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Abstract

On Invariants to Characterize the State Space for

Sequential Logic Synthesis and Formal Verification

by

Michael Lee Case

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Science

University of California, Berkeley

Professor Robert Brayton, Chair

Because of the large size of industrial designs, modern sequential logic synthesis

and formal verification techniques cannot afford to accurately characterize the state

space of a design. This limits the ability to both optimize designs and to formally

prove the the designs behave as required.

Invariants are properties that hold in all reachable states. They can be generated

in an automated manner, and the set of generated invariants provides a characteriza-

tion of the design’s state space. This characterization can be utilized sequential logic

synthesis and formal verification.

In total, this thesis provides 1) a framework to efficiently generate invariants, 2)

extensions to sequential logic synthesis to make it more capable of reducing the size

of complex designs, and 3) extensions to formal verification to increase its scalability

on complex industrial designs.

Professor Robert Brayton, Chair Date
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Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with building efficient and correct computer chips. Imple-

menting a chip to be smaller, faster, and use less power increases the chip’s value to

the consumer. Guaranteeing that the chip is designed correctly avoids the need for

costly debugging and recalls after the chip has manufactured and shipped.

1.2 Chip Design and CAD Tools

Computer chip designs are normally specified in a Hardware Description Lan-

guage (HDL), as illustrated in Figure 1.1. This is a text-based specification that

can be used to derive a circuit implementation which can then be manufactured into

a die, the functional part of the computer chip. The process by which the text based

specification is translated into a circuit implementation is referred to as Computer

Aided Design (CAD).

Chip designs can be roughly classified into two types: analog or digital. Analog

designs are typically specified at the transistor level and thus the designer has much

1
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Chip

Implementation

(HDL)

Detailed Chip Design – Ready for Manufacturing

Figure 1.1: Chip designs normally start with a Hardware Description Language (HDL).
CAD tools aid in preparing the HDL design for manufacturing. The pictured die is an
Intel Pentium 3 CPU [Intel Corporation, 2001].

more control over the final performance of the chip, but this comes at the cost of a

complicated design. In contrast, digital designs are specified at the logic level. This

allows the designer to specify the intended logical function of the chip yet ignore the

details of how the electronics will implement this logic. This abstraction enables much

greater design productivity, and for that reason most designs are specified as digital

logic designs. This thesis is concerned with such designs.

A chip designer typically employs several different CAD Tools in his or her

work. Each tool has a different purpose. In this thesis we are concerned with two

such families of tools: CAD tools that take an existing design and optimize the logic

to produce an equivalent yet better design, known as synthesis tools, and tools that

check that the chip will function as intended, known as verification tools. This thesis

introduces techniques that can improve the quality of synthesis and verification tools.

2
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or and not aoi22

Figure 1.2: Examples of digital logic gates.

1.2.1 Digital Logic Components

Digital logic designs can be specified in high-level English-like languages such as

VHDL [Wikipedia, 2009], Verilog [IEEE, 2008], or System C [OSCI, 2008]. While

convenient for the human user, English-like languages are burdensome to use within

CAD software. Instead, a representation that directly discusses the digital logic im-

plementation, known as an Register-Transfer Level (RTL) design, is used. In high

performance chips such as Central Processing Units (CPUs), a design is often

specified directly in terms of RTL because this tends to result in higher-performance

chips. Such RTL designs are the focus of this work.

RTL designs are specified in terms of logic gates, and there are several different

types of gates that appear in such designs. While dozens of gate types may be found

in an RTL design, an example of four such gate types is illustrated in Figure 1.2. An

or gate takes two inputs and outputs a 1 if either of these inputs is 1. An and gate

similarly takes two inputs and outputs a 1 if both inputs are 1. A not gate takes

a single input and outputs a 1 if the input is 0 and is sometimes referred to as an

inverter. Additionally, there may be more complex gate types present. For example,

consider the aoi22 gate. This gate takes 4 inputs and outputs a 1 if certain pairs of

inputs are not both 1 at the same time.

A family of gate types is known as a complete logic family if any compli-

3
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input

initial

output

clock

current 

state

next 

state

initial value

Realistic Register Simplified Register

Figure 1.3: Examples of registers that may appear in sequential logic.

cated gate type can be constructed from a combination of gates from the family.

The simplest complete logic family has only two members: and and not. Designs

that take gates from only this simple family are known as And-Inverter Graphs

(AIGs) [Kuehlmann and Krohm, 1997]. AIGs have come to be the preferred style

for representation of a design inside a CAD tool due to the simplicity of this small

logic family.

1.2.2 Registers and Sequential Logic

Logic gates can be arranged in a network such that a single gate in the network takes

as input either 1) the output of some other gate in the network, or 2) an input to

the network as a whole. Such a structure is often referred to as a logic network or

netlist. Such a logic network computes 1 or more signals as a function over a set of

inputs. In order that this function be deterministic, we impose the constraint that

the logic network be free of cycles. That is, a logic gate should not take its output as

one of its inputs, either directly or through a series of intermediate gates.

In addition to logic gates, a logic network commonly includes registers. A register

is a state holding element, capable of storing a logic value that was computed in the

past. Two examples of registers, a realistic one, and a simplified one that will be used

in this thesis, are shown in Figure 1.3. The design has one or more signals referred to

4



Chapter 1. Introduction

as clocks that control the function of the registers. These clocks control the behavior

of the design over time, and we shall refer to time j as the j’th time step, or the j’th

event that has occurred on the clock signals.

An example of a realistic register can be see in Figure 1.3. The register takes as

input an initial value that controls the register’s output at time 0. After time 0, the

output is controlled by the input signal, the clock signal, and the register’s internal

state. When an event on the clock signal, a transition from 0 to 1 for example, occurs

the input signal will be read and the result stored in the internal state. This stored

value will be output from the register. Thus the clock signal controls the point(s) in

time that the register samples, or latches, the input.

A design can have multiple clock signals and multiple different types of registers.

Through a technique known as phase abstraction [Bjesse and Kukula, 2005], the

clocks and registers can be normalized such that a CAD tool only sees one clock

signal and one type of register. This dramatically simplifies the implementation of

the CAD tool, and we will use this simplified view in this thesis. The simplified

latch takes an input that we shall refer to as the next state function because it

computes the value that the register will have at the next point in time. The output

shall be referred to as the current state because it is simply a reflection of the

register’s state at the current time. All registers have an implicit initial state which

is driven by a designated signal in the design, allowing for a constant initial state, a

nondeterministic initial state, or an initial state that is a complex function of initial

conditions. All simplified registers take as input the single clock, and because there

is no variation across registers, we omit this clock signal from all future discussion

of registers. The clock is implicitly part of the design but is customarily not drawn.

The terms latch and register are used interchangeably in this thesis to refer to this

simple register model.

A logic network that is free of registers is known a combinational logic network.

5
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Because this type of logic network is free of internal state, it is simpler to understand

and to process in CAD tools. Such logic networks have been studied extensively in

the past, and there now exist high quality CAD tools to optimize and/or verify these

networks.

More complex systems can be constructed from logic networks that also include

registers. These logic networks incorporate internal state and are referred to as se-

quential logic networks. Traditionally, sequential logic networks have been handled

by removing their registers and processing the remaining combinational logic network

in isolation. However, tools that take the registers into consideration can generate

significantly more-optimal designs and verify more interesting design properties. Un-

fortunately, the analysis of sequential logic networks is complex, but the techniques

presented in this thesis help to mitigate that complexity.

1.2.3 Finite State Machines

Sequential logic networks can be used to implement Finite State Machines (FSMs).

FSMs form the building blocks of more complex digital logic systems by providing

a methodology by which a design has a meaningful internal state that evolves in a

chosen manner over time.

Definition: A Finite State Machine (FSM) is a 6-tuple (Σ,Γ, S, s0, δ, ω) where Σ,

Γ are respectively the sets of inputs and outputs of the FSM. S is the set of state

variables in the FSM with s0 being the FSM’s initial state. At any time t, the

state at time t + 1 is given by δ(Σ, S) and the valuations of the outputs Γ are

given by ω(Σ, S).

Consider the following example of a small yet realistic FSM.

Example 1. A String-Matching FSM

6
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M

00010

I

00100

K

01000

E

10000

?

00001

Figure 1.4: State transition graph of a simple FSM.

Suppose we have an FSM that takes as input Σ a sequence of keystrokes and

outputs Γ a signal that is 1 whenever the user has typed the string “MIKE”. We

can define the following states S for this machine:

? Means that the past input is indecipherable.

M Means that the user has just typed “M”.

I Means that the user has just typed “MI”.

K Means that the user has just typed “MIK”.

E Means that the user has just typed “MIKE”.

The FSM assumes exactly one of these states at any given time, and we can

graphically describe the evolution of the FSM’s state over time with a State

Transition Graph (STG) as illustrated in Figure 1.4.

Initially, the FSM starts in states s0 which is either the ? or M state, depending

on the current input. This is illustrated with a set of arrows from an undefined

state in the upper-left of the figure. At any state of the FSM, the state at the

next point in time shall be either 1) the next state in the M-I-K-E sequence if

the appropriate input is given, or 2) the state ? if the current input is not the

next key in the sequence, or 3) the state M if the current input is wrong but

7
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could possibly serve as the starting point for a new M-I-K-E sequence. This

defines the state transition function δ.

An FSM’s internal state allows it to produce more meaningful outputs than is

possible in a state-free machine. In this case, we want to output a 1 whenever

we have seen “MIKE”. In other words, the output function ω is simply to output

a 1 whenever we are in state E.

FSMs can be easily implemented in digital logic. First, label each state in the

FSM with a fixed-length unique binary code, as shown in Figure 1.4. Each bit in this

code will be stored in a separate register, and so the number of bits in the code define

the number of registers in the design. There are many ways to code the states, and

some coding styles result in few registers while others trade registers for a higher-

performance implementation. This is referred to as the state encoding problem

and is beyond the scope of this work. The codes in Figure 1.4 were chosen arbitrarily.

The valuation of all the registers is referred to as the implementation’s state vector

or simply state.

After the states are encoded, the initial values for each register can be derived by

simply noting which states (and corresponding codes) are initial states in the state

transition graph. The inputs to the registers, called the next state functions, define

the value the registers should store at the next point in time. These can be directly

translated from the FSM’s encoded δ function. The set of all next state functions

shall be referred to as the transition relation.

All that remains is to define the outputs of the sequential logic network. This can

be derived easily from the FSM’s ω function.

It should be noted that the logic implementation of an FSM is not unique. There

always exist multiple equivalent implementations, resulting in a spectrum of area,

power, and delay trade-offs. This thesis will discuss synthesis and verification, prob-

8
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inM

ns

init
cs

State I

ns

init
cs
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ns

init
cs
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ns

init
cs
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ns

init
cs

State ?

inI

inK

inE

0

0

0

output

Figure 1.5: Example sequential logic network corresponding to Figure 1.4. Bubbled
inputs are a shorthand representation of an inverter feeding the logic gate input.

lems that stem from the non-uniqueness of FSMs. Synthesis is the problem of moving

from one implementation to an equivalent but better implementation. Verification

involves checking that an implementation is correct or that a pair of implementations

are equivalent.

Example 2. A Sequential Logic Implementation of Our String-Matching

FSM

As an example of how to implement an FSM as a sequential logic network, here

we implement the FSM of Figure 1.4. The implementation that will be developed

is illustrated in Figure 1.5.

Using the state encodings given, there are 5 registers in the sequential logic, and

each register corresponds to a single state of the FSM. We label the registers

accordingly to get registers “State M” through “State ?”.

9
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The FSM takes keystrokes as input, and to simplify this suppose we simply

consider 4 signals. Input “inM” shall be 1 iff the user typed “M”. Inputs “inI”,

“inK”, “inE” are defined similarly.

From Figure 1.4, we can see that the next state is M iff inM=1. The next state

is I if the current state is M and inI=1. Similarly, the next state is K if the

current state is I and inI=1 and the next state is E if the current state is K

and inE=1. Otherwise, the next state is ?. This defines the transition relation

of the sequential logic network.

The initial states are similarly given by translation from Figure 1.4. The FSM

starts in state M if inM=1 and in state ? if inM=0. It is illegal to start in any

other states, and the initial state functions for the corresponding registers are

all constant 0.

The single output is 1 iff the FSM is in state E. This implementation is trivial,

just a wire.

Note that this implementation is very inefficient. The state ? is clearly not

needed, and the FSM could be implemented with fewer registers. Furthermore,

how do we know that this implementation is correct? These questions will be

explored below.

1.2.4 The State Space and Design Complexity

The set of states that are possible to represent with an FSM’s registers are known as

the state space. Note that in general the cardinality of this set of states can be much

larger than the number of states present in the original state transition diagram. If

an FSM is implemented with N registers then the state space has 2N states. Many

synthesis and verification algorithms perform computations over the state space, and

the large size of this space makes those computations difficult.

10
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A pair of states (a, b) in the state space are connected by a path if starting from

state a the FSM can assume state b after a fixed number of time steps if provided

with suitable input stimulus. A reachable state r is any state for which there exists

a path from an an initial state i to r. An unreachable state is any state for which

no such path exists. Note that in a manufactured chip an unreachable state will never

be observed during operation.

If the reachable states can be enumerated then this information can be leveraged

in two interesting ways:

• Optimizations can be performed such that the behavior of the design is not pre-

served on the unreachable states. Because the unreachable state will never be

observed in the lifetime of the chip, any change in behavior will go undetected.

This freedom to change the behavior on a set of states provides flexibility to

optimize the design in exotic ways, and such optimizations are known as se-

quential synthesis transformations.

• Verification that the design always behaves in a particular manner can be done

by simply checking that this behavior holds on each of the reachable states.

Because only these reachable states will be observed when the chip is operating,

by checking the behavior on the reachable states the behavior of the chip has

been checked for all time. This process is known as formal verification.

Clearly, there are advantages in partitioning the state space into reachable and

unreachable states. A design with N registers has 2N states. The FSM in Example

2 has only 5 registers for a total of 32 states, and partitioning these 32 states into

reachable and unreachable states is fairly straightforward. However, realistic designs

are far more complex.

Example 3. The Complexity of Product Machines

11
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While simple FSMs such as seen in Example 2 do exist in practice, complex chip

designs can not be constructed manually from a single FSM. Humans have been

able to construct complex systems through modularity. By successively partition-

ing a large design, a designer can limit his focus to a very small window. In this

small window an FSM can be used to implement the intended design, and the to-

tal design will be composed of the conjunction of several small FSMs from each

of these windows. These FSMs often interact with each other in complicated

ways.

A product machine is a view of a design that includes two smaller designs.

