
Convergence and Stability of a Distributed CSMA
Algorithm for Maximal Network Throughput

Libin Jiang
Jean Walrand

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-43

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-43.html

March 28, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research was supported in part by MURI grant BAA 07-036.18.

1

Convergence and Stability of a Distributed CSMA

Algorithm for Maximal Network Throughput
Libin Jiang and Jean Walrand

EECS Department, University of California at Berkeley

{ljiang,wlr}@eecs.berkeley.edu

Abstract—Designing efficient scheduling algorithms is an
important problem in a general class of networks with resource-
sharing constraints, such as wireless networks and stochastic
processing networks. In [4], we proposed a distributed schedul-
ing algorithm that can achieve the maximal throughput in such
networks under certain conditions. This algorithm was inspired
by CSMA (Carrier Sense Multiple Access). In this paper, we
prove the convergence and stability of the algorithm, with
properly-chosen step sizes and adjustment periods. Convergence
of the joint scheduling and rate-control algorithm for utility
maximization in [4] can be proved similarly.

Index Terms—Distributed scheduling, maximal throughput,
stochastic approximation, Markov process, convex optimization

I. INTRODUCTION

Efficient resource allocation is essential to achieve high

utilization of a class of networks with resource-sharing con-

straints, such as wireless networks and stochastic processing

networks (SPN [8]). In wireless networks, certain links can

not transmit at the same time due to the interference con-

straints among them. In a task processing problem (further

explained later), two tasks can not be processed simultane-

ously if they both require monopolizing a common resource.

A scheduling algorithm determines which link to activate (or

which task to process) at a given time without violating these

constraints. Designing distributed scheduling algorithms to

achieve high throughput is an important problem [1], [15].

This paper is devoted to a proof of the convergence

and stability of a simple-to-implement distributed scheduling

algorithm for such networks proposed in [4], [5]. For ease

of reference, we review the algorithm below. The algorithm

avoids the need to search for a maximum weighted indepen-

dent set as required by Maximal-Weight Scheduling [15],

an algorithm that is known to be throughput-optimal but

is not easy to implement, especially in a distributed way.

(In [11], a similar algorithm was independently proposed

in the context of optical networks.) The paper [4] also

describes an algorithm that maximizes the utility of flows

by combining scheduling and flow control. The convergence

Acknowledgement: Thanks to Prof. Devavrat Shah (MIT) who suggested
using increasing lengths of adjustment periods in the algorithm. Also thanks
to Jinwoo Shin (MIT) for useful discussions. This research was supported
in part by MURI grant BAA 07-036.18.

This paper is expanded from [6].

of that algorithm can be proved using the same approach as

in this paper.

Consider a wireless networks where some links interfere.

Packets arrive at the transmitters of the links with certain

rates. Consider a “perfect CSMA” protocol [2], [3] that

works as follows. The different transmitters choose indepen-

dent exponentially-distributed backoff times. A transmitter

decrements its backoff timer when it senses the channel idle

and starts transmitting when its timer runs out. The packet

transmission times are also exponentially distributed. (The

process defines a “CSMA Markov chain”.) The assumption in

[2], [3] is that a transmitter hears any transmitter of a link that

would interfere with it. That is, there are no hidden nodes.

Moreover, the transmitters hear a conflicting transmission in-

stantaneously. Accordingly, there are no collisions in perfect

CSMA. In practice, other protocols such as RTS/CTS can be

used to address the hidden node problems [2]. The optimality

in the presence of collisions is analyzed in [16]. In the task

processing problem, on the other hand, one can define a

perfect CSMA protocol without considering collisions and

hidden nodes.

The “adaptive CSMA” scheduling algorithm in [4] is as

follows. Each link adjusts its transmission aggressiveness

(“TA”) based on its backlog. A link’s TA is reflected in

either its mean backoff time or mean transmission time.

For example, the transmitter of a link sets its mean backoff

time to be exp{−α · Q} where Q is the backlog of the

link and α > 0 is a small constant. That is, the link

becomes more aggressive as its backlog increases. In [4],

we have shown, under a time-scale-separation approximation,

that such a simple algorithm is throughput-optimal (i.e., it

stabilizes the queues if the arrival rates are strictly feasible).

The approximation is that, as the links change their TA, the

CSMA Markov chain instantaneously reaches its stationary

distribution.

In this paper, we analyze the convergence and stability

properties of the algorithm without the above approximation.

In particular, we show that (i) For any strictly feasible arrival

rates, using decreasing step sizes and increasing adjustment

periods that satisfy certain conditions, the TA’s of different

links converge to the desired values. Although the intuition

is to make the time-scale separation eventually hold, these

conditions are quite intricate since the speed at which the

CSMA Markov chain converges to its stationary distribution

2

depends on the TA’s. (ii) The maximal throughput can

be arbitrarily approached by using constant step sizes and

adjustment periods.

The rest of the paper is organized as follows. In section II,

we describe the basic model and the throughput-optimality

objective. Section III and IV present CSMA scheduling

algorithms (adapted from [4], [5]), and give proofs of their

convergence and/or stability under different sets of sufficient

conditions. Section VI shows that very similar results apply

to the joint algorithm in [4]. Section VII provides simulation

studies that illustrate the main results. We conclude the paper

and discuss future research in section VIII.

II. BASIC MODEL AND PROBLEM STATEMENT

We first describe the basic model and objective as in [4].

A. Network Interference Model

There are K FIFO queues in the network. Not all queues

can be served simultaneously, due to interference or resource-

sharing constraints. These constraints are represented by a

contention graph (or “CG”) G = {V, E}, where V is the set

of vertexes (each of them represents a queue) and E is the

set of edges. Two queues cannot be served at the same time

(i.e., “conflict”) if and only if there is an edge between them.

In wireless networks, one can associate a queue with

each link, which is an ordered transmitter-receiver pair. Two

links cannot be activated at the same time if they interfere.

Although this is a simplified model for wireless networks, it

does provide a useful abstraction and has been used widely

in literature (see, for example, [2], [1] and the references

therein).

In the task processing problem, assume K different types

of tasks and a finite set of resources B. A queue is associated

with each type of tasks. To perform a type-k task, one needs

a subset Bk ⊆ B of resources and these resources are then

monopolized by the task while it is being performed. Note

that two tasks cannot be performed simultaneously iff they

require some common resources. Clearly, this can be modeled

by a conflict graph G defined above.

In this paper we mostly use the terms in wireless networks

since our algorithm is originally inspired by CSMA. But the

algorithm and all results below can be applied to the task

processing problem.

Assume that G has N different Independent Sets (“IS”,

not confined to “Maximal Independent Sets”), where each IS

is a set of queues that can be served simultaneously. Denote

the i’th IS as xi ∈ {0, 1}K , a 0-1 vector that indicates which

links are transmitting in this IS. That is, the k’th element of

xi, xi
k = 1 if link k is transmitting, and xi

k = 0 otherwise.

B. Throughput-optimality Objective

We first describe the scheduling problem which is the focus

of the paper. Without loss of generality, assume that the

capacity of each link is 1. Assume that traffic arrives at link

k with an arrival rate λk ∈ (0, 1). For simplicity, assume the

following i.i.d. Bernoulli arrivals (although it can be readily

generalized, see Appendix IX-G): Let ak(t) ∈ {0, 1} be the

arrival process at link k. For t ∈ [j, j + 1], j = 1, 2, . . . (i.e.,

in a given “slot” with length 1), a(t) = 1 with probability

λk and a(t) = 0 otherwise. Then, Ak(t) :=
∫ t

0
ak(τ)dτ , the

cumulative amount of arrived traffic by time t, satisfies that

E(Ak(t))/t = λk. Denote the vector of arrival rates as λ. We

say that λ is feasible iff it can be written as λ =
∑

i p̄i · x
i

where p̄i ≥ 0 and
∑

i p̄i = 1. That is, there is a schedule

of the independent sets (including the non-maximal ones)

that can serve the arrivals. Denote the set of feasible λ by

C̄. We say that λ is strictly feasible iff it can be written as

λ =
∑

i p̄i · xi where p̄i > 0 and
∑

i p̄i = 1.Denote the set

of strictly feasible λ as C. (The set C is the relative interior

[12] of C̄.)

Our objective is to give a distributed scheduling algorithm

such that any strictly feasible λ can be “supported”. More

formally, denote by Dk(t) the cumulative traffic that has

departed by t. The system is “rate stable” if limt→∞[Ak(t)−
Dk(t)]/t = 0,∀k almost surely. An algorithm is said to be

“throughput-optimal” if for any λ ∈ C, it makes the system

rate stable. (There are also other definitions of throughput-

optimality [15]. We use this definition here since in some of

our algorithms, the underlying Markov chain is not time-

homogeneous, in which case “positive recurrence” is not

usually defined.)

An extension of the above scheduling problem is a joint

scheduling and congestion control problem, where together

with scheduling, the arrival rate λ is simultaneously adjusted

by the sources in order to achieve certain fairness (or “maxi-

mal utility”) objective among different links or multi-hop data

flows. As shown in section VI, the convergence and stability

results for our scheduling algorithms can be readily applied

to the joint scheduling and congestion control algorithms

proposed in [4].

III. A DISTRIBUTED CSMA ALGORITHM AND ITS

THROUGHPUT-OPTIMALITY

We first describe an idealized CSMA model proposed in

[2], [3] which the algorithm in [4] in based on. Before trans-

mitting, link k waits (or “backs-off”) for a random period

of time that is exponentially distributed with mean 1/Rk. If

it does not sense another transmission of a conflicting link

during that time, then the link starts transmitting; otherwise,

it suspends its backoff and resumes it after the conflicting

transmission is over. (If more than one links share the same

transmitter, the transmitter maintains independent backoff

timers for these links.) The transmission time of link k is

exponentially distributed with mean 1. Define rk = log(Rk)
as the “transmission aggressiveness” (TA) of link k. And let

r be the vector of rk’s. Assuming that the sensing time is

negligible, given the continuous distribution of the backoff

times, the probability for two links to start transmission at

the same time is zero, so collisions do not occur in the model

of [2], [3].

Note that collision is not an issue in the task processing

problem (cf. section II-A). In wireless networks, however,

collisions occur since in practice the backoff time of each

3

link is usually multiples of “minislots” due to the non-zero

sensing time. Therefore the above idealize CSMA model pro-

vides an approximation. The approximation is more accurate

when the transmission probability in each minislot is small

which leads to small collision probability. In that case, the

transmission time should be increased to compensate for the

increases backoff time. In [16], we formulated a model which

explicitly considers collisions among control packets such as

RTS in 802.11, and it was shown that the algorithm in [4]

can be naturally extended to that case. In this paper, we will

focus on the case without collisions. The line of proof here

is also useful for the collision case.

