
Automatic Synthesis for Distributed Systems

Yang Yang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-38

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-38.html

March 11, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Automatic Synthesis for Distributed Systems

by Yang Yang

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cal-

ifornia at Berkeley, in partial satisfaction of the requirements for the degree ofMaster of Science,

Plan II .

Approval for the Report and Comprehensive Examination:

Committee:

Professor Alberto Sangiovanni-Vincentelli

Research Advisor

Date

* * * * * *

Professor Kurt Keutzer

Second Reader

Date

Abstract

Distributed architectures are widely used in various application domains to cope with the

increasing system complexity. In this work, we focus on finding a mapping from an application

description to a distributed architecture platform, to optimize certain objectives while satisfy-

ing design constraints. Specifically, the mapping problem includes allocating functional tasks

to distributed processors and allocating messages to buses, scheduling tasks and messages, as

well as deciding buffer sizes. This synthesis problem is still largely open nowadays. In three

case studies, we developed a set of algorithms to address various aspects of mapping, including

applying on different types of architecture platforms, exploring different design variables and

optimizing different optimization objectives.

The first two case studies focus on hard real-time distributed systems that collect data from

a set of sensors, perform computations in a distributed fashion and based on the results, send

commands to a set of actuators. Hard real-time requires that the tasks must satisfy hard end-

to-end deadline constraints in the worst case. In the first project, our goal is to find a mapping

to minimize total response time while satisfying end-to-end latency constraints. Wedesigned

a reinforcement machine learning algorithm, in which the rewards are evaluated based on the

worst-case system performance analysis to guarantee the satisfaction ofhard real-time con-

straints. The experimental results show the algorithm converges in reasonable time for non-

trivial problems, and produces near optimal solution. In our second project, we measure the

extensibility of the design solutions and then develop an efficient algorithm that optimizes this

metric, other than just finding an satisfying mapping. Extensibility is defined as the amount

by which the execution time of tasks can be increased without changing the system configu-

ration while meeting the deadline constraints (as in [1]). With this definition, a design that is

optimized for extensibility not only allows adding future functionality with minimum changes,

but is more robust with respect to the variance of task execution times. Experimental results

showed that our algorithm can significantly increase the extensibility of the system while meet-

ing the latency constraints.

Our third project solves the buffer sizing problem in the mapping for Parallel Heteroge-

neous Platforms (PHPs). In this problem, we focus on distributed systems where processing

units communicates through FIFOs between each pair of them. The work is concerned with

determining the buffer sizes between processing elements. We want to minimize the buffer

sizes while avoiding artificial deadlock [2]. Prior work in this field mainly focuses on the

buffer sizing problem in uni-processor platforms [3]. The previous work that deals with mul-

i

tiprocessor buffer minimization [4] does not consider interleaving communication, where two

active tasks on different processors can communicate large amounts of data using one-place

buffers. In this work, we develop algorithms to address this problem. Theoretical as well as

practical results are provided.

ii

Contents

1 Background of Hard Real-Time Distributed Systems 1

1.1 Mapping Problem .. 1

1.2 System Model .2

1.2.1 Problem Representation .. 2

1.2.2 Performance Modeling .. 4

2 Allocation and Scheduling for Hard Real-Time Distributed Systems 7

2.1 Overview . 7

2.2 Assumptions and Problem Formulation 7

2.3 System Performance Estimation 8

2.4 Solving the Mapping Problem with Reinforcement Learning. 10

2.4.1 Q-Learning . 11

2.4.2 Environment Design .12

2.5 Experiment Results and Conclusions 14

3 Extensibility Optimization for Hard Real-Time Distribute d Systems 19

3.1 Overview . 19

3.2 Problem Representation 21

3.2.1 Design Space and Extensibility Metric 21

iii

3.2.2 Formulation . 22

3.3 Optimization Algorithm 23

3.3.1 Initial Task Allocation 24

3.3.2 Signal Packing and Message Allocation 28

3.3.3 Priority Assignment .. 29

3.3.4 Task Re-allocation .31

3.3.5 Algorithm Complexity .32

3.4 Case Studies .33

4 Buffer-Sizing for Precedence Graphs on Restricted Multiprocessor Architecture 36

4.1 Overview . 36

4.2 Problem Statements 36

4.2.1 Precedence DAG . 36

4.2.2 Artificial Deadlock .. 37

4.2.3 Problem Formulation .. 37

4.3 Observations .. 38

4.3.1 Write Blocked Cycles . 38

4.3.2 Make Span . 39

4.4 Solving the Min Max Problem 41

4.4.1 Definitions . 41

iv

4.4.2 Algorithm Description .. . 42

4.4.3 Min Max Algorithm . 43

4.4.4 Proof of Optimality .. 44

4.5 Solving the Min Total Problem 45

4.6 Experimental Results 46

5 Conclusion and Future Work 48

v

List of Figures

1 The Functions F(x) and F’(x) for Response Time Calculation 9

2 Changes in Standard Deviation of Optimal Assignments for Case 1 15

3 Changes in Standard Deviation of Optimal Assignments for Case 2 16

4 Distribution of Minimum Total Response Time for Case 1 17

5 Distribution of Minimum Total Response Time for Case 2 17

6 Changes in Standard Deviation of Optimal Assignments for Case 3 18

7 Distribution of Minimum Total Response Time for Case 3 18

8 Algorithm Flow for Task Extensibility Optimization 24

9 Iterative Priority Assignment Algorithm 29

10 Comparison of Manual and Optimized Designs 34

11 Task Extensibility over Iterations 35

12 Write Blocked Cycle . 39

13 Ways to Resolve Artificial Deadlock 39

14 Counter Example - Make Span is Increased with Infinite Internal Buffer 41

15 An Example of Free Vertices and Free Edges 41

16 An Example of Tranforming Precedence DAG to Dependency Graph 42

17 Four Types of Free Edges .. . 43

18 Experiment Results of Buffer Sizing Algorithms 47

vi

List of Tables

1 Experiment Description 14

vii

Acknowledgments

First and foremost, I’d like to thank my research advisor, Professor Alberto Sangiovanni-

Vincentelli for his continued support and guidance. His feedback has greatly enhanced the quality

of this work and provided guidance for future research directions. I’d like to thank Professor Kurt

Keutzer for agreeing to be the second reader of this report. His valuable suggestions helped me

improve the work.

Many thanks to Zhangxi Tan and Thomas Huining Feng, who were deeply involved in the first

and the third projects respectively. This work would not have been possible without them. Many

thanks to Abhijit Davare, Marco Di Natale, Eelco Scholte andQi Zhu for their valuable advice

from initial brainstormint to the implementation. Their ideas and insights were integral for this

report.

Last but not least, I’d like to thank my parents and my husbandfor their love and support. Their

continued encouragement has been vital to my pursuit of graduate studies at UC Berkeley.

viii

1 Background of Hard Real-Time Distributed Systems

Hard real-time distributed systems are commonly used in cars, airplanes, industrial plants, build-

ing, etc. In these systems, a set of control tasks are executed on distributed implementation plat-

forms consisting of multiple computation nodes (ECUs) that communicate with standard buses so

that end-to-end latencies are within a given hard bound.

We consider systems based onrun-time priority-based schedulingof tasks and messages. In the

automotive domain, standards supporting this model are theOSEK operating system [5] standard

and the CAN bus arbitration model [6]. The communication model considered in the projects,

consists of theperiodic activationwith asynchronous communication, where all tasks are activated

periodically and communicate by means of asynchronous buffers based on non-blocking read/write

semantics. Similarly, message transmission is triggered periodically and each message contains the

latest values of the signals that are mapped into it [7, 8].

More specifically, the execution model considered in this work is the following. Input data

(generated by a sensor, for instance) are available at one ofthe system’s computational nodes.

A periodically activated task on this node reads the input data, computes intermediate results, and

writes them to the output buffer from where they can be read byanother task or used for assembling

the data content of a message. Messages - also periodically activated - transfer the data from the

output buffer on the current node over the bus to an input buffer on a remote node. Local clocks

on different nodes are not synchronized. Tasks may have multiple fan-ins and messages can be

multi-cast. Eventually, task outputs are sent to the system’s output devices or actuators.

1.1 Mapping Problem

Our optimization problem is part of the mapping stage in the Platform-Based Design (PBD) [9]

design flow, where the functionality of the design (what the system is supposed to do) and its

architecture (how the system does it) are captured separately, and then “joined” together, i.e., the

functionality is “mapped” onto the architecture.

During mapping, design variables are explored to optimize objective functions while satisfying

1

design constraints. The sets of variables, objectives and constraints vary for different systems. For

instance, task scheduling is commonly explored in mapping since it might significantly affect the

system performance. Tasks can be statically scheduled or dynamically decided during runtime,

and the choice of which lead to different sets of design variables. For objectives and constraints,

various systems have different focuses. In multimedia systems, metrics such as throughput, com-

munication bandwidth are usually the most important ones, while in some hard real-time systems,

the end-to-end latencies are chosen as the direct optimization objects. Besides the choice of vari-

ables, objects and constraints, there are also different modeling approaches. For example, task

execution times can be modeled as fixed numbers, or treated asstatistical variables and modeled

by probability distributions.

In this work for hard real-time systems, the general mappingproblem is formulated based on

the specific characteristics of real-time systems. Function blocks communicate through signals,

which represent the data dependencies. The architectural description is a topology of computa-

tional nodes connected by buses. Mapping deploys functional blocks to tasks and tasks to nodes.

Correspondingly, signals can be mapped into local communication or packed into messages that

are exchanged over the buses. Tasks and messages are scheduled based on static priorities, which

are also explored during mapping. And a set of end-to-end latency constraints need to be satisfied

in the worst-case. Thetask allocation, signal to message packing, message allocation and priority

assignmentare the design activities considered in this paper with the objective of optimizing total

latency in the first project and task extensibility in the second project.

1.2 System Model

1.2.1 Problem Representation

The mapping problem is represented as a directed graphG = (T ,S). T = {τ1,τ2, ...,τn} is the set

of tasks that perform the computations.S = {s1,s2, ...,sm} is the set of signals that are exchanged

between task pairs.srcsi and{dstsi , j} denote the source task and the set of destination tasks of

signalsi, respectively (communication is of multicast type). The application is mapped onto an

architecture that consists of a set of computational nodesE = {e1,e2, ...,ep} connected through a

2

set of CAN busesB = {b1,b2, ...,bq}.

