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C2Cfs: A Collective Caching Architecture for Distributed File Access

Abstract

In this report we present C2Cfs - a novel collective
caching architecture for distributed filesystems. C2Cfs
diverges from the traditional client-server model and
advocates decoupling the consistency management role
of the central server from the data serving role. Our
design enables multiple client-side caches to share data
and efficiently propagate updates via direct client-to-
client transfers, while maintaining the standard con-
sistency semantics. We present an NFSv4-based im-
plementation of our architecture, which works with un-
modified NFS servers and requires mo changes to the
protocol.  We also evaluate the implementation and
demonstrate the performance benefits of decentralized
data access enabled by our approach.

1 Introduction

Medium and large commercial enterprises, engineer-
ing design systems, and high performance scientific ap-
plications, all require sharing of massive amounts of
data across a wide-area network in a reliable, efficient,
consistent, highly available, and secure manner. While
a data sharing infrastructure that fulfills all of these
objectives remains an elusive, if not altogether impos-
sible goal, a number of different approaches and designs
have been explored over the years.

At one end of the spectrum, traditional networked
filesystems, such as NFS [18] and AFS[11], follow the
client-server paradigm and enable a collection of client
machines to access a shared filesystem exported by a
remote central server. In this model, the server plays
the role of the authoritative “owner” of the data.

At the other end, we have seen a number of propos-
als for fully decentralized distributed filesystems such
as xFS [5] that employ the anything-anywhere princi-
ple and eliminate the notion of centralized ownership.
In xFS, the owner of a file is not statically defined,
but can move among a set of cooperating servers. In
general terms, a serverless distributed storage archi-
tecture requires maintaining an additional set of map-

pings between logical data identifiers (e.g., filenames)
and the locations of their respective owners. These
mappings can either be stored centrally or distributed
across the participants. In the extreme case, fully de-
centralized P2P storage systems such as Ivy [15] and
OceanStore [13] use the distributed hash table (DHT)
primitive to locate the owner(s) of a given datum and
retain availability in the face of membership churn.

While the client-server model is attractive due to
its simplicity, centralized file access has several ma-
jor drawbacks. Fundamentally, it constrains the move-
ment of data to a star-like topology and does not take
advantage of better inter-client connectivity that may
likely exist. As a result, i) data access throughput is
limited by server’s capacity and by the network band-
width to the server, ii) clients may observe poor latency
in WAN environments since data is routed triangularly
through the server, and iii) data availability is limited
by the connectivity and availability of the server.

In contrast, the serverless approach exemplified by
systems such as xF'S and Ivy helps alleviate the server
bottleneck by distributing data ownership and con-
trol, but requires complex techniques for locating data,
managing consistency, and handling failures. Absence
of a central server accountable for the data makes such
systems difficult to administer and deploy in a com-
mercial setting. Furthermore, most of the existing
serverless filesystem protocols are optimized for high-
bandwidth LAN connectivity and are not suited for
use over wide-area networks. We believe these to be
the prime factors that hinder the adoption of server-
less solutions in enterprise settings and today, NFS,
CIFS, and AFS remain the three most widely deployed
protocols for remote file access within an enterprise.

Caching of data closer to the client is a widely used
technique to mask the latency and poor connectivity
of WAN links. In the context of client-server file ac-
cess, both NFS and AF'S rely extensively on client-side
caching to improve performance. With caching, how-
ever, comes the fundamental problem of cache consis-
tency. Strong consistency, where every read operation
reflects the most recent write, would incur a high per-
formance penalty and is rarely implemented in practice



in large multi-client distributed filesystems. Both NFS
and AFS provide a weaker form of cache consistency,
called close-to-open consistency, where a client is re-
quired to flush all changes when closing a file and a
subsequent client is guaranteed, at the time of an open
request, to see the updates from the last close request
observed by the server [11, 16].

Regardless of how consistency is implemented, the
server, in a traditional client-server setting such as
NEFS, is the authoritative owner of all data and meta-
data and can be viewed as playing two additional roles,
namely: i) servicing all data cache misses and ii) man-
aging the cache consistency state and driving the cache
revalidation and/or invalidation protocols!.

In this report, we argue for a simple decoupling
of roles, i.e., the consistency management role of the
server from the miss handling role, within the tradi-
tional client-server model. Such separation enables a
new point in the design space of distributed filesys-
tems, where clients cooperate on servicing each others’
cache misses and retrieve data via direct client-to-client
transfers that are topologically optimal, thereby reduc-
ing server load and improving client response times.
At the same time, our approach does not forfeit the
simplicity and practicality of the standard client-server
model, allowing the server to remain the authoritative
owner of the data. In enterprise settings this is an
important consideration given the need for interfacing
with backup and disaster recovery systems.

We propose C2Cfs- a stackable filesystem layered
over NF'S that enables client caching proxies to cache
file data in a local persistent store and share it with
other client proxies, while maintaining the traditional
close-to-open consistency semantics. The design of
C2Cfs is guided by the following practical require-
ments: i) support well understood consistency seman-
tics ii) use a standard, open, widely-deployed file ac-
cess protocol. In order to make it a practical solution,
our design and implementation rely only on the stan-
dard NFS protocol and do not require any server-side
changes.

The benefits of cooperative client-side caching have
been extensively explored in research literature [5, 6,
20] and are well understood. Unlike much of earlier
work in this area, C2Cfs is not primarily focused on
increasing the effective cache size and reducing the
number of misses by deciding on what files to cache
as a group and how to evict the files from the set
of caches [5]. C2Cfs is more geared toward reducing

IMore concretely, the consistency state is managed by the
server either directly using callbacks as in AFS or NFSv4 with
delegations or by storing ”change attribute” values and respond-
ing to client GETATTR requests as in NFS [18].

client-observed latency and the server load in a widely-
distributed setting. Furthermore, earlier proposals for
cooperative caching in networked filesystems either in-
troduce a new dedicated protocol, rely on integrating
with existing DHT systems [6], or require extensions
to the NFS protocol [20]. Experience has shown that
open and widely-adopted standards such as NFS are
remarkably resistant to change and as a result, these
systems face a substantial barrier to adoption in an
enterprise setting. Moreover, while most of these de-
signs focus on read-only data, none of them support
a well-defined consistency model such as close-to-open
consistency for handling updates.