The transitions of the transmission states xi form a Con-

tinuous Time Markov Chain, which is called the CSMA

Markov Chain. Denote link k’s neighboring set by N (k) :=
{m : (k,m) ∈ E}. If in state xi, link k is not active

(xi
k = 0) and all of its conflicting links are not active (i.e.,

xi
m = 0,∀m ∈ N (k)), then state xi transits to state xi + ek

with rate Rk, where ek is the K-dimension vector whose

k’th element is 1 and all other elements are 0’s. Similarly,

state xi + ek transits to state xi with rate 1. However, if in

state xi, any link in its neighboring set N (k) is active, then

state xi + ek does not exist. References [2], [3] showed that

the Markov chain (with a given r) is time-reversible [7], and

in the stationary distribution, the probability of state xi is

p(xi; r) =
exp(

∑K
k=1 xi

krk)

C(r)
(1)

where

C(r) =
∑

j exp(
∑K

k=1 xj
krk) . (2)

(Note that an IS with larger
∑K

k=1 xi
krk has a higher proba-

bility.) Then, the probability that link k is active is

sk(r) :=
∑

i[x
i
k · p(xi; r)]. (3)

Since the link capacity is assumed to be 1, sk(r) is also the

average service rate (or throughput) of link k given r.

For simplicity, we assume that the arrival traffic can be

viewed as “fluid”. That is, upon transmission, the packet sizes

may be different from the sizes of the arrived packets (by re-

packetize the bits in the queue). This assumption, however,

is not essential. More discussion is given in Appendix IX-H.

The key idea of the “adaptive CSMA algorithm” in [4]

is that each link k should dynamically adjust rk according

to its empirical arrival rate and service rate. For example,

if the empirical arrival rate is larger than the service rate

(i.e., the queue length of link k increases), then rk should

be increased. Surprisingly, this simple algorithm can achieve

the maximal throughput.

A. Review of the ideas behind the Algorithms

The algorithms in [4], [5] try to find or approximate,

in a distributed way, the TA vector r in CSMA such that

the induced service rates (3) at all links are not less than

the arrival rates λ whenever λ is strictly feasible. In this

section, we review some results in [4], [5] which state that

the desired r can be obtained as the optimal dual variables

in some convex optimization problems ((4) or (6)). (And

our algorithms are distributed implementations to solve these

optimization problems.)

Consider the convex optimization problem, where u ∈ RN
+

is a distribution over the IS’s (recall that N is the number of

IS’s)
maxu −

∑

i ui log(ui)
s.t.

∑

i(ui · x
i
k) ≥ λk,∀k

ui ≥ 0,
∑

i ui = 1.
(4)

where λ is strictly feasible, and
∑

i is the summation over all

IS’s. The optimization problem chooses a distribution with

the maximal entropy H(u) := −
∑

i ui log(ui) among the

set of distributions that satisfy the capacity constraints (i.e.,

such that for any link k, the service rate
∑

i(ui · x
i
k) is not

less than the arrival rate λk). It turns out that the solution

u∗ is the stationary distribution of the CSMA Markov chain

with proper-chosen TA r∗, as discussed below.

Lemma 1: ([4]) For all k, let r∗k ≥ 0 be the (unique)

optimal dual variable associated with the constraint
∑

i(ui ·
xi

k) ≥ λk in (4). Then r∗ satisfies that

sk(r∗) ≥ λk,∀k,

that is, with the TA vector r∗, the service rate (3) at any link

is high enough. (And the optimal u∗ is the corresponding

stationary distribution of the CSMA Markov chain.) Also, an

iterative (subgradient dual) algorithm to find r∗ (by solving

the dual problem minr≥0 L1(r)) is (for i = 1, 2, . . .)

rk(i) = [rk(i − 1) + α(i)(λk − sk(r(i − 1)))]+,∀k (5)

where α(i) is some properly-chosen step size. That is, link k
increases rk if the service rate is smaller than λk, and vice

versa.

The proof is given in Appendix IX-A.

The next optimization problem is an extension of (4) such

that the optimal dual variables r∗ satisfies sk(r∗) > λk,∀k.

The strict inequality can be used later to ensure that the queue

lengths are stable and tend to be small.

maxu,w −
∑

i ui log(ui) + c
∑

k log(wk)
s.t.

∑

i(ui · x
i
k) ≥ λk + wk,∀k

ui ≥ 0,
∑

i ui = 1
0 ≤ wk ≤ w̄,∀k

(6)

where λ is strictly feasible, and c > 0, w̄ > 0 are small

constants.

Lemma 2: ([5]) For all k, let r∗k ≥ 0 be the (unique)

optimal dual variable associated with the constraint
∑

i(ui ·
xi

k) ≥ λk + wk in problem (6). Then r∗ satisfies that

sk(r∗) > λk,∀k.

Also, a (subgradient dual) algorithm to find r∗ (by solving

the dual problem minr≥0 L2(r)) is (for i = 1, 2, . . .)

rk(i) = [rk(i − 1) + α(i)(λk − sk(r(i − 1)) +

min{c/rk(i − 1), w̄})]+,∀k (7)

4

where α(i) is some properly-chosen step size. (The proof is

similar to that of Lemma 1, and is given in Appendix IX-B.)

Remark: The key point of problem (6) is to generate a

“gap” between sk(r∗) and λk. The gap may also be obtained

in the following way. If it is known that λ + 1 · ǫ is strictly

feasible for some ǫ > 0, then solving problem (4) with λk

replaced by λk + ǫ also serves the purpose. However, it is

difficult to choose ǫ such that λ + 1 · ǫ is strictly feasible,

especially if λ is unknown. The advantage of solving problem

(6) is that we can generate the gap without knowing λ or

checking whether λ +1 · ǫ is strictly feasible (see Algorithm

1 in the next section).

However, algorithms (5) or (7) require the knowledge of

λk and sk(r(i−1)), which cannot be obtained directly in the

network since both the traffic arrival and service processes

are random. Therefore in the actual algorithm we need to

properly average the randomness. The main complication

here is that the time needed for the CSMA Markov chain to

converge to its stationary distribution (i.e., the mixing time)

depends on the varying r. So the dynamics of the Markov

chain and the dynamics of r are coupled in a complex way.

The goal of this paper is to provide sufficient conditions to

ensure the convergence of the algorithm with random arrivals

and service.

B. TA adjustment Algorithm

Let xk(t) ∈ {0, 1} be the instantaneous state of link k at

(continuous) time t. For link k, define the cumulative “ser-

vice” by time t as Sk(t) =
∫ t

τ=0
xk(τ)dτ , and the cumulative

departure by time t as Dk(t) =
∫ t

τ=0
xk(τ)I(Qk(τ) > 0)dτ ,

where I(·) is the indicator function and Qk(τ) := Qk(0) +
Ak(τ)−Dk(τ) is the queue length of link k at time τ . Note

that there is no departure if the queue is empty but we allow

xk(τ) = 1 even if Qk(τ) = 0 (in which case dummy packets

are sent, further discussed below).

The adaptive CSMA algorithm which adjusts the TA is

given below (Notice its similarity to (7)). We assume that

there is a maximal instantaneous arrival rate λ̄ for any link.

Algorithm 1: The vector r is updated at time ti, i =
1, 2, Let t0 = 0 and Ti := ti − ti−1, i = 1, 2, Define

“period i” as the time between ti−1 and ti, and r(i) be the

value of r at the end of period i, i.e., at time ti.
Initially, set r(0) = 0.1 Then at time ti (i = 1, 2, . . .),

update

rk(i) = [rk(i−1)+α(i)(λ′
k(i)−s′k(i)+min{c/rk(i−1), w̄})]+

(8)

for all k, where λ′
k(i) and s′k(i) are the empirical average

arrival rate and service rate of link k in period i (i.e., λ′
k(i) =

[Ak(ti)−Ak(ti−1)]/Ti ≤ λ̄, s′k(i) = [Sk(ti)−Sk(ti−1)]/Ti).

c > 0, w̄ > 0 are small constants. We let link k transmit

dummy packet with TA rk(i) even if the queue is empty. This

ensures that the CSMA Markov chain (with parameter r(i))
has the desired stationary distribution (1). (The transmitted

dummy packets are included when computing s′k(i).)

1In fact, r(0) can be any finite value without affecting the result in
Theorem 1. We assume r(0) = 0 for simplicity.

Also, {α(i)} and {Ti} are chosen such that {Ti} is non-

decreasing with i, and

α(i) > 0,
∑

i α(i) = ∞,
∑

i α(i)2 < ∞ (9)

∑∞
m=0[α(m + 1)

∑m
i=1 α(i)]2 < ∞ (10)

∑∞
m=0[α(m + 1) ·

∑m
i=1 α(i) · f(m)/Tm+1] < ∞ (11)

where

f(m) = exp{(5
2K + 1) · [λmax ·

∑m
i=1 α(i) + log(2)]}

(12)

where K is the number of links, and λmax = λ̄ + w̄.

Remark 1: Since the update (8) only uses local information,

Algorithm 1 is fully distributed. Also, it does not need to

know λk explicitly.

Remark 2: In an alternative design, the mean backoff time

of each link is 1, and the mean transmission time of link

k is exp(rk). For a given r, the CSMA Markov chain has

the same stationary distribution as in (1). In that case, the

same Algorithm 1 can be used, with a minor difference in

the definition of (12). See Appendix IX-I for more details.

Proposition 1: The setting α(i) = 1/[(i + 1) log(i + 1)]
and Ti = i satisfies conditions (9), (10) and (11). Note that

this setting does not depend on, or require the knowledge of

K and λmax, and thus can generally apply to any network.

The proof is given in Appendix IX-C.

Similarly, the same is true for the following settings. (i)

α(i) = 1/[(i + 1) log(i + 1)] and Ti = iγ for any γ > 0; (ii)

α(i) = c0/[(a · i + b + 1) log(a · i+ b + 1)] and Ti = a · i + b
(with constants a > 0, b > 0, c0 > 0).

The main result of the paper is the following:

Theorem 1: Assume that λ is strictly feasible (i.e., λ ∈
C). Then with Algorithm 1, r converges to some r∗ with

probability 1. The vector r∗ satisfies that sk(r∗) > λk,∀k.

As a corollary, it can be further shown that the system is

rate stable (Appendix IX-E).

The next two subsections (and Appendix IX-D) give

the proof of Theorem 1. However, readers who are inter-

ested to have an overview of other algorithms and conver-

gence/stability results could first skip to section III-E.

C. Some notation

Before proving Theorem 1, we need some further notation.

