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Abstract

Distributed architectures are widely used in various application domains &weibip the
increasing system complexity. In this work, we focus on finding a mappaorg &n application
description to a distributed architecture platform, to optimize certain objectitiés satisfy-
ing design constraints. Specifically, the mapping problem includes allocativagjdnal tasks
to distributed processors and allocating messages to buses, schedlingnasnessages, as
well as deciding buffer sizes. This synthesis problem is still largely opeadays. In three
case studies, we developed a set of algorithms to address varioutssadpeapping, including
applying on different types of architecture platforms, exploring difiedeesign variables and
optimizing different optimization objectives.

The first two case studies focus on hard real-time distributed systems Hieat data from
a set of sensors, perform computations in a distributed fashion and bagke results, send
commands to a set of actuators. Hard real-time requires that the tasks tisfgtteard end-
to-end deadline constraints in the worst case. In the first project, @ligytm find a mapping
to minimize total response time while satisfying end-to-end latency constraintde¥igned
a reinforcement machine learning algorithm, in which the rewards are ¢sdlbased on the
worst-case system performance analysis to guarantee the satisfactiardakal-time con-
straints. The experimental results show the algorithm converges in eddedime for non-
trivial problems, and produces near optimal solution. In our seconégirave measure the
extensibility of the design solutions and then develop an efficient algorithnophianizes this
metric, other than just finding an satisfying mapping. Extensibility is definedeaartiount
by which the execution time of tasks can be increased without changing stemnsgonfigu-
ration while meeting the deadline constraints (as in [1]). With this definition, mylésat is
optimized for extensibility not only allows adding future functionality with minimumrudes,
but is more robust with respect to the variance of task execution times.rifvgeal results
showed that our algorithm can significantly increase the extensibility of gtesywhile meet-
ing the latency constraints.

Our third project solves the buffer sizing problem in the mapping for Patd#¢eroge-
neous Platforms (PHPs). In this problem, we focus on distributed systerre whocessing
units communicates through FIFOs between each pair of them. The workdsroad with
determining the buffer sizes between processing elements. We want to minimibeftar
sizes while avoiding artificial deadlock [2]. Prior work in this field mainly feea on the

buffer sizing problem in uni-processor platforms [3]. The previouskvibat deals with mul-



tiprocessor buffer minimization [4] does not consider interleaving commtioicavhere two
active tasks on different processors can communicate large amourdsaofising one-place

buffers. In this work, we develop algorithms to address this problem. r€kieal as well as
practical results are provided.
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1 Background of Hard Real-Time Distributed Systems

Hard real-time distributed systems are commonly used is, @rplanes, industrial plants, build-
ing, etc. In these systems, a set of control tasks are exkoutéistributed implementation plat-
forms consisting of multiple computation nodes (ECUSs) tlmhimunicate with standard buses so

that end-to-end latencies are within a given hard bound.

We consider systems basedran-time priority-based schedulirgf tasks and messages. In the
automotive domain, standards supporting this model ar©8IEK operating system [5] standard
and the CAN bus arbitration model [6]. The communication nhad&sidered in the projects,
consists of th@eriodic activationwith asynchronous communicatiomhere all tasks are activated
periodically and communicate by means of asynchronougfsiffased on non-blocking read/write
semantics. Similarly, message transmission is triggeeeidgically and each message contains the

latest values of the signals that are mapped into it [7, 8].

More specifically, the execution model considered in thiskne the following. Input data
(generated by a sensor, for instance) are available at otteeafystem’s computational nodes.
A periodically activated task on this node reads the inptd,daomputes intermediate results, and
writes them to the output buffer from where they can be reaahwogher task or used for assembling
the data content of a message. Messages - also periodictlgtad - transfer the data from the
output buffer on the current node over the bus to an inputebufh a remote node. Local clocks
on different nodes are not synchronized. Tasks may havapteufan-ins and messages can be

multi-cast. Eventually, task outputs are sent to the systeatput devices or actuators.

1.1 Mapping Problem

Our optimization problem is part of the mapping stage in ttef@m-Based Design (PBD) [9]
design flow, where the functionality of the design (what tlistem is supposed to do) and its
architecture (how the system does it) are captured separanel then “joined” together, i.e., the

functionality is “mapped” onto the architecture.

During mapping, design variables are explored to optimigeaive functions while satisfying
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design constraints. The sets of variables, objectives anstiaints vary for different systems. For
instance, task scheduling is commonly explored in mappimgest might significantly affect the
system performance. Tasks can be statically scheduledr@naigally decided during runtime,
and the choice of which lead to different sets of design Wem For objectives and constraints,
various systems have different focuses. In multimediaesyst metrics such as throughput, com-
munication bandwidth are usually the most important ondxlevin some hard real-time systems,
the end-to-end latencies are chosen as the direct optionzabjects. Besides the choice of vari-
ables, objects and constraints, there are also differedlietimy approaches. For example, task
execution times can be modeled as fixed numbers, or treatetdtéstical variables and modeled

by probability distributions.

In this work for hard real-time systems, the general mappirdplem is formulated based on
the specific characteristics of real-time systems. Fundtiocks communicate through signals,
which represent the data dependencies. The architectesatigtion is a topology of computa-
tional nodes connected by buses. Mapping deploys fundtimoeks to tasks and tasks to nodes.
Correspondingly, signals can be mapped into local commtiaicar packed into messages that
are exchanged over the buses. Tasks and messages are edhed@d on static priorities, which
are also explored during mapping. And a set of end-to-emth¢gtconstraints need to be satisfied
in the worst-case. Thiask allocation, signal to message packing, message dicand priority
assignmenare the design activities considered in this paper with theative of optimizing total

latency in the first project and task extensibility in thew®t project.

1.2 System Model

1.2.1 Problem Representation

The mapping problem is represented as a directed ggapH(Z,.5). T = {11, T2, ..., Tn} is the set

of tasks that perform the computatios= {s1,S, ..., Sm} IS the set of signals that are exchanged
between task pairssrcs and {dsk j} denote the source task and the set of destination tasks of
signals, respectively (communication is of multicast type). Thelagtion is mapped onto an

architecture that consists of a set of computational ndles{e, e, ...,ep} connected through a



set of CAN buses8 = {by, by, ...,bg}.

A taskT; is periodically activated with periot};, and executed with priority,,. Tasks are
scheduled with preemption according to their prioritiesd @ total order exists among the task
priorities on each nodec;, is the worst case computation time of andry, is its worst case
response time. Computational nodes can be heterogeneauss&s can have different execution
times on different nodes. We usg e to denote the execution time of taskon nodee. In the
following, thee subscript is dropped whenever the formula refers to tasks gimen node, and
is implicitly defined, or when the task allocation is (at letesnporarily) defined, and the node to

which the computation time (or its extensibilifyc) refers, is known.

For a signak;, the computational nodes to which the source &sk and the destination task
dst j are allocated are called source and destination nodegatesgy. If the source node is the
same as all the destination nodes, the signal is local. @ibeyit is global and must be packed
into a message transmitted on one of the buses between theesmde and all its destination
nodes. Only signals with the same period, same source natisaame communication bus can
be packed into the same message. For messadg denotes its periodyn, denotes its priority,
andcp, denotes its worst case transmission time on a bus with ueédsprhe worst transmission
time on busj is ¢y /s peed,, wherespeeg; is the transmission speed of. rm is the worst case

response time on a bus with unit speed.

A path p on the application graply is an ordered interleaving sequence of tasks and signals,
defined ap = [Tr;, S, Try, Srpy -5 Sry_p» Try ). SIC(P) = Ty, iS the path’s source arshk p) = 1y, is its
sink. Sources are activated by external events, while sinlgate actuators. Multiple paths may
exist between each source-sink pair. The worst case eadedatency incurred when traveling a
pathpis denoted ak,. The path deadline fap, denoted bydp, is an application requirement that

may be imposed on selected paths.



1.2.2 Performance Modeling

Utilization Since all the tasks are periodic, the worst case utilizatfdaCU e is evaluated by

Ue)= 5 = ®
icl(e) Ui

whereL (e) is the set of tasks allocated ¢p.

When the utilization is bigger than 1, the ECU is overloadedn&aof the tasks in the ECU
will have longer and longer response time as they keep rgnind finally some response times

will tend toward infinity.

Moreover, in 1973 Liu and Layland [10] proved that for a sehqferiodic tasks with unique
periods, a feasible schedule that will always meet deaslixests if the CPU utilization is
A Ci n
U=3 &< n(v2-1)
= Y
whenn=2,U <0.8284; when the number of processes tends toward infinitgxtpeession tends
towardU < 0.693147.

To make the response time finite, we must make the load of &@Ly smaller than 1, more-

over, smaller than 69% if possible to make sure the system is schedulable.

End-to-End Latency Analysis After tasks are allocated, some signals are local, and titagis-
mission time is assumed to be zero. Others are global, arditodge transferred on the buses
through messages. The time needed to transfer a global 8grgual to the transmission time of
the corresponding message. kgtdenote the worst case response time of a global sgnahd

assume its corresponding messag®jisthenrg = rpy, .

The worst case end-to-end latency can be computed for edlshpadding the worst case
response times of all the tasks and global signals on the patkvell as the periods of all the

global signals and their destination tasks.



lp=> i+ ) (rs+ts+tasy) (2)
Tep SEPASEGS

whereGSis the set of all global signals.

