
An Extensible and Retargetable Code Generation

Framework for Actor Models

Man-Kit Leung

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-187

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-187.html

December 19, 2009

Copyright © 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

An Extensible and Retargetable Code Generation Framework for Actor Models

by

Man-Kit Leung

Submitted in partial satisfaction of the requirements for
the degree of Master of Science (Plan II)

in

Electrical Engineering

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Fall 2009

The report of Man-Kit Leung is approved:

Professor Edward A. Lee (Research Advisor) Date

Professor Koushik Sen (Second Reader) Date

University of California, Berkeley

Fall 2009

An Extensible and Retargetable Code Generation Framework for Actor Models

Copyright 2009

by

Man-Kit Leung

1

Abstract

Model-based code generation (MBCG) is a new field of research that arises from the advance-

ment of high-level modeling languages. It is the syntactical transformation of a source model into

some textual representation or program. Its applicability ranges from accelerating execution, target-

ing various platforms to enhancing model interoperability. MBCG is a key agent in sharing mod-

els across different research communities and maximizing the impact of the model-based design

methodology. However, because of the raised level of abstractions, code generation in a model-

based environment brings up a new set of problems beyond traditional compiler research.

Using Ptolemy II as an exemplar modeling environment, this report explores the chal-

lenges and problems that exist for model-based code generation. The report describes a reusable

code generation framework built using two simple design patterns, code template and adapter, that

are well-suited for an actor-based environment. The extensible infrastructure helps simplify the pro-

cess for future experiments, especially for new models of computation (MoCs). The report tackles

the challenges posed by configurable higher-order actors. It also demonstrates a system for incor-

porating multiple datatypes and specializing polymorphic functions to increase code efficiency.

i

Acknowledgements

Before diving into the technical details of the report, I would like to express my

gratitude to several people who have made my graduate experience possible. First, I want

to thank Professor Edward A. Lee, my graduate advisor, who has been a role model for

me in this graduate program. His vision, guidance and sheltering have accompanied me

throughout my research. I would also like to thank Professor Koushik Sen for serving as

my second reader of this report and giving his invaluable insights. I want to thank Dr.

Hiren Patel for sharing office space with me. His encouragements and companionship have

helped me weather through hard times. He has also helped revise my writing in this report.

Next, I would like to thank the group of people who I worked with in the Ptolemy Pteam.

Christopher Brooks, Director of our CHESS Research Center, has provided me wonderful

technical support and helped tremendously in releasing the technology described in this re-

port. I also want to thank the past, present and future Codegen Pteam, which includes Gang

Zhou, Teale Fristoe, Jia Zou, Isaac Liu, Bert Rodiers, Ben Lickly and Shanna Forbes. All

of whom have shared with me the burdens of solving design and implementation problems.

Next, I would like to thank a group of people who have been behind-the-scenes for

my accomplishments. I especially dedicate my personal thanks to Pastor Helen and my dear

friends, Jeffrey and Irene, for their constant prayer and support. I have to thank my sister,

ii

Caroline, for inspiring my interests in electrical engineering. I deeply thank my parents,

Kwok Leung and Oiwan Cheung, for bringing me into this world and the United States.

They have sacrificed their own freedom in many ways so that I can have enough to achieve

my dreams. Lastly, I thank God my Lord for giving me this extraordinary experience in

life.

iii

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Actor-Oriented Modeling . 4
1.2 Models of Computation . 8
1.3 Model-Based Code Generation . 11

2 Problem Definition 14
2.1 Overview . 14
2.2 A Basic Formulation using Graph . 16
2.3 Designing a Robust Framework . 18

2.3.1 Code Templates and Code Blocks . 19
2.3.2 Adapters . 21

3 Semantics-Preserving Code Generation 24
3.1 Generating Code for Actors . 24

3.1.1 Actor Adapter Interface . 25
3.1.2 Parameters . 28
3.1.3 Naming . 29
3.1.4 Expression . 29
3.1.5 CompositeActor . 31
3.1.6 Higher-Order Actors . 32

3.2 Componentizing Models of Computation . 33
3.2.1 Director Adapter Interface . 34
3.2.2 KPN Code Generation . 34
3.2.3 Domain-Specific Actors . 40
3.2.4 Heterogeneous Modeling . 41

3.3 Supporting Multiple Data Types . 42
3.3.1 Data Type Library . 43
3.3.2 Polymorphic Functions . 44

iv

3.3.3 The Coercion Problem . 48

4 Retargeting 50
4.1 Targeting Other Platforms . 51
4.2 Hardware Simulation and Synthesis . 55
4.3 Parallel and Distributed Computing . 56
4.4 Model Checking . 59

5 Conclusion 61
5.1 Summary . 61
5.2 Future Work . 62

Bibliography 64

v

List of Figures

1.1 A model of particles and their gravitational forces. 6
1.2 The refinement model of a particle’s dynamics. 7
1.3 Application of code generation in the design flow. 13

2.1 The four packages of the code generation framework. 19
2.2 The C code template of SampleDelay. 20
2.3 Grammar of the code template. 21
2.4 UML Class Diagram of the code generator software. 22

3.1 The AddSubtract code template. 27
3.2 Partial ordering of the AddSubtract code blocks. 30
3.3 The Expression adapter. 30
3.4 Data structure of the KPN buffer. 37
3.5 Algorithm for writing to a KPN buffer. 39
3.6 Algorithm for reading from a KPN buffer. 39
3.7 Algorithm for peeking at a KPN buffer. 41
3.8 Code template for the String datatype. 45
3.9 Code template for the add polymorphic function. 47
3.10 Code template of the Scale actor. 48

4.1 The C code template of DirectoryListing for POSIX. 53
4.2 The C code template of DirectoryListing for WIN32. 54

vi

List of Tables

2.1 Example of ordered constructs. 17

3.1 The executable interface. 25
3.2 The interface of actor adapters. 26
3.3 The interface of director adapters. 34
3.4 List of KPN-specific code in a Pthread program. 36
3.5 Macros supported by a codegen datatype. 44

1

Chapter 1

Introduction

As model-based design is becoming the commonly accepted methodology in today’s sys-

tem design, the emphasis is placed in building useful tools and artefacts. Building models helps a

designer to better understand the dynamics of the real system. A high-level model abstracts away

the incidental details, often pertaining to implementation, while keeping the essence of the system.

It allows architects to reason and make conjectures about system behaviors.

However, adopting this methodology presents major challenges. On one hand, researchers

are faced with the problem of how to maximize the utility of a model. Enhancing models with exe-

cutability is one mainstream approach. It equips models with dynamic semantics so that a designer

can conduct simulation and visualize preliminary results. For instance, many recent efforts in the

Unified Modeling Language (UML) community have been devoted to extending UML 2.0’s Activ-

ity Diagrams with executable semantics [1]. A second challenge is building the support of tools

that handle various models. The grand vision of modeling is to give users the freedom to choose

the right abstractions that represent a simplified view of the system. Ideally, engineering teams can

2

build separate models to represent different views of the same system. Models can be transformed

and serve as a unit of communication to pass information between engineering teams. Models can

even be combined to give richer details about a system. The models are eventually synthesized as a

part or whole of the real system using automatic code generation. Tools are necessary for each of

these processes in order to maximize productivity and minimize errors.

The effort in building any such modeling tool is non-trivial. Each tool specializes in a

particular domain of application, such as modeling, simulation, testing or verification. Often, a tool

implements its own domain-specific language (DSL), a language that is suitable for its domain

of use. It is hard to standardize the different DSLs and come up with an one-size-fit-all modeling

language. To alleviate this problem, it becomes increasingly important to build tools that address

interchangeability, so that models can be exchanged and reused by multiple tools. It enables ideas

such as co-modeling, co-simulation, and co-verification where tools interact and work cooperatively

with one another.

Code generation, in particular, plays a key role in model-driven engineering. It is the

process that transforms a model graph to textual representation. In today’s electronic system design,

automatic transformation can be found in various processes and applications. Logic synthesis in

electronic design automation (EDA) contains many such examples. Tools, such as Espresso [2], are

used to automate the optimization of circuit logic. Logic circuits then pass through the process of

technology mapping which combinatorially synthesizes a circuit with fabricated elements [3]. Such

combinatorial approach is also found in the code generation of programming languages. The GNU

Compiler Collection (GCC), for example, generates code by searching for an optimal tree covering,

given the abstract syntax tree (AST) of an input program. Heuristics, such as coagulation, are often

3

used because searching for the optimal solution is NP-hard.

Java and Microsoft’s .NET framework innovate a technique called Just-In-Time (JIT)

compilation. It is an innovative use of code generation. JIT introduces the process of code genera-

tion into runtime by dynamically converting bytecode into native code. By combining with runtime

program analysis, it helps improve the execution performance. Moving to areas of mechatronics and

safety-critical applications, we can see the emergence of model-level synthesis. High-level, often

graphical, languages such as SCADE, Simulink, and LabVIEW provide the ability to synthesize C

code from design models. The vision is to increase the amount of confidence and trust to put in

these high-level synthesis tools. We have seen partial success in this direction. SCADE’s code gen-

erator, in particular, has been certified for the Federal Aviation Administration (FAA) as a heavily

used development tool in aerospace and defence applications [4].

Model-based code generation is often closely tied with template metaprogramming,

where a programming language is used to manipulate code written in another programming lan-

guage. The manipulator language is often referred to as the metalanguage, while the target or

object language refers to the one being operated on. In a way, the object language is treated

as first-class data in a metaprogramming program using a so-called template. A template is in-

terpreted at compile time to produce programs that are further executed by other platforms. The

two-phase execution helps incorporate information from multiple sources at compile time and give

programmers the flexibility to handle various conditions. There exist several popular template-

driven languages frameworks, such as openArchitectureWare (oAW), Java Emitter Template (JET),

and Velocity. oAW is a tool suite that specializes in model-driven design. Its core feature, Xpend,

is a user-friendly template language that enhances integration of tools. JET is a template language

4

tool shipped with the Eclipse Modeling Framework (EMF). Velocity is a template language used by

the Apache Group to separate presentation logic from the business tiers in web applications.

As we shall see, a template language is only one necessary part for model-based code

generation. A description of the target language and platform is also needed in order to help the

code generator to make decisions relating to code and performance optimizations. In addition, a

code generator requires a description of the source modeling language so that it can adapt to the

modeling language and effectively utilize model data. Metamodeling is one approach to solve this

adaptation problem. It unifies the syntax in both the code generator and the modeling language. It

explicitly lays out the relationship and allowable operations for each type of model objects. Finally,

static analysis and partial evaluation are performed after combining the modeling and architectural

information.

1.1 Actor-Oriented Modeling

Actor-oriented modeling is a useful tool for modeling and reasoning about concurrent ex-

ecution. An actor model consists of basic building blocks called actors. Each actor has a set of

ports and parameters. A port is the primary channel for an actor to communicate with the outside

world. Ports are connected together to enable data exchange between actors. A port can be further

classified as either an input or an output. An input port denotes the receiving end of a connection,

while an output port denotes the sending end. Parameters are explicit information tagged with an

actor. They are often static information supplied by the model designer to specialize the behavior

of an actor. Hierarchical composition of actors is also possible. It helps create an abstract view

of a model by encapsulating refinements in sub-models. The flexible conceptual framework allows

5

for domain-specific abstractions and analyses. At the same time, its ability to be graphically rep-

resented has attracted many interests in extending its research and tools development. Tools such

as Simulink, from MathWorks, LabVIEW, from National Instruments, SystemC, component and

activity diagrams in SysML and UML 2 [5, 6, 7], and a number of research tools such as ModHel’X

[8], TDL [9], HetSC [10], ForSyDe [11], Metropolis [12], and Ptolemy II [13] are based on actor

modeling. In particular, the experiment in this report is built in the Ptolemy II environment.

Ptolemy II [14] is an extendible software platform used in the design, modeling and

simulating of concurrent software. It is an open platform that allows designers to create and exper-

iment with new actors. Its documentations and source are freely distributed on the public web for

academic research and commercial extensions [15]. This choice in using Ptolemy II as our experi-

mental platform is not arbitrary. Although actor-oriented modeling serves as a common syntax for

models, it says little about the semantics of models. The specific details about actor scheduling and

how data is exchanged are left open for interpretation. The interpretation of the model semantics is

called a model of computation (MoC). Unlike most other tools, Ptolemy II offers a flexible way

to experiment with different MoCs. Each MoC is modularly implemented by a component called

the director. To illustrate its core features and capabilities, let’s look at a Ptolemy II model shown

in Figure 1.1. It models the gravitational forces between 6 particles of equal mass. I enhanced the

model, originally by authored by Professor Edward A. Lee, with a collision detection sub-system.

For simplicity, I will use the original version for illustration.

It has a director called PN Director and four parameters, initialPositions, initialVelocities,

numberOfBodies, and stepSize. The PN Director implements the Kahn Process Network semantics,

which we will discussed in detail later. Each of the parameter is used for customizing the actors in

6

Figure 1.1: A model of particles and their gravitational forces.

the model. There are four actors, Display, SampleDelay, ElementsToArray, and BodyModels. Dis-

play, SampleDelay, and ElementsToArray are atomic actors whose behavior is purely specified by

the actor designer and configurable only through parameters. ElementsToArray produces a stream

of array tokens by combining multiple input streams of data tokens. SampleDelay transforms its

input stream of tokens by inserting initial, or sometimes called prefix, token(s), and Display is a data

sink that is used to visualize data tokens. On the other hand, BodyModels is a higher-order actor

called MultiInstanceComposite that is refined by a sub-model consisting of other actors. A property

of the model that is not immediately obvious is the difference of the connection width, or number of

channels. The width between BodyModels and ElementsToArray is 6 because there are 6 instances

of the BodyModels refinements, specified by the numberOfBodies parameter. ElementsToArray

combines one token from each input channel into an array token. Thus, the connection width be-

tween ElementsToArray and SampleDelay is 1. Single ports that are solid black triangles only

7

Figure 1.2: The refinement model of a particle’s dynamics.

accept connections of width 1, and multiports, white filled triangles with black outline, can accept

connections of any width. In general, connection widths are inferred from user parameters and

actors. Users are prompted to specify width only when there is ambiguity.