In contrast, C2Cfs requires no changes to the foun-
dational file access protocol and can be readily de-
ployed over an existing storage infrastructure. To the
best of our knowledge, C2Cfs is the first system to pro-
vide the benefits of collective caching while operating
within the confines of a standard and widely-used dis-
tributed filesystem protocol. While our current imple-
mentation is based on NFSv4, it is inherently designed
to work with other file access protocols such as NFSv3,
AFS, and CIFS.

In this report, we highlight our three main contri-
butions. First, we propose a design for a collective
caching scheme that can be layered on any distributed
filesystem supporting close-to-open consistency. Sec-
ond, we present an NFSv4-based instantiation of this
architecture. Finally, we demonstrate the practicality
and quantitative benefits of our scheme by presenting a
Linux-based C2Cfs prototype implementation and its
evaluation under a range of workloads.

The rest of the paper is organized as follows. In the
next section we provide a brief overview of the tradi-
tional consistency semantics in distributed filesystems.
Section 3 provides an overview of the C2Cfs architec-
ture. The implementation is described in Section 4, fol-
lowed by Section 5 that evaluates C2Cfs under a range
of workloads. Finally, Section 6 provides an overview
of the related work and Section 7 concludes.

2 Cache Consistency Semantics

A number of design and implementation choices we
made in C2Cfs were driven by our desire to support
the close-to-open consistency semantics provided by
the traditional client-server file access protocols.

Under close-to-open consistency, after opening a file
a client is guaranteed to observe all previous updates
committed by a close request. More formally, we de-
fine that in a given global execution history of file re-
quests, a read(f) request issued by client ¢ at time ¢,
returns valid data if it reflects the effects of every prior
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=1 | OPEN (1)
=2 OPEN (f)
t=3 | READ (f, 0, 4096)
t=4 READ (f, 0, 4096)

t=5 | WRITE (f, 0, “X)
t=6 | CLOSE ()

=7 WRITE (f, 1, “Y")
t=8 CLOSE (f)

t=9 OPEN (f)
=10 READ (f, 0, 2)

Figure 1: Concurrent access to a shared file.

write(f) request (from any client) committed at time
t. < t,, where t, is the time of ¢’s most recent open(f)
request. A write(f) request from client ¢ is considered
committed when ¢’ issues a close(f) request. We say
that a distributed filesystem protocol provides close-
to-open cache consistency if a read(f) request al-
ways returns valid data for any shared file f and any
request execution history.

These semantics are fairly easy to achieve in the con-
ventional client-server model. In NFS, clients are re-
quired to perform a writeback and send all modified
data to the server before closing a file. When opening
a file, the client issues a GET ATT R request to retrieve
the latest file attributes from the server, using which
it validates the cached version. In AFS, instead of the
client checking with the server on a file open, the server
establishes a callback to notify the client if the file gets
updated on another client. Analogously, all changes
must be sent to the AFS server when the client closes
the file.

The key question that arises in C2Cfs is how to pro-
vide these semantics in a decentralized client-to-client
model that does not force clients to send all read re-
quests to the main server. To illustrate that lack of cen-
tralized serialization may lead to complications, con-
sider the example in Figure 1, in which three clients
(c1, c2, and c3) are accessing a shared file f of length
4KB that initially resides on the central server. Ob-
serve that the open request issued by c3 is preceded
by close requests from c¢; and ¢y, which means that
cs should observe the effects of both preceding writes
and the read operation at t = 10 should return “XY”.
However, at the time of ¢3’s open, ¢1’s local copy of f
may not necessarily reflect the update performed by ¢y
and vice versa. Hence, a direct client-to-client transfer
from ¢ or ¢y would in this scenario fail to return cor-
rect data and some additional coordination must take
place in order to ensure that both updates are reflected
in the version that we make available to c3.

Client ¢,

‘__FidMap\ _file1__
filel.GlobalFid | *— filel. CVMap = <cy, >

Tcommit = 3
,,/'ﬂleL‘\ ‘__,file2\‘
GlobalFid = ... CVMap = <cp, c3>
Tiocal = 3 Teommit =5

Figure 2: Overview of the C2Cfs architecture.

3 C2Cfs Architecture

C2Cfs extends the basic model of client-server
filesystem in a way that enables a collection of clients
to access the shared filesystem in a consistent and ef-
ficient manner without requiring them to always fetch
the data from the server. In C2Cfs, each client node
plays the role of a caching proxy that stores a subset of
the shared files persistently on its local disk. Further-
more, clients revalidate their cache content using direct
client-to-client transfers, while retaining some minimal
coordination with the server to guarantee close-to-open
consistency. Figure 2 illustrates the high-level organi-
zation of C2Cfs and lists the key pieces of state.

In C2Cfs, each file f in the shared filesystem is as-
signed a globally-unique persistent identifier, denoted
f.Global Fid?. Locally at each client node, C2Cfs main-
tains a file identifier map (denoted FidM ap) that maps
the global persistent identifier onto a local identifier
(f.Local Fid) referring to the clients’s own copy of the
file in its local cache. For each locally-cached file,
we also maintain the reverse mapping (f.Local Fid —
f-Global Fid) as part of per-file metadata.