A task τi is periodically activated with periodtτi , and executed with prioritypτi . Tasks are

scheduled with preemption according to their priorities, and a total order exists among the task

priorities on each node.cτi is the worst case computation time ofτi, and rτi is its worst case

response time. Computational nodes can be heterogeneous, and tasks can have different execution

times on different nodes. We usecτi ,e to denote the execution time of taskτi on nodee. In the

following, thee subscript is dropped whenever the formula refers to tasks ona given node, ande

is implicitly defined, or when the task allocation is (at least temporarily) defined, and the node to

which the computation time (or its extensibility∆c) refers, is known.

For a signalsi, the computational nodes to which the source tasksrcsi and the destination task

dstsi , j are allocated are called source and destination nodes, respectively. If the source node is the

same as all the destination nodes, the signal is local. Otherwise, it is global and must be packed

into a message transmitted on one of the buses between the source node and all its destination

nodes. Only signals with the same period, same source node and same communication bus can

be packed into the same message. For messagemi, tmi denotes its period,pmi denotes its priority,

andcmi denotes its worst case transmission time on a bus with unit speed. The worst transmission

time on busb j is cmi/speedb j , wherespeedb j is the transmission speed ofb j . rmi is the worst case

response time on a bus with unit speed.

A path p on the application graphG is an ordered interleaving sequence of tasks and signals,

defined asp = [τr1,sr1,τr2,sr2, ...,srk−1,τrk]. src(p) = τr1 is the path’s source andsnk(p) = τrk is its

sink. Sources are activated by external events, while sinksactivate actuators. Multiple paths may

exist between each source-sink pair. The worst case end-to-end latency incurred when traveling a

pathp is denoted aslp. The path deadline forp, denoted bydp, is an application requirement that

may be imposed on selected paths.

3

1.2.2 Performance Modeling

Utilization Since all the tasks are periodic, the worst case utilizationof ECUek is evaluated by

U(ek) = ∑
i∈L(ek)

cτi

tτi

(1)

whereL(ek) is the set of tasks allocated toek.

When the utilization is bigger than 1, the ECU is overloaded. Some of the tasks in the ECU

will have longer and longer response time as they keep running, and finally some response times

will tend toward infinity.

Moreover, in 1973 Liu and Layland [10] proved that for a set ofn periodic tasks with unique

periods, a feasible schedule that will always meet deadlines exists if the CPU utilization is

U =
n

∑
i=1

ci

ti
≤ n(

n
√

2−1)

whenn= 2,U ≤ 0.8284; when the number of processes tends toward infinity, theexpression tends

towardU ≤ 0.693147.

To make the response time finite, we must make the load of everyECU smaller than 1, more-

over, smaller than 69.3% if possible to make sure the system is schedulable.

End-to-End Latency Analysis After tasks are allocated, some signals are local, and theirtrans-

mission time is assumed to be zero. Others are global, and need to be transferred on the buses

through messages. The time needed to transfer a global signal is equal to the transmission time of

the corresponding message. Letrsi denote the worst case response time of a global signalsi, and

assume its corresponding message ismj , thenrsi = rmj .

The worst case end-to-end latency can be computed for each path by adding the worst case

response times of all the tasks and global signals on the path, as well as the periods of all the

global signals and their destination tasks.

4

lp = ∑
τi∈p

rτi + ∑
si∈p∧si∈GS

(rsi + tsi + tdstsi
) (2)

whereGSis the set of all global signals.

We need to include periods of global signals and their destination tasks because of the asyn-

chronous sampling of communication data. In the worst case,the input global signal arrives imme-

diately after the completion of the first instance of taskτi. The event data will be read by the task on

its next instance and the result will be produced after its worst case response time, that is,tτi + rτi

time units after the arrival of the input signal. The same reasoning applies to the execution of all

tasks that are the destinations of global signals, and applies to global signals themselves. However,

for local signals, the destination task can be activated with a phase equal to the worst-case response

time of the source task, under the condition that their periods are harmonic, which is almost always

true in practical designs. In this case, we only need to add the response time of the destination task.

Similarly, it is sometimes possible to synchronise the queuing of a message for transmission with

the execution of the source tasks of the signals present in that message. This would reduce the

worst case sampling period for the message transmission anddecrease the latency in Equation (2).

In this work, we do not consider these possible optimizations and leave them to future extensions.

Response Time Analysis Computing end-to-end latencies requires the computation oftask and

message response times (signal response times are equal to the response times of the corresponding

messages). The analysis in this section summarizes work from [11, 12].

Task Response Times In a system with preemption and priority-based scheduling,the worst

case response timerτi for a taskτi depends on its computation timecτi , as well as on the inter-

ference from higher priority tasks on the same node.rτi can be calculated using the following

recurrence:

rτi = cτi + ∑
τ j∈hp(τi)

⌈

rτi

tτ j

⌉

cτ j (3)

5

Wherehp(τi) refers to the set of higher priority tasks on the same node.

Message Response TimesWorst case message response times are calculated similarlyto

task response times. The main difference is that message transmissions on the CAN bus are not

preemptable. Therefore, a messagemi may have to wait for a blocking timeBmax, which is the

longest transmission time of any frame in the system. Likewise, the message itself is not subject

to preemption from higher priority messages during its own transmission timecmi . The response

time can therefore be calculated with the following recurrence relation:

rmi = cmi +Bmax+ ∑
mj∈hp(mi)

⌈

rmi −cmi

tmj

⌉

cmj (4)

For more details about performance modeling, please refer to [7, 8].

6

2 Allocation and Scheduling for Hard Real-Time Distributed

Systems

2.1 Overview

In this project, we developed an algorithm based on machine learning to find an optimal mapping

for hard real-time distributed systems described in Section 1. This synthesis problem is still largely

open. In prior work, genetic algorithms [13] and simulated annealing [14] were used to solve this

problem, but the performance needs to be improved.

Our goal is to find a mapping to minimize the total response time and satisfy end-to-end latency

constraints. The problem is proved to be NP-hard. We developed a Q-learning based reinforcement

machine learning algorithm, in which the rewards are evaluated based on the worst-case system

performance analysis. The experimental results show the algorithm converges in reasonable time

for non-trivial problems, while giving near optimal solutions.

2.2 Assumptions and Problem Formulation

In this project, we only consider hard real-time distributed systems with a single CAN bus, and

we assume that each signal with its source node and destination node located in different ECUs is

packed into an individual message. The design problem can bedefined as follows. Given a set of

design constraints including:

• end-to-end deadlines on selected paths

• utilization bounds on nodes and buses

explore the design space that includes:

• allocation of tasks to computational nodes

• assignment of priorities to tasks and messages

7

to minimize total worse case response time of tasks and messages.

The problem is proved to be NP-hard in [15]. It can be formulated as a Mixed Integer Linear

Programming (MILP) problem, but is hard to solve as the size of problem is huge in practical.

2.3 System Performance Estimation

The system performance model is analyzed as in Section 1. This section describes two techniques

we used in the performance estimation.

First, we use Newton’s Method (described in Algorithm 1) to solve the implicit Equations (3)

and (4) for response times. The Equation (3) is rewritten as

F(x) = cτi + ∑
τ j∈hp(τi)

⌈

x
tτ j

⌉

cτ j −x = 0

We do the same thing for computing message response time withEquation (4).

Algorithm 1 NEWTON’ S METHOD (TO SOLVE F(x) = 0)
1: x = initial guess
2: step= 0
3: while step< MAX ITERATION NUMBER do
4: EvaluatedF = dF(x) andF = F(x) with current value ofx
5: if |F| < ERROR THRESHOLD and|∆x| < ERROR THRESHOLDthen
6: Newton’s method converges, break
7: else
8: SolvedF ∗∆x = −F for ∆x
9: Updatex = x+∆x

10: step= step+1

Since there are ceiling functions in the functionF(x), its derivative is not continuous. Rather

than using the derivative ofF(x), we evaluatedF by the derivative of functionF ′(x), which re-

moves the ceiling functions inF(x). Let d denote the derivativedF′(x) = ∑τ j∈hp(τi)
cτi
tτ j

−1. d is a

constant andd > −1 whenhp(τi) 6= Φ. (Note thatrτi ≡ x = cτi whenhp(τi) = Φ.)

The derivatived ≥ 0 when∑τ j∈hp(τi)
cτi
tτ j

≥ 1, which implies the ECU is already fully loaded by

the tasks with higher priority thanτi . In this case, we set the response time of taskτi to be infinity

8

to indicate that it cannot be added to this ECU.

The other case is that−1 < d < 0, which means∑τ j∈hp(τi)
cτi
tτ j

< 1. Convergence of Newton’s

method is not guaranteed in general unless we start close enough to the solution and the derivative

is continuous. In addition, global convergence can be claimed if the function is monotonic. In our

case,F(x) andF ′(x) are both monotonic. Also we notice thatF(x) ≥ F ′(x) is always true for any

x, and the equality is achieved if and only ifx/tτ j is an integer for anyτ j ∈ hp(τi). Besides, as

shown in the Figure 1, if we start at pointx = 0, after the first iteration we get tox = x1, which

is much closer to the exact solutionx∗. However, since the derivative ofF(x) is not continuous,

we still cannot guarantee the convergence of the Newton’s Method. But we adjust the Newton’s

method according to the special properties of the functionF(x) to speed up its converging. We use

x= x+α∆x instead ofx= x+∆x to reduce oscillation when updatingx, whereα = min{1,γ/|∆x|}.

γ is reduced every time∆x changes its direction. After all, if we still cannot get a converged

solution, we set the solution to be the smallestx that we obtained during the iterations such that

F(x) ≤ 0. As thisx is always larger thanx∗, we get a conservative estimation of the response time

and therefore guarantee that our algorithm will not violatethe hard real-time constraints.

x0 =0 x

F’(x)

F(x)

F(x0) = F’(x0) = C
τi

F(x1) >= F’(x1) = 0

x1 x*

F(x*) = 0

Figure 1: The Functions F(x) and F’(x) for Response Time Calculation

The worst case end-to-end latency for a computation spanning a path is evaluated by the sum

of the worst case response time of all the tasks and messages on the path. Since it is the worst case

9

value, we can guarantee that the end-to-end latencies always satisfy the constraints in any case.

Second, we use priority groups instead of exact priorities to reduce the search space. As we

discussed in Section 1, different tasks in an ECU should have different priorities. To reduce the

search space, we provide each ECU with a limited number of priority groups (5 to 10 groups in

usual cases). We assign a task of a priority group but not an exact priority. So there might be more

than one task with the same priority group in an ECU. To evaluate the worst case response time of

a task in this case, we use the Equation (3), wherehpk(i) is the set of tasks inek with higher or the

same priority groups asτi .