Figure 1.2 shows the refinement model of BodyModels. The model computes the

combined gravitational forces acting upon a particle and two explicit integrations to simulate the

particle’s position. All 14 actors (white rectangular and triangular containers) are atomic actors.

ArrayToSequence, Repeat, and SampleDelay are flow control actors that manipulate the

token stream without changing the token values. The rest of the actors perform a specific function

on the incoming token values. In particular, there are two instances of Expression, which is a

8

highly configurable actor. Users can use the Ptolemy expression language [16] to specify compu-

tation for the input values. Section 3.1.4 will discuss how to generate code for the Expression

actor.

A subtle property in the model is datatype. For example, the datatype of ArrayToSe-

quence’s input port is known to be array type, and its output port is of the type of the input array

elements. Same is true for ArrayElement. The type of Repeat’s input port is the same as its output

port. Scale, AddSubtract, and MultiplyDivide are polymorphic actors that can operate over multi-

ple datatypes. Ptolemy II has a sound type system [17] that statically infers the datatype of model

components and gives precise errors when there exists conflicts. The model has a SDF Director

which implements the Synchronous Dataflow (SDF) semantics [18]. It provides efficient execution

for synchronous data computation. Next, we will discuss SDF in more detail along with a survey of

other MoCs.

1.2 Models of Computation

A model of computation (MoC) defines the semantics for a model. It is a set of rules

that govern the interaction between actors. The Ptolemy Project [19] is dedicated to defining and

analyzing MoCs. Several models of computation have been proposed and studied. In particular, Lee

and Sangiovantelli proposed the tagged signal model that provides a common framework to analyze

MoCs [20]. The key observation is that most MoCs differ in their notion of ordering and time. Let’s

describe in the following several of the representative MoCs.

Dataflow is a one of the most studied and common model of computation, in which ac-

tors communicate purely by exchanging data tokens through ports. Execution of dataflow models is

9

purely data-driven and often in the absence of time. Several specialized forms of dataflow have been

proposed. Synchronous Dataflow (SDF), in particular, allows static scheduling of actor execution

and allocation of buffer sizes. SDF has a notion of a minimal schedule which it iterates. It requires

each input and output port to declare its consumption and production rate, respectively. It precom-

putes the schedule using the specified rates. Its scheduling decidability is particularly suitable for

execution on parallel hardware. Pino et al. discovered a precedence graph formalism that systemati-

cally exposes the parallelism in SDF models for targeting DSP processors [21]. Modal behavior can

be combined with SDF through composition with finite state machine (FSM). This allows model

to express variable rate communication via state transition. This model of computation, consisting

of hierarchical composition of SDF and FSM, is called the Heterochronous Dataflow (HDF) [22].

Each state in a HDF model can be refined by a SDF sub-model. There can be multiple execution

schedules, one for each combination of state refinements that are activated in the FSMs. Since the

number of states is finite and constant, it is possible to precompute all possible firing schedules. Gi-

rault and Lee has shown that HDF schedulability is decidable [22]. Code generator can encode the

schedules statically in the generated program and minimize run-time overhead. Buck proposed an

alternative dataflow formalism called the Boolean Dataflow (BDF) [23]. It introduces the Boolean-

Switch and BooleanSelect actors whose production and consumption rates are driven by the data

value. He has shown that this extension alone makes BDF Turing complete. Dynamic Dataflow

(DDF) [24] is yet a more general form of dataflow formalism. Each actor in a DDF model has a set

of firing rules. An actor is allowed to fire whenever one or more of these firing rules are enabled.

Kahn Process Network (KPN) is a formalism that models asynchronous message pass-

ing. It is similar to dataflow in that actors communicate purely through data tokens. Data tokens

10

are passed via FIFO buffer queues and thus consumed in order. Actors can execute freely as long as

input tokens are available. They can be viewed as functions that transform streams of input tokens to

streams of output tokens. We will discuss KPN with further details in Section 3.2.2 which illustrates

the process of generating programs that preserves KPN semantics.

Sychronous/Reactive (SR) is a formalism that models the behavior of a set of signal

values at discrete clock ticks. Each signal takes on a fixed value at each clock tick. Absent is a

special value that is valid under the SR semantics. The SR semantics is the basis for synchronous

languages such as Esterel [25], Signal [26], and Lustre [27]. A SR program may fire the same

actor multiple times, within a single clock tick, until all signals reaches a fixed point. It is up to

the compiler to optimize the scheduling of actor execution. In most cases, it is assisted by static

analysis. Causality analysis [28], in particular, helps to identify actors that are dependent on each

other and thus allows a static order of actor firing. Edwards also proposes in his thesis a complete

execution algorithm using clustering graphs that combines static and dynamic scheduling [29].

Giotto is a time-driven formalism that is behind many current industrial tools and proto-

cols. It is a suitable model of computation for real-time applications. Actors share a global notion

of time. Actor execution can be statically scheduled at predetermined time. Thus, communica-

tion is implicitly synchronized, and resources are conveniently shared without an explicit locking

mechanism. However, keeping a notion of time can be difficult and expensive to implement. The

problem often involves minimizing misalignments of clocks, time drift and jitter, which decrease

the effective time for sharing. More importantly, they may cause real-time constraint violations

and thus undermine reliability if these defects or errors are not bound. The Time-Division Multiple

Access (TDMA) protocol, used in many 2G cellular systems, follows this time-driven semantics.

11

It discretizes a signal into repeating periods of time slots. Multiple users may share the same fre-

quency channel through their assignment of time slots. The Time-Triggered Protocol (TTP), which

is based on TDMA, is capable of tolerating and recovering from some time faults through hardware

redundancy. Other industrial standards that draw heavily from the Giotto model of computation

include FlexRay, Time-Triggered Architecture (TTA) and Time Definition Language (TDL).

Discrete Event (DE) is a event-driven formalism where actors communicate through

events. Each event consists of a data value and a time stamp. All events generated in the sys-

tem are totally ordered on a real-valued time line. Many notable hardware simulators and languages

assume the DE semantics [17]. In particularly, VHDL and Verilog are examples of such, although

they assume only integer-valued time. DE can be generalized to variable time increments, including

zero-time increments such as the case in super-dense time.

1.3 Model-Based Code Generation

Model-based code generation (MBCG) is a new field of research that arises from the

advancement of high-level modeling languages. Modeling languages are attracted to the idea of

code generation which enables them to be used as implementation languages. Code generation

effectively synthesizes implementation code from design models. Ideally, it can extend the use of

the same model in multiple stages in the design process. It can also translate a model into different

formats so that multiple tools can share the same model.

The generative programming community (GPCE) focuses on generalizing techniques and

tooling that can be applied across multiple domain-specific languages. It borrows heavily from

metaprogramming and composable programming abstractions such as aspects and features. Com-

12

piler tools such as AspectJ [30] and AHEAD [31] are the de facto standards for this programming

paradigm. It involves the use of a template language, metamodels of the source modeling language,

and some description of the target language and platform.

The transformation to code is exposed to the user through a template language that manip-

ulates a target (implementation) language. The Model-to-Text (M2T) development efforts specifi-

cally focus on advancing the capability and usability of such template languages. It has resulted in

several widely used template languages such as OpenArchitectureWare (oAW), Java Emitter Tem-

plate (JET), and Velocity. The metamodel of the source modeling language is used to help weave the

model syntax into the templates. The user can then integrate information from model objects using

the template language. The system may also leverage a language that describes target platforms.

Such can be provided through an architecture description language (ADL). There are several ADLs

that already provide extensive tooling such as Acme and Architecture Analysis Design Language

(AADL). My report is a special case study that describes a light-weight framework that generates

retargetable code for the Ptolemy II modeling environment. At the same time, code generation for

models can be extended to new areas of application. For example, a model-based code generator

may be used as a model transformation tool, which generates model specifications for other tools. It

enhances model interoperability by presenting the same model in a different syntax while preserving

its semantics.

13

Compilation

Figure 1.3: Application of code generation in the design flow.

14

Chapter 2

Problem Definition

This chapter describes the overall task of transforming model to code. It attempts to

provide a mathematical basis. In particular, code generation is formulated as a basic graph problem

of topologically sorting a set of code segments. Our framework provides two key abstractions,

adapter and code block, to create code segments and specify the ordering relationship between

them.

2.1 Overview

Let us look at an overview of the problem. High-level modeling languages inevitably

introduces data structures and semantics that broaden the space between the design language and

implementation. The immediate effect of this widened space is an increase of complexity. The

translation or compilation process now becomes harder and thus requires more elaborate analyses.

The complexity can be looked at through three measures: implementability, completeness, and

semantic correspondence.

15

Implementability measures the different ways a design model can be implemented. It is a

ratio between a model and its corresponding programs. For example, 1:25 indicates that a particular

model can be represented by 25 different valid programs. Translation of binary to machine code is

1:1 implementable, since there is a unique machine code for every binary instruction. However, im-

plementability is infinite in general. This quantification requires considerable restrictions in order to

reduce the set of programs and measure the exact number of distinct programs. We will use imple-

mentability as an abstract concept to help us understand the complexity in MBCG. The problem of

model-based code generation is not totally structured, and thus a correct transformation in MBCG

is not unique. There is often more than one feasible programs that expresses the same design. The

code generator needs to make many decisions in order to generate the final program, which is one

instance out of many possible choices. It may leave some of these decisions up to the user through

parametrizations. In short, implementing a model-based code generator requires considering many

variables. The increased complexity between modeling language and implementation code often

increases the implementability of a model but creates a larger solution search space for the code

generator.

Completeness refers to the degree to which the modeling language is amenable to code

generation. By raising the level of abstraction, the expressiveness of the language is increased.

Constructs or semantics may not be expressible by the lower-level language. This is the case for

hardware description languages, such as VHDL and Verilog. In these languages, there is the notion

of syntesizable constructs, the subset of the language that can be compiled and generated to hard-

ware. The rest of the language constructs are simulated, or non-synthesizable. This incompleteness

comes from the mismatch between language abstractions and the support provided by the under-

16

lying platforms. Since an actor-based language is made of actor components, the completeness of

code generation is quantifiable by counting the number of supported components. It is desirable

to have a code generator that is incrementally extensible such that it becomes more complete over

time. Given such a framework, development efforts can be accumulated and reused over time.

The third source of complexity comes from semantic correspondence between the de-

sign model and the generated code. Model-based code generation transforms a given model to

code. It is a mapping, or conversion, from the model space to code space. Correspondence, or

semantics preservation, is realized through a series of syntactic transformations. The degree of cor-

respondence between a model and the generated program often depends on applications, or how

the program is used. Generally, high degree of correspondence increases the complexity of the

transformation because more variables need to be considered in the process.

Our framework specifically targets the completeness and correspondence problems. Im-

plementability still poses many open problems and thus requires further study of model semantics.

The output of our code generator is a single program file, as opposed to a library of files. This is for

the ease of compiling at the command-line. It helps decrease the burdens on the user side. It is rather

a pragmatic design decision. We also define for the rest of the writing the notion of generate-time,

which distinctly refers to the operations performed by our code generator, as opposed to compile-

time and runtime.

2.2 A Basic Formulation using Graph

The underlying intuition of our framework is a formulation using graph. Any given pro-

gram can be seen as a series of code segments. Assume that we have a regular graph G = (V,E)

17

Appear-first Appear-later
Header directive Reference
Variable declaration Reference
Function declaration Reference
Statement 1 Statement 2
Definition Instantiation
Keywords Predicate expressions
Function invocation Argument expressions

Table 2.1: Example of ordered constructs.

where each v ∈ V is a segment of code, and each e ∈ E is a precedence relation between two code

segments. For example, if there is an edge going from codeBlock1 to codeBlock2, then codeBlock1

must precede, or be printed before, codeBlock2 in the generated program. The edges specify the set

of ordering constraints on the code blocks in the final program. Any feasible program to generate

is therefore a topological sort of the graph, with respect to the given edges. The problem now be-

comes how to come up with these code blocks and specify their relationship. This is similar to the

idea of basic blocks in a control flow graph (CFG), except that our edges correspond to ordering on

appearance rather than execution.

This formulation is rooted in the experience of generating C programs [32]. For example,

the familiar line #include <stdio.h> in C tells the preprocessor to bring in the content of

stdio.h, and the directive should appear before any references to the content within stdio.h.

To see this in the context of graph, the directive is treated as a single code block (node), say d. If

there are other code blocks that, say for example, contain calls to printf(), then there will be an

edge going from d to each of these code blocks. In fact, many programming constructs found in a

textual program requires explicit ordering. Table 2.1 shows a brief list of these constructs.

18

2.3 Designing a Robust Framework

Our framework borrows from the generic programming paradigm in which templates are

used as the fundamental abstraction [33]. Information is combined with the template at generate

time to produce source code. Many notable languages support this template-style programming.

For example, C++ provides class and function templates that can be used as patterns for creating

instances of different types when the parametrized type information is supplied. Java also begins to

support generics, which is a similar construct, starting from version 1.5. Template specialization

is a common term that refers to the process of bounding template parameters with data. In our

framework, specialization is an elaborate process that analyze and incorporates data from different

sources.