Let x0(m−1) be the state of the CSMA Markov chain at the

beginning of period m (i.e., at time tm−1). Define the random

vector U(m−1) := (s′(m−1), λ′(m−1), r(m−1), x0(m−
1)) for m > 1 and U(0) = (r(0) = 0, x0(0)). For m ≥ 1, let

Fm−1 be the σ-field generated by U(0), U(1), . . . , U(m−1).
Given a vector of TA r(m − 1) at the beginning of the

period m of Algorithm 1, the vector g(m) whose k-th

element gk(m) := sk(r(m − 1)) − λk − (c/rk(m − 1)) ∧ w̄
is a subgradient of L2(r) (the dual problem of (6) is

5

minr≥0 L2(r)). To find the desired r∗ which solves the

dual problem, the ideal algorithm (7) would follow the

opposite direction of g(m). However, Algorithm 1 only has

an estimation of gk(m), denoted by

g′k(m) = s′k(m) − λ′
k(m) − (c/rk(m − 1)) ∧ w̄. (13)

The “error bias” of g′k(m) is defined as

Bk(m) : = E[g′k(m)|Fm−1] − gk(m)

= E[s′k(m)|Fm−1] − sk(r(m − 1)) −

[E[λ′
k(m)|Fm−1] − λk]. (14)

Define also the zero-mean “noise”

ηk(m) : = (s′k(m) − E[s′k(m)|Fm−1])

−(λ′
k(m) − E[λ′

k(m)|Fm−1]).

Since both s′k(m) and λ′
k(m) are bounded, the noise is also

bounded: |ηk(m)| ≤ c2 for some c2 > 0. Then, we have

g′k(m) = gk(m) + Bk(m) + ηk(m). (15)

D. Proof of Theorem 1

The proof is composed of two parts. In the first part, we

show that with Algorithm 1 and condition (11), the error bias

(14) decreases “fast enough” with time. In the second part

(Lemma 3), we use the result of part 1 and condition (10) to

prove the convergence of r to r∗.

In the following consider period m + 1 (i.e., from tm to

tm+1). At time tm with the TA vector r(m), denote the cor-

responding CSMA Markov chain by X(t) (for convenience

we drop the index m+1). X(t) is a continuous time Markov

chain (CTMC). By (1), the probability of state x ∈ {0, 1}K

in the stationary distribution of X(t) is

πx(r(m)) = p(x; r(m)) =
1

C(r(m))
exp(

∑

k

xkrk(m)).

Since r(m) ≥ 0, using (2),

C(r(m)) ≤
∑

x′

exp(1T r(m)) ≤ 2K exp(1T r(m))

since there are at most 2K states. Also, exp(
∑

k xkrk(m)) ≥
1 (since rk(m) ≥ 0 in Algorithm 1). So, the minimal

probability in the stationary distribution

πmin(r(m)) := min
x

πx(r(m)) ≥ exp(−1T r(m)−K·log(2)).

Since λ′
k(i)+min{c/rk(i), w̄} ≤ λmax and s′k(r(i)) ≥ 0,

we have rk(i + 1) ≤ rk(i) + α(i)λmax,∀i, k. Recall that

rk(0) = 0,∀k. So rk(m) ≤ λmax

∑m
i=1 α(i),∀k. Thus,

πmin(r(m)) ≥ exp{−K · [λmax

m
∑

i=1

α(i) + log(2)]}. (16)

To proceed with the proof, we first “uniformize” X(t).
Recall that for the Markov chain X(t), if each element

of its transition rate matrix Q has an absolute value less

than a constant Am+1, then we can write X(t) = Z(N(t))
where Z(n) is a discrete time Markov chain with probability

transition matrix P = I + Q/Am+1, where I is the identity

matrix, and N(t) is an independent Poisson process with rate

Am+1. We claim that Am+1 = K · exp(λmax

∑m
i=1 α(i))

suffices for the need. (Proof: ∵ rk(m) ≤ λmax

∑m
i=1 α(i),

we have Q(x, x′) ≤ exp(λmax

∑m
i=1 α(i)),∀x, x′. Also, for

any state x, Q(x, x′) > 0 for at most K different x′, i.e., state

x can at most transit to K other states by changing the state

of any one of the K links, so
∑

x′ 6=x Q(x, x′) ≤ Am+1.)

Now we estimate how far E[s′k(m + 1)|Fm] is from the

desired value sk(r(m)). Let the vector µm(t) = {µm(t, x)}
be the probabilities of all states at time tm+t (where 0 ≤ t ≤
Tm+1), given that the initial state at time tm is x0(m) and

that the TA’s during [tm, tm+1) are r(m). Let x(tm + t) =
{xk(tm + t)} be the state at time tm + t. Then

E[s′k(m + 1)|Fm]

= E[

∫ Tm+1

0

I(xk(tm + t) = 1)dt/Tm+1]

=

∫ Tm+1

0

P (xk(tm + t) = 1)dt/Tm+1

=
∑

x′:x′

k
=1

[

∫ Tm+1

0

µm(t, x′)dt/Tm+1]

=
∑

x′:x′

k
=1

µ̄m(x′)

where

µ̄m(x′) =

∫ Tm+1

0

µm(t, x′)dt/Tm+1

is the time-averaged probability of state x′ in the interval.

Let µ̄m := {µ̄m(x)} be the vector of such probabilities of

all states.

Let πx0(r(m)) be the probability of x0(m), simply written

as x0, in the stationary distribution of X(t). Use || · ||var

to denote the variation distance between two distributions

(expressed below). Let β1 be the second largest eigenvalue

of P , and the vector π(r(m)) := {πx(r(m))}. The following

inequality [9] has used the fact that X(t) is equivalent to

Z(N(t)),

||µm(t) − π(r(m))||var :=
∑

x

[µm(t, x) − πx(r(m))]/2

≤
1

2

√

1 − πx0(r(m))

πx0(r(m))
exp(−Am+1(1 − β1)t)

≤
1

2

√

1

πmin(r(m))
exp(−Am+1(1 − β1)t).

So,

||µ̄m − π(r(m))||var

= ||

∫ Tm+1

0

[µm(t) − π(r(m))]dt/Tm+1||var

≤

∫ Tm+1

0

||µm(t) − π(r(m))||vardt/Tm+1

≤
1

2

√

1

πmin(r(m))

1

Am+1(1 − β1)Tm+1
(17)

6

where the first inequality has used the fact that || · ||var is a

convex function.

Also, β1 can be bounded by Cheeger’s inequality [9]

β1 ≤ 1 − φ2/2 (18)

where φ is the “conductance” of P , defined as

φ := min
S⊂Ω,π(S)∈(0,1/2]

F (S, Sc)

πS(r(m))

where πS(r(m)) =
∑

x∈S πx(r(m)), and F (S, Sc)
is the “ergodic flow” from S to Sc: F (S, Sc) =
∑

x∈S,x′∈Sc F (x, x′) =
∑

x∈S,x′∈Sc πx(r(m))P (x, x′).
Then similar to [11], we have

φ ≥ min
S⊂Ω,π(S)∈(0,1/2]

F (S, Sc)

≥ min
x6=x′,P (x,x′)>0

F (x, x′)

= min
x6=x′,P (x,x′)>0

{πx(r(m)) · P (x, x′)}.

For any x 6= x′ such that P (x, x′) > 0, it must be

that Q(x, x′) > 0. Note that Q(x, x′) = 1 or Q(x, x′) =
exp(rk(m)) for some k, so Q(x, x′) ≥ 1. Hence, P (x, x′) =
Q(x, x′)/Am+1 ≥ 1/Am+1. Combined with the last inequal-

ity, we find

φ ≥ min
x

πx(r(m))/Am+1 = πmin(r(m))/Am+1.

Using (18), β1 ≤ 1 − [πmin(r(m))/Am+1]
2/2. Thus

1/(1 − β1) ≤ 2 · A2
m+1[πmin(r(m))]−2. Plugging this into

(17) and use (16), we have

||µ̄m − π(r(m))||var

≤ Am+1[πmin(r(m))]−5/2/Tm+1.

≤ K · f(m)/Tm+1

where f(m) is defined in (12). So,

|E[s′k(m + 1)|Fm] − sk(r(m))|

= |
∑

x′:x′

k
=1

µ̄m(x′) − sk(r(m))|

≤ 2||µ̄m − π(r(m))||var

≤ 2 · K · f(m)/Tm+1,∀k. (19)

Also, with the Bernoulli arrival process ak(t) assumed in

section II-B, it is easy to show that

|E[λ′
k(m + 1)|Fm] − λk| ≤ 1/Tm+1. (20)

Therefore, the error bias Bk(m+1), defined in (14), satisfies

|Bk(m + 1)| ≤ 2K · f(m)/Tm+1 + 1/Tm+1 ≤ 3K ·
f(m)/Tm+1. Denote by B(m) the vector of Bk(m)’s. Since

|rk(m)−r∗k| ≤ r̄+λmax

∑m
i=1 α(i), where r̄ = maxk r∗k, we

show that the term (r(m)− r∗)T ·B(m + 1) is diminishing:

∞
∑

m=0

α(m + 1)|(r(m) − r∗)T · B(m + 1)|

≤ 3K2
∞
∑

m=0

{α(m + 1)[r̄ + λmax

m
∑

i=1

α(i)] · f(m)/Tm+1]}

< ∞ (21)

where the last step is obtained using condition (11).

Lemma 3: If (21) and (10) hold, then with Algorithm 1,

r converges to r∗ with probability 1.

The line of proof is similar to that of Theorem 3.1 in [10],

but with more intricacies. The complete proof is given in

Appendix IX-D.

To conclude, with Algorithm 1, r converges to the optimal

value r∗, such that sk(r∗) > λk,∀k.

In a related work, reference [14] used a differential-

equation method to analyze the convergence of the utility

maximization algorithm in [4]. In [14], it is required that an

upper bound of r∗ is known to the algorithm. Therefore, it is

not obvious whether the proof there can be directly applied to

the scheduling problem above without a priori upper bound

of r∗. In the case of [14], however, the required step size

conditions are weaker than those in Algorithm 1.

E. An Algorithm with bounded TA (reduced capacity)

We have shown above that Algorithm 1 is throughput-

optimal in that it can support any λ ∈ C, the set of strictly

feasible arrival rates. No upper bound of TA is imposed in

Algorithm 1. In this section, we give a similar algorithm

which simply upper-bound the TA by a constant rmax > 0.

The algorithm’s capacity region is smaller than C. But it

allows weaker conditions on the step sizes and adjustment

periods. Also, one can choose the parameters of the algorithm

to make its capacity region arbitrarily close to C.

Algorithm 2: The vector r is updated at time ti, i =
1, 2,

rk(i) = min{rmax, [rk(i−1)+α(i)(λ′
k(i)+ǫ−s′k(i))]+},∀k.

(22)

where ǫ > 0. Algorithm 2 tries to solve problem (4) (notice

its similarity to (5)), except that it “pretends” to serve the

arrival rates λ+ ǫ ·1 which are higher than the actual arrival

rates λ, in order to ensure that the average service rate is

strictly higher than the arrival rate after convergence.

Also, {α(i)} and non-decreasing {Ti} are required to

satisfy (9) and

∞
∑

m=0

[α(m + 1)/Tm+1] < ∞ (23)

For example, α(i) = 1/i and Ti = iγ for any γ > 0 satisfy

(9) and (23).

