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Abstract

SharC is a recently developed system for checking data-sharing in
multithreaded programs. Programmers specify sharing rules (read-
only, protected by a lock, etc.) for individual objects, and the SharC
compiler enforces these rules using static and dynamic checks.
Violations of these rules indicate unintended data sharing, which
is the underlying cause of harmful data-races. Additionally, SharC
allows programmers to change the sharing rules for a specific
object using a sharing cast, to capture the fact that sharing rules
for an object often change during the object’s lifetime. SharC was
successfully applied to a number of multi-threaded C programs.

However, many programs are not readily checkable using SharC
because their sharing rules, and changes to sharing rules, effectively
apply to whole data structures rather than to individual objects. We
have developed a system called Shoal to address this shortcoming.
In addition to the sharing rules and sharing cast of SharC, our
system includes a new concept that we call groups. A group is
a collection of objects all having the same sharing mode. Each
group has a distinguished member called the group leader. When
the sharing mode of the group leader changes by way of a sharing
cast, the sharing mode of all members of the group also changes.
This operation is made sound by maintaining the invariant that at
the point of a sharing cast, the only external pointer into the group
is the pointer to the group leader. The addition of groups allows
checking safe concurrency at the level of data structures rather than
at the level of individual objects.

We demonstrate the necessity and practicality of groups by
applying Shoal to a wide range of concurrent C programs (the
largest approaching a million lines of code). In all benchmarks
groups entail low annotation burden and no significant additional
performance overhead.

1. Introduction

The increasing prevalence of multicore processors requires lan-
guages and tools that support safe concurrent programming. C itself
provides no such support — most concurrency errors in C programs
happen silently, and do not become observable until the program
fails catastrophically. In these cases, it is common for the bug to be
difficult to deduce from the way the program fails.

A number of tools [32, 11] have been developed for modern
languages like C# and Java to detect one type of concurrency error:
the data-race. A data-race occurs when two threads access the same
location in memory without synchronization, and at least one of
the accesses is a write. In these systems an exception is raised
immediately whenever a data-race occurs. The fail-fast approach
used by these runtimes is in agreement with good systems design.
However, in the same way that a program crash is a symptom of
some deeper problem, a data-race is a symptom of unintended data
sharing.
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SharC [1] is a recently-developed system that attempts to iden-
tify instances of unintended data sharing. Using SharC, program-
mers make type annotations that describe how data is intended to be
shared (or not) among threads. These annotations are called shar-
ing modes. Additionally, SharC provides a checked cast operation
called a sharing cast that a programmer can use to identify places
in a program where the sharing mode for an object changes. Us-
ing a combination of static and dynamic analysis, SharC checks
that no data is shared among threads in the program except in ways
that have been explicitly declared by the programmer. This stronger
condition also precludes the existence of data-races.

Unfortunately, SharC has a fairly serious limitation that prevents
it from being easily applied to some widely-used multithreaded C
programs: sharing casts apply to individual objects to which only a
single reference remains. Therefore, changing the sharing mode of
data structures, such as linked lists and trees, is either unsafe, im-
possible, or prohibitively expensive in SharC. Complex data struc-
tures occur frequently in all C programs including multithreaded C
programs. Some of the structures used have different sharing modes
at different points in time. For example, data structures are initial-
ized before being shared with other threads, or become private to
a thread after being removed from shared queues, lists, and hash
tables. Applying SharC to such programs is thus difficult or impos-
sible.

We have extended SharC to address this shortcoming. In addi-
tion to the existing sharing modes and sharing cast of SharC, we
have developed a new concept that we call groups by borrowing
ideas from region, ownership, and dependent type systems. For the
purposes of this paper, we use the name Shoal to refer to SharC
extended with groups, and SharC to refer to the original system. A
group is a collection of objects all having the same sharing mode.
Each group has a distinguished member called the group leader.
When the sharing mode of the group leader changes by way of a
sharing cast, the sharing mode of all members of the group also
changes. We distinguish these casts from SharC’s single-object
casts by calling them group casts. We ensure soundness of group
casts by requiring that all external pointers into a group have a type
that depends on a pointer to the group leader, and using reference
counting to prevent casts when more than one pointer to the group
leader remains. Objects can be added or removed from groups, and
group casts can be used to combine groups. We present the syntax
along with examples of group use in Section 2, and formalize and
prove the soundness of our group type system in Section 3. Our for-
malism for groups is not strongly tied to the concept of a sharing
mode, and could be used to track other properties, such as tainting,
immutability, etc. We hope that groups and group casts represent
a promising approach to describing the runtime evolution of such
properties.



We have used Shoal, to check data sharing in several interest-
ing benchmarks, including the GIMP image manipulation program
which is over 900k lines. Our benchmarks include scientific codes
using graphs and trees to organize calculations; a simple webserver
using an in-memory cache shared among threads that process re-
quests from clients; and two image manipulation programs that use
threads to improve performance and hide latency. To support these
benchmarks, Shoal includes a sharing mode that checks a com-
mon idiom in parallel scientific applications; barrier synchroniza-
tion is used to separate updates in one thread from reads by other
threads. We have observed that Shoal’s annotation burden is man-
ageable. For small (a few thousand line) programs we made about
one change for every 50 lines, but for the GIMP we only needed one
for every 10 000 lines. Additionally, making the right annotations
requires minimal program understanding — the GIMP required one
person only three days to annotate. The scientific benchmarks had
overheads around 40% (mostly due to concurrent reference count-
ing), the overheads on the other benchmarks were less than 20%,
and overheads were not affected by the number of threads. We dis-
cuss our experimental results in full in Section 4.

To summarize, this paper makes the following contributions:

® We present groups and group casts, lightweight mechanisms
for describing data structure properties, and evolution of these
propreties. Groups borrows ideas from region, ownership and
dependent type systems to describe sets of objects with a com-
mon property, represented by a distinguished leader.

We describe how groups can be used to specify the sharing
strategy used in concurrent programs that use complex data
structures.

e We demonstrate the practicality of Shoal by using it to check
data sharing in several applications which require groups, with
both low performance overheads, and low annotation burden.
We also discuss how these applications would have been diffi-
cult and impractical to check without groups.

2. Overview

SharC [1] is a system in which programmers add annotations,
called sharing modes, to types. These modes include private, for
objects accessible only by a single thread, readonly for objects
that cannot be modified, and locked(L) (a dependent type) for
objects that must only be accessed when lock L is held. SharC uses
a combination of static and dynamic checking to ensure that these
rules are followed. Additionally, SharC allows the programmer to
specify where the sharing mode for an object changes using a
sharing cast. SharC checks these casts using reference counting:
if only one reference to an object exists, then the sharing mode of
the object can be changed by atomically copying the pointer to a
pointer with the new sharing mode, and nulling out the old pointer.

2.1 SharC’s Limitation

With these capabilities SharC is able to describe the sharing strat-
egy in a variety of legacy multithreaded C programs. Unfortunately,
the restriction that the sharing cast may apply only to single objects
prevents SharC from being easily applied to a number of common
code patterns.

In this section, we will refer to a simple example in which a
singly-linked list is initialized by one thread before being shared
through a lock with other threads. The code for this example is
given in Figure 1. This code snippet defines a type for list nodes,
and gives a function that initializes a list before sharing it with other
threads through a global variable protected by a lock.

The sharing strategy for this code dictates that the list is private
when being constructed, and then becomes lock-protected when it

1 typedef struct list {

2 int data;

3 struct list *next;

4} list_t;

5 mutex_t *Lck;

6 list_t *1ckL;

7 void init(Q {

8 list_t *pL = NULL, *end = NULL;
9 for(int i = 0; i < 10; i++) {

10 t = malloc(sizeof(list_t));
11 t->data = i;

12 t->next = NULL;

13 if (pL == NULL) pL = t;

14 else end->next = t;

15 end = t;

16 }

17  mutex_lock(Lck);
18 1ckL = pL;

19 mutex_unlock(Lck);
20}

Figure 1. Code that defines a linked structure, and shows how it is
initialized by one thread before being shared through a lock with
other threads.

l1cklist_t locked(Lck) *convert(plist_t private *L) {
plist_t *ptl = L, *pt2;
1cklist_t locked(Lck) *1lckhp, **1cktp = &rot;
while(ptl) {
pt2 = ptl->next;
ptl->next = NULL;
(*1lcktp) = scast (lcklist.t locked(Lck) *,ptl);
lckhp = &((*1lcktp)->next);
ptl = pt2;
}
return lckhp;

}

Figure 2. Code that uses SharC’s single object cast to convert a
private list to a locked() list. scast is SharC’s single object
sharing cast.

is shared with other threads on line 18. We would like to simply
declare that 1ckL is a pointer to a locked() list_t, and that its
next field also points to locked() list_t’s, and that similarly
pL is a pointer to a private list_t with a next field pointing to
private list_t’s. However, if we do that SharC will not let us do
a sharing cast from pL to 1ckL because that would be unsound as
as there might still be a private pointer into the tail of the list now
pointed to by 1ckL.

Alternately, we might try to define two different list structures,
each with the appropriate annotation given explicitly on the next
field, say plist_t and lcklist_t. Then, we could traverse the
list, doing a sharing cast on each node while casting from one list
node type to the other'. We might write something like the code in
Figure 2.