The major design goal behind our framework is robustness. This means small extension

to the modeling language requires little changes to the code generation framework. This requires

a system that can be scaled up systematically. The key idea is to modularize our framework. At a

high level view, there are four major packages of components that makes up our code generation

framework, as shown in Figure 2.1.

Actors, directors, and datatypes are primitive classes of components in our modeling lan-

guage, in this case, Ptolemy II. Targets are an orthogonal class of components that is transparent

to the modeling environment. They exist for the purpose of retargeting, which we shall discuss in

Chapter 4. Each of these packages consists of a set of code templates and adapters that follows a

specific format within the package. When a new component is added in Ptolemy II, we can eas-

ily extend code generation for these components by defining the corresponding code template and

adapter. The interface of the code template and adapter in each package provides intuitive guidance

19

Director
Adapters

Target
Library

Actor
Adapters

Datatype
Library

Figure 2.1: The four packages of the code generation framework.

that helps map component behaviors to implementation code. Thus, designers for new components

can easily achieve full system code generation with this modular framework.

2.3.1 Code Templates and Code Blocks

Code templates are passive (non-executable) objects used by adapters to instantiate code

blocks. There is a code template for every adapter. A code template contains a set of code blocks

written in the target language. A code block provides an abstraction over the target language. It

allows adapters to manipulate code by performing simple operations over the code blocks.

There are four operations provided by code blocks: instantiation, precedence, addition,

and composition. Instantiation is a unary operation that creates a new instance of a given code

block. It requires code blocks to be uniquely identifiable. Precedence, denoted by →, is a binary

20

1 /∗ ∗∗ i n i t i a l T o k e n s ($ o f f s e t) ∗∗ ∗ /
2 $ac to rSymbo l (t o k e n) = $ v a l (i n i t i a l O u t p u t s , $ o f f s e t) ;
3 $send (o u t p u t)
4 /∗ ∗ /
5
6 /∗ ∗∗ f i r e B l o c k ∗∗ ∗ /
7 $ac to rSymbo l (t o k e n) = $ g e t (i n p u t) ;
8 $send (o u t p u t)
9 /∗ ∗ /

Figure 2.2: The C code template of SampleDelay.

relation that constrains a code block to appear somewhere before another. Addition is a binary

operation that appends a code blocks directly after another. Composition is also a n-nary operation

that combine multiple code blocks into one. Every code block has a set of variables used for this

purpose. For instance, c1 ∣v c2 is a composition of c1 and c2 at the variable v. In this case, we

say the variable v in c1 is bound to c2. A general composition, c0 ∣v1,...,vn c1, ..., cn, may involve

multiple variables, each of which is bound to a code block. This is also known as the call-by-macro

expansion.

Code blocks can be extended with typing. Typing provides extra information about a

code block. It can assist many generate-time analyses. Addition and composition can make use of

the typing information to check their operands. For example, we can type a code block as either

a statement, expression, or neither. Addition is allowed between two statement’s, or a neither and

any type but it is disallowed between two expression’s. Composition enjoys similar benefits by

extending the typing to code block variables and defining a custom set of typing rules. This typing

information can be added statically in the code templates and inferred dynamically for composite

code blocks.

Figure 2.2 illustrates the C code template for the SampleDelay actor. It consists of two

21

<CodeTemplate> := <CodeBlock> ∣ <CodeBlock><CodeTemplate>

<CodeBlock> := /∗ ∗∗ <BlockName> ∗∗ ∗ / <Code> /∗ ∗ / ∣

/∗ ∗∗ <BlockName> (<P a r a m e t e r L i s t>) ∗∗ ∗ / <Code> /∗ ∗ /

<BlockName> := <Word> / / Any word c h a r a c t e r (s) .

<P a r a m e t e r L i s t> := e m p t y L i s t ∣ <Parame te r> ∣ <P a r a m e t e r L i s t >, <Parame te r>

<Parame te r> := $<Word> / / Any word p r e f i x e d w i t h $.

<Code> := [ˆ /] ∣ / [ˆ ∗] + ∣ /∗ [ˆ∗]+ ∣ /∗∗ [ˆ /] + / / Any c h a r a c t e r s e q u e n c e e x c e p t

/ / t h e p a t t e r n /∗ ∗ / .

<Word> := <L e t t e r > <Word> / / Any word c h a r a c t e r (s) .

<L e t t e r > := / / Any word c h a r a c t e r (i . e . [a−z] ∣ [0−9] ∣) .

Figure 2.3: Grammar of the code template.

code blocks: initialTokens and fireBlock. initialTokens is parametrized by a pa-

rameter named $offset. Figure 2.3 shows the extended context-free grammar (in conjunction

with regular expression) for parsing code templates. In general, a code block may have arbitrary

number of arguments. Each argument is prefixed by the dollar sign “$” (e.g., $value, $width). For-

mally, the signature of a code block is the pair (N, p) where N is the name of the code block and p

is the number of arguments. A code block (N, p) may be overloaded by another code block (N, p′)

where p ∕= p′.1

2.3.2 Adapters

An adapter is a key abstraction in the code generation framework. Every model compo-

nent, such as an actor or director, is associated with an adapter. In our code generation framework,

every adapter is defined in a Java class. There is a hierarchy of adapter classes which mirrors that
1All arguments in a code block are implicitly strings. So unlike the usual overloaded functions with the same name

but different types of arguments, overloaded code blocks need to have different number of arguments.

22

ComponentAdaptor
«Interface»

generateInitializeCode():String

generatePreinitializeCode():String

generateWrapupCode():String

getComponent():NamedObj

setCodeGenerator(CodeGenerator:int):void

CodeGenerator

ActorAdaptor

«Interface»

generateFireCode():String

Director

CodeGeneratorHelperCompositeActor

CCodeGeneratorHelper

StaticSchedulingDirector

CCodeGenerator

JavaCodeGenerator

VHDLCodeGenerator

HDFDirector

SDFDirector

FSMDirector

KPNDirector

Expression

Scale

AddSubtract

JavaCodeGeneratorHelper

VHDLCodeGeneratorHelper

DirectorAdaptor

«Interface»

generateGetCode():String

generateSendCode():String

generateTransportInputCode():String

generateTransportOutputCode():String

Model1

Page 1 of 1

Figure 2.4: UML Class Diagram of the code generator software.

of the actor and director classes. Figure 2.4 is a UML diagram that shows the architecture of the

adapter classes.

Adapters are active agents during generate time. They generate code for their model

counter parts by instantiating code blocks and linking them together. There are two implicit as-

sumptions behind the adapter abstraction. First, there exists a uniform interface for the adapters so

that they can be composed together in a useful manner. Second, every adapter needs to be identifi-

23

able under a model scope. This ensures that a code generator can make use of the adapter. Under

these assumptions, users can freely create extensions for new targets or replace an existing adapter

with a new implementation.

We defined here the main abstractions provided in the code generation framework. The

remainder of the report will show how to extend the code generation framework using these abstrac-

tions. Chapter 3 discusses the three main parts necessary in generating semantic-preserving code.

Section 3.1 describes the abstraction of actor adapters and how actor parameters help in generate-

time specialization. It also illustrates how to generate code for special actors such as Expression,

CompositeActor, and higher-order actors. Director adapters are described in Section 3.2. In partic-

ular, the Kahn Process Network (KPN) is used as an exemplar to illustrate the extension of MoCs

in the code generation framework. Chapter 3.3 illustrates how multiple datatypes can be extended.

We discuss specifically how data polymorphism and coercion, or automatic type conversion, is re-

solved at generate time. Chapter 4 discuss how to retarget the framework for different programming

interfaces. Finally, we will conclude by summarizing the contributions and pointing out potential

future work.

24

Chapter 3

Semantics-Preserving Code Generation

3.1 Generating Code for Actors

Actors are basic building blocks in our modeling environment. Each actor has a set of

ports and parameters. There are over three hundreds actors in the Ptolemy II library. Each actor

has a unique semantics which defines the specific operations performed upon firing. Most actors

are atomic actors whose behavior is defined by Ptolemy II framework developers. The definition is

written in a Java class, thus implicit and unchangeable at the model level. On the other hand, com-

posite actors are container of actors. Their behavior is specified using a sub-model. Model builders

can model a component with complex behaviors by encapsulating multiple actors in a composite

actor. In order to generate code, an actor requires a corresponding adapter. In the following section,

we will present the interface of an actor adapter and show through examples how users can imple-

ment this interface for various actors. We will discuss the importance of actor parameters (Section

sections 3.1.2) and naming (Section 3.1.3). We will then discuss implementing the non-trivial-case

adapters for the Expression actor (Section 3.1.4), CompositeActor (Section 3.1.5), and higher-order

25

Methods Descriptions
preinitialize Topology or type checking prior to initialize.
initialize Initialize the state before execution.
prefire Check the preconditions for a firing.
fire Fire the component.
postfire Update the state after firing.
wrapup Finalize the execution.

Table 3.1: The executable interface.

actors (Sections 3.1.6).

3.1.1 Actor Adapter Interface

The actor adapter interface consists of a set of generate methods that returns code for

implementing the actor execution semantics. We call this the actor code, or code generated by an

actor adapter. We implemented the adapter interface according to the Ptolemy abstract semantics.

The essential parts in the abstract semantics are shown in Table 3.1. A more detailed description of

the semantics can be found in [14]. The idea of the abstract semantics is to abstract the behavior of

an actor. Concrete implementations can be then mapped to this interface. The abstract semantics is

a well-established interface for actors. It is a common abstraction that encapsulates actor behavior.

The generate methods of the adapter interface directly correspond to the abstract semantics. The

adapter interface consists of the set of methods shown in Table 3.2.

Each of these generate methods performs certain generate-time analysis and return a code

string as the result. Let us illustrate this using the AddSubtract actor. It has an output port and two

input ports, plus and minus. Each of its input ports is a multiport that accepts multiple incoming

connections (fan-ins). This is useful for performing n-nary operatoins without cascading. It provides

26

Method Description
generatePreinitializeCode return the preinitializeCode.
generateInitializeCode return the initializeCode.
generatePrefireCode return the prefireCode.
generateFireCode return the fireCode.
generatePostfireCode return the postfireCode.
generateWrapupCode return the wraupupCode.

Table 3.2: The interface of actor adapters.

ease of use for modeling but raises the complexity of the actor behavior. Thus, this creates an

opportunity for generate-time optimization. Figure 3.1 shows the code template we have defined for

the AddSubtract actor.

To generate the actor fire code, the adapter first iterates through the connections to the

plus and minus ports of the associated actor instance in the model. For each connection, it in-

stantiates either the firePlusInputCode or fireMinusInputCode block which contains a

code statement for performing the addition or subtraction. This is a simple loop-unrolling technique.

The generated code is efficient for small number of input connections. However, it significantly in-

creases the program code for cases where the number of input connections is large. We can imagine

an alternate technique that combats this problem. It is to generate a loop that iterates through an

array of channel variables at run-time. It allows reuse of the code for performing the arithmetic at

the expense of introducing run-time overhead. Datatypes of the inputs may increase the amount

of additional run-time overhead because the generated code may need to convert type dynamically.

Given these two techniques, the adapter can determine at generate time which technique to use (e.g.

by checking against a certain metrics, such as the number of different datatypes and input connec-

tions). Moreover, each of the generate methods in the adapter interface is to perform generate-time

27

1 /∗ ∗∗ p r e i n i t i a l i z e C o d e ($ t y p e)∗∗ ∗ /
2 $ t y p e $ac to rSymbo l (r e s u l t) ;
3 /∗ ∗ /
4
5 /∗ ∗∗ i n i t i a l i z e C o d e ($ t ype1 , $ t y p e 2)∗∗ ∗ /
6 $ac to rSymbo l (r e s u l t) = $ c o n v e r t $ t y p e 1 $ t y p e 2 ($ g e t (p lus , 0)) ;
7 /∗ ∗ /
8
9 /∗ ∗∗ f i r e P l u s I n p u t C o d e ($channe l , $ t ype1 , $ t y p e 2)∗∗ ∗ /

10 $ac to rSymbo l (r e s u l t) = $ a d d $ t y p e 1 $ t y p e 2 ($ac to rSymbo l (r e s u l t) ,
11 $ g e t (p lus , $ c h a n n e l)) ;
12 /∗ ∗ /
13
14 /∗ ∗∗ f i r e M i n u s I n p u t C o d e ($channe l , $ t ype1 , $ t y p e 2)∗∗ ∗ /
15 $ac to rSymbo l (r e s u l t) = $ s u b t r a c t $ t y p e 1 $ t y p e 2 ($ac to rSymbo l (r e s u l t) ,
16 $ g e t (minus , $ c h a n n e l)) ;
17 /∗ ∗ /
18
19 /∗ ∗∗ f i r e O u t p u t C o d e ∗∗ ∗ /
20 $send (o u t p u t , 0 , $ac to rSymbo l (r e s u l t)) / / s e m i c o l o n i s o m i t t e d f o r $send .
21 /∗ ∗ /

Figure 3.1: The AddSubtract code template.

28

analyses of this kind.

In addition to providing local optimization, the generate methods are conceptual divisions

of the generated code that implements an actor. For example, all variable declarations are generated

in the generatePreinitializeCode, and parameter values are assigned, or initialized, in generateIni-

tializeCode. In most cases, the fire code contains the core functions of the actor.