C2Cfs uses a straightforward timestamp-based
scheme to provide cache consistency guarantees, while
supporting direct cache-to-cache transfers. As the ex-
ample in Section 2 demonstrates, a fully-decentralized
model of update propagation may require clients, in a
degenerate case, to track validity and fetch updates
from remote clients at the granularity of individual
bytes - clearly an infeasible requirement. This resulted
in our first simplifying design choice: we maintain the
cache validity status at whole-file granularity.

To guarantee close-to-open consistency in C2Cfs,
the central server maintains a per-file commit times-
tamp (Teommit) - & monotonic counter that is incre-
mented by 1 every time a client commits its updates to
a file by sending them to the server and closing the file.
The value of Trommit at the server establishes the most
recent version of the file observed by the server and a
client’s copy of f is considered wvalid if its local times-
tamp value (f.Tjocqar) matches the server’s f.Teommit-

2In our current NFS-based implementation, the NFS filehan-
dle from the central server plays the role of the global identifier.



Finally, for each file f in the filesystem, the server
maintains the cache validity map (f.CV Map) which
maps f.Global Fid onto a list of client locations stor-
ing valid copies. Observe that instead of relying on
an external DHT-based service for locating up-to-date
replicas, we maintain the list of locations at the central
site and manage it using standard NFS.

At a high level, cache revalidation in C2Cfs pro-
ceeds as follows: When an application issues a file open
request, the client first resolves the supplied filename
into a GlobalFid ®. (Note that the filename — to —
Global Fid mapping may change as result of metadata
operations, e.g., file creation, deletion, and renaming).
Next, given a file’s global identifier, the client reads
its current T.ommqie and CV Map from the server. The
client then consults its FidMap and if a copy exists in
the local cache, obtains the corresponding Local Fid
and the local version timestamp Tiocai- If Teommit
matches Tjocqai, the cached replica of the file is valid.
Otherwise, the client immediately discards the cached
version and requests a fresh copy from the client(s) that
hold a valid copy according to C'V Map. As a fallback,
if no remote client has the most recent data in its cache,
the client retrieves the file directly from the server.

After obtaining the latest copy of the file and writ-
ing it to the local cache, the client sets f.Tjocai =
f-Teommit, updates the validity map to reflect the fact
that it now holds an up-to-date copy, and writes the
modified CV Map to the server. Once a client’s local
copy of the file has been revalidated, all reads are ful-
filled from the local cache, while updates are written
through to the cache and the central server.

When an application at client ¢ closes a file f,
the client must flush all outstanding updates to the
file, increment f.T,ommst at the server, and determine
whether its cached version is still valid, which would
be the case in the absence of concurrent updates to
the same file from other clients. That is, after clos-
ing the file, ¢’s cached version remains valid if no
other client performed a close operation between c’s
own close and its preceding open. To make this de-
termination, ¢ stores the value of server’s f.T.ommit
at the time of opening the file in a local variable
(f-Topen). When closing the file, ¢ re-reads the server’s
timestamp and compares it to the original value. If
fTeommit = fTopen then there have been no concur-
rent updates and ¢’s cached version of f remains valid.
In this case, the client adds itself to the list of valid
cache locations by setting f.CV Map := {c}. Other-
wise, a remote client must have committed some con-

3In the current implementation, this is accomplished via an
NFS LOOKUP request to the server, which returns a persistent
opaque NF'S filehandle.

flicting updates to f, in which case none of the clients
are guaranteed to have observed all committed updates
and we set f.CVMap := (. Hence, at the end of
this step, the set of valid client caches in f.CV Map
is either empty or contains precisely one entry. In
both cases, the client completes the operation by in-
crementing f.Teommit and writing the new timestamp
and f.C'V Map to the server.

This mechanism enables us to provide the close-to-
open consistency guarantees as defined in Section 2.
While a formal proof is beyond the scope of this paper,
observe that since all updates are written through to
the central server, revalidating a stale cache entry from
the server is always safe. Furthermore, we can demon-
strate using an inductive argument that client-to-client
revalidation is also safe: ¢ may revalidate a file f from
another client ¢* only if ¢* € f.CV Map, whereas c*
adds itself to f.C'V Map only after revalidating its own
copy to reflect all preceding committed updates.

In our initial example, client ¢; would set
f.CV Map := {c1} when closing the file. When ¢z is-
sues a close request, however, it would detect a con-
current update and clears the list of valid caches by
setting f.CV Map := (). At a later stage, c3 finds the
list of caches to be empty and proceeds to accessing
the file from the primary server.

In our current design, all metadata operations (e.g.,
file creation and deletion) are written through to cen-
tral server and the corresponding changes are also ap-
plied to the local cache.

4 Prototype Implementation

In this section we detail our implementation of
C2Cfs on Linux 2.6.21 using NFSv4 as the file access
and cache coordination protocol. Figure 3 illustrates
the high-level organization of the C2Cfs implementa-
tion and below, we focus our discussion on the three
core components, namely: i) the client-side kernel mod-
ule that implements a stackable filesystem layered over
NFSv4 and ext3, ii) the management of server-side
state, and iii) client-to-client data transfer.

4.1 Client-side filesystem layer

We have implemented a C2Cfs prototype on Linux
as a stand-alone loadable kernel module. Our proto-
type exposes a new file system type into the Linux
VFS layer, providing the collective caching facility on
top of the unmodified NFS client and a local persis-
tent cache back-end. (In the discussion that follows,
we refer to these underlying filesystem layers as client-
NFS and localFS, respectively). The stackable archi-



Primary Server

register_filesystem (VFS)

-—
user

kernel

NFS export nfsd - VFS
-— e
NFS ext3 (primary FS)
PR iR .
Cache 1 Cache 2

Application
user

kernel

ext3 (cache)| | nfs C2Cfs

Application
user

kernel
nfsd 0 VFS
cacfs ext3 (cache)

Figure 3: C2Cfs implementation.

tecture of C2Cfs ensures that any POSIX filesystem
could be used as the cache backend. Some aspects
of the local client cache implementation are similar to
xCacheF'S [19].