In this snippet scast is SharC’s single object sharing cast. This
approach has a few problems. First, we would have to compel
SharC to accept the dubious cast between two different aggregate
types, which it currently does not. Second, code with a similar goal
may become quite cumbersome to write for anything beyond the
simplest data structures. Finally, for data structures consisting of
many individual objects, the above code would adversely affect
run-time performance. Furthermore, condoning such an approach

!'This tactic might require writing to readonly objects, if that is the in-
tended target mode, and so will trivially violate SharC’s type system, but
suppose for a moment that this is not a problem.



mutex_-t *Lck

list_t group(lckL) locked(Lck) * locked(Lck) 1lckL;
7 void init(Q) {

8 list_t group(plL) private * private pL = NULL;

9 list_t group(pl) private * private end = NULL;
10  for(int i = 0; i < 10; i++) {

I typedef struct list {

2 int data;

3 struct list same *next;
4} list_t;

5

6

11 t = malloc(sizeof(list.t));
12 t->data = i;

13 t->next = NULL;

14 if (pL == NULL) pL = t;

15 else end->next = t;

16 end = t;

17}

18  mutex_lock(Lck);

19 1lckL = gcast (list-t group(lckL) locked(Lck) *, pL);
20 mutex_unlock(Lck);

21}

Figure 3. Code that defines a linked structure, and shows how it is
initialized by one thread before being shared through a lock with
other threads. Bolded annotations are provided by the programmer.
Unbolded annotations are inferred.

would violate SharC’s design goal of requiring the programmer to
write only simple type annotations and casts to specify a program’s
sharing strategy.

2.2 Shoal’s Goals

The goal of Shoal is to allow changing the sharing mode, not only
of individual objects, but also of complex data structures in one
atomic action. In order to ensure the soundness of these operations,
we require the programmer to add annotations that describe a group
of objects that have the same sharing mode. A group is identified by
a distinguished object called the group leader. Internal and external
pointers to the group have distinct types such that external pointers
must identify the group leader. We combine static and runtime
checks to maintain the invariant that no object is referred to by
pointers with different sharing modes at the same time. In brief,
we ensure that all external pointers identify the same object as the
group leader, and that group casts are only performed when there
is a single external pointer to the group. The rest of this section
explains the syntax for groups, and how our type system enforces
the above semantics.

Orthogonally, to better support scientific applications, Shoal
also adds a new sharing mode, barrier for objects protected by
barrier synchronization: between any two barriers a chunk® of the
object is either only read, or only accessed by a single thread.

2.3 Group Annotations and Casts

Groups are specified using two annotations. First, we provide a
dependent type annotation, group (p), which indicates that objects
of that type belong to the group with leader pointed to by p. Second,
we provide an annotation for structure field pointer types, same,
which indicates that the structure field points into the same group
as the containing structure. The group(p) annotation identifies
external pointers, while the same annotations identifies internal
pointers. We also provide an additional checked cast operation,
gcast, which indicates that the sharing mode or group leader for
a group of objects is changing. gcast ensures that there is only
one external reference to a group leader, and atomically copies the

2 We break objects into 16-byte chunks, to allow concurrent non-racy up-
dates to composite objects such as arrays.

value of the pointer into the new pointer with the new type, and
nulls out the old pointer so that no pointers with the old type refer
to the same data structure after the cast.

Consider the code snippet in Figure 3. This is our linked list
example from above, but now it is fully annotated with Shoal’s
sharing modes, and casts. Bolded annotations must be provided by
the programmer, while the unbolded annotations are inferred. First
note the same annotation in the type of the next field on line 3.
This indicates that next is an internal pointer in the same group as
the enclosing structure. Next, note that 1ckL is a locked () pointer
into a locked() list. The group (1ckL) annotation indicates that
1ckL is an external pointer into the group identified by the target
of 1ckL. That is, 1ckL is a pointer to the group leader. Inside of
the init () function, pL and t are private pointers to private
lists. They are both external pointers into the group identified by
the target of pL. In the for loop, nodes are added to the list.

After the list is built, on line 19, the mode for the entire list is
changed from private to locked (). This is safe because pL is the
only external reference to the list, and because no other live, non-
null variable refers to pL in its type. These checks are sufficient to
ensure that there are no pointers with the wrong type. If our list
building code had, e.g., stored an external reference into the middle
of the list, then its type would have to refer to the group leader. If
the type referred to a reference aside from pL, then the reference
count on the group leader would be too high. If its type referred to
pL, then the null check on pointers that refer to pL would fail.

2.4 The Group Leader

As mentioned, when a cast of a group is attempted, we must be
able to verify that there is only one external pointer into the group.
Further, for soundness reasons when a pointer mentioned in a
dependent type is assigned to, pointers of types that depend on it
must be null.

To enforce the first requirement, we restrict what expressions
may appear as parameters to a group () annotation. In the annota-
tion group(p), p is a pointer expression built from variables and
field names: the types of structure fields may refer to other fields
of the same structure, and the types of locals may refer to other
locals(including formal parameters) in the same function. Globals
may be mentioned in the group () parameter, but only when they
are declared static readonly . Finally, pointers mentioned in
the group () parameter may not have their addresses taken. These
restrictions permit us to reason locally about what values types de-
pend on. That is, we require no alias analysis to discover what the
dependencies of a type are. These are the same restrictions as those
used in the Deputy [8] dependent type system for C.

The second requirement exists to ensure that the group of an
object cannot change without a group cast. That is, changing the
group of an object by simply changing the value of the pointer in
its group() annotation is forbidden. To enforce this, we simply
insert dynamic checks for null-ness ahead of assignments to group
leader pointers on which other live pointers depend. Note that in
our linked list example, on line 14 t is dead after the assignment,
so no null-check is required for t. However, pL is live after the
assignment, and so we must check that it is null beforehand. These
restrictions may seem cumbersome, however they have not caused
any substantial difficulties in porting our benchmarks.

In a fully typed program, every pointer type has either a
group () annotation or a same annotation. However, the group ()
parameter may be null. When this is the case, the object cannot be
the subject of a group cast as it clearly cannot be the group leader,
however it can be extracted from the “null” group using the single-
object sharing cast as described in Section 3. In our system we use
the shorthand nogroup for group (NULL). In our linked list exam-
ple, the nogroup annotations would go on types that do not have a



group () or same annotation, but these have been omitted for read-
ability. In our implementation nogroup is the default annotation.
This is so that the programmer is required to make annotations only
for instances of data structures where the group cast is needed.

2.5 Operations on Groups

Objects can be added to and removed from groups, while group
casts can be used to change a group’s sharing mode and/or merge
two groups. Consider the linked list structure above. Adding a node
to the list is straightforward. We simply declare a new list node
pointer, and indicate that it points into the needed group as shown
in the linked list example.

In our first example with 1ist_t, we demonstrated the use of
the group cast to change the sharing mode of an entire linked list.
This idiom is fairly common in concurrent C programs. That is,
a data structure is initialized privately to one thread before being
shared among all threads either protected by a lock, or read-only.
We can also merge one group into another group. This operation
requires a checked cast because we do not currently support any
notion of “subgroups,” and so no pointers identifying the leader of
the old group as their group leader may exist after the merge:

list_t group(Ltail) private * private Ltail;
list_t group(Lhead) private * private Lhead;

or

// ... nodes are added to Ltail
Lhead->next = gcast (list_t group(Lhead) private *,
Ltail);

Due to the few restrictions placed on internal group pointers (i.e.
the same pointers), our type system does not support group split-
ting. However, we do support the removal of individual objects
from a group using the single-object sharing cast; if the same fields
of an object are null, then it can be cast to any group. The inability
to split groups has not been problematic in our benchmarks.

2.6 Instrumentation

In Figure 4 we show the instrumentation that Shoal uses for its
dynamic analysis. In fact, this snippet is simply meant to show log-
ically what the instrumentation does since the actual implementa-
tion involves some amount of optimization to reduce the cost of
reference counting, and some additional complexity because the
reference counting must be thread safe. Since this example involves
only the private and locked () modes, all of the instrumentation
comes from checking that Lck is held when 1ckL is accessed, refer-
ence counting, and checking the reference count at the group cast.
Since we can verify statically that t is dead at the assignment at
line 14 and at the group cast at line 19, the only dynamic checking
needed for the group () types is ensuring that pL is null before it
is assigned. If t were not determined statically to be dead at the
above mentioned locations, the instrumented code would contain
assertions requiring t to be null.

2.7 A More Complex Example

Figure 5 gives pseudo-code for an n-body simulation using the
Barnes-Hut algorithm [2]. At each simulation time-step, Barnes-
Hut constructs an oct-tree based on the locations of the bodies, then
computes the center of mass of each node in the oct-tree. The force
on each particle is computed by walking the oct-tree; the effect of
all particles within an oct-tree node can be approximated by the
node’s center of mass as long as this is far enough from the particle.
Finally, the computed force is used to update a particle’s velocity
and position.