Another important part of the adapter interface is generating the communication code

that interacts with the environment, or other actor code. The inter-actor code is generated by the

director adapter (discuss later in Chapter 3.2). This is realized by the addition of the $get and

$send macros. These macros can be used in any code block instantiated by an actor adapter. Let

us briefly introduce the semantics of these macros. The $getmacro takes as arguments the name of

an input port and a channel number. Its substitution, in the generated program, is an expression that

represents the data token from that port channel. The $send macro takes as arguments the name

of an output port, a channel number, and an expression of the data token to send. Its substitution

is a statement that sends the given data token expression to the port channel. We will see in later

chapters how they are used to generate code that passes data between multiple pieces of actor code.

3.1.2 Parameters

Actor parameters play a vital role in generate-time analyses. If a parameter is determined

to be a fixed value or a small set or range of values, adapters can take advantages of this information

to specialize the generated code for an actor. In a Ptolemy II model, it is possible to statically

determine whether or not a parameter is constant [34]. When a parameter value is unconstrained,

the adapter will need to generate a more dynamic implementation for the actor. Treating parameters

as constants allows us to specialize the code for a subset of actor instances in the model.

29

3.1.3 Naming

A naming system is essential in code generation. It automates the generation of variable

names in the program. This requires systematic naming for model components such that there

is a unique string identifier for each object. Ptolemy II provides such a system. It has a notion

of named object, each of which has a full name that uniquely identifies the object in the model.

Actors, parameters, ports, and directors are subclasses of named objects. Our framework assumes

this naming system and take advantage of it.

Naming is abstracted from code templates and substituted by the adapter at generate time.

Since code templates is written for an entire class of components, a code block is used to generate

code for multiple instances of the same class. The idea is to avoid explicit name references. A code

block writer uses relative naming through a special macro called $actorSymbol. The line of

code below declares a variable relative to a component instance:

i n t $ac to rSymbo l (i n p u t) ;

The $actorSymbol macro is substituted at generate time with the full name of the component

instance. If there exist two instances of this class, two declaration statements of different variable

names are generated. E.g.

i n t M o d e l E x p r e s s i o n i n p u t ;
i n t M o d e l E x p r e s s i o n 2 i n p u t ;

3.1.4 Expression

Expression is a highly configurable actor. It has a parameter named expression that config-

ures the behavior of the Expression actor. Users can use an expression language to set the parameter

value. The Expression adapter packages a code generator for the expression language. Figure 3.3

illustrates the process of expression code generation. The adapter first parses the expression value

30

initializeCode

preinitializeCode

fireInputCode

fireOutputCode

AddSubtract

Figure 3.2: Partial ordering of the AddSubtract code blocks.

Parser
ParseTree

CodeGenerator
Expression AST Code

i l d th h

E.g.
sqrt(sum(in * in))

include <math.h>

Token Array_get(Token token, int index);

Token add_Token_Token(Token token1, Token token2);

Token Array sum(Token token) {

FUNC
sqrt

y () {
Token result;
int i;
if (token.payload.Array->size <= 0) {
return token;

} else {
result = Array_get(token, 0);

}

FUNC
sum

* }

for (i = 1; i < token.payload.Array->size; i++) {
result = add_Token_Token(result,

Array_get(token, i));
}
return result;

in

OP

VAR VAR

*

in

return result;
}
...
...

Expression_out = sqrt(Array_sum(
Expression_in,
Expression_in).payload.Double);

Figure 3.3: The Expression adapter.

31

into an abstract syntax trees (AST). It then generates code by traversing the given AST. The tech-

nique is well studied in compiler research, so we will leave the specific details outside of this report.

Interested readers are referred to [16] for further details of the Ptolemy II expression language.

3.1.5 CompositeActor

A CompositeActor is an aggregation of a group of actors. It enables hierarchical com-

position and acts as a container for directors and actors. The BodyModel actor in Figure 1.1 is a

CompositeActor. Each CompositeActor can be refined by a sub-model which enables designers to

model complex behaviors through modeling. A CompositeActor works closely together with the

model directors to execute the model. A CompositeActor has a notion of (outside) executive director

and inside director. The executive director is the closest director that is outside of the Composite-

Actor, while the inside director is in the sub-model. Having an inside director is optional. In the

absence of the inside director, the executive director is treated as the insider director. The Compos-

iteActor is said to be transparent, meaning the CompositeActor acts merely as a visual container

for its sub-components. Replacing a transparent CompositeActor with its sub-components make

no differences in the semantics of the model. In the case where an insider director is present, the

CompositeActor is said to be opaque. The CompositeActor serves as the boundary between MoCs.

The CompositeActor adapter is a key component in achieving code generation for mixing

of MoCs, or sometimes called heterogeneous modeling [35]. It enables the composition of the code

generation adapters. For example, the generateFireCode method of the CompositeActor adapter

multiplexes the contained actors with various MoCs. It first transports the input data from outside

by invoking the adapter of the executive and inside directors. It then delegates to the inside director

adapter to specify the scheduling of the fire code of the contained actors. It finally transports the

32

produced data to the outside by invoking again the director adapters. The other generate methods

of the CompositeActor adapter follow the same mechanism. The CompositeActor adapter glues

together the actor and director adapter interfaces. Its interface provides a contract for mixing of

MoCs. Newly defined MoC adapters can be added and compose with other MoC adapters without

defining custom links.

3.1.6 Higher-Order Actors

Higher-order actors are actors that operates on actors. One of their usages is to provide

ease of modeling without having users to copy multiple actor instances. This is the case for the

BodyModels actor in Figure 1.1. BodyModels is an instance of the MultiInstanceComposite

actor. It has an instance model (also shown in Figure 1.1) and a parameter named nInstances

that indicates how many instances of the instance model to replicate. Moreover, Ptolemy II has a

PtalonActor that generalizes higher-order composition. It uses a composition language for specify-

ing large complex actor models [36].

To generate the proper code for these actors requires no extra support from the code

generator. The reason is because these actors are not passed directly to the code generator. They are

expanded, or replaced by regular actors, prior to generate time. We assume that the PtalonActor and

MultiInstanceComposite are absent from run-time mutation. This ensures that the model structure

is static. We can check this by performing a parameter analysis on the nInstance parameter of the

MultiInstanceComposite and the Ptalon code contained by the PtalonActor to see if they can change

at run time. Currently, we reject the model for code generation if run-time mutation can occur for

these actors.

In addition to composing regular actors, other higher-order actors may introduce new

33

behavior of their own. The Case and ThreadedComposite actors are in this category. The Case

actor is parametrized by a set of case models, or named refinement models. Its run-time behavior

is driven by input data. It has a control port that receives input tokens. Upon firing, the value at

the control signal is compared against the names of case models. The matched case model is then

activated for firing.

A Case adapter is defined to generate code for the Case actor. We will intuitively describe

the adapter implementation as follow. Its generatePreinitializeCode method generates a variable for

the control signal and a set of symbolic values for the case model names. The generateFireCode

method generates a switch statement which consists of a set of case statements. Each case statement

is assigned a symbolic value generated previously for the case name. The case statement also

contains the fire code generated for one of the case models. The case statement is executed upon

matching the value of the control variable with its assigned the name value.

A more elaborate case is the ThreadedComposite [37]. It is an actor that executes a group

of (contained) actors in a separate thread. It couples execution strategy with the actor semantics.

We can generate code for the ThreadedComposite actor using strategy similar to the Case actor by

defining a custom adapter. The idea is to map thread-specific code to the adapter interface. The

ThreadedComposite adapter is not yet implemented but it can be realized within this framework.

3.2 Componentizing Models of Computation

As we mentioned earlier, a model director in Ptolemy II governs the interaction and any

resources shared between actors. The two main operations are scheduling and communication. The

director adapter is the corresponding code generation component which generates the scheduling

and communication code. In addition, it controls the weaving of actor code, which is the code

34

Methods Descriptions
generateGetCode return a string that replaces the $get() macro.
generateSendCode return a string that replaces the $send() macro.
generateTransportInputCode return code that consume input at MoC boundaries.
generateTransportOutputCode return code that send output at MoC boundaries.

Table 3.3: The interface of director adapters.

generated by the actor adapters. Correspondingly, let us call the code generated by the director

adapter the director code. In this section, we will first present the interface of a director adapter.

We will then discuss how to generate director code that implements concrete MoC semantics and

show an example through Kahn Process Network (KPN) code generation.

3.2.1 Director Adapter Interface

Like the actor adapter, a director adapter interface has a set of generate methods that cor-

respond to the executable interface (shown in Table 3.1. In addition, there are four extra methods

that componentize the MoC-specific communication code. Table 3.3 shows a complete list of these

methods: The generateGetCode and generateSendCode methods are invoked to substi-

tute the $get and $send macros in the actor code. This is one place where actor adapters pass

information to a director adapter. There is a well-defined boundary between actor code and direc-

tor code. The generateTransportInputCode and generateTransportOutputCode

methods generates code for communication that happens at the boundary between two directors. It

is a special case of generating the get and send code.

3.2.2 KPN Code Generation

Kahn Process Network (KPN) is a model of computation that models the execution of

concurrent processes. Under the KPN semantics, each actor in the model has a separate thread

35

of execution. Actors communicate through FIFO queues. Each connection represents an implicit

queue that buffers data tokens. Actors can operate asynchronously in the abundance of input tokens.

In the case where input tokens are not available, an actor blocks until the upstream actor produces the

needed tokens. In the original formulation, these buffers are infinite size [38]. Parks later proposes

in his Ph.D thesis a strategy to execute KPN models using bound size buffers when possible [39].

Our current implementation supports static allocation of buffers. User can specify individual buffer

sizes by annotating the model.

A KPN program is Turing-complete [38]. Questions like termination or queue size bounds

are undecideable. However, KPN does guarantee determinacy of data produced at the outputs of

every actor. The sequence of data produced is independent from the scheduling of actor execution.

This gives KPN a competitive advantage in addition to its highly concurrent nature. It makes a

desirable programming model for parallel platforms. In a distributed setting, blocking read is a

sufficient condition to ensure determinacy. We will also show an algorithm to reduce the amount of

locking in a multi-threaded implementation. The remainder of this section will show an extension

of the code generation framework to generate code that faithfully preserves the semantics of KPN.

Because of the modular design of the code generation framework, the extension requires

only the addition of the PNDirector adapter and code template. They help generate the KPN-

specific scheduling and communication code. Our example assumes the Pthread target. Table 3.4

lists the KPN-specific functions and data structures that are necessary in the program. We will show

how each of them is generated by the PNDirector adapter.

The rightmost column of Table 3.4 shows the mapping of our design to the adapter inter-

face we defined in Section 3.2.1. Each item in the middle column shows a section of code needed

36

MoC-specific code KPN Adapter interface
A. Scheduling code 1. Declaration of actor threads preinitializeCode

2. Declaration of synchronization variables preinitializeCode
3. Deadlock detection code preinitializeCode
4. Instantiation of actor threads initializeCode
5. Instantiation of synchronization variables initializeCode
6. Starting and joining of actor threads fireCode

B. Communication code 1. Definition of buffer data structure preinitializeCode
2. Instantiation of buffers initializeCode
3. Implementation of $get() getCode
4. Implementation of $send() sendCode
5. Transport data between MoC boundaries transportCode

Table 3.4: List of KPN-specific code in a Pthread program.

to implement the KPN semantics. In this case, Pthreads are used to provide concurrent execution

for actor processes. Buffer data structures and synchronization variables together are used for co-

ordinating the data exchange between threads. Each of these code sections are specified using one

or several code blocks. The declaration of the buffer data structure is defined in a code block as

shown in Figure 3.4: Each KPN buffer is a circular buffer whose capacity is statically assigned.

It is equipped with a readOffset and a writeOffset variables to keep track of the next po-

sition to read and write. The size of the buffer cannot be determined by the difference between

readOffset and writeOffset because it is equal to zero when the buffer is full and when it

is empty. One solution is to sacrifice a buffer space, leaving it always unused, so full can be dis-

tinguished from empty. This design does not scale to arbitrary datatype (i.e. bad for data tokens of

large size). Plus, data buffers can never be of size one, which is a special case that often allows op-

timization. The alternative is to use extra book-keeping variables to help determine the buffer size.

We can try using an extra count variable whose value is updated after every read or write. However,

every read and write would require locking because this variable is shared by both the reader and

37

1 /∗ ∗∗K P N B u f f e r D e c l a r a t i o n ∗∗ ∗ /
2 s t r u c t KPNBuffer {
3 Token∗ d a t a ; / / Data queue .
4
5 / / Using a s e p a r a t e w r i t e c o u n t and read count ,
6 / / we can a v o i d u s i n g any semaphores . To d e t e r m i n e
7 / / t h e number o f i t e m s i n t h e b u f f e r , we s i m p l y
8 / / do (w r i t e C o u n t − readCount) . Unsigned i s n e c e s s a r y
9 / / f o r work ing w i t h wrap−around .

10 unsigned i n t w r i t e C o u n t ; / / Number o f i t e m s w r i t t e n .
11 unsigned i n t r eadCoun t ; / / Number o f i t e m s r e t r i e v e d .
12 i n t r e a d O f f s e t ; / / Nex t i n d e x t o read .
13 i n t w r i t e O f f s e t ; / / Nex t i n d e x t o w r i t e .
14 i n t c a p a c i t y ; / / C a p a c i t y o f t h e b u f f e r
15
16 / / S y n c h r o n i z a t i o n v a r i a b l e s .
17 p t h r e a d c o n d t ∗ w a i t C o n d i t i o n ; / / C o n d i t i o n v a r i a b l e f o r t h e b u f f e r .
18 p t h r e a d m u t e x t ∗ wai tMutex ; / / B u f f e r mutex .
19 } ;
20 /∗ ∗ /

Figure 3.4: Data structure of the KPN buffer.

writer. Our implementation is to have two count variables, readCount and writeCount, each

of which is accessed by only the reader or the writer. To obtain the size of the buffer, we simply

take (writeCount - readCount). As we will see, this helps to reduce locking in our read/write

algorithm while ensuring consistency.

