s pre-execution characteristics or configuration parameters,
and post-execution performance observations. We leverage these correlations for performance
prediction and optimization.

We present three success stories that validate the usefulness of our methodology on
storage and compute based parallel systems. In all three scenarios, we outperform state-
of-the-art alternatives. Our results strongly suggest the use of SML-based performance
modeling to improve the quality of system management decisions.
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Chapter 1

Introduction

Most modern systems are built from a plethora of components that interact in complex
ways. For example, decision support databases consist of several homogeneous processors,
large capacity disks, and an inter-node connection network. Web services are built from
one or more of these databases, several user-facing front-end web servers, and networking
equipment such as routers and load balancers. Recently, with the software as a service
model in industry, cloud computing infrastructures have risen to make “the datacenter as
a computer” [Hoelzle and Barroso, 2009]. These infrastructures typically comprise of a
heterogeneous selection of multicore nodes, large-scale storage infrastructures and a variety of
networking equipment. Such large multi-component and continuously evolving systems make
it difficult to understand the underlying topology of and interactions between components.

There are practical details that make it difficult to model these systems’ performance
and thus non-trivial to operate and maintain them:

• There is high variability in workload and usage patterns based on diurnal patterns and
popular trends. For example, traffic to Apple.com website was 110% higher on black
Friday 2009 compared to Thanksgiving day, and 39% higher compared to black Friday
2008 [Albanesius, 2009].

• With 24× 7 availability requirements of web services, failures must be handled trans-
parently and thus frequent hardware reconfiguration is inevitable [Oppenheimer et al.,
2003]. Storage and/or compute nodes must be provisioned on-demand to minimize
downtime.

• Clusters are often built using commodity hardware to minimize cost and improve scal-
ability [Barroso et al., 2003]. Consequently, the available resources and configuration
vary among cluster nodes and result in asymmetric node reliability and performance
characteristics.

1



Chapter 1. Introduction

• Web services frequently add features to stay competitive and attract users. The resul-
tant high software churn rate makes these systems more susceptible to bugs, however,
and thus requires even more software changes to fix them [Nagappan and Ball, 2007].

• When building multi-component systems, open-source or out-of-the-box software is
popular. However, different components often have conflicting hardware/software re-
quirements that are difficult to resolve, and the effects of these configuration changes
are difficult to identify a priori.

• Lastly, a major advantage of using the Cloud infrastructure is the elasticity it provides.
As a result, it is expected that a service can grow the number of nodes to handle unex-
pected load, and reduce nodes used to save money during low load periods. Decisions
to grow and shrink capacity must be made frequently and accurately to save money
while meeting service level agreements [Armbrust et al., 2009].

To address the above these challenges, infrastructure service providers must model work-
loads well to anticipate spikes and account for diurnal patterns, efficient resource provision-
ing to maximize utilization and minimize cost and contention, and lastly, fair and efficient
scheduling across multiple users of multiple services. The above decisions would benefit from
tools that accurately capture causal relationships between a system’s workload, its configu-
ration, and consequent performance characteristics. All these tools require the ability to ask
what-if questions regarding workload and configuration changes.

A redeeming feature of modern systems is that most of them seamlessly integrate with
instrumentation for tracing requests and collecting performance measurements. Such instru-
mentation facilitates the use of data-driven modeling techniques including statistical machine
learning (SML). These data-driven techniques treat the system as a black box and require
minimal knowledge about system internals and implementation. As a result, what-if ques-
tions can be answered without recreating the system’s hardware/software stack or waiting
for a long running job to complete before decision making.

This dissertation addresses the problem of performance modeling for a variety of multi-
component parallel systems. We propose a SML-based technique for extracting relationships
between workload and system performance as well as between configuration and performance.
We demonstrate the usefulness of this technique for performance prediction and performance
optimization of a variety of systems.

We summarize the contributions of this dissertation below:

1. We introduce a general performance modeling methodology for storage and compute
based parallel systems. Our proposed methodology is based on statistical machine
learning techniques and is easy to adapt to a wide variety of systems modeling problems.

2. We show examples of how our methodology can be used for both performance predic-
tion and performance optimization.

2



Chapter 1. Introduction

3. We demonstrate how to map elements of systems problem to elements of our SML-based
methodology. As a result, our techniques reduce the amount of domain knowledge
and expertise to get good prediction/optimization results. To use our techniques, one
simply needs to identify important features of the input to and output from the system.

4. We present three case studies with good results that demonstrate the usefulness of
methodology for real problems on three different parallel systems. Using our method-
ology, we are able to obtain results that outperform current state-of-the-art techniques
in these three domains.

The remainder of this dissertation is organized as follows. In Chapter 2, we formalize the
problem of system performance modeling and present our SML-based methodology. This
chapter also surveys related statistical machine learning techniques and non-SML alternatives
to formal systems modeling. We then introduce three case studies that demonstrate the use of
this technique on a decision support database system in Chapter 3, a production MapReduce
cluster in Chapter 4, and high performance computing code on multicore processors in
Chapter 5. Each of these case studies detail how we adapt our general methodology to the
specific problem at hand, compare our results to state-of-the-art technology in that area,
and discusses open questions that result from our contribution. Chapter 6 presents lessons
learned and future directions, and Chapter 7 concludes.
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Chapter 2

Formal Methods for System Performance
Modeling

In this chapter, we describe the performance modeling framework that we use in subsequent
chapters of this dissertation. We also discuss challenges of using mathematical modeling
techniques for systems research, requirements to address these challenges, relevance and
shortcomings of other statistical machine learning techniques, and related work.

2.1 Challenges in System Performance Modeling

Figure 2.1 shows a simplistic view of our performance modeling problem. We can observe
a system’s input workload and configuration parameters, and measure its performance and
resource utilization. Our goal is the auto-extraction of relationships between the input
parameters and measured performance and utilization metrics. Using statistical machine
learning to identify these relationships, we can extrapolate “what-if” workload scenarios
using our statistical model in place of a functional instance of the entire system. However,
there are several constraints and challenges we must overcome to successfully construct a
performance model for a system. Goldszmidt and his colleagues pose three challenges in the
intersection of machine learning and systems pertaining to 1) model lifecycle management,
2) human interpretability/visualization, and 3) ease of looking up prior results [Goldszmidt
et al., 2005]. We enumerate several additional constraints and derive goals to address these
challenges below.

• Challenge 1: Systems operators often do not design and construct the system. Con-
sequently, the operator lacks domain knowledge to monitor and debug system perfor-
mance issues. When components are used out-of-the-box, source code may be unavail-
able or poorly documented.

4
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Performance/

Resource Utilization 
SYSTEM 

Input Workload/

Configuration 

Statistical 

Model 

Figure 2.1: Our goal is to mimic the behavior of a real system using a statistical model.

Solution 1: Use a black-box modeling approach with pre-execution parameters and
post-execution performance as non-overlapping datasets.

• Challenge 2: System workload can be characterized by hundreds of parameters, not
all of which impact performance. It is useful to automatically extract a small set of
knobs with which to understand and manipulate system performance [Cohen et al.,
2005].
Solution 2: Use techniques that can reduce the dimensionality of input data by
automatically selecting features of interest.

• Challenge 3: System performance and utilization are measured by several interde-
pendent metrics. Building a separate model per metric does not capture these inter-
dependencies [Cohen et al., 2005]. For example, optimizing performance using one
metric’s model may adversely impact another metric, and the trade-offs may not be
evident without a unified performance model.
Solution 3: Use a single performance model that captures multiple performance met-
rics simultaneously.

• Challenge 4: System workload input parameters can be non-numeric and/or cate-
gorical variables1. Some parameter values denote distinct categories and there is no
particular ordering between these categories. For example, a code variant can use ei-
ther fixed or moving pointer type and thus pointer type is a categorical variable. Many
mathematical techniques are specifically designed for scalar data and accounting for

1In the statistics literature, the term ‘categorical variables’ denotes variables whose values range over cat-
egories. See http://www.ats.ucla.edu/stat/mult pkg/whatstat/nominal ordinal interval.htm for
more details.
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Chapter 2. Formal Methods for System Performance Modeling

these non-scalar parameters can be non-trivial.
Solution 4: Transform the categorical and non-numeric data into scalar features.

• Challenge 5: Performance and resource utilization are often measured qualitatively,
relative to prior or expected outcome. For example, a database query could have
different performance characteristics depending how saturated the system is; comparing
the query’s execution to prior instances would reveal these differences. While some
parameters are easy to quantify, others are purely based on qualitative observations.
It is important to define a closeness or similarity between observations.
Solution 5: Define distance metrics to capture both quantitative and qualitative
parameters.

Recasting the performance modeling problem with these challenges in mind, and given
a black-box system, our goal is to find relationships between two multivariate datasets. The
first dataset represents the workload and configuration parameters input to the system, and
the second dataset represents the measured performance and resource utilization metrics
available upon executing the input workload. Statistical machine learning provides a variety
of algorithms that can be used for modeling multivariate datasets.

The next section discusses some of the techniques we considered, their relevance for per-
formance prediction and optimization, and shortcomings for addressing the above challenges.

2.2 Statistical Machine Learning for Performance Model-
ing

Statistical machine learning techniques first derive a model based on a training set of previ-
ously executed workload and their measured performance. They then predict performance
for unknown workload based on this model. Each workload consists of many features, that
is individually measureable properties. With the challenges and constraints presented in
Section 2.1, we discuss the appropriateness of each algorithm presented below.

2.2.1 Regression

Regression is the simplest machine learning technique with a sound statistical basis. Al-
though we knew that single variable regression would be unlikely to work due to the high
dimensionality of workload features, we decided to try multivariate regression to predict each
performance metric of interest. We can define independent variables x1,x2, . . . ,xn for each
workload feature and treat each performance metric as a separate dependent variable y. The
goal of regression is to solve the equation a1x1 + a2x2 + . . . + anxn = y for the coefficients
ai. Generating a regression curve per dependent variable makes it difficult to account for
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interdependencies among the various dependent variables, thus not resolving Challenge 3 as
discussed above.

2.2.2 Clustering Techniques

Clustering techniques partition a dataset based on the similarity of multiple features. Typi-
cally, clustering algorithms work on a single dataset by defining a distance measure between
points in the dataset. While partition clustering algorithms such as Kmeans [Macqueen,
1967] can be used to identify the set of points “nearest” to a test datapoint, it is difficult
to leverage these algorithms for performance modeling, as clustering would have to be per-
formed independently on the workload features and the performance features. The points
that cluster together with respect to workload features do not necessarily reflect the points
that cluster together with respect to performance. Thus, modeling cross-dataset relation-
ships is difficult. In other words, we are looking for a relationship between pair-wise datasets.

2.2.3 Principal Component Analysis (PCA)

The oldest technique for finding relationships in a multivariate dataset is Principal Com-
ponent Analysis (PCA) [Hotelling, 1933]. PCA identifies dimensions of maximal variance
in a dataset and projects the raw data onto these dimensions. However, PCA produces
projections of each dataset in isolation. Dimensions of maximal variance in workload do not
necessarily reflect dimensions that most affect performance. Although PCA addresses the
challenge of dimensionality reduction, it does not allow us to identify correlations between
the two datasets, and thus suffers from the same drawback as clustering.

2.2.4 Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (CCA) [Hotelling, 1936], is a generalization of PCA that con-
siders pair-wise datasets and finds dimensions of maximal correlation across both datasets.
However, CCA violates Challenge 5 above; since it does not have a notion of similarity be-
tween the instances being correlated, it is unable to identify which known workload instances
are qualitatively similar to an unknown instance.

2.2.5 Kernel Canonical Correlation Analysis (KCCA)

Kernel Canonical Correlation Analysis (KCCA) [Bach and Jordan, 2003], is a variant of
CCA that captures similarity using a kernel function. The correlation analysis is on pairwise
distances, not the raw data itself. This approach provides much more expressiveness in
capturing similarity and its correlations can then be used to quantify performance similarity
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of various workloads. KCCA is the statistical machine learning technique we use in this
dissertation.

In the next section, we describe KCCA in more detail along with an adaptation of it for
performance modeling of systems.

2.3 A KCCA-based Approach to System Performance Mod-
eling

Given two multivariate datasets, KCCA computes basis vectors for subspaces in which the
projections of the two datasets are maximally correlated. Figure 2.2 shows a schematic of the
transformation KCCA imposes on the datasets. Seemingly dissimilar points in the raw input
space may end up clustering together in the projections due to correlation maximization that
spans both datasets.

The projection resulting from KCCA provides two key properties:

1. The dimensionality of the raw datasets is reduced based on the number of useful
correlation dimensions.

2. Corresponding datapoints in both projections are collocated. Thus, there is a clustering
effect that preserves neighborhoods across projections.

KCCA thus addresses all five challenges presented in Section 2.1. We next describe the
operational procedure for using KCCA for extracting correlations between system workload
and performance.

2.3.1 Constructing feature vectors

The first step is to create feature vectors for all points in the two data sets that we want to
correlate. Specifically, this step entails constructing workload feature vectors for each input
workload and constructing a performance feature vector for each corresponding observation
of system resource utilization and performance. This step must be customized based on
available system workload and performance traces.

We denote the set of workload feature vectors xk and corresponding performance feature
vectors yk as {(xk,yk) : k = 1, . . . , N}. Each workload feature vector xk has a corresponding
performance feature vector yk. We then combine these vectors into a workload matrix X
with one row per workload feature vector and a performance matrix Y with one row per
performance feature vector. Each row in the performance matrix represents observations
from the workload captured in the corresponding row of the workload matrix.

The next step in customizing KCCA involves representing the similarity between any
two workload feature vectors, and between any two performance feature vectors.
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Figure 2.2: KCCA projects workload and performance features onto dimensions of maximal
correlation.

2.3.2 Kernel functions to define similarity

KCCA uses kernel functions to compute “distance metrics” between all pairs of workload
vectors and pairs of performance vectors. A kernel function allows us to transform non-scalar
data into scalar vectors, allowing us to use algorithms that require input vectors in the form of
scalar data [Bishop, 2006]. Since our workload and performance features contain categorical
and non-numeric data, we create custom kernel functions to transform our datasets.

Given N workload instances, we form an N × N matrix Kx whose (i, j)th entry is the
kernel evaluation kx(xi,xj). We also form an N × N matrix Ky whose (i, j)th entry is the
kernel evaluation ky(yi,yj). Since kx(xi,xj) represents similarity between xi and xj, and
similarly for ky(yi,yj), the kernel matrices Kx and Ky are symmetric and their diagonals
are equal to one.

There are well-defined restrictions on what constitutes a valid kernel and what properties
a kernel function must have [Shawe-Taylor and Cristianini, 2004]. The Gram matrices Kx

and Ky above must be symmetric and positive semidefinite. Specifically, the eigenvalues of
Kx and Ky must be real and non-negative and therefore wT Kxw >= 0 and wT Kyw >= 0 for
all values of w. A useful property for building new kernels is that a kernel can be constructed
from a composition of simpler kernels [Bishop, 2006]. We leverage this property to create
a separate kernel function per feature in our datasets, and use a weighted average of these
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individual kernel evaluations to generate the kernel function for our workload and perfor-
mance feature vectors. For example, the workload kernel kx can be created by combining a
kernel function for its numeric features and a kernel function for its non-numeric features.

The specific kernel functions we use depend on the representative workload and per-
formance features for a given system. Once Kx and Ky are created, the next step in our
methodology is to maximize the correlation between these two matrices.

2.3.3 Projecting kernel matrices onto dimensions of correlation

The KCCA algorithm takes the kernel matrices Kx and Ky and solves the following gener-
alized eigenvector problem2:[

0 KxKy

KyKx 0

] [
A
B

]
= λ

[
KxKx 0

0 KyKy

] [
A
B

]
.

This procedure finds subspaces in the linear space spanned by the eigenfunctions of the
kernel functions such that projections onto these subspaces are maximally correlated. A
kernel can be understood in terms of clusters in the original feature space [Shawe-Taylor and
Cristianini, 2004]. Thus, intuitively, KCCA finds correlated pairs of clusters in the workload
vector space and the performance vector space.

Operationally, KCCA produces a matrix A consisting of the basis vectors of a subspace
onto which Kx may be projected, giving Kx ×A, and a matrix B consisting of basis vectors
of a subspace onto which Ky may be projected, such that Kx×A and Ky×B are maximally
correlated. We call Kx×A and Ky×B the workload projection and performance projection,
respectively.

2.3.4 Tackling the pre-image problem with Nearest Neighbors

We would need to perform the reverse mapping from the post-KCCA projections to the
original raw data space to make actionable suggestions for performance prediction and op-
timization. This problem is an active research area in machine learning, referred to as the
pre-image problem [Kwok and Tsang, 2003]. Finding a reverse mapping from the projected
feature space back to the input space is a known hard problem, both because of the com-
plexity of the mapping algorithm and also because the dimensionality of the feature space
can be much higher or lower than the input space (based on the goal of the transformation
function).

To address the pre-image problem, we leverage the collocated clustering effect of KCCA
projections to approximate a reverse mapping. The mapping between workload and per-

2In practice, we use a regularized version of KCCA to prevent overfitting. See [Shawe-Taylor and Cris-
tianini, 2004] for details.
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formance is straightforward in the projection space because a workload’s projection and its
corresponding performance projection lie in similar neighborhoods. This clustering behavior
is a useful side effect of using kernel functions in correlation analysis. To map back from
a workload or performance projection to the input space, we can leverage these neighbor-
hoods, identify a datapoint’s nearest neighbors in the projected space, and look up the raw
feature vectors for these nearest neighbors. Depending on the performance modeling goal,
we can use various mathematical or heuristic techniques for making actionable prediction or
optimization suggestions for the system at hand.

Using nearest neighbor approximations comes with a set of customization parameters.
Based on the use case and empirical analysis, one must select the distance metric for mea-
suring the nearness of a neighbor, identify how many neighbors to use for the approximation,
and lastly, decide how much influence each neighbor has on the decision/suggestion for per-
formance prediction and optimization. Each of these decisions must be customized based on
system-specific features and constraints.