Figure 5 omits the code that builds the tree and does the cal-
culations to highlight the data structures, sharing modes and group
casts. This pseudo-code has been adapted to pthreads from a Split-
C [18] program (itself inspired by the Barnes-Hut Splash2 [31]
benchmark) written in an SPMD style; it uses barriers to synchro-

void init(Q)
list_t *pL = NULL, *t = NULL, *end = NULL;
for(int i = 0; i < 10; i++) {
decrc(t);
t = malloc(sizeof(list_t));
incrc(t);
t->data = i;
t->next = NULL;
if (pL == NULL) {
assert (pL == NULL);
decrc(pl);
pL = t;
incrc(pl);
}
else {
decrc(end->next);
end->next = t;
incrc(end->next);
}
decrc(end) ;
end = t;
incrc(end);
}
mutex_lock(Lck);
sharc_lock_acquire(Lck) ;
assert(sharc_has_lock(Lck));
// The following six lines are performed atomically
assert(refcount(plL) == 1);
decrc(1lckL);
1ckL = pL;
incrc(lckL);
decrc(pL);
pL = NULL;
sharc_lock release(Lck);
mutex_unlock(Lck);

}

Figure 4. Our linked list example shown after instrumentation by
Shoal. Since the example is using only the private and locked ()
modes, the only instrumentation is for reference counting, checking
that locks are held, and checking the group cast.

nize accesses to shared data structures, and each thread has a unique
id given by MYPROC. The tree is built out of node_t structures. Each
node_t records the total mass of the bodies below that node and the
position of their center of mass. Further, leaf nodes in the tree can
point to up to eight bodies, while internal nodes have eight chil-
dren. The leaves are represented in the node_t’s as an index into a
body_t array whose elements represent the particles. Finally, every
node has a pointer to its parent node.

The function run(), executed by each thread, shows an out-
line of how the simulation runs. First, the initial positions and ve-
locities of the bodies are written into the array of body_t struc-
tures(line 26) by one of the threads. This initialization occurs pri-
vately to this thread. This is reflected by the private sharing mode
of the bodies array on line 22.

Next, the threads enter the main loop. First, an oct-tree is built
by the same thread that initialized the bodies(line 30). While the
tree is being built, the parent pointers in the nodes are filled in.
In the last step of BuildTree(), the tree is walked up from each
leaf node to calculate the mass and center of mass for each node®.
During this process the parent nodes are nulled out, as they will not
be used again.

After the tree is built, it will no longer need to be written.
Further it will need to be read by the other threads. This sharing

3We note here that it is sometimes necessary when using groups to pass
an unused pointer to the group leader to recursive functions. This has not
caused problems in our benchmarks.



I typedef struct node {

2 double mass;

3 double pos[3];

4 struct node same *parent;

5 int bodies[8];

6 struct node same *children[8];
7 } node_t;

8

9 typedef struct body {
10  double mass;

11 double pos[3];

12 double vel[3];

13 double acc[3];

14 } body_t;

15

16 void BuildTree(node_t group(root) private *root,
17 body_t private *Bodies);

18

19 void run(Q) {

20 node_t group(root) private *root;

21 node_t group(roRoot) readonly *roRoot;
22 body_t private *bodies;

23 body_t barrier *barBodies;

24
25 if (MYPROC == 0)
26 initBodies(bodies);

27 while (not_done) {
28 if (MYPROC == 0) {

29 root = malloc(sizeof(node_t));

30 BuildTree(root,bodies);

31 roRoot =

32 gcast(node_t group(roRoot) readonly *,root);
33 barBodies =

34 scast(body_t barrier *,bodies);

35 }

36 barrier();

37 // Share roRoot and barBodies, then calculate
38 // new body positions.

39 barrier(Q);

40 if (MYPROC == ) {

41 root =

42 gcast(node_t group(root) private *,roRoot);
43 bodies =

44 scast(body_t private *,barBodies);

45 free_tree(root);

46 }

47 )

48}

Figure 5. An oct-tree is built privately to one thread, and then the
entire tree is cast to readonly to be shared with all other threads.

mode change is implicit in the original program through the use of
the barrier () call, but with Shoal such changes must be explicit.
Hence, we use a group cast to make the entire tree readonly
(line 32). This cast succeeds because there is only one external
reference to the whole oct-tree, and because no other pointers
aside from root mention root in their types. Further, no other
pointers aside from roRoot mention roRoot in their types, so it
is also safe to write roRoot. If BuildTree had saved an external
reference into the tree, then this external reference would have
been dependent on some pointer to the group leader. This unsafe
condition would then be caught during the checked cast because
the reference count to the group leader would be greater than one.
We also cast the bodies array(line 34). We use the barrier
sharing mode because different threads “own” different parts of
the array. The thread that owns a body calculates its new position,
velocity, and acceleration based on the masses of nearby bodies
(distant bodies are not accessed as their effects are summarised

Program P == A|P;P
Definition A = x:t|t=(f1 1. fu i du)
| f(){xlle,---a-xn:Tn;S}
Dependent Type 7 = m<{>t
Field Type ¢ = f|T
Sharing Mode m = locked|private
Statement s = s1;8 | spawn f() | lock x | unlock x
| C:=e[whenwy,...,w, ]
| wait | done
L-expression t = x|xf
Expression e u= {|new|gcastx
Predicate w = oneref(x)|m(x)| €, =€ | € =null
Identifiers foxt

Figure 6. A simple imperative language. Elements in bold are only
used in the operational semantics.

in the oct-tree). Some parts of the body structure are readonly,
and other parts are private. This fact cannot be represented by
our static type system, but we can check the desired access pattern
using the barrier sharing mode. The cast of bodies can use the
single-object sharing cast (scast) as the body_t type contains no
same pointers.

Following these casts, the pointers to the body array and the
tree root are shared through globals with the other threads, and the
simulation is updated. Subsequently, these pointers are nulled out
in all threads but one, and more casts are used to indicate that the
body array and oct-tree are private again (lines 41 and 43). The
oct-tree can then be destroyed (line 45).

If this program compiles and runs without errors with Shoal,
then we know that no pointers exist to the oct-tree or to the bodies
with the wrong type, that there are no data races on the bodies
while they are protected by the barrier synchronization (or on other
objects in other sharing modes), and that only one thread accesses
the oct-tree or the bodies while they are in the private mode.

On this example, Shoal’s dynamic checking incurs a runtime
overhead of 38% when running a simulation of 100 time steps for
approximately 16000 bodies. Most of this overhead is due to the
cost of reference counting.

2.8 Static vs. Dynamic Checking

Shoal does very little dynamic checking beyond what is already
done by SharC, i.e. reference counting, and checking for the
locked sharing modes. As mentioned above, our group() type
is dependent, and as one might expect, some of the type checking
must be done at runtime. In our case, this entails inserting a small
number of checks to make sure that certain pointers are null. In
practice the number of checks is small, and our timing primitives
are not precise enough to measure their affect on the performance
of our benchmarks.

Shoal’s barrier mode is checked at runtime. For objects in the
barrier mode, in between barriers, dynamic checks are inserted
that require these objects to be either private or read-only between
barriers. At each barrier, the analysis is reset to reflect the fact that
the ownership of barrier mode objects changes at barriers.

All other components of our analysis are done statically.

3. The Formal Model

Shoal’s formalism is derived from that SharC [1], with significant
changes to handle data structures, and our notion of groups and
group casts. Our language (Figure 6) consists of global variable
(x : 1), C-like structure (¢ = ...) and function (f(){...}) definitions
(we assume all identifiers are distinct). Our global variables are



— pointers

-- 4 group representative

y : private<y>u
X : private<y>t

Figure 7. A simple group

unusual: for each global variable x : 7 a structure instance o, of
type 7 is allocated at program startup, and newly created threads
have a local variable x : 7 that is initialized to o,. This allows
sharing between our threads while simplifying our semantics by
allowing all variables to be treated as local.

Figure 7 shows typical type declarations for two variables x and
y: a type 7 of the form m<x> t represents a pointer to the structure
named ¢, that can be null. The sharing mode m is the sharing mode
of the pointer’s target; our formalization supports private (acces-
sible to only one thread) and locked (each structure protected by
an implicit lock, Java-style). As we described earlier, each group
is identified by a distinguished leader object. In our type system,
all pointer types must include the name x of a variable or field
that points to the leader (the syntax allows for arbitrary lvalues,
but these can only appear during type-checking and in the oper-
ational semantics). For instance, in Figure 7 y points to the leader
for x’s target. In the rest of this section, we simply call y x’s leader.
Note that the leader of y is y itself (this is required for soundness),
however it is legal to have multiple pointers to the group leader. For
instance, we could add declarations

yl : private<yl> u
x1 : private<yl> t

and legally assign y to yl and x to x1. Thus, the declaration
(y : m<x> t) is equivalent to the C language declaration (t m
group(x) * private y) since all variables in the formalism are
locals. Our pointer types depend on variables and are thus a form of
dependent types. To ensure soundness in the presence of mutation,
we use similar type rules to the Deputy system [8] (see below).

Structures consist of a set of typed fields f : ¢, where ¢ is either
a dependent type 7 or an unqualified pointer to a structure z. In the
first case, the type T can only depend on other fields (as in Deputy)
and cannot be private®, in the second case the pointer is a “same
group” pointer, i.e. it’s target is in the same group and has the same
sharing mode as the structure itself. For example

list = (data: locked<data> stuff, next: list)
X : private<x> list

declares a linked-list type where the list node structures are in
a single group. Thus, these declarations are equivalent to the C
language declarations:

struct list {
stuff locked(data) group(data) *data;
struct list same *next;

}

4 This requirement can be relaxed to forbidding non-private pointers to such
structures.

struct list private group(x) * x;

The variable x is thus a private list with locked contents: x, x .next,
x.next.next, ...are all private objects in the same group, while
the list contents x.data, x.next.data, ...are in separate groups
protected by locks.