Scheduling is a main contributor to execution efficiency if processes share execution units.

For Pthread code generation, a program has little control over the scheduling policies. Thus, we are

handing off the scheduling responsibilities to the operation system. Since Pthread is a user-level

thread package, users has the freedom to specify the mapping between user and kernel threads.

Depending on the underlying platforms, this mapping may also influence the execution efficiency.

Multiple threads that are mapped to a single kernel thread are called unbound threads, while a

bound thread is one that is mapped to its own kernel thread (one-to-one). A Pthread has a schedul-

38

ing attribute, called contentionscope, that can be set to either PTHREAD SCOPE PROCESS

(unbound) or PTHREAD SCOPE SYSTEM (bound). There are known tradeoffs between the two

mapping models. Our code generator currently sets all actors threads to be unbound, except for

actors that performs I/O operations.

The core of our KPN code generation is the implementation of data buffers. It is a main

factor that determines the execution efficiency of the generated program. We focus on tackling the

problem of over-synchronization. We will describe an algorithm that avoids locking in the common

case and only performs locking for special cases (i.e. when buffer is full or empty). The key

assumption is that every KPN buffer has only one reader and one writer. This is because every

connection is made between an input port and an output port. Fanouts are considered multiple

connections, one for each fanout degree. Based on this single-reader-single-writer assumption, a

reader can safely consume tokens from a queue without locking, and likewise for a writer to produce

tokens. Figure 3.5 and 3.6 shows the pseudo code of our algorithm.

The read operation blocks when the buffer is empty, and write blocks when the buffer is

full. The two operations are almost identical except for the buffer condition they check for. In the

common case where buffer is neither full nor empty, these operations can execute asynchronously.

There are two critical sections (line 4-10 and 17) in each of the operation. The first (line 4-10) is for

blocking the current executing thread when the corresponding block condition is true. The second

critical section (line 17) prevents the signaling from racing with the other thread. The executing

threads only enter these critical sections upon the full and empty conditions. This enables a KPN

program to concurrently execute not only the component computation but also much of the commu-

nication code. Moreover, threads can utilize more efficiently the underlying parallelism provided

39

1 wr i teKPNBuffe r (KPNBuffer b , Token d a t a) {
2 i f (i s F u l l (b)) { / / Check i f b u f f e r i s f u l l .
3 l o c k (b . wai tMutex) ; / / A c q u i r e b u f f e r−s p e c i f i c l o c k .
4 i f (i s F u l l (b)) { / / Check aga in a f t e r l o c k i n g .
5 i n c r e m e n t W r i t e B l o c k i n g T h r e a d s () ; / / I f i t i s f u l l , t h e n w a i t .
6 w a i t (b . w a i t C o n d i t i o n , b . wai tMutex) ;
7 i f (i s G l o b a l D e a d l o c k ()) { / / Check f o r a g l o b a l d e a d l o c k .
8 e x i t () ;
9 }

10 }
11 un l oc k (b . wai tMutex) ; / / R e l e a s e l o c k .
12 }
13 b . d a t a [b . w r i t e O f f s e t ++] = d a t a ; / / Put t o k e n i n t o b u f f e r .
14 b . w r i t e C o u n t ++; / / I n c r e m e n t c o u n t .
15 i f (i sEmpty (b)) { / / Check i f b u f f e r i s empty .
16 l o c k (b . wai tMutex) ; / / A c q u i r e b u f f e r−s p e c i f i c l o c k .
17 s i g n a l (b . w a i t C o n d i t i o n) ; / / S i g n a l any b l o c k e d t h r e a d .
18 un l oc k (b . wai tMutex) ; / / R e l e a s e l o c k .
19 }
20 }

Figure 3.5: Algorithm for writing to a KPN buffer.

1 Token readKPNBuffer (KPNBuffer b) {
2 i f (i sEmpty (b)) { / / Check i f b u f f e r i s empty .
3 l o c k (b . wai tMutex) ; / / A c q u i r e b u f f e r−s p e c i f i c l o c k .
4 i f (i sEmpty (b)) { / / Check aga in a f t e r l o c k i n g .
5 i n c r e m e n t R e a d B l o c k i n g T h r e a d s () ; / / I f b u f f e r i s empty , t h e n w a i t .
6 w a i t (b . w a i t C o n d i t i o n , b . wai tMutex) ;
7 i f (i s G l o b a l D e a d l o c k ()) { / / Check f o r a g l o b a l d e a d l o c k .
8 e x i t () ;
9 }

10 }
11 un l oc k (b . wai tMutex) ; / / R e l e a s e l o c k .
12 }
13 Token d a t a = b . d a t a [b . r e a d O f f s e t + +] ; / / Read t h e da ta .
14 b . r eadCoun t ++; / / I n c r e m e n t c o u n t .
15 i f (i s F u l l (b)) { / / Check i f b u f f e r i s f u l l .
16 l o c k (b . wai tMutex) ; / / A c q u i r e b u f f e r−s p e c i f i c l o c k .
17 s i g n a l (b . w a i t C o n d i t i o n) ; / / S i g n a l any b l o c k e d t h r e a d .
18 un l oc k (b . wai tMutex) ; / / R e l e a s e l o c k .
19 }
20 re turn d a t a ; / / Re tu rn t h e t o k e n .
21 }

Figure 3.6: Algorithm for reading from a KPN buffer.

40

by the platform.

3.2.3 Domain-Specific Actors

Domain-specific actors are special actors in a MoC. Their function is tied to a particu-

lar MoC. They may require additional support from the directors, which specially recognize these

actors and handle them differently during execution. They are similar to primitive constructs or

keywords in a programming language. There are several examples of such domain-specific ac-

tors in the Ptolemy II actor library. For example, the Synchronous/Reactive (SR) domain has an

Absent actor that outputs the absent signal, which is meaningful only within the SR and SR-

derived domains. Likewise, VariableDelay, TimeGap, SingleEvent, and EventFilter

are domain-specific actors for the DiscreteEvent (DE) domain.

The adapters for domain-specific actors often require extension to the adapter interface.

Let us take the NondeterministicMerge actor as an example. It is a domain-specific actor

in the Kahn Process Network (KPN). It has an output and multi-channel input port (multiport). It

produces a stream of outputs by non-deterministically merging all of its input streams. Randomly

picking an input channel and reading tokens from it is not an acceptable implementation, since the

reading operation may block while tokens are available at other channels. Therefore, to complement

the blocking get operation listed in Figures 3.6, we need a non-blocking primitive called peek.

Implementing the peek operation is straight-forward. Peeking can be offered as a macro

(i.e. $peek) to the NondeterministicMerge adapter. Given our previous definition of the KPN

buffer in Figure 3.4, we can implement peek as shown in Figure 3.7. In addition, an extra

lock and condition variable, say NmergeLock and NmergeCondition, are also necessary in

the NondeterministicMerge’s code template. The fire code of NondeterministicMerge first peeks

41

1 / / Re tu rn f a l s e i f t h e g i v e n b u f f e r i s empty , o t h e r w i s e t r u e .
2 b o o l e a n peekKPNBuffer (KPNBuffer b) {
3 re turn b . w r i t e C o u n t − b . r eadCoun t > 0 ;
4 }

Figure 3.7: Algorithm for peeking at a KPN buffer.

through the input channels that has available tokens. If the pool is not empty, it randomly selects

one to consume token from. If the pool is empty, it acquires the NmergeLock lock, peeks again,

and waits on the condition if all channels are still empty. It requires the assistance of the director

adapter to locate the actors that are senders to the input of NondeterministicMerge and associate

NmergeLock and NmergeCondition in their send operations.

In general, domain-specific primitives are used in a restricted way, otherwise it can under-

mine the semantics of the MoC. In this particular case, peeking is only allowed for the Nondeter-

ministicMerge actor and not any other actor. Imagine the case where an actor is allowed to output

values based on the availability of input tokens (i.e. The output is a boolean value that indicates

whether its input port has tokens). The sequence of output values of this actor is determined by the

scheduling of the actor execution. It thus violates the premise of output determinacy in KPN. It is

therefore the responsibility of the director adapters to specially check and verify at generate time

the use of these domain-specific primitives.

3.2.4 Heterogeneous Modeling

Heterogeneous modeling is an innovative technique that proposes composition of multiple

MoCs. It attempts to maximize both analyzability and expressiveness by providing finer granularity

in the use of MoCs. The Globally-Asynchronous, Locally-Synchronous (GALS) efforts are one

example of mixing MoCs. In my previous work [40], I demonstrated the utility of composing KPN

42

and Synchronous Dataflow (SDF). The composition of PN and SDF effectively controls the degree

of concurrency while retaining determinacy and understandability in the SDF sub-components. The

Gravitation model in Figure 1.1 is an example of this. Composition between other MoCs are also

possible. Goderis et al. proposed a classification for MoCs and used it to analyze which combination

of MoCs are possible [35]. There are large interests in exploring heterogeneous modeling and

formalizing it as a general technique.

Code generation for heterogeneous models requires extra gluing code. The gluing code

bridges across MoCs’ boundaries. It is generated by director adapters. The

generateTransportInputCode and generateTransportOutputCode interface meth-

ods are used for this purpose. generateTransportInputCode returns code that transfers data

from the input ports of the container to the ports connected on the inside, while

generateTransportOutputCode returns code that transfers data from the output ports of the

container to the ports connected on the outside.

In the case of composing KPN and SDF (where KPN is at the top level and SDF are the

sub models), the transport input code copies data from a KPN buffer to a SDF buffer. This is pre-

cisely the $get code generated by the KPN director adapter and the $send code of the SDF director

adapter. The transport output code is similar except the copying is of the opposite direction. Gener-

ating the transport code requires cooperation of the inside and outside director adapters. Generating

transport code is the key mechanism in code generation for heterogeneous models.

3.3 Supporting Multiple Data Types

Datatype is another important aspect in the model. It mades up part of the semantics of the

computation. The semantics of a component varies with the context of its datatypes. For instance,

43

the same operation performed on two different datatypes may have very different meaning and, thus,

involve very distinct computation. Consider the addition between integers and between sets. The

former is a scalar operation and the second a set union. In Ptolemy II, many actors are polymorphic,

which means that they can operate over multiple datatypes. In the Gravitation model (shown in

Figure 1.1), AddSubtract, MultiplyDivide, Scale, Repeat, SampleDelay are data polymorphic ac-

tors. In particular, Repeat and SampleDelay can propagate any types of tokens from the input to

output port. Scale can operate on any datatype that supports multiplication. Similarly, AddSubtract

and MultiplyDivide operate on any datatype that supports addition, subtraction, multiplication, and

division. In this Chapter, we will show how to define datatypes in our code generation framework

and how they interface with actor adapters through polymorphic functions. In Section 3.3.3, we will

show how to use polymorphic functions to solve the coercion problem in code generation.

3.3.1 Data Type Library

A datatype is a representation of data in the model. Types are static properties of model

components such as ports and parameters. Types are specified or inferred through static analysis

of the model and thus prior to generate time. Each datatype implicitly defines a set of allowable

operations between data. These operations give a generalization over fine-grained computation that

is performed. Their admissibility is checked by a type checker.

Many modeling environments contain a rich set of types. Ptolemy II, in particular, support

a large and extensible type system [17]. Thus, the code generation framework is designed to provide

a library interface for these datatypes. The implementation of a datatype in the code generation

framework is called a codegen type. The framework systematically incorporates multiple datatypes

and allows modular extensions for new codegen types. The framework provides a $type macro

44

Macros Descriptions
$new creates a new data token for this type.
$delete the inverse operation of $new.
$clone return a copy of the data.
$zero return the additive identity for data of this type.
$one return the multiplicative identity for data of this type.

Table 3.5: Macros supported by a codegen datatype.

to query the datatype of a particular port and parameter. It avoids having the actor code blocks to

reference any explicit types. The abstraction helps actor adapters to generate code independent of

datatypes by hiding the detailed implementation of a particular type. It serves as a contract between

the actor adapters and datatypes.

Table 3.5 the core functions of a codegen datatype. These operations are provided as

macros used in the actor code templates. Each codegen type is required to implement the definitions

of these operations. Figure 3.8 shows the String codegen type, defined using a code template.

To extend the framework with a new type, we simply add a file that contains the definition

of these operations. The code generation framework currently supports 10 codegen types which

include Array, Boolean, Complex, Double, Int, Long, Matrix, Pointer, String, and UnsignedByte.

3.3.2 Polymorphic Functions

Orthogonal to the codegen type definitions are the definitions for polymorphic functions.