We need to include periods of global signals and their dastin tasks because of the asyn-
chronous sampling of communication data. In the worst dasgnput global signal arrives imme-
diately after the completion of the first instance of taskl he event data will be read by the task on
its next instance and the result will be produced after itesivcase response time, thattiss-ry,
time units after the arrival of the input signal. The sameosing applies to the execution of all
tasks that are the destinations of global signals, andegpfaiglobal signals themselves. However,
for local signals, the destination task can be activated avjthase equal to the worst-case response
time of the source task, under the condition that their gisrexe harmonic, which is almost always
true in practical designs. In this case, we only need to agldetponse time of the destination task.
Similarly, it is sometimes possible to synchronise the qugof a message for transmission with
the execution of the source tasks of the signals presentainntiessage. This would reduce the
worst case sampling period for the message transmissiodeardase the latency in Equation (2).

In this work, we do not consider these possible optimizatiamd leave them to future extensions.

Response Time Analysis Computing end-to-end latencies requires the computatidaséfand
message response times (signal response times are equatégponse times of the corresponding
messages). The analysis in this section summarizes wark|ftt, 12].

Task Response Times In a system with preemption and priority-based schedutimgyorst
case response tinre, for a taskt; depends on its computation tineg, as well as on the inter-
ference from higher priority tasks on the same nodg.can be calculated using the following
recurrence:

I
et 3| ©
tjehp(m) ! i
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Wherehp(t;) refers to the set of higher priority tasks on the same node.

Message Response TimesWorst case message response times are calculated sintdarly
task response times. The main difference is that messagantissions on the CAN bus are not
preemptable. Therefore, a messagemay have to wait for a blocking timBnay Which is the
longest transmission time of any frame in the system. Likewihe message itself is not subject
to preemption from higher priority messages during its ommgmission time&y,. The response

time can therefore be calculated with the following recncesrelation:

I'm —C
'm = Cm + Bmax+ u-‘ Cm; (4)

my hp(m) [ tm,

For more details about performance modeling, please refér, 8].



2 Allocation and Scheduling for Hard Real-Time Distributed

Systems

2.1 Overview

In this project, we developed an algorithm based on macleiaening to find an optimal mapping
for hard real-time distributed systems described in Sedtiorl his synthesis problem is still largely
open. In prior work, genetic algorithms [13] and simulatedealing [14] were used to solve this

problem, but the performance needs to be improved.

Our goal is to find a mapping to minimize the total response tamd satisfy end-to-end latency
constraints. The problem is proved to be NP-hard. We deedlafQ-learning based reinforcement
machine learning algorithm, in which the rewards are evalldased on the worst-case system
performance analysis. The experimental results show tegithim converges in reasonable time

for non-trivial problems, while giving near optimal solortis.

2.2 Assumptions and Problem Formulation

In this project, we only consider hard real-time distrilslsystems with a single CAN bus, and
we assume that each signal with its source node and destinaide located in different ECUs is
packed into an individual message. The design problem caletiged as follows. Given a set of

design constraints including:

¢ end-to-end deadlines on selected paths

e utilization bounds on nodes and buses
explore the design space that includes:

¢ allocation of tasks to computational nodes

e assignment of priorities to tasks and messages

7



to minimize total worse case response time of tasks and essa

The problem is proved to be NP-hard in [15]. It can be formadads a Mixed Integer Linear

Programming (MILP) problem, but is hard to solve as the sizgrablem is huge in practical.

2.3 System Performance Estimation

The system performance model is analyzed as in Section %.s€tion describes two techniques

we used in the performance estimation.

First, we use Newton’s Method (described in Algorithm 1) adve the implicit Equations (3)
and (4) for response times. The Equation (3) is rewritten as

X
F(X)=cy + t—}cﬁ.—x=0

Tjehp(T)) ’VTJ

We do the same thing for computing message response timd=gyithtion (4).

Algorithm 1 NEWTON'S METHOD (TO SOLVEF (x) = 0)
1: x = initial guess
2: step=0
3: while step< MAX ITERATION NUMBER do
EvaluatedF = dF(x) andF = F(x) with current value ok
if |F| < ERROR THRESHOLD anét\x| < ERROR THRESHOLDhen
Newton’s method converges, break
else
SolvedF x Ax = —F for Ax
Updatex = x+ Ax
10: step=step+1

© N g

Since there are ceiling functions in the functie(x), its derivative is not continuous. Rather
than using the derivative d¥(x), we evaluatalF by the derivative of functior’(x), which re-
moves the ceiling functions iR (x). Letd denote the derivativelF'(X) = Y ;chpr)) fl —1l.disa
g

constant and > —1 whenhp(tj) # ®. (Note thatr{, = x = ¢c;whenhp(t;) = ®.)

Ct

The derivatived > 0 wheng ¢ chp) - = 1, which implies the ECU is already fully loaded by
g
the tasks with higher priority tham. In this case, we set the response time of tgd& be infinity



to indicate that it cannot be added to this ECU.

The other case is thatl < d < 0, which meang ¢ chp,) tcri]' < 1. Convergence of Newton'’s
method is not guaranteed in general unless we start closgbrto the solution and the derivative
is continuous. In addition, global convergence can be @dirhthe function is monotonic. In our
caseF (x) andF’(x) are both monotonic. Also we notice tHatx) > F’(x) is always true for any
x, and the equality is achieved if and onlyxft;; is an integer for any; € hp(t;). Besides, as
shown in the Figure 1, if we start at poirt= 0, after the first iteration we get to= x;, which
is much closer to the exact solutiah. However, since the derivative &f(x) is not continuous,
we still cannot guarantee the convergence of the Newtonthddk But we adjust the Newton’s
method according to the special properties of the fund&ix) to speed up its converging. We use
X = X+ 0Ax instead ofk = x+ Ax to reduce oscillation when updatimgwherea = min{1,y/|Ax|}.

y is reduced every timé&x changes its direction. After all, if we still cannot get a zerged
solution, we set the solution to be the smalbeshat we obtained during the iterations such that
F(x) < 0. As thisx is always larger thar*, we get a conservative estimation of the response time

and therefore guarantee that our algorithm will not viotatehard real-time constraints.

& F(x) = Fi(x9) = Gy
F(x)

F(x) >= F'(x) =0
F(X)=0

Figure 1: The Functions F(x) and F’'(x) for Response Time Calowh

The worst case end-to-end latency for a computation spgranpath is evaluated by the sum

of the worst case response time of all the tasks and messagles path. Since it is the worst case

9



value, we can guarantee that the end-to-end latencies sisedigfy the constraints in any case.

Second, we use priority groups instead of exact priorittesetiuce the search space. As we
discussed in Section 1, different tasks in an ECU should hdfereht priorities. To reduce the
search space, we provide each ECU with a limited number ofigrigroups (5 to 10 groups in
usual cases). We assign a task of a priority group but not act @xiority. So there might be more
than one task with the same priority group in an ECU. To evaltla worst case response time of
a task in this case, we use the Equation (3), wihggi) is the set of tasks ig, with higher or the
same priority groups as .

Similarly, messages in different ECUs should have diffepeitrities so that the CAN bus can
make deterministic resolution of the contention. In oualfym, we assign messages in the same
ECU with the same priority, and messages from different ECUls different priorities. Since at
any time there is only one messages from an ECU transmittéetGAN bus, we can still use the

Equation (4) to evaluate the worst case response time of sages

2.4 Solving the Mapping Problem with Reinforcement Learning

As stated above, the optimal mapping problem is an NP-haklgm. Many of such problems
are difficult not because we do not have fast computer witughanemory, but because it is too
hard for the scheduler (either static or dynamic schedoalehbose the best task to run. Rein-
forcement learning (RL) is a modern machine learning teawyothat is more general than both
supervised and unsupervised learning [5]. In reinforcertearning, we don’t need to know the
correct answer like those in supervised learning and tharigtign can be used online to adapt to
runtime dynamic system. Some optimization and controlr@pres, such as control theory and
dynamic programming, always assume a static system modieleTore, they are limited by the
size and complexity defined before the problem is actuallyesb In RL, the computer is simply
given a goal to achieve. Then the computer learns how to &elie goal by trial-and-error with
its environment.

To solve the problem, we choose an interactive setting aply apinforcement learning to find

an optimal solution. Under this framework, the environmera setting where the task allocation

10



scheduler learns by trial-and-error iterations. This emvinent is observed by our RL task sched-
uler (agent). The observations come in form of sensors teottask allocation attempts, such as
average task response time, communication latencies an®etr scheduler, choose its actions,
i.e. allocate tasks to dedicate ECUs with some priority, dasesome environment “states”. As
we formulate the problem above, the goal of the scheduler &chieve lowest overall response
time of tasks and messages in addition to satisfying comeation latencies requirement. After
every task is allocated, the scheduler will receive somafeetement (reward) in the form of a
scalar value. The scheduler will learn a sequence of basnadb achieve the maximum reward.

In our problem, the time complexity of calculating the peecmodel of environment (i.e. the
performance of the distributed system) is very high. As dailsulation happens in every trail of
Reinforcement Learning, we use an abstract enviorment niodedluce the runtime. Therefore Q-
learning [16] is chosen to be used in our work as it is a form ahfeecement Learning algorithm
that does not need a strong environment model and can be ndexkoln the following sections,
we will describe the Q-learning algorithm used in our workneedl as the design of environment

and reward respectively.