Functions f consist of local variable definitions and a sequence
of thread-spawning, locking and assignment statements. Assign-
ments are guarded by runtime checks (w) which check sharing
modes are respected (m(x)), compare lvalues (¢ = ¢ and ¢ =
null) and assert that x is the sole reference to a particular object
(oneref(x)). These runtime checks are added automatically during
type checking. The most important expression is gcast x which per-
forms a group cast on x’s target. For instance:

y : locked<y> list
y := gcast x

casts our list x whose node structures were private into a list y
whose node structures are protected by locks. A group cast can also
merge two groups:

y : locked<z> list
y = gcast x
z.next =y

Our formalism can readily be extended with primitive types,
further sharing modes and an scast x expression to extract a sin-
gle object from a group (under the condition that all same-group
fields are null). However, our formalism does not currently support
splitting a group into two arbitrary parts.

3.1 Static Semantics

Figure 8 presents the type-checking rules for our language. These
rules both check a program for validity and rewrite it to include
necessary runtime checks. Also, we restrict assignments to the
forms x := e and x.f := y. To simplify exposition, we assume in
the rules that I'(x) gives the type of global variable x, T is the set
of all structure types, and #(f) gives the type of field f of structure
t.

The cLoBAL, STRUCTDEF and THREAD rules enforce the restriction
that variable types are only dependent on other variable types, while
field types are only dependent on other fields of the same structure.
Furthermore, globals cannot be private and structures cannot
contain explicitly private fields, as having a non-private pointer
to a structure with a private field would be unsound. The DEPENDENT
rule requires that the leader of a group uses itself as leader.

Reading or writing lvalue ¢ (READ, WRITE) requires three sets of
runtime checks. First, if £ = x.f we must enforce x’s sharing mode.
Second, we must ensure that the lvalues denoting the assignment’s
source and target group match after the assignment. Third, the
function D adds runtime checks to ensure that any variables or
fields dependent on the assignment’s target £’ are null before the
assignment, as the assignment would otherwise be unsound. The
scoping rules enforced in GLOBAL, STRUCTDEF and THREAD make these
checks tractable: if ¢/ = x.f, fields dependent on f must be in
the same structure instance, while variables dependent on ¢’ = x
must be variables of the same function. Finally, these checks remain
sound even in the presence of concurrent updates by other threads:
variables cannot be modified by other threads, while the runtime
check w that enforces ¢ = x.f’s sharing mode also guarantees that
any other fields of x can be accessed without races.

A group cast of y can be performed if y is the only reference to
the target object. Because the group cast nulls-out y, the dependent-
type restrictions (D) must hold for y, as in a regular assignment to

y.
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lval(M, id, x.f) = M,(id.x).f if M,(id.x) # 0

rtype(M, id, m<x> t) = m<M,(id.x)> t
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M (a) = pif My(a) = m’<c>t A c # 0, My(a) otherwise

geast(M, id, c,p) = M’ where

M (a) = id if M,(a) = m’<c>t A c # 0, M,(a) otherwise

Mi(a) = M,(a), M} (a) = M.(a)

Figure 9. Operational semantics.

3.2 Operational Semantics

The parallel operational semantics of Figure 9 models the fine-
grained interleaving of threads in a shared memory setting. The
shared memory M : N* — p X N X N X (name — IN) maps a cell’s
address to its runtime type, owner, locker, and value. The runtime
types p are of the form m<a> ¢, where a is the address of the cell’s
group leader. The owner is the thread identifier (an integer) that
owns the cell if it’s sharing mode is private. The locker is the
thread identifier that currently holds a lock on the cell, or O if the
cell is unlocked. Finally, the value is a map from field names to
cell addresses. We use the notation M, (a), M,(a), M (a) and M,(a)
to denote respectively the type, owner, locker and value of cell a,

while M[a 4 pl, Mla 5 n], Mla i n] and M[a 5 v] represent
the corresponding updates to cell a. For convenience, we also write
M,(a.f) and M,(a.f) to return respectively the value and type of

field f of cell a, and M[a.f 5 b] to update field f of cell a. Note
that M, (a.f) returns the static type 7 of field f, not the runtime type
of cell M, (a.f).

Thread identifiers are simply the address of a memory cell
whose value is a map of the thread’s variable names to their values.
States of the operational semantics are of the form

M7 (id], Sl), RN (idn, S,,)

representing a computation whose memory is M and which has n
threads, each identified by address id; and about to execute s;. To
handle thread creation, each thread definition f is represented by a
prototype thread of the form (id;, wait; s7) where s is the body of
thread f and M(idy) is a memory cell with the initial state of f’s
variables: M, (id;.x) is null for all local variables of f and a pointer
to the preallocated structure instance o, for global variable x.

Transitions between states are defined with a number of helper
judgments and functions:

o M,id : s M’: execution of simple statement s by thread id
updates the memory M to M’.

® M, id E w holds if runtime check w is valid.

e lval(M,id, ) converts a static lvalue £ of thread id to a runtime
Ivalue of the form a.f (field f of cell a), and is undefined if ¢
requires dereferencing a null pointer.

e rtype(M, id, T) converts a static type 7 of thread id to the corre-
sponding runtime type p.

e extend(M, id, p) represents allocation of a cell of runtime type p
by thread id.

e gcast(M, id, c, p) performs a group cast to p in thread id of the
group whose leader is M(c).

The rules are mostly straightforward, but a few points are worth
noting. We use & to denote disjoint union (A = B&C = BNC = ).
Individual runtime checks are executed atomically, but involve at
most one lvalue of the form x.f. Other threads may execute be-
tween runtime checks and between the checks and the assignment
they protect. The oneref(x) check is computed by heap inspection,
but we implement it in practice using reference-counting. We could
exclude non-dependent fields from oneref(x) check, this would cor-
respond to not reference-counting same pointers.

A group cast of a variable y whose value is null should have
no effect. To ensure this, gcast never updates cells whose type is
m<0> t. Effectively, group 0 corresponds to our nogroup C-level
annotation: once in group 0, you can no longer be subject to a group
cast. Our formalism does allows casts to group 0, and allocations
in group 0. Finally, and most importantly, the type and owner fields
of M are not required in an actual implementation, thus gcast has
no runtime cost.
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Figure 8. Typing judgments. We omit the straightforward rules for
non-assignment statements.
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Figure 10. The breakdown of overheads in Shoal. For each bench-
mark, we show the cost of reference counting(RC), the dynamic
checks for sharing modes (Mode Checks), and the cost of using our
compiler front-end and infrastructure.
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Figure 11. The overhead incurred by Shoal as the number of
threads increases and the workload remains fixed for the ebarnes
and em3d-s benchmarks.

3.3 Soundness

We have proved the following theorems, that show that type safety
is preserved and that the program respects the behavior specified
by the sharing mode declarations. The proofs appears in full in the
appendix.

THEOREM 1. Soundness. Let P be a program with + P = P’
and My, S, be the initial memory and threads for program P’.
Let M, {(id,, 1), ..., (id,, s,)} be a state reachable in i steps from
My, S. Then types and owners are consistent in M, and all state-
ments s; typecheck.

THEOREM 2. Safety of private accesses. During the execution of a
program P’ such that - P = P’, if thread id writes to cell a with
type M,(a) = private<b> t then M,(a) = id.

THEOREM 3. Safety of locked accesses. During the execution of a
program P’ such that - P = P’, if thread id writes to cell a with
type M,(a) = locked<b> t then M (a) = id.

4. Evaluation

We applied Shoal to 5 interesting applications, the largest of which
approaches 1 million lines of code. All but one of these benchmarks



Benchmark Performance
Name Conc. | Lines | Anns. | Casts | Max Group | Orig. | Shoal
ebarnes 2 3k 60 16 16384 | 6.26s | 38%
em3d-s 2 1k 42 2 100000 | 3.59s | 42%
knot 3 S5k 60 17 75 | 0.69s 19%
eog 4 38k 67 38 20 | 1.42s 6%
GIMP 4 | 936k 37 32 8 | 9.67s 13%

Table 1. Benchmarks for Shoal. For each test we show the maximum number of threads running concurrently(Conc.), the size of the
benchmark including comments (Lines), the number of annotations we added (Anns.), sharing casts required (Casts), and the maximum size
of a group in a run of the benchmark. We also report the time overhead caused by Shoal

use multithreading to improve performance; we have included in
our benchmarks a webserver that uses a thread pool to serve clients
in parallel and hide I/O latency.

None of the benchmarks required more than a few days to
make sufficient annotations to suppress a small number of false
error reports and achieve good performance. The amount of human
program understanding required to make these annotations is not
especially burdensome.

The goal of these experiments is to show that Shoal allows prac-
tical checking of data sharing in a substantially wider range of pro-
grams than it would be able to without groups, while maintaining
low overhead. In the course of running our benchmarks, we found
no bugs, and the only sharing errors found were benign data races
on flags used for condition variables. These races would at worst
cause a thread to needlessly call a condition_wait () function an
extra time. For these flags we used Shoal’s racy annotation to sup-
press the false error reports. It is not surprising that we did not find
more serious bugs because our testing of the benchmark applica-
tions was intended only to measure the performance overhead seen
in typical use-cases.