Similarly, messages in different ECUs should have differentpriorities so that the CAN bus can

make deterministic resolution of the contention. In our algorithm, we assign messages in the same

ECU with the same priority, and messages from different ECUs with different priorities. Since at

any time there is only one messages from an ECU transmitted to the CAN bus, we can still use the

Equation (4) to evaluate the worst case response time of a message.

2.4 Solving the Mapping Problem with Reinforcement Learning

As stated above, the optimal mapping problem is an NP-hard problem. Many of such problems

are difficult not because we do not have fast computer with enough memory, but because it is too

hard for the scheduler (either static or dynamic schedule) to choose the best task to run. Rein-

forcement learning (RL) is a modern machine learning technology that is more general than both

supervised and unsupervised learning [5]. In reinforcement learning, we don’t need to know the

correct answer like those in supervised learning and the algorithm can be used online to adapt to

runtime dynamic system. Some optimization and control techniques, such as control theory and

dynamic programming, always assume a static system model. Therefore, they are limited by the

size and complexity defined before the problem is actually solved. In RL, the computer is simply

given a goal to achieve. Then the computer learns how to achieve the goal by trial-and-error with

its environment.

To solve the problem, we choose an interactive setting and apply reinforcement learning to find

an optimal solution. Under this framework, the environmentis a setting where the task allocation

10

scheduler learns by trial-and-error iterations. This environment is observed by our RL task sched-

uler (agent). The observations come in form of sensors to current task allocation attempts, such as

average task response time, communication latencies and etc. Our scheduler, choose its actions,

i.e. allocate tasks to dedicate ECUs with some priority, based on some environment “states”. As

we formulate the problem above, the goal of the scheduler is to achieve lowest overall response

time of tasks and messages in addition to satisfying communication latencies requirement. After

every task is allocated, the scheduler will receive some reinforcement (reward) in the form of a

scalar value. The scheduler will learn a sequence of best actions to achieve the maximum reward.

In our problem, the time complexity of calculating the precise model of environment (i.e. the

performance of the distributed system) is very high. As thiscalculation happens in every trail of

Reinforcement Learning, we use an abstract enviorment modelto reduce the runtime. Therefore Q-

learning [16] is chosen to be used in our work as it is a form of Reinforcement Learning algorithm

that does not need a strong environment model and can be used on-line. In the following sections,

we will describe the Q-learning algorithm used in our work aswell as the design of environment

and reward respectively.

2.4.1 Q-Learning

Let the environment state at timet best , and assume that the learning system then chooses action

at . The immediate result of this action is a rewardRt . After this action, the system will undergo

a transition to the next statest+1. The objective is to choose a policyπ (sequence of actions)

maximizing discounted cumulative rewards over time. To be more specific, the total discounted

return starting from time t is given by the following formula:

r(t) = rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · ·+ γnrt+n + · · · (5)

The discount factorγ is a number between[0..1]. It is used to weight near term reinforcement

more heavily than distant future reinforcement. The closerit is to 1 the greater the weight of future

reinforcements.

11

Q-learning is a simple incremental algorithm developed from the theory of dynamic program-

ming for delayed reinforcement learning. In Q-learning, wedefine a state-action value function

Qπ(s,a), which is expected to return when starting ins, performinga, and followingπ. Qπ(s,a) is

updated by the following rule during the learning process.

Q(st ,at) = (1−α)Q(st ,at)+α[R(s,at)+ γmaxαt+1Q(st+1,at+1)] (6)

whereα is a learning rate parameter, it should be close to 1 at the initial stage of learning and

gradually approaches to 0 for converging to an optimal statevalue function. In each iterationi, we

choose to make either a random action or the action from optimal policy π(s) = argmaxαQ(s,a)

with a probability ofε. This is calledε-greedy policy. At first,ε is close to 0 for random exploring

all possible states. Slowly,ε is increased to 1, hence it focuses mainly on optimal actions. It is also

showed in [17] that the above Q state-value function update always converges.

2.4.2 Environment Design

To set up our Q-learning scheduler, we need an environment inwhich we evaluate trial actions.

Therefore, we create a system simulator that emulates task running and provides performance

measurements through an analytical model as described in Section 1.

State and Action Space Design We divide the states space in terms of number of tasks to be

allocated. The initial state has all tasks un-allocated. The goal state has zero unassigned tasks. If

one task is assigned to an ECU with a priority, then the system goes to a new state. Therefore, the

number of states is exactly equals to the number of tasks needto be assigned, which isO(m) andm

is the number tasks. Without losing the generality, the schedule always makes scheduling in order

from the first task to the last.

In each state, the scheduler can assign the current task to any ECU with a priority. So the action

space is the cross product of number of ECUs and number of possible task priority groups. This is

bounded byO(n∗ p), wheren is the number of ECUs in the system andp is the number of priority

groups. Thus, theQ state-value function is bounded byO(m∗n∗ p). For most cases,m andn are

12

usually less than 100 andp is less than 10. If state-value is stored as double precisionfloating point

that is 8-byte, the total required storage forQ is less than 1 Mega bytes. This can completely fit in

the main memory of modern computer, even in the Level-2 data Cache. So, theQ-matrix update

can be very efficient.

Reward Design Reward design is a very important part in our project. We spentmost of our time

designing reward that helps algorithm to converge faster and concentrate on interesting “good”

choice. To be more specific, we have the following reward.

Case 1:R(s,a) = −C, whereC = [∑τi∈T T(τi) + ∑si, j∈ST(si, j)]
−1, if any of the end-to-end

latency constraints is violated, or the utilization of ECU that the task is allocated onto in the action

a exceeds a threshold (which we set as 0.7 in the algorithm).

Case 2:R(s,a) = 0, when its next state is not the goal state. In addition, all the end-to-end

latency constraints are satisfied, and utilization of everyECU is below the threshold.

Case 3:R(s,a) = [∑τi∈T r(τi) + ∑si, j∈Sr(mi, j)]
−1, i.e. the inverse of total response time, if

its next state is the goal state. Besides, all the end-to-end latency constraints are satisfied, and

utilization of every ECU is below the threshold.

Intuitively, in each state, if current assignment already violates the given constraints, we think

this action is a “bad” move, therefore assigning a negative reward. On the other hand, only when

we reach the goal state, can it have a positive reward which isgiven as the inverse of total response

time.

Algorithm Description We start from the initial states and explore possible actions in the action

space. When we reach the goal state, we call this process anepisode. For all our experiments,

we choose a constant of 0.8 as the discounted reward rate. Thepseudo code of the Q-learning

algorithm is shown in Algorithm 2.

13

Algorithm 2 Q-LEARNING BASED SYNTHEIS ALGORITHM

1: Set initial parameterε = 0,γ = 0.8, α = 1
2: Initialize matrixQ = Φ
3: for each episodedo
4: while not reach goal state (all tasks are assigned)do
5: Assign current task: select one ECU and a task priority usingε-greedy policy
6: Using the current assignment, consider to go to the next state
7: Get maximumQ value of the next state based on all possible allocations (actions) and Reward

from simulator
8: Compute and updateQ value for current state
9: Set next state to be current state

10: Increaseε and decreaseα
11: if α = 0 andε = 1 then
12: Return result
13: if result converge or reach maximum episodethen
14: Return result

2.5 Experiment Results and Conclusions

The simulator environment and the learning algorithm are all written in C++ for maximum per-

formance. We conduct a set of experiments varying differentnumber of ECUs, tasks and priority

groups. Case 1 has only 16 states. Case 2 has a moderate state space, while Case 3 is a fairly large

example. The experiment settings and converged results aredescribed in Table 1.

Test # tasks # signals # priority
groups

ECUs # states in search-
ing space

episodes before
convergence

Case1 4 4 1 2 16 3,005,800
Case2 7 7 5 3 1.71e8 13,177,700
Case3 20 20 5 4 1.05e26 54,503,600

Table 1: Experiment Description

To demonstrate the effectiveness of our algorithm, we first show the change of standard devi-

ation with learning episode as in Figures 2 and 3. We divide the episode data points for Case 1

into 200 bins and those for Case 2 into 70 bins. This is because the algorithm converges in dif-

ferent numbers of episode in both cases. We choose differentbin sizes so that each bin contains

similar number of data points in either case. In both cases, the standard deviation decreases as the

algorithm approaches to the end. That means our algorithm starts focusing on the optimal solution.

We also plot the histogram of optimal solutions for the first 50000 episodes and last 50000

episodes in both cases, shown in Figure 4. On the histogram, we use 6 bins with equal size. Bin

14

0 20 40 60 80 100 120 140 160 180 200
5

10

15

20

25

30

S
ta

n
d

a
rd

 d
e

vi
a

tio
n

Episode bins with size of 200

Standard Deviation of Optimal Assignment

Figure 2: Changes in Standard Deviation of Optimal Assignments for Case 1

1 contains the optimal solution as it represents the bin withminimum total response time. Case 1

has limited solution space, but the algorithm tends to search equally across all possible solutions

at the beginning. (Note: there is no possible solution for Case 1 falling in Bin 4 to 5.) When the

algorithm is about to terminate because of convergence, it puts emphasis on the optimal solution

(more points in Bin 1).

Similarly, the distribution for Case 2 is given in Figure 5. Case 2 has more states and is more

representative than Case 1. Initially, the algorithm tends to perform random actions, so the graph

looks like a Gaussian distribution. When the algorithm is about to finished, most of the efforts are

spent near the optimal solution.

When we test the algorithm on the more complex Case 3, which has 2020 possible search

states, the algorithm also converged within reasonable number of episodes (54 million compared

to 13 million in Case 2). Unlike the situation in Figures 2 and 3, the standard deviation increases

gradually. But, at the end of the learning period, the standard deviation starts to drop significantly.

The reason is that the algorithm tries to explore more and more better actions with time. At last,

the algorithm terminated because it satisfied our convergence condition (limited changes in 5000

consecutive valid solutions). Figure 6 shows the distribution of “optimal” solution at the first 50000

episodes and last 50000 episodes. Similarly as Case 1 and 2, atthe end the system is trained to

15

0 10 20 30 40 50 60 70
50

55

60

65

70

75

80

85

90

Episode in 70 bins

S
ta

n
d

a
rd

 D
e

vi
a

tio
n

Standard Deviation of Optimal Assignment

Figure 3: Changes in Standard Deviation of Optimal Assignments for Case 2

search “better” solutions. However, we should mention thatthere is a possibility for the algorithm

to trap to local optimum for its huge state space. On the contrary, the algorithm tends to learn how

to achieve the best solution with time. Longer learning timewill help it get better result.