24.1 Q-Learning

Let the environment state at timde s, and assume that the learning system then chooses action
&. The immediate result of this action is a rewdtd After this action, the system will undergo
a transition to the next stat,;. The objective is to choose a poliay(sequence of actions)
maximizing discounted cumulative rewards over time. To lmearspecific, the total discounted

return starting from time t is given by the following formula

F(t) =re+ Y+ Yre2 +yYres+ - +y e+ (5)

The discount factoy is a number betweel..1]. It is used to weight near term reinforcement
more heavily than distant future reinforcement. The clagerto 1 the greater the weight of future
reinforcements.

11



Q-learning is a simple incremental algorithm developediftbe theory of dynamic program-
ming for delayed reinforcement learning. In Q-learning, define a state-action value function
Q"(s,a), which is expected to return when startingsjperforminga, and followingrt. Q'(s,a) is

updated by the following rule during the learning process.

Qs &) = (1-0)Q(st,a) +a[R(s, &) + Yma,, , Q(St+1,8+1)] (6)

wherea is a learning rate parameter, it should be close to 1 at thialistage of learning and
gradually approaches to O for converging to an optimal stalige function. In each iteratianwe
choose to make either a random action or the action from apaolicy 11(s) = argmaxQ(s, a)
with a probability ofe. This is callece-greedy policy. At firstg is close to 0 for random exploring
all possible states. Slowlg,is increased to 1, hence it focuses mainly on optimal actilbisalso

showed in [17] that the above Q state-value function updatays converges.

2.4.2 Environment Design

To set up our Q-learning scheduler, we need an environmenhich we evaluate trial actions.
Therefore, we create a system simulator that emulates taskng and provides performance
measurements through an analytical model as describecttio8é.

State and Action Space Design We divide the states space in terms of number of tasks to be
allocated. The initial state has all tasks un-allocatece gbal state has zero unassigned tasks. If
one task is assigned to an ECU with a priority, then the systass tp a new state. Therefore, the
number of states is exactly equals to the number of taskstodexlassigned, which 8(m) andm

is the number tasks. Without losing the generality, the daleealways makes scheduling in order
from the first task to the last.

In each state, the scheduler can assign the current tasi ECGlo with a priority. So the action
space is the cross product of number of ECUs and number ofipp@s$ask priority groups. This is
bounded byO(nx p), wheren is the number of ECUs in the system gmds the number of priority

groups. Thus, th@ state-value function is bounded B(mx*n=x p). For most casesnandn are
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usually less than 100 arglis less than 10. If state-value is stored as double precikiating point
that is 8-byte, the total required storage @rs less than 1 Mega bytes. This can completely fit in
the main memory of modern computer, even in the Level-2 dath€aSo, th&-matrix update

can be very efficient.

Reward Design Reward design is a very important part in our project. We sperst of our time
designing reward that helps algorithm to converge fastdra@mcentrate on interesting “good”

choice. To be more specific, we have the following reward.

Case 1:R(s,a) = —C, whereC = [y 7 T(Ti) + Y5 ,esT (s.j))]7L, if any of the end-to-end
latency constraints is violated, or the utilization of ECl@itthe task is allocated onto in the action

a exceeds a threshold (which we set as 0.7 in the algorithm).

Case 2:R(s,a) = 0, when its next state is not the goal state. In addition,halénd-to-end

latency constraints are satisfied, and utilization of ed&} is below the threshold.

Case 3:R(s,a) = [Yyerr(Ti) + zs’jesr(mJ)]_l, i.e. the inverse of total response time, if
its next state is the goal state. Besides, all the end-to-&etdy constraints are satisfied, and

utilization of every ECU is below the threshold.

Intuitively, in each state, if current assignment alreanbfates the given constraints, we think
this action is a “bad” move, therefore assigning a negagwveard. On the other hand, only when
we reach the goal state, can it have a positive reward whiglrés as the inverse of total response

time.

Algorithm Description  We start from the initial states and explore possible astinrthe action
space. When we reach the goal state, we call this procespiaode For all our experiments,
we choose a constant of 0.8 as the discounted reward ratepsHuglo code of the Q-learning

algorithm is shown in Algorithm 2.
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Algorithm 2 Q-LEARNING BASED SYNTHEIS ALGORITHM
1: Setinitial parameteg =0y=0.8,a =1
2: Initialize matrixQ = @
3: for each episoddo
4:  while not reach goal state (all tasks are assigmied)
5: Assign current task: select one ECU and a task priority usiggeedy policy
6:
7

Using the current assignment, consider to go to the next state
Get maximumQ value of the next state based on all possible allocations (actions) anddQewa
from simulator
Compute and updat@ value for current state
9: Set next state to be current state
10:  Increase and decrease
11:  if a =0ands = 1then

©

12: Return result
13: if result converge or reach maximum episdiaen
14: Return result

2.5 Experiment Results and Conclusions

The simulator environment and the learning algorithm akevatten in C++ for maximum per-
formance. We conduct a set of experiments varying diffenemmber of ECUs, tasks and priority
groups. Case 1 has only 16 states. Case 2 has a moderate statendpke Case 3 is a fairly large

example. The experiment settings and converged resultteazibed in Table 1.

Test #tasks | #signals | # priority | # ECUs| # states in search-# episodes before
groups ing space convergence

Casel | 4 4 1 2 16 3,005,800

Case2 | 7 7 5 3 1.71e8 13,177,700

Case3 | 20 20 5 4 1.05e26 54,503,600

Table 1: Experiment Description

To demonstrate the effectiveness of our algorithm, we firetssthe change of standard devi-
ation with learning episode as in Figures 2 and 3. We divigegpisode data points for Case 1
into 200 bins and those for Case 2 into 70 bins. This is becdugsalgorithm converges in dif-
ferent numbers of episode in both cases. We choose differersizes so that each bin contains
similar number of data points in either case. In both casesstandard deviation decreases as the

algorithm approaches to the end. That means our algoritarts$ocusing on the optimal solution.

We also plot the histogram of optimal solutions for the fir8060 episodes and last 50000

episodes in both cases, shown in Figure 4. On the histogranuse 6 bins with equal size. Bin
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Figure 2. Changes in Standard Deviation of Optimal Assigrisyar Case 1

1 contains the optimal solution as it represents the bin mitimum total response time. Case 1
has limited solution space, but the algorithm tends to $eagually across all possible solutions
at the beginning. (Note: there is no possible solution foreCagalling in Bin 4 to 5.) When the

algorithm is about to terminate because of convergenceits# @mphasis on the optimal solution

(more points in Bin 1).

Similarly, the distribution for Case 2 is given in Figure 5. €&shas more states and is more
representative than Case 1. Initially, the algorithm tewdserform random actions, so the graph
looks like a Gaussian distribution. When the algorithm istwatio finished, most of the efforts are

spent near the optimal solution.

When we test the algorithm on the more complex Case 3, which 0&spdssible search
states, the algorithm also converged within reasonablebeuif episodes (54 million compared
to 13 million in Case 2). Unlike the situation in Figures 2 andh& standard deviation increases
gradually. But, at the end of the learning period, the stathdawiation starts to drop significantly.
The reason is that the algorithm tries to explore more ancerhetter actions with time. At last,
the algorithm terminated because it satisfied our convergeandition (limited changes in 5000
consecutive valid solutions). Figure 6 shows the distrdmubf “optimal” solution at the first 50000

episodes and last 50000 episodes. Similarly as Case 1 andh2 amd the system is trained to
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Figure 3: Changes in Standard Deviation of Optimal Assigrimf Case 2

search “better” solutions. However, we should mention thate is a possibility for the algorithm
to trap to local optimum for its huge state space. On the aoptthe algorithm tends to learn how

to achieve the best solution with time. Longer learning timiéhelp it get better result.
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3 Extensibility Optimization for Hard Real-Time Distributed

Systems

3.1 Overview

Optimizing extensibility is important for embedded systdasign for several reasons. Firstly, in
industrial settings it is often prohibitive to design a gystwithout consideration of already exist-
ing systems. Moreover, as time progresses new functignalintroduced that requires existing
functionality, and its allocation and architecture to ré@ma tact. Hence, providing a design that
has as much room for such future functionality is desire@¢o8dly, current automated designs of-
ten focus on providing aominalmapping. Of equal importance is the sensitivity of the sohd.

By explicitly taking this into account through an extenstlilmeasure, designs can be evaluated
and optimized with respect to the sensitivity rather tharominal point solution. In this work,
the measure for the constraint is assumed to be given in d-a@ss form, such that it can also be

guaranteed that the mappings are feasible and will nott@@ay of the requirements.

Extensibility is defined as the amount by which the executiore of tasks can be increased
without changing the system configuration while meetingdidadline constraints (as in [1]). With
this definition, a design that is optimized for extensililitot only allows adding future function-
ality with minimum changes, but is more robust with respecthe variance of task execution

times.

Analyzing and optimizing system extensibility have beedradsed in the literature by several
groups. Sensitivity analysis has been studied for pridréged scheduled distributed systems [18],
with respect to end-to-end deadlines. Also, the evaluaifaxtensibility with respect to changes
in the task execution times, when the system is charactebyeend-to-end deadlines, is studied
in [19]. These papers do not explicitly address system ap#tion. Task allocation, the definition

of priorities, and the message configuration, are assumgers.