Conceptually, a C2Cfs filesystem on Linux is
a collection of in-memory kernel data structures
(super_block, inodes, dentries, and files) without a
persistent embodiment on the local disk. These data
structures are created dynamically in response to ap-
plication requests sent through the VFS layer.

To enable direct client-to-client data transfers, the
root of a C2Cfs file system is exported via NFS so
that the contents of the local cache are available to
remote C2Cfs-capable clients. It is important to note
that we export the root of the C2Cfs file system rather
than the actual on-disk cache (localF'S). As we explain
below, this enables us to implement a special lookup-
by-filehandle-as-name procedure that permits the local
client to retrieve data from remote peers efficiently via
its Global Fiid (the primary server’s NFS filehandle).

During initialization, our module registers the C2Cfs
filesystem type with the VFS layer. To mount a C2Cfs
filesystem, the mount() system call is invoked with a
number of arguments, which include: i) the path to
the root of the localFS, ii) the path to the NFS mount
point for the server.

The C2Cfs layer ensures that the cached data and
metadata stored within localF'S mimics the namespace,
directory structure, and inode attributes of the remote
server by controlling the file lookup and cache popula-
tion code path.

The FidM ap maintains mappings from a file’s pri-
mary NFS filehandle to an identifier in localF'S. A file in
the local cache is typically identified by the device_id,
the inode number, and the inode generation number.
To ensure compatibility across various filesystem types,
we obtain the Local F'id using the kernel’s exportfs fa-
cility, which constructs an opaque identifier from a
given localFS dentry by invoking a filesystem-specific

callback. Currently, our implementation maintains the
FidMap in a simple in-memory hash table, backed by
a hidden file in localFS.

C2Cfs also maintains a small amount of per-file
metadata, which includes the local commit timestamp
Tiocqr and its Global Fid. Our current implementation
maintains this state in an extended file attribute, but
alternative options (e.g., storing these structures in a
flat file indexed by the cacheFS inode number) can be
considered for back-end file systems that do not sup-
port extended attributes.

When an application issues a file open request to
C2Cfs, we obtain the object’s dentry in localFS, revali-
date the cached copy via the protocol described in Sec-
tion 3, and call the dentry_open VES function to obtain
an open file object in localFS. If write-mode access is
requested, we also obtain the corresponding open file
structure in clientNFS, which is necessary for write-
backs to the server. The localF'S and clientNFS open
file structures are linked to the main C2Cfs open file
object via its private_data field.

The processing of the actual read and write requests
on an open file is, in fact, quite straightforward. A
read request is handled by reading the corresponding
region from the local cache and all write requests are
propagated to both clientNFS and the local cache.

4.2 Server-side State

For each file in the shared filesystem, the server
maintains the current commit timestamp Teommir (2
32-bit integer) and the cache validity map. Currently,
the CV Map is represented by a bitmap which contains
1 bit per client indicating whether the respective client
caches the last committed version of the file.

Since our design requirements dictate an unmodi-
fied server, clients are responsible for creating, updat-
ing, and deleting these objects. Hence, the client that
first creates a file will also create and initialize the as-
sociated Teommst and CV Map data structures at the
server.

The per-file metadata at the server could be stored
as an extended attribute along with the file, but we
found that the Linux 2.6.21 implementation of the
NFSv4 server only supports ACLs and not general ex-
tended attributes. Hence, our current implementation
keeps the metadata in a separate file much like a named
attribute. The file is stored in a hidden well-known di-
rectory with the name of the file being the string rep-
resentation of its Global Fid.

By storing the server state in a separate file we
pay the additional overhead of open, close, read, and
write operations every time the server state is modified.



These overheads are an artifact of the NFS server im-
plementation on Linux and not a design issue. Apart
from that, clients must coordinate their access to these
shared objects and our current implementation relies
on NFSv4 advisory locking, which incurs some addi-
tional synchronization overhead.

4.3 Client-to-Client Data Movement

When revalidating a cached copy of a file f, a client
retrieves f.T.ommi and f.CV Map from the server. It
consults the validity map to determine the list of peer
locations from which a valid copy of f can be fetched.

Client-client mount: The C'V Map may only rep-
resent a numerical client identifier client_id, in which
case we need an external means of resolving client_id
into (hostname : export_path) and currently, we main-
tain these mappings in a static configuration file. Given
a peer client’s hostname and export path, the client
mounts its C2Cfs export over NFS. The mounting is
done on demand, as we do not want all clients to be
mounting from all their peers.

Observe that the above steps of getting a list of client
locations and performing an internal mount is very sim-
ilar to the NFSv4 client’s behavior when sub-mounting
from a replica location on a referral. In that case the
client receives (hostname : export_path) as part of the
fs_locations attribute. However, we could not leverage
this feature, since in current NFSv4 implementations
referrals are only possible at filesystem boundaries.

Lookup using filehandle as name: To fetch an
up-to-date version of a file f from a remote peer, the
client must perform a lookup over NFS and obtain
the corresponding filehandle from the peer. Instead
of issuing a lookup requests on the filename of f, the
client requests a lookup on the string representation
of f.GlobalFid. This unusual lookup technique serves
two important purposes: i) avoiding the overhead of a
multi-stage pathname lookups, ii) avoiding ambiguities
due to a rename of any component in the path leading
to the file or a rename of the file itself (the filehandle
is guaranteed to be persistent and unique).

The lookup from a remote peer proceeds as follows:
i) The client issues a lookup request for f.GlobalFid
with an intent to open, which results in an NFS OPEN
request with the name f.Global Fid to the peer client.
ii) When the peer client receives an OPEN request, the
NFS server daemon issues a VFS lookup with an intent
to open to the C2Cfs layer. iii) The C2Cfs layer detects
that this is a lookup by filehandle as a name and con-
sults the FidMap to obtain f.LocalFid. iv) Using the
kernel’s exportfs interface, it converts f.Local Fid to a
dentry in its localF'S and the dentry is used to obtain

an open file pointer to the local copy of f.