4.1 Implementation

We extended the static type system of SharC to include our
group () and same annotations. Further, we added our group cast
operation, and extended the dynamic analysis with the null checks
required by our dependent group types. We also implemented the
barrier mode by generalizing SharC’s existing dynamic analysis.

We reduced the additional annotation burden presented by the
addition of groups by automatically applying common default an-
notations to unannotated objects. First, the default group annotation
on pointer types that need one is nogroup. This way, the program-
mer must only annotate objects needing a group annotation if they
may eventually be involved in a group cast. Secondly, the default
annotation on structure fields in objects that may be subject to a
group cast is same. This prevents SharC from forbidding casts of
these structures.

4.2 Benchmarks

The results of our experiments are reported in Table 1. The figures
we report are averages over 50 runs of each benchmark. These
experiments were performed on a machine with a dual core 2GHz
Intel® Xeon® 5130 processor with 2GB of memory. Excepting the
scientific benchmarks, the runtime overhead imposed by Shoal is
less than 20%. The higher overhead in the scientific benchmarks is
due to reference count updates in the inner loops. We also observed
a reasonable annotation burden, ranging from one annotation or
cast per 25 lines in the small benchmarks to less than one per 10 000
lines on the largest.

Ebarnes was presented in Section 2.7. Em3d-s is another
adapted Split-C scientific program that models the propagation
of electromagnetic waves through objects in three dimensions. In

this simulation the system is modeled as a bipartite graph. One
partition models the electric field, and the other partition models
the magnetic field. At the beginning of the simulation the graph is
constructed privately to one thread. Then, a sharing cast is used to
indicate that the graph is shared with other threads with accesses
synchronized by barriers. To allow the sharing mode of the entire
graph to change, the nodes and edges form a group whose leader is
the structure containing pointers to the lists of nodes and edges.

Knot [29] is a simple multithreaded webserver. It maintains a
thread pool for processing client requests. The threads share an
in-memory cache of the files on disk. The cache is implemented
as a hash table and is protected by a lock. Each call to the hash
table API is made while the lock is held. Therefore, we cast the
entire hash table to private before passing it to the hash table
functions. The primary advantage of this approach is that it allows
the hash table API to be used both in single-threaded and multi-
threaded contexts. The benchmark for knot involves two clients
simultaneously making 10k requests for small files that fit entirely
in the in-memory cache. The webserver and clients both ran on the
same host. The goal of this setup is to minimize the extent to which
the benchmark is I/O bound. The overhead for knot in Table 1
is reported as the percent increase in CPU utilization. However,
runtime for the benchmark did not increase significantly, nor did
the throughput decrease significantly. Because the sharing mode
of the entire in-memory cache changes from locked to private and
back, the hash table data structure used for the cache forms a single
group along with all cache entries. The hash table object containing
pointers to the array used for the hash table and other metadata is
the group leader.

Eog is the Eye-of-Gnome image manipulation program dis-
tributed with the Gnome desktop environment. It can open, dis-
play, and rotate many different image formats. Eog uses threads
to hide the latency of the operations performed on images from
the user interface. These operations include loading and saving
images, transforming them, and creating image thumbnails. The
GUI places “Job” data structures in a lock protected queue. When
worker threads take jobs off of the queue, they must cast the entire
Job data structure, which contains the image, and image metadata,
to the private mode. Each Job structure and the objects to which
it has pointers are placed in a group with the Job structure itself
being the group leader. For this benchmark we measured the CPU
time needed to open an image, rotate it, and then save it back to
disk.

The GIMP is also an image manipulation program, but with
many more features than Eye-of-Gnome. In particular, it is script-
able, and capable of many more sophisticated image transforma-
tions. On loading an image, the GIMP divides it up into distinct
sections, which are stored in data structures called “Tiles.” To per-
form a transformation, the GIMP creates a thread pool and an it-
erator over tiles that is protected by a lock. When a tile is in the
iterator it is in the locked mode, but when a thread removes it from



the iterator it casts it to the private mode. The Tile object con-
tains pointers that would be cumbersome to cast individually, so
each Tile object and the objects to which it has pointers are made
a group with the Tile object itself being the group leader. For this
benchmark, we wrote a script that opened an image, performed 20
separate “Blur” operations, and then saved the image back to disk.

4.3 Scaling

In order to see how Shoal scales with the number of threads, we
ran the two scientific benchmarks on a server machine with 4GB of
memory and two quad-core Intel® Xeon® E5462 processors run-
ning at 2.8GHz. As shown in Figure 11, we observed that the over-
head incurred by our system did not increase significantly as the
number of threads ranged from two to eight while the workload
was held constant. The difference in relative overhead on this ma-
chine vs the dual core machine used in the main experiments is
due to differential speedup in the application and overhead: abso-
lute overhead for both ebarnes and em3d-s decreased by 30%, as
expected from the clock speed increase, while the application code
sped up by 51%—-59%, much more than the clock speed increase.
We suspect, though have not confirmed, that the application code
gets an extra advantage from the larger L2 cache (2x6MB vs 4MB)
and memory bus speed (1600MHz vs 1333MHz).

The main scaling bottleneck in Shoal is that only one thread
may be computing a reference count at any time. This could impact
programs performing many group or sharing casts. However, this
effect was not observed in our experiments.

4.4 Sources of Overhead

Figure 10 shows the sources of performance overhead for our
benchmarks. They are broken down into concurrent reference
counting, the Shoal runtime checks, and various infrastructure
costs. Infrastructure costs are incurred by the use of the CIL [21]
compiler front end’, a custom malloc implementation needed for
concurrent reference counting, and the need to null out pointers on
allocation for soundness reasons.

We observe substantial reference counting overhead in the
ebarnes and em3d-s benchmarks due to the reference count up-
dates needed when building and traversing the oct-trees and graph
respectively. In eog and the GIMP, the overall low overhead makes
the cost of our custom rumtime more apparent.

4.5 The Need for Groups

In Table 1, we also report the maximum size of a group in each of
our benchmarks. We interpret group size to be a rough measure
of how costly it would be to port a program to SharC without
groups, both in terms of performance and programmer effort. This
interpretation is justified in the following ways. Without groups,
it would be necessary to cast each object in a group individually.
In order to meet the single reference requirement for the sharing
cast, it is necessary to completely remove an object from a data
structure before casting it. If a data structure has cycles, the code to
perform this operation can be complex, and goes far beyond the low
level of effort needed to annotate a program. Further, the additional
data structure traversal, reconstruction, and reference counts would
cause additional programmer and performance overhead.

5. Related Work

The most closely related work is our paper describing the original
SharC system [1]. This paper described our extensions to SharC’s

3 Using the CIL front end can cause changes in performance. CIL performs
some transformations (e.g. introducing additional temporary variables) that
can both enable and prevent certain C compiler optimizations.

type system with support for handling complex data structures.
Many other researchers have investigated both type systems for de-
scribing aggregates of objects, and methods for making concurrent
programs safe.

5.1 Ownership and Region Type Systems

Ownership types have been used to statically enforce properties
such as object encapsulation, race-freedom, and memory safety [3].
An ownership type system statically guarantees that every object
has a unique owner and that the ownership relation is a forest of
trees. The type system allows multiple pointers to an object but
statically checks that only the pointer from its owner has special
privileges. For instance, an ownership type system for object en-
capsulation prevents unrestricted accesses to an object by checking
that all accesses happen via the pointer from its owner [5]. Like-
wise, an ownership type system for race-freedom requires each ac-
cess to an object o to be protected by a lock held on its root owner,
which is the object at the root of the tree in the ownership rela-
tion forest that contains o [4]. Finally, an ownership type system
can be combined with a region type system and used for region-
based memory management [6] in which each object is allocated
in the same region as its owner. The resulting type system is more
restrictive and enforces memory safety by forbidding pointers from
outside the region to objects inside the region which enables it to
safely free all objects in the region whenever the region handle is
freed. Further, dynamic analyses have been developed to help pro-
grammers visualize ownership relationships in their programs [23].
In these systems, instead of requiring programmers to annotate in-
stances of encapsulation, which is the common case, the program-
mer is shown the cases in which encapsulation is violated, which is
typically less common.

The relationship of a group leader to objects in its group is
analogous to that of an owner to objects it owns. Groups however
are more general in that objects can be added to or removed from
them and group leaders can change dynamically, in contrast to the
ownership relation, which cannot be changed dynamically. We have
found that this ability is crucial for applying an ownership-like
system to large C programs.

Region type systems have strong similarities to groups: they
use types to identify a collection of objects, and allow global op-
erations (typically deallocation) to be performed on that group.
RC [15] is the closest to our groups: it uses reference counting
to track pointers into regions, and has a sameregion qualifier
to identify pointers that stay within a region. However, as with
other regions systems, region membership is fixed at allocation
time and tracked explicitly at runtime, regions cannot be merged
and sameregion is mostly a performance hint to avoid the need
for reference-counting. Tofte and Talpin’s statically checked region
type system [28] places further restrictions on region lifetimes and
pointers between regions: essentially, region lifetimes are nested
and pointers are only allowed from longer-lived regions to shorter-
lived regions, but not vice-versa. Crary and Walker’s [9] use of ca-
pabilities relaxes these restrictions somewhat, but still does not al-
low unrestricted pointers between regions. Effectively, Shoal’s use
of reference-counting allows a runtime-check to recover the lin-
earity property of a group (region) reference that the static type
systems must ensure at compile-time.