16

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200
Distribution of Minimum Total Response Time in First 50000 Episode

S
am

pl
es

 (x
10

0)

Response Time Bins (6 bins)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

100

200

300

400
Distribution of Minimum Total Response Time in Last 500 Episode

S
am

pl
es

 (x
10

0)

Response Time Bins (6 bins)

Figure 4: Distribution of Minimum Total Response Time for Case1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200
Distribution of Minimum Total Response Time in First 50000 Episode

S
am

pl
es

 (x
10

0)

Response Time Bins (6 bins)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

100

200

300

400
Distribution of Minimum Total Response Time in Last 500 Episode

S
am

pl
es

 (x
10

0)

Response Time Bins (6 bins)

Figure 5: Distribution of Minimum Total Response Time for Case2

17

0 10 20 30 40 50 60 70 80 90 100
50

100

150

200

250

300

350
Standard Deviation of Optimal Assignment

S
ta

n
da

rd
 d

e
vi

at
io

n

Episode bins with size of 100

Figure 6: Changes in Standard Deviation of Optimal Assignments for Case 3

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

300

Response Time Bins (6 bins)

S
am

pl
es

 (x
10

0)

Distribution of Minimum Total Response Time in First 50000 Episode

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

Response Time Bins (6 bins)

S
am

pl
es

 (x
10

0)

Distributuion of Minimum Total Response Time in Last 50000 Episode

Figure 7: Distribution of Minimum Total Response Time for Case3

18

3 Extensibility Optimization for Hard Real-Time Distributed

Systems

3.1 Overview

Optimizing extensibility is important for embedded systemdesign for several reasons. Firstly, in

industrial settings it is often prohibitive to design a system without consideration of already exist-

ing systems. Moreover, as time progresses new functionality is introduced that requires existing

functionality, and its allocation and architecture to remain in tact. Hence, providing a design that

has as much room for such future functionality is desired. Secondly, current automated designs of-

ten focus on providing anominalmapping. Of equal importance is the sensitivity of the solutions.

By explicitly taking this into account through an extensibility measure, designs can be evaluated

and optimized with respect to the sensitivity rather than a nominal point solution. In this work,

the measure for the constraint is assumed to be given in a worst-case form, such that it can also be

guaranteed that the mappings are feasible and will not violate any of the requirements.

Extensibility is defined as the amount by which the executiontime of tasks can be increased

without changing the system configuration while meeting thedeadline constraints (as in [1]). With

this definition, a design that is optimized for extensibility not only allows adding future function-

ality with minimum changes, but is more robust with respect to the variance of task execution

times.

Analyzing and optimizing system extensibility have been addressed in the literature by several

groups. Sensitivity analysis has been studied for priority-based scheduled distributed systems [18],

with respect to end-to-end deadlines. Also, the evaluationof extensibility with respect to changes

in the task execution times, when the system is characterized by end-to-end deadlines, is studied

in [19]. These papers do not explicitly address system optimization. Task allocation, the definition

of priorities, and the message configuration, are assumed asgiven.

For distributed systems with end-to-end deadlines, the optimization problem was partially ad-

dressed in [18], where the authors propose the use of geneticalgorithms for optimizing priority

and period assignments with respect to a number of constraints, including end-to-end deadlines

19

and jitter. In [7], an algorithm based on geometric programming was proposed for optimizing task

and message periods in distributed systems, later extendedin [8], to optimize jointly task and mes-

sage allocations, as well as priority assignments. In [20] adesign optimization heuristics-based

algorithm for mixed time-triggered and event-triggered systems is proposed. The algorithm, how-

ever, assumes that nodes are synchronized. In [21], a SAT-based approach for task and message

placement was proposed. The method provided optimal solutions to the placement and priority

assignment. However, it did not consider signal packing.

The most relevant references to our approach are [22] and [1,23, 24]. In the first work, task al-

location and priority assignment are defined with the purpose of optimizing the extensibility with

respect to changes in the task computation times. The proposed solution is based on simulated

annealing and the maximum amount of change that can be tolerated in the task execution times

without missing end-to-end deadlines is computed by scaling all task times by a constant factor.

Also, a model of event-based activation for task and messages is assumed. In [1, 23, 24], a gener-

alized definition of extensibility on multiple dimensions (including changes in the execution times

of tasks, as in our research, but also period speedups and possibly other metrics) is presented.

Also, a randomized optimization procedure based on a genetic algorithm is proposed to solve the

optimization problem. These papers focus on the multi-parameter pareto optimization, and how to

discriminate the set of optimal solutions. The main limitation of the proposed approach is however

the complexity and the expected running time of the genetic algorithm proposed for the optimiza-

tion. In addition, randomized optimization algorithms aredifficult to control and give no guarantee

on the quality of the obtained solution.

In contrast to them, our approach does not use randomized optimization, and works on much

larger sized problems. Our algorithm consists of a first stage, based on MILP programming, where

task placement (the most important variable with respect toextensibility) is optimized within the

deadline and utilization constraints, and two heuristic algorithms, which then iteratively try to

optimize signal-to-message packing and priority assignment, respectively. Our algorithm runs

much faster than randomized optimization approaches (a 20xreduction with respect to simulated

annealing in our case studies). As such, it is proven to be applicable to large-scale industrial

systems as the case studies shown in the experimental section, which are of size comparable with

the typical case of deployment of a set of additional functionality in a car. The shorter running

time allows the use of the method not only for the optimization of a given system configuration,

20

but also forarchitecture exploration, where the number of system configurations to be evaluated

and subject to optimization can be very large.

3.2 Problem Representation

The representation of the system is explained in Section 1. Next, we will describe our specific

approach for this project.

3.2.1 Design Space and Extensibility Metric

The design problem can be defined as follows. Given a set of design constraints including:

• end-to-end deadlines on selected paths

• utilization bounds on nodes and buses

• maximum message sizes

explore the design space that includes:

• allocation of tasks to computational nodes

• packing of signals and allocation of messages to buses

• assignment of priorities to tasks and messages

to maximizetask extensibility.

Task extensibility is defined as the weighted sum of each task’s execution time slack over its

period:

max. S= ∑
τi∈T

wτi

∆cτi

tτi

(7)

21

where a task’s execution time slack∆cτi is defined as the maximum possible increase of its execu-

tion timecτi without violating the design constraints, assuming the execution time of other tasks

are not changed.wτi is a preassigned weight that indicates how likely the task’sexecution time

will be increased in future functionality extensions.

3.2.2 Formulation

Based on the Formulas (2), (3) and (4) for computing end-to-end latencies and response times, we

construct a mathematical formulation that contains all thedesign variables. Part of the formulation

is similar to the one in [8]: both explore the same set of design variables - task allocation, signal

packing and message allocation, as well as task and message priorities. In [8], the problem was

formulated as mixed integer linear programming (MILP). To reduce the complexity, the problem

was divided into sub-problems and solved by a two-step approach.

However, in [8], the objective is to minimize end-to-end latencies, while in this work, we op-

timize task extensibility. The formulation of task extensibility with respect to end-to-end deadline

constraints is a quite challenging task. In general, inverting the function that computes response

times as a function of the task execution times is of exponential complexity in the simple case of

single-CPU scheduling [25]. When dealing with end-to-end constraints, the problem is definitely

more complex. A possible approach consists of a very simple (but possibly time-expensive) bisec-

tion algorithm that finds the sensitivity of end-to-end response times with respect to increases in

task execution times (this is the solution used for performing sensitivity analysis in [18]).

Formally, if ∆r i j denotes the increase of taskτ j ’s response timerτ j when taskτi ’s computation

time cτi is increased by∆cτi , the end-to-end latency constraints and utilization constraints are

expressed as follows:

∑
τ j∈p∧τ j∈(l p(τi)∪{τi})

∆r i j ≤ dp− lp ∀p,∀τi ∈ T (8)

∆cτi

tτi

+ ∑
τ j∈T (e)

cτ j

tτ j

≤ ue ∀e,∀τi ∈ T (e) (9)

wherel p(τi) refers to the set of tasks with priority lower thanpτi and executed on the same node

22

asτi , T (e) denotes the set of the tasks on computational nodee, andue denotes the maximum

utilization allowed one.

The relation between∆r i j and∆cτi can be derived from Equation (3), as follows.

∆r i j = ∑
τk∈hp(τ j)

(

⌈

rτ j +∆r i j

tτk

⌉

−
⌈

rτ j

tτk

⌉

)cτk

+

⌈

rτ j +∆r i j

tτi

⌉

∆cτi ∀τ j ∈ l p(τi) (10)

∆r ii = ∑
τk∈hp(τi)

(

⌈

rτi +∆r ii

tτk

⌉

−
⌈

rτi

tτk

⌉

)cτk +∆cτi (11)

For brevity, above formulas do not model task allocation andpriority assignment as variables.

In the complete formulation, they were expanded to include those variables.

Contrary to the problem in [8], in our case the formulation is nonlinear. It could be solved by

non-linear solvers but the complexity is in general too highfor industrial size applications. There-

fore, we propose an algorithm that defines two steps: one in which mathematical programming is

used, and a later refinement step, based on heuristics.

3.3 Optimization Algorithm

The flow of our algorithm is shown in Figure 8. First, we decidethe allocation of tasks, since the

choices of other design variables are restricted by task allocation. In the initial allocation stage,

the problem is formulated as MILP and solved by an MILP solver. In the following signal packing

and message-to-bus allocation stage, a heuristic is used. Finally, in the task and message priority

assignment stage, an iterative method is defined to assign the priorities of tasks and messages.

After all the above stages are completed, if the design constraints cannot be satisfied or if we want

to further improve extensibility, the tasks can be re-allocated and the process repeated. Because of

the complexity of the MILP formulation, we designed a heuristic for task re-allocation, based on

the extensibility and end-to-end latency values obtained in the previous steps.

23

Initial Task Allocation

Signal Packing and

Message Allocation

Task and Message

Priority Assignment

Task Re-allocation

Reach Stop

Condition?

Yes

End

No

Figure 8: Algorithm Flow for Task Extensibility Optimization

3.3.1 Initial Task Allocation

In the initial task allocation stage, tasks are mapped onto nodes while meeting the utilization and

end-to-end latency constraints. Utilization constraintsare considered in place of the true extensi-

bility metric to allow a linear formulation. In this stage, we also allocate signals to messages and

buses assuming each message contains one signal only. The initial tasks and message priority as-

signment is assumed as given. In case the procedure is used tooptimize an existing configuration,

priorities are already defined. In case of new designs, any suitable policy, such as Rate Monotonic,

can be used.