They are functions that accept argument(s) of multiple datatypes. Polymorphic functions has a

notion of type arity, which refers to the number of type arguments that refines the function. Usually,

the type arguments are the types of the actual arguments to the function but this is not a necessary

requirement. Most useful polymorphic functions are either unary or binary but they can be n-

nary in general. For example, negate (inverse), print, and toString are common unary polymorphic

45

1 /∗ ∗∗ S t r i n g n e w ∗∗ ∗ /
2 /∗ Make a new i n t e g e r t o k e n from t h e g i v e n v a l u e . ∗ /
3 Token S t r i n g n e w (char∗ s) {
4 Token r e s u l t ;
5 r e s u l t . t y p e = TYPE Str ing ;
6 r e s u l t . p a y l o a d . S t r i n g = s t r d u p (s) ;
7 re turn r e s u l t ;
8 }
9 /∗ ∗ /

10
11 /∗ ∗∗ S t r i n g d e l e t e ∗∗ ∗ /
12 Token S t r i n g d e l e t e (Token token , . . .) {
13 f r e e (t o k e n . p a y l o a d . S t r i n g) ;
14 /∗ We need t o r e t u r n s o m e t h i n g here because a l l t h e methods are d e c l a r e d
15 ∗ as r e t u r n i n g a Token so we can use them i n a t a b l e o f f u n c t i o n s .
16 ∗ /
17 re turn emptyToken ;
18 }
19 /∗ ∗ /
20
21 /∗ ∗∗ S t r i n g c l o n e ∗∗ ∗ /
22 Token S t r i n g c l o n e (Token t h i s T o k e n , . . .) {
23 re turn $new (S t r i n g (t h i s T o k e n . p a y l o a d . S t r i n g)) ;
24 }
25 /∗ ∗ /
26
27 /∗ ∗∗ S t r i n g z e r o ∗∗ ∗ /
28 Token S t r i n g z e r o (Token token , . . .) {
29 re turn $new (S t r i n g (” ”)) ;
30 }
31 /∗ ∗ /
32
33 /∗ ∗∗ S t r i n g o n e ∗∗ ∗ /
34 / / S t r i n g o n e i s n o t s u p p o r t e d .
35 /∗ ∗ /

Figure 3.8: Code template for the String datatype.

46

functions. There are add, subtract, multiply, divide, convert, and equals in the binary case. Each

of these functions are tailored against the type of its arguments. The implementation to generate is

determined the particular function specified in the actor code and type information given from the

model. This process involves a rendezvous of information between the codegen type library, actor

code, and model type knowledge.

The codegen type library allows the extension of polymorphic functions. Each polymor-

phic function is defined in a separate file, such as add.c or negate.c. It contains a set of

definitions that implement the function with concrete codegen types. Figure 3.9 shows a simpli-

fied version of add between the Boolean, Int, String codegen types. This design supports n-nary

operations. Each concrete definition is specified in a separate code block. It is a specialized imple-

mentation of the function given the types of the arguments. The maximum number of code blocks

in any one of these function code template is bounded by Tn, where T is the number of codegen

types and n is the type arity of the function. Since the number of definitions increases exponentially

with arity, or the number of type arguments, it is laborious to write the complete implementation,

especially for function with high type arity. The framework allow partial implementation that con-

tains a subset of the concrete definitions. The framework warns the user if code generation requires

the missing definitions. This allows the user to grow a function code template incrementally.

Let’s illustrate how these pieces come together through examining the Scale code tem-

plate shown in Figure 3.10. The code template consists of two code blocks: scaleOnLeft

and scaleOnRight. The adapter chooses one of them to generate depending on the commu-

tativity of the multiplication. It outputs as result the product of the input value and the value

of the factor parameter. In particular, the multiplication operation it invokes is a binary poly-

47

1 /∗ ∗∗ a dd B oo l e an B oo l e an () ∗∗ ∗ /
2 b o o l e a n a d d B o o l e a n B o o l e a n (b o o l e a n a1 , b o o l e a n a2) {
3 re turn a1 ∣ a2 ;
4 }
5 /∗ ∗ /
6
7 /∗ ∗∗ a d d B o o l e a n I n t () ∗∗ ∗ /
8 i n t a d d B o o l e a n I n t (b o o l e a n a1 , i n t a2) {
9 re turn $ a d d I n t B o o l e a n (a2 , a1) ;

10 }
11 /∗ ∗ /
12
13 /∗ ∗∗ a d d B o o l e a n S t r i n g () ∗∗ ∗ /
14 char∗ a d d B o o l e a n S t r i n g (b o o l e a n a1 , char∗ a2) {
15 char∗ r e s u l t = (char ∗) m a l lo c (s i z e o f (char) ∗ ((a1 ? 5 : 6) + s t r l e n (a2))) ;
16 s t r c p y (r e s u l t , a2) ;
17 s t r c a t (r e s u l t , (a1 ? ” t r u e ” : ” f a l s e ”)) ;
18 re turn r e s u l t ;
19 }
20 /∗ ∗ /
21
22 /∗ ∗∗ a d d I n t B o o l e a n () ∗∗ ∗ /
23 i n t a d d I n t B o o l e a n (i n t a1 , b o o l e a n a2) {
24 re turn a1 + (a2 ? 1 : 0) ;
25 }
26 /∗ ∗ /
27
28 /∗ ∗∗ a d d I n t I n t () ∗∗ ∗ /
29 i n t a d d I n t I n t (i n t a1 , i n t a2) {
30 re turn a1 + a2 ;
31 }
32 /∗ ∗ /
33
34 /∗ ∗∗ a d d I n t S t r i n g () ∗∗ ∗ /
35 char∗ a d d I n t S t r i n g (i n t a1 , char∗ a2) {
36 char∗ s t r i n g = (char ∗) m a l lo c (s i z e o f (char) ∗ (12 + s t r l e n (a2))) ;
37 s p r i n t f ((char ∗) s t r i n g , ”%d%s ” , a1 , a2) ;
38 re turn s t r i n g ;
39 }
40 /∗ ∗ /
41
42 /∗ ∗∗ a d d S t r i n g B o o l e a n () ∗∗ ∗ /
43 char∗ a d d S t r i n g B o o l e a n (char∗ a1 , b o o l e a n a2) {
44 char∗ r e s u l t = (char ∗) m a l lo c (s i z e o f (char) ∗ ((a2 ? 5 : 6) + s t r l e n (a1))) ;
45 s t r c p y (r e s u l t , a1) ;
46 s t r c a t (r e s u l t , (a2 ? ” t r u e ” : ” f a l s e ”) ;
47 re turn r e s u l t ;
48 }
49 /∗ ∗ /
50
51 /∗ ∗∗ a d d S t r i n g I n t () ∗∗ ∗ /
52 char∗ a d d S t r i n g I n t (char∗ a1 , i n t a2) {
53 char∗ s t r i n g = (char ∗) m a l lo c (s i z e o f (char) ∗ (12 + s t r l e n (a1))) ;
54 s p r i n t f ((char ∗) s t r i n g , ”%s%d ” , a1 , a2) ;
55 re turn s t r i n g ;
56 }
57 /∗ ∗ /
58
59 /∗ ∗∗ a d d S t r i n g S t r i n g () ∗∗ ∗ /
60 char∗ a d d S t r i n g S t r i n g (char∗ a1 , char∗ a2) {
61 char∗ r e s u l t = (char ∗) m a l lo c (s i z e o f (char) ∗ (1 + s t r l e n (a1) + s t r l e n (a2))) ;
62 s t r c p y (r e s u l t , a1) ;
63 s t r c a t (r e s u l t , a2) ;
64 re turn r e s u l t ;
65 }
66 /∗ ∗ /

Figure 3.9: Code template for the add polymorphic function.

48

1 /∗ ∗∗ s c a l e O n L e f t ∗∗ ∗ /
2 $send (o u t p u t , 0 , $ m u l t i p l y $ t y p e (i n p u t) $ t y p e (f a c t o r) ($ g e t (i n p u t , 0) , $ v a l (f a c t o r)))
3 /∗ ∗ /
4
5 /∗ ∗∗ s c a l e O n R i g h t ∗∗ ∗ /
6 $send (o u t p u t , 0 , $ m u l t i p l y $ t y p e (f a c t o r) $ t y p e (i n p u t) ($ v a l (f a c t o r) , $ g e t (i n p u t , 0)) ;
7 /∗ ∗ /

Figure 3.10: Code template of the Scale actor.

morphic function. The invocation, $multiply $type(input) $type(factor), consists

of three macros expressions. Two of them, $type(factor) and $type(input), query the datatypes

of the factor parameter and the input port, respectively. At generate time, they are replaced with

labels of concrete codegen types, say for example, Int and Array (of Ints). The invocation now

becomes $multiply Int Array, which is a valid reference for one of the concrete definitions

of multiply.

3.3.3 The Coercion Problem

Coercion is the implicit, or automatic, type conversion of data tokens. It is needed when

there exists discrepancy between the type interfaces of components. Implicit conversion helps to

decrease the amount of explicit type conversion, where conversion actors are linked between two

components of different types. Having a large number of these conversion actors in the model is a

burden in terms of readability. Coercion, on the other hand, centralizes the handling of datatypes.

It provides the model with type transparency and relieves model designers from dealing with type

conversion explicitly.

However, coercion presents a challenging design problem for code generation. First, the

model does not directly provide clues about where coercion take places. For explicit type conver-

sion, there is an explicit conversion actor. We can handle easily by implementing the conversion

49

actor adapter. For implicit conversion, the first problem is detecting the coercions at generate time.

Then, a second design problem is generating the proper and efficient conversion code, given that

there are many possible conversions between types.

Coercion occurs when data is transferred between components of different types. It can

happen between the outgoing and receiving ports in a connection. It can also take place between a

parameter and a port where the parameter value is sent as port data, such is the case for the Sam-

pleDelay actor. Detecting coercion is a problem of finding all such pairs of components where their

types are different. At generate time, the framework keeps a table of the coercion information,

where each entry is a tuple of the form: <fromComponent, toComponent, fromType,

toType>. Detection of coercion between port pairs is fully automated by traversing each connec-

tion in the model and checking for disparate types. The coercion detection between a parameter and

port, however, requires user intervention. It is up to the adapter writers to specify this.

Given the information from the detection phase, the next task is to generate the conversion

code. Our solution is to add a polymorphic function called convert and leverage our datatype

library infrastructure. The convert function has a type arity of two (the type to convert from and

the type to convert to). The code template of convert consists of concrete definitions between

each pair of datatypes. Each definition gives an opportunity to write efficient code that converts data

of one type to another.

50

Chapter 4

Retargeting

Retargeting is a technique to generate code for different programming interfaces. It

bridges the barriers posed by platforms, programming languages, or standards by decoupling the

details of the concrete implementation from design models. Model designers are relieved from the

burden of mixing platform details while designing algorithms. Retargeting makes design models

applicable in various areas of usage domains and allow many communities to take advantage of the

model-based design methodology.

To enable retargetability, our code generation framework tags each of the adapters and

code templates with a specific target. Each adapter generates code for a specific target, and each

code template contains code compatible to the programming interface of that target. Thus, retar-

getability is achieved through multiple libraries of adapters. These libraries may overlap in order to

maximize reusability. The overlapping is organized using a target hierarchy such that each parent

is a target that provides a more general programming interface than the children targets. Consider

the case for the C, POSIX, and WIN32 interfaces. C, in this case, is the parent for POSIX and

WIN32. However, the problem of deciding the relationship between targets is hard in general. This

is left for future research. The importance of the target hierarchy is to allow multiple targets to share

51

adapters and code templates when they are compatible.

After describing the general retargeting mechanism, we will now discuss several applica-

tion areas where retargeting is useful. The areas listed are by no means exhaustive. They come from

ideas and studies throughout the course of developing our framework. In most of these cases, we

prototyped concrete extensions to our framework as demonstrations.

4.1 Targeting Other Platforms

A main mission of our framework is to generate semantics-preserving code that is portable

across hardware, operating system, or middleware platforms. They make up various execution

platforms. A code generator that can generate code for multiple platforms is said to be retargetable.

Retargeting is a technique used to combat the non-uniformity of programming interfaces. The

reason is because each target platform is set up with its own stack of software, which includes

device drivers, firmware, operating systems, virtual machines, or middleware. They together present

the user a unique programming interface for each platform. Let’s take file system interface as an

example. The C standard I/O library, stdio.h, provides a common interface for a set of primitive

file I/O operations. Most file-based systems implement this interface. However, other operations

that are more fine-grained, such as directory manipulations, are left outside of stdio.h and thus

not standardized. They are defined in libraries that are tied to the platforms. This motivates the need

for a retargetable code generator that can configure the generation of code according to platform

characteristics.

Let us use the DirectoryList actor to illustrate how retargeting is performed in our

framework. The actor lists the contents, or file names, of a given directory path. Let us also take

POSIX and WIN32 as our targets. Traversing contents of a directory on these targets requires

52

platform-specific library support. POSIX requires the functions defined in dirent.h, whereas,

WIN32 requires support from windows.h. The POSIX and WIN32 DirectoryList adapters gen-

erate code assuming these library interfaces, respectively. The DirectoryListing code templates are

written as shown in Figure 4.1 (POSIX) and Figure 4.2 (WIN32).

A practical use case of retargeting is to generate code for embedded devices. They are

often small and limited in resources such as power, processing speed, memory storage. Thus, their

driver libraries are specialized for efficiency and often do not implement standard interfaces. It is

also hard to set up a general-purpose operating systems on top of these platforms, due to the fact

that they do not have the sufficient storage to hold the code. Thus, the software on these platforms

need to be specifically tailored.

There are currently a number of operating systems that targets specifically for embedded

devices. [41] shows an unofficial list of these embedded operating systems. We worked particularly

with a popular real-time kernel, called OpenRTOS, that is ported for several micro-controllers [42].

It features multitasking and support concurrency control through locks, semaphores, and synchro-

nized queues. In Section 4.3, we will discuss the generation of parallel code for the OpenRTOS

target as well as other parallel programming models.