The following theorem states that the capacity region of

Algorithm 2 is (at least)

CII(rmax, ǫ) = {λ|λ + ǫ · 1 ∈ C and

r∗II(λ + ǫ · 1) ∈ [0, rmax]K}

where r∗II(λ + ǫ · 1) is the optimal vector of dual variables

r∗ of problem (4) with arrival rates λ + ǫ · 1.

Theorem 2: With Algorithm 2, if λ ∈ CII(rmax, ǫ), then

r(i) converges to r∗II(λ + ǫ · 1) with probability 1. (And

sk(r∗II(λ + ǫ · 1)) ≥ λk + ǫ > λk,∀k.)

7

Remark: Similar to the case of Algorithm 1, it can be

further shown that the system is rate stable (Appendix IX-E).

Proof: The proof is very similar to that of Theorem 1.

So here we only present the differences. Following the proof

of Theorem 1, in the first step, we bound the error bias. Since

rk(m) ∈ [0, rmax],∀k,m, we have (different from inequality

(16)),

πmin(r(m)) ≥ C1 := exp{−K · [rmax + log(2)]}.

Also, the definition of Am+1 is changed to Am+1 = K ·
exp(rmax). Then, (19) is changed into

|E[s′k(m + 1)|Fm] − sk(r(m))| ≤ C2/Tm+1

for a constant C2 > 0. Therefore condition (23) is sufficient

to ensure that
∑∞

m=0 α(m+1)|(r(m)−r∗)T ·B(m+1)| < ∞.

In the second step, we show r(m) converges to r∗II(λ +
ǫ · 1). First notice that r∗II(λ + ǫ · 1) ∈ [0, rmax]K by the

definition of CII(rmax, ǫ). Second, in (34), λmax

∑m−1
i=1 α(i)

can be replaced by rmax. Therefore, (9) suffices to ensure the

convergence.

Clearly, CII(rmax, ǫ) → C as rmax → +∞ and ǫ → 0.

So we can choose rmax, ǫ to achieve arbitrarily close

approximations of the maximal capacity region C.

IV. CONSTANT STEP SIZE AND ADJUSTMENT PERIOD

Now we consider Algorithm 2 with a constant step size

α(i) = α,∀i and a constant adjustment period Ti = T,∀i.
Theorem 3: If λ ∈ CII(rmax, ǫ), then there exists α >

0, T > 0 such that the queues are stable using Algorithm 2

with α(i) = α, Ti = T,∀i.
The proof is given in Appendix IX-F.

V. ALGORITHMS WITHOUT THE “GAP”

The following Algorithm 3 is similar to Algorithm 1.

Algorithm 3:

rk(i) = [rk(i − 1) + α(i)(λ′
k(i) − s′k(i))]+ (24)

where α(i) and Ti satisfy the conditions specified in Algo-

rithm 1.

Theorem 4: Assume that λ is strictly feasible (i.e., λ ∈ C).

Then with Algorithm 3, r converges to r∗, the optimal vector

of dual variables of problem (1) with probability 1, wherer∗

satisfies that sk(r∗) ≥ λk,∀k. Also, the system is rate stable.

The proof is virtually the same as that of Theorem 1.

The following Algorithm 4 is similar to Algorithm 2.

Algorithm 4:

rk(i) = min{rmax, [rk(i − 1) + α(i)(λ′
k(i) − s′k(i))]+},∀k.

Theorem 5: Assume that λ ∈ CII(rmax, 0).
(i) If α(i) and Ti satisfy (9) and (23), and {Ti} is non-

decreasing, then r converges to r∗, the optimal vector of dual

variables of problem (1) with probability 1, wherer∗ satisfies

that sk(r∗) ≥ λk,∀k; and the system is rate stable.

(ii) For any δ > 0, there exist α, T > 0 such that if we

use α(i) = α, Ti = T,∀i, the long-term average service rate

of link k is larger than λk − δ for all k.

The proof of (i) is the same as before. Part (ii) can be

proved similarly to Theorem 3, by showing that in the long

term, r(i) is near r∗ with arbitrarily high probability by

choosing small enough α and large enough T . Thus, the

average service rate of link k can be arbitrarily close to λk.

VI. JOINT SCHEDULING AND CONGESTION CONTROL

In [4], [5], we also designed a joint CSMA scheduling

and congestion control algorithm to approach the maximal

utility in the network. For simplicity, here we assume that

each link k generates a one-hop data flow with adjustable

rate fk ∈ [0, 1]. Write f ∈ [0, 1]K as the vector of fk’s. Flow

k has an increasing, strictly concave utility function vk(fk).
Algorithm 5: Joint scheduling and congestion control

algorithm

The vectors r and f are updated at time ti, i = 1, 2,

Let t0 = 0 and Ti := ti − ti−1, i = 1, 2, Define “period

i” as the time between ti−1 and ti, and r(i) be the value of

r at the end of period i, i.e., at time ti. Initially, link k set

rk(0) = 0, fk(0) = 1,∀k. Then at time ti, i = 1, 2, . . . , do

the following:

• Congestion control: Link k sets fk(i) = ρ·f̂k(i) where ρ
is slightly smaller than 1 and f̂k(i) = arg maxf ′∈[0,1][β ·
vk(f ′) − rk(i)f ′], where β > 0 is constant “weighting

factor”.

• rk is updated as follows: rk(i) = [rk(i−1)+α(i)(f̂k(i−
1) − s′k(i))]+.

Theorem 6: If {α(i)} and {Ti} satisfy the conditions

specified in Algorithm 1, then the algorithm converges, i.e.,

r(i) → r∗, f̂k(i) → f̂∗
k = sk(r∗) as i → ∞ with probability

1, and all queues are stable. Also,

∑

k

vk(f̂∗
k) ≥ W̄ − log(N)/β (25)

where W̄ is the maximal achievable total utility, and N is the

number of IS’s. We see that when β is large, the algorithm

achieves close-to-optimal total utility.

Proof: The proof of convergence is almost the same as

Theorem 1. The performance bound (25) has been shown in

[4].

Theorem 7: Assume that v′
k(0) < G < ∞ for all k. If

α(i) is non-increasing with i,
∑

i α(i) = ∞,
∑

i α(i)2 < ∞,

and condition (23) is satisfied (for example, α(i) = 1/i and

Ti = iγ where γ > 0), then the algorithm converges, i.e.,

r(i) → r∗, f̂k(i) → f̂∗
k = sk(r∗) as i → ∞ with probability

1, and all queues are stable. Also, (25) holds.

Proof: First notice that rk is always upper-bounded in

the algorithm: rk(i) ≤ β·G+α(1),∀i. Proof by induction: (a)

rk(0) = 0 ≤ β ·G+α(1); (b) Assume that rk(i−1) ≤ β ·G+
α(1). Consider two cases. If β ·G ≤ rk(i−1) ≤ β ·G+α(1),
then f̂k(i − 1) = 0. So rk(i) ≤ [rk(i − 1)]+ = rk(i − 1) ≤
β·G+α(1). If rk(i−1) < β·G, since f̂k(i), s′k(i) ∈ [0, 1], we

have rk(i) ≤ [rk(i− 1)+α(i)]+ ≤ β ·G+α(1). Combining

(a) and (b) gives the desired result. Similarly, it can be also

shown that rk is always lower-bounded.

8

Then, like the proof of Theorem 2, the algorithm con-

verges: r(i) → r∗ and f̂k(i) → f̂∗
k = sk(r∗). Since the

actual input rate fk < f̂k, all queues are stable and the total

utility is close to
∑

k vk(f̂∗
k) if ρ is close to 1. The bound

(25) has been shown in [4].

Remark: In fact, similar to the proof of Theorem 1 but with

more arguments, one can show that if Ti = T , a constant,

and
∑

i α(i) = ∞,
∑

i α(i)2 < ∞, the same conclusion

in Theorem 7 holds. A different approach using ODE is

provided in [14].

VII. NUMERICAL EXAMPLES

A. CSMA scheduling: i.i.d. input traffic with fixed average

rates

In our C++ simulations, the transmission time of all

links is exponentially distributed with mean 1ms, and the

backoff time of link k is exponentially distributed with

mean 1/ exp(rk) ms. Assume that the capacity of each

link is 1(data unit)/ms. The initial TA rk(0) = 0 for

all link k. To show the negative drift of queues, assume

that initially, all queue lengths are 300 data units. Then

rk is adjusted using Algorithm 1, with step sizes α(i) =
0.46/[(2 + i/1000) log(2 + i/1000)] and adjustment periods

Ti = (2+i/1000) ms. The constants c = 0.01, and w̄ = 0.02.

There are 6 links in the network, whose conflict graph

is shown in Fig. 1 (a). (Each link only needs to know the

set of links that conflict with itself.) Define 0 ≤ ρ < 1
as the “load factor”, and let ρ = 0.98 in this simulation.

The arrival rate vector is set to λ=ρ*[0.2*(1,0,1,0,0,0) +

0.3*(1,0,0,1,0,1) + 0.2*(0,1,0,0,1,0) + 0.3*(0,0,1,0,1,0)] =

ρ*(0.5,0.2,0.5,0.3,0.5,0.3) (data units/ms). We have multi-

plied by ρ a convex combination of some maximal IS’s to

ensure that λ is in the interior of the capacity region.

As expected, the TA vector r tends to converge (Fig. 1

(b)). Also, the queues tend to decrease and are stable (Fig. 1

(c)).

Fig. 2 shows the simulation results of the same network

using Algorithm 2 with constant step size α(i) = α = 0.23,

Ti = T = 5ms and rmax = 8. (All other parameters remain

unchanged.) We observe that the queues are also stable and

tend to decrease. (Note that the conditions on α and T in

the constructive proof of Theorem 3 are sufficient, but not

necessary in general.)

Comparing Fig. 1 and Fig. 2, we see that with decreasing

α(i) and increasing Ti, although r indeed converges, there

are more oscillations in the queue lengths. This is because

when α(i) becomes smaller when i is large, r(i) becomes

less responsive to the variations of queue lengths.

B. Joint CSMA scheduling and congestion control

The link contention graph is shown in Fig. 3. The sim-

ulation results are shown in Fig. 4. The utility function is

vk(fk) = log(fk + 0.1). The weighting factor β = 1.5.

The adjustment period is Ti = T = 5ms, and α(i) =
0.14/(2 + i/100).2 The initial queue lengths are 300 data

2Here we mainly simulate decreasing step sizes since constant step size
has been evaluated in [4].

Link 1

Link 2

Link 3

Link 4Link 5

Link 6

(a) Link Contention Graph

0 2 4 6 8 10 12 14 16

x 10
4

0

1

2

3

4

5

6

7
 r: Transmission Aggressiveness

time (ms)

 r

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

(b) r: the vector of TA

0 2 4 6 8 10 12 14 16

x 10
4

0

50

100

150

200

250

300

350

400
Queue lengths

time (ms)

Q
u
e
u
e
 l
e
n
g
th

s
 (

d
a
ta

 u
n
it
s
)

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

(c) Queue lengths

Fig. 1: CSMA Scheduling with varying step sizes and ad-

justment periods

units.