For distributed systems with end-to-end deadlines, thenogdtion problem was partially ad-
dressed in [18], where the authors propose the use of geadgbdthms for optimizing priority

and period assignments with respect to a number of constrantiuding end-to-end deadlines
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and jitter. In [7], an algorithm based on geometric prograngmvas proposed for optimizing task
and message periods in distributed systems, later extendi@ll to optimize jointly task and mes-
sage allocations, as well as priority assignments. In [20¢sign optimization heuristics-based
algorithm for mixed time-triggered and event-triggeredtsyns is proposed. The algorithm, how-
ever, assumes that nodes are synchronized. In [21], a S#ddbapproach for task and message
placement was proposed. The method provided optimal sokutio the placement and priority

assignment. However, it did not consider signal packing.

The most relevant references to our approach are [22] ai&B[24]. In the first work, task al-
location and priority assignment are defined with the pugpifsoptimizing the extensibility with
respect to changes in the task computation times. The pedpsedution is based on simulated
annealing and the maximum amount of change that can be tedera the task execution times
without missing end-to-end deadlines is computed by sgallhtask times by a constant factor.
Also, a model of event-based activation for task and messagessumed. In [1, 23, 24], a gener-
alized definition of extensibility on multiple dimensionsdluding changes in the execution times
of tasks, as in our research, but also period speedups astlyosther metrics) is presented.
Also, a randomized optimization procedure based on a gealgtorithm is proposed to solve the
optimization problem. These papers focus on the multifpatar pareto optimization, and how to
discriminate the set of optimal solutions. The main limdatof the proposed approach is however
the complexity and the expected running time of the gendgiarahm proposed for the optimiza-
tion. In addition, randomized optimization algorithms diéicult to control and give no guarantee

on the quality of the obtained solution.

In contrast to them, our approach does not use randomiz&uiaation, and works on much
larger sized problems. Our algorithm consists of a firstesthgsed on MILP programming, where
task placement (the most important variable with respeektensibility) is optimized within the
deadline and utilization constraints, and two heuristgoathms, which then iteratively try to
optimize signal-to-message packing and priority assigrimespectively. Our algorithm runs
much faster than randomized optimization approaches (a&flxction with respect to simulated
annealing in our case studies). As such, it is proven to béicaybe to large-scale industrial
systems as the case studies shown in the experimentalrsegticch are of size comparable with
the typical case of deployment of a set of additional funwldy in a car. The shorter running

time allows the use of the method not only for the optimizatid a given system configuration,
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but also forarchitecture explorationwhere the number of system configurations to be evaluated

and subject to optimization can be very large.

3.2 Problem Representation

The representation of the system is explained in Section éxt,Nve will describe our specific
approach for this project.

3.2.1 Design Space and Extensibility Metric

The design problem can be defined as follows. Given a set gjrdesnstraints including:
e end-to-end deadlines on selected paths
e utilization bounds on nodes and buses
e maximum message sizes
explore the design space that includes:
¢ allocation of tasks to computational nodes
e packing of signals and allocation of messages to buses
e assignment of priorities to tasks and messages
to maximizetask extensibility

Task extensibility is defined as the weighted sum of eachig&secution time slack over its

period:

max S= % W, —— (7)
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where a task’s execution time slafik;, is defined as the maximum possible increase of its execu-
tion time c;; without violating the design constraints, assuming thecetien time of other tasks
are not changedw;, is a preassigned weight that indicates how likely the task&cution time

will be increased in future functionality extensions.

3.2.2 Formulation

Based on the Formulas (2), (3) and (4) for computing end-tblaiencies and response times, we
construct a mathematical formulation that contains alkkbgign variables. Part of the formulation
is similar to the one in [8]: both explore the same set of des&yiables - task allocation, signal
packing and message allocation, as well as task and messagggs. In [8], the problem was
formulated as mixed integer linear programming (MILP). @duce the complexity, the problem

was divided into sub-problems and solved by a two-step ambro

However, in [8], the objective is to minimize end-to-encklaties, while in this work, we op-
timize task extensibility. The formulation of task extdrbiy with respect to end-to-end deadline
constraints is a quite challenging task. In general, imvgrthe function that computes response
times as a function of the task execution times is of expaakcdmplexity in the simple case of
single-CPU scheduling [25]. When dealing with end-to-endsti@mnts, the problem is definitely
more complex. A possible approach consists of a very sinfpiegossibly time-expensive) bisec-
tion algorithm that finds the sensitivity of end-to-end m@sge times with respect to increases in

task execution times (this is the solution used for perfagrgensitivity analysis in [18]).

Formally, if Arij denotes the increase of tasks response time;; when taskij's computation
time ¢, is increased byAc;, the end-to-end latency constraints and utilization cairsis are

expressed as follows:

Arij <dp—lp  Vp,vVTieT (8)
tjepAtie(p(t)ufti})
. Cr,
Acy T<ue  VeviieT(e) ()
i T b

wherelp(T;) refers to the set of tasks with priority lower thag and executed on the same node
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asTt;, 7 (e) denotes the set of the tasks on computational reg@ddu. denotes the maximum

utilization allowed ore.

The relation betweearj; andAcy; can be derived from Equation (3), as follows.

AT re,
- g ] [
wehp(t)) Tk Tk
AT
[%1 Ac, VT € lp(t) (10)
Tj
Iy +Arij Iy
o =y ([#W ~ ’th-‘)crk—i—ACTi (11)
wehp(ti) Tk Tk

For brevity, above formulas do not model task allocation pmalrity assignment as variables.

In the complete formulation, they were expanded to inclinbsé variables.

Contrary to the problem in [8], in our case the formulationasinear. It could be solved by
non-linear solvers but the complexity is in general too Hghndustrial size applications. There-
fore, we propose an algorithm that defines two steps: one ichwhathematical programming is

used, and a later refinement step, based on heuristics.

3.3 Optimization Algorithm

The flow of our algorithm is shown in Figure 8. First, we dedide allocation of tasks, since the
choices of other design variables are restricted by tasication. In the initial allocation stage,
the problem is formulated as MILP and solved by an MILP solirethe following signal packing
and message-to-bus allocation stage, a heuristic is usedllyt-in the task and message priority
assignment stage, an iterative method is defined to assgypribrities of tasks and messages.
After all the above stages are completed, if the design caing$ cannot be satisfied or if we want
to further improve extensibility, the tasks can be re-ated and the process repeated. Because of
the complexity of the MILP formulation, we designed a heligifor task re-allocation, based on

the extensibility and end-to-end latency values obtaindtie previous steps.
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Figure 8: Algorithm Flow for Task Extensibility Optimizain

3.3.1 Initial Task Allocation

In the initial task allocation stage, tasks are mapped oattes while meeting the utilization and
end-to-end latency constraints. Utilization constraares considered in place of the true extensi-
bility metric to allow a linear formulation. In this stagegvalso allocate signals to messages and
buses assuming each message contains one signal only. iffdlgasks and message priority as-
signment is assumed as given. In case the procedure is usptirtoze an existing configuration,
priorities are already defined. In case of new designs, aitgtde policy, such as Rate Monotonic,

can be used.

The MILP problem formulation includes the following varlab and constraints:
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Allocation constraints

z a:[i,e - 1 (12)
ecE(T)
as b =05 (13)
beB(s)
1- Z hsrce1 ,ask j.e <0s (14)
] e€E
0<gs<1 (15)
ari7e+ ar,-7e— 1 S hTi,Tj,e (16)
hTi,Tj,e S aTi,e (17)
hri,rj,e < agje (18)
asb+asb—1<hgsb (19)
ha,sj,b <asp (20)
hS,Sj,b < a-Sj,b (21)

whereE(T;) is the set of computational nodes that taskan be allocated to, ar8(s) is the
set of buses on which signalcan be transferred. The boolean variadg|e indicates whether task
Tj is mapped onto computational nodeand the boolean variabtg, , represents whether signal
s is mapped onto bul. The value of the boolean variablg is 1 if 5 is a global signal, and 0

otherwise hy, 1, ¢ defines whether; andt; are on the same node

In detail, constraint (12) ensures that each task is magpedea node and only one. Similarly,
condition (13) enforces the mapping of global signals insngle bus. The definition of global
signal is expressed by constraint (14) and (15). A signalaba if and only if its source task
srcs and at least one of its destination taslst; ; are mapped into different nodes, then all of the
correspondindsic st ;e Should be equal to 0. The following set of constraints (167) ( (18)
ensures the consistency of the definitions of tlhend a variables. Constraints (19), (20) , (21)

enforce similar conditions on the set of signals.

Utilization constraints  The following constraints enforce the utilization boundsatl nodes and

buses considering the load of the current tasks (summatidheoleft-hand side of Equation (22)
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and the additional load caused by extensions of the exectities ¢, e, on the left-hand side of
the equation)ue anduy, are the utilization bounds on computational ne@dad bud, respectively.
Of course, the additional load caused by the exten&mpmust be considered only if the task is
allocated to the node for which the bound is computed. Thigpsesented by using an additional
variablez;, e, and the typical “big M” formulation in use in MILP programng for conditional

constraints, where M is a large constant.