It is an important piece of the hierarchy where two sub-designs come together

to form a design that is more complex than either of its constituents. While the

size of the total design increases, the complexity of its state space increases as

well.

Suppose a product machine is composed of designs α and β. α has Rα registers

and Sα reachable states (Sα ≤ 2Rα). Similarly β has Rβ registers and Sβ reach-

able states. Individually, the two designs have 2Rα and 2Rβ states in their state

space, respectively. However, the product machine has Rα + Rβ registers and

2Rα+Rβ = 2Rα · 2Rβ states. The sizes of the state spaces have been multiplied,

hence the name product machine.

If the two sub-designs α and β act independently then the product machine

will have Sα · Sβ reachable states. However, often the designs will interact in

nontrivial ways. For example, α may take as input one of the outputs of β. In

practice, this limits the reachable state space, and the effective reachable state

space will be much smaller than Sα · Sβ.

Because the set of reachable states is not predictable, the partitioning of state

space into reachable and unreachable states must be done anew on the product

12
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machine. However, the product machine has Rα+Rβ registers, and this increase

in the number of registers to process severely complicates this analysis.

Example 4. The Complexity of Datapath and Control Logic

Realistic chip designs are not built of FSMs alone. They often contain more

complex blocks. For example, an adder is a block that inputs two binary-

encoded numbers and outputs their sum. This binary encoding could be large.

For example, in today’s CPUs it is common to see 64-bit encodings, resulting in

2 · 64 = 128 inputs and 64 outputs.

Logic blocks such as adders manipulate data as it flows through a chip. Multiple

such blocks can be arranged in a network to compute complex functions over the

chip’s data. For example, by chaining adders and multipliers, polynomials can

be computed. Such networks of data-processing blocks are known as a datapath.

Throughput is a measure of how much computation a chip can complete in

a unit of time. In order to increase throughput it is common to pipeline the

datapath. This process involves cutting signals in the datapath and inserting

registers. The combinational logic between two sets of introduced registers is

known as a pipeline stage. The registers mean that the datapath will require

multiple clock cycles to compute a result. In general, a computation will require

as many clock cycles as there are pipeline stages, and this cycle requirement

is known as the latency. However, because the registers partition the design,

the data in stage j is independent from all stages i < j. This allows new

computations to start before the previous computation completes, resulting in

overlapping waves of computation. These waves result in significantly higher

throughput.

Registers that carry data as it flows through the design are known as datapath

registers. For example, the registers that are used for pipelining are datapath
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registers. They do not store the state of an FSM but instead store intermediate

results for a larger data computation. One resultant characteristic is that a set

of datapath registers typically have a very high percentage of reachable states.

Arithmetic blocks such as adders and multipliers require a large number of logic

gates and correspondingly take a large area on the manufactured die. Addition-

ally, the pipelining can introduce undesirable latency into the design. In order

to improve this area and timing, computer architects employ a variety of tricks.

The nature of these techniques is beyond the scope of this thesis, but it is suf-

ficient to know that these techniques introduce several inputs to the datapath

logic that control its function. These control inputs must be configured in a

particular way to ensure that the design operates as intended.

FSMs are typically employed to operate the control inputs. An FSM block known

as control logic is built, and its outputs are tied to the control inputs of the

design.

The resulting design is a composition of datapath and control logic. The dat-

apath has a high percentage of reachable states, and the control logic, because

of the nature of product machines, typically has a low percentage of reachable

states. Characterizing the reachable state space of the composite machine can be

complicated because, similar to a product machine, it is not possible to predict

the composite reachable state space from the individual spaces of the two com-

ponents. The composite machine typically contains a large number of registers,

further complicating this analysis.
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1.3 Logic Synthesis

1.3.1 The Synthesis Problem

Logic synthesis is the process of optimizing a logic netlist. A logic synthesis tool

is a CAD tool that inputs a logic netlist, optimizes it in some way, and outputs a

netlist with equivalent functionality yet better implementation.

The goal of a logic synthesis tool is to make a logic netlist “better,” but the defi-

nition of “better” can vary greatly depending on the overall objective. The designer’s

objective is captured mathematically as a cost function inside the synthesis tool,

and the synthesis process can be viewed as an optimization problem that is trying to

minimize a cost function. Some example cost functions are as follows:

• Often the designer wants to minimize the amount of area that a logic network

will take on the die. This reduces the manufacturing cost as more dies can be

fit on a single wafer. Area can be optimized by implementing the logic network

with fewer gates and/or gates that can be arranged more efficiently on the die.

• Power is often another important consideration, and the logic can be optimized

to minimize power. Static power is related to the area of the logic network and

can be optimized with an area-focused cost function. Dynamic power can be

minimized by re-implementing the logic such that the probability of observing

the logic network’s signals transitioning is minimized.

• Speed is another common designer objective. Improving the delay necessary to

propagate logic values through a logic network is important because this enables

the network to be run with a higher-frequency clock, improving the speed of

the chip. Delay can be optimized by reducing the number of gates that lie on

paths from the logic networks input to the outputs.
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1.3.2 Technology Independent Synthesis

There are many CAD tools that a designer must use when implementing a chip, and

logic synthesis is just one of these tools. Other important tools include technology

mapping, placement, and routing. These form a toolchain such that the output

of logic synthesis is used as the input to technology mapping, technology mapping

feeds placement, and placement feeds routing.

Technology independent synthesis is the process of performing logic synthesis

in isolation without considering the effects of the logic transforms on the later parts

of the toolchain. Technology independent synthesis only considers the logic of the

netlist and does not consider factors that affect the later manufacturability of the

design. This was the focus of much of the early research in logic synthesis due to its

simplicity and limited scope.

Modern CAD tools have shifted focus away from technology independent synthesis

and instead invest efforts in technology dependent synthesis. This is also known

as physical synthesis. In a physical synthesis tool, one or more components of the

toolchain will be implemented together and performed at the same time. For example,

logic synthesis, technology mapping, and placement might be all implemented in

the same tool and performed simultaneously. This allows the logic synthesis to see

the effect of its transformations on the placed design, allowing it to choose logic

transformations that not only satisfy the logic synthesis’ cost function but also the

cost function in mapping and placement. Such a broader view of the optimization

problem results in much more efficient implementations.

Physical synthesis leverages technology independent synthesis algorithms and im-

proves them by integrating other CAD tools. In recent years there has been much

research in physical synthesis while technology independent synthesis has been largely

ignored. This thesis will discuss technology independent synthesis and will make two
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key contributions to the field:

• Sequential logic synthesis techniques will be developed, and this type of synthe-

sis is significantly more powerful than conventional methods. These techniques

are new and are commonly developed in technology independent synthesis first

due to its simplicity. Later they can be applied to physical synthesis.

• Synthesis will be used to simplify verification problems, and in this domain the

goal is to verify properties of a design instead of manufacturing a chip. Physical

synthesis makes no sense in this domain and therefore the focus should be on

technology independent synthesis.

1.3.3 Combinational and Sequential Synthesis

There are several algorithms that have been developed for technology independent

synthesis, and these algorithms can be partitioned roughly into two groups: combi-

national synthesis and sequential synthesis algorithms. Most practical designs incor-

porate registers, and hence most designs include sequential logic networks. Combi-

national and sequential algorithms differ in how they handle the design’s registers.

Combinational synthesis algorithms do not change the number or function

of the registers. All synthesis algorithms, both combinational and sequential, are

constrained to not change the function of the logic network’s outputs. Combinational

synthesis takes this a step further by not changing the registers either. This simplifies

the analysis because the current state functions can be treated as pseudo-inputs and

the next state functions can be treated as pseudo-outputs. After performing this

abstraction, combinational synthesis techniques focus on the remaining combinational

logic network.

Sequential synthesis algorithms are capable of changing the number and func-

tion of the registers. They do not abstract the registers and therefore can optimize
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the combinational logic and the registers at the same time. This is more complex

because it requires the algorithms to understand the state space, but this also en-

ables sequential synthesis to do much more powerful design optimizations that are

impossible with combinational synthesis.

1.3.4 Important Synthesis Examples

Let us explore a few synthesis algorithms that are important to in this thesis. Note

that logic synthesis has enjoyed more than 40 years of active research, and many

algorithms have been developed to optimize logic networks. Here we focus on the

few algorithms most relevant to this work. Consequently, many of these synthesis

algorithms in this section are sequential. All algorithms will be explained through

example, and their effects on the logic of Figure 1.5 will be examined.

Example 5. Synthesis With Cone of Influence Reduction

1: function findCoi(gate, coiSet)
2: if (gate ∈ coiSet) then
3: return
4: else
5: add gate to coiSet
6:
7: // Recurse
8: if (gate is an AND) then
9: for all inputs in of gate do

10: findCoi(in, coiSet)
11: end for
12: else if (gate is a register) then
13: findCoi(gate.nextState, coiSet)
14: findCoi(gate.init, coiSet)
15: end if
16: end if
17: end function

Algorithm 1: Recursive Procedure to Find a COI
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The Cone of Influence (COI) of a logic gate is the set of gates and registers

in its input or in the input of one of its inputs. Typically the COI of a gate is

found in a manner similar to what is shown in Algorithm 1. The procedure starts

at the gate and recursively traverses the inputs, adding gates to the set coiSet.

The procedure terminates when no new gates can be added to this set. Note that

sometimes a COI computation stops at the registers, but this implementation

traverses through registers to process both the register’s next state function and

initial value.

A COI of a gate g is a superset of all the logic necessary to produce the values

seen at the output of g. If a gate does not belong to the COI of g then that gate

can be removed from the logic network without influencing the values observed

at g.1

The COI gives rise to a very simple type of logic synthesis optimization: COI

Reduction. The outputs of a logic network are more important than any other

internal signals. In a COI reduction, the COI of each output is computed, and

these COI’s are unioned. This gives a set of gates such that if a gate k is not in

the set then k can be removed without affecting any of the outputs. Therefore the

size of the logic network can be reduced without disturbing any of the outputs.

Figure 1.6 shows the effect of COI reduction on the logic network previously

examined in Figure 1.5. In Figure 1.5, the register labeled “State ?” and the

subset of the logic driving its next state function are not in the COI of the

output. Therefore this logic can be removed, yielding a smaller logic network

with equivalent output functionality.

COI reduction is a sequential transformation because it can change the number

1Note that in general there may be gates in the COI of g that can also be removed without
changing the values at g. This happens because of logical redundancies that frequently occur in
logic networks.
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Figure 1.6: Cone of Influence reduction applied to Figure 1.5.

of registers. It is the simplest such sequential transformation, but because of its

simplicity it is often used as a subroutine in other synthesis algorithms. It will

be used several times throughout this thesis.

Example 6. Synthesis By Merging Signals

Merging of signals is another simple type of synthesis transformation. The

fanouts of a gate g are the gates in the logic network that take g’s output

as one of their inputs. Merging is an operation on two gates x and y in a logic

network such that the fanouts of x are modified to input the logical value from y

instead of x. After the inputs of the fanouts are thus modified, gate x no longer

has fanouts and can be removed from the logic network through a subsequent

COI reduction2.

2In general, after x is removed some of its fanins will no longer have outputs and can be removed
as well.
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Figure 1.7: Merging applied to Figure 1.6.

Figure 1.7 shows an example of merging within the logic network of Figure 1.6.

One AND gate fans out to the register denoted “State K,” and the another AND

gate fans out to the register denoted “State E.” If the gates are merged then a

single AND gate will be used to drive values into both registers. The other AND

gate is now unnecessary because it has no outputs, and a COI reduction can be

used to remove this gate.3

In general, merging is a symmetric operation in that in the merging of x and

y we could use x to replace y or y to replace x. Such a merge is known as an

undirected merge. There are advantages to each of the two merging direc-

tions, and the direction that is used is usually selected depending on the logic

network structure. Logic networks must be acyclic, with the exception of cycles

that involve registers. Cycles that do not involve registers are known as combi-

3Note that this operation changes the behavior of the output and is therefore not a legal logic
synthesis transformation. It is shown here for illustrative purposes only.
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national cycles and can be easily avoided by replacing the gate that is furthest

from the registers with that which is closest to the registers. More formally, we

can define the level of a gate g to be the number of gates on the shortest path

from any register to g. If merging always replaces the higher-level gate h with

the lower-level gate l then there can be no cycle involving l because the level

constraint implies that h cannot fan out to l. Therefore after merging it is im-

possible for l to fan out to itself, and this is sufficient to guarantee acyclicity of

the modified logic network.

In some applications in this thesis it is advantageous to consider directed

merges. In this type of merge, the directionality is explicitly specified. That

is, it is legal to replace gate x with gate y but not vis-a-versa. Directed merges

are usually seen in applications where only one merge direction is guaranteed to

preserve the functionality of the logic network.

There are many synthesis algorithms that involve merging gates. One of the

simplest applications is known as SAT/BDD Sweeping. In this algorithm

pairs of gates are proved to be equivalent and then they are merged and COI

reduction is called. Because the gates are equivalent, the merge direction is

not important and undirected merges are used. The merging is guaranteed to

preserve the output behavior of the logic network, as is required with all logic

synthesis algorithms. Later in this thesis methods will be introduced where strict

equivalence between gates is not proved yet merging still preserves the output

behavior. Therefore equivalence is a sufficient but not necessary condition to

enable merging to preserve output behavior.

Example 7. Synthesis With State Re-encoding

The algorithms discussed above require little or no knowledge of the state space

of the design. For this reason they are highly scalable, or fast running and able
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to handle large design sizes, but they lack the power to dramatically impact the

logic network. As an example of a more powerful (and expensive) optimization,

we consider state re-encoding here.

State re-encoding is the process of changing the binary state encodings on

the STG and then re-expressing the logic network in terms of these changed

encodings. The logic network is highly sensitive to these encodings, and small

changes in the codes used can have a large impact on the number of gates and

the delay of the network. Additionally, the length of the codes used can be varied,

resulting in a sequential logic network with a different number of registers.

Logic synthesis tools work on logic networks and not on state transition graphs,

making re-encoding of the individual states difficult. While an STG can be ex-

tracted from a logic network, often the resultant STG will be too large to manipu-

late efficiently. Practical re-encoding is therefore limited to only re-encoding the

reachable states, but this requires one to exactly know which states are reachable.

In large sequential logic networks, computing the exact set of reachable states is

computationally infeasible. For all of these reasons, state re-encoding is compu-

tationally difficult and therefore rarely used. It is introduced here because later

algorithms in this thesis will be compared with state-encoding.