VIII. CONCLUSION

In this paper, we have proved the convergence and/or sta-

bility property of the distributed CSMA scheduling algorithm

proposed in [4], [5] with properly chosen step sizes and

adjustment periods. Similar results also apply to the cross-

layer algorithm (joint CSMA scheduling and congestion

control) in [4], [5].

The conditions on the step sizes and adjustment periods

given here are sufficient for the convergence/stability of the

algorithms. However, since certain bounds in the proof may

not be tight, it is possible that these conditions are not

necessary. Also, we have assumed general conflict graphs.

In many networks of practical interest, however, the conflict

graphs may have particular structures. For example, if the

conflict graph is a full graph (corresponding to a network

where all links conflict to each other), then it can be shown

that the mixing time is much smaller than the worst-case

bound used in this paper. In the future, we would like to

9

0 2 4 6 8 10 12 14 16

x 10
4

0

1

2

3

4

5

6

7

 r: Transmission Aggressiveness

time (ms)

 r

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

(a) r: the vector of TA

0 2 4 6 8 10 12 14 16

x 10
4

0

50

100

150

200

250

300

350

400

450
Queue lengths

time (ms)

Q
u
e
u
e
 l
e
n
g
th

s
 (

d
a
ta

 u
n
it
s
)

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

(b) Queue lengths

Fig. 2: CSMA Scheduling with constant step size and adjust-

ment period (Network 1)

F

A EC

DB

1 2 3

(a) Network topology

Link 1 Link 2 Link 3

(b) Link contention graph

Fig. 3: Network 2

study whether some of the conditions can be relaxed, either

generally or in networks with certain structure.

IX. APPENDICES

A. Proof of Lemma 1

Proof: Since λ is strictly feasible, there exists u ≻ 0

(i.e., u = p̄) satisfying the constraints of problem (4). There-

fore (4) is strictly feasible (satisfying the Slater condition

[12]). So there exist (finite) optimal dual variables r∗k’s.

Given some finite dual variables r, a partial Lagrangian of

problem (4) is

L(u; r) = −
∑

i

ui log(ui)+
∑

k

rk(
∑

i

ui ·x
i
k −λk). (26)

Denote u(r) = arg maxu L(u; r), subject to that u is a

distribution. Since
∑

i ui = 1, if we can find some v, and

0 2 4 6 8 10 12 14 16 18

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ms)

F
lo

w
 r

a
te

s
 (

d
a
ta

 u
n
it
s
/m

s
)

Flow rates

Flow 1

Flow 2

Flow 3

(a) Flow rates

0 0.5 1 1.5 2

x 10
5

0.5

1

1.5

2

2.5

3

3.5

4
 r: Transmission Aggressiveness

time (ms)

 r

Link 1

Link 2

Link 3

(b) r: the vector of TA

0 0.5 1 1.5 2

x 10
5

0

100

200

300

400

500

600

700
Queue lengths

time (ms)

Q
u
e
u
e
 l
e
n
g
th

s
 (

d
a
ta

 u
n
it
s
)

Link 1

Link 2

Link 3

(c) Queue lengths

Fig. 4: Joint CSMA Scheduling and congestion control,

without collisions (Network 2)

u(r) > 0 such that

∂L(u(r); r)

∂ui
= − log(ui(r)) − 1 +

∑

k

rkxi
k = v,∀i,

then u(r) is the desired distribution. Solving the above

equation yields ui(r) = p(xi; r),∀i (cf. (1)), that is, ui(r) is

exactly the stationary probability of state i in the CSMA

Markov chain given the TA vector r. Since the optimal

solution of u, ui(r
∗) = p(xi; r∗),∀i must be feasible to

problem (4), we have
∑

i(ui(r
∗)·xi

k) =
∑

i(x
i
k ·p(xi; r∗)) =

10

sk(r∗) ≥ λk,∀k.

Let L1(r) := maxu L(u; r) subject to the constraints that

ui ≥ 0,
∑

i ui = 1. It follows from the optimization theory

[12] that the dual problem of (4) is minr≥0 L1(r), and the

vector g(r) ∈ RK whose k’th element gk(r) :=
∑

i ui(r) ·
xi

k−λk = sk(r)−λk is a subgradient of L1(·) at r. Therefore

the subgradient dual algorithm (5) follows.

On the uniqueness of r∗: Note that the objective function

of (1) is strictly concave. Therefore u∗, the optimal solution

of (1) is unique. Consider two state ek and 0, where ek

is the K-dimensional vector whose k’th element is 1 and

all other elements are 0’s. We have u∗
ek

= p(ek; r∗) and

u∗
0

= p(0; r∗). Then

u∗
ek

/u∗
0

= exp(r∗k). (27)

Suppose that r∗ is not unique, that is, there exist r∗I 6= r∗II

but both are optimal r. Then, r∗I,k 6= r∗II,k for some k. This

contradict to (27) and the uniqueness of u∗. Therefore r∗ is

unique. Note that r∗ is also the unique solution of the dual

problem minr≥0 L1(r).

B. Proof of Lemma 2

Proof: Since λ is strictly feasible, by definition, it can

be written as λ =
∑

i p̄i · x
i where p̄i > 0 and

∑

i p̄i = 1.

For convenience, in the vector p̄, let p̄0 be the probability

of the all-0 IS, and p̄k, k = 1, 2, . . . K be the probability

of the IS ek (i.e., the IS where only link k is active).

Define another distribution p̄′ (over the IS’s) as follows. Let

p̄′0 = p̄0/(K + 1) > 0 and p̄′k = p̄k + p̄0/(K + 1) > 0, k =
1, 2, . . . ,K, and all other IS’s have the same probabilities.

Then we have ∀k,
∑

i(p̄
′
i ·x

i
k) =

∑

i(p̄i ·x
i
k)+ p̄0/(K +1) =

λk + p̄0/(K + 1). That is, there exist u ≻ 0,w ≻ 0 (i.e.,

u = p̄′,w = p̄0/(K + 1) · 1) satisfying the constraints

of problem (4). Therefore problem (6) is strictly feasible

and satisfies the Slater condition. Hence, there exists (finite)

optimal dual variables r∗k’s. With rk’s as dual variables, a

partial Lagrangian of (6) is

L(u,w; r) = −
∑

i ui log(ui) + c
∑

k log(wk)+
∑

k[rk(
∑

i ui · xi
k − λk − wk)]

= [−
∑

i ui log(ui) +
∑

k(rk

∑

i ui · x
i
k)]+

∑

k[c · log(wk) − rkwk] −
∑

k(rkλk).
(28)

Let L2(r) := maxu,w L(u,w; r) subject to ui ≥
0,

∑

i ui = 1 and 0 ≤ wk ≤ w̄,∀k. Denote by u(r) and w(r)
the maximizers. Similar to the last lemma,

∑

i ui(r) · x
i
k =

sk(r). And it is easy to find wk(r) = (c/rk) ∧ w̄. Since the

optimal solutions of u,w, i.e., ui(r
∗) = p(xi; r∗),∀i and

wk(r∗) are feasible to problem (6), we have
∑

i(ui(r
∗) ·

xi
k) = sk(r∗) ≥ λk + wk(r∗) > λk,∀k. Also, the vector

g(r) ∈ RK whose k’th element gk(r) :=
∑

i ui(r) · xi
k −

λk −wk(r) = sk(r)− λk −wk(r) is a subgradient of L2(·)
at r. So the subgradient dual algorithm (7) follows.

The uniqueness of r∗ follows from the same argument in

the proof of Lemma 1.

C. Proof of Proposition 1

Proof: Condition (9) is easy to check:
∑

i α(i) ≥
∫ ∞

2
[1/(y log y)]dy = log(log(y))|∞2 = ∞, and

∑

i α(i)2 ≤
[1
log(2)]

2
∑

i
1

(i+1)2 < ∞.

For m ≥ 1, 0 ≤
∑m

i=1 α(i) ≤ α(1)+
∫ m

1
1/[(x+1) log(x+

1)]dx ≤ c1+log log(m+1) where c1 = α(1)−log log 2 > 0.

So

f(m) ≤ exp{(
5

2
K + 1)[λmax log log(m + 1) +

λmaxc1 + log(2)]}

for m ≥ 1. When m = 0, α(m + 1) ·
∑m

i=1 α(i) ·
f(m)/Tm+1 = 0, so the L.H.S. of (11) is

∞
∑

m=1

[α(m + 1) ·
m

∑

i=1

α(i) · f(m)/Tm+1]

≤ exp{(
5

2
K + 1) · [λmaxc1 + log(2)]} ·

∞
∑

m=1

[log(m + 1)](
5
2
K+1)·λmax [log log(m + 1) + c1]

(m + 1)(m + 2) log(m + 2)
.

When m ≥ M for a large enough M , [log(m +
1)](

5
2
K+1)·λmax [log log(m + 1) + c1] ≤ m1/2. Thus

∞
∑

m=M

[log(m + 1)](
5
2
K+1)·λmax [log log(m + 1) + c1]

(m + 1)(m + 2) log(m + 2)

≤
∞
∑

m=M

m1/2

m2 log(M + 2)

=
1

log(M + 2)

∞
∑

m=M

m−3/2 < ∞.

So (11) holds. To check condition (10), we have

∞
∑

m=0

[α(m + 1)
m

∑

i=1

α(i)]2

≤
∞
∑

m=1

[
c1 + log log(m + 1)

(m + 2) log(m + 2)
]2

≤
∞
∑

m=1

[
c1 + log log(m + 1)

(m + 2)
]2

< ∞.

D. Proof of Lemma 3

Let r∗ be the optimal dual variables of problem (6). Use

|| · || to denote the L2 norm. Since rk(m) = [rk(m − 1) −
α(m) · g′k(m)]+ by Algorithm 1, we have

||r(m) − r∗||2

≤ ||r(m − 1) − α(m) · g′k(m) − r∗||2

= ||r(m − 1) − r∗||2 − α(m) · [r(m − 1) − r∗]T g′(m)

+ α2(m)||g′(m)||2

where the first inequality follows from the fact that the

projection [·]+ is non-expansive [12]. Denote d(m) =

11

||r(m) − r∗||2. Since ||g′(m)||2 is bounded (cf. (13)), write

||g′(m)||2 ≤ C. Using this and (15),

d(m) ≤ d(m − 1) + α(m) · [r∗ − r(m − 1)]T g(m)

+α(m) · [r∗ − r(m − 1)]T [B(m) + η(m)]

+α2(m) · C. (29)

Assume that r(m − 1) /∈ Hµ := {r|L2(r) ≤ µ + L2(r
∗)}

(recall that the dual problem of (6) is minr≥0 L2(r)). Since

g(m) is a subgradient of L2(.) at r(m − 1), we have [r∗ −
r(m − 1)]T g(m) ≤ L2(r

∗) − L2(r) ≤ −µ. So

E(d(m)|Fm−1) ≤ d(m − 1) − α(m)µ

+α(m) · [r∗ − r(m − 1)]T B(m) + α2(m) · C.(30)

By inequality (21), |
∑

m{α(m) · [r∗ − r(m −
1)]T B(m)}| < ∞ in any realization and
∑

m α2(m) · C < ∞. Then we use the same super-

martingale lemma (Lemma A.1) in [10] to conclude that the

set Hµ is recurrent for {r(m)}.