2.3.5 Discussion

Figure 2.3 pictorially summarizes the steps involved in using KCCA for performance mod-
eling, which addresses all the challenges described in Section 2.1. KCCA allows us to build
a model without requiring domain knowledge about system internals. The kernel functions
used to transform input data to kernel matrices allow us to represent numeric, non-numeric
and categorical features and define custom similarity metrics for them. With KCCA, we
build a single model for multiple performance metrics and reduce the dimensionality of both
the workload and performance datasets by projecting them onto dimensions of correlation.
The projections allow us to visualize the similarity of datapoints, and nearest neighbor ap-
proaches enable us to provide actionable suggestions for predicting or optimizing various
performance metrics.

To maintain the freshness and relevance of our model, we can retrain a model using
recent and representative data. Although the training time for KCCA is exponential with
respect to the number of datapoints, a modern multicore computer can build a model of
thousands of datapoints within minutes. Prediction or optimization using nearest neighbors
is inexpensive and linear in cost. Thus, the overhead of building the KCCA model can be
amortized by reusing it for quickly making several decisions.

Since KCCA is a generic algorithm, the most challenging aspect of our approach is to
formalize the problem of system performance modeling and map it onto the data structures
and functions used by KCCA. In particular, we need to make the following three design
decisions:

1. How to summarize the pre-execution information about each input workload into a
vector of “workload features,” and how to summarize the post-execution metrics of a
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Figure 2.3: Training: From vectors of workload features and performance features, KCCA projects
the vectors onto dimensions of maximal correlation across the data sets. Furthermore, its clus-
tering effect causes “similar” workload instances to be collocated.

12



Chapter 2. Formal Methods for System Performance Modeling

workload instance into a vector of “performance features”.

2. Which kernel functions to use for quantifying the similarity between pairs of workload
vectors and pairs of performance vectors.

3. How to leverage the projection neighborhoods and nearest neighbors to make actionable
suggestions.

We address each of these issues in the three case studies we present in subsequent chapters
of this dissertation.

2.4 Related Work in Formal System Modeling

2.4.1 Manually Constructed Models and Simulators

Traditionally, performance modeling techniques use expectations or knowledge of a system’s
internals for performance prediction and optimization. Analytical models and simulations
of system components have been successfully used to model and predict performance of a
variety of systems including monolithic operating systems [Shen et al., 2005], I/O subsys-
tems [Ganger and Patt, 1998], disk arrays [Uysal et al., 2001], databases [Sevcik, 1981]

and static web services [Doyle et al., 2003]. These models are constructed with a notion of
typical usage or expected behavior, and are not adaptable to subsequent versions or changes
in system usage.

2.4.2 Queueing Models for Multi-Component Systems

When a system is constructed from several components, it is difficult to build a single
analytical model of the system as a whole. In such systems, queueing theory is used to
represent each component as a queue and inter-component interactions as dependencies
between the queues [Lazowska et al., 1984]. For example, [Thereska and Ganger, 2008]

uses queues to represent resources in a multi-tier distributed system and [Urgaonkar et al.,
2005] uses queues to model tiered Internet service applications. While such queueing models
capture dependencies between workload and system performance, they rely on extensive
knowledge of the system’s architecture. Although this knowledge can be incorporated during
the system design phase by using assertion checks [Perl and Weihl, 1993] and expectations
[Reynolds et al., 2006], it is difficult to enforce such design practices. It is unlikely that
assertions and expectations will be diligently updated when systems are synthesized from
pre-existing components, designed by multiple entities, and evolve rapidly as is typical for
web services.
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2.4.3 Dynamic Control Models

Component-specific analytic and queueing models have been augmented with control theory
to build models that adapt to changes in system workload and behavior. Such reactive
models have been used for a variety of systems research including server resource allocation
[Xu et al., 2006], admission control [Diao et al., 2001], database memory tuning [Storm et
al., 2006], providing performance guarantees during data migration [Lu et al., 2002], and
scheduling in distributed systems [Stankovic et al., 2001].

A major drawback in using control theory for performance modeling is that these models
rely on cost functions to decide how to react to workload input parameters [Hellerstein et
al., 2004]. These cost functions are user-defined, require domain knowledge to construct,
and typically vary in complexity based on the size and variability of workload and system
sub-components.

2.4.4 Data Driven Models

With the decline in storage costs and prevalence of tracing and instrumentation frameworks,
data driven performance modeling techniques have become an attractive alternative to ana-
lytic and cost-based modeling techniques. Large scale distributed systems such as Google’s
MapReduce cluster process up to 20 petabytes of data per day [Dean and Ghemawat, 2008].
Event log data alone accounts for 1 GB to 1 TB per day [Lemos, 2009]. Such large volumes
of data make it impossible to manually perform trend analysis and anomaly detection.

Several researchers have adopted statistical techniques to mine data and build probabilis-
tic models of workload and performance. These data driven models are used for a variety of
purposes including workload characterization, anomaly detection, failure diagnosis, resource
provisioning and performance tuning. For example, Liblit and others use logistic regression
for localizing bugs that cause program behavioral errors [Liblit et al., 2005] while Bod́ık and
his colleagues use the same technique for building signatures of datacenter operational prob-
lems [Bod́ık et al., 2008]. Wang and others use CART models for predicting performance in
storage systems [Wang et al., 2004]. Xu and Huang use PCA to detect anomalous patterns
in console logs [Xu et al., 2009] and network traffic [Huang et al., 2007], respectively. Xu also
builds decision trees from his PCA model to perform root cause analysis for software opera-
tional problems [Xu et al., 2009]. While the above examples use a single model for analysis,
Zhang and others use ensembles of probabilistic models of system workload to extract cor-
relations between low-level system metrics and violations of service level objectives [Zhang
et al., 2005b].

We diverge from prior applications of statistical modeling techniques in that we derive a
single model to simultaneously predict or optimize multiple performance metrics.
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2.5 Summary

In this chapter, we introduced a statistical machine learning methodology for system mod-
eling. Our methodology uses kernel canonical correlation analysis (KCCA) to extract cor-
relations between system workload and performance, and uses nearest neighbors to leverage
these correlations to make actionable performance prediction and optimization decisions.
This methodology requires minimal system domain knowledge, serving as an effective black-
box modeling technique.

The next three chapters evaluate the usefulness of this methodology for modeling per-
formance in three modern systems — a parallel database, a Hadoop cluster, and various
multicore platforms. Each chapter describes the specific performance prediction or opti-
mization problem, constraints imposed by the system being modeled, a customization of our
KCCA-based methodology to tackle the modeling problem, and an evaluation of how well
the goals and challenges were met.
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Chapter 3

Predicting Performance of Queries in a
Parallel Database System

3.1 Motivation

Data warehousing is an integral part of business operation in most major enterprises. Many
decision support/business intelligence services rely on data warehousing for answering ques-
tions ranging from inventory management to accounting and sales reporting. There are sev-
eral parallel databases that are specifically designed for data warehousing purposes such as
Oracle, Teradata, IBM DB2, Microsoft SQL Server, and HP Neoview, to name a few. While
the specific implementation of these databases are different – for example, shared-nothing
vs. shared-memory/shared-disk – the goals of these databases are similar: i) store and serve
large quantities of data, typically terabytes to petabytes; ii) provide tools to load data from
various sources and compute useful metrics for decision support; and, consequently, iii) ef-
ficiently serve a variety of queries ranging from short-running online transaction processing
(OLTP) queries to long-running batch queries with varying deadlines and priorities.

From a consumer perspective, there are many considerations for purchasing a parallel
database, including cost, number of processors, memory per node, disk capacity per node,
and so on. Many of these decisions are directly impacted by the size and complexity of the
anticipated workload in addition to desired concurrency in terms of users and queries and
expected response time guarantees. Business intelligence workloads are difficult to predict
due to the complexity of query plans involving hundreds of query operators and the high
variance of query times ranging from milliseconds to days.

Performance does not in general scale linearly with system size and is highly dependent
on the mix of queries and data that constitute a given workload. Predicting behavior not
only involves estimating query runtime but also requires being able to anticipate the query’s
resource requirements, for example, whether a query is CPU-bound, memory bound, disk
I/O bound, or communication bound. Identifying query performance characteristics before

16



Chapter 3. Predicting Performance of Queries in a Parallel Database System

the query starts executing is at the heart of several important decisions:

• Workload management: Should we run this query? If so, when? How long do we wait
for it to complete before deciding that something went wrong so that we should kill
it? Which queries can be co-scheduled to minimize resource contention?

• System sizing: For a new installation of a system, an approximate idea of expected
sets of queries, and time constraints to meet, what is the most cost-effective system
configuration that can execute this workload while satisfying service level agreements?
A new system that is too small will be too slow and the customer will be unhappy. A
new system that is too powerful will have better performance, but the price might still
leave the customer unhappy. In the worst case, the new system may be both expensive
and inappropriate for the customer’s workload.

• Capacity management: Given an expected change to a workload, should we upgrade
the existing system? Can we downgrade to a cheaper configuration without significant
adverse effects and performance degradation? For example, purchasing one hundred
times more disks and partitioning data across them will not help if poor performance
is actually due to insufficient CPU resources. The customer will spend more money
than he wanted and their performance will actually degrade.

With accurate performance predictions, we would not even start to run the queries that
we would later kill if they cause too much resource contention or do not complete by a
deadline. Sources of uncertainty, however, such as skewed data distributions and erroneous
cardinality estimates, combined with complex query plans and terabytes or petabytes of
data, make performance estimation hard. Understanding the progress of an executing query
is notoriously difficult, even with complete visibility into the work done by each query oper-
ator [Chaudhuri et al., 2005].

This chapter is about predicting query and workload performance and resource use
so both businesses and database vendors can decide which system configuration is “good
enough.” We describe here our efforts to use machine learning to predict, a priori, multiple
aspects of query performance and resource usage for a wide variety of queries. We set the
following goals:

• Predict elapsed time so that we can identify long-running queries and workload lengths.

• Predict processor usage, memory usage, disk usage, and message bytes sent so that
we can anticipate the degree of resource contention and to make sure the system is
adequately configured.

• Predict performance using only information available before query execution starts,
such as the query’s SQL statement or the query plan produced by the query optimizer.
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• Predict accurately for both short and long-running queries. The queries that run in a
data warehouse system can range from simple queries that complete in milliseconds to
extremely complex decision support queries that take hours to run.

• Predict performance for queries that access a different database with a different schema
than the training queries. This case is common for a vendor choosing the right system
to sell to a new customer.

To meet these goals, we generated a wide range of queries and ran them on an HP Neoview
four-processor database system to gather training and testing data. We evaluated the ability
of several machine learning techniques to predict the desired performance characteristics. We
then validated the effectiveness of the “winning” technique by training and testing on four
other HP Neoview configurations.

Our approach finds correlations between the query properties and query performance
metrics on a training set of queries and then uses these correlations to predict the performance
of new queries. We are able to predict elapsed time within 20% of the actual time, at least
85% of the time, for single queries. Predictions for the other characteristics are similarly
accurate and are very useful for explaining the elapsed time predictions. They also enable
choosing the right amount of memory and other resources for the target system. We also
present some preliminary results for predicting workload performance.

In the remainder of this chapter, we describe our experimental setup, explain our adapta-
tion of the KCCA algorithm as described in Section 2.3 for predicting database performance,
present results of predicting many different queries and workloads, discuss our design trade-
offs and some open questions, and lastly review related work.

3.2 Experimental Setup

In this section, we describe the database system configurations and the queries used in
our experiments. Subsequent sections reveal our prediction results for queries run on these
various configurations.

3.2.1 Database configurations

All of our experiments were run on HP Neoview database systems. HP Neoview is a descen-
dant of the Tandem NonStop [Non, 1989] database system. A successful and competitive
commercial decision support database product, Neoview is architecturally representative of
commercial databases in the market and is thus a suitable testbed for our experiments. See
Figure 3.1.

Our research system is a four-processor machine. Each processor is allotted 262144
physical pages of 16 KB resulting in 4 GB of memory. The machine also has four disks,
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HP Neoview: Architecture and Performance

A  W I N T E R  C O R P O R A T I O N  W H I T E  P A P E R
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To provide high-bandwidth inter-processor communication needed to support data-intensive business 
intelligence queries, HP Neoview has developed a linearly scalable mesh configuration of HP’s 
ServerNet Switch Fabric that provides sustained bandwidth of 125 MB per second to any CPU and 
is designed to support up to 1024 processors, although 256 processors is the maximum presently 
delivered. Dual ServerNet Switch Fabrics support continued network operation despite component 
outages by eliminating single points of failure.

Figure 1: HP Neoview System Configuration

HP Neoview systems are available in fourteen configurations from 16 to 256 processors that support 
from 4.5 TB to 144 TB of data storage. Available configurations are highlighted below in Table 1. HP 
Neoview supports two configuration types: C-series and E-series. C-series configurations use 146 
GB disks to offer a higher MIPS to megabytes ratio, while E-Series configurations use 300 GB drives 
for higher storage capacity.

7

16-256 
Processors 

1.6 Ghz Itanium2 
16 GB memory

Model CPUs User Data Space Total Data Space

C015 16 3 TB 4.5 TB

C025 32 6 TB 9 TB

C035 48 9 TB 13.5 TB

C045 64 12 TB 18 TB

C065 96 18 TB 27 TB

C085 128 24 TB 36 TB

C165 256 48 TB 72 TB

E013 16 6 TB 9 TB

E023 32 12 TB 18 TB

E033 48 18 TB 27 TB

E043 64 24 TB 36 TB

E063 96 36 TB 54 TB

E083 128 48 TB 72 TB

E163 256 96 TB 144 TB

Table 1: HP Neoview Configurations

Figure 3.1: Schematic architecture of HP’s Neoview database. This image is borrowed from:
http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA2-6924ENW.pdf

each with a capacity of 144 GB. Data is partitioned roughly evenly across all four disks.
Most query operators run on all four processors; the main exceptions are the operators that
compose the final result. We used this system extensively for gathering most of our training
and test query performance metrics.

We were also able to get limited access to a 32-processor system with 8 GB of memory
per processor and 32 disks of 144 GB each. HP Neoview allows users to configure one or
more queries to use a subset of the processors. We therefore ran our queries on four different
configurations of this system, using 4, 8, 16, and all 32 processors. In all cases, the data
remained partitioned across all 32 disks.

3.2.2 Training and test queries

Our experiments are intended to predict the performance of both short and long-running
queries. We therefore decided to categorize queries by their runtimes, so that we could control
their mix in our training and test query workloads. Table 3.1 shows the three categories of
queries: feather, golf ball, and bowling ball. (We also defined wrecking ball queries as queries
that were too long to be bowling balls.) We then describe our training and test workloads
in terms of the numbers of queries of each type.

While we defined boundaries between the query types based on their elapsed times,
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query number elapsed time
type of mean minimum maximum

instances (hh:mm:ss)

feather 2807 30 secs 0:0:00.03 0:02:59
golf ball 247 10 mins 0:03:00 0:29:39
bowling 48 1 hour 0:30:04 1:54:50

ball

Table 3.1: We created pools of candidate queries, categorized by the elapsed time needed to run
each query on the HP Neoview 4 processor system.

these boundaries are arbitrary because there were no clear clusters of queries. They simply
correspond to our intuition of “short” and “long.” Therefore, they can cause confusion in
classifying queries near boundaries, as we show later.

To produce the queries summarized in Table 3.1, we started with the standard decision
support benchmark TPC-DS [Othayoth and Poess, 2006]. However, most of the queries
we generated from TPC-DS templates (at scale factor 1) were feathers; there were only a
few golf balls and no bowling balls. In order to produce longer-running queries, we wrote
additional custom templates against the TPC-DS database. We based the new templates
on real “problem” queries from a production enterprise data warehouse system that had run
for at least four hours before they completed or were killed. Database administrators gave
us these queries as examples of queries whose performance they would have liked to predict.

We used these templates, in addition to the original TPC-DS query templates, to generate
thousands of queries. We ran the queries in single query mode on the four processor system
we were calibrating and then sorted them into query pools based on their elapsed times.

It took significant effort to generate queries with appropriate performance characteristics,
and it was particularly difficult to tell a priori whether a given SQL statement would be a
feather, golf ball, bowling ball, or wrecking ball. For example, depending on which constants
were chosen, the same template could produce queries that completed in three minutes or
that ran for over an hour and half.

With training and test set queries created we focused our efforts on identifying and
customizing an appropriate machine learning algorithm for performance prediction.

3.3 Addressing Design Challenges of Using KCCA

We adapted the KCCA machine learning algorithm from Chapter 2 to predict query per-
formance. Since KCCA is a generic algorithm, the most challenging aspect of our approach
was to formalize the problem of performance prediction and map it onto the data structures
and functions used by KCCA.
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Our goal was to extract relationships between a query’s pre-execution features and post-
execution performance metrics, and use these relationships to predict query performance.
KCCA was the best match for our goal because it finds correlations between paired datasets
and we can leverage these correlations for prediction.

Figure 2.3 summarizes the steps in using KCCA to build a model.
Given N query vectors xk and corresponding performance vectors yk, we form an N ×N

matrix Kx whose (i, j)th entry is the kernel evaluation kx(xi,xj). We also form an N × N
matrix Ky whose (i, j)th entry is the kernel evaluation ky(yi,yj). Recall from Section 2.3
that the KCCA algorithm takes the matrices Kx and Ky and solves the following generalized
eigenvector problem:[

0 KxKy

KyKx 0

] [
A
B

]
= λ

[
KxKx 0

0 KyKy

] [
A
B

]
.

Intuitively, KCCA finds correlated pairs of clusters in the query vector space and the per-
formance vector space.

In the process of customizing KCCA for query prediction, we needed to make the following
three design decisions:

1. How to summarize the pre-execution information about each query into a vector of
query features, and similarly, how to summarize the performance statistics from exe-
cuting the query into a vector of performance features.

2. How to define a similarity measure between pairs of query vectors so that we can
quantify how similar any two queries are, and likewise, how to define a similarity
measure between pairs of performance vectors – that is, define the kernel functions –
so that we can quantify the similarity of the performance characteristics of any two
queries.

3. How to use the output of the KCCA algorithm to predict the performance of new
queries.

We next describe these design decisions and evaluate the best choice for each of them.
We evaluate the choices for each decision by training a KCCA model with 1027 queries and
testing the accuracy of performance predictions for a separate set of 61 queries. The training
and test set queries do not overlap. Section 3.2 describes the queries, which contain a mix
of feathers, golf balls, and bowling balls. All of them were run and performance statistics
were collected from our four processor HP Neoview system.