In our formulation, tasks can have different execution 8rdepending on their allocation, and
Cy, e denotes the worst-case execution time of tasén nodee. Also, buses can have different
speeds.cs denotes the transmission time of the message that cargiesl si on a bus with unit
speed. At this stage, we assume each message will only ocamtaisignal. The transmission time

of that message on a bus with spesguted is cs /speed.

Zy et Z arj,e*crj,e/trj < Ue (22)
15T
ACTi /tTi — M * (1— a:[i’e) S Z‘[he (23)
Z, e < Oy, /by, (24)
ZTi,e S M x aTi7e (25)
> 85,b%Cs/ts/Speed < up (26)
SES
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End-to-end latency constraints

|p < dp (27)
i+ D (s +1ts#0s +lasy *9s) =Ip (28)
Tep SEp
z ar exCret Z Z Crje* Pt *Yue=Ty (29)
ecE TjeTect
XTi,Tj _M*(l_hTi7Tj7e> SyTi,Tj,e (30)
yri,rj,e S XTi,Tj (31)
Yutj.e <M x hri,rj,e (32)
O§XTi7TJ. —I’Ti/trj <1 (33)
Y (Cs +Bmax) # a5 b/Speed
beB
+ Z Z CS]'JO* pS,SJ *yS,Shb =TIg (34)
sj€SbheB
Xs,sj — M (1—hg ,Sj,b) < VYs.s.b (35)
yS,Sj,b < XS,S] (36)
Ys.si.b < M x hs,sj,b (37)
0<Xgs —(rs — z Cs * 85 b/Speed)/ts, <1 (38)
beB

Latency constraints are derived from Equations (2), (3)(@hd+, is the response time of task
Tj, andrg is the response time of the message that carries sigra/ ;; is a parameter that denotes
whether task j has higher priority than task. We use a large constali to linearize the relation
Yu.1j.e = Xq 1; % hy 15,60 Similarly as in utilization constraints. Herg ; represents the number of

interference front; to Ti. ps s; andys s, b are similar parameters and variables for messages.

Objective function

max ) Wy« Acy /ty (39)
el

We recall here the objective function in (7), which reprdésehe task extensibility. An alter-
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native objective function can also include the optimizatas latency, as shown in (40K is the
parameter used to explore the trade-off between task eliygsand latencies. The special case

K = 0 is the original objective function (39).

max ) Wy xACy /ty —Kx S lp/dp (40)
el peP

In Section 3.4, we will report the experimental results wiltious values oK, to show the

relationship between task extensibility and path latesicie

3.3.2 Signal Packing and Message Allocation

After the allocation of tasks is chosen, we use a simple biecitio determine signal packing and

message allocation. The steps are shown below.

1. Group the signals with the same source node and perioccksgaandidates.

2. Within each group, order the signals based on their piestithen pack them according to
the message size constraints (priorities are assumed fygor@ran existing configuration or
some suitable policy, as in the initial task allocation) eTgriority of a message is set to the

highest priority of the signals that are mapped into it.

3. Assign a weightv,, to each messagg based on its priority, transmission time and period.
In our algorithm, we sewn, = ki/pm + K2 * Cm /tm, Wherepm, ¢ andty, are priority,
transmission time on bus with unit speed and period of thesagesk; andk, are constants.
When multiple buses are available between the source anthalést nodes, we allocate
messages to buses according to their weights. Messagesavgtr weights are assigned

first to faster buses.

Other more sophisticated heuristics or mathematical progring solutions have been consid-

ered. For instance, signal packing can be formulated as MH#.iR [8]. However, from preliminary
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experiments, there is no significant improvement that caweigh the speed of this simple strat-
egy.

3.3.3 Priority Assignment

In this stage, we assign priorities to tasks and messages) the task allocation, signal packing

and message allocation obtained from previous stages.

This priority assignment problem is proven to be NP-congpl€&inding an optimal solution is
generally not feasible for industrial-sized problems. rEffigre, we propose an iterative heuristic to

solve the problem.

The flow of this heuristic is shown in Figure 9. The basic ide@idefine the local deadlines of
tasks and messages over iteration steps, then assigripsidrased on the deadlines. Intuitively,

shorter deadlines require higher priorities and longealldeadlines can afford lower priorities.

[ Initialize Local Deadlines ]

Assign Priorities
(deadline-monotonic) Update Local Deadlines

Calculate criticality of
every task and message

J

[ Update Local Deadlines

~\

Update local deadline of every task

and message based on its criticality
J

No

Reach Stop Condition?

Yes

[ Finish Priority Assignment ]

Figure 9: Iterative Priority Assignment Algorithm

Initially, the deadlines of tasks and messages are the sarttem periods. Then, deadlines
are modified, and priorities are assigned using the deadiimeotonic (DM) approach [26]. Of

course, there is no guarantee that the DM policy is optimdhis case as for any system with
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non-preemptable resources (the CAN bus), but there is nanaptiounterpart that can be used

here, and DM it is a sensible choice in the context of our Istigs.

During the iterations, deadlines are changed based onmtalskassageriticality, as shown in
Algorithm 3 and explained below.

Algorithm 3 UPDATE LOCAL DEADLINE (K1)
1: Initialize the criticalitye of every task and message to 0
2: for all taskt; do
3: UB(Acy) =t * (Ue — Jrjer(e) Cr; /)

4: ¢y =Cy +UB(Acy)

5. forall taskt; € (Ip(ti) U {Ti}) do

6: updater;

7.  for all pathp whose latency is changeib

8: if I > dp then

9: for all tasks and messagegon p do
10: €o; = €o; +Wy; * (Ip—dp) /1o,

11: for all taskt; do

12: &} =g /max,cr{er }
131 dy =dg * (1—Kyxel)
14: for all messagen do

150 g, = &m /M car{eEm}
16:  Omy = Om * (1— Ky xg),)

The criticality of a task or message, reflects how much thparse times along the paths
to which it belongs are affected by extensions in the exenuimes of other tasks. Tasks and
messages with higher criticality are assigned higher piesr To define the criticalitg of a task
or a message, we increase the execution time of eachitaskU B(Acy, ), the maximum amount
allowed by utilization constraints.

CT]-

UB(Acy;) =ty * (Ue — ) (41)

1,€T(e) ty
Then the response time gfand of lower priority tasks on the same nodajas recomputed. The
criticality of the affected taskj or message; (denoted as objedy) is defined by adding up a term
Wy, * (Ip —dp) /to; for each pathp whose end-to-end latency exceeds the deadline after tresise
UB(Acy, ), wherew, is the weight of task;. After repeating this operation for every task, the
criticality of all tasks and messages is computed, denoted, b Criticality values are normalized,
obtaining a valueN for each task and message and, finally, local deadlines anputed asl =

d* (1—Kq+€N). The procedure is shown in Algorithm 3. The paraméteis initially set to 1,
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then adjusted in the later iteration steps using a comptaiesfy that takes into account the number
of iteration steps, the number of times the current bestisolis found, and the number of times

the priority assignment remains unchanged.

After local deadlines are updated, the stop condition ickéeé. If the number of iterations
reaches its limit, or the upper bound of task extensibibtygached, the priority assignment will
finish, otherwise we keep iterating.

The strategy of changing priorities based on local deasliia@é also be found in [27]. Different
from our algorithm, the goal is only to meet end-to-end layeconstraints, therefore deadlines are
updated based on the slack time of tasks or messages whichtemtiow much the local deadlines

can be increased without violating latency constraints.

3.3.4 Task Re-allocation

After all the design variables are decided, we calculatevéthee of the objective function in For-
mula (7), and check the end condition. If the results are nodgenough and the iteration limit
has not been exceeded, we re-allocate the tasks and repesagiial packing, message allocation

and priority assignment.

We could use the same MILP based method for task re-allogalip adding constraints to
exclude the allocations that have been considered. Howaseimg the MILP is time consuming.
To speed up the algorithm, we designed a local optimizateariktic that leverages the results of

previous iterations, as shown in Algorithm 4.

Two operators are considered for generating new configursitimoving one task to a different
node, or switching two tasks on different nodes. For eachipltesapplication of the previous oper-
ators on each task or task pair, that satisfies the utilizaiimstraints, we compute the correspond-
ing increase of the performance functidof Equation (40), which includes task extensibility and
end-to-end latencies. The change that provides the langagtase of the performance function
is selected. ParametKp in cost function® provides the trade-off between task extensibility and

end-to-end latencies. Initially, it is set to the same vas@arametdf in Equation (40), which is
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Algorithm 4 TASK RE-ALLOCATION (K>)
Let ®(M) = 3 cr Wy, *UB(ACy ) /ty; — Ko * ¥ peo | p/dp for a mappingV
1: if current solution does not satisfy latency constratinén
2. Kot+=Kc
. Apest= MIN
. for all tasktj and nodee thatt; is not one do
Dy e = P(M') — d(M) {whereM is the original mappingV’ is the new mapping after movirg to
e}
if Ay, e > Apestthen
bestmove= 1; moves to e
Apest= Ari,e
: for all taskT;, T that are not on the same node
10:  Agq; = P(M') —d(M) {M, M’ similarly defined as aboye
11:  if Ag ;> Dpestthen
12: bestmove= switcht; and;
13: Dpest= Ay, Tj
14: Execute besmove

a b w

used in the initial task allocation. If the current solut@mes not satisfy the end-to-end deadlines,
we increas&, by a constanKc to emphasize the optimization of latenci&g, was set to @1 in

our experiments.