The current implementation splits up the file into n
equal-sized segments, where n is the number of avail-
able locations and prefetches the entire file into the
local cache in a piece-wise manner. Prefetching can
be made more efficient by utilizing the knowledge of
various network-level metrics such as the end-to-end
latency and bandwidth, but we have not yet explored
these optimizations. They are orthogonal to the core
C2Cfs design and can be retrofitted if needed.

4.4 Discussion

Leveraging delegations: NFSv4 has read and
write delegations support that can temporarily make
an NFS client the delegated owner of the file. While
the delegation is outstanding, all OPEN, READ,
WRITE, CLOSE, LOCK/UNLOCK, and attribute
requests for the file can be handled locally by the client.
Our implementation could use delegations in multiple
ways. Clients can obtain a write delegation on a shared
file and the associated metadata file and this would al-
low a client to update the two files together across mul-
tiple open-close cycles without contacting the server.
However, we found that although the Linux NFSv4
client supported write delegations, the Linux server im-
plementation never awarded them. Hence, our current
implementation does not take advantage of this feature.

Security and access checking: In a distributed
setting, security becomes an important concern. The
client cache can provide other peer clients access to
data without the server knowing or verifying their au-
thority to do so. In our implementation the client al-
ways checks with the server to get the cache map and
the server can perform access control checks at that
time. In other cases the client resorts to sending an
access request to the server to verify the access per-
missions for the peer client on every open.

5 Experimental Evaluation

In this section, we evaluate our Linux-based C2Cfs
prototype under a variety of micro-benchmarks and ap-
plications workloads. Below, we present only key re-
sults that quantitatively demonstrate the benefits of
decentralized data propagation and confirm the feasi-
bility of our design.

First, we quantify the extent to which the C2Cfs ar-
chitecture improves upon the traditional client-server
model with respect to the following key metrics: i) The
load on the primary server, as given by the number of
NFS operations and its network bandwidth consump-
tion. ii) Application-observed response time that is



affected both by the server utilization and the WAN
latency. We conclude this section by examining the
worst-case overhead incurred by our design.

5.1 Methodology

The experiments were conducted in a controlled test
environment consisting of 5 server-grade x86 machines
running Linux 2.6.21, 3.2GHz, 2GB memory, 72 GB
storage, interconnected via a 100Mbps switched Eth-
ernet. Four of these machines were assigned clients
running C2Cfs and the fifth machine played the role
of the central server holding the master replica of the
filesystem and exporting it to clients via NFSv4. Each
of the four clients was configured to use a local cache
hosted on an ext3 partition large enough to store a
complete replica of the shared filesystem.

In the following experiments, we compare C2Cfs, in
which we point the benchmark application to the C2Cfs
filesystem root, and the baseline scenario, in which
client applications are configured to access the shared
filesystem directly from the server via the NFS mount
point. Unless stated otherwise, all NFS read/write re-
quests are sent on the wire in 32KB chunks and the
application I/O request size is 256 KB.

5.2 Server Load Reduction

One of the benefits of sharing data across caches is
that the server will receive fewer requests and can scale
to support more clients. We measure the server load
reduction using two metrics: i) the number of NFS
operations received at the server, and ii) the number
of bytes transferred to and from the server.

Synthetic reads In the first set of experiments,
we evaluate sequential read access to a file whose size
ranges between 100KB and 100MB. Each client opens
and reads the entire file, and then closes it. The reads
are staggered among the clients with a 30-second delay.

In the baseline case, all the clients read the file from
the server and thus, the number of NF'S operations at
the server grows linearly with the number of clients,
as shown in Figure 4(a). With our scheme, only the
first clients reads the data from the server. The second
client fetches the file from the first client after getting
the cache map from the server. Similarly, the third
client reads from both the first and the second client
and so on. As expected, the number of requests re-
ceived by the NFS server with C2Cfs remain nearly
constant as the number of clients increases, since only
the first client fetches the file from the central server.

NFS Command Client 1 Client 2
Base | C2C || Base | C2C
CLOSE 1 3 1 2
GETATTR 5 15 5 13
GETFH 1 4 1 3
LOCK 2 2
LOCKU 2 2
LOOKUP 1 1
OPEN 1 3 1 2
PUTFH 325 338 325 17
READ 320 322 320 2
WRITE 1 1
| Total [ 660 | 702 ]| 660 | 54 ]

Table 1: NFS operations at the primary server in the syn-
thetic read experiment with 10MB file size.

Note, however, that this is true only for files larger
than 1MB because we pay an additional overhead
to OPEN, LOCK, READ/WRITE, UNLOCK, and
CLOSE the file holding the C2Cfs metadata. As we
discuss in Section 4, this is an artifact of the current
Linux NFS server implementation that does not com-
pletely support extended attributes and write delega-
tions. For larger files, the overhead is amortized over
the larger number of reads.

Figure 4(b) measures the amount of data transferred
to/from the server for the synthetic read experiment.
The number of bytes transferred grows linearly with
the number of clients in the baseline case, but stays
nearly flat when collective caching is enabled. With 4
clients, C2Cfs reduces the network bandwidth usage at
the server by 75% for a 100MB file.

In Table 1, we further analyze the behavior by con-
sidering the breakdown of NFS operations seen by the
central server in the synthetic read experiment with
a 10MB file. For the single client case, C2Cfs incurs
a 6% overhead due to accessing the metadata file at
the server (2 additional OPEN and CLOSE requests,
2 READs, and 2 LOCK/UNLOCK requests). With
more than one client, this overhead is alleviated by the
reduced number of READs done at the server.