The MILP problem formulation includes the following variables and constraints:

24

Allocation constraints

∑
e∈E(τi)

aτi ,e = 1 (12)

∑
b∈B(si)

asi ,b = gsi (13)

1−∑
j

∑
e∈E

hsrcsi ,dstsi , j ,e
≤ gsi (14)

0≤ gsi ≤ 1 (15)

aτi ,e+aτ j ,e−1≤ hτi ,τ j ,e (16)

hτi ,τ j ,e ≤ aτi ,e (17)

hτi ,τ j ,e ≤ aτ j ,e (18)

asi ,b +asj ,b−1≤ hsi ,sj ,b (19)

hsi ,sj ,b ≤ asi ,b (20)

hsi ,sj ,b ≤ asj ,b (21)

whereE(τi) is the set of computational nodes that taskτi can be allocated to, andB(si) is the

set of buses on which signalsi can be transferred. The boolean variableaτi ,e indicates whether task

τi is mapped onto computational nodee, and the boolean variableasi ,b represents whether signal

si is mapped onto busb. The value of the boolean variablegsi is 1 if si is a global signal, and 0

otherwise.hτi ,τ j ,e defines whetherτi andτ j are on the same nodee.

In detail, constraint (12) ensures that each task is mapped to one node and only one. Similarly,

condition (13) enforces the mapping of global signals into asingle bus. The definition of global

signal is expressed by constraint (14) and (15). A signal is global if and only if its source task

srcsi and at least one of its destination tasksdstsi , j are mapped into different nodes, then all of the

correspondinghsrcsi ,dstsi , j ,e
should be equal to 0. The following set of constraints (16), (17) , (18)

ensures the consistency of the definitions of theh anda variables. Constraints (19), (20) , (21)

enforce similar conditions on the set of signals.

Utilization constraints The following constraints enforce the utilization bounds on all nodes and

buses considering the load of the current tasks (summation on the left-hand side of Equation (22)

25

and the additional load caused by extensions of the execution times (zτi ,e, on the left-hand side of

the equation).ue andub are the utilization bounds on computational nodeeand busb, respectively.

Of course, the additional load caused by the extension∆cτi must be considered only if the task is

allocated to the node for which the bound is computed. This isrepresented by using an additional

variablezτi ,e, and the typical “big M” formulation in use in MILP programming for conditional

constraints, where M is a large constant.

In our formulation, tasks can have different execution times depending on their allocation, and

cτi ,e denotes the worst-case execution time of taskτi on nodee. Also, buses can have different

speeds.csi denotes the transmission time of the message that carries signalsi on a bus with unit

speed. At this stage, we assume each message will only contain one signal. The transmission time

of that message on a bus with speedspeedb is csi/speedb.

zτi ,e+ ∑
τ j∈T

aτ j ,e∗cτ j ,e/tτ j ≤ ue (22)

∆cτi/tτi −M ∗ (1−aτi ,e) ≤ zτi ,e (23)

zτi ,e ≤ ∆cτi/tτi (24)

zτi ,e ≤ M ∗aτi ,e (25)

∑
si∈S

asi ,b∗csi/tsi/speedb ≤ ub (26)

26

End-to-end latency constraints

lp ≤ dp (27)

∑
τi∈p

rτi + ∑
si∈p

(rsi + tsi ∗gsi + tdstsi
∗gsi) = lp (28)

∑
e∈E

aτi ,e∗cτi ,e+ ∑
τ j∈T

∑
e∈E

cτ j ,e∗ pτi ,τ j ∗yτi ,τ j ,e = rτi (29)

xτi ,τ j −M ∗ (1−hτi ,τ j ,e) ≤ yτi ,τ j ,e (30)

yτi ,τ j ,e ≤ xτi ,τ j (31)

yτi ,τ j ,e ≤ M ∗hτi ,τ j ,e (32)

0≤ xτi ,τ j − rτi/tτ j < 1 (33)

∑
b∈B

(csi +Bmax)∗asi ,b/speedb

+ ∑
sj∈S

∑
b∈B

csj ,b∗ psi ,sj ∗ysi ,sj ,b = rsi (34)

xsi ,sj −M ∗ (1−hsi ,sj ,b) ≤ ysi ,sj ,b (35)

ysi ,sj ,b ≤ xsi ,sj (36)

ysi ,sj ,b ≤ M ∗hsi ,sj ,b (37)

0≤ xsi ,sj − (rsi − ∑
b∈B

csi ∗asi ,b/speedb)/tsj < 1 (38)

Latency constraints are derived from Equations (2), (3) and(4). rτi is the response time of task

τi, andrsi is the response time of the message that carries signalsi. pτi ,τ j is a parameter that denotes

whether taskτ j has higher priority than taskτ j . We use a large constantM to linearize the relation

yτi ,τ j ,e = xτi ,τ j ∗hτi ,τ j ,e, similarly as in utilization constraints. Herexτi ,τ j represents the number of

interference fromτ j to τi. psi ,sj andysi ,sj ,b are similar parameters and variables for messages.

Objective function

max. ∑
τi∈T

wτi ∗∆cτi/tτi (39)

We recall here the objective function in (7), which represents the task extensibility. An alter-

27

native objective function can also include the optimization of latency, as shown in (40).K is the

parameter used to explore the trade-off between task extensibility and latencies. The special case

K = 0 is the original objective function (39).

max. ∑
τi∈T

wτi ∗∆cτi/tτi −K ∗ ∑
p∈P

lp/dp (40)

In Section 3.4, we will report the experimental results withvarious values ofK, to show the

relationship between task extensibility and path latencies.

3.3.2 Signal Packing and Message Allocation

After the allocation of tasks is chosen, we use a simple heuristic to determine signal packing and

message allocation. The steps are shown below.

1. Group the signals with the same source node and period as packing candidates.

2. Within each group, order the signals based on their priorities, then pack them according to

the message size constraints (priorities are assumed givenfrom an existing configuration or

some suitable policy, as in the initial task allocation). The priority of a message is set to the

highest priority of the signals that are mapped into it.

3. Assign a weightwmi to each messagemi based on its priority, transmission time and period.

In our algorithm, we setwmi = k1/pmi + k2 ∗ cmi/tmi , wherepmi , cmi and tmi are priority,

transmission time on bus with unit speed and period of the message,k1 andk2 are constants.

When multiple buses are available between the source and destination nodes, we allocate

messages to buses according to their weights. Messages withlarger weights are assigned

first to faster buses.

Other more sophisticated heuristics or mathematical programming solutions have been consid-

ered. For instance, signal packing can be formulated as MILPas in [8]. However, from preliminary

28

experiments, there is no significant improvement that can outweigh the speed of this simple strat-

egy.

3.3.3 Priority Assignment

In this stage, we assign priorities to tasks and messages, given the task allocation, signal packing

and message allocation obtained from previous stages.

This priority assignment problem is proven to be NP-complete. Finding an optimal solution is

generally not feasible for industrial-sized problems. Therefore, we propose an iterative heuristic to

solve the problem.

The flow of this heuristic is shown in Figure 9. The basic idea is to define the local deadlines of

tasks and messages over iteration steps, then assign priorities based on the deadlines. Intuitively,

shorter deadlines require higher priorities and longer local deadlines can afford lower priorities.

Initialize Local Deadlines

Reach Stop Condition?

Finish Priority Assignment

Assign Priorities

(deadline-monotonic)

Update Local Deadlines

Yes

No

Calculate criticality of

every task and message

Update local deadline of every task

and message based on its criticality

Update Local Deadlines

Figure 9: Iterative Priority Assignment Algorithm

Initially, the deadlines of tasks and messages are the same as their periods. Then, deadlines

are modified, and priorities are assigned using the deadline-monotonic (DM) approach [26]. Of

course, there is no guarantee that the DM policy is optimal inthis case as for any system with

29

non-preemptable resources (the CAN bus), but there is no optimal counterpart that can be used

here, and DM it is a sensible choice in the context of our heuristics.

During the iterations, deadlines are changed based on task and messagecriticality, as shown in

Algorithm 3 and explained below.

Algorithm 3 UPDATE LOCAL DEADLINE (K1)
1: Initialize the criticalityε of every task and message to 0
2: for all taskτi do
3: UB(∆cτi) = tτi ∗ (ue−∑τ j∈T (e) cτ j /tτ j)
4: cτi = cτi +UB(∆cτi)
5: for all taskτ j ∈ (l p(τi)∪{τi}) do
6: updaterτ j

7: for all pathp whose latency is changeddo
8: if lp > dp then
9: for all tasks and messageso j on p do

10: εo j = εo j +wτi ∗ (lp−dp)/to j

11: for all taskτi do
12: εN

τi
= ετi /maxτi∈T {ετi}

13: dτi = dτi ∗ (1−K1∗ εN
τi
)

14: for all messagemi do
15: εN

mi
= εmi /maxmi∈M {εmi}

16: dmi = dmi ∗ (1−K1∗ εN
mi

)

The criticality of a task or message, reflects how much the response times along the paths

to which it belongs are affected by extensions in the execution times of other tasks. Tasks and

messages with higher criticality are assigned higher priorities. To define the criticalityε of a task

or a message, we increase the execution time of each taskτi, by UB(∆cτi), the maximum amount

allowed by utilization constraints.

UB(∆cτi) = tτi ∗ (ue− ∑
τ j∈T (e)

cτ j

tτ j

) (41)

Then the response time ofτi and of lower priority tasks on the same node asτi is recomputed. The

criticality of the affected taskτ j or messagemj (denoted as objecto j) is defined by adding up a term

wτi ∗ (lp−dp)/to j for each pathp whose end-to-end latency exceeds the deadline after the increase

UB(∆cτi), wherewτi is the weight of taskτi . After repeating this operation for every task, the

criticality of all tasks and messages is computed, denoted by εo j . Criticality values are normalized,

obtaining a valueεN for each task and message and, finally, local deadlines are computed asd =

d ∗ (1−K1 ∗ εN). The procedure is shown in Algorithm 3. The parameterK1 is initially set to 1,

30

then adjusted in the later iteration steps using a complex strategy that takes into account the number

of iteration steps, the number of times the current best solution is found, and the number of times

the priority assignment remains unchanged.