3.3.5 Algorithm Complexity

The whole algorithm is polynomial except for the MILP baseiial task allocation, which can
be regarded as a preprocessing stage since we use hedastiask re-allocation in following
iterations.

Finding theoptimalinitial task allocation by MILP is a NP-hard problem. In ptiae, we set
a timeout and use the best feasible solution. For the fotigwtages, | denote the number of
signals N denote the number of task$z denote the number of computational nodég,denote
the number of buses, albk denote the number of paths. The complexity of the signalipgand
message allocation staged$N; «log(Ng) + Ng xNg). The complexity of the priority assignment
iS O(Nz * Np * (N7 + Ng) + Ns x1og(Ng) + Nz xlog(Ng)) assuming the number of iterations is a
constant. And the complexity of heuristic task re-allozastage i©O(Ng * Nz« Np * (N + Ns) +
Nz # Ng # Ng « (N7 +Ns)). This is the dominant stage. If we assuMge O(N2), Ny € O(Ns)
andNg € O(Ngz), which is usually the case in practice, we can simplify thaltoomplexity of the
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algorithm (except for the MILP based preprocessing stag€)(&lz x N * Np * Ng + Nz * Nz *
pr * N5)

3.4 Case Studies

The effectiveness of the methodology and algorithm is @#did in this section with an industrial
example. In this case study, we apply our algorithm to an exy@ntal vehicle that incorporates
advanced active safety functions. This is the same exartyessl in [8].

The architecture platform consists of 9 ECUs (computationdks) connected through a single
CAN-bus with speed 500kb/s. For the purpose of our algorithatuation, we assumed that all
ECUs have the same computational power, so that the worsegasation time of tasks does not
depend on their allocation.

The subsystem that we considered consists of a total of 4% tasecuted on the ECUs, and
83 CAN signals exchanged between the tasks. Worst-casetexetime estimates have been
obtained for all tasks. The bit length of the signals is betw# (for binary information) and 64
(full CAN message). The utilization upper bound of each ECUlauslhas been set to 70%.

End-to-end deadlines are placed over 10 pairs of souréetaaks in the system. Most of the
intermediate stages on the paths are shared among the Thastsfore, despite the small number
of source-sink pairs, there are 171 unique paths among th@edeadline is set at 300ms for 8

source-sink pairs and 100ms for the other two.

The experiments are run on a 1.7-GHz processor with 1GB RAM.E2P28] is used as the
MILP solver for the initial task allocation. The timeout litws set to 1000 seconds. The parameter
K in the MILP formulation is used to explore the trade-off beém task extensibility and end-to-
end latencies during initial task allocation. We test ogioathm with several differerK values,
and compare them with a system configuration produced migntik results are shown in Figure
10.

The manual design is the initial definition of the system apuntation provided by its design-

ers. This initial configuration is not optimized, and thetidl exist paths that do not meet their
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Figure 10: Comparison of Manual and Optimized Designs
deadlines. The total latencies of all paths is 24528.1mglanthsk extensibility is 16.9113.

On the other side, in any of the four automatically optimidedigns, all paths meet their dead-
lines. DifferentkK values provide the trade-off between task extensibility @amd-to-end latencies.
WhenK = 0, we have the largest task extensibility at 23.8038, wiscn41% improvement over
manual design. Whel = 0.5, we have the shortest total end-to-end latency at 9075 A&hich
is 63% less than manual design. If a balanced design betwéemsability and end-to-end latency
is needed, intermediate values may be used.KFer0.1, we obtain 37% improvement on task

extensibility and 31% improvement on end-to-end latencies

After the initial task allocation, each outer iteration bétsignal packing and message alloca-
tion, priority assignment and task re-allocation takes lsn 30 seconds for this example. And
the optimization converges within 30 iterations for the@asK values we tested. Figure 11 shows
the current best task extensibility over 30 iterationsko# 0. Iteration O is the task extensibility

after initial task allocation. The running time is 732 sed®ifor 30 iterations.
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4 Buffer-Sizing for Precedence Graphs on Restricted Multi-

processor Architecture

4.1 Overview

This work solves a sub-problem in mapping for Parallel Hegeneous Platforms (PHPs). The

sub-problem is concerned with determining the buffer sedw/een processing elements.

In the design flow, task allocation and scheduling are chwig before buffer sizing. Given a
PHP with a number of processors and a set of tasks, a heusigged to allocate tasks onto proces-
sors and to schedule them. The scheduling algorithmsediliz the heuristic, such as [29], usually
assume unlimited buffer sizes between processors, busthat true in reality. Architectural plat-
forms have finite-size buffers between processors. If tHfebaize is too small, execution may
deadlock. We call this kind of deadloektificial deadlock[2], compared taeal deadlockwhich

can occur even if the buffer size were unlimited.

Prior work in this field mainly focuses on the buffer sizingplem in uni-processor platforms
[3]. The previous work that deals with multiprocessor buffénimization [4] does not consider
interleaving communicatiqgrwvhere two active tasks on different processors can contateiarge

amounts of data using one-place buffers.

In this project, we develop algorithms to address this @bl Theoretical as well as practical
results are provided.

4.2 Problem Statements
4.2.1 Precedence DAG

The application, as the input of the buffer sizing algorithsnrepresented asmecedence DAG
in which the vertices represent the tasks and the edgesseeyiréata dependencies. A precedence

DAG is a common representation for the deployment of an egpdin onto multiple processors. It
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can be generated from statically schedulable dataflow géisers, such as synchronous dataflow

or cyclo-static dataflow.

4.2.2 Atrtificial Deadlock

Artificial deadlock[2] is a type of deadlock that occurs when the sizes of buffetse/een proces-
sors are reduced from infinity to some finite numbers. In lodfeing, we want to optimize the

objective function while avoiding artificial deadlock.

4.2.3 Problem Formulation

The buffer sizing problem is formulated as following. Antausce of this problem is a 5-tuple
(V,E,W,P,M).V ={vq,Vva,...,Vvim} is the set of vertices in the precedence DAG= {e;,e,...,en}

is the set of edges. We distinguish two disjoint subses &= {elec EAM(src(e)) =M(dege))}

is the set of schedule edges, abd= {e|e € E A M(src(e)) # M(dege))} is the set of data
edges.W : D — OT is the weight function.M and E are acquired from the scheduling algo-
rithm. P = {p1, p2,..., P} is the set of processordl : V — P is the mapping from vertices to the

processors that they are scheduled on.

We try to compute valid buffer sizes according to some mimmuariteria without giving rise
to artificial deadlock. If we use functiofR : P x P — O to denote the buffer sizes between pairs

of processors, the two problems that we are going to solve are

e Min max with (V,E,W,P,M) given, find a validF such that ma{F (pi, pj)|Vi, j} is mini-

mized.

e Min total: with (V,E,W,P,M) given, find a validF such thaty {F(pi, pj)|Vi, j} is mini-

mized.
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4.3 Observations

4.3.1 Write Blocked Cycles

In a precedence DAG, we classify the nodes which are blockeidgl execution into three cate-
gories.

¢ read blocked node — the node is blocked because it can noireadugh tokens.

¢ write blocked node — the node is blocked because it can nghfinriting all the produced
tokens.

¢ scheduling blocked node — the node can not be fired becaysew®us node on the same
processor has not finished execution.

We observed that it is impossible to have deadlock with onhesduling blocked nodes and
read blocked nodes. Furthermore, if a precedence DAG haabéa it must have at least such a

pattern called “write blocked cycle” (as shown in Figure,i@which

all the schedule edges are in the same direction;

there must be one or more write blocked nodes, whose incodg&geee is O in the cycle;

there could be read blocked nodes, whose incoming degreeisranore in the cycle;

if reversing the directed data edges from all the write béatkodes, it becomes a directed

cycle.

Based on the observation about write blocked cycle, we prtweébllowing theorem by con-
tradiction.

Theorem 1: There is artificial deadlock in a precedence DAG if and ontiadre exists

a write blocked cycle in the graph.
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—— Dataedge - » Schedule edge

------- » Series of several data/schedule
edges, in which the schedule edggs
are in the same direction as the
schedule edge fromto n,, ,
while the data edges could be in
either direction.

Buffer space from Pi to Pj < Token count on the eveitige from rto n,,

Figure 12: Write Blocked Cycle

We can resolve the write blocked cycles by using enough camgation or internal buffers.
Figure 13 shows two different cases with write blocked cyclnd the way of increasing buffer

size to resolve the deadlock.

e e N

Wa + Wb > Space(B, a and b are write ~ Wa > Space(R, We > Space(f), aand e

blocked. are write blocked.

Deadlock is solved by increasing buffer siz Deadlock is solved by increasing the size of
to hold all the Wa + Wb tokens; or by B;; to hold all the Wa, or increasing the size
increasing internal buffer in Pi or Pj. of B, to hold all the Wb tokens; or using

internal buffer.

Figure 13: Ways to Resolve Artificial Deadlock

4.3.2 Make Span

Make spans the maximum completion time for a set of processors. frgent buffer size can

cause make span increase; on the other hand, it can alsoarétisml deadlock. The question is
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when the buffer size is enough to avoid artificial deadlocK,ttve make span also stay the same?

The answer is no.