The authors of Cyclone [17] note the similarity in their type
system between types for region membership and types for lock
protection. Indeed, they go so far as providing a shorthand for when
objects in the same region are protected by the same lock. Shoal
expands on this idea by allowing objects belonging to the same
data structure (which may be unrelated with respect to memory
allocation concerns) to be related not only by locking, but also
a variety of mechanisms for safe concurrency. Further, we note



that Shoal would likely benefit from some of the polymorphism in
Cyclone’s type system, but we leave this extension for future work.

5.2 Safe Concurrency Checking

There has been much work on finding concurrency related bugs in
multi-threaded programs. Researchers have attempted to find and
prevent data races, and atomicity violations, using both static [20,
24,14, 22,30, 12, 17, 19] and dynamic [25, 32, 11, 13, 7] analysis.
SharC differs from these approaches because it attempts to find
violations of a programmer specified sharing strategy rather than
searching for violations using lock-set or happens-before based
heuristics. The original SharC paper discusses in detail its relation
to these traditional concurrency checking methods.

We also wish to mention a few other related projects. First, race
freedom can be checked by translation to a linear program based
on fractional capabilities [27]. Since linear programming instances
can be solved in parallel, this technique may be able to scale to
large programs. However, the possibly substantial collection of
warnings may be difficult to investigate because analysis results do
not indicate what locks may be held at each program point. Shoal
scales to large programs, and gives detailed error reports.

Some other tools are also guided by programmer annotations.
LockLint [10] is a static system that checks that locks are used
consistently to protect program variables. It uses annotations to
suppress false warnings, to describe hierarchical locking, and
procedure side-effects, and as documentation. Further, the Fluid
Project [16] has investigated a system for Java that allows a pro-
grammer to make annotations describing hierarchical regions,
aliasing intent, and a locking strategy that can apply to regions,
among other annotations. Shoal differs from these systems primar-
ily because it allows the sharing mode for data structures to change
through sharing and group casts as the program executes.

6. Conclusion

In this paper, we have presented groups, a lightweight mechanism
for describing properties of data structures, and applied groups to
checking data sharing strategies in several multithreaded C pro-
grams. An important feature of our system is the group cast, which
allows the programmer to describe where in the program the prop-
erties of a group change. For instance, in many of the C programs
we examined, data structures switch between stages where they are
protected by locks and stages where they are private to a single
thread. We have proved the soundness of groups, and implemented
Shoal, our group-based sharing checker as an extension to the ear-
lier SharC system. We are able to check the correctness of sharing
in our benchmarks with reasonable overhead (6%-42%) and a rea-
sonable annotation burden.

Our formalism for groups is not strongly tied to the concept of
a sharing mode. In the future, we plan to investigate further uses of
groups, including memory management and tracking user-specified
properties like tainting. We also wish to continue improving Shoal,
to reduce concurrent reference counting overhead, to be able to de-
scribe and check more kinds of sharing, such as double-checked
locking [26] and to be able to check more kinds of sharing stati-
cally, rather than, like barrier, dynamically.

A. Soundness Proof

Our basic approach is to prove, by induction over the operational
semantic steps that the following two properties hold at all times:

e The statements in all threads are well-typed. In particular, our
typing rules require that runtime checks necessary before per-
forming an assignment either hold or are yet to be performed
(Section A.2).

r , Inenvironment I statement s compiles to s", which
FS=S isidentical to s except for added runtime checks.
(SEQ) (SPAWN)
I'Fs = s ks, =5 feF

TFsiss =858 I' + spawn f() = spawn f()

(Lock) (UNLOCK)
I'x)=1

I+ lock x = lock x

I'x)=1

I' + unlock x = unlock x

Figure 12. Elided rules. F is the set of all thread functions in the
program.

e The memory and thread environments are consistent (Sec-
tion A.3).

From these properties it is easy to prove that private cells are
only accessed by their owner and that locked cells are only accessed
when the lock is held.

The proof consists of a few general-usage lemmas (Section A.4),
proofs that single-thread steps, thread creation and thread destruc-
tion preserve the two properties (Sections A.5 through A.7), and
a final section that puts all the pieces together to prove that the
statically declared sharing modes are respected (Section A.8).

A.1 Preliminaries

We use address to refer to an element of the domain of a memory,
and note that O is never a valid address (0 ¢ dom(M)). We use
cell to refer to an actual memory element M(a). An lvalue is an
expression that denotes a field of a particular cell.

We use letters a — d to refer to addresses, i — n to refer to integers
and all other letters to refer to identifiers. Normally, letters f — h
refer to fields, x — z to variables, and ¢ — v to structure type names.

A.2  Runtime Typing

To show that our operational semantics preserve types, we show
that programs remain well-typed at all points during execution.
To do this, we need typing rules that enforce the presence of
runtime checks rather than add them, and handle the runtime-only
statements (skip, wait). These typing rules are given in Figure 13
and are derived from the typing judgments of Figure 8, completed
by the rules in Figure 12.

M, id,r |= s checks that s is a well-typed statement of thread id
in memory M. Runtime checks are special: if r is false, the checks
for an assignment must all be present in its when clause. If 7 is true,
then a prefix of the necessary checks can instead hold in M and be
omitted from the when clause. For soundness, we must only check
an assignemnt with r true when it is the first statement of a thread:
this is enforced by passing false for » when checking s, in SEQ-R.
For convenience, we write M, id |= s to stand for M, id, true = s.

A.3 Consistency

To ensure that programs remain type-safe, we need to know that
types and owners in the memory are consistent. Furthermore, to
avoid group casts changing the types of variables, we must assert
that the memory cell containing a thread’s environment is unad-
dressable.

DEeriNITION 1. Memory consistency. M is consistent with threads
idy,...,id,, written id,,...,id, = M, if all thread identifiers are
distinct, cell id; is unaddressed and owned by id;, and types and
owners are consistent when an lvalue refers to a cell. Formally for
all threads id;



MidE{(: 7w

In memory M and thread id, ¢ is a well-typed expression with
type T assuming w holds.

(NAME-R) (SAME FIELD-R)
M, (id.x) = m<y>1t M, (id.x) = m<y>t Tt.f)="1
M,id E x: m<y>t,e M,id = x.f : m<y>1t',m(x)

(OTHER FIELD-R)
M, (id.x) = m<y>t T(t.f)=m'<g>"t

M,id E x.f : m’<x.g>t',m(x)

In memory M and thread id, statement s is well-
M,id,r s typed. If r is true, valid runtime conditions may be

assumed.
(SEQ-R)
M, id,r = s M, id, false | s, (SPAWN-R)
M,id,r = s1; 8, M, id, r = spawn f()
(LOCK-R) (UNLOCK-R)
M,(id.x) =T M,(idx) =7
M, id,r = lock x M, id, r E unlock x
(DONE-R) (SKIP-R)
M, id,r = done M, id,r = skip
(NEW-R)

M, (id.x) = m<y>t
DM, id, x) = wy,...,w, ravYiel.k—1: M, id E w;

M,id,r = x := new when wy, ..., w,

(GCAST-R)
X#2Z M, (id.x) = m<y>t M,(id.z) = m’<z>t
oneref(z), D(M, id, x), D(M, id, z) = wy,...,w,
ravYiel.k—1: M, id E w;

M,id,r = x := gcast z when wy, ..., w,

(READ-R)
M,(id.x) = m<x'>t M,id = €: m<t'>t,w
w, X' [C/x] =€, DM, id, x) = wi,...,w,
FAYiELk—1:M,idE w

M, id,r = x := { when wy,...,w,

(WRITE-R)
M,idE x.f: m<(>t,w M,(id.y) = m<y'>t
w, y/x.fl1=y,DWM,id, x.f) = wi,...,w,
ravYiel.k—1:M,id E w;

M,id,r = x.f :=ywhen wy,...,w,

Runtime checks for dependent-type assignments

D(M,id, x) ={y =null | x # y A M,,(id.y) = m<x> t}

1. id; # 0,and i # j = id; # id; (threads are distinct)

2. M,(id;) = private<0> ¢ (thread environments not in groups)
3. M,(id;) = id; (thread environments are thread-owned)

4. Aa.f(M,(a.f) = id;) (thread environments are unaddressed)

and for all addresses a where M, (a) = m<b> t with t = (f; :

¢13"'9ﬁ1 :¢VL):

5. if ¢ = M, (a.f;) # 0 then
(a) if ¢; = v then M,,(c) = m<b>v
(b) if (¢; = private<f;>v) V (¢; = v Am = private) then
M,(c) = M,(a)
(c) if ¢; = m’<f;> uthen M,(c) = m’<M,(a.f))> u

6. if ¢; = private<f;> uthen b = 0 Am = private

A.4 Basic Properties

LemMma 1. Thread sets and consistency. If id,,...,id, E M then
id E MIfid,...,id, E M, id E M and Vi.id + id; then
idy,...,id,,id EM

LemMA 2. Private accesses by owning thread only. Assume
idEM M,(a)=private<h>t

IfM,id : s > M’ causes thread id to access (read or write) cell a
then M,(a) = id

Corollary: If M,(a) # id then M)(a) = M,(a)

Proof: By inspection of the operational semantic rules. First, all
accesses to M, (id) are safe as id = M implies M, (id) = id. Second,
all accesses to cells a = M, (id.x) (due to lvalue x.f) are safe as
M,(a) = private<b> t implies M,(id.x) = private<y> t, which
itself implies that M,(a) = M,(id) = id (both from id = M).