We use the R2 metric to compare the accuracy of our predictions. R2 is calculated using
the equation:

R2 = 1−
∑N

i=1(predictedi − actuali)
2∑N

i=1(actuali − actualmean)2

21



Chapter 3. Predicting Performance of Queries in a Parallel Database System

An R2 value close to 1 indicates near-perfect prediction. Negative R2 values are possible
in our experiments since the training set and test set are disjoint. Note that this metric is
sensitive to outliers, and in several cases, the R2 value for predictions improved significantly
by removing the top one or two outliers.

By the end of this section, we will identify the adaptation of KCCA that provides the
best results for query performance prediction.

3.3.1 Query and performance feature vectors

Many machine learning algorithms applied to systems problems require feature vectors, but
there is no simple rule for defining them. Typically, features are chosen using a combination
of domain knowledge and intuition.

Selecting features to represent each query’s performance metrics was fairly straightfor-
ward task: we gave KCCA all of the performance metrics that we could get from the HP
Neoview database system when running the query, then allowed it to select the best features
with which to predict. The metrics we use for the experiments in this chapter are elapsed
time, number of disk I/Os, message count, message bytes, records accessed (the input car-
dinality of the file scan operator), and records used (the output cardinality of the file scan
operator). The performance feature vector therefore has six elements. We could easily add
other metrics, such as memory used.

Identifying features to describe each query was less trivial. One of our goals was to predict
using only data that is available prior to execution. We also wanted to identify features likely
to be influential in the behavior of the system because such features are likely to produce
more accurate predictions. We evaluated two potential feature vectors: one based on the
SQL text of the query and one that condenses information from the query execution plan.

3.3.1.1 SQL feature vector

The first feature vector we tried consisted of statistics on the SQL text of each query. The fea-
tures for each query were number of nested sub-queries, total number of selection predicates,
number of equality selection predicates, number of non-equality selection predicates, total
number of join predicates, number of equijoin predicates, number of non-equijoin predicates,
number of sort columns, and number of aggregation columns.

Figure 3.2 shows the prediction results for elapsed time. While the SQL text is the
most readily available description of a query and parsing it to create the query feature
vector is simple, the prediction accuracy was fairly poor for elapsed time as well as all
other performance metrics. One reason for the poor accuracy is that often two textually
similar queries may have dramatically different performance due simply to different selection
predicate constants.
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Figure 3.2: KCCA-predicted vs. actual elapsed times for 61 test set queries, using SQL text
statistics to construct the query feature vector. We use a log-log scale to accommodate the wide
range of query execution times. The R2 value for our prediction was -0.10, suggesting a very
poor model.

3.3.1.2 Query plan feature vector

Before running a query, the database query optimizer produces a query plan consisting of a
tree of query operators with estimated cardinalities. We use this query plan instead to create
a query feature vector. The query optimizer produces this plan in milliseconds or seconds, so
it is not hard to obtain, and we hoped that the cardinality information, in particular, would
make it more indicative of query performance. Furthermore, because poor query plan choices
contribute to a substantial fraction of telephone support calls, most commercial databases,
including Neoview, provide tools that can be configured to simulate a given system and
obtain the same query plans as would be produced on the target system.

Our query plan feature vector contains an instance count and cardinality sum for each
possible operator. For example, if a sort operator appears twice in a query plan with car-
dinalities 3000 and 45000, the query plan vector includes a “sort instance count” element
containing the value 2 and a “sort cardinality sum” element containing the value 48000.
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Figure 3.3: Using the query plan to create a query vector: vector elements are query operator
instance counts and cardinality sums.

Figure 3.3 shows the query plan and resulting feature vector for a simple query, although it
omits operators whose count is 0 for simplicity. The intuition behind this representation is
that each operator “bottlenecks” on some particular system resource, such as processor or
memory, and the cardinality information roughly captures expected resource consumption.

24



Chapter 3. Predicting Performance of Queries in a Parallel Database System

This feature vector proved to be a better choice than SQL text statistics for predicting
the performance of each query; see results in Section 3.4. In all subsequent experiments, we
used the query plan feature vector.

3.3.2 Kernel functions

We chose the Gaussian kernel [Shawe-Taylor and Cristianini, 2004] to quantify the similarity
between two query feature vectors or two performance feature vectors. This kernel assumes
only that the raw feature values follow a simple Gaussian distribution. For a pair of query
vectors, xi and xj, we define the Gaussian kernel as follows:

kx(xi,xj) = exp{−‖xi − xj‖2/τx},

where ‖xi−xj‖ is the Euclidean distance and τx is a scale factor. We also define a Gaussian
vector on pairs of performance vectors, yi and yj, using a scale factor τy. We set the
scaling factors τx and τy to be a fixed fraction of the empirical variance of the norms of the
datapoints. Specifically, τx for our query feature vectors was 0.1 and τy for our performance
feature vectors was 0.2. Although our results are quite good with this simple kernel, it may
be worth investigating more complicated feature-specific kernels for features whose values
follow a different distribution.

3.3.3 Predicting performance from a KCCA model

KCCA produces correlated projections of the query and performance features. However,
it is not obvious how to leverage these projections for prediction. Figure 3.4 shows the
three steps we use to predict the performance of a new query from the query projection
and performance projection in the KCCA model. First, we create a query feature vector
for the new query and use the KCCA model to find its coordinates on the query projection
Kx ×A. Since we have not executed this query, we do not have a corresponding coordinate
on the performance projection Ky×B. We infer the query’s coordinates on the performance
projection by using the k nearest neighbors in the query projection. This inference step
is enabled because KCCA projects the raw data onto dimensions of maximal correlation,
thereby collocating points on the query and performance projections. We evaluate choices
for k in Section 3.3.3.2. Finally, we must map from the performance projection back to the
metrics we want to predict.

As described in Section 2.3.4, finding a reverse mapping from the feature space back to
the input space is a known hard problem, both because of the complexity of the mapping
algorithm and also because the dimensionality of the feature space can be much higher or
lower than the input space based on the goal of the transformation function.

Accurate predictions of a previously unseen query’s performance depend on identifying

25



Chapter 3. Predicting Performance of Queries in a Parallel Database System

KCCA 

Query Plan  

Projection 

Performance 

Projection 

Query Plan 

1.4E 80E 3E 

Query Plan  

Feature Vector 

nearest  

neighbors 

Predicted 

Performance 
Vector 

128 25792 8E 

Figure 3.4: Testing: KCCA projects a new query’s feature vector, then looks up its neighbors
from the performance projection and uses their performance vectors to derive the new query’s
predicted performance vector.

the query’s nearest neighbors, or at least neighbors that are “similar enough.” We address
three important issues in using nearest neighbors to predict a test query’s performance:

1. What is the metric to determine neighbors and their nearness?

2. How many neighbors do we need to consider when calculating our prediction?

3. How do we weigh the different neighbors in our prediction?

We consider each issue in turn.

3.3.3.1 What makes a neighbor “nearest”?

We considered both Euclidean distance and cosine distance as a metric to determine the
nearest neighbors. Since we are projecting our vectors onto a higher dimensional subspace,
it seemed useful to consider the directional nearness. While Euclidean distance captures the
magnitude-wise closest neighbors, cosine distance captures direction-wise nearest neighbors.
Table 3.2 compares the cosine distance function with the Euclidean distance function for
computing nearest neighbors in the query projection. Using Euclidean distance yielded
better prediction accuracy than using cosine distance, as shown by the consistently higher
R2 value, so we use Euclidean distance to determine nearest neighbors in our experiments.

3.3.3.2 How many neighbors?

Table 3.3 shows the result of varying the number of neighbors to use to predict query per-
formance. k = 3 seems to work as well as k = 4 or 5. The difference between the R2 values
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Metric Euclidean Cosine
Distance Distance

Elapsed Time 0.55 0.51
Records Accessed 0.70 -0.09
Records Used 0.98 0.19
Disk I/O -0.06 -0.07
Message Count 0.35 0.24
Message Bytes 0.94 0.68

Table 3.2: Comparison of R2 values for using Euclidean Distance and Cosine Distance to identify
nearest neighbors. Euclidean Distance has better prediction accuracy.

Metric k=3 k=4 k=5 k=6 k=7

Elapsed Time 0.55 0.59 0.57 0.61 0.56
Records Accessed 0.70 0.63 0.67 0.70 0.71
Records Used 0.98 0.98 0.98 0.98 0.98
Disk I/O -0.06 -0.01 -0.003 -0.01 -0.01
Message Count 0.35 0.34 0.34 0.31 0.31
Message Bytes 0.94 0.94 0.94 0.94 0.94

Table 3.3: Comparison of R2 values produced when varying the number of neighbors. Negligible
difference is noted between the various choices.

is negligible for most of the metrics. The thousands of feather queries listed in Table 3.1 all
fit in memory, so disk I/Os were 0 for most queries. Thus, the R2 value appears to be very
poor, perhaps because the number of disk I/Os is a function of the amount of memory and
whether the tables can reside in-memory, which is more of a configuration issue than a query
feature. k = 3 performs better for predicting records accessed relative to k = 4, and k = 4
performs better for predicting elapsed time compared to k = 3. We therefore chose k = 3
with the intuition that for queries with few close neighbors, a smaller value of k would be
better.

3.3.3.3 How do we map from the neighbors to performance metrics?

Another consideration in our methodology was how to map from the set of k neighbors to a
vector of predicted performance metrics. We decided to combine the performance elements
of the neighbors and tried different ways to weight the neighbors’ values: equal weight for
all three neighbors, a 3:2:1 ratio for the weight of the three neighbors in order of nearness,
and weight proportional to the magnitude of distance from the test query feature vector.
Table 3.4 summarizes results for all three scenarios. None of the three weighting functions
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Metric Equal 3:2:1 Distance
Ratio Ratio

Elapsed Time 0.55 0.53 0.49
Records Accessed 0.70 0.83 0.35
Records Used 0.98 0.98 0.98
Disk I/O -0.06 -0.09 -0.04
Message Count 0.35 0.37 0.35
Message Bytes 0.94 0.94 0.94

Table 3.4: Comparison of R2 values produced when using various relative weights for neighbors

yielded better predictions consistently for all of the metrics. We therefore choose the simplest
function: weight all neighbors equally. Our prediction for each performance metric is the
average of the three neighbors’ metrics.

3.4 Results

After finding a good adaptation of KCCA for query prediction, we evaluated its performance
prediction accuracy for multiple query sets and system configurations. We first present
results from training our model on the four-node HP Neoview system using queries to TPC-
DS tables and predict performance for a different set of queries to TPC-DS as well as queries
to a customer database. We then validated our approach by training a model for and
predicting performance of queries on various configurations of a 32-node Neoview system.
Lastly, we discuss how our predictions compare to the query optimizer’s cost estimates.
We note that a substantial subset of results in this section were previously presented as a
conference publication [Ganapathi et al., 2009c].

3.4.1 Performance prediction using KCCA on a 4-node system

3.4.1.1 Experiment 1: Train model with realistic mix of query types

The first experiment shows our results from using 1027 queries for our training set, including
30 bowling balls, 230 golf balls and the 767 feathers. The test set includes 61 queries (45
feathers, 7 golf balls and 9 bowling balls) that were not included in our training set.

Figure 3.5 compares our predictions to actual elapsed times for a range of queries. As
illustrated by the closeness of nearly all of the points to the diagonal line (perfect prediction),
our predictions were quite accurate. Note that six of the nine bowling balls in the test set
were run on a more recent version of the operating system than our training dataset. The
accuracy of our predictions for those queries was not as good as accuracy for bowling ball

28



Chapter 3. Predicting Performance of Queries in a Parallel Database System

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

KCCA predicted elapsed time

a
c
tu

a
l 

e
la

p
s
e
d

 t
im

e Under-estimated 

records accessed

disk i/o estimate 

too high

1 hour

1 second

1 minute

1 second 1 hour1 minute

Perfect prediction

Figure 3.5: KCCA-predicted vs. actual elapsed times for 61 test queries. We use a log-log scale
to accommodate the wide range of query execution times from milliseconds to hours. The R2

value for our prediction was 0.55 due to the presence of a few outliers (as marked in the graph).
Removing the top two outliers increased the R2 value to 0.95.

queries run on the same version of the operating system as the original training set. When
the two circled outliers and the more recent bowling balls were eliminated, then the R2 value
jumps to 0.95.

We show similar graphs for records used in Figure 3.6 and message counts in Figure 3.7;
other metrics are omitted for space reasons. The simultaneous predictability of multiple per-
formance metrics using our approach enabled us to better understand inaccurate predictions.
For example, for one prediction in which elapsed time was much too high, we had greatly
overpredicted the disk I/Os. This error is likely due to our parallel database’s methods of
cardinality estimation. When we underpredicted elapsed time by a factor of two, it was due
to under-predicting the number of records accessed by a factor of three.

We are often confronted with the question, “Why not try a simpler machine learning
technique for prediction?” Regression is the simplest machine learning technique that has
a sound statistical basis. While we knew that single variable regression would not work,
we decided to try multivariate regression to predict each performance metric of interest.
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Figure 3.6: KCCA-predicted vs. actual records used. We use a log-log scale to accommodate
wide variance in the number of records used. The R2 value for our prediction was 0.98. (R2

value close to 1 implies near-perfect prediction).

We defined independent variables x1,x2, . . .xn for different query plan features, such as
join operator counts and cardinality sums. We use the same features later in the example
in Figure 3.3. Each performance metric was considered as a separate dependent variable y.
The goal of regression is to solve the equation a1x1 +a2x2 + . . .+anxn = y for the coefficients
ai.

Figures 3.8 and 3.9, compare the predicted and actual values for elapsed time and records
used respectively. The regression models do a poor job predicting these metrics of interest
and results for predicting other metrics were equally poor. Many of the predictions are orders
of magnitude off from the actual value of these metrics for each query. Furthermore, the
regression for elapsed time predicts that several of the queries will complete in a negative
amount of time; for example, -82 seconds!

One interesting fact we noticed is that the regression equations did not use all of the
independent variables. For example, even though the hashgroupby operator had actual car-
dinalities greater than zero for many queries, regression gave it a coefficient of zero. However,
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Figure 3.7: KCCA-predicted vs. actual message count. We use a log-log scale to accommodate
wide variance in the message count for each query. The R2 value for our prediction was 0.35 due
to visible outliers.

the features discarded were not consistent across each of the dependent variables considered.
Thus, it is important to keep all query features when building each model. Furthermore,
since each dependent variable is predicted from a different set of chosen features, it is diffi-
cult to unify the various regression curves into a single prediction model. This fact makes it
difficult to group queries with respect to all the different performance metrics simultaneously.

3.4.1.2 Experiment 2: Train model with 30 queries of each type

For our second experiment, to balance the training set with equal numbers of feathers,
golf balls, and bowling balls, we randomly sampled 30 golf balls and 30 feathers to include
in the training set and predicted performance of the same set of 61 test set queries as in
Experiment 1. Figure 3.10 compares predicted and actual elapsed times for this experiment.
Our predictions were not as accurate as in our previous experiment, which included a larger
training set of 1027 queries. We considered constructing more bowling balls to add to the
training set to have a few hundred queries of each type included in the model. However, these
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Figure 3.8: Regression-predicted vs. actual elapsed times for 1027 training and 61 test queries.
The graph is plotted on a log-log scale to account for the wide range of query runtimes. 176
datapoints are not included in the plot as their predicted times were negative numbers. The
triangles indicate datapoints that were in our test set (not used to build the regression model).

proportions are unrealistic in business intelligence workloads. Our results for this experiment
indicate that it is better to build a model with a realistic workload mix.

3.4.1.3 Experiment 3: Two-model prediction with query type-specific models

So far, we have described a single model for predicting query performance. We also tried
a two-model approach using the same feature vectors. We use the neighbors from the first
model to predict simply whether the query is a “feather,” “golf ball,” or “bowling ball.” For
example, if a test query’s neighbors are two feathers and a golf ball, the query is classified
as a feather. We then predict its performance using a second model that was trained only
on “feather” (or “golf ball” or “bowling ball”) queries. Since we had many fewer examples
of golf ball and bowling ball queries in our training sets, we thought this approach might do
better for predicting their performance.

Figure 3.11 shows our results for predicting elapsed time of queries using this two-model
approach. Our predictions were more accurate than in Experiment 1, as evidenced by the
fewer number of outliers with respect to the perfect prediction line. In comparing Figure 3.5
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Figure 3.9: Regression-predicted vs. actual records used for 1027 training and 61 test queries.
Note that 105 datapoints had negative predicted values going as low as -1.18 million records. The
triangles indicate datapoints that were in our test set (not used to build the regression model).

and Figure 3.11, we notice a few instances where the one-model prediction was more accurate
than the two-model prediction. For the most part, this result was because the test query
was too close to the temporal threshold separating feathers from golf balls and forcing it into
one category made the prediction marginally worse. The R2 statistics for this experiment
favor using two-model prediction to single-model prediction.

3.4.1.4 Experiment 4: Training and testing on queries to different data tables

We also evaluated how well we predict performance when the training set queries and test
set queries use different schemas and databases. Figure 3.12 shows our one-model and two-
model KCCA predictions for a set of 45 queries to a customer’s database where the training
was done on queries to the TPC-DS tables. When compared to actual elapsed time, the two-
model KCCA prediction method performed better than the one-model prediction method.
Most of the one-model KCCA-predictions were one to three orders of magnitude longer than
the actual elapsed times. One caveat of this experiment is that the customer queries we
had access to were all extremely short-running (mini-feathers). As a result, even when our
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Figure 3.10: KCCA-predicted vs. actual elapsed times. The axes are log-log scale to accommo-
date wide variance of elapsed times in the 61 queries of our test set.

predicted elapsed times were within seconds of the actual elapsed times, the prediction error
is very large relative to the size of the query. This experiment would have benefited from
access to longer-running queries for the same customer as well as a variety of queries from
other customers. We learn from this experiment that it is difficult to predict performance
for a test set of queries to a different set of tables than the training set.

3.4.2 Prediction on a 32-node system

We further validated our prediction technique by training and testing on more and larger
system configurations. We had limited access to a 32-node parallel database system, which
we could configure to process queries using only subsets of nodes.