Figure 5 shows a time-series plot illustrating the dis-
tribution of reads across the clients and the central
server. In the baseline case, the cumulative NFS re-
quests at the server increase linearly with the number
of clients. With collective caching, the first client starts
at time 0 and all its requests are sent to the server.
After a 30-second delay, client 2 starts and reads the
data from client 1 and the server sees only a marginal
increase in the number of requests. After another 30-
second delay, client 3 accesses the file and fetches the
data from clients 1 and client 2, and so on.

Synthetic reads and writes : In our next experi-
ment, we consider a sequential read/write access pat-
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thetic read experiment. The x-axis shows time in seconds
and the clients are staggered by 30 seconds each. The y-
azxis shows the cumulative number of NFS operations at the
server and each of the clients.

tern on files of varying sizes that range between 100KB
and 100MB. Each client opens and sequentially reads
the entire file, then writes the entire file and closes it.
As before, the operation are staggered and each client
begins 30 seconds after the previous client has com-
pleted its access. In the baseline case, all the clients
read the file from the server and thus, the number of
NF'S operations at the server increases linearly with the
number of clients, as shown in Figure 6(a). With col-
lective caching, all the writes are sent to the server,
but the reads are served by the other clients. Fig-
ure 6(b) shows the network bandwidth consumption at
the server and confirms that C2Cfs yields substantial
savings. Figure 7 shows the time-series plot illustrating
the distribution of reads across the clients.

Finally, Table 2 further analyzes the behavior by
considering the breakdown of NF'S operations seen by
the primary server in the synthetic read-write experi-
ment with a 10MB file. As before, our scheme incurs
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Figure 7: Distribution of NFS operations across clients

0

in the synthetic read/write experiment. The z-axis shows
time in seconds and the clients are staggered by 30 seconds
each. The y-axis shows the number of NFS operations at
the server and each of the clients.

NFS command Client 1 Client 2
Base | C2C || Base | C2C
CLOSE 1 4 1 4
GETATTR 327 342 327 342
GETFH 1 4 1 4
LOCK 3 3
LOCKU 3 3
OPEN 1 4 1 4
PUTFH 647 668 647 348
READ 320 323 320 3
WRITE 320 322 320 322

[ Total [ 1625 [ 1687 | 1625 | 725 |

Table 2: NFS operations at the primary server in the syn-
thetic read-write experiment for a 10MB file.
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by the server.

some additional overhead (3%) for the first client, but
substantially reduces the server load during subsequent
access by other clients by distributing the reads.

5.3 Application Response Time

Masking WAN latency: In a typical enterprise
with a central-office branch-office setting, the server
can be across a WAN while multiple peer clients in
a branch office are in close proximity to each other
and have a better connectivity among themselves than
with the remote server. In this experiment, we mea-
sure application response time in a scenario where the
server is separated from clients by a wide-area link.
We demonstrate that our architecture can help mask
WAN latencies and improve application performance.
To simulate the link latency, we use the standard Linux
tc packet filter and configure it to impose a mean la-
tency of 100 ms (which is what we had observed as the
round-trip-time between servers in California and New
York). We measure the application response time for
two synthetic workloads (sequential read and sequen-
tial read/write) on a single file of size 100MB from 4
clients and Table 3 reports the response time for both
schemes. For sequential read access, C2Cfs incurs a
2.5% overhead for the first client, but reduces the re-
sponse time by 50% for the second client and for all
clients that follow. In the sequential read/write exper-
iment, the response time is dominated by the writes
to the server and thus the two schemes exhibit similar
performance.

Overloaded server: The application response
time is also affected by the load on the server and Ta-
ble 4 demonstrates the performance benefits of decen-
tralized cache revalidation of C2Cfs in case of an over-
loaded primary server. In this two-stage experiment,

‘Workload Seq. read Seq. read+write
Base | Cc2C Base | C2C
Client 1 23.7 24.3 197.4 198.8
Client 2 23.5 10.3 198.0 194.7

Table 3: Application response time (seconds) for reading a
100-MB file from a server across a WAN.

‘Workload Seq. read
Base | C2C
Client 1 185 182
Client 2 204 205
Client 3 186 98
Client 4 204 91

Table 4: Overloaded server experiment: Response time
(seconds) for a sequential read of a 1GB file.

two distinct files, each of size 1GB, are read sequen-
tially by four clients. In the first stage, clients 1 and 2
read fileA and fileB, respectively. Since both reads are
handled by the central server, each client receives ap-
proximately 1/2 of the available server-side bandwidth.
In both schemes, all the requests go to the server and
thus, we observe similar performance. In the second
stage, clients 3 and 4 perform concurrent reads on fileA
and fileB, respectively. In the baseline scenario, these
reads are handled by the server as well and hence ob-
serve similar performance as the first two clients. By
contrast, with C2Cfs clients 3 and 4 can fetch the file
directly from clients 1 and 2 and avoid overloading the
server. With our architecture, these clients observe a
47% reduction in the response time compared to the
baseline case.

5.4 Evaluation with Realistic Application
Workloads

In the above experiments, we used synthetic work-
loads to evaluate C2Cfs in a controlled setting. In



NFS command Base Cc2C NFS command Base Cc2C
Srv Srv [|C1 | C2 Srv Srv [|C1 | C2

CLOSE 1570 3925 401 384 CLOSE 40944 102365 6668 13799
GETATTR 8740 19257 1606 1155 GETATTR 218723 468271 24105 41401
GETFH 3140 5498 402 385 GETFH 85515 146919 6669 13800
LOCK 3140 LOCK 81888

LOCKU 3140 LOCKU 81888

LOOKUP 1570 1573 1 1 LOOKUP 44571 44554 1 1
OPEN 1570 3925 401 384 OPEN 40944 102365 6668 13799
PUTFH 95395 68744 23209 | 22732 PUTFH 233021 641166 26087 | 42519
READ 88202 47096 22004 | 21959 READ 49236 105463 8649 14916
READDIR 32 33 READDIR 3075 3074

WRITE 1570 WRITE 40944
[ Total [[ 203391 [[ 164209 | 48831 [ 47773 | [ Total [[ 800860 [ 2026586 | 92188 | 167838 |

Table 5: Breakdown of NFS operations in the RPM tar
experiment.

the next set of experiments, we study the performance
with real application and Filebench [14] - a soon-to-be-
standard benchmark for filesystems that can simulate
a wide range of realistic workloads.