Lemma 3. Locked accesses by locking thread only. Assume

ideM M,idEs M,(a)=1locked<b>t

IfM,id : s 2 M’ causes thread id to access (read or write) cell a
then M;(a) = id

Corollary: If M, (a) # id then M| (a) = M,(a)

Proof: By inspection of the operational semantic rules. First,
all accesses to M,(id) are safe as id & M implies M,(id) =
private<c> u. Second, if thread id accesses cell a = M, (id.x)
due to lvalue x.f, then M,(a) = locked<b> t implies M,(id.x) =
locked<y> ¢ (from id = M). Inspection of the READ-R and WRITE-R
typing rules (which check the only assignments that can access a)
shows that w; = locked(x), i.e. locked(x) is checked first. Thus
when the assignments’ subsequent runtime checks, or the assign-
memt itself access a, M, id = 1locked(x) and hence M;(a) = id.

LemMA 4. Lvalue types are respected. If

idEM MidE{:m<l{'>tw
vallM,id,0) =a.f c=M,(a.f)+0 Ival(M,id,{')=b.g

then
M,(c) =m<M,(b.g)>t m=private = M,(c)=id

Proof: Follows from the definition of memory consistency, and
clause 6 of id = M.

LemMA 5. Dependent types safe under assignment. If
ideEM DWM,id{) =w,...,w, VYiM,idE w;

DM, id, x.f) = {x.g = null | M,(id.xx) = m<y>t A f # g At(g) = m<f>t} val(M,id,t) = a.f M’ = Mla.f— b]

Figure 13. Runtime typing judgments.

then Vg # f.M/(a.g) = m<h>tAMya.g) # 0 = M, (M) (a.g)) =
m<M(a.h)> t (clause 5c preserved for all fields but f)

Proof: Trivial for all cases except i = f. When h = f, a.g = null €
D(M, a, f) and hence M,(a.g) = 0 = M/(a.g), so the lemma holds.



LemMA 6. Thread steps preserve local variable types If
ideEM Mid:s> M
then M, (id) = M,(id)
Proof: Only gcast changes existing cell types, and only for cells

whose group is non-zero. As M, (id) = private<0> ¢, M;,(id) =
M, (id).

LemMma 7. Other-thread steps preserve local variable values. If
idid M M,id ;s> M
then M| (id.x) = M, (id.x)

Proof: M,(id) = private<0> t and M,(id) = id, so by Lemma 2
M (id.x) = M, (id.x).

Lemma 8. Prototype thread preservation. If

idf M | Mlid; = 0]
ide M M(idf) = My(idy) — M(idy) = M,(idy)

then = M'[id; > 0]

Proof: Let M"” = M’[idy 5 0]. Consider any lvalue a.g in M”
with ¢ = M(a.g) = M(a.g) and ¢ = M](a.g) = M) (a.g). If
¢ = 0 then clause 5 holds. Otherwise, id; = M’ implies ¢ # idy, so
M} (c) = M (c) and M}/ (c) = mo’(c). For a # id¢, M}/ (a) = M,(a),
so idy F M’ implies that clause 5 holds for Ivalue a.g. If a = idy
¢ = M,(ids.g) and ¢ = M,(ids.g). If ¢ = vV ¢ = private<g>t
then M,(c) = M,(idy) = idy and M,(c) = M[idy 5 01,(ids) =0, a
contradiction. Thus ¢ = m<h> v with m # private and clauses 5a
and 5b hold on M”. Clause 5¢ holds because M;'(c) = M,(c) =
m<M(id;.h)> v = m<M (id;.h)> v. Clause 6 holds because

M =M.

A.5 Preserving Consistency

LemMma 9. Single-thread steps preserve memory consistency. If
MidEs Mid:s> M

then id,id' E M = id,id =M’

Proof: We prove the various aspects of consistency independently,

each time by case inspection of the operational semantics’ steps.

C1 Remains valid.

C2,3 Trivial for all steps except gcast. We know that M,(id) =
private<0>t, so M;,(id) = M, (id) and M) (id) = M,(id) from
the definition of gcast.

C4 By inspection, all steps that cause M (a.f) # M,(a.f) define
M(a.f) as O (null), ¢ ¢ dom(M) (new) or an existing value
M,(b.g). Thus id # 0, id € dom(M) and Aa.f(M,(a.f) = id)
imply that Aa.f(M,(a.f) = id).

C5 Trivial except for assignment steps.

o x:={, with lval(M, id, ) = a.f, c = M,(a.f).
By Lemma 5, clause 5c is preserved for all variables depen-
dent on x. If ¢ = 0 the remaining conditions are trivially
true. Otherwise, we must show clauses Sa-c holds for lvalue
id.x. By assumption

M,(id.x) =m<x'>t M,idE{:m<{'>tw
M,id E X[¢/x]=¢  IvallM,id,{') = b.g

Clause 5a is trivial.

Clause 5b follows directly from Lemma 4 applied to lvalue
¢ (m = private = M,(c) = id).

By Lemma 4, M/ (c) = M,(c) = m<M,(b.g)> t. So, for
clause 5c, we must verify that M| (id.x") = M,(b.g). If x' =
x, M(id.x') = ¢, and M, id |= £ = ¢’ implies ¢ = M,(b.g). If
X # x, M\(id.x") = M,(id.x") and M, id = x' = ¢’ implies
M, (id.x") = M,(b.g).

o x.f:=y witha =M, (id.x) # 0, c = M,(id.y).
By Lemma 5, clause Sc is preserved for all variables depen-
dent on x.f. If ¢ = O the remaining conditions are trivially
true. Otherwise, we must show clauses 5a-c holds for lvalue
a.f. By assumption

My(id.x) =m’<x'>v  My(idy) = m<y'>t
MidEx.f:m<{>t,w MidE{Ly/xfl=Y
lval(M,id,€) = b.g

Clause 5b follows from Lemma 4 applied to lvalue y (m =
private = M,(c) = id).
First we consider the case where 7'(t.f) = u. Then m = m’,
¢ = x and M,id E x' = y'. From Lemma 4, M/(c) =
M,(c) = m<M,(id.y’)> t. From clause 4 of memory con-
sistency we can conclude that a # id, hence M|(id.x") =
M, (id.x") = M,(id.y") and clause 5a holds. Clause 5c is triv-
ial.
Next we consider the case where T(¢.f) = m<f>t. Then{ =
x.f and M,id = y = y'. From Lemma 4, M/ (c) = M,(c) =
m<M,(id.y')> t. As M(a.f) = M,(id.y) = M,(id.y’), clause
5c holds. Clause 5a is trivial.
Finally we consider the case where T(t.f) = m<g>t, f # g.
Then ¢ = x.g and M,id E x.g = y’. From Lemma 4,
M (c) = My(c) = m<M,(id.y')> 1. As M} (a.g) = M\(a.g) =
M, (id.y"), clause 5c holds. Clause 5a is trivial.
e x :=new, with a = M|(id.x)
By Lemma 5, clause 5c is preserved for all variables depen-
dent on x. We must show clauses 5a-c holds for Ivalue id.x.
Clauses 5a and 5b hold trivially. Clause 5c holds by con-
struction of the M, (a). Finally, clause 5 holds for the fields
of cell a as they are all null.
* x := gcast z, with M, (id.x) = m<y> t, M,(id.z) = m’<z> t,
¢ = M,(id.z), M, id = oneref(z).
Let M” = MJid.x 5 c,id.z 5 0]. By two applications of
Lemma 5, clause 5c is preserved in M" for all variables
dependent on x and z. If ¢ = 0, M’ = M” and clause 5 holds.
We verify that clause 5 holds for all addresses a when ¢ # 0:
Cells outside the group being cast. If M,(a) = n<b> u with
b # c and a # id, then M(a) = M’(a). Consider a field f of
a such that b = M(a.f) # 0. If M/(a.f) = v then M,(b) =
n<b>v. As b # ¢, M,(b) = M,(b) and M,(b) = M,(D) so
clauses 5a and 5b hold. Clause Sc holds trivially (no other
fields can be dependent on f). If M/(a.f) = n’<g> v, then
M, (b) = n’<M,(a.g)> v. oneref(z) implies that M, (a.g) # c,
thus M/ (b) = M,(b) and M,,(b) = M,(b). Thus clauses 5a-
5¢ hold.
Cells inside the group being cast. If M,(a) = n<c>
(this implies a # id) then M/ (a) = m<d> u, M;(a)
id, and Vf.M(a.f) = M,(a.f) where d = M) (id.y)
M (id.y). Consider a field f of a such that b = M(a.f) # 0.
It Mi(a.f) = v = Mpy(a.f) then My(b) = n<c> v, so
M(b) = m<d> v and M;(b) = id so clauses 5a and
5b hold. Clause Sc holds trivially (no other fields can be
dependent on f). If M/(a.f) = n’<g>v = My(a.f), then
M, (b) = n’<M,(a.g)> v. oneref(z) implies that M, (a.g) # c,
thus M, (b) = M,(b) and M (b) = M,(b). Thus clauses Sa-
5c hold.
Local variables of id. Consider a local variable x" of thread
id with type n<y’> u.
= x’ = z: Clauses 5a-5c hold trivially.
"X = x: My(c) = m’<c> 1, s0 M)(c) = m<d> t where
d = M (id.y) = M,(id.y) so clauses 5a-5c hold.
sx £ x,x # zif b = M(id.x') = M,(id.x") # 0 then
M,(b) = n<M,(id.y")> u. If y = z, then M,id | x' =

s



null, a contradiction. Otherwise oneref(z) implies that
M, (id.y’) # c, thus M, (D) = M,(b) and M(b) = M,(D).
Thus clauses 5a-5c¢ hold.