To prove it, we first assume that

e Interprocessor communication takes place through bousideduffers with blocking reads

and writes;

¢ Unlimited internal buffer space is available on each presoces

We have the conjecture that: For a task precedence grapisufficient buffer size leads to
deadlock, reading and writing can be reordered in such alatydeadlock is eliminated and make
span is not affected. If the conjecture is true, then we gtakiat the make span keeps the same if

internal buffer space is unlimited.

The conjecture is proved to be false by the counterexamp#hasn in Figure 14. The ex-
ample is scheduled in such a way that multiple paths arevelatritical. Reordering the reads
and writes to eliminate the deadlock increases the lengtowfe of the relatively critical paths,

extending the make span, even if transition tikne computation time of tasks.

In the example, edgds, d) and(c,g) may be blocked due to insufficient buffer size. Without

increasing the buffer size, there are 4 ways to resolve this:

1. Move communicatioria, d) afterb.
2. Move communicatioita,d) beforec.
3. Move communicatiofic, g) afterd.

4. Move communicatiolic, g) beforef.

Options 1 and 3 delag andg by a large amount, and increase the makespan significantigrdp
2 and 4 extend the critical paths that endhaindi.
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; . | TX/Rx time: 5 units
oy gy { i | Latency: O units

Figure 14: Counter Example - Make Span is Increased with tefinternal Buffer

4.4 Solving the Min Max Problem

4.4.1 Definitions

Free verticesare defined as the vertices with no incoming edges @andc in Figure 15).Free
edgesare defiened as the edges starting from free vertices(@ln), (a,d), (c,d), (c,e) in Figure
15). Our algorithm always deals with free edges. After a &dge is resolved, some other edges
may become free.

Figure 15: An Example of Free Vertices and Free Edges

Because any valid buffer size assignment should not proddifieial deadlock, we need to

study how artificial deadlocks occur. A deadlock occurs wtiesre is cyclic dependency. An
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artificial deadlock is a special kind of deadlock where thelicydependency exists only because
of buffer size. With the observation that a data edge imfiedsectional dependency if there is not
enough buffer space for it, we transform the precedence A&dependency graphy making

all the data edges bidirectional. An example is shown in F&d6.

Figure 16: An Example of Tranforming Precedence DAG to Delpacy Graph

We then proved the following theorem.

Theorem 2: Artificial deadlock exists if and only if there is a cycle irthependency
graph (i.e. dependency cycle).

We further observed that a dependency cycle must contagast bne data edge, because the
precedence graph is acyclic. In addition, schedule edgesotaffect buffers. Combining all
these results, our algorithm to solve the min max probleny aeeds to deal with data edges in

dependency cycles.

4.4.2 Algorithm Description

Our algorithm iterates over all the edges in the dependeregyhg One edge is resolved and re-

free

moved each time (hence, the edgeEBehanges over time). In iterationif we letV, ™ = {vjv e

V AJec Ej.dege) = v} andE,"® = {ele € E; Asrc(e) € V,"™®}, then our algorithm only needs to

free free

consider edges if; ~. Among all the edges i, "~ that are also in dependency cycles, the algo-
rithm always chooses the oeesuch that the buffer size required to complete the commtiaita
ong, F(M(src(g)),M(degg))), is minimal. It buildsk by making it the same &d5_ (initially,

Fo always returns 0), except thBt{M(src(e)),M(dege))) becomes this new buffer size.
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In detail, the way we use to remove edges are as follows. Tdrertour types of free edges as

shown in Figure 17:

1. Free schedule edge whose source has no other outgoing. delgethis type of free edge,
we can just delete it. The reason is, as shown in Figur@ t@n finish immediately, then

becomes free.

2. Free data edge between two free vertices (ignoring themimg data edges to the second
vertex). We can also delete this type of free edge, becaaselc can run simultaneously

with interleaving communication.

3. Free data edge that is not type 2 and is not in a dependenk® dyhis type of edge can be

deleted, becausgwill be ready later, and just needs to wait.

4. Free data edge that is not type 2 and is in a dependency &yel@eed to resolve blocking
before deleting the edge: increasing buffer size if no spefteotherwise, useing the space

first.

® OO
6060

#4

Figure 17: Four Types of Free Edges

In our algorithm, if edges of type 1, 2 or 3 exist, remove thast.fiThen there are only edges
of 4 are left, choose one of them to resolve in a greedy marmeong the edges of type 4, always

pick the onee such that (M(src(e)), M(dege))) is minimal aftere is resolved.

4.4.3 Min Max Algorithm

To detect whether a data edge is in any dependency cycle, wveéogeanO( |E|)-time algorithm.
With this, we develop a®(|E|?)-time “Min Max algorithm to compute valid buffer sizes wail
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minimizing the maximum buffer sizes. By “valid”, we mean tllagére is no deadlock with such

buffer sizes.

Linear Cycle Detection Algorithm To decide whether data edge fraato d is in a cycle:
Without considering edgéa,d) in the dependency graph, can we fitidby traversing the graph
from a? Without considering edgel, a) in the dependency graph, can we feally traversing the

graph fromd? If either case is true, then return true; otherwise, false.

Quadratic Min Max Algorithm  The Min Max Algorithm is decribed in Algorithm 5.

Algorithm 5 MIN MAX ALGORITHM
1: Vi e PVj € P:spacéi][j] =0, fifo[i][j]=0
2: while E is not emptydo

3:  type=0,selsrc= None selLdes= None min_fifo=—-1.0
4:  for all edgee= (src,deg do
5 if srcis freethen
6: if eis of type 1then
7 type= 3, selL.src= src, selLdes=des
8 else
9 if type< 2 andeis of type 2then
10: type= 2, sekrc = src, sehes= des
11 else
12: if type< 1then
13: new fifo_size= calculate fifo(src,deg
14: if minfifo< 0 orminfifo> fifo_sizethen
15: type= 1, selL.src= src, seLdes= des min_fifo = fifo_size
16: if type= 3then
17: remove edgéselsrc,selL.des
18: if type=2then
19: remove edgeéselsrc,selLdes and(selL.desselsrc)
20: if type=1then
21: if edge(selsrc,selLdes is in a cycle according to the algorithA then
22: resolve blocking and update fifo and space
23: remove edgeéselsrc,sel.des and(selL.desselsrc)

24: If sel.desbecomes free, release the FIFO space that it has consumed

4.4.4 Proof of Optimality

We call the above algorithiy,, and give the following theorem with detailed proof.
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Theorem 3: Assume that A terminates after iteration k. Let F bg [Eomputed by

Anm. F is a valid buffer assignment, and n{d@(pi, p;j)|Vi, j } is minimized.

Proof: We prove it by the way of inductionG is the complete precedence DAG. At siefs;
is the sub-graph we have solved— G; is the sub-graph with only the remaining edgEsis the
F function at step.

e Base caseGy is empty. SA5g is optimal.

e Induction step: Assumey is optimal, i.e. maxF(M(src(e)),M(dege)))|e € Gy} is

minimal. ProveGy, 1 is also optimal:

Gk 1 Is obtained by either removing an edge of type 1, 2 or 3 (in twleeseGy ., 1 is obviously
optimal), or updating buffer for an edge of type 4. In thedattase, we always pick an edge 1
such thaty, 1(M(src(ex;1)),M(degex,1)) is minimum among such edges. Then,

maxX F1(M(src(e)),M(dege)))|e € Gy 1}
= max max F(M(src(e)),M(dege)))|e € Gy},
Fera(M(sre(e1)), M(degec1)) } (42)

is also minimal. So(Gy 1 is optimal.

4.5 Solving the Min Total Problem

For the min total problem, in an intermediate stejt cannot be determined which edgefifi™®
should be resolved so as to guarantee the total buffer skzenanimized at the end. This problem

turns out to be ahP-hard problem.

We proved that the Min Total Problemh#P-hard by showing that any instance of the Feedback
Arc Set (FAS) Problem [30], which is proven to B¢-hard, can be reduced to a min total problem
in polynomial time. Details are omitted here.

Because of this, we developed another algorithm, which sdhwe min total problem in expo-
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nential time.

The Min Total algorithm is very similar to the Min Max algdrin, except that if only free
edges of type 4 are left, the Min Total algorithm picks thers by one in an arbitrary order, and
each time it recursively computes the buffer size based ainctiice. After finishing computing
one buffer, it backtracks and picks another such edge togayna This process ends when all
possible sequences of choices are exhausted. The buffetheitminimum total size is returned.

Because the exact min total problem is NP-hard, the algoritasto be exponential.

4.6 Experimental Results

The algorithms are implemented in C++ with the Boost Graphdrjp(BGL). We have manually
built a set of simple precedence DAGs, which covers most efctbrner cases. We have also
generated bigger random precedence DAGs with Task GraphRrEer(TGFF) [31]. The resultis
shown in Figure 18. For those graphs, the above-descrilggdidms return the correct results
to the Min Max problem and the Min Total problem, respectiveThe big difference in time
complexity is reflected with both small and large test casesthermore, from the experiments,
we obvserve that the results given by Min Max algorithm aredybeuristics for those given by
Min Total algorithm.
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Test i | P Min Max (A,) Min Total (A) Lower Bound (L)
# Max | Total | Time(s)) Max | Total| Time(§) Max| Tota
1| 50| 6 5 5 0.01 5 5 0.04 14 182
250 7 13 35 0.01 15 15 0.27 19 295
3 | 100 6 28 61 0.04 42 42 9.92 16 243
4 1100| 7 11 30 0.03 14 25 3.67 17 467
5 | 200| 6 10 17 0.09 10 17 0.37 16 433
6 | 200 7 13 41 0.07 13 24 5.05 17 624
7 | 200| 8 13 25 0.04 13 25 0.35 19 839
8 | 300 5 22 40 0.08 22 22 12.81 16 301
9 [ 300 7 14 26 0.05 14 23 18.17 18 659
10| 300| 9 27 122 0.06 27 43 55.8Y 20 1232

a7

Figure 18: Experiment Results of Buffer Sizing Algorithms



5 Conclusion and Future Work

We developed several algorithms to solve the mapping pnobde distributed systems. The map-
ping space we explored includes task allocation, signdipgecmessage allocation, task and mes-
sage scheduling, and buffer sizing.