Next, by (29) we have for n ≥ m,

d(n) ≤ d(m − 1)
+

∑n
i=m{α(i) · [r∗ − r(i − 1)]T g(i)}

+
∑n

i=m{α(i) · [r∗ − r(i − 1)]T [B(i) + η(i)]}
+ C

∑n
i=m α2(i).

(31)

Since C
∑∞

i=1 α2(i) < ∞, we have

lim
m→∞

C

∞
∑

i=m

α2(i) = 0. (32)

Also,
∑∞

i=1 |α(i) · [r∗ − r(i − 1)]T B(i)| < ∞ by (21). So

lim
m→∞

∞
∑

i=m

|α(i) · [r∗ − r(i − 1)]T B(i)| = 0. (33)

Finally, W (n) :=
∑n

i=1{α(i) · [r∗ − r(i − 1)]T η(i)} is a

martingale [13]. To see this, note that (a) W (n) ∈ Fn; (b)

E|W (n)| < ∞,∀n; and (c) E(W (n)|Fn−1) − W (n − 1) =
α(n) · [r∗ − r(n − 1)]T E[η(n)|Fn−1] = 0. Also, since

|(r∗ − r(m − 1))T η(m)| ≤ K · c2[r̄ + λmax

m−1
∑

i=1

α(i)]

(recall that |ηk(m)| ≤ c2), we have

E{[α(m) · (r∗ − r(m − 1))T η(m)]2}
= α(m)2E[|(r∗ − r(m − 1))T η(m)|2]

≤ α(m)2K2c2
2[r̄ + λmax

∑m−1
i=1 α(i)]2.

Therefore

supn E(W (n)2)
= sup

∑n
m=1 E{[α(m) · (r∗ − r(m − 1))T η(m)]2}

≤
∑∞

m=1 E{[α(m) · (r∗ − r(m − 1))T η(m)]2}

≤
∑∞

m=1{α(m)2K2c2
2[r̄ + λmax

∑m−1
i=1 α(i)]2} < ∞

(34)

where the last step follows from condition (10). By the

L2 Martingale Convergence Theorem [13], W (n) converges

with probability 1. So

sup
n≥m≥N0

|
n

∑

i=m

{α(i) · [r∗ − r(i − 1)]T η(i)}|

= sup
n≥m≥N0

|W (n) − W (m − 1)| → 0 (35)

as N0 → ∞ with probability 1.

Combining (32), (33) and (35), we know that with prob-

ability 1, for any ǫ > 0, after r(m − 1) returns to Hµ for

some large enough m (due to recurrence of Hµ),

n
∑

i=m

{α(i) · [r∗ − r(i− 1)]T [B(i) + η(i)]}+ C

n
∑

i=m

α2(i) ≤ ǫ

for any n ≥ m. In (31), since [r∗ − r(i − 1)]T g(i) ≤ 0,

we have d(n) ≤ d(m − 1) + ǫ,∀n ≥ m. In other words, r

cannot move far away from Hµ after iteration m − 1. Since

the above argument hold for Hµ with arbitrarily small µ and

any ǫ > 0, r converge to r∗ with probability 1.

E. Rate stability of Algorithm 1 and Algorithm 2

The rate-stability of Algorithm 1 and 2 follows from

Theorem 8 below. To prove it we need a lemma which is

intuitively clear.

Recall that for link k, the cumulative arrival process is

Ak(t), the cumulative service process is Sk(t), and the

cumulative departure process by Dk(t). When the queue is

empty, there is no departure but there can be service, so

Sk(t) ≥ Dk(t). Assume that the initial queue lengths are

zero, then it is clear that Dk(t) ≤ Ak(t), and link k’s queue

length is Qk(t) = Ak(t) − Dk(t).
By assumption, limt→∞ Ak(t)/t = λk a.s.. Also, we have

the following lemma.

Lemma 4: limt→∞ Sk(t)/t = sk(r∗),∀k, a.s..

Proof: This is a quite intuitive result since r → r∗ a.s..

In the following we give a proof. Recall that r is adjusted at

time ti, i = 1, 2, And Ti = ti − ti−1 → ∞ as i → ∞
(This can be derived from the conditions on Ti in Algorithm

1 and 2 and the fact that Ti is non-decreasing). Fix a T > 0,

we construct a sequence of time {τj} as follows. Let τ0 =
t0 = 0. Denote t(j) := min{ti|ti > τj}, i.e., t(j) is the

nearest time in the sequence {ti, i = 1, 2, . . . } that is larger

than τj . The following defines τj , j = 1, 2, . . . recursively. If

t(j) − τj < 2T , then let τj+1 = t(j). If t(j) − τj ≥ 2T , then

let τj+1 = τj +T . Also, define Uj := τj−τj−1, j = 1, 2,

Denote i∗(T) = min{i|Ti+1 ≥ T}, and j∗(T) =
min{j|τj = ti∗(T)}. From the above construction, we have

T ≤ Uj ≤ 2T,∀j > j∗(T) (36)

Define ŝj := [Sk(τj+1) − Sk(τj)]/Uj+1. Write and ŝj =
sk(r(τj)) + bj + mj , where the “error bias” bj = Ej(ŝj) −
sk(r(τj)) (Ej(·) is the expectation conditions on the state at

time τj), and the martingale noise mj = ŝj − Ej(ŝj) (note

that Ej(mj) = 0). For convenience, we have dropped the

12

subscript k in ŝj , bj ,mj . But all discussion below is for link

k.

First show that limN→∞[
∑N

j=0(mj ·

Uj+1)/
∑N

j=0 Uj+1] = 0 a.s.. Since mj is

bounded, E(m2
j) ≤ c1 for some c1 > 0.

Clearly, MN :=
∑N

j=0(mj · Uj+1), N = 0, 1, . . .
is a martingale (define M−1 = 0). We have

E(M2
N) =

∑N
j=0(E(m2

j) · U2
j+1) ≤ c1

∑N
j=0 U2

j+1.

Therefore,

∞
∑

N=0

E(M2
N) − E(M2

N−1)

(
∑N

j=0 Uj+1)2
=

∞
∑

N=0

E(m2
N) · U2

N+1

(
∑N

j=0 Uj+1)2

≤ c1

∞
∑

N=0

U2
N+1

(
∑N

j=0 Uj+1)2

= c1

j∗(T)−1
∑

N=0

U2
N+1

(
∑N

j=0 Uj+1)2
+

c1

∞
∑

N=j∗(T)

U2
N+1

(
∑N

j=0 Uj+1)2
.

Since
∞
∑

N=j∗(T)

U2
N+1

(
∑N

j=0 Uj+1)2

≤
∞
∑

N=j∗(T)

4T 2

(
∑N

j=0 Uj+1)2

≤
∞
∑

N=j∗(T)

4T 2

(
∑N

j=j∗(T) Uj+1)2

≤
∞
∑

N=j∗(T)

4T 2

(N − j∗(T) + 1)2T 2

=

∞
∑

N=j∗(T)

4

(N − j∗(T) + 1)2
< ∞,

we have
∑∞

N=0

E(M2
N)−E(M2

N−1)

(
P

N
j=0

Uj+1)2
< ∞. Using Theorem 2.1

in [17], we conclude that

lim
N→∞

[

N
∑

j=0

(mj · Uj+1)/

N
∑

j=0

Uj+1] = 0, a.s. (37)

We know that with probability 1, r → r∗. Consider a

realization where r → r∗ and (37) holds. Choose t0 > τj∗(T)

large enough such that ∀t ≥ t0, ||r(t)−r∗|| < ǫ. That is, after

t0, r(t) is near r∗ and is thus bounded. Using an argument

similar to before [todo], we have |bj | ≤ c2(ǫ)/Uj+1 for some

constant c2(ǫ), for any j satisfying τj > t0. Then, for any

large-enough N ,

|
N

∑

j:τj>t0

(bj · Uj+1)/

N
∑

j=0

Uj+1|

≤ (

N
∑

j:τj>t0

c2(ǫ))/(

N
∑

j:τj>t0

Uj+1)

≤ c2(ǫ)/T.

Therefore, lim supN→∞

∑N
j=0(bj · Uj+1)/

∑N
j=0 Uj+1 ≤

c2(ǫ)/T and similarly lim supN→∞

∑N
j=0(bj ·

Uj+1)/
∑N

j=0 Uj+1 ≥ −c2(ǫ)/T .

Also, since r → r∗ in the realization, it is easy to show

that

lim
N→∞

[

N
∑

j=0

(sk(r(τj)) · Uj+1)/

N
∑

j=0

Uj+1] = sk(r∗).

Combining the above facts, we know that with probability

1, lim supt→∞ Sk(t)/t = lim supN→∞[
∑N

j=0(ŝj ·

Uj+1)/
∑N

j=0 Uj+1] ≤ sk(r∗) + c2(ǫ)/T and

lim inft→∞ Sk(t)/t = lim infN→∞[
∑N

j=0(ŝj ·

Uj+1)/
∑N

j=0 Uj+1] ≥ sk(r∗) − c2(ǫ)/T .

Since the above argument holds for any T > 0. Letting

T → ∞, we have limt→∞ Sk(t)/t = sk(r∗) with probability

1.

We are now ready to prove the rate stability.

Theorem 8: If sk(r∗) ≥ λk,∀k, and Lemma 4 holds, then

limt→∞ Dk(t)/t = λk,∀k, a.s.. That is, the system is “rate

stable”.

Proof: (i) We first show that lim inft→∞[Ak(t) −
Dk(t)]/t = 0 a.s.. For this purpose, we show that ∀ǫ > 0,

P (lim inft→∞[Ak(t)−Dk(t)]/t > ǫ) = 0. If in a realization,

lim inf
t→∞

[Ak(t) − Dk(t)]/t > ǫ (38)

, then ∃T0 > 1/ǫ, s.t. ∀t ≥ T0, [Ak(t) − Dk(t)]/t ≥ ǫ, i.e.,

Qk(t) ≥ ǫ · t. Since T0 > 1/ǫ, we have Qk(t) > 1,∀t ≥ T0,

i.e., the queue is not empty after T0. Therefore, if t ≥ T0,

then Sk(t) = Sk(T0)+[Sk(t)−Sk(T0)] = Sk(T0)+[Dk(t)−
Dk(T0)] ≤ T0 + Dk(t). So

lim sup
t→∞

Sk(t)/t ≤ lim sup
t→∞

T0 + Dk(t)

t

= lim sup
t→∞

Dk(t)/t.