As an example of state encoding, consider changing the state encodings of the

sequential logic network shown in Figure 1.6. From Figure 1.4 we know that

there are 5 reachable states: “M”, “I”, “K”, “E”, and “?”. Previously a length-5

encoding was used, resulting in a logic network with 5 registers. For N reachable

states, the length of the code words is bounded below by dlog2(N)e. Therefore

the states in this simple STG can be encoded using only 3 bits. Suppose the 3

bits of the encoding are labeled A, B, C and the encoding is specified like so:

• “M” is denoted as A = 0, B = 0, C = 0.
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Figure 1.8: State Re-encoding applied to Figure 1.6.

• “I” is denoted as A = 0, B = 0, C = 1.

• “K” is denoted as A = 0, B = 1, C = 0.

• “E” is denoted as A = 0, B = 1, C = 1.

• “?” is denoted as A = 1, B = 0, C = 0.

With these encodings, a sequential logic network can be derived that has 3 reg-

isters: A, B, and C. This logic network is shown in Figure 1.8. Clearly, this

logic network has many more gates than the original network, but it has fewer

registers. Depending on the objective function of the synthesis tool, such a trans-

formation might be either accepted or rejected.4.

Example 8. Synthesis With Resubstitution

4This re-encoding example was done by hand, but due to its complexity such manual analysis
can be error prone. The equivalence between Figures 1.6 and 1.8 was formally verified using IBM’s
SixthSense tool [Baumgartner, 2006]
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Often in synthesis reducing the number of registers is critically important. State

re-encoding has the potential to dramatically reduce the number of registers but

is computationally difficult. Reduction in the number of registers can be accom-

plished by several methods, state re-encoding being just one. Any method that

reduces the number of registers can be viewed as a weak form of state re-encoding

because the encodings of all the reachable states will be shortened by at least one

bit.

Resubstitution is a algorithm that can be used to re-express a logic function

in terms of other logic functions. More formally, if a logic network has gates

A, B, and C then resubstitution can be used to find a function F such that

A = F (B,C). F (B,C) can then be constructed in the logic network and merged

with A. A COI reduction is then used to completely remove A from the logic

network.

In this thesis we will focus on resubstitution applied to the registers. In this

case, A, B, and C will be registers and the removal of A is equivalent to the

removal of a register from the sequential logic network. Removing registers in

this way takes advantage of redundancies in the state encodings such that a bit

of the code can be removed without changing the functionality of the STG.

The state encoding used in the STG of Figure 1.4 is called one-hot because

exactly one of the registers will store a 1 at any point in time with the remaining

registers storing 0. A one-hot encoding usually results in a small number of logic

gates in the logic network but a large number of registers.

Any one-hot encoding is redundant in that exactly one of the registers can be

expressed as a function of the others. Take for example the FSM shown in

Figure 1.5. Register E can be expressed as E = M · I ·K·?. Introducing this

new logic function into the logic network and doing a merge followed by a COI
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Figure 1.9: Resubstitution applied to Figure 1.5.

reduction gives the logic network shown in Figure 1.9. Some of the register-

reduction power present in the state re-encoding algorithm is captured here, and

resubstitution can be implemented in an efficient and scalable manner.

1.3.5 Synthesis Challenges

Physical synthesis has been a great advance in the traditional CAD toolchain, but

there remains much research to be done in traditional technology-independent syn-

thesis. Specifically, sequential synthesis provides several ways to optimize a logic

network by taking advantage of the state space. There are three main challenges in

sequential synthesis:

1. Sequential synthesis is inherently difficult because it usually requires knowledge

about the state space. The set of reachable states is very difficult to obtain, and

optimizations that utilize this information can be computationally expensive.
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This thesis will address ways to approximate the set of reachable states and

then use this information in an efficient manner to optimize a logic network.

2. All software tools are likely to contain bugs, and sequential logic synthesis tools

are no different. In order to prevent a logic synthesis bug from causing an

error in a manufactured chip, all synthesis results must be checked. A correct

logic synthesis tool will not change the behavior of the outputs of the logic

network, and so often one wishes to prove that the outputs of the original and

optimized logic networks are pairwise equivalent, guaranteeing that sequential

synthesis did not alter the design functionality. This verification problem can

be quite challenging. This thesis will discuss advances in the field of formal

verification, and these advances can be used to verify the results of sequential

synthesis. In this way, formal verification enables sequential synthesis because

without verification, the results of exotic sequential synthesis algorithms cannot

be trusted or used in industrial settings.

3. Sequential synthesis changes the number and/or function of the registers in

the sequential logic network. The registers today serve as points at which a

designer can fully understand the operation of his or her design, and by changing

the registers a synthesis tool may optimize a design yet produce something

that the original designer is unable to understand. This makes debugging and

Engineering Change Orders (ECOs) difficult. This is an important obstacle

that stands in the way of mass adoption of sequential synthesis. While this

obstacle can be overcome, industry leaders often wish to see tangible benefits of

sequential synthesis before re-educating their designers. This thesis will advance

the field of logic synthesis, laying the foundation for the later effort to change

the way chips are understood and designed.
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1.4 Formal Verification

1.4.1 The Verification Problem

Chip designers not only need efficient ways to construct complex devices, but they

also need ways to verify that these devices operate as intended. The cost of a bug in a

computer chip can be quite large, and therefore the need to design the chips correctly

and fix any problems early in the design flow is great.

Modern chip designs are very complex, and to overcome this complexity chips are

designed hierarchically. Errors can be introduced at any level of the hierarchy, but the

errors are more costly to fix at higher levels of the hierarchy. This is because higher

level fixes have more side-effects and require the coordination of many designers across

the project. Typically, if a bug costs X to fix at one level of the hierarchy, it will cost

10 ·X to fix at the next higher hierarchy level [Brand, 2007].

Example 9. The Cost of a Bug

Modern chips are designed hierarchically, and a logic designer typically works

on the lowest-level of the design, called a logic block. Suppose the designer

introduces a bug in his or her logic block, and this bug takes the designer 3 days

to debug and fix. At a salary of $100,000 per year, the bug costs the company

about $1000 in just the designer’s salary for these 3 days.

Now consider what happens in terms of the hierarchy of the chip:

Logic block: This is the most basic design unit. Typically only one designer

works on a block, and that designer is wholly responsible for fixing bugs in

the block. In our example, a bug here may take 3 days to fix at a cost of

$1000.

Unit: A unit is a collection of logic blocks. If a bug in a single block is not fixed,

it may manifest itself as a subtle bug in the interaction of the different blocks
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that make up the unit. This might take 10 designers 3 days to fix for a total

cost of $10,000.

Core: In a CPU, a core is the smallest block that is capable of executing all of

the architecture’s instructions. Cores are composed of several units, and

many designers are responsible for the logic that ultimately goes into the

core. Because of the increased complexity of the design and the increased

number of people involved, a $10,000 bug in a unit may become a $100,000

bug in the core.

Chip: Modern chips are composed of several cores that interact independently.

Suppose our $100,000 core-level bug was not fixed but instead manifests

itself as a complex inter-core bug at the chip level. The increased complexity

will mean that the bug costs $1,000,000 to find and fix at the chip level.

System: A system is composed of many chips. Indeed, the system is enor-

mously complex, and all of the designers in a company could be working

on one system. The example $1,000,000 chip bug could take $10,000,000

to fix at this level.

If a bug is not caught while the system is in development then the costs can be

even greater. In 1994, Intel released their first Pentium processor. The CPU had

a bug in a block that was responsible for floating-point division, the infamous

FDIV bug [Nicely, 2008]. The bug was not detected until after the CPU had

shipped and was in the hands of consumers. Intel had to initiate a recall in

order to fix the problem, and in total this bug cost Intel $475,000,000.

Clearly, bugs in a chip design can be very costly. There are efforts underway to

allow the designer to specify designs in a way that is less bug-prone [OSCI, 2008], but

even with these new design styles bugs will persist because of the simple fact that

humans sometimes make mistakes.
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Verification is the process of detecting bugs or checking that a design is free

of bugs. Because a design is not manufactured until late in the design process, it

is necessary to verify software models of the design. This is known as pre-silicon

validation. The goal of verification is to check every level of the design hierarchy

and to detect bugs early in the design cycle and in the lowest possible level of the

hierarchy in order to minimize costs.

1.4.2 Simulation Vs. Formal Techniques

Typically pre-silicon validation is accomplished with simulation. A logic simulator

is a CAD tool that can be used to read in a model of the logic design and simulate

its logical behavior over time. A designer can provide inputs to the design, and the

simulator will compute the output values that will result. By providing a temporal

sequence of inputs, a simulator can be made to simulate a sequential logic design over

a time interval.

Simulation has long been the workhorse of verification, but it has a major problem

that is reducing its usefulness in modern chip designs. Simulators simulate one input

vector at a time, and as chips have increased in complexity the number of possible

input vectors has increased exponentially. Simulators are simply not able to simu-

late every possible input vector, and this results in poor design coverage, or the

percentage of the design’s behavior that has been checked.

Example 10. Verifying a 64-bit Multiplier With Simulation

A common unit in a modern CPU is a multiplier. This unit inputs two binary-

encoded numbers and outputs their binary-encoded product. Some modern CPUs

use 64-bit encodings for numbers, and therefore the multiplier has 2 · 64 = 128

binary inputs and 64 binary outputs. The number of possible inputs is therefore

2128.
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Suppose a designer wishes to verify a 64-bit multiplier with simulation. To

ensure 100% coverage it is necessary to simulate each possible input vector.

Suppose the simulator is able to simulate 1,000,000 input vectors per second,

extremely fast by today’s standards. To simulate all 2128 input vectors would

therefore take 1.08 · 1025 years. In comparison, the universe is only 1.4 · 1010

years old [Wikipedia, 2008].

Simulation is handicapped by its ability to process only a single input vector at a

time, and formal techniques are the answer to this dilemma. A formal technique is

any algorithm that is able to process all inputs at the same time. Often this is accom-

plished by treating the inputs symbolically and analyzing the circuit behavior in

terms of these symbols. Formal verification is the application of formal techniques

to verification.

Formal verification is the future of verification. As chips become increasingly

complex, the number of input vectors will continue to grow. Today it is impossible to

simulate every possible input vector, and in years to come the problem will get even

worse. Formal verification arose in the 1980’s as a theoretic curiosity, but recently

formal verification has become a major focus of research in CAD tools.

This thesis will discuss ways to improve formal verification, and because this thesis

is focused on formal verification rather than simulation, the word “verification” should

be understood to mean formal verification in the text to follow.

1.4.3 Sequential Equivalence Checking

One compelling use of verification is to check that synthesis did not introduce unin-

tended changes into the design. Synthesis tools by definition will optimize a design

while preserving the behavior at the outputs of the logic network, but as with all

software there is no guarantee that a synthesis tool is free of bugs. While a design
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might operate as intended, the possibility that a synthesis tool could introduce a bug

into the design means that synthesis results must always be verified.

Equivalence checking is the process of driving two similar designs with iden-

tical input vectors and then checking that the output vectors are identical. Because

logic synthesis tools input a logic network and output an optimized and supposedly

equivalent network, to check the correctness of the synthesis tool it is sufficient to

check the equivalence of the input and output networks.

Sequential Equivalence Checking (SEC) is the extension of equivalence check-

ing to check the correctness of sequential synthesis. The two logic networks whose

equivalence is being checked are fed identical temporal sequences of inputs vectors,

and the SEC tool checks that the output vectors are always equivalent. Because every

state observed in either of the two designs will always be reachable, SEC allows for

sequential synthesis to change the behavior of the design on the unreachable states.

Therefore, while sequential synthesis is more powerful than combinational synthesis

because it allows more flexibility with respect to the state space, it requires SEC

in order to check the equivalence of the input and output logic networks. SEC of-

ten involves complex and computationally expensive algorithms, but this thesis will

contribute methods to make SEC more scalable.

Example 11. Sequential Equivalence Checking The Logic Networks of

Section 1.3.4

Section 1.3.4 discussed numerous optimizations of the basic sequential logic net-

work in Figure 1.6. SEC can be used to guarantee that this synthesis was correct.

As an example, consider the result of resubstitution, shown in Figure 1.9. SEC

can be performed on the product machine formed from these two simpler

logic network. Both logic networks are fed identical outputs, and the resulting

composition is shown in Figure 1.10.
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Figure 1.10: Checking the sequential equivalence of Figures 1.6 and 1.9.
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The product machine has two separate outputs, one for each component logic

network. If synthesis operated correctly then these outputs should always be

equivalent. SEC is the process of driving this product machine with every possible

sequence of input vectors and checking that the outputs are always equivalent.

1.4.4 Property Checking

Property checking is a more general type of verification. The designer can spec-

ify one or more properties of the design that should be verified. For example, in

programming it is common to use assertions to check that your code is operating

correctly. Formal verification would treat each assertion as a property and would ei-

ther 1) prove that for all input sequences it is impossible to violate the assertion or 2)

produce a counterexample trace, a temporal sequence of inputs that demonstrates

how the assertion may be violated.

Many verification tools allow properties to be embedded directly into the de-

signer’s HDL, and therefore the designer can specify the properties to be checked as

he or she is describing the logic itself. This allows for very intricate properties to be

specified, often capturing design assumptions that would otherwise only exist in the

designer’s head.

Property checking is more general than SEC in that SEC can be expressed as

a property checking problem. In SEC, a product machine is constructed and the

outputs of the two component designs are proved to be pairwise equivalent. This

pairwise equivalence check can be thought of as a property that must be proved on

the product machine. In general, for two designs each with n outputs, SEC can be

performed by building a product machine and checking n properties on that machine.

Because SEC can be viewed as a special case of property checking, this thesis will

focus on the broader field of property checking. Therefore the term verification in the
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text to follow should be understood to mean formal verification of properties.

Example 12. SEC Specified as Property Checking

Consider once more the numerous sequential logic networks presented in Section

1.3.4. The most basic such logic network was presented in Figure 1.5, and the

most complex logic network, the result of state re-encoding, was presented in

Figure 1.8. The state re-encoding example was complex, and while constructing

the example the author used a property checking tool to verify the SEC and thus

the correctness of the example.

The IBM verification environment was used to check the correctness of the re-

encoding. Algorithm 2 shows the VHDL implementation of the product machine

used to check the equivalence of Figures 1.5 and 1.8. The two machines each

have a single output, output and output2 respectively. A single assertion la-

beled fail0 is defined such that fail0 will be asserted when these two outputs are

different. The IBM formal verification tool SixthSense was then used to prove

that fail0 is impossible to assert.