After local deadlines are updated, the stop condition is checked. If the number of iterations

reaches its limit, or the upper bound of task extensibility is reached, the priority assignment will

finish, otherwise we keep iterating.

The strategy of changing priorities based on local deadlines can also be found in [27]. Different

from our algorithm, the goal is only to meet end-to-end latency constraints, therefore deadlines are

updated based on the slack time of tasks or messages which indicate how much the local deadlines

can be increased without violating latency constraints.

3.3.4 Task Re-allocation

After all the design variables are decided, we calculate thevalue of the objective function in For-

mula (7), and check the end condition. If the results are not good enough and the iteration limit

has not been exceeded, we re-allocate the tasks and repeat the signal packing, message allocation

and priority assignment.

We could use the same MILP based method for task re-allocation, by adding constraints to

exclude the allocations that have been considered. However, solving the MILP is time consuming.

To speed up the algorithm, we designed a local optimization heuristic that leverages the results of

previous iterations, as shown in Algorithm 4.

Two operators are considered for generating new configurations: moving one task to a different

node, or switching two tasks on different nodes. For each possible application of the previous oper-

ators on each task or task pair, that satisfies the utilization constraints, we compute the correspond-

ing increase of the performance functionΦ of Equation (40), which includes task extensibility and

end-to-end latencies. The change that provides the largestincrease of the performance function

is selected. ParameterK2 in cost functionΦ provides the trade-off between task extensibility and

end-to-end latencies. Initially, it is set to the same valueas parameterK in Equation (40), which is

31

Algorithm 4 TASK RE-ALLOCATION (K2)
Let Φ(M) = ∑τi∈T wτi ∗UB(∆cτi)/tτi −K2∗∑p∈P lp/dp for a mappingM

1: if current solution does not satisfy latency constraintsthen
2: K2+ = KC

3: ∆best= MIN
4: for all taskτi and nodee thatτi is not onedo
5: ∆τi ,e = Φ(M′)−Φ(M) {whereM is the original mapping,M′ is the new mapping after movingτi to

e}
6: if ∆τi ,e > ∆best then
7: best move= τi moves to e
8: ∆best= ∆τi ,e

9: for all taskτi , τ j that are not on the same nodedo
10: ∆τi ,τ j = Φ(M′)−Φ(M) {M, M′ similarly defined as above}
11: if ∆τi ,τ j > ∆best then
12: best move= switchτi andτ j

13: ∆best= ∆τi ,τ j

14: Execute bestmove

used in the initial task allocation. If the current solutiondoes not satisfy the end-to-end deadlines,

we increaseK2 by a constantKC to emphasize the optimization of latencies.KC was set to 0.01 in

our experiments.

3.3.5 Algorithm Complexity

The whole algorithm is polynomial except for the MILP based initial task allocation, which can

be regarded as a preprocessing stage since we use heuristicsfor task re-allocation in following

iterations.

Finding theoptimal initial task allocation by MILP is a NP-hard problem. In practice, we set

a timeout and use the best feasible solution. For the following stages, letNS denote the number of

signals,NT denote the number of tasks,NE denote the number of computational nodes,NB denote

the number of buses, andNP denote the number of paths. The complexity of the signal packing and

message allocation stage isO(NS ∗ log(NS)+NS ∗NB). The complexity of the priority assignment

is O(NT ∗NP ∗ (NT +NS)+NS ∗ log(NS)+NT ∗ log(NT)) assuming the number of iterations is a

constant. And the complexity of heuristic task re-allocation stage isO(NE ∗NT ∗NP ∗(NT +NS)+

NT ∗NT ∗NP ∗ (NT +NS)). This is the dominant stage. If we assumeNS ∈ O(N2
T), NT ∈ O(NS)

andNB ∈ O(NE), which is usually the case in practice, we can simplify the total complexity of the

32

algorithm (except for the MILP based preprocessing stage) as O(NE ∗NT ∗NP ∗NS + NT ∗NT ∗
NP ∗NS).

3.4 Case Studies

The effectiveness of the methodology and algorithm is validated in this section with an industrial

example. In this case study, we apply our algorithm to an experimental vehicle that incorporates

advanced active safety functions. This is the same example studied in [8].

The architecture platform consists of 9 ECUs (computationalnodes) connected through a single

CAN-bus with speed 500kb/s. For the purpose of our algorithm evaluation, we assumed that all

ECUs have the same computational power, so that the worst caseexecution time of tasks does not

depend on their allocation.

The subsystem that we considered consists of a total of 41 tasks executed on the ECUs, and

83 CAN signals exchanged between the tasks. Worst-case execution time estimates have been

obtained for all tasks. The bit length of the signals is between 1 (for binary information) and 64

(full CAN message). The utilization upper bound of each ECU andbus has been set to 70%.

End-to-end deadlines are placed over 10 pairs of source-sink tasks in the system. Most of the

intermediate stages on the paths are shared among the tasks.Therefore, despite the small number

of source-sink pairs, there are 171 unique paths among them.The deadline is set at 300ms for 8

source-sink pairs and 100ms for the other two.

The experiments are run on a 1.7-GHz processor with 1GB RAM. CPLEX [28] is used as the

MILP solver for the initial task allocation. The timeout limit is set to 1000 seconds. The parameter

K in the MILP formulation is used to explore the trade-off between task extensibility and end-to-

end latencies during initial task allocation. We test our algorithm with several differentK values,

and compare them with a system configuration produced manually. The results are shown in Figure

10.

The manual design is the initial definition of the system configuration provided by its design-

ers. This initial configuration is not optimized, and there still exist paths that do not meet their

33

0

5000

10000

15000

20000

25000

30000

16 17 18 19 20 21 22 23 24 25

To
ta

l
La

te
n

cy
 (

m
s)

Task Extensibility

Optimized Manual

K=0.5
K=0.2

K=0.1

K=0

Figure 10: Comparison of Manual and Optimized Designs

deadlines. The total latencies of all paths is 24528.1ms andthe task extensibility is 16.9113.

On the other side, in any of the four automatically optimizeddesigns, all paths meet their dead-

lines. DifferentK values provide the trade-off between task extensibility and end-to-end latencies.

WhenK = 0, we have the largest task extensibility at 23.8038, which is a 41% improvement over

manual design. WhenK = 0.5, we have the shortest total end-to-end latency at 9075.46ms, which

is 63% less than manual design. If a balanced design between extensibility and end-to-end latency

is needed, intermediate values may be used. ForK = 0.1, we obtain 37% improvement on task

extensibility and 31% improvement on end-to-end latencies.

After the initial task allocation, each outer iteration of the signal packing and message alloca-

tion, priority assignment and task re-allocation takes less than 30 seconds for this example. And

the optimization converges within 30 iterations for the variousK values we tested. Figure 11 shows

the current best task extensibility over 30 iterations forK = 0. Iteration 0 is the task extensibility

after initial task allocation. The running time is 732 seconds for 30 iterations.

34

21

21.5

22

22.5

23

23.5

24

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Ta
sk

 E
x
te

n
si

b
il

it
y

Number of Iterations (K = 0)

Figure 11: Task Extensibility over Iterations

35

4 Buffer-Sizing for Precedence Graphs on Restricted Multi-

processor Architecture

4.1 Overview

This work solves a sub-problem in mapping for Parallel Heterogeneous Platforms (PHPs). The

sub-problem is concerned with determining the buffer sizesbetween processing elements.

In the design flow, task allocation and scheduling are carried out before buffer sizing. Given a

PHP with a number of processors and a set of tasks, a heuristicis used to allocate tasks onto proces-

sors and to schedule them. The scheduling algorithms utilized in the heuristic, such as [29], usually

assume unlimited buffer sizes between processors, but thisis not true in reality. Architectural plat-

forms have finite-size buffers between processors. If the buffer size is too small, execution may

deadlock. We call this kind of deadlockartificial deadlock[2], compared toreal deadlockwhich

can occur even if the buffer size were unlimited.

Prior work in this field mainly focuses on the buffer sizing problem in uni-processor platforms

[3]. The previous work that deals with multiprocessor buffer minimization [4] does not consider

interleaving communication, where two active tasks on different processors can communicate large

amounts of data using one-place buffers.

In this project, we develop algorithms to address this problem. Theoretical as well as practical

results are provided.

4.2 Problem Statements

4.2.1 Precedence DAG

The application, as the input of the buffer sizing algorithm, is represented as aprecedence DAG,

in which the vertices represent the tasks and the edges represent data dependencies. A precedence

DAG is a common representation for the deployment of an application onto multiple processors. It

36

can be generated from statically schedulable dataflow descriptions, such as synchronous dataflow

or cyclo-static dataflow.

4.2.2 Artificial Deadlock

Artificial deadlock[2] is a type of deadlock that occurs when the sizes of buffersbetween proces-

sors are reduced from infinity to some finite numbers. In buffer sizing, we want to optimize the

objective function while avoiding artificial deadlock.

4.2.3 Problem Formulation

The buffer sizing problem is formulated as following. An instance of this problem is a 5-tuple

〈V,E,W,P,M〉. V = {v1,v2, . . . ,vm} is the set of vertices in the precedence DAG.E = {e1,e2, . . . ,en}
is the set of edges. We distinguish two disjoint subsets ofE: S= {e|e∈E∧M(src(e))= M(des(e))}
is the set of schedule edges, andD = {e|e ∈ E ∧ M(src(e)) 6= M(des(e))} is the set of data

edges.W : D → ℜ+ is the weight function.M and E are acquired from the scheduling algo-

rithm. P = {p1, p2, . . . , pl} is the set of processors.M : V → P is the mapping from vertices to the

processors that they are scheduled on.

We try to compute valid buffer sizes according to some minimum criteria without giving rise

to artificial deadlock. If we use functionF : P×P→ ℜ+ to denote the buffer sizes between pairs

of processors, the two problems that we are going to solve are:

• Min max: with 〈V,E,W,P,M〉 given, find a validF such that max{F(pi, p j)|∀i, j} is mini-

mized.

• Min total: with 〈V,E,W,P,M〉 given, find a validF such that∑{F(pi , p j)|∀i, j} is mini-

mized.

37

4.3 Observations

4.3.1 Write Blocked Cycles

In a precedence DAG, we classify the nodes which are blocked during execution into three cate-

gories.

• read blocked node – the node is blocked because it can not readin enough tokens.

• write blocked node – the node is blocked because it can not finish writing all the produced

tokens.

• scheduling blocked node – the node can not be fired because itsprevious node on the same

processor has not finished execution.