Tar archive creation (large files): In this exper-
iment, clients create a tarball of a directory tree ex-
ported by the server and mounted at each client over
/mnt. The directory contains a collection of relatively
large binary RPM files (part of the Fedora Core Linux
distribution). The top-level directory /RPMS consists
of two sub-directories /dirl and /dir2. Client 1 issues
the command “tar cf ./dirl.tar /mnt/RPMS/dirl” to
create a new archive with the contents of /dirl and
client 2 issues “tar cf ./dir2.tar /mnt/RPMS/dir2”. In
both schemes, (baseline and C2Cfs) all the requests for
the files in /mnt/RPMS go to the central server. Next,
client 3 creates a tarball of the top-level directory (“tar
cf ./RPMS.tar /mnt/RPMS”). In the baseline case, all
requests are sent to the server, while collective caching
enables client 3 to fetch the contents of /dirl and /dir2
from clients 1 and 2, respectively. Table 5 reports the
total number of NFS requests observed by the server
and each client after all clients have completed the tar
operation. With collective caching, client 3 fetches the
contents of /mnt/RPMS from clients 1 and 2, thus re-
ducing the number of READ requests observed by the
server by 46%.

Tar archive creation (small files): In the next
experiment, we measure the performance of tar archive
creation for a directory tree consisting mainly of small
files. For this, we use the Linux kernel source tree
whose top-level directory /linux consists of 17 sub-
directories, which we rename to /subdirl-17. Client
1 issues “tar cf ./dirl-9.tar /mnt/linux/dir1-9” for the
first 9 sub-directories and client 2 issues ‘tar cf ./dir10-
17.tar /mnt/linux/dir10-17” for the remaining 8 sub-
directories. In both schemes, all requests from clients
1 and 2 go to the central server. Next, client 3 cre-
ates an archive of the top-level directory by issuing
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Table 6: Breakdown of NFS operations in the Linuz kernel
tar experiment.

“tar cf ./linux.tar /mnt/linux”. In the baseline case,
all requests are sent to the server, while with collec-
tive caching, client 3 fetches the subdirectories directly
from its peers. Table 6 reports total number of NFS
requests processed by the server and each of the clients.
Observe that with C2Cfs, the total number of READs
seen by the central server is significantly higher than in
the baseline case. Although this appears non-intuitive,
recall that C2Cfs requires maintaining a metadata for
each file at the server. In this scenario, the overhead of
accessing and updating the metadata overshadows the
cost of simply reading the file from the server, which
suggests that our approach may not be advantageous
for very small files.

Filebench (web server workload): In this ex-
periment, we use the Filebench benchmark [14] with a
Web server workload. We first generate a directory tree
containing 5000 files with a mean file size of 100KB.
The workload consists of 5000 file accesses (open, se-
quential read, close) with a Zipfian popularity distribu-
tion. Additionally, a 16-KB block is appended to a sim-
ulated log for every 10 reads. We run the workload on
each of the four clients and measure the total network
bandwidth consumption at the server (bytes sent and
received). Each client starts out with an empty cache
and begins when the previous client has completed.
Each client reads 5000 randomly-chosen files (different
clients may choose different files). In the baseline case,
all requests go to the central server, whereas with our
design, client 2 redirects a fraction of its requests to
client 1; client 3 redirects to 1 and 2, and so forth. Ta-
ble 7 shows the bandwidth consumption at the server
for each of the clients. For the first client, the baseline
scheme produces 169MB of traffic at the server, com-
pared to 189MB produced with C2Cfs. For all subse-
quent clients, however, our scheme reduces the network
bandwidth usage at the server by approximately 90%.



Client Network Traffic at the server (bytes)
C2C || Base

Client 1 189,707,017 169,217,953

Client 2 19,905,369 169,334,493

Client 3 || 19,921,029 || 169,189,073

Client 4 19,863,437 169,337,505

Table 7: Network bandwidth usage at the central server in
Filebench web server experiment.

| File size || Baseline | C2C | overhead (%) |
1 MB 0.094 sec. | 0.117 sec. 24.5%
10 MB 0.897 sec. | 0.923 sec. 2.9%
100 MB 8.937 sec. | 8.978 sec. 0.5%

Table 8: Latency overhead for a single-client sequential
read for varying file sizes.

5.5 Overhead of C2Cfs

In this section, we evaluate the worst-case overhead
incurred by C2Cfs. Clearly, for a single-client access
with no sharing across clients, C2Cfs provides no ben-
efit and imposes some additional overhead, which in-
cludes: i) The space overhead of storing the per-file
metadata (Teommit, CV Map) at the server. Our cur-
rent implementation adds 8 bytes of per-file state - a
negligible overhead for all but very small files. ii) The
server load overhead due to the additional operations
done at the server for cache revalidation. Here, we also
pay a non-negligible penalty for small files, as the re-
sults in Section 5.4 suggest. iii) The latency overhead
incurred by the revalidation protocol due to the addi-
tional time taken to access the C2Cfs metadata at the
server. We quantify this overhead in the next experi-
ment.