This example also has constraints, or conditions that the formal tool must hold

to be true. Constraints are often used to model the environment of a circuit,

and constraints used in this sense would guarantee that a design is not being

stimulated with an illegal input that would never appear in its typical environ-

ment. In the case of the two designs examined here, the input signals inM, inI,

inK, and inE represent the conditions that the user has pressed the “M”, “I”,

“K”, or “E” key, respectively. It is assumed that the user presses at most one

key at any point in time, and the constraints labeled c1 through c5 in Algorithm

1.8 are used to model these assumptions. SixthSense is thus disallowed from

providing any input stimulus that violates the constraints. This is important

because the two designs are actually not equivalent without this environmental

35



Chapter 1. Introduction

1: architecture intro synth of intro synth is
2: signal inM, inI, inK, inE : std logic;
3:
4: −− implementation 1: 1 hot
5: signal cs : std logic vector(0 to 3) := ”0000”;
6: signal ns : std logic vector(0 to 3);
7: signal m, i, k, e : std logic;
8:
9: −− implementation 2: logarithmic encoding

10: signal cs2 : std logic vector(0 to 2) := ”100”;
11: signal ns2 : std logic vector(0 to 2);
12: signal a, b, c, output2 : std logic;
13: begin
14: −− decode everything
15: inM <= input(0);
16: inI <= input(1);
17: inK <= input(2);
18: inE <= input(3);
19: −−!! [constraint; c0] <= not inM or not inI;
20: −−!! [constraint; c1] <= not inM or not inK;
21: −−!! [constraint; c2] <= not inM or not inE;
22: −−!! [constraint; c3] <= not inI or not inK;
23: −−!! [constraint; c4] <= not inI or not inE;
24: −−!! [constraint; c5] <= not inK or not inE;
25:
26: ...
27:
28: −− output logic
29: output <= e;
30: output2 <= not A and B and C;
31:
32: −−!! [ fail; fail0; ”machines are different” ] <= (output xor output2);
33: end intro synth;

Algorithm 2: Using property checking to check the equivalence of Figures 1.5 and
1.8
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constraint. The fact that the in signals are mutually exclusive was used in the

state re-encoding, and failing to represent these constraints in verification would

result in a spurious counterexample, or counterexample that arises simply

because of an inadequate verification setup.

To illustrate the importance of SEC, the author checked the correctness of his

state re-encoding before drawing the complex circuit of Figure 1.8. In the original

state re-encoding derivation, the next state function for register “A” was specified

incorrectly, and SixthSense found a counterexample that demonstrated that the

designs were legitimately inequivalent. Therefore without SEC, Figure 1.8 would

be incorrect.

In the field of property checking, the encountered properties can be classified into

two broad types: safety properties and liveness properties. Safety properties are

properties that express bad design behavior that should be avoided. A counterex-

ample to a safety property is a finite-length sequence of input vectors that can be

used to drive the design into a state that violates the property. Liveness proper-

ties are properties that express good behavior that should always be observed. A

counterexample to a liveness property is an infinite length sequence of input vectors

that demonstrate that it is possible for the design to always avoid the good behavior

specified by the liveness property5.

Safety properties have been the focus of much past research because they are con-

ceptually simpler and therefore preferred by logic designers. Therefore a verification

tool that is good at checking safety properties is adequate for nearly all logic design-

ers. Recently it has been demonstrated that liveness properties can be transformed

into safety properties [Schuppan and Biere, 2006], and therefore the space of liveness

properties is contained in the space of safety properties. In this work we study the

5Because of the finiteness of the state space, all such counterexamples are composed of a tail of
states followed by a loop of states.
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broader, and conceptually simpler, space of safety properties. In the text to follow,

the term property should be understood to mean safety property.

1.4.5 Important Verification Examples

In this section three verification algorithms will be discussed. Similar to synthesis,

formal verification has a rich history, and many verification algorithms have been pro-

posed in past research. Many of those algorithms are outside the scope of this thesis,

but three algorithms that will be important in future discussions will be explored.

Example 13. Explicit State Model Checking

In the formal verification of a safety property, the goal is to demonstrate that the

property is satisfied on all reachable states of a finite state machine or to find

a temporal sequence of input vectors that can drive the machine from an initial

state to a state where the property fails. The most conceptually simple way to

do the verification is to simply enumerate all reachable states. If each such state

is checked and the property is found to always be true then it is verified. If a

reachable state is examined where the property fails to hold then by careful book-

keeping it is possible to produce a sequence of states and corresponding input

sequences that form a path from an initial state to the failing state. This is

known as explicit state model checking or reachability analysis.

Explicit state model checking proceeds methodically to explore the reachable state

space, and to do this it maintains a set of states S that it has examined in the

past. This process is illustrated in Figure 1.11 where the state space is gradually

explored in a sequence of steps, each step progressing further from the initial

states I and looking for states where the property fails B. The steps of the

algorithm can be summarized like so:

1. The algorithm examines the initial states, denoted I in Figure 1.11 and
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Figure 1.11: Reachability analysis on a state space.

checks that the property holds on these states. The set of examined states

is now S1 = {I}.

2. Next, the set of states that are reachable in a single transition from S are

examined. This set of states is known as the image of S, and the set of

examined states is now S2 = S1

⋃
image(S1). If the property fails on any

of these states then a counterexample trace can be produced such that the

temporal sequence of input vectors defines a path from I through S1 and

terminating in a bad state B in S2.

3. The sequence of images progresses until either a fixed point is reached,

indicating that all reachable states have been explored and the property is

verified, or an image operator exposes a bad state B where the property

fails to hold.

Reachability analysis is very effective for small designs but suffers from the state

explosion problem. A design with N registers can have as many as 2N states,

and designs with 10k - 100k registers are not uncommon. Representing a set that

has 250,000 distinct elements is well beyond today’s current computing capacity.

Although there have been great advances in the ability to compactly represent

sets of states [Bryant, 1992], performing reachability analysis on a design with
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more than 50 - 75 registers is usually difficult.

Reachability analysis is commonly used today for small designs, and even for big

designs it is useful to understand reachability analysis. It is conceptually simple,

and it is the model that will be used in this thesis to understand more complex

verification algorithms.

Example 14. Induction Based Model Checking

In most designs the reachable state space is too large to explore exhaustively, but

thankfully many properties can be proved with temporal induction, eliminat-

ing the need for exhaustive exploration. Consider that a FSM progresses through

a series of states. Consider an FSM with a property p and the following two

temporal conditions:

Base Case: The property p holds in all of the FSM’s initial states.

Inductive Step: For all states s where p holds, p also holds in every state

reachable in 1 transition from s.

If these two conditions hold then we can conclude that p holds for all reachable

states of s.

The two conditions that comprise the inductive proof can be easily formulated

using a Satisfiability Solver (SAT), and very efficient implementations can

be developed. Note that if the base case fails, then a length-1 counterexample can

be returned to the user. If the inductive step fails then, unlike reachability analy-

sis, it is not possible to explore in detail the sequence of states and corresponding

input vectors that led from an initial state to a state where p fails6. Therefore

induction usually forms the basis of efficient algorithms that can return proofs

6Indeed, no counterexample may exist because the property might be true yet not inductive.
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Figure 1.12: Induction is an incomplete method that cannot prove p.

for properties, but other algorithms like Bounded Model Checking (BMC)

are used to search for counterexamples.

Although induction can be efficiently implemented, it is unfortunately unable to

complete many verification proofs. This is because induction is an incomplete

method that is unable to prove some types of true properties. Consider the

simple state transition graph in Figure 1.11. This FSM has 6 states but only 4

are reachable from the initial state I. Clearly, property p holds on all 4 reachable

states and thus is true and verifiable with reachability analysis. Induction would

be unable to prove this because in the unreachable state space there is a transition

from a state satisfying p to a state satisfying ¬p. Such a transition violates the

inductive step and means that the property is not provable by induction. The

unreachable state satisfying ¬p is known as an induction leak because it is the

reason the inductive proof was unable to proceed. The property p is said to be

non-inductive.

There exist techniques to strengthen induction, notably unique state induction

and k-step induction [Bjesse and Claessen, 2000]. While both of these techniques

increase the number of properties provable with induction, the resulting method is

still incomplete in that there are true properties that remain unprovable. In other
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Figure 1.13: Interpolation is similar to approximate reachability analysis.

words, despite the efforts of past researchers there remain inductive leaks. This

thesis will discuss a way to strengthen induction by focusing on the elimination

of some of these inductive leaks.

Example 15. Interpolation Based Model Checking

Interpolation is a model checking algorithm that is used in modern verification

flows along with induction. It avoids the pitfalls of reachability analysis by not

computing exact images. Instead, a SAT solver and a method known as Craig

Interpolation are used to compute an over-approximation to an image, and

model checking is performed using these approximations.

Figure 1.13 depicts the behavior of interpolation on a state space. Similar to

Figure 1.11, the white ovals represent the exact images. Interpolation involves

taking an approximation to this image, which can be depicted as growing each

image slightly to include the gray fringe regions. This over-approximation dra-

matically simplifies the computation and may allow the computation to come to

a fixed point sooner because the state space will be covered more quickly. It can

also lead to spurious counterexamples.

Figure 1.14 depicts a flowchart of the interpolation algorithm and can be used
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Figure 1.14: High-level flowchart depicting model checking via interpolation.
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to understand its behavior in more detail. The set of already explored states is

known as the frontier. The algorithm proceeds as follows:

1. Parameters necessary for the image approximation are setup, including an

integer value k. The frontier is initialized to the initial state(s).

2. Bounded model checking is used to see if there exist bad states reachable

in k or fewer steps from the frontier set. If this is true and the frontier

set was equal to the initial state(s) then a path from the initial states to

the bad states has been found and this represents a valid counterexample.

If the frontier set was not the initial state(s) then because interpolation

involves approximate images there is no guarantee that the states in the

frontier set are reachable, and the path from the frontier set to a bad state

may represent a spurious counterexample. In this case, return to 1 and

use parameters that give a tighter image approximation (eg: increase k).

With these tighter images the spurious counterexample will hopefully not

be encountered in the next attempt.

3. If BMC does not find a bad state, enlarge the frontier set by adding to the

image of the frontier set. This is analogous to the reachability algorithm

but uses an approximate image operation.

4. If the previous step did not change the size of the frontier set, then a fixed

point has been reached and all reachable states have been explored. The

property is therefore verified.

5. If a fixed point is not reached, return to step 2.

Because of the existence of possibly spurious counterexamples, interpolation fre-

quently needs to tighten its approximation parameters and restart the frontier

computation. This is a costly operation because it discards all the effort that
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went into the previous frontier computation. In this thesis we propose a method

to handle spurious counterexamples by demonstrating that certain states along

the counterexample path are unreachable. By incorporating this unreachability

information into the underlying SAT solver that is used in interpolation, the

algorithm can safely disregard this counterexample and continue its frontier de-

velopment. By avoiding the costly restart, the runtime of interpolation can be

dramatically improved.

1.4.6 Challenges in Formal Verification

Formal verification of safety properties is a very difficult problem. The number of

reachable states in a sequential design with N registers may be as many as 2N and

developing a tool capable of operating on 2N states for largeN is a difficult engineering

problem.

Several ways to perform approximate computations on 2N states have been de-

veloped, but every approximate method to date is incomplete in some sense. Some

methods can only produce counterexamples but not formal proofs, some fail to prove

certain types of true properties, and some simply fail to converge and return a mean-

ingful answer within feasible time limits.

Formal verification today is limited to very small pieces of a chip design. Because

of the computational difficulties associated with many registers, small separate pieces

of a design are considered in isolation. These small windows of the design have a lim-

ited number of registers and are manageable with formal verification. However, this

windowing approach requires that the interactions between the logic in the window

and the logic outside of the window be modeled, a very labor intensive job.

The goal of formal verification is to handle larger design sizes and eventually a full

chip design. The methods presented in this thesis will help to make formal verification
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more scalable and are a meaningful contribution toward this final goal.

1.5 Synergy Between Synthesis and Verification

Synthesis and verification are closely related disciplines. Synthesis techniques have

come to help the verification community, and likewise verification techniques are

now utilized in the synthesis community. This thesis will present methods that are

applicable to both domains, and so it is worthwhile to understand how these two

fields are related.

1.5.1 Synthesis For Verification

Formal verification of safety properties on sequential logic networks is very difficult

when the size of those networks is large. In industrial verification flows, synthesis

techniques are applied prior to verification in order to simplify the logic networks as

much as possible before the expensive verification algorithm is invoked.

Verification algorithms typically do not scale as well as synthesis algorithms and

so it is possible that a network is too large for processing with a verification algorithm

yet can be processed with a synthesis algorithm. If the synthesis algorithm reduces

the size of the network such that it can be processed with a formal verification algo-

rithm, then this synthesis has enabled verification. Without the requisite synthesis,

verification would have been unable to prove properties on the large logic network.

Often, many properties are of a simple nature and can be proved with synthesis

alone. A property is a signal that evaluates to 1 whenever an error state is encoun-

tered. A true property is therefore 0 on all reachable states, and a sufficiently powerful

synthesis algorithm (on a sufficiently weak property) can detect this condition and

simplify the network by replacing the property with the constant 0. Synthesis can
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therefore filter out many of the easy-to-prove properties in the design and simplify

the later verification pass by allowing it to focus on only the most difficult design

properties.

1.5.2 Verification For Synthesis

Formal verification algorithms present a way to verify properties across every reach-

able state. In recent synthesis advances, formal verification techniques have been

adopted to leverage this state space exploration for proving that candidate synthesis

transformations are valid.

Suppose for example a sequential synthesis algorithm wishes to modify the logic

network yet does not have a guarantee that the output functionality will be pre-

served. The algorithm can formulate a property that expresses the correctness of the

proposed transformation, and a formal verification algorithm can be invoked to verify

the property. If the property is verified then the proposed synthesis transformation

was correct, and the logic network can be modified accordingly. If a counterexample is

found, then the synthesis algorithm must not modify the logic network in the intended

manner because doing so would guarantee to change the design functionality.

Formal verification techniques can therefore be used inside of logic synthesis al-

gorithms to enable them to perform intricate sequential transformations with the

confidence that the design functionality is preserved. However, even with this guar-

antee of correctness, bugs in the synthesis tool itself could result in a synthesized logic

network that is not equivalent to its pre-synthesis counterpart. For this reason, an

equivalence check must be preformed between the pre-synthesis and post-synthesis

logic networks.

In academia many complex sequential synthesis algorithms have been proposed,

but many of these algorithms are not usable in industry because they introduce
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complicated design changes that are difficult to verify in the later equivalence check.

As verification algorithms improve and are able to handle larger designs and more

complex properties, equivalence checks of more complicated synthesis algorithms can

be completed. As a result, industry can make use of the advances in logic synthesis

because they have a guarantee that the synthesis software is operating correctly. In

this way, advances in verification are enabling the use of more complex logic synthesis.