We first developed a reinforcement learning algorithm teestthe allocation and scheduling of
tasks and messages, while satisfying the latency contstiamna optimizing the total response time.
With careful state representation and reward design, thea@ing algorithm converged within
reasonable learning episodes and provided near optimaticeud for all test cases in different
scales. One of the intriguing features of reinforcementlieg is that it does not have a strong
model assumption and the algorithm will work as long as isdeedback from the environment.
The whole learning procedure is an interactive processgcanadapt to dynamic system changes.
Currently, the system performance estimation is based ortdfessMethod. And in practical, the
computation complexity of Newton’s Method dominates theighearning process. However, for
reward calculation, high accuracy is not always neces$angher optimization can be performed
in the future.

We then presented a mathematical framework for defining samsbbility metric and for solv-
ing the related optimization problem in hard real-time rilstted systems, by exploring task al-
location, signal packing and message allocation, as walhislsand message priorities. We for-
mulated the mapping as a standard optimization problenm, pneposed an algorithm based on
mixed integer linear programming and heuristics. It wasaghby an industrial cases study that
this framework can effectively maximize extensibility whmeeting the design constraints such
as end-to-end latency constraints and utilization comggaln the future, we will test our algo-
rithms for multiple-bus examples. We also plan to extendfaamework to include not only task
extensibility but also message extensibility. Further,weeild like to consider task and message

scalability (i.e., how many new tasks and messages can leeldadén existing system).

The allocation and scheduling procedures assume unlirbiffdrs sizes between processors.
In real systems, we need to solve the buffer-sizing problitemeard. We developed the quadratic

Min Max algorithm and exponential Min Total algorithm to denine the buffer sizes between
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processing elements to avoid artificial deadlock and miréntine largest/total buffer sizes, respec-
tively. Experimental results show that results given by Miax algorithm are close approxima-

tions of those given by Min Total algorithm.

Overall, these three projects have shown the importancerofulating mapping problem and
optimizing it during the platform-based design processc8jrally for hard-real time systems, a
set of system metrics such as end-to-end latencies andseitiy can be optimized by designing
automatic algorithms and utilizing mathematical tools. Wk the methodology of separat-
ing functionality and architecture, then bridging themotigh a formal and automated mapping
process can be generally applied to many application dsnadiesides the real-time systems in-
troduced in this work, there are also works related to m@ta domain, communication domain,
etc. The impact of mapping keeps increasing because ofehd tf using more parallel systems,
e.g., multi-core systems. And there are many interestipg$an this area. For instance, how to
find right abstraction level for mapping, how to analyze temantics during mapping to insure
design correctness, how to refine a mapped system to imptatiten etc. These topics form the

general scope of our future work. Some of the related workoeafound in [32, 33].

49



References

[1] R. Racu A. Hamann and R Ernst. A formal approach to robustmesimization of complex
heterogeneous embedded system$rbt. of the CODES/ISSS Conferep@etober 2006.

[2] M. Geilen and T. Basten. Requirements on the Execution dfrKRrocess Networks. In
P. Degano, editoRroc. of the 12th European Symposium on Programp20§3.

[3] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Softasméhesis and code generation
for signal processing systems. Technical Report CS-TR-4088).1

[4] Marleen Ace, Rudy Lauwereins, and J. A. Peperstraete. Data memory isation for
synchronous data flow graphs emulated on DSP-FPGA targelBAC, pages 64—69, 1997.

[5] OSEK. OS version 2.2.3 specification. Availabldat p: / / www. osek- vdx. or g, 2006.
[6] R. Bosch. CAN specification, version 2.0. Stuttgart, 1991.

[7] Abhijit Davare, Qi Zhu, Marco Di Natale, Claudio Pinell&ri Kanajan, and Alberto
Sangiovanni-Vincentelli. Period optimization for harélké&ime distributed automotive sys-
tems. InProc. of the 44th DAC Conferenc2007.

[8] Wei Zheng, Qi Zhu, Marco Di Natale, and Alberto Sangiovaxincentelli. Definition of
task allocation and priority assignment in hard real-tinmtrdbuted systems. I®roc. of
the IEEE RTSS Conferengeages 161-170, Washington, DC, USA, 2007. IEEE Computer
Society.

[9] A. Sangiovanni-Vincentelli and G. Martin. Platform4®d design and software design
methodology for embedded systemEEEE Design and Test of Computerk3(6):23—-33,
2001.

[10] C. L. Liu and James W. Layland. Scheduling algorithmsrfartiprogramming in a hard-
real-time environment). ACM 20(1):46-61, 1973.

[11] M. Gonzalez Harbour, M. Klein, and J. Lehoczky. Timintpdysis for fixed-priority schedul-
ing of hard real-time system3EEE Transactions on Software Engineerir&§(1), January
1994.

50



[12] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J.Kies. Controller area network
(CAN) schedulability analysis: Refuted, revisited and reslisReal-Time Syst35(3):239—-
272, 2007.

[13] Razvan Racu, Marek Jersak, and Rolf Ernst. Applying seitgiinalysis in real-time dis-
tributed systems, 2005.

[14] A. Burns K. W. Tindell and A. J. Wellings. Allocating hareal-time tasks: An np-hard
problem made easy, 1992.

[15] Giorgio Buttazzo Enrico Bini, Marco Di Natale. Sensitwanalysis for fixed-priority real-

time systems, 2006.
[16] CICH Watkins. Thesis: Learning from delayed rewards.9198
[17] Peter Dayan. The convergence of td() for geneRdal-Time System8:341-362, 1992.

[18] Razvan Racu, Marek Jersak, and Rolf Ernst. Applying seitgiinalysis in real-time dis-
tributed systems. IRroc. of the RTAS Conferencgan Francisco (CA), U.S.A., March 2005.

[19] R. Yerraballi and R. Mukkamalla. Scalability in real-gnsystems with end-to-end require-

ments. InJournal of Systems Architectunrelume 42, pages 409-429, 1996.

[20] Traian Pop, Petru Eles, and Zebo Peng. Design optimizatf mixed time/event-triggered
distributed embedded systems. Rroc. of the CODES+ISSS Conferent&ew York, NY,
USA, 2003. ACM Press.

[21] Alexander Metzner and Christian Herde. Rtsat— an optiamal efficient approach to the
task allocation problem in distributed architecturesPtoc. of the IEEE RTSS Conference
Washington, DC, USA, 2006.

[22] 1. Bate and P. Emberson. Incorporating scenarios andidties to improve flexibility in
real-time embedded systems.112th IEEE RTAS Conferengeages 221-230, April 2006.

[23] R. Racu A. Hamann and R Ernst. Multi-dimensional robussneptimization in heteroge-
neous distributed embedded systems.Piac. of the 13th IEEE RTAS Conferendeoril
2007.

51



[24] R. Racu A. Hamann and R Ernst. Methods for multi-dimengioobustness optimization in
complex embedded systems.Rroc. of the ACM EMSOFT Conferenc&eptember 2007.

[25] Enrico Bini, Marco Di Natale, and Giorgio Buttazzo. Seivdty analysis for fixed-priority
real-time systems. IBuromicro Conference on Real-Time Systedresden, Germany, June
2006.

[26] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellindg$ard Real-Time Schedul-
ing: The Deadline Monotonic Approach. Rroceedings 8th IEEE Workshop on Real-Time
Operating Systems and Softwafdalanta, 1991.

[27] J.J.G. Garcia and M. G. Harbour. Optimized priorityigement for tasks and messages in
distributed hard real-time systems. 3rd Workshop on Parallel and Distributed Real-Time
Systemsl1995.

[28] ILOG CPLEX Optimizer. http://www.ilog.com/productgilex/.

[29] G.C.SihandE. A. Lee. A compile-time scheduling heuci&ir interconnection-constrained
heterogeneous processor architecturdsEE Trans. Parallel Distrib. Syst4(2):175-187,
1993.

[30] M.R. Garey and D.S. JohnsonComputers and Intractability: A Guide to the Theory of
NP-CompletenessV. H. Freeman, 1979.

[31] Robert P. Dick, David L. Rhodes, and Wayne Wolf. TGFF: tgskphs for free. ICODES
pages 97-101, 1998.

[32] Qi Zhu. Optimizing Mapping in System Level DesigPhD thesis, EECS Department, Uni-
versity of California, Berkeley, Sep 2008.

[33] Abhijit Davare. Automated Mapping for Heterogeneous Multiprocessor Embd®&ystems
PhD thesis, EECS Department, University of California, BexkeSep 2007.

52