We reran the TPC-DS scale factor 1 queries on the 32-node system and used 917 of these
queries for training the model and 183 queries for testing the model. Table 3.5 shows the R2

values for each metric predicted for each of four configurations of the 32-node system. The
configuration was varied by using only a subset of the nodes on the system, thus reducing the
number of processors and consequent memory available for use. The training set of queries
was rerun on each configuration.
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Figure 3.11: Two-model KCCA-predicted elapsed time vs. actual elapsed times for the 61 queries
in our test set. The first model classifies the query as a feather, golf ball or bowling ball; the second
model uses a query type-specific model for prediction. A log-log scale was used to accommodate
wide variance in query elapsed times. The R2 value for our prediction was 0.82.

Metric 4 nodes 8 nodes 16 nodes 32 nodes

Elapsed Time 0.89 0.94 0.83 0.68
Records Accessed 1.00 1.00 1.00 0.57
Records Used 0.99 1.00 1.00 0.99
Disk I/O 0.72 -0.23 Null Null
Message Count 0.99 0.99 0.99 0.94
Message Bytes 0.99 0.99 1.00 0.97

Table 3.5: Comparison of R2 values produced for each metric on various configurations of the
32-node system (we show the number of nodes used for each configuration). Null values for Disk
I/O reflect 0 disk I/Os required by the queries due to the large amount of memory available on
the larger configuration.
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Figure 3.12: A comparison of one-model KCCA-prediction, two-model KCCA-prediction and
actual value of elapsed times for a test set of customer queries.

Our results are encouraging and demonstrate that we can effectively predict the perfor-
mance of TPC-DS queries on various system configurations. We made several observations
in the course of re-running our queries on various configurations of the 32-node system.

First, while we had characterized our queries as feathers, golf balls, and bowling balls
on the 4-node system, when the same queries were run on the 32-node system, they all ran
very quickly. The queries were short-running regardless of the number of nodes used on the
32-node system. We would have liked to run queries that took longer than 10 minutes on
the 32-node system, but were unable due to restrictions on our access to this machine.

Another noteworthy point is that the scenario in which only 4 of the 32 nodes were used
showed reasonable prediction accuracy of Disk I/Os whereas all other configurations of the
32-node system seemed to exclude disk I/Os in the model. We note that the likely cause
for this special case is that the number of disk I/Os for each query was significantly higher
for the 4-node configuration where the amount of available memory was not enough to hold
many of the TPC-DS tables in memory. Since increasing the number of nodes used also
proportionally increases the amount of memory, the 8, 16 and 32-node configurations had
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very few queries that required disk I/Os.
Lastly, the query execution plans for the 4-node system were different from the same

queries’ plans on the 32-node system. Also, plans for various configurations of the 32-
node system differed from one another. This is because although we limited the number of
processors used to process queries, we did not change the physical layout of the data on disk,
so more than 4-nodes were involved in the data access operations. All plans produced on the
32-node system access and combine results from more disk drives than those on the 4-node
system. Plans that limit the number of nodes used for processing on the 32-node system
have fewer resources (especially memory) than those that run with all 32 nodes.

3.4.3 Multi-query workload prediction on a simulator

While it is difficult to accurately predict the performance of individual queries running
in isolation, it even more difficult to predict the performance of a set of queries running
concurrently. Often, running a query concurrently with other queries delays its completion
due to conflicting resource requirements of the concurrently running queries.

To explore multi-query workloads without waiting hours for each workload to execute,
we used a Neoview simulator [Krompass et al., 2007]. The simulator calculates query and
workload costs using estimated cardinalities and prior knowledge of dominant resource re-
quirements for each operator. Since the simulator has been successfully used for studying
workload management policies, we believe it would be a suitable alternative to running query
workloads on a real system.

Our final experiment exhibits our attempt at predicting the performance of multi-query
workloads. We built our workload feature vector as a sum of the processor, disk and mes-
sage costs of each query running in isolation on the simulator. We then applied the KCCA
methodology on the workload feature vectors and workload performance metrics. Our train-
ing set contained 50 distinct multi-query workloads, each with a different mix of feathers,
golf balls, and bowling balls. Our test set contained 10 multi-query workloads, which were
not in the training set.

Figure 3.13 compares predicted and actual workload elapsed times on a simulator config-
ured to run up to four queries concurrently, that is multi-programming level (MPL) = 4. It is
common practice in the business intelligence community to estimate a concurrent workload’s
elapsed time using the elapsed time for a sequential run of the queries in the workload, that
is, sum of the elapsed times of the queries contained in the workload. Figure 3.13 also shows
the elapsed times for our ten test workloads running in sequential mode, where MPL = 1.

Our prediction of workload elapsed time is not always closer to actual simulator runs
of the workload with multi-programming level = 4 compared to the sequential execution
approximation determined by multi-programming level = 1 runs. However, we are able to
deduce that for the given set of test workloads, we either overpredict elapsed times, or when
we underpredict, we perform better than the sequential execution approximation of elapsed
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Figure 3.13: Comparison of KCCA-predicted elapsed time for workloads running at multi-
programming level = 4, elapsed times for the same workloads running at multi-programming
level = 1 on the simulator, and elapsed time for test workloads run at multi-programming level
= 4 in the simulator.

time. As most database administrators prefer an upperbound on time rather than a lower-
bound, our predictions seem more relevant than the sequential execution approximation,
which consistently underestimates time for these 10 workloads.

3.5 Lessons and Limitations

Our methodology has been successfully adopted for Neoview workload management and is
currently being incorporated into the production system. In this section, we address some
of the open questions about our results and its applicability in production environments.

3.5.1 Comparing our predictions to query optimizer cost estimates

Our predictions and the query optimizer’s estimates serve different purposes. The optimizer’s
estimates do not predict actual performance characteristics. The query optimizer’s estimates
are used to select the most efficient way to execute a query. The optimizer needs to produce a
cost estimate for every query plan it considers for a given query. In contrast, our predictions
are geared towards estimating query resource requirements given a particular query execution
plan.

Figures 3.14 and 3.15 compare the 4-node system’s query optimizer cost estimates to the
actual elapsed times for running the 61 test queries. Since the optimzer’s cost units do not
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Figure 3.14: Optimizer-predicted costs vs. actual elapsed times for a set of queries, the same
test queries used later for Experiment 1 in Section 3.4. The optimizer costs and measured times
came from Neoview’s commercial query optimizer. The horizontal line marks a computed linear
best-fit line.

directly correspond to time units, we draw a linear best fit line in Figure 3.14. Evidently,
the relationship between the optimizer-predicted cost and actual elapsed time is not linear;
therefore we draw a hypothetical perfect prediction line in Figure 3.15. We generated similar
graphs for other optimizer metrics, such as records used, which were consistent with the
one shown: the optimizer’s estimates do not correspond to actual resource usage for many
queries, especially ones with elapsed times of over a minute. When compared to our results in
Figure 3.11, it is apparent that our model’s predictions are more accurate than the optimizer’s
query cost estimation.

However, our predictions are created in completely different circumstances than the query
optimizer’s. First, we have the luxury of being able to train to a specific configuration,
whereas the optimizer’s cost models must accommodate all possible configurations. Second,
we can spend orders of magnitude more time calculating our estimates than the optimizer.
The optimizer must produce multiple estimates in milliseconds. Third, we have access to
historical information about the actual performance metrics for various plans. By design, the
optimizer has no access to this information. In fact, our performance estimates are actually
based upon the optimizer’s cost estimates, since we use the optimizer’s cost estimates plus
historical performance data in our feature vectors.

We believe our predictions can be complementary to the query optimizer. Given static
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Figure 3.15: Optimizer-predicted costs vs. actual elapsed times for a set of queries, the same
test queries used later for Experiment 1 in Section 3.4. The optimizer costs and measured times
came from Neoview’s commercial query optimizer.

cost functions, the optimizer can use our prediction results to adapt its rules and thresholds
to the production environment. It can develop custom cost functions that optimize query
plans in response to patterns in the workloads. We believe this is a promising new area for
query optimization research.

3.5.2 Why do erroneous cardinality estimates produce good prediction
results?

It is common for decision support databases to maintain inaccurate table statistics due to the
volume and frequency of churn in data. We have empirically observed several orders of mag-
nitude difference between estimated and actual cardinalities for various query operators. The
use of kernel functions in our prediction methodology inherently adjusts for these cardinality
estimation errors. To demonstrate by example, if query1 has a join cardinality sum of 3000+
joinEstimationError and query2 has a join cardinality sum of 2000+joinEstimationError,
the kernel function calculates the difference between join cardinality sums for query1 and
query2, i.e. (3000 + joinEstimationError)− (2000 + joinEstimationError), consequently
eliminating the joinEstimationError component altogether. The fact that estimation errors
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tend to be operator-dependent and table-specific explains why our experiments with training
and test queries to the same dataset perform better than experiments with test set queries
to a different dataset than the training set queries.

3.5.3 How can we improve multi-query workload predictions?

Our preliminary multi-query workload prediction results provide reasonable bounds on ex-
ecution times on a simulator. However, we believe a variant of our methodology would
provide more accurate predictions. Each query is further deconstructed into fragments by
the query execution engine. A query fragment is the granularity at which node schedul-
ing (and consequently resource scheduling) decisions are made. Instead of representing a
workload’s feature vectors as the sum of features of its constituent queries, a more insightful
representation would treat each workload as a sum of its query fragments. Such a repre-
sentation would account for overhead imposed by query fragments contending for operators
implemented on a specific subset of the database’s nodes, and thus would mask potential
wait times imposed by concurrent query ordering and scheduling decisions.

3.5.4 How can our results inform database development?

We believe our prediction techniques can help with open questions that might be of interest
to a database engine development team. For example, the development team would be in-
terested in knowing which query operators, and in what conditions, have the greatest impact
on query performance. However, in our model, when the raw query plan data is projected by
KCCA, the dimensions of the projection do not necessarily correspond to features of the raw
data; it is computationally difficult to invert KCCA’s projection to determine which features
are considered for each dimension. As an alternative to estimating the role of each feature,
we compared the similarity of each feature of a test query with the corresponding features
of its nearest neighbors. At a cursory glance, it appears that the counts and cardinalities of
the join operators (e.g., nested loops join) contribute the most to our performance prediction
model.

3.5.5 How can our results benefit database customers?

We believe our prediction methodology can directly improve customer experience by boost-
ing the quality of system sizing, capacity planning, and workload management. Since most
database vendors support a limited number of configurations, it is feasible to build a model
per supported configuration, predict performance for customer workload on each supported
configuration, and make recommendations for system size based on price-performance trade-
offs. Capacity planning can be more efficient as models can be built using representative
samples of current workload, and predictions of performance of expected future workload
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can be used to determine bottleneck resources that could be expanded. Lastly, workload
management can benefit from the insight of query resource requirements. The workload
manager can use resource predictions to decide if a query should be scheduled to run im-
mediately (there is no resource contention with currently running queries) or placed on hold
until potential conflicting queries complete. The prediction framework is currently being
beta tested for use as part of a dashboard for Neoview’s workload manager.

3.5.6 Can we predict anomalous queries?

As is common with most machine learning techniques, our predictions are limited to the
range of performance metrics reflected by our training set, and our prediction results are
only as good as the proximity of our test data to its neighbors in the projected space. Initial
results indicate that we can use Euclidean distance from the three neighbors as a measure
of confidence – and that we can thus identify queries whose performance predictions may
be less accurate. This approach could potentially identify anomalous queries. For example,
the anomalous bowling balls in Figure 3.5 were not as close to their neighbors as the better-
predicted ones.

3.5.7 How often should the KCCA model be refreshed?

Given a KCCA model, prediction of a single query can be done in under a second, which
makes it practical for queries that take many minutes or hours to run, but not for all queries.
Training, on the other hand, takes minutes to hours because each training set datapoint is
compared to every other training set datapoint, and computing the dimensions of correlation
takes exponential time with respect to the number of datapoints. While it feasible to use a
dedicated machine for training the model, the frequency of retraining depends on the churn
rate and variability of a customer’s workload. A reasonable compromise would test against
both a stale model built from a substantial dataset and a more recent model built quickly
from a smaller and more recent dataset. The most suited prediction result can be based on
the distance of the queries from their nearest neighbors.

This limitation presents a research opportunity to investigate techniques to make KCCA
more amenable to continuous retraining (e.g., to reflect recently executed queries). Such an
enhancement would allow us to maintain a sliding training set of data with a larger emphasis
on more recently executed queries.

3.6 Related Work

According to experts we interviewed who perform system sizing and capacity planning for
major commercial database systems including Oracle, Teradata, HP Neoview, IBM DB2, and
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Microsoft SQL Server, current state-of-the-art approaches to workload prediction are man-
ual, time consuming, often inaccurate, and seldom validated. Current research approaches
for single queries focus on predicting a single metric (typically elapsed time). Often, the
techniques estimate the percentage of work done or relative cost of a query rather than pro-
ducing actual performance metrics. Furthermore, several existing solutions require access to
runtime performance statistics such as tuples processed. As a result, a significant amount of
instrumentation is required to the core engine to accommodate usable statistics. In contrast,
we address the problem of predicting multiple characteristics of query performance prior to
run-time.

While the use of statistical learning techniques has been prevalent in database research,
their full potential has not been explored for more challenging customer-facing research
problems until recently. Below, we discuss relevant work in traditional database research
areas in which performance analysis and statistical techniques are essential components.

3.6.1 Query Planning and Optimization

The primary goal of the database query optimizer is to choose a good query plan. As part of
evaluating different plans, the optimizer produces a rough cost estimate for each plan. How-
ever, the units used by most optimizers do not map easily onto time units. Furthermore,
the optimizer has little time to produce a cost estimate and its logic must generalize across
multiple configurations. Query optimization has been proven to be an NP-complete prob-
lem [Ibaraki and Kameda, 1984], and is typically addressed using a series of thresholds and
cost functions, randomized techniques [Swami and Iyer, 1993; Galindo-Legaria et al., 1994],
rule-based approaches [Graefe and McKenna, 1993], heuristics [Yoo and Lafortune, 1989;
Shekita et al., 1993], or a hybrid of these various approaches [Ioannidis, 1996]. These esti-
mates are often wildly inaccurate, but as long as they guide the optimizer to a good plan,
accuracy is not needed. While we rely on the same (often inaccurate) cardinality estimates
as the optimizer for input to our prediction model, our model bases its predictions on the
relative similarity of the cardinalities for different queries, rather than their absolute values.

A few papers use machine learning to predict a relative cost estimate for use by the query
optimizer. In their work on the COMET statistical learning approach to cost estimation,
[Zhang et al., 2005a] use transform regression to produce a self-tuning cost model for XML
queries. Because they can efficiently incorporate new training data into an existing model,
their system can adapt to changing workloads, a very useful feature that we have not yet
addressed. COMET, however, focuses on producing a single cost value for comparing query
plans to each other as opposed to a metric that could be used to predict resource usage
or runtime. Similarly, IBM’s LEO learning optimizer compares the query optimizer’s esti-
mates with actuals at each step in a query execution plan, and uses these comparisons from
previously executed queries to repair incorrect cardinality estimates and statistics [Stillger
et al., 2001; Markl and Lohman, 2002]. Like COMET, LEO focuses on producing a better
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cost estimate for use by the query optimizer, as opposed to attempting to predict actual
resource usage or runtime. Although a query optimizer enhanced with LEO can be used to
produce relative cost estimates prior to executing a query, it does require instrumentation
of the underlying database system to monitor actual cost values. Also, LEO itself does not
produce any estimates; its value is in repairing errors in the statistics underlying the query
optimizer’s estimates.

3.6.2 Query Progress Indication

Query progress indicators attempt to estimate a running query’s degree of completion. Exist-
ing approaches to this problem all assume that the progress indicator has complete visibility
into the number of tuples already processed by each query operator [Chaudhuri et al., 2004;
Luo et al., 2004; Luo et al., 2005; Chaudhuri et al., 2005]. Such operator-level informa-
tion can be prohibitively expensive to obtain, especially when multiple queries are executing
simultaneously.

Luo and his peers [Luo et al., 2006] leverage an existing progress indicator to estimate
the remaining execution time for a running query (based on how long it has taken so far)
in the presence of concurrent queries. They do not address the problem of predicting the
performance characteristics of a query that has not yet begun execution.

3.6.3 Workload Characterization

A number of papers [Yu et al., 1992; Lo et al., 1998; Keeton et al., 1998] discuss how to
characterize database workloads with an eye towards validating system configuration design
decisions such as the number and speed of disks, the amount of memory, and so on. These
papers analyze features such as how often indexes were used, or the structure and complexity
of their SQL statements, but they do not make actual performance predictions. For instance,
[Elnaffar et al., 2002] observes performance measurements from a running database system
and uses a classifier (developed using machine learning) to identify OLTP vs. DSS workloads,
but does not attempt to predict specific performance characteristics.

We believe that workload characterization is a side effect of using KCCA to predict
query performance. The collocation of points on the projected query and performance spaces
naturally lends itself to clustering techniques for characterizing queries by similarity. A useful
avenue of future research would determine labels for such clusters and use them as feedback
for benchmark creation.
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3.7 Summary

In this chapter, we presented an adaptation of KCCA that allows us to accurately predict the
performance metrics of database queries whose execution times range from milliseconds to
hours. The most promising technique, based on KCCA and nearest neighbors, was not only
the most accurate, but also predicted metrics such as elapsed time, records used, and message
count simultaneously and using only information available prior to query execution. We
believe our methodology can greatly improve the effectiveness of critical data warehousing
tasks that rely on accurate predictions, including system sizing, capacity planning, and
workload management.

The custom adaptation of KCCA we use combines relative differences between operator
cardinalities and interpolation to build its model. This powerful combination allows us to
make very accurate performance predictions for specific query plans. The predictions can be
used to custom-calibrate optimizer cost estimates for a customer site at runtime. They also
give us a quantitative comparison of different query plans for the same query.

Our methodology needs improvement to handle the use of queries to different tables
in the training and test sets. Changes to the feature vectors, for example, incorporating
data layout information, could help improve prediction results in this category. We also
show scope for improving our multi-query workload prediction results. While we are able to
provide an upperbound on workload elapsed time, we must re-evaluate the methodology to
provide more accurate predictions.