1.6 Contributions of This Thesis

This thesis is centered on one topic: invariants. Invariants are design properties that

hold in every reachable state. Each design property that has verified is an invariant,

but in addition to this many invariants can be mined from the design in an automated

way. The conjunction to these invariants forms an over-approximation to the set of

reachable states, and this approximation can be applied to both sequential synthesis

and formal verification.

Chapter 2 will discuss invariants. Efficient methods have been developed to mine

the candidate invariants from the design and then to prove that they are valid in-

variants. The invariants can be used either to simplify the circuit or to approximate

reachability.

Chapter 3 will discuss the application of the approximate reachability to sequential

synthesis. Both resubstitution, examined in Example 8, and sequential ODC-based

merging, similar to Example 6 but with a complicated criterion for merging signals,

will be examined. These two methods are advanced sequential synthesis techniques

that have been developed. Each technique can be strengthened by considering the

states that fall outside the reachability approximation to be don’t cares where the

synthesis is free to change the design behavior. Synthesis results both with and

without invariants will be examined in order to judge the effectiveness of invariants
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in a synthesis setting.

Chapter 4 will discuss the application of approximate reachability to formal veri-

fication. Invariants can be used as constraints on the state space that is explored in

both induction, examined in Example 14, and interpolation, examined in Example

15. Both of these techniques can explore unreachable states and therefore are suscep-

tible to spurious counterexamples. By constraining the explored states to fall inside

the reachability approximation, the runtimes of the algorithms are improved because

less states must be explored, and also the algorithms are made more robust against

spurious counterexamples.

Additionally in Chapter 4 an advanced technique will be discussed: deriving in-

variants on demand such that the invariants found are few in number and will immedi-

ately help a currently running verification task. This represents one promising future

research direction in the area of invariants. Many other minor research directions will

be discussed throughout.
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Invariants

2.1 Motivation and Basic Algorithm

2.1.1 Basic Definitions

An invariant is any design property that holds in every reachable state. In this way,

the set of states that satisfies the invariant is a superset, or over-approximation to,

the reachable states.

User-specified properties that have been verified are one example of invariants, but

invariants can come from many other sources. Of particular interest are invariants

that are automatically discovered. An invariant family is selected and properties

that belong to this family can be mined automatically from the design. This concept

can be developed into a push-button solution to find design invariants.

A candidate invariant is a property that has been automatically mined from

the design but not yet proved. Upon being proved, the candidate invariant is referred

to as simply an invariant.

Many different methods can be used to prove that candidate invariants hold on

all reachable states. In most designs the most scalable method is induction (Example
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Figure 2.1: Approximating reachabilty with invariants.

14), and an invariant that has been proved by induction is referred to as an inductive

invariant.

2.1.2 Uses For Invariants

Invariants will be used for two purposes in this thesis: to approximate reachability

and to simplify a netlist.

Reachability analysis (Example 13) can be used to discover which states are reach-

able. It is precise in that a state is reachable if and only if it is explored by reachability

analysis, but the algorithm is very non-scalable as a result of this precision. In prac-

tice, reachability analysis can only be applied on very small designs, and larger designs

require the computation to be approximated in some way. Many ways to approximate

reachability have been proposed (Section 2.8), but here we will focus on the use of

invariants.

Figure 2.1 illustrates how invariants can be used to approximate reachability.
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Figure 2.2: Invariants can be used to simplify a netlist.

In a state space, the set of reachable states can be thought of as a region of states

surrounding the initial state(s) I, depicted in Figure 2.1.1. Any invariant by definition

holds on all reachable states, and therefore the set of states satisfying the invariant

contains the reachable states, as depicted in Figure 2.1.2. If an additional invariant is

proved, the state containment relationship holds for it as well. Furthermore, the set

of states that satisfy both invariants also contains the reachable states. As shown in

Figure 2.1.3, this intersection is a smaller set than either of its two constituents and

therefore it is a better approximation to the set of reachable states.

Another use of invariants in this thesis is even more fundamental. Some invariants

enable simple synthesis transformations. For example, suppose the invariant family

is node equivalences. That is, all found invariants will be properties expressing the

equivalence of a pair of nodes in the design. If such a candidate invariant is discovered

and successfully proved then a merge (see Section 1.3.4, Example 6) can be performed

to simplify the design. For example, consider A and B to be nodes in the logic network

and suppose the invariant A = B has been proved. Then A and B can be merged

and the logic can be simplified, as illustrated in Figure 2.2.

All invariants can be used for synthesis even if merges cannot directly be per-

formed. The negation of an invariant gives a set of sequential don’t cares. This

set of states is an under-approximation of the unreachable state space, and it is guar-

anteed that the machine will not enter this state space during normal operation.
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Figure 2.3: Basic invariant discovery algorithm.

Therefore sequential synthesis is free to change the behavior of the design on these

states.

2.1.3 Basic Invariant Discovery Algorithm

Given a design and an invariant family, the basic algorithm for discovering invariants

is quite simple, as shown in Figure 2.3.

1. Candidate invariants are discovered. The simplest method involves using ran-

dom simulation (Section 2.3.1) to inject random values at the inputs of the

logic network and then compute the resultant values at every node in the net-

work. The simulation can be performed over several cycles in order to get a

view of the reachable behavior of the design. Candidate invariants that hold

within this view of the behavior are selected for the next step in the algorithm.

2. Candidate invariants are proved. Typically induction, a scalable yet incomplete

method, is used for this proof. As a result, many true invariants may not be

provable given this incomplete proof technique, but because of the large number

of candidate invariants, the failure to prove a small percentage is not of concern.

3. The proved invariants are used. As described in Section 2.1.2, this means form-

ing a reachability approximation and/or simplifying the design through synthe-

sis.
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The above algorithm is quite simple and works well for small designs. However,

there are several inefficiencies that prevent its scaling to larger designs.

• Selection of the invariant family is important factor that impacts the quality of

the reachability approximation. Section 2.2 will discuss choices for the invariant

family, and Section 2.7 will discuss ways to utilize these families to obtain a good

reachability approximation.

• Random simulation usually cannot explore every design behavior and therefore

may select a candidate invariant that does not hold in every reachable state.

In practice, this means that the number of candidate invariants selected for a

proof can be overwhelming. Section 2.3 will discuss methods to improve the

quality of the simulation and to reduce the candidate invariants to those that

are most likely to give a good reachability approximation.

• In proving the candidate invariants, the number of candidate invariants may

overwhelm the proof technique used. Selection of an efficient proof technique

and incorporating invariant-specific optimizations is therefore very important

and will be discussed in Section 2.5.

• Throughout the invariant discovery process, the number of candidate invariants

can be very large and processing these invariants can be challenging. Efficient

ways to store a large number of candidate invariants will be discussed in Section

2.6.

2.2 Types of Invariants

Many invariant families exist, and here we discuss five families that are important in

this work. The families range from the computationally cheapest yet least expressive
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to the computationally most expensive and most expressive.

2.2.1 Constants

Constants are the simplest invariant family. Given a set of nodes in the logic net-

work, certain nodes may take a constant value in all reachable states. Consider

candidate invariants expressing that a set of nodes are constant.

Typically the number of constant nodes is few. This means that the number of

constant invariants that can be proved is low and the resulting invariant conjunction

in Figure 2.1 is weak.

One notable exception to this weakness is a constant register. If it can be proved

that a register assumes a constant value on all reachable states then any states where

this register assumes the incorrect value are guaranteed to be unreachable. This can

reduce the number of states in the reachability approximation by up to 50%.

Constant invariants have properties that make them very attractive in practice:

• Constants can be proved very efficiently using the methods that will be described

in Section 2.5.

• Any proved constant invariant can be used to simplify the circuit. The con-

stant node can be merged with its constant value, and the resulting constant

propagation and COI reduction (Example 5) can dramatically simplify the

circuit.

2.2.2 Equivalences

Equivalences is a property family that expresses the equivalence between two nodes

in the logic network. That is, for all reachable states, two nodes will always assume

the same logical value.
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While being more numerous than constants, equivalences also tend to be few in

number. This means that the proof obligation is low and invariant discovery using

equivalences is scalable.

Because equivalence invariants are few in number, the resultant reachability ap-

proximation is usually weak. Again, the key exception is in the case of equivalences

over pairs of registers. Suppose A = B is proved and consider the value combinations

ab that registers A and B can assume. ab = 01 and ab = 10 are guaranteed to be

unreachable, reducing the size of the reachability approximation by up to 50%.

Similar to constants, equivalences have properties that make them a desirable

property family:

• Equivalences can be proved efficiently using the methods that will be described

in Section 2.5.

• Any proved equivalence can be used to simplify the circuit. If A = B is proved

then a merge can be performed to eliminate one of the nodes and drive its

fanouts with the remaining node.

Equivalences are usually found modulo inversion, as first described in [van Eijk,

2000]. An antivalence is a relationship between a pair of nodes A and B such

that A = B or A = ¬B, for all reachable states. In this work we broaden the

equivalence invariant family to include antivalences. This makes the family more

effective in approximating the reachable states and simplifying the logic network

without increasing the computational complexity of finding and proving invariants.

The equivalence invariants family can be further expanded by considering pairs

of nodes that do not come from the same time frame. Let next refer to the value

of a node in the next time frame. An example of such an extended equivalence is

A = next(B), expressing that node A assumes logical values equivalent to the value
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B will assume at the next point in time, for all reachable estates. This is an inter-

esting idea proposed by others, but in this work we do not make use of this concept

due to the increased complexity of finding such candidates with simulation. Addi-

tionally, extending equivalences in this way complicates logic network simplification

because a simple merge cannot be done. One or more registers may need to be intro-

duced to make use of this inter-frame relationship, making the net benefit of such a

transformation unclear.

2.2.3 Implications

Implications are a more expensive yet significantly more expressive property family.

An implication is a relationship between two nodes A and B expressing the condition

that A =⇒ B holds for all reachable states. That is, if A is assigned value a and B

is assigned b then ab = 10 will never appear in a reachable state.

Similar to how equivalences were expanded into antivalences, we consider impli-

cations modulo inversion. That is, for nodes A and B, four candidate implications

may be gathered from the circuit: A =⇒ B, A =⇒ B, A =⇒ B, and A =⇒ B.

The implications invariant family contains both the constants and equivalences

families. Consider the case that a node A always takes a constant value in every

reachable state. If A = 0 then the implication A =⇒ X is true for every node X.

If A = 1 then A =⇒ X is true for every node X. Therefore the constants family

is contained in the implications family. Similarly, consider an equivalence A = B. If

this holds in all reachable states if and only if the following two implications hold:

A =⇒ B and B =⇒ A. The equivalences family is contained in the implications

family as well.

Invariants complicate the overall invariant discovery algorithm (Figure 2.3) be-

cause the number of candidate invariants can be very large. If a logic network has
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Figure 2.4: Extraction of invariants from a k-cut.

n nodes then there might be O(n2) candidate implication invariants. In practice,

because an invariant is relatively difficult to falsify, simulation has trouble refuting

many candidate implications and many of these candidates survive to the proof stage

of the algorithm. This means that storage of the candidates as well as proof strategies

must be carefully considered.

Implications are numerous and for this reason tend to give a tight approximation

to reachability. However, they have little use beyond that. While there has been

previous research in using implications for synthesis [Kunz et al., 1997], there is no

simple merging that can be done to simplify the circuit once a candidate implication

invariant is proved. In this work, implications are not used for synthesis.
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2.2.4 k-Cuts

k-Cuts are less numerous and less expensive to prove than invariants-implications.

k-Cuts are clauses of length k that are derived from a localized region of the circuit.

Because the number of localized regions is small, the number of cuts is also small.

A cut of a node X is a set of nodes such that any path from an input to X must

pass through exactly one node in the cut. For example, in Figure 2.4 node a has

numerous cuts: {b, c}, {e, f, g}, . . ..

Candidate invariants are formed as clauses over the nodes in a cut. A candidate

invariant should 1) be able to refine the current reachability approximation, and 2)

not be easily falsifiable with random sequential simulation. Simulation can be used

to mine candidate invariant clauses from cuts that satisfy these two properties.

Example 16. Mining candidate k-cut invariants

Figure 2.4 shows an example of k-cut invariants. Two simulations of the circuit

are done: one on states that lie outside the current reachability approximation (if

available), and another that only simulates reachable states, possibly on a ran-

dom sequential walk (Section 2.3.2). Then candidate invariants can be derived

as follows:

1. Iterate over all nodes in the AIG. In the simple AIG pictured, suppose the

current node is a.

2. The cuts of a can be enumerated.

3. For each cut, consider all cubes formed from the literals in the cut. It

is important to consider all polarity assignments of each literal, meaning

that for n literals 2n cubes will be considered. With n small (4-5) this

exponential is not troubling.

4. If a cube appears outside the current reachability approximation then the
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inverse of the cube, a clause over the cut nodes, is false at at least one point

outside the reachability approximation. If this clause is proved then the

invariant clause is conjoined with the reachability approximation, and the

conjoined approximation will be stronger than the original approximation.

Therefore, we limit the enumerated cubes to only those that appear outside

the reachability approximation.

5. If the cube appears in the sequential simulation, then there is a reachable

state for which the cube’s inverse, a clause over the cut nodes, evaluates to

0. Therefore this clause cannot possibly hold on all reachable states. We

limit the enumerated cubes to those that do not appear in the sequential

simulation.

6. All cubes that survive the above filtering steps are inverted and the resulting

clauses are taken as the candidate invariants.

On average, there tends to be few candidate k-cut clauses for each node a, and

for this reason the number of candidate invariants tends to be linear in the number

of nodes in the network. This makes the proof of these candidates manageable.

Furthermore, each candidate invariant involves nodes that are close together in the

circuit. Each candidate is a local property in this sense, and this locality lends itself

to fast SAT runtimes. Because the solver does not need to relate nodes from opposite

sides of the circuit (as may be the case with candidate implication invariants), the

solver tends to run very quickly with k-cut candidates.

2.2.5 Random Clauses

The final invariant family is random clauses. A fixed integer n is chosen and n or less

nodes from the design are selected. Polarities are assigned to these nodes and they
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are conjoined to form a clause. For example, consider the design nodes A, B, and C.

(A+B + C) and (A+B) are both candidate invariant clauses.

Random clauses are useful for expressing intricate node relationships that are not

expressed by any other property family. In this way, random clauses can fill in for the

shortcomings of the other families. Any invariant family can be made to form tighter

reachability approximations if candidate random clauses are also considered.

Random clauses can be very numerous, and care must be taken to not exhaust

computational resources. A network with m nodes will have
(
m
n

)
· 2n random clauses

of length n. Clearly, even for small n and m exhaustive exploration of all random

clauses is infeasible. Therefore it is necessary to bound the search for random clauses.

In this work we find it useful to limit our algorithms to only explore a predetermined

number of random clauses.