Programming standards and interfaces are expressed through a particular programming

language. For example, the WIN32 and POSIX libraries are standards in C. Our framework extends

retargeting to different programming languages. A language is treated as a target. We currently

experimented with C, Java, VHDL, and XML-based languages. Each language is an entry point for

programming a particular platform. It provides concrete syntax for how a program is specified and

frames the accessibility of the underlying resources. There are over 2,500 programming languages

53

1 /∗ ∗∗ p r e i n i t B l o c k ∗∗ ∗ /
2 / / T h i s t e m p l a t e i s w r i t t e n f o r t h e POSIX API .
3 DIR ∗dp ;
4 s t r u c t d i r e n t ∗ep ;
5 s t r u c t s t a t s t a t b u f ;
6 Token $ac to rSymbo l (o u t p u t A r r a y) ;
7 /∗ ∗ /
8
9 /∗ ∗∗ i n i t B l o c k ∗∗ ∗ /

10 $ac to rSymbo l (o u t p u t A r r a y) = $new (Array (0 , 0)) ;
11 /∗ ∗ /
12
13 /∗ ∗∗ f i r e B l o c k ($ f i l e p a t h)∗∗ ∗ /
14 dp = o p e n d i r (” $ f i l e p a t h ”) ;
15 i f (dp != NULL) {
16 whi le (ep = r e a d d i r (dp)) {
17
18 i f (s t a t (ep−>d name , &s t a t b u f) == −1) {
19 p r i n t f (”%d∖n . ” , e r r n o) ;
20 }
21
22 i f ($ v a l (l i s t O n l y F i l e s) && ! S ISREG (s t a t b u f . s t mode)) {
23 / / Exc lude non− f i l e s .
24 } e l s e i f ($ v a l (l i s t O n l y D i r e c t o r i e s) && ! S ISDIR (s t a t b u f . s t mode)) {
25 / / Exc lude non−d i r e c t o r i e s .
26 } e l s e {
27 A r r a y i n s e r t ($ac to rSymbo l (o u t p u t A r r a y) , $new (S t r i n g (ep−>d name))) ;
28 }
29 }
30 (void) c l o s e d i r (dp) ;
31 }
32 $send (o u t p u t , 0 , $ac to rSymbo l (o u t p u t A r r a y))
33 /∗ ∗ /
34
35 /∗ ∗∗wrapupBlock∗∗ ∗ /
36 A r r a y d e l e t e ($ac to rSymbo l (o u t p u t A r r a y)) ;
37 /∗ ∗ /

Figure 4.1: The C code template of DirectoryListing for POSIX.

54

1 /∗ ∗∗ p r e i n i t B l o c k ∗∗ ∗ /
2 / / T h i s t e m p l a t e i s w r i t t e n f o r t h e Windows API .
3 WIN32 FIND DATA d e s c r i p t o r ;
4 LARGE INTEGER f i l e s i z e ;
5
6 TCHAR s z D i r [MAX PATH] ;
7 / / s i z e t l e n g t h o f a r g ;
8 HANDLE hFind ;
9 Token $ac to rSymbo l (o u t p u t A r r a y) ;

10 /∗ ∗ /
11
12 /∗ ∗∗ i n i t B l o c k ∗∗ ∗ /
13 hFind = INVALID HANDLE VALUE ;
14 $ac to rSymbo l (o u t p u t A r r a y) = $new (Array (0 , 0)) ;
15 /∗ ∗ /
16
17
18 /∗ ∗∗ f i r e B l o c k ($ f i l e p a t h)∗∗ ∗ /
19 / / Prepare s t r i n g f o r use w i t h F i n d F i l e f u n c t i o n s . F i r s t , copy t h e
20 / / s t r i n g t o a b u f f e r , t h e n append ’∖∗ ’ t o t h e d i r e c t o r y name .
21 s t r c p y (szDi r , ” $ f i l e p a t h ”) ;
22 s t r c a t (szDi r , TEXT(”∖∖∗”)) ;
23
24 / / Find t h e f i r s t f i l e i n t h e d i r e c t o r y .
25 hFind = F i n d F i r s t F i l e (szDi r , &d e s c r i p t o r) ;
26
27 / / L i s t a l l t h e f i l e s i n t h e d i r e c t o r y w i t h some i n f o abou t them .
28 do {
29 i f (˜ $ v a l (l i s t O n l y F i l e s) & d e s c r i p t o r . d w F i l e A t t r i b u t e s & FILE ATTRIBUTE DIRECTORY) {
30 A r r a y i n s e r t ($ac to rSymbo l (o u t p u t A r r a y) , $new (S t r i n g (d e s c r i p t o r . cFi leName))) ;
31
32 } e l s e i f (˜ $ v a l (l i s t O n l y D i r e c t o r i e s)) {
33 A r r a y i n s e r t ($ac to rSymbo l (o u t p u t A r r a y) , $new (S t r i n g (d e s c r i p t o r . cFi leName))) ;
34 }
35 } whi le (F i n d N e x t F i l e (hFind , &d e s c r i p t o r) != 0) ;
36
37 F i n d C l o s e (hFind) ;
38 /∗ ∗ /
39
40 /∗ ∗∗wrapupBlock∗∗ ∗ /
41 A r r a y d e l e t e ($ac to rSymbo l (o u t p u t A r r a y)) ;
42 /∗ ∗ /

Figure 4.2: The C code template of DirectoryListing for WIN32.

55

[43]. The set of actively used languages evolves but continues to be many. A retargetable code

generator is a translator that communicates design models across different languages.

4.2 Hardware Simulation and Synthesis

It has long been realized that DSP applications are more intuitively described using visual

signal flow graphs. Commercial tools like Xilinx System Generator (XSG) provide a library of

Simulink blocks which can be used as primitives for building DSP hardware. The library consists

of multiplexors, adders, registers, memories etc and each can be parameterized for implementation

on Xilinx FPGA’s. It allows designers to perform bit and cycle accurate simulations of their system

and later translate the design to Xilinx compatible gateware. For translation XSG internally calls

Xilinx Core-Gen, a software tool that allows generating high level components like multipliers

and memories with desired specification to directly map onto lower level Xilinx primitives. This

approach limits its use to Xilinx FPGAs. It is non-trivial to re-target a XSG translated design to

another FPGA family or an Application Specific Integrated Circuit (ASIC). Other commercial tools

like Synplify DSP also based on Simulink provide similar features but can translate designs into

platform independent specifications.

All such systems use execution semantics closer to the Synchronous Reactive (SR) do-

main in Ptolemy II. This is a natural outcome of the fact that synchronous logic is best described

by SR semantics when all clock domains in a design differ by integer multiples of a base frequency.

Truly asynchronous boundaries can be modelled using Discrete Event (DE) semantics which is

underlying semantics in hardware description languages like Verilog and VHDL. As designs grow

larger and span many clock boundaries a designer may need more flexibility with the expressiveness

and abstraction of the modeling semantics. For example, parts of the system which are synchronous

56

and are timing or resource critical may be better modelled using SR semantics, while asynchronous

interfaces may need DE semantics. At the top level of the system and for components that do not

need a lot of optimizations, higher level semantics like that of Synchronous Data Flow (SDF) is

preferable. SDF semantics implicitly infer queues between actors to take care of differences in

firing rates (clock speeds) between blocks. Translation from SDF to gateware is non-trivial and

there has been previous work in attempting this using Ptolemy Classic [44]. Our current experiment

extends the existing code-generation infrastructure, with VHDL as a new target, to generate beha-

vorial Register Transfer Level (RTL) VHDL is independent of implementation platforms and can

be targeted to ASICs as well. The details of the VHDL code generation target is documented in the

technical report [45]. The introduction of VHDL code-generation in Ptolemy II helps set the stage

for further research in the area of improving heterogeneous design environments for gateware and

hardware designers.

4.3 Parallel and Distributed Computing

Parallel programming is the specification of concurrency. Its applications range from

desktop software running on personal computers to climate modeling and astrophysics computing

that are spread across thousands of supercomputing nodes [46, 47]. Model-based code generation

is essential in parallel program design which often utilizes high-level abstractions of concurrency

control, reaching beyond primitives like semaphores, mutexes, and monitors. However, finding

the right abstractions is not an easy task, and it continues to be an active field of research. There

have been various approaches experimenting with abstractions in both traditional programming lan-

guages and graphical modeling languages. Preserving backward compatibility is a major focus so

users are not forced to learn a completely new language. Examples are language extensions such

57

as parallel Erlang [48] and OpenMP [49], which are extensions to the core languages. These ex-

tension are implemented using code annotations and compiler library support. In addition, other

considerations for parallel design patterns are scalability, performance, compositionality, decidabil-

ity, understandability and adoptability. Current research continues to improve the quantification of

these measures.

A parallel program can be classified in three ways. First, program parallelization is de-

scribed at the level of task and data. Data parallelism takes the form of breaking up program data

into pieces and distributing them for uniform execution. The execution units are designed to perform

the same operations. This form of parallelism relies heavily on the uniformity and structure of the

data. It is generally considered fine-grained parallelism. Task parallelism takes advantage of divid-

ing work into several functionally different tasks which can be execute concurrently. To minimize

communication overhead, the boundary between tasks is drawn such that only small amount of data

is shared while the majority of data are encapsulated within each individual task. Communication

architecture is another important class of classification. Parallel programs relies on two main un-

derlying architectures which are message-passing and shared-memory. Message-passing provides

explicit control in sending and receiving data, in the form of messages, as well as delivery methods

such as blocking and asynchronous messages. Shared-memory platforms on the other hand make

the distinction between local and shared data and implicitly manages consistency of shared data.

The platform is notified of data updates and can make decisions, using global knowledge, about

how to efficiently perform the appropriate reads and writes. The third classification is schedul-

ing policy which describes the mapping of functional tasks to execution units. Static scheduling

minimizes the coordination overhead, while dynamic scheduling is more flexible and effective in

58

load-balancing.

Actor modeling in conjunction with concurrent models of computation provides an intu-

itive programming interface for specifying concurrent design patterns. The KPN model of com-

putation, described in Section 3.2.2, in particular provides an intuitive syntax and semantics for

understanding concurrency. It is also possible to transform into efficient code. Code generation for

KPN serves as a starting point for us to use MoCs to experiment with parallel programming design.

Using timed MoCs would further allow us to introduce time semantics into concurrency control. We

have experimented with retargeting KPN to Pthread programming, as described in Section 3.2.2, as

well as multitasking for a real-time embedded kernel, called OpenRTOS. One interesting target

platform is the Message Passing Interface (MPI). It is a message-passing application programmer

interface, together with protocol and semantic specifications for how its features must behave in any

implementation. MPI includes point-to-point message passing and collective (global) operations,

all scoped to a user-specified group of processes [8]. It is portable and independent of programming

languages. MPI belongs in layers 5 and higher of the OSI Reference Model with socket and TCP

being used in the transport layer.

We extended the KPN code generation for the MPI target. In order to map actor execution

to processing nodes, the code generator goes through two main stages: partitioning and code gen-

eration. First, we assume that the actors and connections are annotated with node and edge weights

that correspond to the amount of computation and communication overhead each actor and connec-

tion represent. We can use these weights to influence decisions made in the partitioning stage. They

also serve as parameters for us to later explore the partitioning design space. In the partitioning

phase, we analyze the model and generate clustering information using the weights and the given

59

number of processors. It replaces the weight information with processor IDs, called ranks, and MPI

communication buffer IDs. The code generation phase infers the necessary information from these

partitioning and buffer annotations. It then generates a MPI program instance which is one particu-

lar implementation of the model based upon the given partitioning. Ideally, there would be a tuning

phase that takes advantage of reconfiguring the partitioning parameters to create multiple program

instances. It first executes the generated program and receives profiling information from each pro-

cessors. These profiling statistics serve as feedback information to further adjust the edge and node

weights. The tuning gives the partitioner a better estimate of its parameters, thus a better partition.

This mechanism provides a way to systematically explore the design and implementation space. For

further details about the work in MPI code generation, readers are referred to the technical report in

[50].

4.4 Model Checking

Another useful application that can leverage the model-based code generation is formal

verification through modeling checking. Our code generation framework is currently retargeted to

Real-Time Maude, a specification language designed for checking real-time properties of a system.

Model checking tools take as inputs a system model description and a set of constraints. The system

model description is usually expressed in a custom language. The SPIN model checker, e.g., reads

in system descriptions specified in the Process Meta Langauge (Promela). There are several other

verification systems such as Maude and NuSMV, each invented its own specification language. The

constraints on the other hand are written using Linear Temporal Logic (LTL) and/or Computation

Tree Logic (CTL). Given these two inputs, a model checker attempts to either conclude the system

is safe or find a counter-example where the system would violate the constraints. Automatic code

60

generation comes in handy for extracting the system description from a model. This form of re-

targeting enable a smooth hand-off from design to verification. It also minimizes the manual labor

required to iterate rapidly between the two design phases. By encapsulating the coupling between

the design and verification languages in our code generator, we can effectively reuse the same tool

in designing multiple systems.

Specifying concurrency is a central theme in verification. Using actor models, like those

of Ptolemy II, that are defined with specific MoCs is advantageous. It makes possible for code

generation to preserve the pre-defined communication and execution semantics in the model. The

code generator can unambiguously transform a model for different verification tools to detect con-

currency problems, such as livelocks, deadlocks, or race conditions. The notion of MoCs anchors a

fixed interpretation on the model. Code generation bears the responsibility of translating this inter-

pretation to source code with appropriate syntax. This approach of automatically generating system

descriptions is used in several projects. Corbett et al. [51] demonstrated the extraction of finite-state

models from Java source code, written with a subset of Java. The SLAM [52] verification engine,

now used in Microsoft, automatically constructs abstraction models of a C program. Henzinger

et al. developed a similar tool, called BLAST [53]. Both BLAST and SLAM operate through a

series of automatic generation of abstraction models, while in each subsequent stage increasing the

accuracy of the model. These tools are becoming widely successfully in formally verifying sys-

tem protocols and architectures. Model checkers such as SPIN, Java PathFinder and SLAM [52]

are being adopted by the industry as part of the engineering toolsuite and required in the standard

development cycle.