C6 Trivial except for new and gcast steps, as types are unchanged.

For new, the clause holds because STRUCTDEF prohibits explicit
private fields within structures (this could be relaxed to a
weaker rule matching the requirements of clause 6).
For gcast, consider an lvalue a.f with M;(a) = m'<c> t,
My(a) = m<b>1t, M(a.f) = private<g>t = My(a.f). E M
implies b = 0 and m = private, so gcast will leave cell a
unchanged, i.e. ¢ = b = 0 and m" = m = private, so clause 6
holds for M’.

A.6 Preserving Type Safety
LemMma 10. Same-thread steps preserve type safety If

idEM M,id:s> M

then M, id = s;8' > M',idE s’
Proof: From Lemma 6, M/(id) = M,(id), so M,(id.x) = M,(id.x)
for all variables x of thread id. An inspection of the rules show that
M, id, false |= 5" depends only on M,(id), and thus M’,id, false =
s’,so M id E s
LemMma 11. Other-thread steps preserve type safety If

idyid EM  M,id ;s> M
then M,id E s = M',idE s
Proof: From Lemma 6, M/’)(id) = M,(id), so Ml’,(id.x) = M,(id.x)
for all variables x of thread id. Thus, to show that M’,id £ s
it suffices to show that already-executed runtime checks are pre-

served, i.e. M,id = w = M’,id F w for all w that are required by
M, id = s. We analyse each check independently:

e private(x) always holds.

locked(x): By Lemma 7, a = M(id.x) = M,(id.x), and
by assumption M;(a) = id. The only step that could cause
M;(a) # M;(a) is unlock y with M,(id’.y) = a. However, this
can only be executed by id’ if My(a) = id’.

¢ =null: If £ = x, by Lemma 7, M| (id.x) = M,(id.x)so M’, id =
¢ =null. If £ = x.f, by Lemma 7, a = M| (id.x) = M,(id.x). If
M,(a) = private<b> t, then, by Lemma 2, M/(a.f) = M,(a.f)
so M',id E ¢ = null. If M,(a) = locked<b> t then from
id = M we know that M, (id.x) = locked<y> t. By inspection
of the rules that depend on ¢ = null, we note that M,id
locked(x) must hold, i.e. M;(a) = id. Hence, by Lemma 3,
M(a.f) = M,(a.f) so M’,id = € = null

¢ = ¢': The same logic as for £ = null applies.

oneref(x): We know that id.x is the sole lvalue referencing
a = M,(id.x). Only assignment statements by id’ could cause
this to change. y = z, null, new and gcast assignments cannot
create or destroy references to a as they modify local variables
of id" # id. id E M implies that no lvalue references id, so
y.f := z cannot modify id.x and similarly that y := z.f cannot
create an extra reference to a. Thus M’, id = oneref(x).

A.7 Thread Creation and Destruction

These two lemmas show that thread creation and destruction pre-
serve type safety, runtime checks and memory and environmental
consistency.

Lemma 12. Thread creation. If
idpidEM  M,id; = wait;s;  M,idE s
E Mlidy 5 0] id’ = max(dom(M)) + 1
M’ = extend(M, id’,id', M,(id;)) M" = M'[id’ BN M, (idy)]

then
idy,id,id | M"”

M",id; = wait; sy,  M7,idEs M",id ks
Proof: id;, id, id" |= M’ is trivial. Verifying id;, id,id’ = M"” only
requires checking that clause 5 holds for all Ivalues id".y. Consiser
a = M) (idy) = M,(id.y), M)/ (id".y) = My(ids.y) = ¢. If a = 0,
then clause 5 holds. Consider a # 0. If ¢ = v V ¢ = private<z> ¢
then M,(a) = M,(ids) and M,(a) = Mlid, 5 01,Gds) = 0, a
contradiction. Thus ¢ = m<z> ¢ with m # private and clauses
5a and 5b hold on M”. Clause 5c holds because M} (a) = M,(a) =
m<M,(id;.z)> t = m<M]/ (id’ .2)> t (note that a # id’).

M”,id; £ wait;s; follows from the fact that M (idy)
M,(idy), and M”,id" k= sy follows from the fact that M}/ (id") =
M, (idy). Finally, M”,id E s follows from M,id s and the
fact that M,id F w = M",id = w: the only interesting case is
oneref(x). If id.x is the only reference to cell a = M, (id.x) then
M, (idy.y) # a, so M"" cannot invalidate oneref(x).

Lemma 13. Thread destruction. If
id,id EM M,idkE s

then id E M’ and M’,id k s.
Proof: We first show id = M’. Clauses 1-4 follow directly from
id,id = M and id # id’. id,id = M implies fa.f(M,(a.f) = id),
so clause 5 remains valid for all addresses b € dom(M’). Clause 6
remains valid as M, (b) = M, (D) for all addresses b € dom(M").

As with thread creation, we note that M, id F w = M",id F w
(easily verified by examing each kind of runtime check, noting that
M, (id.x) # id’). Furtheremore, M;,(id) = M,(id)so M',id [ s.

M = M\id

A.8 Soundness

THEOREM 4. Soundness. Let P be a program with - P = P’ and
M,, S o be the initial memory and threads for program P’ with start-
ing thread main shown in Figure 14. Let M, {(id,, s1), ..., (id,, s,)}
be a state reachable in 7 steps from M), S. Then

l’dl,‘..,l’dn'ZM M,l‘dii:S,‘
Proof: We prove the slightly stronger result that the state M, S after
step i satisfies
S = {(ldfl N wait; St ), ey (idf,,, wait; an), (id], Sl), ey (id,l, S,,)}
idy,, ... idg,idy, ... id, =M | Mlid; > 0]
M,ldﬁ |=wait, St M,idi '= S

where the f;’s are the threads declared in P’.

The proof proceeds by induction over the steps of the opera-
tional semantics.

By construction, My, S satisfies the induction hypothesis.

Assume M, S satisfies the induction hypothesis, and M,S —
M',S'.

First, we handle the prototype threads idy. Note that there are
no thread step transitions from statements of the form wait; s. Thus,
(idy, wait; s;) € S’. Also M (ids). = M,(idys) and M(id;) =
M, (idy) (Lemmas 6 and 7), so, by Lemma 8,

(id; = M) = (= M'lid; > 0])
To complete the induction we thus only need to show
Y(id,s) € S'(id E MY\ (M',id k s)
We proceed by analysing each kind of state transition.
e Simple statement:
M,id: s, > M’
M, {(id, s1; 5} ® S — M, {(id, 1)} U S




FP=>P  O¢domM) g>0

M(g) = (private<0> 15, 8,0,v5)

dom(M) = {g}& ( (P lidh e (Plod)
fOL...}eP’ x:TeP’
x:T€P = tg(x) =1 Avg(x) = 0, A M(0,) = (rtype(M, g,7), g,0, 1£.0)

S = {(idy, wait; )| fO{...; s} € P’}

SOl..x:7..} e P = M(idy) = (private<0> t7,ids, 0,v) At(x) =T AVH(X) =0A (Y :TEP = 1(y) =T Avp(y) = 0y)

M, S & {(g, spawn main; done)}

Figure 14. Initial State

Let (id',s’) € S. By induction, id,id E M, M,id E s;;s>
and M,id" E s’. By Lemma 10 M’,id E s, by Lemma 11
M’,id" E s’ and by Lemma 9, id, id’ E M’. Lemma 1 completes
the induction for this case.

Runtime check:

M,id E w, Q=uw,,...,w,

M, {(id, € := e when w,Q; s)}®S — M,{(id,l := e when Q;s)} U S

We only need to verify that

M,id Eid,l := e when w; ..., w,;s
Examination of the assignment rules shows that this holds be-
cause M, id E w;.
Thread creation: The induction follows from Lemmas 12 and 1.

Thread destruction: The induction follows from Lemmas 13
and 1.

THEOREM 5. Safety of private accesses. During the execution of a
program P’ such that - P = P, if thread id writes to cell a with
type M,(a) = private<b> t then M,(a) = id.

Proof: From Theorem 4 and Lemma 2.

THEOREM 6. Safety of 1ocked accesses. During the execution of a
program P’ such that - P = P, if thread id writes to cell a with
type M,(a) = locked<b> t then M;(a) = id.

Proof: From Theorem 4 and Lemma 3.
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