2.3 Improving the Quality of Simulation

Simulation is a valuable tool in the processing of candidate invariants, and here we

discuss several ways in which it is used efficiently.

2.3.1 Random Simulation and Bit Parallel Simulation

Simulation is the process of determining the logical value of a node in a logic network

as a function of the values of other nodes in the network. When simulation is called

to provide a value for node A it will return either 0, 1, or X indicating that the value

of A could not be uniquely determined from the values assigned to the other nodes.

Random simulation refers to the process of injecting randomly selected Boolean

values at the inputs of a logic network and using simulation to derive the value of

every other node in the network. Because each node is a deterministic function of
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the inputs, all nodes should be assigned Boolean values by the simulation procedure

if all inputs are assigned Boolean values.

An input vector is a logical assignment to each input in a logic network. Random

simulation can be used to explore the behavior of a design under a single input vector,

but to characterize the behavior of a design one vector is often not sufficient. What

is needed is a view of the design’s behavior under many input vectors.

The development of efficient simulation routines requires one to understand the

underlying architecture of the machine on which the CAD tool is run. A machine

word is a collection of bits that the machine is able to process as one unit, typically

either 32 or 64 in today’s CPUs. Simulation involves many iterations of computing the

logical value of a gate as a function of the values of its inputs, and this computation

involves word level operations. In an AIG, the operation is reduced to a single bitwise

AND.

When a CPU performs an AND operation, it processes two input machine words.

Suppose the words have 32 bits and on the bit level are represented as: a0, a1, . . . , a31

and b0, b1, . . . , b31. The output of the AND operation will be the vector (a0 · b0), (a1 ·

b1), . . . , (a31 · b31). Observe that for any bit position j ∈ [0, 31], the output bit in

position j is influenced by only the two input bits in position j. Therefore all of the
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input bit positions act independently. If a machine has n bits in its machine word,

then n distinct simulation vectors can be assigned a bit position in the machine word

being simulated. As the AND is computed, the output values for all n simulation

vectors will be computed in parallel. This concept is referred to as bit-parallel

simulation and is illustrated in Figure 2.5.

Bit-parallel simulation dramatically increases the speed of random simulation.

Often one wants to perform random simulation over many different input vectors. If

there are m input vectors to be considered and n bits in a machine word then the

number of simulation passes that need to be performed is therefore m/n.

2.3.2 Random Walks

Many applications of random simulation require that all the state vectors explored

be reachable states. The simplest way to guarantee this is to perform simulation over

a random walk from the initial state(s).

A random walk is a simulation that proceeds from a given state through a series

of adjacent states in the state transition graph. A random walk from the initial

state(s) is a random walk that starts from the initial state(s). Because each state

seen along a random walk from the initial state has a concrete path leading to it from

the initial state(s), the state is reachable. Therefore a random walk from the initial

state(s) only explores reachable states.

Algorithm 3 illustrates the concept of a random walk from the initial states. Two

parameters to the method are width and length, specifying how many vectors should

be present in the bit-parallel simulation and how many simulation steps should be

executed, respectively. Initially, the state, or valuation of the registers, is simply

initialized to the initial state values. Each register has a vector that is width bits

long, corresponding to the desired bit-parallel width. Then in a loop the following
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1: function randomWalk(width, length)
2: state := width * initial state values
3: for step = 1 to length do
4: Consume state in the calling application
5: input := width * random bit()
6: state := bit parallel simulate(state, input)
7: end for
8: end function

Algorithm 3: A random walk through the state space.

things occur:

1. The state is consumed by the calling application. state represents width different

valuations of the designs registers, and each valuation is guaranteed to be a

reachable state.

2. A set of random vectors are chosen to represent each input that is not a register.

3. Bit parallel simulation is used to propagate the input and state vectors through

the circuit, resulting in a new state.

A random walk is an algorithm that is built on top of bit parallel simulation, and

there exist techniques that make its implementation very efficient. Therefore it is a

useful tool in quickly deriving a set of reachable states.

2.3.3 Input Vector Randomization

Bit-parallel simulation enables multiple input vectors to be simulated simultaneously.

Often an application has only one input vector that must be simulated, and nor-

mally the parallel-simulation capability would be wasted in these applications. Trace

randomization helps to use this remaining simulation capacity in an intelligent way.

Trace randomization refers to the process of mixing an input vector or sequence

of input vectors with a stream of random values to derive a random trace that is
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near the original trace. With trace randomization one can expand a trace into a

series of related traces, and this can dramatically increase the resolving power of the

simulation.

The Hamming distance between two binary vectors is defined as the count of

the number of bits positions for which the vectors differ. Often the input vectors that

come from a particular application are special in that a purely random vector fails

to sensitize the circuit in the same way that the chosen vector does. For example, a

vector can be carefully selected such that for two nodes A and B in the logic network,

A 6= B under the chosen input vector. Vectors sensitizing this condition may be

rare, and a purely random vector may not be able to sensitize the inequivalence.

However, by using trace randomization, random vectors can be derived such that

their Hamming distance to the original vector is small. These pseudo-random vectors

can often sensitize the same conditions that the original vector can.

There are two key methods that have been explored to randomize traces: distance-

1 simulation and random mixing.

2.3.3.1 Distance-1 Simulation

Distance-1 simulation is the process of randomizing an input vector by generating

a series of other vectors of Hamming distance 1 to the original vector. If the logic

network has n inputs then there are n distance-1 vectors for any given input vector.

The distance 1 vectors can be found using a simple XOR scheme. Consider for

example an input vector abcd. The following 4 patterns can be used to compute the

complete set of distance-1 vectors:
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1000 abcd⊕ 1000 = abcd

0100 abcd⊕ 0100 = abcd

0010 abcd⊕ 0010 = abcd

0001 abcd⊕ 0001 = abcd

Each of the 4 patterns acts as a mask that indicates which input bit should be flipped.

Because each mask has a single 1 bit, the result of the XOR operation will be a vector

with Hamming distance 1 to the original vector.

2.3.3.2 Random Mixing

If the goal is to derive pseudo-random vectors that sensitize interesting conditions then

distance-1 simulation is a good way to expand a good vector into a series of good

pseudo-random vectors. However, the number of pseudo-random vectors is bounded

by the number of circuit inputs and often the traces can be randomized such that

they are not distance 1 yet are still able to sensitize interesting circuit conditions.

Random mixing refers to the process of XORing the input vector with a purely

random vector. Suppose we wish to derive pseudo-random vectors around the input

vector abcd. In a uniformly random vector r0r1r2r3, the probability of a single bit

rj = 1 is 0.5. Therefore the expected Hamming distance between abcd ⊕ r0r1r2r3

and abcd is approximately 4 · 0.5 = 2. For input vectors of length n, the Hamming

distance will be approximately n/2.

By choosing m random vectors and performing m XOR operations, a set of m

pseudo-random vectors can be generated such that each is approximately n/2 distance

from the original input vector.

If a tighter distribution is desired then two purely random vectors can be chosen.

In the product of two random vectors r0r1r2r3 ·r4r5r6r7 a single bit will assume a value

1 with probability 0.25. Generalizing this concept to random mixing, for an input
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vector with n inputs and for k randomly chosen input patterns R1, ·Rk, the vector

abcd⊕
∏k

j=1Rj will be distance n/2k from the original input vector, on average.

Random mixing provides a way to quickly generate a large number of input vectors

in the vicinity of a reference vector, and in practice is often able to generate a series

of interesting vectors from a seeded interesting vector.

2.4 Mining Candidate Invariants

Recall that candidate invariants are invariants that are likely to hold in all reachable

states yet have not been proved. A set of candidate invariants can be derived through

simulation techniques, and several iterations of a basic simulation algorithm can be

used to derive candidate invariants that are of high quality.

2.4.1 Methods to Mine Candidates

1: function mineCandidateInvariants(logic, invariantFamily)
2: candidates := ()
3: for all invariants I in invariantFamily do
4: candidates += I
5: end for
6: return candidates
7: end function

Algorithm 4: Algorithm to mine candidate invariants, version 1.

First consider the most basic candidate invariant mining algorithm, shown in

Algorithm 4. A logic network and invariant family are known, and the task of the

algorithm is to return a list of candidate invariants that come from the invariant

family and likely hold in every reachable state in the logic network. The most simple

algorithm is one that considers every candidate invariant from the logic family. For

some invariant families such as equivalences (Section 2.2.2) this is efficient because a
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single equivalence class containing every node in the logic network can be represented

compactly. However, there are other logic families such as implications (Section

2.2.3) for which this is very inefficient. For a logic network with n nodes, n2 candidate

invariants would be returned by this simple algorithm. The algorithm can be improved

by considering a simulation of the logic network.

1: function mineCandidateInvariants(logic, invariantFamily)
2: candidates := ()
3: stateSet := randomWalk(logic)
4: for all invariants I in invariantFamily do
5: if (I holds ∀ states in stateSet) then
6: candidates += I
7: end if
8: end for
9: return candidates

10: end function

Algorithm 5: Algorithm to mine candidate invariants, version 2.

Consider the improved mining algorithm shown in Algorithm 5. A random walk

(Section 2.3.2) is used to derive a set of known-reachable states, labeled stateSet.

Then each candidate invariant from the invariant family is checked against this set

of states, and only candidates that hold on all of these states are returned. Because

the candidate invariants will be proved to hold on all reachable states, discarding

candidates that do not hold on stateSet is equivalent to discarding those candidates

that are falsifiable with random simulation. In a sense these are the easy-to-falsify

candidates that do not require more expensive algorithmic machinery to falsify, but

the vast majority of candidates are of this type.

It is important to carefully tune the algorithm such that stateSet is of high quality.

If any unreachable states are contained in stateSet then candidates may be discarded

that are only falsifiable on these unreachable states. This results in the discarding

of valid, provable invariants and hence hurts the overall quality of the reachability
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approximation that the invariants provide. Another danger is a stateSet that does

not contain enough reachable states. In this case, few candidate invariants will be

falsified and the set of candidates returned by Algorithm 5 will be too large to process

efficiently. This can be controlled by tuning the length and width of the random walk.

This results in a trade-off between the time spent doing the random walk and the

time required to handle an overly-large set of candidate invariants.

1: function mineCandidateInvariants(logic, invariantFamily, cexStates)
2: candidates := ()
3: for all invariants I in invariantFamily do
4: if (I holds ∀ states in cexStates) then
5: candidates += I
6: end if
7: end for
8: return candidates
9: end function

Algorithm 6: Algorithm to mine candidate invariants, version 3.

If candidate invariant discovery is being performed after other sequential analysis

algorithms have already been run on the logic network, then a more efficient simula-

tion method can be used. Suppose a method such as Bounded Model Checking

(BMC) has been run and has developed a series of counterexamples. Because of

the nature of BMC, each of these counterexamples is guaranteed to be reachable

and usually sensitizes a rare circuit condition that is difficult for a random walk to

explore. The invariant mining algorithm can be improved by using these counterex-

ample states in the place of the states that were explored by the random walk, and

this improved algorithm is shown in Algorithm 6.

An example use of counterexample states is explored in Table 2.1. In this ap-

plication, candidate merges are derived by simulation such that the merges do not

affect any of the circuit outputs in any reachable states (Section 3.4). Such candi-

date invariants are difficult to falsify, and the states explored on a random walk will
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Number of Candidate Merges
Design Random Walk Reach. Cexs. Ratio
ibm4 1,274,272 16,217 1.3%
ibm5 6,577 8,460 128.6%
ibm6 4,556 4,721 103.6%
ibm7 1,766,864 101,409 5.7%
ibm9 20,429 25,648 125.5%

Table 2.1: Comparing random walks and counterexamples

falsify the candidates with a relatively low probability. Often this results in a large

number of candidates and slows the proof of these candidate invariants. By using

counterexamples that were previously derived from BMC, the number of candidate

merges can be dramatically reduced. In two of the five benchmarks examined, the use

of counterexamples dramatically reduced the number of found candidate invariants

and made the proof step much more scalable. Note also that if the counterexample

states are few in number then they may be able to falsify fewer candidate invariants

than states from a random walk. This is why three of the cases in the table saw

an increase in the number of candidates when using counterexample states. An in-

dustrial application would be wise to use a combination of random walk states and

counterexample states.

2.4.2 Candidate Prioritization

In some applications the number of candidate invariants is too large to handle effi-

ciently, even after careful tuning of the random walk and use of reachable counterex-

amples. In this case, only a subset of the candidate invariants can be passed to the

proof algorithm, and this subset must be carefully chosen such that the discarded

candidates do not hurt the overall algorithm much. If the overarching goal is to

form a tight reachability approximation then a technique can be used to prioritize

the candidate invariants and keep only those that contribute most to the reachability
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Figure 2.6: Using simulation to determine which candidate invariants are most valuable.

approximation.

The intuition for the invariant prioritization scheme is shown in Figure 2.6. Sup-

pose multiple iterations of invariant discovery are being used and a set of invariants

I has already been proved. These invariants provide an over-approximation to the

set of reachable states (Section 2.1.2). Any new candidate invariant C will, if suc-

cessfully proved, also over-approximate the reachable states. If C is proved then the

reachability overapproximation will be tightened to I · C. The amount by which the

reachability overapproximation shrinks is therefore equal to the number of input vec-

tors satisfying I ·C. By prioritizing candidates C that have a large I ·C area, we can

bias the computation to find invariants that are best able to tightening the existing

reachability approximation.

This algorithm is formalized in the pseudocode shown in Algorithm 7. A set

of candidate invariants and an existing reachability approximation are given and

the task is to reduce the candidates to a set no larger than N that best refines

the reachability approximation. Because the area of I · C is expensive to compute

exactly, it is approximated through simulation. A set of randomly chosen input

vectors randomInputVectors is selected, and the number of these vectors that satisfy

71



Chapter 2. Invariants

1: function prioritizeCandidates(logic, candidates, reachabilityApprox, N )
2: randomInputVectors := enumerateRandomVectors(logic)
3: for all candidates C in candidates do
4: candContribution := reachabilityApprox · ¬C
5: C.score := 0
6: for all vectors V in randomInputVectors do
7: C.score +=

(
candContribution(V ) == 1

)
8: end for
9: end for

10: sortedCandidates := sortByScore(candidates)
11: return best N candidates from sortedCandidates
12: end function

Algorithm 7: Candidate prioritization for reachability approximation.

I ·C is computed. This count is used as an approximation to the area of this function,

and the N candidates C with the best approximate areas are returned to the user.

These candidates have the greatest ability to refine the reachability approximation,

if proved.

A practical application of this method is shown in Figure 2.7. Several rounds of

invariant discovery are run, and the invariant families are varied between iterations.