61

Chapter 5

Conclusion

5.1 Summary

To summarize the main contributions of this report, we formulated model-based code

generation as a graph problem. A framework, consisting of adapters and code templates, is designed

to provide model designers reusable code generation components. The actor and director adapter

interfaces are defined for semantics-preserving code generation. The adapter and code template

abstractions can seen as design patterns for the code generation of Ptolemy II modeling language.

The success of their usage is demonstrated with extension for various actors, MoCs, and datatypes.

These patterns are also shown to be resilient for various target platforms.

We illustrated the adapters for several special actors, including Expression, Case, and

CompositeActor. In addition, the CompositeActor adapter and director adapter interface support

code generation for heterogeneous models. We particularly included a detailed illustration of the

key mechanisms in generating code for Kahn Process Network (KPN) models. The framework is

also adaptable to the extensible type system of Ptolemy II. It reuses the Ptolemy II type checker and

supplement an extensible datatype library used in generate-time specialization.

We also explored retargeting for several applications. Retargeting for different languages

62

and platforms increases the portability of model execution. We come to realize that some models of

computation are well-matched for particular application domains. For instance, we experimented

with KPN to express parallel and distributed programs. We used SR models to simulate and syn-

thesize hardware by generating VHDL code. We also demonstrated retargeting as a good tool for

model checking where system description is automatically generated from a model.

5.2 Future Work

Future explorations can head toward several directions. Throughout the report, I described

code generation as a monolithic process for a model. It is sometimes called whole-system genera-

tion. However, code generation can also be incremental. It helps to increase turn-around time for

applications such as model debugging, system and legacy code integration. The next steps in this

direction is to modularize code generation. E.g., researcher Stavros Tripakis is designing a set of

interface theories for model components. One of the usages is to allow stand-alone compilation of

sub-models. The generated code can be used in partial code simulation for quick debugging session.

Alternatively, it can be fed back to the model to accelerate model execution.

A second important but challenging exploration is to verify this code generation approach.

Verifying the entire code generation framework is a humongous, if not impossible, task because

there is a large number of states for the code generator. Instead, we can start with verifying the

generated program. One possible approach is to insert annotations, like pre- and post-conditions,

into the generated program and have a program checker or theorem prover to check these conditions.

Another direction is to test the efficiency and performance of this model-based code gen-

eration approach. We can conduct future experiments to do the same designs using actor-oriented

modeling and compare the results with hand-written programs. We can take measurements in terms

63

of the time to produce these designs, quality of the products, and flexibility to requirement changes

or customization. There remains much to done to fully realize the capability of model-based code

generation.

64

Bibliography

[1] Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Architectures.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2002) Foreword By-

Jacoboson, Ivar. 1

[2] Brayton, R.K., Sangiovanni-Vincentelli, A.L., McMullen, C.T., Hachtel, G.D.: Logic Mini-

mization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Norwell, MA, USA

(1984) 2

[3] Keutzer, K.: Dagon: Technology binding and local optimization by dag matching. In: 25

years of DAC: Papers on Twenty-five years of electronic design automation, New York, NY,

USA, ACM (1988) 617–624 2

[4] Zalewski, J., Kornecki, A.: Qualification of software development tools for airborne systems

certification. In: Workshop on Software Certification Management, Institute of Electrical and

Electronics Engineers 3

[5] Bock, C.: SysML and UML 2 support for activity modeling. Syst. Eng. 9(2) (2006) 160–186

5

[6] Rumbaugh, J.: The unified modeling language reference manual, second edition. Journal of

Object Technology 3(10) (2004) 193–195 5

65

[7] OMG: System modeling language specification v1.1. Technical report, Object Management

Group (2008) 5

[8] Hardebolle, C., Boulanger, F.: Modhel’x: A component-oriented approach to multi- formalism

modeling. In: MODELS 2007 Workshop on Multi- Paradigm Modeling, Nashville, Tennessee,

USA, Elsevier Science B.V. (2007) 5

[9] Pree, W., Templ, J.: Modeling with the timing definition language (tdl). In: Automotive Soft-

ware Workshop San Diego (ASWSD) on Model-Driven Development of Reliable Automotive

Services. LNCS, San Diego, CA, Springer (2006) 5

[10] Herrera, F., Villar, E.: A framework for embedded system specification under different models

of computation in SystemC. In: Design Automation Conference (DAC), San Francisco, ACM

(2006) 5

[11] Sander, I., Jantsch, A.: System modeling and transformational design refinement in ForSyDe.

IEEE Transactions on Computer-Aided Design of Circuits and Systems 23(1) (2004) 17–32 5

[12] Goessler, G., Sangiovanni-Vincentelli, A.: Compositional modeling in Metropolis. In: EM-

SOFT, Grenoble, France, Springer-Verlag (2002) 5

[13] Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,

Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proceedings of the IEEE 91(2)

(2003) 127–144 5

[14] Brooks, C., Lee, E.A., Liu, X., Neuendorffer, S., Zhao, Y., Zheng, H., Brooks, C., Lee, E.A.,

Liu, X., Zhao, Y., Zheng, H., Bhattacharyya, S.S., Brooks, C., Cheong, E., Goel, M., Kien-

huis, B., Lee, E.A., kit Leung, M., Liu, J., Liu, X., Muliadi, L., Neuendorffer, S., Reekie, J.,

66

Smyth, N., Tsay, J., Vogel, B., Williams, W., Xiong, Y., Zhao, Y., Zheng, H.: Heterogeneous

concurrent modeling and design in java (volumes 1-3. Technical report (2004) 5, 25

[15] CHESS: The public website of the ptolemy project. http://ptolemy.berkeley.edu

5

[16] : The ptolemy expression language. http://ptolemy.eecs.berkeley.edu/

˜ptII/ptolemyII/ptII1.0/ptII1.0/doc/expression.htm 8, 31

[17] Xiong, Y.: An Extensible Type System for Component-Based Design. Ph.d. thesis (May 1

2002) 8, 11, 43

[18] Lee, E.A., Messerschmitt, D.G.: Synchronous data flow: Describing signal processing algo-

rithm for parallel computation. In: COMPCON. (1987) 310–315 8

[19] The Ptolemy Project. http://ptolemy.eecs.berkeley.edu/ 8

[20] Lee, E.A., Sangiovanni-vincentelli, A.: A framework for comparing models of computation.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (1998) 8

[21] Pino, J.L., Lee, E.A., Bhattacharyya, S.S.: A hierarchical multiprocessor scheduling system

for dsp applications. Asilomar Conference on Signals, Systems and Computers 0 (1995) 122

9

[22] Girault, A., Lee, B., Lee, E.A.: Hierarchical finite state machines with multiple concurrency

models. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems 18

(1999) 742–760 9

http://ptolemy.berkeley.edu
http://ptolemy.eecs.berkeley.edu/~ptII/ptolemyII/ptII1.0/ptII1.0/doc/expression.htm
http://ptolemy.eecs.berkeley.edu/~ptII/ptolemyII/ptII1.0/ptII1.0/doc/expression.htm

67

[23] Buck, J.T.: Scheduling dynamic dataflow graphs with bounded memory using the token flow

model. PhD thesis (1993) Chair-Lee, Edward A. 9

[24] Zhou, G.: Dynamic dataflow modeling in ptolemy ii. Master’s thesis, UC Berkeley (2004) 9

[25] Boussinot, F., de Simone, R.: The ESTEREL language. Proceedings of the IEEE 79(9) (Sep

1991) 1293–1304 10

[26] Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous programming with events and

relations: the signal language and its semantics. Sci. Comput. Program. 16(2) (1991) 103–149

10

[27] Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow programming

language lustre. Proceedings of the IEEE 79(9) (Sep 1991) 1305–1320 10

[28] Zhou, Y., Lee, E.A.: Causality interfaces for actor networks. ACM Trans. Embed. Comput.

Syst. 7(3) (2008) 1–35 10

[29] Edwards, S.A.: The specification and execution of heterogeneous synchronous reactive sys-

tems. PhD thesis, Berkeley, CA, USA (1998) 10

[30] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview

of aspectj, Springer-Verlag (2001) 327–353 12

[31] Batory, D.: Feature-oriented programming and the ahead tool suite (2004) 12

[32] Zhou, G.: Partial evaluation for optimized compilation of actor-oriented models. PhD thesis,

EECS Department, University of California, Berkeley (May 2008) 17

68

[33] Musser, D.R., Stepanov, A.A.: Generic programming. In: ISAAC ’88: Proceedings of the

International Symposium ISSAC’88 on Symbolic and Algebraic Computation, London, UK,

Springer-Verlag (1989) 13–25 18

[34] Neuendorffer, S., Lee, E., Keutzer, K., Reader, S.: Automatic specialization of actor-oriented

models in ptolemy ii (2002) 28

[35] Goderis, A., Brooks, C., Altintas, I., Lee, E.A., Goble, C.: Heterogeneous composition of

models of computation. Technical Report UCB/EECS-2007-139, EECS Department, Univer-

sity of California, Berkeley (November 2007) 31, 42

[36] Cataldo, A.: The Power of Higher-Order Composition Languages in System Design. PhD

thesis, University of California, Berkeley (December 2006) 32

[37] Lee, E.A.: Threadedcomposite: A mechanism for building concurrent and parallel ptolemy ii

models. Technical Report UCB/EECS-2008-151, EECS Department, University of California,

Berkeley (Dec 2008) 33

[38] Kahn, G.: The semantics of a simple language for parallel programming. In Rosenfeld,

J.L., ed.: Information Processing, Stockholm, Sweden, North Holland Publishing Company

(August 1974) 471–475 35

[39] Parks, T.M.: Bounded scheduling of process networks. PhD thesis, Berkeley, CA, USA (1995)

35

[40] Leung, M.K., Lee, E.A.: An extensible software synthesis framework for heterogeneous actor

models. In: SLA++P 2008, Model-driven High-level Programming of Embedded Systems,

Artist (March 2008) See SLA++P 2008. 41

69

[41] Wikipedia: List of embedded operating systems. http://en.wikipedia.org/wiki/

List_of_operating_systems#Embedded 52

[42] The FreeRTOS.org Project: Openrtos. http://www.freertos.org 52

[43] Kinnersley, B.: The list of computer languages. http://people.ku.edu/

˜nkinners/LangList/Extras/langlist.htm 55

[44] Williamson, M.C.: Synthesis of parallel hardware implementations from synchronous

dataflow graph specifications. Technical Report UCB/ERL M98/45, University of California,

Berkeley (June 1998) 56

[45] Leung, M.K., Filiba, T.E., Nagpal, V.: Vhdl code generation in the ptolemy ii environment.

Technical Report UCB/EECS-2008-140, EECS Department, University of California, Berke-

ley (Oct 2008) 56

[46] W. M. Washington, J. W. Weatherly, G.A.M.A.J.S.J.T.W.B.A.P.C.W.G.S.J.J.A.V.B.W.R.J.,

Zhang, Y.: Parallel climate model (pcm) control and transient simulations. Climate Dynamics

(2000) 56

[47] Makino, J. Fukushige, T.K.M.N.K.: Grape-6: Massively-parallel special-purpose computer

for astrophysical particle simulations. PUBLICATIONS- ASTRONOMICAL SOCIETY OF

JAPAN (2003) 56

[48] Armstrong, J., Virding, R., Wikstrm, C., Williams, M.: Concurrent programming in erlang

(1993) 57

http://en.wikipedia.org/wiki/List_of_operating_systems#Embedded
http://en.wikipedia.org/wiki/List_of_operating_systems#Embedded
http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm
http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm

70

[49] Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory programming.

Computational Science & Engineering, IEEE 5(1) (1998) 46–55 57

[50] Leung, M.K., Liu, I., Zou, J.: Code generation for process network models onto parallel

architectures. Technical Report UCB/EECS-2008-139, EECS Department, University of Cal-

ifornia, Berkeley (Oct 2008) 59

[51] Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby, Zheng, H.:

Bandera: Extracting finite-state models from java source code. In: In Proceedings of the 22nd

International Conference on Software Engineering, ACM Press (2000) 439–448 60

[52] Ball, T., Rajamani, S.K.: The slam toolkit. In: CAV ’01: Proceedings of the 13th International

Conference on Computer Aided Verification, London, UK, Springer-Verlag (2001) 260–264

60

[53] Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. SIGPLAN Not. 37(1)

(2002) 58–70 60

	List of Figures
	List of Tables
	1 Introduction
	1.1 Actor-Oriented Modeling
	1.2 Models of Computation
	1.3 Model-Based Code Generation

	2 Problem Definition
	2.1 Overview
	2.2 A Basic Formulation using Graph
	2.3 Designing a Robust Framework
	2.3.1 Code Templates and Code Blocks
	2.3.2 Adapters

	3 Semantics-Preserving Code Generation
	3.1 Generating Code for Actors
	3.1.1 Actor Adapter Interface
	3.1.2 Parameters
	3.1.3 Naming
	3.1.4 Expression
	3.1.5 CompositeActor
	3.1.6 Higher-Order Actors

	3.2 Componentizing Models of Computation
	3.2.1 Director Adapter Interface
	3.2.2 KPN Code Generation
	3.2.3 Domain-Specific Actors
	3.2.4 Heterogeneous Modeling

	3.3 Supporting Multiple Data Types
	3.3.1 Data Type Library
	3.3.2 Polymorphic Functions
	3.3.3 The Coercion Problem

	4 Retargeting
	4.1 Targeting Other Platforms
	4.2 Hardware Simulation and Synthesis
	4.3 Parallel and Distributed Computing
	4.4 Model Checking

	5 Conclusion
	5.1 Summary
	5.2 Future Work

	Bibliography