We observed that it is impossible to have deadlock with only scheduling blocked nodes and

read blocked nodes. Furthermore, if a precedence DAG has deadlock, it must have at least such a

pattern called “write blocked cycle” (as shown in Figure 12), in which

• all the schedule edges are in the same direction;

• there must be one or more write blocked nodes, whose incomingdegree is 0 in the cycle;

• there could be read blocked nodes, whose incoming degree is one or more in the cycle;

• if reversing the directed data edges from all the write blocked nodes, it becomes a directed

cycle.

Based on the observation about write blocked cycle, we provedthe following theorem by con-

tradiction.

Theorem 1:There is artificial deadlock in a precedence DAG if and only ifthere exists

a write blocked cycle in the graph.

38

ni

ni+m

nj

nj+n

Pi Pj

Data edge Schedule edge

Series of several data/schedule
edges, in which the schedule edges
are in the same direction as the
schedule edge from ni to ni+1 ,
while the data edges could be in
either direction.

ni+1

…
…

nj+1

…
…

m>=1, n>=1

Buffer space from Pi to Pj < Token count on the write edge from ni to nj+n

… …

… …

Figure 12: Write Blocked Cycle

We can resolve the write blocked cycles by using enough communication or internal buffers.

Figure 13 shows two different cases with write blocked cycles, and the way of increasing buffer

size to resolve the deadlock.

9

a

c

d

f

Pi Pj

b e

Wa

Wb

Bij

Wa + Wb > Space(Bij), a and b are write
blocked.
Deadlock is solved by increasing buffer size
to hold all the Wa + Wb tokens; or by
increasing internal buffer in Pi or Pj.

a

b

c

d

Pi Pj

Wa

Bij

e

f

g

h

Pm Pn

We

Bmn

Wa > Space(Bij), We > Space(Bmn), a and e
are write blocked.
Deadlock is solved by increasing the size of
Bij to hold all the Wa, or increasing the size
of Bmn to hold all the Wb tokens; or using
internal buffer.

Figure 13: Ways to Resolve Artificial Deadlock

4.3.2 Make Span

Make spanis the maximum completion time for a set of processors. Insufficient buffer size can

cause make span increase; on the other hand, it can also causeartificial deadlock. The question is

39

when the buffer size is enough to avoid artificial deadlock, will the make span also stay the same?

The answer is no.

To prove it, we first assume that

• Interprocessor communication takes place through boundedsize buffers with blocking reads

and writes;

• Unlimited internal buffer space is available on each processor.

We have the conjecture that: For a task precedence graph, if insufficient buffer size leads to

deadlock, reading and writing can be reordered in such a way that deadlock is eliminated and make

span is not affected. If the conjecture is true, then we proved that the make span keeps the same if

internal buffer space is unlimited.

The conjecture is proved to be false by the counterexample asshown in Figure 14. The ex-

ample is scheduled in such a way that multiple paths are relatively critical. Reordering the reads

and writes to eliminate the deadlock increases the length ofsome of the relatively critical paths,

extending the make span, even if transition time<< computation time of tasks.

In the example, edges(a,d) and(c,g) may be blocked due to insufficient buffer size. Without

increasing the buffer size, there are 4 ways to resolve this:

1. Move communication(a,d) afterb.

2. Move communication(a,d) beforec.

3. Move communication(c,g) afterd.

4. Move communication(c,g) before f .

Options 1 and 3 delayd andg by a large amount, and increase the makespan significantly Options

2 and 4 extend the critical paths that end ath andi.

40

2008-11-10 11

10

200

10

280

10

50

300

80

215

a

b

c

d

e

f

g

h

i

P1 P2

P3

P4

P5

305

315

290

315

Communication Model

Tx/Rx time: 5 units
Latency: 0 units

Figure 14: Counter Example - Make Span is Increased with Infinite Internal Buffer

4.4 Solving the Min Max Problem

4.4.1 Definitions

Free verticesare defined as the vertices with no incoming edges (e.g.a andc in Figure 15).Free

edgesare defiened as the edges starting from free vertices (e.g.(a,b), (a,d), (c,d), (c,e) in Figure

15). Our algorithm always deals with free edges. After a freeedge is resolved, some other edges

may become free.

a

b

c

d e

Figure 15: An Example of Free Vertices and Free Edges

Because any valid buffer size assignment should not produce artificial deadlock, we need to

study how artificial deadlocks occur. A deadlock occurs whenthere is cyclic dependency. An

41

artificial deadlock is a special kind of deadlock where the cyclic dependency exists only because

of buffer size. With the observation that a data edge impliesbidirectional dependency if there is not

enough buffer space for it, we transform the precedence DAG to adependency graphby making

all the data edges bidirectional. An example is shown in Figure 16.

a

b

c

d

a

b

c

d

Figure 16: An Example of Tranforming Precedence DAG to Dependency Graph

We then proved the following theorem.

Theorem 2: Artificial deadlock exists if and only if there is a cycle in the dependency

graph (i.e. dependency cycle).

We further observed that a dependency cycle must contain at least one data edge, because the

precedence graph is acyclic. In addition, schedule edges donot affect buffers. Combining all

these results, our algorithm to solve the min max problem only needs to deal with data edges in

dependency cycles.

4.4.2 Algorithm Description

Our algorithm iterates over all the edges in the dependency graph. One edge is resolved and re-

moved each time (hence, the edge setE changes over time). In iterationi, if we letV f ree
i = {v|v∈

V ∧∃e∈ Ei.des(e) = v} andE f ree
i = {e|e∈ Ei ∧src(e) ∈V f ree

i }, then our algorithm only needs to

consider edges inE f ree
i . Among all the edges inE f ree

i that are also in dependency cycles, the algo-

rithm always chooses the oneei such that the buffer size required to complete the communication

on ei, Fi(M(src(ei)),M(des(ei))), is minimal. It buildsFi by making it the same asFi−1 (initially,

F0 always returns 0), except thatFi(M(src(ei)),M(des(ei))) becomes this new buffer size.

42

In detail, the way we use to remove edges are as follows. Thereare four types of free edges as

shown in Figure 17:

1. Free schedule edge whose source has no other outgoing edges. For this type of free edge,

we can just delete it. The reason is, as shown in Figure 17,a can finish immediately, thenb

becomes free.

2. Free data edge between two free vertices (ignoring the incoming data edges to the second

vertex). We can also delete this type of free edge, becausea andc can run simultaneously

with interleaving communication.

3. Free data edge that is not type 2 and is not in a dependency cycle. This type of edge can be

deleted, becaused will be ready later, anda just needs to wait.

4. Free data edge that is not type 2 and is in a dependency cycle. We need to resolve blocking

before deleting the edge: increasing buffer size if no spaceleft; otherwise, useing the space

first.

a

b

#1

a

b

c

d

#2

a

b

c

d

#3

a

b

c

d

#4

Figure 17: Four Types of Free Edges

In our algorithm, if edges of type 1, 2 or 3 exist, remove them first. Then there are only edges

of 4 are left, choose one of them to resolve in a greedy manner:Among the edges of type 4, always

pick the oneesuch thatF(M(src(e)),M(des(e))) is minimal aftere is resolved.

4.4.3 Min Max Algorithm

To detect whether a data edge is in any dependency cycle, we develop anO(|E|)-time algorithm.

With this, we develop anO(|E|2)-time “Min Max”algorithm to compute valid buffer sizes while

43

minimizing the maximum buffer sizes. By “valid”, we mean thatthere is no deadlock with such

buffer sizes.

Linear Cycle Detection Algorithm To decide whether data edge froma to d is in a cycle:

Without considering edge(a,d) in the dependency graph, can we findd by traversing the graph

from a? Without considering edge(d,a) in the dependency graph, can we finda by traversing the

graph fromd? If either case is true, then return true; otherwise, false.

Quadratic Min Max Algorithm The Min Max Algorithm is decribed in Algorithm 5.

Algorithm 5 M IN MAX ALGORITHM

1: ∀i ∈ P,∀ j ∈ P : space[i][j] = 0, f i f o[i][j] = 0
2: while E is not emptydo
3: type= 0, sel src= None, sel des= None, min f i f o = −1.0
4: for all edgee= (src,des) do
5: if src is freethen
6: if e is of type 1then
7: type= 3, sel src= src, sel des= des
8: else
9: if type< 2 ande is of type 2then

10: type= 2, selsrc = src, seldes= des
11: else
12: if type≤ 1 then
13: new f i f o size= calculate f i f o(src,des)
14: if min f i f o< 0 ormin f i f o> f i f o sizethen
15: type= 1, sel src= src, sel des= des, min f i f o = f i f o size
16: if type= 3 then
17: remove edge(sel src,sel des)
18: if type= 2 then
19: remove edges(sel src,sel des) and(sel des,sel src)
20: if type= 1 then
21: if edge(sel src,sel des) is in a cycle according to the algorithmAc then
22: resolve blocking and update fifo and space
23: remove edges(sel src,sel des) and(sel des,sel src)
24: If sel desbecomes free, release the FIFO space that it has consumed

4.4.4 Proof of Optimality

We call the above algorithmAm, and give the following theorem with detailed proof.

44

Theorem 3: Assume that Am terminates after iteration k. Let F be Fk computed by

Am. F is a valid buffer assignment, and max{F(pi, p j)|∀i, j} is minimized.

Proof: We prove it by the way of induction:G is the complete precedence DAG. At stepi, Gi

is the sub-graph we have solved.G−Gi is the sub-graph with only the remaining edges.Fi is the

F function at stepi.

• Base case:G0 is empty. SoG0 is optimal.

• Induction step: AssumeGk is optimal, i.e. max{Fk(M(src(e)),M(des(e)))|e∈ Gk} is

minimal. ProveGk+1 is also optimal:

Gk+1 is obtained by either removing an edge of type 1, 2 or 3 (in which caseGk+1 is obviously

optimal), or updating buffer for an edge of type 4. In the latter case, we always pick an edgeek+1

such thatFk+1(M(src(ek+1)),M(des(ek+1)) is minimum among such edges. Then,

max{Fk+1(M(src(e)),M(des(e)))|e∈ Gk+1}

= max{max{Fk(M(src(e)),M(des(e)))|e∈ Gk},

Fk+1(M(src(ek+1)),M(des(ek+1))} (42)

is also minimal. So,Gk+1 is optimal.

4.5 Solving the Min Total Problem

For the min total problem, in an intermediate stepi, it cannot be determined which edge inE f ree
i

should be resolved so as to guarantee the total buffer size tobe minimized at the end. This problem

turns out to be anNP-hard problem.