The time needed to discover the candidates (getCandidates()), the time needed to

prove the candidates, the count of the number of candidates, and the count of the

number of proved invariants are shown for each iteration. In each iteration the candi-

date invariants are filtered such that the N candidates that are best able to refine the

previous reachability approximation are selected for a proof attempt. Typically, the

number of candidate implications (Section 2.2.3) tends to be quadratic in the number

of nodes in the logic network while the number of candidate cut invariants (Section

2.2.4) tends to be linear in the number of nodes. However, comparing iterations 3

and 4 in Figure 2.7, we see that the number of candidate implications was less than

the number of candidate cut invariants. The reason for this is that a tight reacha-

bility approximation was formed in iterations 1-3, and the candidates from iteration
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Figure 2.7: Example illustrating several rounds of invariant discovery.

4 that are able to refine this approximation are few in number. Therefore, while in

general the number of candidate implications is often too large to efficiently handle,

simulation-based prioritization effectively reduces the number of candidates to a small

set that is both effective in forming a tight reachability approximation and efficient

to process.

2.5 Efficient Proving of Candidate Invariants

After mining candidate invariants, the candidates must be proved to hold on all

reachable states. Without this proof, it is unsafe to utilize the invariants for circuit

optimization or reachability approximation. However, this proof step can be quite

expensive, and this section will discuss methods by which the proof can be made

scalable.
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2.5.1 Proof Techniques

There exist several methods to prove that a property holds on all reachable states.

Any of these methods can be utilized in order to prove that the candidate invariants

are valid. Consider the following three popular techniques:

Reachability analysis (Section 13) can be implemented with BDDs to exhaustively

explore every reachable state. However, this method is not scalable and often

cannot be used to process industrial designs. Our goal is to make invariants

scalable even on large industrial designs.

Interpolation (Section 15) is a method of proving difficult properties and scales to

large industrial designs. However, interpolation decomposes a set of candidate

invariant proofs and proves each candidate separately. The set of candidates

is large and such an approach would be prohibitively expensive. Additionally,

interpolation tends to be an inefficient way to find counterexamples, and the

risk that a candidate invariant will fail to hold on all reachable states makes

interpolation a gamble.

Induction (Section 14) is a very scalable way of simultaneously proving a large

number of candidate invariants, and it scales well to large industrial designs.

However, induction is not complete in that it can fail to prove invariants that do

indeed hold on all reachable states. But this is an acceptable trade-off for the

scalability of induction. In this work we utilize induction. All found invariants

proved in this way are referred to as inductive invariants.

The method used to prove invariants in [Case et al., 2006b; Case et al., 2008b; Case

et al., 2008c] is k-induction without unique state constraints [Bjesse and Claessen,

2000], illustrated in Algorithm 8. A natural number k is input and the candidate

invariants are checked in two phases:
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1: function proveInvariants(candidates, k)
2: // Base Case
3: while (checkBaseCase(candidates, k) == counterexample) do
4: candidates := refineCandidates base(candidates, counterexample)
5: end while
6:
7: // Inductive Step
8: while (checkInductiveStep(candidates, k) == counterexample) do
9: candidates := refineCandidates ind(candidates, counterexample)

10: end while
11:
12: return candidates
13: end function

Algorithm 8: Invariant proof with induction.

Base Case: Here we verify that the candidates C hold in all states reachable in k

or less transitions from the initial state(s) I. Formally:

∀ S0, S1, . . . , Sk . (S0 ∈ I) ∧ (S0 → S1 → S2 → · · · → Sk),

(S0 |= C) ∧ · · · ∧ (Sk |= C)

This can be efficiently implemented using a SAT solver. The solver can be used

to find a counterexample refuting one or more candidate invariants or to prove

that no such refutation exists.

Inductive Step: Here we verify that for any sequence of states of length k for which

all candidate invariants hold in all k states, then the candidate invariants also

hold on all states reachable in the k + 1’st step. Formally:

∀ S0, S1, . . . , Sk, Sk+1 . (S0 → S1 → S2 → · · · → Sk → Sk+1),(
(S0 |= C) ∧ (S1 |= C) ∧ · · · ∧ (Sk |= C)

)
=⇒ (Sk+1 |= C)

Again, this can be efficiently implemented using a SAT solver, and a series of
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counterexamples can be derived that refute particular candidate invariants.

As explored in Section 14, induction is not a complete technique. The inductive

step can produce counterexamples that refute true properties. There have been meth-

ods proposed that are effective in limiting these spurious counterexamples, and here

we consider how they relate to this current work:

• [van Eijk, 2000] argues that induction is made stronger if multiple candidate

invariants are proved simultaneously. The reason is that the left hand side of

the implication in the inductive hypothesis
(
(S0 |= C)∧ (S1 |= C)∧ · · · ∧ (Sk |=

C)
)
, referred to as the inductive constraint or inductive hypothesis, be-

comes stronger as C becomes stronger. If elements are added to C then it

becomes harder to satisfy every candidate in C, and therefore fewer sequences

S0, S1, . . . , Sk are able to satisfy this constraint. This makes the inductive step

more difficult to refute and hence candidate invariants are more likely to be

proved. For this reason, induction is a good choice for proving candidate in-

variants because often the candidate invariants will be numerous and induction

will naturally be strengthened.

• [Bjesse and Claessen, 2000] demonstrates that induction produces fewer spurious

counterexamples if the sequence of states S0, S1, . . . , Sk, Sk+1 is constrained to

be a simple path. That is, no two states explored by the inductive step should be

identical. This can be guaranteed using unique state constraints [Kroening

and Strichman, 2003]. While unique state constraints are effective in strength-

ening induction, they complicate the SAT problem and slow the overall proof

method. The focus in this work is on speed and scalability, and because can-

didate invariants are numerous we choose to spuriously drop some invariants

and keep our method scalable by ignoring uniqueness constraints. Exploration
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of efficient methods to incorporate uniqueness constraints will be considered in

future work.

2.5.2 Refining Candidate Invariants

Both the base case and inductive step in Algorithm 8 involve the discovery of coun-

terexamples and subsequent refinement of the candidate invariants. Because candi-

dates are iteratively discarded until a stable set is derived, this is an example of a

greatest fixed-point method.

Efficiently refining the candidate invariants with a given counterexample is key to

the scalability of Algorithm 8. Simulation-based routines can be used to propagate

the counterexample values through the logic network and derive the set of candidates

that are falsified. Simulation is important for two main reasons:

1. In some implementation styles, it may be difficult to determine precisely which

candidate invariant is falsified by the counterexample. For example, suppose all

candidate invariants are conjoined to form a single property that is to be proved

on all reachable states. In this case, the counterexample refutes the conjoined

property, but additional analysis is needed to determine the set of candidates

that are falsified. Simulation provides such analysis.

2. Often the space of counterexamples is dense in that several valid counterex-

amples can be found such that the Hamming distance between any two coun-

terexamples is small. By randomizing the counterexample (Section 2.3.3) and

using bit-parallel simulation (Section 2.3.1), many similar counterexamples can

be explored in parallel. This enables the algorithm to automatically discover

related counterexamples and refute additional candidate invariants without in-

voking the SAT solver. This greatly reduces the total runtime of the inductive

proof.
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1: function refineCandidates base(candidates, counterexampleVector)
2: goodCandidates := ()
3: sim := randomizedSimulation(counterexampleVector)
4: for all candidates C in candidates do
5: if (C holds on sim) then
6: goodCandidates += C
7: end if
8: end for
9: return goodCandidates

10: end function

Algorithm 9: Candidate refinement for a single counterexample vector.

Algorithm 8 calls two refinement subroutines, refineCandidates base() to refine

the candidate invariants using a base case counterexample, and refineCandidates ind()

to refine using an inductive step counterexample.

First consider the simpler of the two, the procedure to handle a base case coun-

terexample, shown in Algorithm 9. A set of candidate invariants and a base case

counterexample trace are given, and the task is to produce a subset of the candi-

date invariants that all hold on the given counterexample. The logic network is

simulated with the procedure randomizedSimulation() that performs a bit-parallel,

randomized simulation of the counterexample trace. The simulation is sequential and

includes at least as many time steps as there are steps in the counterexample trace.

The randomization is limited to the circuit inputs, and preventing the random data

from intermingling with the registers’ state guarantees that all states explored by

this simulation are reachable. Next, each candidate is iteratively tested against these

states. The candidates that hold on this state set are recorded and returned from the

procedure.

The more complicated of the two simulation-based refinement procedures is the

method to refine the candidates using a counterexample from the inductive step. This

method is outlined in Algorithm 10. Again, a set of candidates and a counterexample
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1: function refineCandidates ind(candidates, counterexampleTrace)
2: goodCandidates := ()
3: sim := randomizedSimulation(counterexampleTrace)
4: mask [ ] := 1111...
5: for (i := 0; i le width(sim; i++) do
6: if (sim[i ] 6|= the inductive hypothesis for candidates) then
7: mask [i ] := 0
8: end if
9: end for

10: for all candidates C in candidates do
11: if (C holds in (sim ‖ ¬ mask) then
12: goodCandidates += C
13: end if
14: end for
15: return goodCandidates
16: end function

Algorithm 10: Candidate refinement for a sequence of inductive counterexample vectors.

trace are given. The trace is simulated using bit parallel simulation and input ran-

domization, just as the base case method does. This input randomization does not

guarantee that the states satisfy the inductive hypothesis because randomizing the

inputs at time j may affect the state at time j + 1.

The inductive hypothesis can be accounted for by masking out the explored paths

of states that do not satisfy the constraint. Suppose we have a bit-parallel simulation

that defines n different states that range over k + 1 different time steps. That is, the

simulation data can be sliced into n different state traces, each of temporal length

k + 1. A length-n mask is formed such mask [i] = 1 if trace i satisfies the inductive

hypothesis on the first k of its states. For all traces i that have mask [i] = 1, the k+1’st

state is examined. A candidate invariant that fails on this state has a counterexample

trace that satisfies the inductive hypothesis. Therefore the invariant is not provable

by induction and can be discarded.

The masking procedure described above is useful to narrow the simulation data to
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a subset that obeys the inductive hypothesis. In practice it is useful to constrain the

randomized simulation such that at least one of the n simulated traces is equivalent

to the original counterexample trace that was passed to Algorithm 10. This trace

will refute at least one candidate invariant, and thus constraining the simulation

guarantees that Algorithm 10 will make forward progress and return a proper subset

of the candidate invariants.

1: function refineCandidatesLoop ind2(candidates, counterexampleTrace)
2: repeat
3: startingCandidates := candidates
4: candidates := refineCandidates ind(candidates, counterexampleTrace)
5: until (startingCandidates == candidates)
6: return candidates
7: end function

Algorithm 11: Outer loop around Algorithm 10.

As Algorithm 10 discards candidate invariants the inductive hypothesis weakens.

This may mean that additional randomized counterexample traces that were previ-

ously masked out now satisfy the weaker inductive hypothesis. This indicates that the

mask can be weakened and the number of ones in the mask can increase. However,

in practice the mask is expensive to compute and incremental re-computation is not

practical.

It is important to consider the effects of the weaker inductive hypothesis in order to

remove as many candidate invariants as possible before resorting to another SAT call.

SAT is expensive, and a method that relies heavily on simulation to refute candidate

invariants is usually more scalable. Therefore consider an enhanced procedure that

iteratively weakens the inductive hypothesis, shown in Algorithm 11. In this, the

procedure refineCandidates ind() (Algorithm 10) is repeatedly called until the set

of candidate invariants reaches a fixed point. This allows the mask to be recomputed,

allowing more counterexample traces to be compared against the set of candidate
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Figure 2.8: Unrolling the transition relation to check the inductive step.

invariants and hence further refining the candidates. Algorithm 11 is an effective way

to take advantage of an ever-weakening inductive hypothesis without paying a large

runtime price to recompute the mask.

2.5.3 Speculative Reduction

Induction can be implemented efficiently using a SAT solver, and here we will dis-

cuss an important technique that makes this implementation so efficient: speculative

reduction.

Suppose there is a single candidate invariant A = B that is to be proved with k = 1

induction. The inductive step of the proof can be accomplished by unrolling the circuit

as shown in Figure 2.8. The original sequential logic network is composed of three

pieces: inputs, registers, and a transition relation. We construct an unrolled logic

network by instantiating multiple copies of the transition relation, each with its own
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Figure 2.9: Using speculative reduction to simplify the inductive step check.

dedicated set of inputs. The registers in the first copy are driven by symbolic inputs,

and the registers in every other copy are driven by the next state functions from

the previous copy. In this way, the unrolled logic network represents a time-unrolled

model of the logic. The lower copy, referred to as frame 1, will input a symbolic state

S1 and output a next state S2. The upper copy, frame 2, takes this state S2 as input.

In this way the two copies represent two adjacent temporal snapshots of the logic

network.

In order to check the inductive step of the A = B proof it is sufficient to check

that for all inputs, (A1 = B1) =⇒ (A2 = B2). The unrolled logic network can be

given to a SAT solver, and this check can be formulated as a SAT problem.

The SAT problem can be simplified using speculative reduction [Mony et al., 2005],

a method of simplifying the circuit using an invariant before the invariant is proved.

Consider the circuit transformation shown in Figure 2.9. Each instance of A and B

has a fanin cone which includes all the logic whose output values can propagate

through the node and a fanout cone comprised of the logic that the nodes value

can propagate through. These cones are highlighted in the figure. We transform the
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unrolled logic network by driving B1’s fanout cone with A1 and adding logic to check

the equality of A1 and B1, letting Eq = (A1 ≡ B1)
1. The inductive step check then

reduces to Eq =⇒ (A2 = B2).

Theorem 2.5.1. The speculatively reduced expression holds if and only if the original

inductive step expression holds.

Proof. First suppose (A1 = B1) =⇒ (A2 = B2). Then either (A1 = B1)∧ (A2 = B2)

or A1 6= B1. In the first case Eq holds and so the speculative reduction transforma-

tions do not logically change A2 or B2, hence (A2 = B2)orig = (A2 = B2)spec.reduced .

Therefore we have Eq =⇒ (A2 = B2). If A1 6= B1 then we have ¬Eq and

Eq =⇒ (A2 = B2) holds vacuously.

Next suppose (A1 = B1) 6=⇒ (A2 = B2). Then A1 = B1 and A2 6= B2. Hence

we have Eq and A2 6= B2 and so Eq 6=⇒ (A2 = B2).

Speculative reduction dramatically simplifies the SAT problem because the un-

rolled logic network can be significantly compacted. In moving fanout cone logic

from B to A, similar functions present in both fanout cones will become redundant.

These redundancies can be eliminated using a technique such as structural hash-

ing [Kuehlmann and Krohm, 1997], and the unrolled logic network can be significantly

compacted. In practice this leads to large runtime improvements.