A natural extension to the parallel database study is to validate the techniques on Map-
Reduce environments [Dean and Ghemawat, 2004]. Recently, there has been a phase shift
from large databases to Map-Reduce frameworks on cloud computing platforms to facilitate
large scale data mining and analysis [Pavlo et al., 2009]. In these environments, not only is the
workload diverse, but also the churn rate of the underlying hardware/software configuration
is quite high. The next chapter elaborates on performance prediction in the presence of
configuration changes.
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Chapter 4

Predicting Performance of Production
Hadoop Jobs

In the previous chapter, we demonstrated our ability to predict performance of SQL queries
to a parallel database system. In this chapter, we extend our prediction capabilities to
a distributed computing environment with larger scale workloads. While this case study
differs from the previous chapter in that the underlying system is built on heterogeneous
and distributed hardware, our prediction methodology continues to be useful.

4.1 Motivation

The computing industry is recently experiencing a paradigm shift towards large-scale data-
intensive computing. Internet companies such as Google, Yahoo!, Amazon, and others rely
on the ability to process large quantities of data to drive their core business. Traditional
decision support databases no longer suffice because they do not provide adequate scaling of
compute and storage resources. To satisfy their data-processing needs, many Internet services
turn to frameworks like Hadoop, an open-source implementation of a big-data computation
paradigm [Dean and Ghemawat, 2004] complementary to parallel databases. At the same
time, the advent of cloud computing infrastructures, such as Amazon EC2, makes large-scale
cluster computing accessible even to small companies [Armbrust et al., 2009]. The prevalence
of SQL-like interfaces such as Hive [Thusoo et al., 2009] and Pig [Olston et al., 2008] further
eases the migration of traditional database workloads to the Cloud.

These cloud computing environments present a new set of challenges for system manage-
ment and design. One of the biggest challenges is resource provisioning and management.
Given the heterogeneity introduced by building ad-hoc clusters from commodity hardware,
it is difficult to simultaneously minimize resource contention and maximize data placement
and locality. In these environments, heuristics and cost functions traditionally used for query
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optimization no longer suffice. Furthermore, the large number of simultaneous users and the
volume of data amplify the penalty of poor allocation and scheduling decisions. There is
also an increasing need for resource management strategies that allow multiple metrics of
success such as performance and energy efficiency.

Cloud providers must address several challenging questions to efficiently handle their
workload:

• Which jobs should be scheduled together to avoid resource contention? This challenge
is similar to our parallel database problem of scheduling queries only if they do not
contend with currently running queries for available resources.

• Should some jobs be queued until a later time when the cluster is less loaded? The
same problem surfaced in the context of our parallel database case study in the form
of workload management.

• What is the optimal number of cluster nodes to allocate to a job given its resource
requirements and deadlines? Since parallel databases do not provide abstractions to
select the number of nodes to run each query on, this challenge is new in the context
of cloud computing environments.

• Given observed behavior of a job run at small scale, how will the job behave when
scaled up? Are the performance bottlenecks the same at larger scale? We explored
similar issues in the previous chapter when we built performance models of various
configurations, varying the number of nodes used, in a 32-node parallel database.

The above resource provisioning and scheduling decisions greatly benefit from the ability
to accurately predict multiple performance characteristics. The goal of this chapter is to
extend and apply our KCCA-based prediction methodology to Hadoop, a big-data compu-
tation framework complementary to parallel databases. Specifically, our methodology must
address the following goals:

• Predict job execution time and resource requirements using a single model.

• Predict performance of the same job run under multiple configurations.

• Predict equally well for jobs that are expressed using SQL-like syntax and regular
Hadoop jobs.

• Only use information/features available before job starts executing in a cluster.

This technique is an extension to our work in the previous chapter, where we have demon-
strated the effectiveness of the KCCA-based technique for predicting query performance in
parallel databases. With the right choice of predictive features, our KCCA-based method-
ology leads to highly accurate predictions that improve with the quality and coverage of
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performance data. We evaluate our prediction methodology using production traces from
Facebook’s Hadoop cluster. We are able to accurately predict performance for a variety of
data analytics jobs.

In the rest of this chapter, we provide an overview of Hadoop and the details of its deploy-
ment at Facebook, explain how we adapt the KCCA algorithm for predicting performance of
Hadoop jobs, present prediction results for two types of data analytics workloads, and lastly
discuss open questions and use cases for our methodology.

4.2 Experimental Setup

In this section, we provide an overview of the Map-Reduce abstraction and the Hadoop im-
plementation that was used on a production cluster from which we obtain data for evaluating
our prediction methodology.

4.2.1 Hadoop Overview

The Map-Reduce computation pattern has been around since the LISP language. Google
chose the name MapReduce to refer to their implementation of this abstraction for paral-
lel processing of large datasets [Dean and Ghemawat, 2004] on very large clusters. Today,
MapReduce powers Google’s flagship web search service. Several open-source implementa-
tions of this abstraction have emerged, including Hadoop, and are widely used on clusters
at Yahoo!, Facebook, and other Internet services [Had, b]. Henceforth, we use Map-Reduce
to refer to the computational pattern, MapReduce to refer to Google’s implementation, and
Hadoop to refer to the open source implementation. Programs written using Map-Reduce are
automatically executed in parallel on the cluster. The fact that Map-Reduce can run on clus-
ters of commodity machines provides significant cost-benefit compared to using specialized
clusters. Furthermore, Map-Reduce scales well, allowing petabytes of data to be processed
on thousands or even millions of machines. Most relevant to our work, Map-Reduce is
especially suitable for the KCCA prediction methodology because it has a homogenous ex-
ecution model, and production MapReduce and Hadoop workloads often perform repetitive
computations on similar or identical datasets.

Figure 4.1 shows a schematic of Google’s MapReduce architecture, which is also im-
plemented by Hadoop. MapReduce requires the user to specify two functions. The Map
function takes a key-value pair, and generates a set of intermediate key-value pairs. The
Reduce function selects the subset of intermediate key-value pairs pertaining to a specific
key, and emits the output key-value pairs based on user-specified constraints. Users can
additionally specify a Combine function that minimizes network traffic by merging multiple
intermediate key-value pairs before propagating them to the Reducer. Both the Map input
pairs and Reduce output pairs are stored in an underlying distributed file system (DFS).

48



Chapter 4. Predicting Performance of Production Hadoop Jobs

Figure 4.1: Architecture of MapReduce from [Dean and Ghemawat, 2004].

The run-time system takes care of retrieving from and outputting to the DFS, partitioning
the data, scheduling parallel execution, coordinating network communication, and handling
machine failures.

A MapReduce execution occurs in several stages. A MapReduce master daemon coor-
dinates a cluster of worker nodes. The master divides the input file, resident in DFS, into
many splits, and each split is read and processed by a Map worker. Intermediate key-value
pairs are periodically written to the Map worker’s local disk, and the master is updated
with locations of these pairs. The Reduce workers collect these pairs’ location information
from the master, and subsequently read these pairs from the Map workers using a remote
procedure call. Next, the Reduce worker sorts the data by its intermediate key, applies
the user-specified Reduce function, and appends the output pairs to an output file, which
resides in the DFS. Backup executions are launched for lagging Map or Reduce executions
to potentially accelerate completion. An entire MapReduce computation is called a job, and
the execution of a Map or Reduce function on a worker node is referred to as a task. For
example, Figure 4.1 shows one job that consists of 6 map tasks and 3 reduce tasks. Each
worker node allocates resources in the form of slots, and therefore, each map task or reduce
task uses one slot.

For our work, we select the Hadoop implementation of MapReduce [Had, a]. In Hadoop,
the user-supplied Map and Reduce functions can be written in many languages. The Hadoop
distributed file system (HDFS) implements many features of the Google DFS [Ghemawat
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et al., 2003]. There have been several efforts to extend Hadoop to accommodate different
data processing paradigms. Most relevant to our work, Hive [Thusoo et al., 2009] is an
open source data warehouse infrastructure built on top of Hadoop. Users write SQL-style
queries in a declarative language called HiveQL, which is compiled into MapReduce jobs and
executed on Hadoop. Since Hive’s query interface is similar to that of commercial parallel
databases, it is a natural extension to evaluate the prediction accuracy of Hive queries in
Hadoop using the KCCA-based technique as described in the previous chapter.

4.2.2 Cluster Configuration

Our data was collected from a production deployment of Hadoop at Facebook. This de-
ployment was on a multi-user environment comprising 600 cluster nodes. Half of the nodes
contained 16 GB memory, 5 map slots and 5 reduce slots each, and the remaining 300 nodes
each contained 8 GB memory, 5 map slots and no reduce slots. We collected Hadoop job
history logs over a six-month period and used a subset of the data for our analysis.

4.3 Addressing Design Challenges of Using KCCA

Similar to the parallel database query performance prediction case study in the previous
chapter, our goal is to predict Hadoop job performance by correlating pre-execution features
and post-execution performance metrics. KCCA allows us to simultaneously predict mul-
tiple performance metrics using a single model. This property captures interdependencies
among multiple metrics, a significant advantage over more commonly used techniques such
as Regression, which model a single metric at a time.

In the process of customizing KCCA for Hadoop job prediction, recall from previous
chapters that we need to make the following three design decisions:

1. How to summarize the pre-execution information about each Hadoop job configuration
into a vector of job features, and similarly, how to summarize the performance statistics
from executing the job into a vector of performance features.

2. How to define a similarity measure between pairs of job feature vectors so that we can
quantify how similar any two Hadoop jobs are, and likewise, how to define a similarity
measure between pairs of performance vectors so that we can quantify the similarity
of the performance characteristics of any two queries.

3. How to use the output of the KCCA algorithm to predict the performance of new
Hadoop jobs.

The only difference between our Hadoop performance prediction methodology, compared
to our parallel database performance prediction set up in Chapter 3, is the feature vectors
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we used, and is described in Section 4.3.1. Similar to the database performance prediction
case study, we chose the Gaussian kernel [Shawe-Taylor and Cristianini, 2004] to quantify
the similarity between two query feature vectors or two performance feature vectors. Once
we build the KCCA model, performance prediction is as follows. Beginning with a Hive
query whose performance we want to predict, we create job feature vector x̂ and calculate
its coordinates in subspace Kx × A. We infer the job’s coordinates on the performance
projection subspace Ky ×B by using its three nearest neighbors in the job projection. This
inference step is possible because KCCA projects the raw data onto dimensions of maximal
correlation, thereby collocating points on the job and performance projections. Finally, our
performance prediction is calculated using a weighted average of the three nearest neighbors’
raw performance metrics.

We next evaluate design decisions for defining our job and performance feature vectors
using job history logs from a production Hadoop deployment at a major web service. We
specifically focus on predicting performance of Hive queries since they provide a SQL-like
interface to Hadoop through which users can run data analytics queries.

4.3.1 Hadoop job and performance feature vectors

A crucial step in using KCCA-based modeling is to represent each Hadoop job as a feature
vector of job characteristics and a corresponding vector of performance metrics. This step
is the only place where we deviate from the winning methodology in the previous chapter.

From the Hadoop job logs, we construct performance feature vectors to include map time,
reduce time, and total execution time. These metrics represent the sum of the completion
times of all the tasks corresponding to a specific job. These metrics are central to any
scheduling decisions. We also include data metrics such as map output bytes, HDFS bytes
written, and locally written bytes.

There are several possible options for job feature vectors. The choice greatly affects
prediction accuracy. We evaluate two options for constructing the job feature vectors below.

4.3.1.1 Hive plan feature vector

The first choice of job feature vectors is an extension of the feature vectors in the previous
chapter, shown to be effective for parallel databases.

Like relational database queries, Hive queries are translated into execution plans involving
sequences of operators. We observed 25 recurring Hive operators, including Create Table,
Filter, Forward, Group By, Join, Move and Reduce Output, to name a few. Our initial job
feature vector contained 25 features – corresponding to the number of occurrences of each
operator in a job’s execution plan.

Figure 4.2 compares the predicted and actual execution time using Hive operator in-
stance counts as job features. The prediction accuracy was very low, with a negative R2
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Figure 4.2: Predicted vs. actual execution time for Hive queries, modeled using Hive operator
instance counts as job features. The model training and test sets contained 5000 and 1000
Hive queries respectively. The diagonal line represents the perfect prediction scenario. Note: the
results are plotted on a log-log scale to accommodate variance in execution time.

value, indicating poor correlation between predicted and actual values1. We interpret the
results to mean that Hive operator occurrence counts are insufficient for modeling Hive query
performance.

This finding is somewhat unsurprising. Unlike relational databases, Hive execution plans
are an intermediate step before determining the number and configuration of maps and
reduces to be executed as a Hadoop job. Job count and configuration are likely to form more
effective job feature vectors, since they describes the job at the lowest level of abstraction
visible prior to executing the job.

4.3.1.2 Hadoop job log feature vector

Our next choice of job feature vector used Hive query’s configuration parameters and input
data characteristics. We included the number and location of maps and reduces required by

1Negative R2 values are possible since the training data and test data are disjoint.
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all Hadoop jobs generated by each Hive query, and data characteristics such as bytes read
locally, bytes read from HDFS, and bytes input to the map stage. This feature vector choice
provides much better results and also generalizes to non-Hive queries, as demonstrated in
the subsequent section.

4.4 Results

In this section, we evaluate how well we were able to predict performance of Hive Jobs as
well as a set of non-Hive data warehousing Hadoop jobs. For each experiment, we build
the model using 5000 jobs in the training set, and evaluate our prediction accuracy on 1000
different jobs sampled exclusively for the test set.

4.4.1 Prediction for Hive jobs

Figure 4.3 shows our prediction results for the same training and test set of Hive queries as in
Figure 4.2. Our R2 prediction accuracy is now 0.87 (R2 = 1.00 signifies perfect prediction).
Using the same model, our prediction accuracy was 0.84 for map time, 0.71 for reduce time,
and 0.86 for bytes written. Our prediction accuracy was lower for reduce time since the reduce
step is fundamentally exposed to more variability due to data skew and uneven map finishing
times. These results convincingly demonstrate that feature vectors with job configuration
and input data characteristics enable effective modeling of Hive query performance.

4.4.2 Prediction for other Hadoop jobs

A significant advantage of our chosen job and performance feature vectors is that they
contain no features that limit their scope to Hive queries. As a natural extension, we evaluate
our performance prediction methodology on another class of Hadoop jobs that mimic data
warehouse Extract Transform Load (ETL) operations. ETL involves extracting data from
outside sources, transforming it to fit operational needs, then loading it into the end target
data warehouse. KCCA prediction is especially effective for Hadoop ETL jobs because the
same jobs are often rerun periodically with varying quantities/granularities of data. Also,
KCCA prediction can bring great value because ETL jobs are typically long running. Thus,
it is important to anticipate the job execution times so that system administrators can plan
and schedule the rest of their workload.

Figure 4.4 shows the predicted vs. actual execution times of ETL jobs at the same Hadoop
deployment, as well as prediction results for map time, reduce time and local bytes written.
Our R2 prediction accuracy for job execution time was 0.93. Prediction results for other
metrics were equally good, with R2 values of 0.93 for map time and 0.85 for reduce time.
Although the R2 values are better than Hive predictions, there are some visible prediction
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Figure 4.3: Prediction results for Hive queries, modeled using job configuration and input data
characteristics as job features. The model training and test sets contained 5000 and 1000 Hive
queries respectively. The diagonal lines represent the perfect prediction scenario. Note: the
results are plotted on a log-log scale to accommodate the variance in data values. (a) Predicted
vs. actual execution time, with R2 value of 0.87. (b) Predicted vs. actual map time, with R2

value of 0.84. (c) Predicted vs. actual reduce time, with R2 value of 0.71. (d) Predicted vs.
actual bytes written, with R2 value of 0.86.
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Figure 4.4: Prediction results for ETL jobs, modeled using job configuration and input data
characteristics as job features. The model training and test sets contained 5000 and 1000 ETL
jobs respectively. The diagonal lines represent the perfect prediction scenario. Note: the results
are plotted on a log-log scale to accommodate the variance in data values. (a) Predicted vs.
actual execution time, with R2 value of 0.93. (b) Predicted vs. actual map time, with R2 value
of 0.93. (c) Predicted vs. actual reduce time, with R2 value of 0.85. (d) Predicted vs. actual
bytes written, with R2 value of 0.61 due to visible outliers.
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errors for jobs with short execution times. These jobs are inherently more difficult to predict
because the setup overhead for big data Hadoop jobs is high, contributing to increased job
execution time. Nevertheless, the results indicate that the KCCA-based methodology is also
effective for predicting Hadoop ETL jobs.

4.5 Lessons and Limitations

To realize the full potential of our prediction methodology, there are several concerns to
address before integrating KCCA with scheduling and resource management infrastructures.

4.5.1 Can we predict well for other job types?

In Section 4.4, we show prediction results only for Hive queries and ETL jobs. However, we
believe the prediction methodology is applicable for a more generic set of Hadoop jobs. The
features we used for our predictions are common to all Hadoop jobs. Given that resource
demands vary by the specific map and reduce functions, we can augment the feature vectors
with specific map and reduce function identifiers and/or the language in which these functions
were implemented.

4.5.2 Can we use this methodology to predict task completion times?

Recall that a Hadoop job is composed of several map tasks and reduce tasks. Although
each map task for a job performs identical operations, the task completion times can vary
based on which nodes the tasks run on. The completion time variability is even more
pronounced in among reduce tasks for a job because there is added uncertainty due to
data locality. With task-level execution logs, we can use the same modeling framework
to model relationships between various tasks and their performance characteristics. For
example, accurate, statistics-driven prediction of task finishing times can help us better
identify lagging tasks. These lagging tasks may indicate slow or faulty cluster nodes or
asymmetric load conditions.

4.5.3 How can we include other resources in our model?

Given fine-grained instrumentation, we can monitor the utilization of various resources in-
cluding CPU, disk, and network. Current state-of-the-art tools such as Ganglia [Massie et al.,
2003] measure per-node resource utilization on regular intervals. However, the granularity
of measurement does not decouple resources consumed per-task.

Figure 4.5 provides an example of measuring performance metrics using Ganglia for two
types of Hadoop jobs run on a single node. The results show two runs of pi and two runs
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Trial: Job Type time bytes_in bytes_out cpu_idle cpu_user mem_cached mem_free 

T1: Grep 1:38 26437 30768 98.01 1.62 63704 10354957 

T2: Grep 1:24 32113 33918 97.61 1.93 65360 10334010 

T1: Pi 53 32542 35048 97.51 2.01 64209 10353230 

T2: Pi 55 34669 34646 97.68 1.86 65397 10339415 

T1: Simultaneous 

Grep+Pi  1:55 31237 35909 97.38 2.11 63987 10334261 

T2: Simultaneous 

Grep+Pi 2:22 37989 37819 97.09 2.37 67124 10307272 

Figure 4.5: Hadoop job performance metrics measured using Ganglia.

of grep in isolation, and two trials of simultaneously running pi and grep. Based on our
timing results alone, it is unclear whether running the two job types simultaneously provides
any gain or loss over running them in isolation. Such ambiguity in resource requirements is
exacerbated when jobs are run simultaneously across multiple nodes in a cluster. The same
trend was observed for co-scheduled queries in a parallel database system.