We proved that the Min Total Problem isNP-hard by showing that any instance of the Feedback

Arc Set (FAS) Problem [30], which is proven to beNP-hard, can be reduced to a min total problem

in polynomial time. Details are omitted here.

Because of this, we developed another algorithm, which solves the min total problem in expo-

45

nential time.

The Min Total algorithm is very similar to the Min Max algorithm, except that if only free

edges of type 4 are left, the Min Total algorithm picks them one by one in an arbitrary order, and

each time it recursively computes the buffer size based on that choice. After finishing computing

one buffer, it backtracks and picks another such edge to try again. This process ends when all

possible sequences of choices are exhausted. The buffer with the minimum total size is returned.

Because the exact min total problem is NP-hard, the algorithmhas to be exponential.

4.6 Experimental Results

The algorithms are implemented in C++ with the Boost Graph Library (BGL). We have manually

built a set of simple precedence DAGs, which covers most of the corner cases. We have also

generated bigger random precedence DAGs with Task Graph ForFree (TGFF) [31]. The result is

shown in Figure 18. For those graphs, the above-described algorithms return the correct results

to the Min Max problem and the Min Total problem, respectively. The big difference in time

complexity is reflected with both small and large test cases.Furthermore, from the experiments,

we obvserve that the results given by Min Max algorithm are good heuristics for those given by

Min Total algorithm.

46

Test
#

|V| |P|
Min Max (Am) Min Total (At) Lower Bound (Ln)

Max Total Time (s) Max Total Time (s) Max Total

1 50 6 5 5 0.01 5 5 0.04 14 182

2 50 7 13 35 0.01 15 15 0.27 19 295

3 100 6 28 61 0.04 42 42 9.92 16 243

4 100 7 11 30 0.03 14 25 3.67 17 467

5 200 6 10 17 0.09 10 17 0.37 16 433

6 200 7 13 41 0.07 13 24 5.05 17 626

7 200 8 13 25 0.04 13 25 0.35 19 838

8 300 5 22 40 0.08 22 22 12.81 16 301

9 300 7 14 26 0.05 14 23 18.17 18 659

10 300 9 27 122 0.06 27 43 55.87 20 1232

Figure 18: Experiment Results of Buffer Sizing Algorithms

47

5 Conclusion and Future Work

We developed several algorithms to solve the mapping problem for distributed systems. The map-

ping space we explored includes task allocation, signal packing, message allocation, task and mes-

sage scheduling, and buffer sizing.

We first developed a reinforcement learning algorithm to solve the allocation and scheduling of

tasks and messages, while satisfying the latency constraints and optimizing the total response time.

With careful state representation and reward design, the Q-learning algorithm converged within

reasonable learning episodes and provided near optimal solutions for all test cases in different

scales. One of the intriguing features of reinforcement learning is that it does not have a strong

model assumption and the algorithm will work as long as it gets feedback from the environment.

The whole learning procedure is an interactive process, andcan adapt to dynamic system changes.

Currently, the system performance estimation is based on Newton’s Method. And in practical, the

computation complexity of Newton’s Method dominates the whole learning process. However, for

reward calculation, high accuracy is not always necessary.Further optimization can be performed

in the future.

We then presented a mathematical framework for defining an extensibility metric and for solv-

ing the related optimization problem in hard real-time distributed systems, by exploring task al-

location, signal packing and message allocation, as well astask and message priorities. We for-

mulated the mapping as a standard optimization problem, then proposed an algorithm based on

mixed integer linear programming and heuristics. It was shown by an industrial cases study that

this framework can effectively maximize extensibility while meeting the design constraints such

as end-to-end latency constraints and utilization constraints. In the future, we will test our algo-

rithms for multiple-bus examples. We also plan to extend ourframework to include not only task

extensibility but also message extensibility. Further, wewould like to consider task and message

scalability (i.e., how many new tasks and messages can be added to an existing system).

The allocation and scheduling procedures assume unlimitedbuffers sizes between processors.

In real systems, we need to solve the buffer-sizing problem afterward. We developed the quadratic

Min Max algorithm and exponential Min Total algorithm to determine the buffer sizes between

48

processing elements to avoid artificial deadlock and minimize the largest/total buffer sizes, respec-

tively. Experimental results show that results given by MinMax algorithm are close approxima-

tions of those given by Min Total algorithm.

Overall, these three projects have shown the importance of formulating mapping problem and

optimizing it during the platform-based design process. Specifically for hard-real time systems, a

set of system metrics such as end-to-end latencies and extensibility can be optimized by designing

automatic algorithms and utilizing mathematical tools. Wethink the methodology of separat-

ing functionality and architecture, then bridging them through a formal and automated mapping

process can be generally applied to many application domains - besides the real-time systems in-

troduced in this work, there are also works related to multimedia domain, communication domain,

etc. The impact of mapping keeps increasing because of the trend of using more parallel systems,

e.g., multi-core systems. And there are many interesting topics in this area. For instance, how to

find right abstraction level for mapping, how to analyze the semantics during mapping to insure

design correctness, how to refine a mapped system to implementation, etc. These topics form the

general scope of our future work. Some of the related work canbe found in [32, 33].

49

References

[1] R. Racu A. Hamann and R Ernst. A formal approach to robustness maximization of complex

heterogeneous embedded systems. InProc. of the CODES/ISSS Conference, October 2006.

[2] M. Geilen and T. Basten. Requirements on the Execution of Kahn Process Networks. In

P. Degano, editor,Proc. of the 12th European Symposium on Programming, 2003.

[3] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Softwaresynthesis and code generation

for signal processing systems. Technical Report CS-TR-4063, 1999.

[4] Marleen Ad́e, Rudy Lauwereins, and J. A. Peperstraete. Data memory minimisation for

synchronous data flow graphs emulated on DSP-FPGA targets. In DAC, pages 64–69, 1997.

[5] OSEK. OS version 2.2.3 specification. Available athttp://www.osek-vdx.org, 2006.

[6] R. Bosch. CAN specification, version 2.0. Stuttgart, 1991.

[7] Abhijit Davare, Qi Zhu, Marco Di Natale, Claudio Pinello,Sri Kanajan, and Alberto

Sangiovanni-Vincentelli. Period optimization for hard real-time distributed automotive sys-

tems. InProc. of the 44th DAC Conference, 2007.

[8] Wei Zheng, Qi Zhu, Marco Di Natale, and Alberto Sangiovanni-Vincentelli. Definition of

task allocation and priority assignment in hard real-time distributed systems. InProc. of

the IEEE RTSS Conference, pages 161–170, Washington, DC, USA, 2007. IEEE Computer

Society.

[9] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and software design

methodology for embedded systems.IEEE Design and Test of Computers, 18(6):23–33,

2001.

[10] C. L. Liu and James W. Layland. Scheduling algorithms formultiprogramming in a hard-

real-time environment.J. ACM, 20(1):46–61, 1973.

[11] M. Gonzalez Harbour, M. Klein, and J. Lehoczky. Timing analysis for fixed-priority schedul-

ing of hard real-time systems.IEEE Transactions on Software Engineering, 20(1), January

1994.

50

[12] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller area network

(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Syst., 35(3):239–

272, 2007.

[13] Razvan Racu, Marek Jersak, and Rolf Ernst. Applying sensitivity analysis in real-time dis-

tributed systems, 2005.

[14] A. Burns K. W. Tindell and A. J. Wellings. Allocating hardreal-time tasks: An np-hard

problem made easy, 1992.

[15] Giorgio Buttazzo Enrico Bini, Marco Di Natale. Sensitivity analysis for fixed-priority real-

time systems, 2006.

[16] CJCH Watkins. Thesis: Learning from delayed rewards. 1989.

[17] Peter Dayan. The convergence of td() for general .Real-Time Systems, 8:341–362, 1992.

[18] Razvan Racu, Marek Jersak, and Rolf Ernst. Applying sensitivity analysis in real-time dis-

tributed systems. InProc. of the RTAS Conference, San Francisco (CA), U.S.A., March 2005.

[19] R. Yerraballi and R. Mukkamalla. Scalability in real-time systems with end-to-end require-

ments. InJournal of Systems Architecture, volume 42, pages 409–429, 1996.

[20] Traian Pop, Petru Eles, and Zebo Peng. Design optimization of mixed time/event-triggered

distributed embedded systems. InProc. of the CODES+ISSS Conference, New York, NY,

USA, 2003. ACM Press.

[21] Alexander Metzner and Christian Herde. Rtsat– an optimaland efficient approach to the

task allocation problem in distributed architectures. InProc. of the IEEE RTSS Conference,

Washington, DC, USA, 2006.

[22] I. Bate and P. Emberson. Incorporating scenarios and heuristics to improve flexibility in

real-time embedded systems. In12th IEEE RTAS Conference, pages 221–230, April 2006.

[23] R. Racu A. Hamann and R Ernst. Multi-dimensional robustness optimization in heteroge-

neous distributed embedded systems. InProc. of the 13th IEEE RTAS Conference, April

2007.

51

[24] R. Racu A. Hamann and R Ernst. Methods for multi-dimensional robustness optimization in

complex embedded systems. InProc. of the ACM EMSOFT Conference, September 2007.

[25] Enrico Bini, Marco Di Natale, and Giorgio Buttazzo. Sensitivity analysis for fixed-priority

real-time systems. InEuromicro Conference on Real-Time Systems, Dresden, Germany, June

2006.

[26] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time Schedul-

ing: The Deadline Monotonic Approach. InProceedings 8th IEEE Workshop on Real-Time

Operating Systems and Software, Atalanta, 1991.

[27] J.J.G. Garcia and M. G. Harbour. Optimized priority assignment for tasks and messages in

distributed hard real-time systems. In3rd Workshop on Parallel and Distributed Real-Time

Systems, 1995.

[28] ILOG CPLEX Optimizer. http://www.ilog.com/products/cplex/.

[29] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-constrained

heterogeneous processor architectures.IEEE Trans. Parallel Distrib. Syst., 4(2):175–187,

1993.

[30] M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979.

[31] Robert P. Dick, David L. Rhodes, and Wayne Wolf. TGFF: taskgraphs for free. InCODES,

pages 97–101, 1998.

[32] Qi Zhu. Optimizing Mapping in System Level Design. PhD thesis, EECS Department, Uni-

versity of California, Berkeley, Sep 2008.

[33] Abhijit Davare. Automated Mapping for Heterogeneous Multiprocessor Embedded Systems.

PhD thesis, EECS Department, University of California, Berkeley, Sep 2007.

52