By the assumption (38), lim supt→∞ Dk(t)/t <
lim inft→∞ Ak(t)/t − ǫ. So lim supt→∞ Sk(t)/t <
lim inft→∞ Ak(t)/t− ǫ. Therefore the intersection of events

{ lim
t→∞

Sk(t)/t ≥ lim
t→∞

Ak(t)/t} ∩

{lim inf
t→∞

[Ak(t) − Dk(t)]/t > ǫ} = ∅ (39)

.

On the other hand, with probability 1, limt→∞ Ak(t)/t =
λk and limt→∞ Sk(t)/t = sk(r∗). Since sk(r∗) ≥ λk,

P (limt→∞ Sk(t)/t ≥ limt→∞ Ak(t)/t) = 1. In view of

(39), we have P (lim inft→∞[Ak(t) − Dk(t)]/t > ǫ) =
0. Since this holds for any ǫ > 0, we conclude that

lim inft→∞[Ak(t) − Dk(t)]/t = 0 a.s.

(ii) Second, we show that lim supt→∞[Ak(t)−Dk(t)]/t =
0 a.s..

From (i), we know that for an arbitrary a > 0, with

probability 1 [Ak(t) − Dk(t)]/t ≤ a infinitely often

(“i.o.”), and limt→∞[Ak(t) − Sk(t)]/t ≤ 0. Consider a

realization in which the above two conditions hold, and

13

lim supt→∞[Ak(t) − Dk(t)]/t > 2a. Then, [Ak(t) −
Dk(t)]/t ≥ 2a i.o..

By the above assumptions, Qk(t) = Ak(t)−Dk(t) ≤ a · t
and Qk(t) = Ak(t) − Dk(t) ≥ 2a · t i.o.. Also note that

in a time interval of 1, Qk(t) at most change by 1, i.e.,

|Qk(t)−Qk(t + 1)| ≤ 1. So, for any T1 (satisfying a · T1 ≥
2), there exist t2 > t1 ≥ T1 such that Qk(t1) ≤ a · t1,

Qk(t2) ≥ 2a · t2, and Qk(t) ≥ 2 for any t1 < t < t2. Since

the queue is not empty from time t1 to t2, we have

Sk(t2) − Sk(t1) = Dk(t2) − Dk(t1).

Denote Bk(t) := Ak(t) − Sk(t), then

Bk(t2)

= Bk(t1) + [Bk(t2) − Bk(t1)]

= Bk(t1) + {[Ak(t2) − Ak(t1)] − [Sk(t2) − Sk(t1)]}

= Bk(t1) + {[Ak(t2) − Ak(t1)] − [Dk(t2) − Dk(t1)]}

= Bk(t1) + Qk(t2) − Qk(t1)

≥ Bk(t1) + 2a · t2 − a · t1

Therefore

Bk(t2)/t2 ≥ Bk(t1)/t2 + 2a − a · t1/t2

Then,

Bk(t2)/t2 − Bk(t1)/t1 ≥
Bk(t1)

t1
(
t1
t2

− 1) + 2a − a
t1
t2

.

Since limt→∞ Bk(t)/t := b ≤ 0, we choose T1 large

enough such that ∀t ≥ T1, |Bk(t)/t − b| ≤ a/3. Then,

|Bk(t1)/t1 − Bk(t2)/t2| ≤ (2/3) · a (40)

. Also, Bk(t1)/t1 ≤ b+a/3 ≤ a. Since t1
t2
−1 < 0, we have

Bk(t2)/t2 − Bk(t1)/t1 ≥ a · (
t1
t2

− 1) + 2a − a
t1
t2

= a

which contradict to (40). Therefore, P (lim supt→∞[Ak(t)−
Dk(t)]/t > 2a) = 0. Since this holds for any a > 0, we

conclude that lim supt→∞[Ak(t) − Dk(t)]/t = 0 a.s..

Combining (i) and (ii) gives limt→∞[Ak(t)−Dk(t)]/t = 0
a.s.. So limt→∞ Dk(t)/t = λk,∀k, a.s.. That is, the system

is “rate stable”.

F. Proof of Theorem 3

Proof: The proof is constructive. That is, we find an

α and T that ensures that the queues are stable. The basic

idea is to show that when T is large enough and α is small

enough, then g′k(m) approximate gk(m) well, and over time,

r(m) is near r∗ with high probability. Therefore the queues

can be made “stable” since sk(r∗) > λk,∀k. The following

is the detailed proof.

Similar to (19), we have that for any link k, any time step

m
|Bk(m)| ≤ 2 · K · f̄/T (41)

where the constant f̄ = exp{(5
2K + 1) · [λmax · rmax +

log(2)]} + 1.

Define the set Hµ := {r|L(r) ≤ µ + L(r∗)}. Recall that

sk(r∗) − λk ≥ δ(λ),∀k for some δ(λ) > 0. Since sk(r) is

continuous in r, we can choose µ > 0 small enough such

that for any r ∈ Hµ, sk(r) − λk ≥ δ(λ)/2,∀k . Similar to

(42), if r(m − 1) /∈ Hµ := {r|L(r) ≤ µ + L(r∗)}, then

E(d(m)|Fm−1)

≤ d(m − 1) − α · µ

+ α · [r∗ − r(m − 1)]T B(m)

+ α2 · C. (42)

Since 0 ≤ r∗k ≤ rmax and 0 ≤ rk(m− 1) ≤ rmax for any

k, combined with (41), we have

E(d(m)|Fm−1)

≤ d(m − 1) − α · µ

+ Cµ. (43)

where Cµ := 2α · K2 · rmax · f̄/T + α2 · C.

If r(m − 1) ∈ Hµ, then similar to (43),

E(d(m)|Fm−1) − d(m − 1) ≤ Cµ. (44)

For convenience, we always choose T to be integer, so

that with the assumption of Bernoulli arrivals, U(m) :=
(s′(m), λ′(m), r(m), x0(m)) (when m = 0, let s′(m) =
λ′(m) = 0 by default) is a Markov process. Define an-

other Markov process V (m) := (r(m), x0(m),Q(m)) where

Q(m) is the vector of queue lengths of all links at time tm.

Note that the first two components of V (m) are bounded.

We will show that for some properly chosen Q̄ > 0 and

F ∈ Z++, if Qk(m0) ≥ Q̄ (with other components of

V (m0) being arbitrary), then E(Qk(m0 + F)|V (m0)) −
Qk(m0) ≤ −δ where δ > 0. (That is, the queue length

has negative drift.)

In the following, all expectations and probabilities are con-

ditioned on V (m0). For convenience we drop the notation.

Denote ∆(m) = d(m)−d(m−1). And define M := m0+F .

We have for any M > m0,

M
∑

m=m0+1

∆(m) = d(M) − d(m0) ∈ [−D1,D1] (45)

for some D1 > 0, since both d(M) and d(m0) are bounded.

So

E[

M
∑

m=m0+1

∆(m)] ∈ [−D1,D1].

14

Note that

E[

M
∑

m=m0+1

∆(m)] =

M
∑

m=m0+1

E[∆(m)]

=

M
∑

m=m0+1

E{E[∆(m)|Fm−1]}

≤
M
∑

m=m0+1

E{I(r(m − 1) /∈ Hµ)(−α · µ + Cµ) +

I(r(m − 1) ∈ Hµ)Cµ}

=
M
∑

m=m0+1

[(1 − Pµ(m − 1))(−α · µ + Cµ) + Pµ(m − 1)Cµ]

where Pµ(m−1) := Pr{r(m−1) ∈ Hµ}. Denote P̄µ(F) :=
1
F

∑M
m=m0+1 Pµ(m − 1) (recall that F = M − m0), then

−
D1

F
≤

1

F
E[

M
∑

m=m0+1

∆(m)]

≤ (1 − P̄µ(F))(−α · µ + Cµ) + P̄µ(F)Cµ.

Therefore

P̄µ(F) ≥
α · µ − Cµ − D1/F

α · µ

= 1 −
2K2 · rmax · f̄/T + α · C + D1/[α · F]

µ
(46)

If T ≥ 8K · f̄/δ(λ), then 1/[12δ(λ) − 2 · K · f̄/T + 1] ≤
1/[14δ(λ) + 1]. By properly choosing T ∈ Z+, T ≥ 8K ·
f̄/δ(λ), α, F , the RHS of (46) can be made close to 1, such

that P̄µ(F) ≥ (1 + ǫ′)/[14δ(λ) + 1] for some ǫ′ ∈ (0, 1).
If Qk(m0) ≥ Q̄ := T ·F +1, then the queue is non-empty

before time tM (since the maximal decreasing rate is 1). So,

the expected decrease of queue k from time tm0
to tM is

M
∑

m=m0+1

T · [E(s′k(m)) − λk]

= T
M
∑

m=m0+1

{E[E(s′k(m)|Fm−1)] − λk}

Recall that if r ∈ Hµ, then sk(r)−λk ≥ δ(λ)/2. By (41),

we have E(s′k(m)) ≥ λk+δ(λ)/2−2·K ·f̄/T ≥ λk+δ(λ)/4
if r(m − 1) ∈ Hµ. Then,

M
∑

m=m0+1

T · [E(s′k(m)) − λk]

≥ T ·
M
∑

m=m0+1

[Pµ(m − 1)(λk + δ(λ)/4) − λk]

= T · F [P̄µ(F)(λk + δ(λ)/4) − λk]

≥ T · F [P̄µ(F)(1 + δ(λ)/4) − 1]

≥ T · F · ǫ′

The above inequality implies that if Qk(m0) ≥ Q̄,

E(Qk(m0 + F)|V (m0)) − Qk(m0) ≤ −T · F · ǫ′ (47)

as desired. Also, clearly

E(Qk(m0 + F)|V (m0)) − Qk(m0) ≤ Q̄, if Qk(m0) < Q̄.
(48)

Now consider the Markov process {V (m′ · F)},m′ =
0, 1, 2, We claim that

∆Lk(m′)

:= E{[Qk((m′ + 1) · F)]2 − [Qk(m′ · F)]2|V (m′ · F)}

≤ −2T · F · ǫ′ · Qk(m′ · F) + 6 · Q̄2. (49)

To see (49), consider two cases: (i) If Qk(m′ · F) ≥ Q̄,

then with ∆Qk(m′ ·F) := Qk((m′+1)·F)−Qk(m′ ·F), we

have ∆Lk(m′) = 2Qk(m′ ·F)·E{∆Qk(m′ ·F)|V (m′ ·F)}+
E{[∆Qk(m′ ·F)]2|V (m′ ·F)} ≤ −2T ·F ·ǫ′ ·Qk(m′ ·F)+Q̄2

where (47) has been used. (ii) If Qk(m′ · F) < Q̄, then

Qk((m′ +1) ·F) ≤ 2Q̄. So ∆Lk(m′) ≤ 4Q̄2 ≤ −2T ·F · ǫ′ ·
Qk(m′ ·F)+6 ·Q̄2 since Qk(m′ ·F) < Q̄ and T ·F ·ǫ′ < Q̄.