Per-job performance monitoring facilities would alleviate this problem and allow more
accurate resource measurements. Such instrumentation would allow us to augment the job
feature vector with resource consumption levels, providing more accurate predictions to the
scheduler. Furthermore, we can “rerun” the workload on different hardware and cluster
configurations, turning the KCCA framework into an even more powerful tool that can
directly compare resource consumption between different hardware/cluster configurations.

4.5.4 Can we predict and prevent Hadoop master node overload?

A major insight we learned from presenting our results at Facebook is that the Hadoop master
node, by design, is a single point of failure. In production, the master node consistently
crashes due to exhausted memory resources from tracking too many jobs simultaneously.
Our methodology could be adapted to predict how much memory is required for the master
node to track a new Hadoop job given its anticipated number of tasks and splits. If the
node’s available memory does not accommodate the new job’s resource requirements, we
can retire old jobs from the master node’s job-tracking list.

4.5.5 How can this methodology be used for cluster resource provi-
sioning?

Given predicted resource requirements and desired finishing time, one can evaluate whether
there are enough resources in the cluster or if more nodes should be pooled in. If predicted
execution time is too long, one can assign nodes for other computations. Conversely, if
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predicted time is very short, one can turn off unnecessary nodes to reduce power, or cost, in
the public cloud, without impacting performance.

4.5.6 How can we use this prediction methodology to drive job schedul-
ing decisions?

A good scheduler should understand whether particular jobs have conflicting or orthogonal
resource demands. However, accurate finishing time predictions alone enable several sched-
uler policies. One such example is a shortest-job-first scheduler, where we can minimize
per-job wait time by executing jobs in order of increasing predicted execution time. We can
also implement a deadline-driven scheduler that allows jobs with approaching deadlines to
jump the queue “just in time.”

4.5.7 Can we use models from one organization to predict well for
Hadoop workloads from other organizations?

Different organizations have different computational needs. We need to evaluate the predic-
tion effectiveness for different workloads to increase confidence in the KCCA framework. In
the absence of a representative Hadoop benchmark, we must rely on case studies on pro-
duction logs. However, access to production logs involves data privacy and other logistical
issues. Thus, we need a way to anonymize sensitive information while preserving a statistical
description of the Hadoop jobs and performance. We can create a workload generator to
replay this necessary and sufficient workload summary to compare resource requirements for
workloads across multiple organizations.

4.6 Related Work

The open source nature of Hadoop has made it easy to augment the implementation with
new optimizations. Our high prediction accuracy suggests that related work on Hadoop
optimization should consider augmenting their mechanisms using KCCA predictions.

Morton and others adapt traditional query progress indication techniques to estimate
the progress of Pig queries [Morton et al., 2010]. They estimate remaining execution time
for these queries by using heuristics that compare the number of tuples processed versus
the number of remaining tuples to process. Our job execution time prediction results can
replace these heuristics and provide more accurate completion time predictions using only
information available prior to executing these queries.

Zaharia and his colleagues use similar heuristics to determine task completion times for
scheduling decisions. They implement a way to speculatively execute backup tasks that are
estimated to have a completion time far in the future [Zaharia et al., 2008]. The LATE
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scheduler could be augmented with KCCA-based task execution time predictions instead of
the finishing time estimation heuristics to make even better scheduling decisions.

For scheduling jobs in a multi-user environment, Zaharia and his colleagues implemented
the Hadoop FAIR scheduler [Zaharia et al., 2009]. This scheduler can improve its resource
allocation using predicted execution time in addition to using the number of slots as a
resource consumption proxy. This combination could lead to better resource sharing and
decrease the need for killing or preempting tasks.

In addition, recent work on pipeline task execution and streaming queries [Condie et al.,
2009], as well as resource managers from multiple computational frameworks that include
Map-Reduce [Hindman et al., 2009] would benefit from our ability to predict at various
granularities for a variety of jobs.

4.7 Summary

In this chapter, we described an adaptation of the KCCA-based prediction methodology
for predicting performance of Hadoop jobs. Our technique accurately predicted multiple
performance metrics – including total execution time, map time, reduce time, and bytes
written – using a single model. We validated our approach on two types of data analytics
Hadoop workloads in a production environment.

Our prediction methodology is currently being used to implement a statistics-driven
Hadoop job scheduler. Furthermore, to validate the prototype with realistic workload with-
out privacy concerns of obtaining real production logs, we are also building a Hadoop work-
load generator [Ganapathi et al., 2009a]. This workload generator uses distributions for each
job input and configuration feature we used for our prediction, and generates jobs that have
similar input - shuffle - output ratios.

Although accurate performance predictions are powerful, we would like to adapt our
KCCA-based methodology for performance optimization as well. Configuration management
is a challenging task for many systems and identifying the appropriate configuration settings
to optimize performance is often an art rather than a science. In the next chapter, we tackle
the problem of performance tuning on multicore platforms.
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Chapter 5

Auto-tuning High Performance
Computing Motifs on a Multicore System

In the previous two chapters, we demonstrated the power of our KCCA-based technique for
accurately predicting the performance of diverse workloads on two different systems. In this
chapter, we further generalize the usefulness of this technique by adapting it for performance
tuning in a parallel computing environment. In contrast to the prediction problem, where
we use previously seen workloads to predict performance of future workloads, this case study
finds an optimal configuration to run a fixed workload on a specific platform.

5.1 Motivation

The multicore revolution has produced several complex processor architectures. As new
generations of hardware are continually released, their complexity increases with higher core
counts, varying degrees of multithreading, and heterogeneous memory hierarchies. This
rapidly evolving landscape has made it difficult for compilers to keep pace. As a result,
compilers are unable to maximally utilize system resources. This architectural trend has
also made it impossible to perform effective hand-tuning for every new release within and
across processor families.

Auto-tuning has emerged as an effective solution that can be applied across platforms
for performance optimization. Auto-tuning first requires a performance expert to identify
a set of useful optimizations and acceptable parameter ranges using hardware expertise
and application-domain knowledge. Then an expert programmer generates appropriate code
variants corresponding to these optimizations. Lastly, the auto-tuner searches the parameter
space for these optimizations to find the best performing configuration. In the last decade,
auto-tuning has been successfully used to tune scientific kernels for serial [Frigo and Johnson,
2005; Vuduc et al., 2005] and multicore processors [Williams et al., 2007; Datta et al., 2008].
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Auto-tuning is scalable, automatic, and can produce high-quality code that is several
times faster than a näıve implementation [Demmel et al., 2005]. Unfortunately it suffers
from two major drawbacks. The first drawback is the size of the parameter space to explore:
state-of-the-art auto-tuners that consider only a single application, a single compiler, a spe-
cific set of compiler flags, and homogeneous cores may explore a search space of nearly 40
million configurations [Datta et al., 2008]. This search would take about 180 days to complete
on a single machine [Ganapathi et al., 2009b]. If the auto-tuner considers multiple compil-
ers, multichip non-uniform memory access (NUMA) systems, or heterogeneous hardware, the
search becomes prohibitively expensive. Even parallel exploration of multiple configurations
(e.g. in a supercomputing environment) achieves only linear speedup in the search. Fur-
thermore, cloud computing environments would not help parallel configuration explorations
because tuning must occur on dedicated nodes with a specific architecture. Therefore, most
auto-tuners prune the space by using extensive domain knowledge about the platform as
well as the code being tuned. Such domain knowledge is accumulated over months/years
of experience and is neither easily portable to new platforms nor easily documentable for
subsequent use.

The second drawback with auto-tuning is that most auto-tuners only minimize overall
running time. Given that power consumption is a proximate cause of the multicore revo-
lution, and a vital metric for tuning embedded devices, it is important to tune for energy
efficiency as well. A performance-optimal configuration is not necessarily energy-optimal,
and vice versa. Furthermore, good or bad performance is often a second order effect of
caching effects and memory traffic. Thus, capturing these dependencies is important in
identifying performance optimization strategies.

In this chapter, we show how we can adapt the same SML methodology used in previous
chapters to address the problem of efficiently exploring the auto-tuning configuration space.
SML algorithms allow us to draw inferences from automatically constructed models of large
quantities of data [Goldszmidt et al., 2005]. We leverage these models for identifying a
subspace of configuration parameters that produces optimal performance. We set our goals
as follows:

• Require minimal micro-architecture and application domain knowledge. This goal is
similar to our database and Hadoop case studies’ goals of using a methodology that
is not implementation-dependent and requires minimal understanding of the system’s
software architecture.

• Simultaneously optimize for multiple metrics of success including performance and
energy efficiency. This goal resembles the previous case studies’ goals of predicting
multiple metrics simultaneously using a single model.

• Efficiently prune the vast parameter space and traverse a subspace that produces good
configurations in less than a day. This time constraint follows the previous case studies’
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constraints that the prediction time must be a fraction of the query/job’s execution
time.

• Easily extend to handle problems with even larger search spaces. This goal allows
the auto-tuning methodology to be portable to new architectures with more tunable
parameters.

To meet these goals, we use an adaptation of KCCA as described in Section 2.3. Recast
from a SML perspective, auto-tuning leverages relationships between a set of optimization
parameters and a set of resultant performance metrics to explore the search space. Several
hurdles to applying SML in our previous two case studies from the systems domain are
absent in the high performance computing (HPC) domain. We enumerate several examples
below:

• In contrast to the technical and political difficulty of obtaining data from a produc-
tion deployment of the parallel database and Hadoop cluster, real data for multi-
core/architecture problems can be obtained by using commodity hardware to run a
problem instance. While representative Hadoop jobs and decision support workloads
require hours or days-long experimental runs, multicore/architecture experimental runs
can complete in minutes or hours.

• Systems vary widely in the quantity, granularity, and uniformity of instrumentation
available. For example, the granularity of measuring resource utilization in Hadoop
does not match the specific time window during which a job executes. Therefore,
getting “ground truth” from systems datasets—i.e., understanding what “really hap-
pened” during a failure scenario—can be elusive and complex. In contrast, the ar-
chitecture community has a long-established culture of designing for testability and
measurability via mechanisms such as programmer-visible performance counters so we
can repeat the experiment ad nauseam and collect instrumentation to any desired
degree of detail.

• Lastly, since the architecture community tends to optimize applications with exclusive
access to hardware, the SML models need not adapt to varying machine usage patterns
and externally-imposed load conditions. This advantage is significant compared to the
multi-user environments in which multiple Hadoop jobs or multiple data warehousing
queries must simultaneously execute. Thus, models built once for auto-tuning should
be reusable without change.

As a result of these advantages, we see a great opportunity for using SML for optimizing
performance of HPC code.

We evaluate our methodology by optimizing three different HPC motifs – a 7-point stencil,
a 27-point stencil, and a matrix multiply problem – on two modern multicore platforms. For
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each of these motifs, we collect training data to build our KCCA-based models and identify
new configurations that perform well with respect to various metrics of interest. Our results
reveal that we are able to reduce the half-year long exhaustive search to a few minutes while
achieving performance at least within 1% of and up to 50% better than that achieved by a
human expert. Similar to the parallel database prediction results, our SML-based auto-tuner
results are comparable to the state-of-the-art techniques’ results.

In the remainder of this chapter, we describe the three HPC motifs and the two multicore
platforms we optimize them for, explain our adaptation of the KCCA algorithm for perfor-
mance optimization, present results comparing the performance of an expert’s configuration
parameters to our SML-guided parameters, and lastly review open questions and related
work.

5.2 Experimental Setup

In this section, we describe the platforms we ran our experiments on and the three HPC
motifs we tuned. Subsequent sections show the results of optimizing each individual motif
on our multicore platforms.

5.2.1 Multicore Platforms

We conduct our performance optimization experiments on two multicore platforms: the Intel
Clovertown and the AMD Barcelona. Figure 5.1 shows architectural schematics for both
these platforms. Both the Clovertown and Barcelona are superscalar out-of-order machines
based on the x86 architecture.

Both our experimental platforms are both dual-socket and quad-core with one hardware
thread per core. Clovertown has a clock rate of 2.66 GHz and offers DRAM bandwidth of
up to 10.7 GB/s, with a peak performance of 85.3 GFLOPs per second. Barcelona, on the
other hand, has a clock rate of 2.30 GHz and offers 9.2 GB/s peak bandwidth with peak
performance of 73.6 GFLOPs per second. We compiled our code using the icc compiler on
Clovertown and gcc on Barcelona.

To measure performance metrics on these platforms, we use PAPI performance coun-
ters [PAPI, 2009]. PAPI provides a uniform interface to the platforms’ in-built performance
counter mechanisms. Table 5.3, on page 69, shows the PAPI performance counters we use
for the Clovertown and Barcelona. The performance metrics we measure include total cycles
(time), cache misses, TLB misses, and cache coherency traffic. While total cycles is the
ultimate measure of performance, we felt it was equally important to capture counters that
heavily influence this metric.
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Figure 5.1: This figure shows schematics of the Intel Clovertown and AMD Barcelona architec-
tures. Diagrams courtesy of Sam Williams.

5.2.2 HPC Motifs and Optimizations

Asanovic and others [Asanovic et al., 2006] have identified thirteen common communication
and computation patterns in parallel computing, of which seven are fundamental to HPC.
These motifs are common targets of performance optimization. We next describe two such
motifs – stencil codes and PGEMM – and possible techniques to optimize their performance.

5.2.2.1 Stencil Codes

Stencil (nearest-neighbor) computations are used extensively in partial differential equation
(PDE) solvers involving structured grids [Berger and Oliger, 1984; Applied Numerical Algo-
rithms Group, 2009]. In addition to their importance in scientific calculations, stencils are
interesting as an architectural evaluation benchmark because they have abundant parallelism
and low computational intensity, offering a mixture of opportunities for on-chip parallelism
and challenges for associated memory systems.

In a typical stencil code, each element of a grid receives a new value based on the elements
adjacent to it; the number of such elements varies with the dimensions of the grid and size of
the stencil. Our work utilizes 3D 7-point and 27-point stencils arising from finite difference
calculations.

Figure 5.2 provides a visualization of the 7-point stencil and corresponding pseudo-code.
For each stencil run, we perform a single sweep over a 2563 grid where the read and write
arrays are distinct. This grid size ensures that the problem does not fit into cache. For the
7-point stencil each point in the grid is updated by considering its 6 adjacent neighbors while
the 27-point stencil considers its 26 neighbors in a 3× 3× 3 inner-grid. The 27-point stencil
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B[i, j, k] = C0(A[i, j, k]) +
C1( A[i + 1, j, k] + A[i− 1, j, k]
+ A[i, j + 1, k] + A[i, j − 1, k]
+ A[i, j, k + 1] + A[i, j, k − 1])

(a)

(b)

Figure 5.2: 3D 7-point stencil: (a) Pseudo-code. (b) Visualization.

performs significantly more FLOPs per byte transferred than the 7-point stencil (1.25 vs.
0.33 FLOPs/byte), and thus is more likely to be compute-bound compared to the bandwidth-
bound 7-point stencil.

Prior work on auto-tuning of stencil codes for multicore architectures [Datta et al., 2008]

identified a set of possibly effective optimizations, along with an appropriate choice of pa-
rameters. Table 5.1, on page 67, shows the four basic categories of the optimizations. The
first one, domain decomposition, specifies how the grid is broken into blocks and allocated to
individual cores. This allocation is necessary for parallelization. The second optimization,
software prefetching, was employed to mask memory latency. Next, we performed padding to
reduce cache conflict misses by adding extra elements onto the contiguous dimension of the
array. These extra elements were not used in computation, however. Finally, the inner loop
optimizations rewrote the inner loop to expose instruction-level parallelism. The register
block size indicates the number of loop unrollings performed in each of three dimensions.
For more details on the optimizations and parameters, we refer the reader to [Datta et al.,
2008]. Currently, the full parameter space produces nearly 40 million combinations, which
is intractable to search over.

5.2.2.2 PGEMM

Matrix multiplication is an essential linear algebra building block for many HPC applications.
PGEMM is an implementation of the matrix multiply operation that forms the foundation
of BLAS (Basic Linear Algebra Subprograms) [Whaley et al., 2001]. Figure 5.3 shows the
pseudo-code that PGEMM implements. C is a matrix of dimensions M ×N , and is updated
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for i = 1 to M do
for j = 1 to N do

for k = 1 to K do
C[i,j] = C[i,j] + A[i,k]*B[k,j]

end for
end for

end for

Figure 5.3: PGEMM pseudo-code.

Parameter Number of
Optimization Type Name Parameter Range Configurations

Domain Register Tile Size rr {20 . . . 23} 4
Decomposition rc {20 . . . 23} 4

Cache Block Size nb {24 . . . 27} 4
kb {24 . . . 27} 4

Software Prefetch Type {NTA, T0, T1, T2} 4
Prefetching Prefetch Distance for A pA {0, 1, 2, 4, 8} 5

Prefetch Distance for B pB {0, 1, 2, 4, 8} 5
Inner K Loop Unroll Factor {20 . . . kb} 7
Loop Loop Order {IJK, JIK} 2
SIMD Use SIMD Layout {0, 1} 2

SIMD Dimension {M, N, K} 3

Table 5.2: Attempted optimizations and the associated parameter spaces explored by the auto-
tuner for a 7683 pgemm problem (M, N, K = 768) using 8 threads (NThreads = 8). All
numbers in the parameter tuning range are in terms of doubles.

5.3 Addressing Design Challenges of Using KCCA

Auto-tuning in the context that we are proposing explores a much larger search space than
the previous work in earlier chapters, thereby exercising the full potential of newer SML al-
gorithms. Recast from a SML perspective, auto-tuning leverages relationships between a set
of optimization parameters and a set of resultant performance metrics to explore the search
space. We used the KCCA-based methodology presented in Section 2.3 to identify these
relationships. Since KCCA finds multivariate correlations between optimization parameters
and performance metrics on a training set of data, we can leverage these relationships to
optimize for performance and energy efficiency.