Latency overhead: To quantify the latency over-
head, we measure the response time seen by a sin-
gle client that sequentially reads a file residing at the
central server. The server is across a 100Mbps LAN
connection with no simulated delay. Table 8 reports
the client-observed response time. As expected the
overhead falls from 24% for the 1MB file to 0.5% for
a 100MB file. While clearly non-trivial, in scenarios
with large files and multiple clients that were exam-
ined above, this overhead is masked by the benefits of
a collective consistent cache.

6 Related Work

The C2Cfs architecture presented in this report
draws on a large body of prior work in filesystems and
the broad topic of replica consistency maintenance in
distributed storage systems. Below, we review the most
relevant pieces of related work.

Client-server distributed filesystems: NFS 8,
18] and AFS [11, 12] are among the most widely-used
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distributed networked filesystems. Coda [17] extends
the core architecture of AFS to support server replica-
tion and disconnected mode of operation, allowing for
improved data availability in the event of a network
partition. As with most “pure” client-server architec-
tures, the flow of data and cache invalidation requests
in these systems is constrained to a star topology with
very little direct inter-client coordination.

While in this paper, our implementation was pre-
sented in the context of NFSv4, the C2Cfs architec-
ture can leverage any distributed filesystem protocol
that supports: i) close-to-open consistency, ii) persis-
tent unique file identifiers, iii) file locking or atomic
creates. Hence, our system could also be easily stacked
on top of NFSv3, NFSv4, AFS, etc. to provide the
benefits of collective caching.

P2P file sharing systems: In recent years, the
phenomenal popularity of peer-to-peer file sharing ser-
vices such as Gnutella, Kazaa, and BitTorrent [3, 1, 2]
has sparked substantial research interest in the appli-
cations of P2P techniques to storage systems and, more
broadly, the benefits of decentralization over the tra-
ditional client-server model. However, systems such
as these might be best viewed as playing the role of
a search engine rather than that of a a storage archi-
tecture; the high-level problem they address is that of
locating immutable content in a dynamic and unreliable
client population. Many P2P file sharing systems oper-
ate by organizing their clients into an unstructured or
semi-structured overlay and clients cooperate on prop-
agating each others’ search queries.

In contrast, C2Cfs is a fileserver architecture that
exposes the standard POSIX filesystem interface, sup-
ports read/write access, and provides familiar consis-
tency semantics. BitTorrent [2] is one of today ’s most
widely used (and eagerly studied) file sharing proto-
col. Its chunk-based data retrieval method that en-
ables clients to fetch data in parallel from multiple re-
mote sources is similar to the idea of parallel access in
C2(Cfs.

P2P serverless storage systems: The advent of
P2P file sharing and the immense research interest in
DHT-driven content storage techniques have led some
to propose a fully-decentralized, serverless architecture
as a viable architectural model for general-purpose dis-
tributed filesystems. The Cooperative File System
(CFS) [9] is a peer-to-peer read-only filesystem that
provides provable efficiency and load-balancing guar-
antees. Internally, CFS uses a DHT-based block stor-
age layer (DHash) to distribute filesystem blocks over a
set of CFS storage servers. The Ivy architecture [15] is
a read-write P2P filesystem that provides NFS seman-
tics and strong integrity properties without requiring



users to fully trust the other users of the filesystem.
Ivy relies on cryptographic techniques to protect the
data and hence incurs a substantial performance cost.

The Oceanstore project [13] proposes a large-scale
globally-distributed cooperative storage infrastructure
and an economic model in which consumers pay their
providers for access to reliable storage. Oceanstore as-
sumes untrusted servers and uses Byzantine agreement
techniques to coordinate access between the replicas.
Farsite [4] is a serverless distributed storage system
that enables a group of cooperating (but possibly un-
reliable and misbehaving clients) to combine their re-
sources into a highly-available and reliable file storage
facility. Farsite achieves data availability and persis-
tence through aggressive randomized replication, while
relying on cryptographic tools (encryption and digital
signatures) to safeguard against unauthorized access to
user data. The design of Farsite is based on an opti-
mistic update propagation scheme that does not en-
sure close-to-open consistency, which represents a sig-
nificant departure from C2Cfs.

In summary, serverless storage systems such as CFS,
Ivy, Oceanstore, and Farsite were designed with the
fundamental goal of providing safe and reliable storage
in inherently unreliable peer-to-peer environments that
are typically characterized by high rates of member-
ship churn, imperfect network connectivity and pres-
ence of unreliable and misbehaving clients. The re-
liance on cryptography and Byzantine agreement tech-
niques in these systems imposes a considerable per-
formance penalty, which makes us suspect that these
systems would be a poor fit for supporting applications
that operate on large volumes of data and demand high
I/0 throughput.

In contrast, application performance represents the
primary focus of our work. C2Cfs retains the client-
server separation but enables filesystem data to travel
directly between the participant trusted cache sites.
Unlike Farsite and Oceanstore, the design of C2Cfs
does not assume an adversarial environment, which in
turn allows us to sidestep many of the issues related to
data authenticity and trust.

The Bayou [10] project is a platform of repli-
cated, highly-available, variable-consistency, mobile
databases for collaborative applications. Bayou intro-
duced new definitions of consistency for mobile appli-
cations which differ from NFS.

The Shark cooperative file cache architecture [6]
has similar goals as C2Cfs. However, it does not pro-
vide the traditional close-to-open consistency guaran-
tees and does not support an unmodified NFS server
and protocol - an important consideration for commer-
cial deployments.
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Finally. the PRACTT replication framework [7] illus-
trates the benefits of separating the flow of cache invali-
dation traffic from that of data itself and C2Cfs demon-
strates how such separation can be realized within the
confines of a standard client-server file access protocol.

7 Conclusion

In this report, we argued for decoupling the data and
cache consistency traffic in the client-server filesystem
model. We presented C2Cfs - a collective caching ar-
chitecture that supports decentralized client-to-client
data flow, while retaining standard consistency seman-
tics.
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