Define the Lyapunov function L(m′) :=
∑

k[Qk(m′ ·F)]2.

By (49),

E{L(m′ + 1) − L(m′)|V (m′ · F)}

≤ −2T · F · ǫ′ ·
∑

k

Qk(m′ · F) + 6K · Q̄2. (50)

Then we consider two notions of queue stability.

Proof of “strong stability”

Definition: Assume that Qk(0) < ∞,∀k. The queues are

“strongly stable” [18] iff

lim sup
n→∞

n−1
∑

m′=0

E[Qk(m′)]/n < ∞,∀k.

Taking expectations on both sides of (50),

E{L(m′ + 1) − L(m′)}

≤ −2T · F · ǫ′ ·
∑

k

E[Qk(m′ · F)] + 6K · Q̄2 (51)

Similar to [18], summing (51) over m′ = 0, 1, 2, ·, n −
1, we have E{L(n) − L(0)}/n ≤ −2T · F ·
ǫ′

∑n−1
m′=0

∑

k E[Qk(m′ · F)]/n + 6K · Q̄2. Then, since

Qk(0) < ∞,∀k,

lim sup
n→∞

1

n

n−1
∑

m′=0

∑

k

E[Qk(m′ · F)] ≤
3K · Q̄2

T · F · ǫ′
< ∞. (52)

This implies lim supn→∞

∑n−1
m′=0 E[Qk(m′ · F)]/n <

∞,∀k. Due to the bounded increment of Qk in each interval

of T , we also have lim supn→∞

∑n−1
m′=0 E[Qk(m′)]/n <

∞,∀k.

Positive Harris recurrence

Using (50) and following the line of proof in [19], it can

be shown that the Markov process {V (m)} is postive Harris

recurrent.

15

G. Comments on the arrival processes

More complicated arrival processes than Bernoulli arrivals

can be assumed. As long as the following two conditions

hold

λ′
k(i) = [Ak(ti) − Ak(ti−1)]/Ti ≤ λ̄,∀k, i (53)

E[λ′
k(m + 1)|Fm] − λk| ≤ c4/Tm+1,∀k,m (54)

for some constant λ̄ > 0, c4 > 0, then the whole proof in the

paper still applies.

For example, assume that ak(t) is a continuous time

Markov chain which has two states 0 and 1. The transition

rate from 0 to 1 is λk/(1− λk), and the transition rate from

1 to 0 is 1. Then, in the stationary distribution, ak(t) = 1
with probability λk. Therefore ak(t) has a long-term average

of λk. Also, λ′
k(i) = Ak(ti) − Ak(ti−1)/Ti ≤ 1 is upper-

bounded. Thirdly, following a similar analysis in section

III-D, it can be shown that (54) holds for some constant c4

due to the “mixing” of the arrival Markov chain.

H. Comments on the fluid assumption

For simplicity, in the paper we have assumed that the traffic

is fluid: upon transmission, the bits in the queues form pack-

ets which can have different sizes from the arrived packets.

Consider the following non-fluid model. The sizes of the

packets are independent and exponentially distributed with

mean 1. In the CSMA protocol, these packets are transmitted

in their entirety. If there is no packet in the queue then

a dummy packet with the same distribution is transmitted.

This leads to the CSMA Markov chain defined before. For

link k, packets with the above distribution arrive at time

instances 0, 1, 2, . . . according to Bernoulli distribution with

parameter λk. That is, at time j ∈ Z+, a packet arrives with

probability λk. Let Nk(t) be the number of packets arrived at

link k by time t. And define the empirical arrival rate a little

differently in the algorithms: λ′
k(i) = Nk(ti)−Nk(ti−1)/Ti.

Then, since Ti ≥ minj Tj > 0 and the assumption on

Nk(t), λ′
k(i) is upper-bounded. Also, (20) is satisfied. Then

the previous proof still applies to this case. Therefore the

system is “rate stable” in the sense that limt→∞(Nk(t) −
Dk(t))/t = 0. Since the mean of packet sizes is 1, by

the law of large numbers, limt→∞ Ak(t)/Nk(t) = 1. So

limt→∞ Ak(t)/t = limt→∞[Ak(t)/Nk(t)] · [Nk(t)/t] = λk.

Therefore limt→∞(Ak(t)−Dk(t))/t = 0, i.e., the system is

also rate stable in the original sense.

One can also relax the assumption that packets arrive at

time instances 0, 1, 2, For example, consider the follow-

ing arrival process to link k similar to Poisson arrivals but

with a fixed “waiting time” Wk. When a packet arrives, it

takes a fixed time Wk for the queue to “process” it and store

it at the end of the queue. During this time no other packet

can be accepted. After W , the next packet arrives after an

exponentially-distributed duration with mean m̄k. Assume

that the average arrival rate induced by Wk and m̄k is λk.

The lengths of all packet are independent and exponentially

distributed with mean 1. With these assumptions, and with

λ′
k(i) interpreted as Nk(ti) − Nk(ti−1)/Ti, conditions (53)

and (54) are satisfied. Then the analysis in the paper applies.

I. Comments on adjusting transmission times instead of

backoff times

In an alternative design, the random backoff time of

each link is exponentially distributed with mean 1, and the

transmission duration of link k is exponentially distributed

with mean exp(rk). Clearly, when r is fixed, the CSMA

Markov chain has the same stationary distribution as before.

In the new design, rk is still adjusted according to equation

(8).

Theorem 9: The following conditions ensure the conver-

gence of the algorithm:
∑

i α(i) = ∞,
∑

i α(i)2 < ∞,

conditions (10) and (11), but with f(m) redefined as

f(m) = exp{(
5

2
K + 2) · [λmax ·

m
∑

i=1

α(i) + log(2)]}. (55)

Remark: The setting α(i) = 1/[(i + 1) log(i + 1)] and

Ti = i satisfies these conditions. So are the other examples

mentioned in section III-B.

Proof: The proof is similar to that of Theorem 1, but

with minor changes in the calculation of the mixing time.

Specifically, since in this design Q(x, x′) ≤ 1∀x, x′ (recall

that r(m) ≥ 0), we let Am+1 = K in the uniformization.

Also, for any x, x′ such that Q(x, x′) > 0, we have

Q(x, x′) ≥ 1/ exp(λmax

∑m
i=1 α(i)). So

P (x, x′) = Q(x, x′)/Am+1

≥ 1/[K · exp(λmax

m
∑

i=1

α(i))].

Then the conductance

φ ≥ πmin(r(m))/[K · exp(λmax

m
∑

i=1

α(i))].

Combined with (18), we have

1/(1 − β1) ≤ 2 · K2 exp(2λmax

m
∑

i=1

α(i))[πmin(r(m))]−2.

Plugging this into (17) and use (16), we have

||µ̄x0
(r(m);Tm+1) − π(r(m))||var

≤ K · exp(2λmax

m
∑

i=1

α(i))[πmin(r(m))]−5/2/Tm+1.

≤ K · f(m)/Tm+1

where f(m) is newly defined in (55). Other parts of the proof

are the same as Theorem 1.

REFERENCES

[1] X. Lin, N.B. Shroff, R. Srikant, “A Tutorial on Cross-Layer Opti-
mization in Wireless Networks,” IEEE Journal on Selected Areas in

Communications, 2006.
[2] X. Wang and K. Kar, “Throughput Modelling and Fairness Issues in

CSMA/CA Based Ad-Hoc Networks,” Proceedings of IEEE Infocom

2005, Miami, March 2005.

16

[3] S. C. Liew, C. Kai, J. Leung, B. Wong, “Back-of-the-Envelope Com-
putation of Throughput Distributions in CSMA Wireless Networks,”
submitted for publication, http://arxiv.org//pdf/0712.1854

[4] L. Jiang and J. Walrand, “A Distributed CSMA Algorithm for Through-
put and Utility Maximization in Wireless Networks,” the Forty-Sixth

Annual Allerton Conference, Sep. 23-26, 2008.
[5] L. Jiang and J. Walrand, “A Distributed Algorithm for Maximal

Throughput and Optimal Fairness in Wireless Networks with a
General Interference Model”, Technical Report, UC Berkeley, Apr.
2008. http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-
38.html

[6] L. Jiang and J. Walrand, “Convergence Analysis of a Dis-
tributed CSMA Algorithm for Maximal Throughput in a Gen-
eral Class of Networks”, Technical Report, UC Berkeley, Dec.
2008. http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-
185.html

[7] F. P. Kelly, “Reversibility and Stochastic Networks,” Wiley, 1979.
[8] J. M. Harrison and R. J. Williams, “Workload interpretation for

Brownian models of stochastic processing networks,” Mathematics of

Operations Research, 32 (2007), 808–820.
[9] P. Diaconis and D. Strook, “Geometric bounds for eigenvalues of

Markov chains,” Annals of Applied Probability, 1 (1991), pp. 36-61.
[10] J. Zhang, D. Zheng, and M. Chiang, “The impact of stochastic

noisy feedback on distributed network utility maximization,” IEEE

Transactions on Information Theory, vol. 54, no. 2, pp. 645-665,
February 2008.

[11] S. Rajagopalan and D. Shah, “Distributed Algorithm and Reversible
Network”, Conference on Information Sciences and Systems (CISS),
Princeton, NJ, USA, March 2008.

[12] S. Boyd and L. Vandenberghe, “Convex Optimization”, Cambridge
University Press, 2004.

[13] R. Durrett, “Probability: Theory and Examples”, Duxbury Press, 3rd
edition, March 16, 2004.

[14] J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. V. Poor, “Maximizing
utility via random access without message passing,” Microsoft Re-
search Technical Report, September 2008.

[15] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
36:1936-1948, December 1992.

[16] L. Jiang and J. Walrand, “A Novel Approach to Model
and Control the Throughput of CSMA/CA Wireless
Networks”, Technical Report, UC Berkeley, Jan 2009. URL:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-8.html

[17] S Hu, G Chen, X Wang, “On extending the Brunk–Prokhorov strong
law of large numbers for martingale differences,” Statistics and Prob-
ability Letters, 2008, Elsevier.

[18] M. J. Neely, E. Modiano, C. P. Li, “Fairness and Optimal Stochastic
Control for Heterogeneous Networks,” IEEE/ACM Transactions on

Networking, vol. 16, no. 2, April 2008, pp. 396-409.
[19] J. G. Dai, “On positive Harris recurrence of multiclass queueing

networks: a unified approach via fluid limit models”, Annals of Applied
Probability, 1995.