Figure 5.4 shows steps we use to build a KCCA model to guide auto-tuning. Recall that
there are three design decisions to be considered when customizing KCCA for auto-tuning:
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Figure 5.3: PGEMM pseudo-code.

by multiplying matrix A of dimensions M × K with matrix B of dimensions K × N . To
ensure our problem size exceeds the cache size, to make the problem more interesting, we
set M = N = K = 768 for our experiments.

Depending on the chosen cache block size, PGEMM performs as few as 4 and up to
32 FLOPs per byte transferred, which makes it significantly more computation bound and
significantly less bandwidth bound compared to the two stencils in Section 5.2.2.1.

Whaley and others [Whaley et al., 2001] enumerate several optimizations and corre-
sponding parameters for improving the performance of matrix multiplication. Table 5.2, on
page 68, elaborates on these parameters, which overlap significantly with the optimization
parameters for stencils. The only new addition to the set of optimizations is simd, which
allows the code to leverage single instruction-multiple data facilities in the underlying x86
instruction set. The full parameter space produces over 8.6 million combinations, which is
intractable to search over.

The next section addresses the issue of how to navigate the parameter space quickly with
minimal domain knowledge. Using machine learning to guide the auto-tuning process, we
can reduce the search space to a tractable scale.

5.3 Addressing Design Challenges of Using KCCA

Auto-tuning in the context that we are proposing explores a much larger search space than
the previous work in earlier chapters, thereby exercising the full potential of newer SML al-
gorithms. Recast from a SML perspective, auto-tuning leverages relationships between a set
of optimization parameters and a set of resultant performance metrics to explore the search
space. We used the KCCA-based methodology presented in Section 2.3 to identify these
relationships. Since KCCA finds multivariate correlations between optimization parameters
and performance metrics on a training set of data, we can leverage these relationships to
optimize for performance and energy efficiency.
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Parameter Number of
Optimization Type Name Parameter Range Configurations

CX {27 . . . NX}
Domain Block Size CY {21 . . . NY}

Decomposition CZ NZ 36

Chunk Size {1 . . . NX×NY×NZ
CX×CY×CZ×NThreads}

Software Prefetching Type {register block, plane, pencil} 3
Prefetching Prefetching Distance {0, 25 . . . 29} 6

Padding Padding Size {0 . . . 31} 32
RX {20 . . . 21}

Register Block Size RY {20 . . . 21} 10
RZ {20 . . . 23}

Inner Statement Type {complete, individual} 2
Loop Read From Type {array, variable} 2

Pointer Type {fixed, moving} 2
Neighbor Index Type {register block, plane, pencil} 3
FMA-like Instructions {yes, no} 2

Table 5.1: Attempted optimizations and the associated parameter spaces explored by the auto-
tuner for a 2563 stencil problem (NX, NY, NZ = 256) using 8 threads (NThreads = 8). All
numbers in the parameter tuning range are in terms of double precision numbers.

Recall that there are three design decisions to be considered when customizing KCCA
for auto-tuning:

1. How to represent optimization parameters as configuration feature vectors and perfor-
mance metrics as performance feature vectors?

2. How to define kernel functions for pairs of configuration vectors so that we can quan-
tify how similar two configurations are, and similarly, how to define kernel functions
between pairs of performance features vectors?

3. How to use the output of the KCCA algorithm to identify optimal configurations?

We discuss our choices for the above design decisions in turn.

5.3.1 Configuration and Performance Feature Vectors

For each stencil code run, we construct one configuration vector and one performance vector.
Selecting features to represent the configurations was straightforward, given the optimiza-
tion parameters described in Tables 5.1 and 5.2. Configuration feature vectors for stencils
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Parameter Number of
Optimization Type Name Parameter Range Configurations

Register Tile Size rr {20 . . . 23} 4
Domain rc {20 . . . 23} 4

Decomposition Cache Block Size nb {24 . . . 27} 4
kb {24 . . . 27} 4

Software Prefetch Type {NTA, T0, T1, T2} 4
Prefetching Prefetch Distance for A pA {0, 1, 2, 4, 8} 5

Prefetch Distance for B pB {0, 1, 2, 4, 8} 5
Inner K Loop Unroll Factor {20 . . . kb} 7
Loop Loop Order {IJK, JIK} 2
SIMD Use SIMD Layout {0, 1} 2

SIMD Dimension {M, N, K} 3

Table 5.2: Attempted optimizations and the associated parameter spaces explored by the auto-
tuner for a 7683 pgemm problem (M, N, K = 768) using 8 threads (NThreads = 8). All
numbers in the parameter tuning range are in terms of doubles.

contained a different set of parameters than the configuration feature vectors for PGEMM
code because of the differences in the optimizations exposed by the code generator for these
two motifs. However, the 7-point and 27-point stencil configurations were represented using
the same set of configuration features.

Constructing performance feature vectors for these motifs was straightforward given the
performance counters we measured for each platform. The specific features we used for
these vectors varied between Clovertown and Barcelona to account for differences in available
performance counters. Table 5.3 shows the list of performance counters we used as features.
We augmented the performance feature vector with an energy efficiency metric, which was
calculated based on power meter readings of Watts consumed during experimental runs.

For each motif, we randomly choose 1500 configurations to build our training data sets.
The random sampling was performed independently for each motif on each platform. We
limit our sample size to 1500 datapoints as the KCCA algorithm is exponential with respect
to the number of datapoints. We run the motif’s code variant reflecting each chosen con-
figuration and collect low-level performance counter data and power measurements. For the
7-point and 27-point stencils, N=1500 configuration vectors of K=16 features are combined
into a N×K configuration matrix; the N performance vectors of L features (L=8 for Clover-
town and L=6 for Barcelona) produce a N×L performance matrix. The corresponding rows
in each of the two matrices describe the same stencil run. Similarly, for PGEMM, the N
configuration vectors of K=12 features are combined into a N ×K configuration matrix; the
N performance vectors of L features (L=8 for Clovertown and L=6 for Barcelona) produce
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Counter Name Counter Description Clovertown Barcelona

PAPI TOT CYC Clock cycles per thread X X
PAPI L1 DCM L1 data cache misses per thread X X
PAPI L2 DCM L2 data cache misses per thread X X
PAPI L3 TCM L3 total cache misses per thread X
PAPI TLB DM TLB data misses per thread X X
PAPI CA SHR Accesses to shared cache lines X
PAPI CA CLN Accesses to clean cache lines X
PAPI CA ITV Cache interventions X

Power meter (Watts/sec) X X

Table 5.3: Measured performance counters on the Clovertown and Barcelona architectures.

a N × L performance matrix. The corresponding rows in each of the two matrices describe
the same PGEMM run.

5.3.2 Defining Kernel Functions

Recall that a useful aspect of the KCCA algorithm is that it produces neighborhoods of
similar data with respect to configuration features as well as performance features. However,
to achieve this result, KCCA uses kernel functions1 to define the similarity of any two
configuration vectors or any two performance vectors.

Since our performance vector contains solely numeric values, we use the Gaussian kernel
function [Shawe-Taylor and Cristianini, 2004] below:

kGaussian(yi, yj) = exp{−‖yi − yj‖2/τy}

where ‖yi − yj‖ is the Euclidian distance and τy is calculated based on the variance of
the norms of the data points. We derive a symmetric matrix Ky such that Ky[i, j] =
kGaussian(yi, yj). If yi and yj are identical, then Ky[i, j] = 1.

Since the configuration vectors contain both numeric and non-numeric values, we con-
struct a kernel function using a combination of two other kernel functions. For numeric
features, we use the Gaussian kernel function. For non-numeric features we define:

kbinary(xi, xj) =

{
1 if xi = xj,

0 if xi 6= xj

1Our use of the term kernel in this chapter refers to the SML kernel function and not HPC scientific
kernels.

69



Chapter 5. Auto-tuning High Performance Computing Motifs on a Multicore System

We define our symmetric matrix Kx such that

Kx[i, j] = average(kbinary(xi, xj) + kGaussian(xi, xj))

Thus, given the N × K configuration matrix and the N × L performance matrix, we
form a N × N matrix Kx and a N × N matrix Ky, which are used as input to the KCCA
algorithm.

5.3.3 Identifying Optimal Configurations

Upon running KCCA on Kx and Ky, we obtain projections KxA and KyB that are maximally
correlated. We leverage these projections to find an optimal configuration. We first identify
the best performing point in our training set, called P1. We look up its coordinates on
the KyB projection, and find its two nearest neighbors, called P2 and P3, on the projected
space. We then construct new configuration vectors using a genetic algorithm to determine
all combinations of the optimizations in P1, P2, and P3. We do not vary the parameters
within each optimization. We run these new configurations to identify the best performing
configuration.

5.4 Results

We evaluate our adaptation of KCCA for multicore performance optimization by comparing
results from using our methodology to results from several alternate approaches:

• No Optimization: This approach assigns baseline parameter values for the optimization
parameters, mimicking the scenario that generates unoptimized code.

• Expert Optimized : For both the stencils, this approach is derived from techniques sug-
gested by Datta and others [Datta et al., 2008], where the application/architecture
domain expert ranks optimizations by likely effectiveness and applies them consecu-
tively to determine a good configuration. For PGEMM, this approach exhaustively
searches the parameter space for a subset of optimizations using a small matrix size
that fits into cache. Then, the best resultant configuration is used on the 7683 problem
while exhaustively exploring the prefetch parameter space.

• Random Raw Data: This approach takes the best performing configuration from our
randomly generated raw training data points.

• Genetic on Raw Data: This approach represents the results of using the genetic algo-
rithm in Section 5.3.3 on the raw data. Given the top three best performing training
data points, this approach permutes the parameters for each optimization, and identi-
fies the best performing configuration from the permuted subset.
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Figure 5.4: Performance results for the 7-point stencil on Intel Clovertown and AMD Barcelona.

• SML optimized : This approach uses our KCCA methodology, as described in Sec-
tion 5.3, to determine the best configuration.

Our primary metric of success is performance, measured in GFLOPs per second. Our
performance counters inform us of cycles used for each run; we convert this number to
GFLOPs/sec using the following equation:

GFLOPs/sec =
(ClockRate× FLOPs)

Cycles

Note that the clock rate is 2.66 GHz for Clovertown and 2.30 GHz for Barcelona. The
number of FLOPs varies per motif. The 7-point stencil performs 8 FLOPs per point on the
2563 points and the 27-point stencil performs 30 FLOPs per point on the 2563 point grid.
PGEMM, on the other hand, performs just 2 FLOPs per point on the 7683 points.

5.4.1 7-Point Stencil Performance

Figure 5.4 compares the results of the various performance optimization techniques on the
7-point stencil on both Clovertown and Barcelona. On Clovertown, our technique provides
performance within .02 GFLOPs/sec (1%) of expert optimized. Because the 7-point stencil
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Figure 5.5: Performance results for the 27-point stencil on Intel Clovertown and AMD Barcelona.

is bandwidth bound on the Clovertown, none of the techniques show significant performance
gains.

On Barcelona, our performance is 0.6 GFLOPs/sec (16%) better than that achieved by
expert optimized for the 7-point stencil. Our inner loop optimization parameters unroll
along a different dimension than expert optimized. We also prefetch further ahead than the
expert optimized configuration.

5.4.2 27-Point Stencil Performance

Figure 5.5 shows the 27-point stencil’s performance optimization results. On Clovertown, our
technique provides performance 1.5 GFLOPs/sec (18%) better than expert for the 27-point
stencil. This significant performance gain can be attributed to two factors: (i) our domain
decomposition parameters more efficiently exploit the 27-point stencil’s data locality; (ii)
we likely use registers and functional units more efficiently as a result of our inner loop
parameter values.

On Barcelona, our performance is within 0.35 GFLOPs/sec (2%) for the 27-point stencil.
The dominant factor causing the performance gap is the smaller padding size in the unit
stride dimension used by the expert optimized configuration. Furthermore, the expert’s
configuration uses more efficient domain decomposition.

72



Chapter 5. Auto-tuning High Performance Computing Motifs on a Multicore System

0 

10 

20 

30 

40 

50 

60 

Clovertown Barcelona 

G
Fl

o
p

s/
se

co
n

d
 

PGEMM Performance 
No Optimization 
Expert Optimized 
Random Raw Data 
Genetic on Raw Data 
SML Optimized 

Figure 5.6: Performance results for PGEMM on Intel Clovertown and AMD Barcelona.

5.4.3 PGEMM Performance

Figure 5.6 shows the performance optimization results for running PGEMM on Clovertown
and Barcelona. Our technique provides performance 5.2 GFLOPs/sec (15%) better than the
expert’s configuration on Clovertown. Our choice of register tile size has twice as many rows
as the expert’s configuration. We also choose a smaller cache block size for the K dimension.
Our inner loop parameters unroll the loop fewer times and along a different dimension than
the expert. We SIMD-ize the code and prefetch while the expert’s configuration performed
neither.

On Barcelona, our performance is 11.3 GFLOPs/sec (50%) better than the expert’s con-
figuration. Our technique chose the same domain decomposition parameters as the expert’s
configuration but performed significantly more prefetching compared to the expert’s config-
uration.

5.5 Lessons and Limitations

In this section, we address several open questions about our results and its generalizeability
to other motifs and platforms.
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Stencils PGEMM
Optimization Parameters Total Configs Parameters Total Configs
Thread Count 1 4 1 4
Domain Decomposition 4 36 4 256
Software Prefetching 2 18 3 100
Padding 1 32 n/a n/a
Inner Loop 8 480 2 14
SIMD n/a n/a 2 6
Total 16 39, 813, 120 12 8, 601, 600

Table 5.4: Code optimization categories.

5.5.1 How long does our methodology take?

The last row in Table 5.4 summarizes the total number of configurations in the exhaustive
search space for both stencils and PGEMM. At 5 trials per configuration and about 0.08
seconds to run each trial, the total time amounts to 180 days for stencil parameter exhaustive
search. Our case study only requires running 1500 randomly chosen configurations. Given
our previous assumptions, our runs would complete in 10 minutes; however, we must add
the time it takes to build the model (approximately 10 minutes for the 1500 data points)
and the time to compute the heuristic and run the suggested configurations (under one
minute) - adding up to just over twenty minutes! The timesavings is of comparable scale
for PGEMM. Obviously, domain knowledge would help eliminate areas of the search space,
which is reflected by our expert-optimized results. However, our methodology is easier to
scale to other architectures as well as other optimization problems, such as FFTs and sparse
matrix multiplication [Williams et al., 2007], and it can produce superior results.

5.5.2 Can we use the same model to optimize Energy Efficiency?

On most platforms, optimizing for performance also optimizes energy efficiency. However,
we want to verify that our model does not produce configurations that result in poor energy
efficiency. Based on power meter wattage readings, we calculate energy efficiency with the
following formula:

Energy Efficiency =
MFLOPs/sec

Watts
As seen in Figure 5.7, on Clovertown we achieve within 1% of the expert optimized

energy efficiency for the 7-point stencil and 13% better than expert optimized for the 27-
point stencil. For both our stencil codes on Clovertown and the 27-point stencil code on
Barcelona, the best performing configuration is also the most energy efficient. For the 7-
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Figure 5.7: Energy efficiency on Clovertown for the two stencils.

point stencil on Barcelona, the energy efficiency of our fastest run differs from the most
energy efficient run by a mere 0.3%. As a result, we have omitted the Barcelona energy
efficiency graphs. For PGEMM, the relative energy efficiency the SML-optimized and expert-
optimized configurations were the same as their relative performance on both Clovertown
and Barcelona.

Figure 5.8 compares performance against energy efficiency on the Clovertown. The slope
of the graph represents Watts consumed, and since marker shape/color denote thread count,
we see that the number of threads used dictates power consumption. We observe configura-
tions with identical performance but differing energy efficiency and vice versa, as highlighted
by the oval. In environments with real-time constraints (e.g., portable devices), there is no
benefit to completing well before the real-time deadline; but there is significant benefit to
conserving battery power. In such environments, performance can be sacrificed for energy
efficiency, and thus we expect a wider gap between the two metrics.

5.5.3 Can we measure success without comparing to an expert?

Human experts incorporate architectural and application-specific domain knowledge to iden-
tify a good configuration. However, it is increasingly difficult to find people with both types
of expertise to guide all our tuning decisions. For instance, our expert optimized config-
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Figure 5.8: Performance vs. energy efficiency for the 7-point stencil training data on Clovertown.
Note that the slope indicates Watts consumed. The oval highlights configurations with similar
performance but different energy efficiencies.

urations for both the 7-point and 27-point stencils were derived from heuristics suggested
by a human expert with extensive knowledge of stencils as well as both Clovertown and
Barcelona. However, our PGEMM expert optimized configuration was suggested by a hu-
man expert with extensive knowledge about PGEMM but not platform-specific expertise.

Furthermore, the expert’s configuration may not reflect the system’s true performance
upper bound. The Roofline model [Williams et al., 2009] uses architectural specifications
and microbenchmarks to calculate peak performance. We can use this model to gauge how
close we are to fully exhausting system resources. For example, the Roofline model considers
memory bandwidth as a potential bottleneck. This metric is particularly relevant to stencil
codes since stencils are relatively bandwidth bound compared to other motifs. Since the
PGEMM motif is overwhelmingly compute-bound, Stream bandwidth is not a useful metric
for measuring success.

Considering only compulsory misses in our stencil codes, we achieve 95.4% of Stream
bandwidth for the 7-point stencil and 13.8% more than the Stream bandwidth for the 27-
point stencil on the Clovertown platform. We exceed Stream bandwidth for the 27-point
stencil because the Stream benchmark is unoptimized. On Barcelona, we achieve 89.2% of
Stream bandwidth for the 7-point stencil and 80.1% for the 27-point stencil. Since Barcelona
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has a lower FLOP to byte ratio than Clovertown, the stencils are more likely to be compute
bound on this platform. As a result, we are unable to achieve a higher fraction of stream
bandwidth.

5.5.4 Do simpler algorithms work?

One of the common criticisms of our methodology is that a simpler algorithm would have
worked just as well. To address this concern, Figures 5.4, 5.5 and 5.6 include results for two
simpler alternatives. The Random Raw Data column shows the best performing point in
our training data set. The Genetic on Raw Data column shows the best-case performance
achieved by using a genetic algorithm (combinations) on the top three best-performing points
in our training data set. We do not vary the parameters within each optimization. While
these two techniques are building blocks of our methodology, individually they do not perform
as well as our SML optimized results.

For stencils, we also considered an alternate statistical algorithm in place of KCCA. We
built a regression curve on the training data and calculated regression coefficients tfit by
solving Kx ∗ tfit = totalCycles. We then generated 50,000 configurations and calculated
their predicted cycle times using the regression curve. We then ran the top 1000 configu-
rations with shortest predicted cycle times. We evaluated this alternate technique on both
the 7-point and 27-point stencils on Clovertown and Barcelona. These regression predicted
results did not outperform our KCCA-based configuration for either the 7-point or 27-point
configuration on both platforms. For the 7-point stencil on Clovertown and the 27-point
stencil on Barcelona, our regression predicted results performed even worse than our Ran-
dom Raw Data configuration. Not only did this technique perform consistently worse than
our KCCA-based technique, but it also took longer to run due to running 1000 additional
configurations to validate predictions.

5.5.5 Can we achieve good results with fewer counters?

For the 7-point and 27-point stencils, we conducted experiments that built the KCCA model
using a subset of the available performance counters on each platform. Figure 5.9 compares
the number of counters used to the percentage of peak performance we observed. We always
included total cycles in our model so the other counters were never used in isolation. On
Clovertown, the 7-point stencil did not show significant advantages to adding several coun-
ters. However, varying features to train the 27-point stencil model revealed very unexpected
behavior. Training with some subsets of two counters produced better configurations than
training with more counters; however, the model trained using all 8 counters demonstrated
near-optimal performance. On Barcelona, using total cycles alone performed better than
training the model with 2 or 3 counters. However, the peak performance was achieved when
using all 6 counters.
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(a) (b)

Figure 5.9: Performance results for the 7-point and 27-point stencils on (a) Intel Clovertown and
(b) AMD Barcelona as we vary the number of counters we use to train the model. The error bars
represent the standard deviation of peak performance.

These results indicate that the choice of an appropriate subset of counters to train with
is non-trivial. When in doubt, it is best to use all available counters since the best counters
for one motif do not necessarily reflect the best counters for another.

5.5.6 How portable are the best configurations across platforms?

Performance tuning experts often make the claim that code tuned for one platform does not
guarantee that it will perform well when run on another platform. To empirically evaluate
this claim, we ran each of the three motifs with their best configuration setting for Clovertown
on Barcelona, and vice versa. Tables 5.5 and 5.6 show results for this experiment. The results
are conclusive that tuning the code for one platform does not guarantee cross-platform
performance portability.

% of best observed
Motif Barcelona performance
7-point stencil 98%
27-point stencil 52%
PGEMM 65%

Table 5.5: Results for using best Clovertown configurations on Barcelona.
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% of best observed
Motif Clovertown performance
7-point stencil 95%
27-point stencil 79%
PGEMM 71%

Table 5.6: Results for using best Barcelona configurations on Clovertown.

5.5.7 Can our technique benefit from fine-grained power profiling?

One of the limitations of our study is that we measured whole-machine power consumption
due to the lack of easily available lower-level power measurements. We can improve energy
efficiency by considering each component’s individual power consumption rather than only
considering whole-machine power consumption. Bird and others [Bird et al., 2010] describe
a framework to standardize and expose low-level power and performance metrics. Architec-
tures with dynamic voltage and frequency scaling of either the whole chip or individual cores
would also increase the number of tunable parameters we consider.

5.5.8 Can we optimize performance for a composition of motifs?

While we optimized a single scientific motif, complex applications often consist of a com-
position of these motifs. Optimal configurations for a particular motif do not correspond
to optimal configurations for composing that motif with others. The only way to get good
performance for a multi-motif application is by co-tuning its motifs on each platform [Mo-
hiyuddin et al., 2009]. We can explore the composition space using the techniques in this
chapter by merely changing the training data set.

5.5.9 Can we tune applications for multi-chip servers?

The SML based technique presented in this chapter can be used to tune applications for
multi-chip servers. The methodology can be extended to simultaneously optimize both com-
putation on individual (possibly heterogeneous) nodes as well as communication efficiency
across the network.

5.5.10 Can our results inform architecture design?

A key issue in system/architecture design is the integration of appropriate instrumentation
to expose counters that facilitate decision-making. Evaluating the usefulness of KCCA or
other SML algorithm-guided decisions on an experimental system provides valuable feedback
on potential areas for improving measurement granularity.
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Our successes in using KCCA for auto-tuning have inspired several new use cases for
instrumentation-dependent decision making. Building a model of resource availability and
application performance can inform resource allocation and cache placement strategies on
experimental platforms. Exposing performance counters to the operating system enables
research on SML model driven adaptable scheduling algorithms.

5.6 Related Work

Statistical machine learning has been used by the high-performance computing (HPC) com-
munity in the past to address performance optimization for simpler problems: Brewer [Brewer,
1995] used linear regression over three parameters to select the best data partitioning scheme
for parallelization; Vuduc [Vuduc, 2003] used support vector machines to select the best of
three optimization algorithms for a given problem size; and Cavazos and his colleagues [Cava-
zos et al., 2007] used a logistic regression model to predict the optimal set of compiler flags.
All three examples carve out a small subset of the overall tuning space, leaving much of it
unexplored. In addition, the above research was conducted prior to the multicore revolution,
thus ignoring metrics of merit like energy efficiency.

Recently, Liao and others [Liao et al., 2009] used a variety of machine learning techniques
to tune processor prefetch configurations for Datacenters. While they evaluate their opti-
mization configurations on several Datacenter applications, their tunable parameter space
contains 4 prefetchers, each of which can be enabled or disabled, resulting in a total possible
of 16 configurations. In contrast, our tunable parameter space is orders of magnitude larger.

5.7 Summary

In this chapter, we have demonstrated that SML can quickly identify configurations that si-
multaneously optimize running time and energy efficiency. SML based auto-tuning method-
ologies are agnostic to the underlying architecture as well as the code being optimized,
resulting in a scalable alternative to human expert-optimization.

As an example, we optimized two stencil codes and a matrix multiplier on two multicore
architectures, either nearly matching or outperforming a human expert by up to 50%. The
optimization process took about twenty minutes to explore a space that would take half a
year to explore exhaustively on a single computer using conventional techniques. This result
gives us reason to believe that SML effectively handles the combinatorial explosion posed by
the optimization parameters, potentially allowing us to explore some previously-intractable
research directions including tuning for a composition of motifs and on multi-chip servers.

Our results to date, and the promise of mapping difficult research problems such as those
above onto approaches similar to our own, give us confidence that SML will open up exciting
new opportunities to advance the state-of-the-art in multicore performance optimization.
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Chapter 6

Reflections and Future Work

Our success stories in the previous three chapters encourage us to explore other use cases for
our methodology. This chapter reflects on our experiences and provides a roadmap of future
directions for SML-based modeling techniques.

6.1 Most promising future directions for our three case
studies

In our case studies in previous chapters, we identified several opportunities for using our
prediction/optimization methodology to advance state of the art tools. We revisit a few of
the most promising of these opportunities below:

• Database query optimization: Query optimizers struggle with predicting the rela-
tive performance of different query plans to ultimately choose the best query execution
plan. Historically, query optimizers are built using static cost functions that are deter-
mined by the estimated selectivity at each phase of a query execution plan. However,
predicting selectivity at each step of a query’s execution is error-prone, and errors in
prediction propagate through the query plan [Ioannidis and Christodoulakis, 1993].
Furthermore, data skew can thwart attempts to parallelize query processing, also com-
pounding prediction errors in parallel databases.

Our execution time and resource predictions can be complementary to the query opti-
mizer. The query optimizer can use our prediction results to dynamically customize its
cost functions and thresholds to the production environment. As a result, the optimizer
can make decisions that are informed by workload patterns, hardware configuration
and data layout. We believe this research area can advance the state of the art in
query optimization.
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• Configuration management in a heterogeneous environment: In a study of
Internet service failures, Oppenheimer and his colleagues identified configuration man-
agement to be a key cause of user-visible failures [Oppenheimer et al., 2003]. With the
growing complexity and heterogeneity of components in modern systems, automatic
configuration management is a key property that these systems must possess to allow
seamless scaling and avoid performance degradation. The ability to catalog working
configuration sets, and consequent system behavior is an indispensible tool to facilitate
such configuration management.

With historical information, we can use KCCA to build a model of components’ behav-
ior in reaction to various configuration changes. We can use this model predict whether
a hypothetical configuration change is likely to result in degraded performance or er-
roneous system state.

• Performance tuning multi-motif applications on multicore platforms: The
multicore computing era has made application performance tuning an essential precur-
sor to achieving good performance. While we demonstrated techniques to efficiently
tune single high performance computing motifs per platform, applications are typically
constructed from multiple such motifs. Our results from Chapter 5 as well a recent
study by Mohiyuddin and others [Mohiyuddin et al., 2009] suggest that performance
is not portable across motifs on a particular platform, let alone across different plat-
forms. Consequently, to achieve good performance for an application, we must co-tune
the building block motifs of that application on each platform.

Using our KCCA-based methodology, we can explore the space of optimizations for
multi-motif applications by merely changing the data training data and configuration
feature vectors. The remainder of our methodology can be reused to identify optimal
configuration settings to use for the application.

6.2 Useful side-effects of KCCA-based modeling

In Section 2.3.4, we discussed several advantages of using KCCA for system performance
modeling. Recall that KCCA projects kernel matrices of the raw data onto dimensions of
maximal correlation. This projection step enables the two additional benefits:

• Workload characterization: The co-clustering effect caused by projecting raw data
onto dimensions of correlation naturally lends itself to workload characterization. We
can run clustering algorithms on the projections of the data to characterize workload
simultaneously by correlated workload and performance characteristics. However, the
clusters of points in the projection spaces must be interpreted manually or program-
matically to provide workload characterization insights. For instance, one must identify
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common characteristics among points in a cluster to determine what defines the cluster
as a unique subset of the workload.

• Anonymization of sensitive data: We discussed the pre-image problem and al-
ternatives to overcome it in Section 2.3.4. A positive outcome of the projection step
is that the raw data cannot be reverse engineered from the projections alone. This
property allows us to distinguish between model creation and model publishing. Such
a distinction facilitates sharing models across organizational boundaries. With privacy
concerns eliminated, it is easier for researchers to use these privacy-preserving models
for obtaining high impact results based on realistic and representative data.

6.3 Beyond performance modeling

With minor changes to problem formulation, our modeling technique can be adapted to new
use cases:

• Failure prevention and diagnosis: The three case studies in this dissertation lever-
age our SML-based technique for performance prediction and optimization. However,
we believe our technique can be reframed to predict system failures and diagnose their
root cause. We can build a correlation model between load characteristics of com-
ponents in a system and observed failures. Such a model can be coupled with our
performance prediction framework to anticipate failures a priori and pinpoint poten-
tially failure prone nodes.

• Forecasting system trends: We can compare different generations of models for
a system, built at different time points or different system deployment versions for
instance, to identify system trends over time. Such comparisons can be leveraged to
extrapolate future behavior of the system. This ability to forecast future trends will
prove extremely useful to system developers and operators.

• Distributed data placement: Data locality has become a crucial component in dis-
tributed system performance. Significant research has gone into moving computation
closer to data storage locations. With concise representation of data partitioning and
replication policies, we can build performance models that capture relationships be-
tween data layout and consequent performance on a variety of workloads. Such models
will enable us to determine the best data layout strategy for new system workloads.

• Statistics-driven code generation: A compiler must choose the best code variant
for a given platform based on architecture-specific resource models. Our statistical
modeling techniques can be used to adaptively generate optimal code variants for a
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platform based on observed performance of previously executed code variants and cur-
rently available resources for code execution. This technique would provide significant
improvements in multicore systems where available resources vary based on simultane-
ously scheduled processes. The compiler can generate several code variants, each with
its optimal resource requirements explicitly parameterized, and the OS scheduler can
select the code variant to run based on current resource availability.

• Designing efficient systems: Our SML-based technique can be used to iteratively
improve system design. One example use case for system design is cache placement in
a parallel architecture. Typically, architects and system designers explore alternatives
using simulators to model performance impact of various design decisions. However,
simulators are often as slow as, or slower than, running jobs in a real system. With
large design spaces it would save a significant amount of time to explore a subset of the
design space and use performance models to extrapolate to un-explored design regions.
With instrumentation in place for observing resource consumption and performance
of various system modules, our SML techniques can also be used to identify system
bottlenecks. We can iteratively increase instrumentation granularity of bottleneck
modules to eliminate such inefficiencies.

6.4 New directions for SML research

While the combination of KCCA and nearest neighbors produces several powerful tools for
systems, we believe there are unexplored avenues for SML research that could significantly
benefit the systems community. We suggest several research directions below:

• Farthest strangers: Our performance modeling used kernel functions to determine
similarity between data points. Consequently, we are able to use nearest neighbor
techniques for prediction and optimization. Several systems problems would benefit
from techniques that allow the use of the furthest neighbors, or in other words, farthest
strangers, to guide resource management decisions. For example, scheduling two jobs
that are nearest to each other is likely to produce conflicting resource requirements.
However, scheduling two jobs that are distant from one another could produce efficient
resource utilization. It would be useful to investigate the statistical merits of such
farthest stranger techniques.

• Projecting data onto dimensions of minimal correlation: KCCA projects data
onto dimensions of maximal correlation to produce neighborhoods of similar data-
points. It would be interesting to explore the effects of projecting data onto dimen-
sions of minimal correlation, that is, project data onto correlation dimensions that are
represented by lower eigenvalues in KCCA. While such a mechanism would produce a
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sparse projection map, it could shed light on how noisy our data is. Such information
may prove complementary to existing anomaly detection techniques.

• Correlating more than two datasets: In automatically reconfiguring systems,
workload patterns affect the chosen configuration, and both of them together impact
performance. Recall that KCCA only models paired datasets and we end up grouping
workload and configuration together as system input parameters. It would be useful
to model three-way relationships among system workload, system configuration, and
system performance, preserving dataset isolation.

• Online KCCA: To maintain freshness of the KCCA model, it would be useful to make
the technique amenable to continuous retraining. This modification would require
significant changes to the underlying algorithm. Adding new datapoints perturbs the
eigenvectors that form the bases of our projection spaces. It is conceivable that these
perturbations can be approximated to reduce the cost of recomputing the entire model.
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Chapter 7

Conclusions

In this dissertation, we have shown that several problems in modeling the performance of
computer systems can be recast as problems in correlation analysis. To that end, we use
Kernel Canonical Correlation Analysis to model the system as a black box, and extract
relationships between system workload or configuration parameters and multiple metrics of
performance. These relationships are leveraged for performance prediction and optimization.
We demonstrated the power of this technique on three different parallel systems. Despite
being quite distinct problem classes, our three case studies prove that our statistical machine
learning (SML) based methodology provides a high degree of automation, does not require
SML expertise to be used, and often, outperforms the state-of-the-art alternatives.

In Chapter 3, we achieved very high prediction accuracy for a variety of Business Intel-
ligence queries on a commercial parallel database system. Using information available prior
to query execution, we were able to simultaneously predict multiple metrics including query
execution time, records used and message count using a single performance model, with R2

prediction accuracy values as high as 0.98 where 1.00 would indicate perfect prediction. Our
technique predicted equally well for long and short running queries, thus providing more
actionable predictions than the built-in query optimizer’s cost estimates. Our prediction
mechanisms are currently being incorporated into HP’s Neoview parallel database to better
inform workload management decisions.

Our second proof of concept, in Chapter 4, used the same methodology for predicting
performance of Hadoop jobs in a production cluster at Facebook. We achieved prediction
accuracy as high as 0.93 for multiple metrics when simultaneously predicting execution time,
map time, reduce time and bytes written for two data analytics workloads at Facebook. Our
prediction results are currently being used to drive a statistics-driven Hadoop job scheduler
and workload generator.

In Chapter 5, the third success story for our methodology was for optimizing performance
of high performance computing motifs on multicore platforms. Using our SML-based tech-
nique, we matched within 2% of, and in many cases, outperformed performance results of an
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architecture and application domain expert by up to 50% for tuning a variety of motifs on two
multicore architectures. Our technique required minimal domain knowledge and completed
in approximately 20 minutes, which is orders of magnitude faster than a six month long
exhaustive search. The scalability and efficiency of our technique opens up opportunities for
previously intractable research directions for multicore performance tuning.

Our successes to date suggest that our SML-based technique provides powerful tools for
managing and analyzing state-of-the-art systems. We expect our methodology to have scope
beyond the success stories presented in this dissertation. We believe that SML should join
queueing theory in the essential toolkit that systems researchers and practitioners should
know.

87



Bibliography

[Albanesius, 2009] Chloe Albanesius. Amazon Tops Black Friday Retail Web Traffic. http:
//www.pcmag.com/article2/0,2817,2356397,00.asp, 2009.

[Applied Numerical Algorithms Group, 2009] Applied Numerical Algorithms Group.
Chombo: Adaptive Mesh Refinement Library. http://seesar.lbl.gov/ANAG/

software.html, 2009.

[Armbrust et al., 2009] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. Above the Clouds: A Berkeley View of Cloud Comput-
ing. Technical Report UCB/EECS-2009-28, EECS Department, University of California,
Berkeley, Feb 2009.

[Asanovic et al., 2006] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester
Plishker, John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The Landscape
of Parallel Computing Research: A View from Berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley, Dec 2006.

[Bach and Jordan, 2003] Francis R. Bach and Michael I. Jordan. Kernel Independent Com-
ponent Analysis. Journal of Machine Learning Research, 3:1–48, 2003.

[Barroso et al., 2003] Luiz Andr Barroso, Jeffrey Dean, and Urs Hlzle. Web Search for a
Planet: The Google Cluster Architecture. IEEE Micro, 23(2):22–28, 2003.

[Berger and Oliger, 1984] M. Berger and J. Oliger. Adaptive Mesh Refinement for Hyper-
bolic Partial Differential Equations. Journal of Computational Physics, 53:484–512, 1984.

[Bird et al., 2010] Sarah Bird, Kaushik Datta, Karl Fuerlinger, Archana Ganapathi, Shoaib
Kamil, Rajesh Nishtala, David Skinner, Andrew Waterman, Samuel Williams, Krste
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