Now examine the impact of speculative reduction on the proving of invariants

from each of the invariant families discussed in Section 2.2:

Constants : Speculative reduction of constant invariants can greatly simplify the

inductive invariant check. A check that the original node is constant must be

preserved, and in all other contexts the equivalent constant can be used in place

of the node. This means that constant propagation can greatly simplify the

circuit.
1This logic can be implemented with a simple xor gate.
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Equivalences : Similar to constants, these can also simplify the circuit. These were

examined in Figure 2.9. Logic testing the equivalence must be constructed, and

then the fanout cones can be manipulated such that only one of the nodes in

the equivalence drives both fanout cones. This generalizes to larger equivalence

classes, and exactly one node from each class can be chosen as the representative

and used to drive all the fanout cones. This can greatly simplify the logic

network.

All others : There is no known method to utilize the other invariant types for spec-

ulative reduction. Because of the benefit speculative reduction has for constants

and equivalences, this is an interesting area for future research.

2.5.4 Partitioning the Proof

Despite techniques such as induction and speculative reduction, proving that can-

didate invariants hold on all reachable states can still be a difficult task. This is

especially true if the number of candidate invariants is numerous. In this case, the in-

ductive formulation gets translated into a large SAT problem with many constraints,

and such a problem can sometimes be difficult to solve.

If other proof optimization methods fail, one crude yet effective method remains:

partitioning. Partitioning refers to the process of decomposing the set of candidate

invariants into disjoint subsets, or partitions [Case et al., 2006b]. Each partition can

be proved in isolation, thereby decomposing a difficult proof obligation into a series

of simpler problems.

An example of partitioning is shown in Figure 2.10. The candidate invariants are

partitioned and each partition is proved separately. For each partition, the number of

candidate invariants initially is quite large but quickly decays to a fixed point where

the candidate invariants are finally proved to hold on every reachable state. The
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Figure 2.10: Use of partitioning to simplify the proof obligation.

total number of invariants, both candidate and proved, grows as new partitions are

processed. Note that the number of proved invariants grows monotonically.

Partitioning can greatly improve the scalability of induction but is not without its

drawbacks. Induction is a strong technique when multiple candidate invariants are

proved in conjunction, and this is because many candidate invariants can combine

to yield a strong inductive hypothesis, as discussed in Section 2.5.1. If the set of

candidate invariants is decomposed, each partition will be smaller than the original

set of candidate invariants and therefore have a weaker inductive hypothesis. This

means that in total, a partitioned proof might be able to prove fewer invariants than

a monolithic proof, due to the incompleteness of induction.

One way to partially counter this incompleteness is to use the proved invariants

from one partition in the proof of all future partitions. The proved invariants in one

partition give a reachability approximation, and the future induction proofs can be

strengthened by constraining the counterexamples to only come from this approx-
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imate space. This reduces the number of spurious counterexamples and therefore

strengthens induction. Using proved invariants to strengthen future partition proofs

is a good way to recover some of the incompleteness inherent in partitioning. The

strengthened method is not as strong as a monolithic proof, but the speed improve-

ment that can be realized by partitioning makes this small trade-off appealing in

practice.

2.6 Efficient Storage of Candidate Invariants

In order to make an invariant discovery algorithm scalable, it is necessary to be able

to handle a potentially large number of candidate invariants. It is important to invest

in high-quality simulation (Section 2.3) and scalable proof techniques (Section 2.5).

However, equally important is to efficiently store the candidate invariants.

2.6.1 Storage of Constants and Equivalences

Constant and equivalence candidate invariants can be easily stored using equivalence

classes. An equivalence class is simply a set of equivalent objects. All candidate

equivalences can be analyzed and sets of equivalent nodes can be gathered. These

sets can be stored as equivalence classes.

This concept also generalizes to constant candidate invariants by considering a

constant node to be either equal to the constant 0 or constant 1. Therefore constant

invariants can be stored in an equivalence class along with the appropriate constant

node.

Example 17. Equivalence Classes
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Suppose the following candidate invariants are discovered through simulation:

a = b d = e e = g i

b = c d = f h j

Because of the transitivity of equivalence, the nodes a, b, and c are all equiva-

lent. Therefore {a, b, c} is an equivalence class. Similarly, {d, e, f, g} is also an

equivalence class.

The candidate constant invariants h, i, and j are among the invariants listed

above. These can be recorded as a single equivalence class {1, h, i, j} since each

of these constant candidates is presumed to be equal to constant 1.

Equivalence classes provide an efficient way to store constant and equivalence

candidate invariants in memory. Each class can be represented in memory as a linked

list, and the set of equivalence classes is simply a linked list of linked lists.

Equivalence classes can also be efficiently proved. Note that an equivalence class

with n nodes represents
(
n
2

)
= n(n−1)

2
or O(n) different equivalences. For large n this

can be prohibitively expensive. Alternatively, one can choose a representative node

from each class and simply prove that each node is equivalent to the representative.

This gives n−1 or O(n) equivalences to prove rather than the more expensive O(n2).

2.6.2 Storage of k-Cuts and Random Clauses

The best known method for storage of k-cut and random clause candidate invariants

in simply with a linked list. The storage size is linear in the number of candidate

invariants. While it may seem that more research is needed in this area, in reality the

storage size for these invariant types is not a problem because k-cut invariants are

usually few in number and the number random clause candidates is usually closely

controlled and limited to a small number.
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2.6.3 Storage of Implications

When deriving candidate implication invariants, it is tempting to enumerate candi-

date implication invariants over the entire logic network. This gives a large number

of candidate invariants, O(n2) for a network with n nodes. This motivates methods

to store the candidate implication invariants in a compact manner, and this has been

the subject of our past research [Case et al., 2006a; Case and Brayton, 2007].

2.6.3.1 Underlying Graph Theory

The set of candidate implication invariants can be represented as a directed graph,

known as the implication graph. The nodes involved in the candidate implication

invariants become the nodes of the graph, and for each candidate implication a→ b

there is one directed edge in the implication graph from node a to node b. Because of

the transitivity of implications (a→ b and b→ c imply a→ c), the implication graph

contains an implication x→y if y is reachable from x along the directed edges in the

graph. The problem therefore is to minimize the graph and maintain the reachability

relationships between pairs of nodes.

In any directed graph, if one is only interested in preserving reachability informa-

tion, then there is flexibility in choosing the set of edges to represent. For example,

in the simple graph a→ b→ c, a can reach c because there is a path from a to c. In

this graph the presence of the edge a→ c is optional. Since it does not add any new

reachability information to the graph, depending on the application an implementer

may choose to exclude it.

If the graph contains all optional edges, it is known as a transitive closure. The

transitive closure has the maximal edge set, and this can dramatically increase the

resources required to store it. However, checking for the existence of a path between

two vertices reduces to checking for the existence of a single edge.
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Alternately, we may wish to minimize the number of edges in the graph by ex-

cluding all optional edges. This gives rise to the transitive reduction. The transitive

reduction r(G) of a directed graph G is a directed graph satisfying the following

properties:

1. The vertex sets of G and r(G) are identical.

2. There is a directed path from vertex u to vertex v in G if and only if there also

one in r(G).

3. There is no graph with fewer edges than r(G) satisfying the above conditions.

Since the set of edges is minimized, storage requirements are also minimized.

However, the induced graph sparsity can increase the time required to check for the

existence of a path between two vertices. In both memory and runtime, the transitive

reduction has characteristics opposite the transitive closure. Unfortunately, while the

transitive closure has been extensively studied, the transitive reduction has received

less attention in the literature.

We are motivated to study the transitive reduction because of its applications in

minimizing the storage requirements for candidate implication invariants. We utilize

a conservative approximation to a transitive reduction to maintain internal data-

structures, benefiting from the reduced memory requirements. Also, because each

edge represents one implication to be proved, reducing the number of edges helps

to improve the performance of the proof step without compromising the underlying

information content.

New algorithms have been developed to efficiently maintain a conservative approx-

imation of the transitive reduction. It is maintained in an online manner through any

number of edge addition and removal operations. Here we give the algorithms, their

complexities, proofs of correctness, and some experimental results to empirically ver-

ify the theoretic results.
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Figure 2.12: Corresponding r(G).

2.6.3.2 Approximating the Transitive Reduction

Due to problems that arise in the online maintenance of a true transitive reduction,

we choose to approximate the transitive reduction.

Consider the directed graph G and a transitive reduction r(G) of it shown in

Figures 2.11 and 2.12. The reduction can be built by first greedily removing redundant

edges. This eliminates the need for C → G, B→ F , and D→ G. For all of these

edges, there exists an alternate path joining the pair of vertices, and this path makes

the directed edge redundant. The next step in creating the transitive reduction is

to identify all Strongly Connected Components (SCCs) and replace each with

a simple cycle. This simple cycle maintains the connectedness of the component

with the minimum number of edges. In the figure the SCC {A,B,C} has been thus

processed.

The transitive reduction is simple to build, but difficult to maintain. Suppose

that we now wish to remove the edge A→B in the reduction shown in Figure 2.12.

In the resulting graph, A and B should be placed in separate components, but it is

unclear to which component C should be assigned. There is not sufficient information

in r(G) to refine this component.

The solution is to relax the constraint that components be joined by simple cy-

cles. This leads us to explore an approximation called the Minimum Equivalent

Graph (MEG). Given a directed graph G, the MEG meg(G) is a transitive reduction
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satisfying the following:2

1. edges(meg(G)) ⊆ edges(G).

2. ∀ edges u→v in meg(G), 6 ∃ an alternate simple path u→v in meg(G).

2.6.3.3 Maintaining the MEG Under Edge Addition

Consider the addition of an edge to an MEG. This edge can introduce any number

of new paths which may make other edges redundant. Any edge addition algorithm

must identify and remove these now-redundant edges.

1: // a→b := Edge to be added
2: if 6 ∃ path from a to b then
3: Add edge a→b
4: Color ancestors of a red
5: Color descendants of b blue
6: for all edges from a red r

to a blue b do
7: if ∃ simple path r→b

through a→b then
8: Remove r→b
9: end if

10: end for
11: end if

Algorithm 12: Edge addition algorithm.

Algorithm 12 takes redundant edges into account to maintain the MEG under

edge addition. An example application of this algorithm is shown in Figure 2.13.

The left-most graph is an MEG to which we will add edge C→D. To identify the

edges that are made redundant, we color the ancestors of C and the descendants of

D. The edges A→D and C→E are between colored vertices, and both of these edges

have alternate simple path through C→D. The two edges are redundant, and they

2If G is acyclic then the meg(G) = r(G).
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Figure 2.14: Example edge removal.

are removed to make the output MEG. Because we are maintaining an MEG, adding

one edge caused the total number of edges to decrease by 1 while the reachability

information content increased.

Theorem 2.6.1 (Correctness of the addition algorithm). If the input to Algorithm

12 is an MEG then the output is also an MEG.

Proof. Let a→ b be the edge added by Algorithm 12, and let the input and output

graphs be given by I and O respectively. We assume I is an MEG and now proceed

to show that O is an MEG.

Consider a→ b ∈ O. If I had a path from a to b then O = I (by line 2) and so

is an MEG. Therefore assume I had no such path. Algorithm 12 adds only one edge

(a→b), and so is incapable of forming an alternate simple path from a to b.

Now consider all u→v ∈ O such that u 6= a or v 6= b. Because Algorithm 12 adds

only a→b, we must have u→v ∈ I. Because I is an MEG, there is no alternate simple

path from u to v. Suppose algorithm 12 introduced such an alternate path. Then

a→b would have to be on this path since all new paths go through this edge. In this

case, u→v is removed in line 8 and so could not possibly be in O. By contradiction,

u→v has no alternate simple path in O.

Because no edge in O has an alternate simple path, O is an MEG.

To analyze the time complexity of Algorithm 12, suppose the input MEG has v
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vertices and e edges. On line 2, path existence can be implemented as a depth-first

search which has complexity O(v + e). Adding the edge on line 3 can be done in

constant time, if implemented properly. Coloring sets of vertices on lines 4-5 can be

done with two more depth-first searches. In lines 6-10, a path existence check and

possibly an edge removal must be done for each edge. This dominates all other steps

with complexity O(e · ((v+ e) + 1)) = O(ev+ e2). Thus the complexity of Algorithm

12 is O(ev + e2).

2.6.3.4 Maintaining the MEG Under Edge Removal

1: // a→b := Edge to be removed
2: Remove edge a→b
3: for all parents p of a do
4: Add p→b with algo. 12
5: end for
6: for all children c of b do
7: Add c→c with algo. 12
8: end for

Algorithm 13: Edge removal algorithm.

Removal of an edge from an MEG is conceptually harder and has higher complex-

ity than edge addition, but the algorithm is simpler. In an MEG a single edge may lie

on multiple paths in the graph. These paths represent reachability information, and

the removal of an edge must not violate this reachability. Therefore, edge removal

involves both the identification of these disturbed paths as well as the addition of

edges to preserve the paths in the absence of the now removed edge.

Algorithm 13 effectively removes an edge without disturbing any other paths in

the MEG. An example application of this algorithm is shown in Figure 2.14. The

left-most graph is an MEG from which we wish to remove the edge C →D. Note

that in this graph, A can reach {D,E}, but removal of C→D disturbs this. Several
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Figure 2.15: Edge removal needs Algorithm 12.

other reachability relationships are similarly disturbed. We can maintain the graph by

adding the edges A→D, B→D, and C→E, as described in lines 3-8 of the algorithm.

Because we maintain an MEG, removal of an edge caused the total number of edges

to increase by 2 while the total reachability information decreased.

The use of Algorithm 12 as a subroutine to Algorithm 13 may at first seem un-

necessary, but it is vitally important in order to maintain the MEG. Consider Figure

2.15 as an example. Removal of edge A→B causes A→C to be added which makes

B→C redundant. Unless we use Algorithm 12 for edge addition, we will not detect

this redundant edge and the output will not be an MEG.

Theorem 2.6.2 (Correctness of the removal algorithm). If the input to Algorithm

13 is an MEG then the output is also an MEG.

Proof. Algorithm 13 can be subdivided into two parts: removal of the specified edge

and calls to Algorithm 12.

Since the input is an MEG, and because removal of an edge cannot introduce any

paths in the graph, the graph after the edge removal is an MEG.

By Theorem 2.6.1 we know the graph after calls to is also a Algorithm 12 is also

an MEG.

Consider now the time complexity of Algorithm 13. Let the input MEG have v

vertices and e edges. The edge removal on line 2 can be done in constant time. In
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lines 3-8 we call Algorithm 12 possibly v times for a complexity of O(v · (ev + e2)) =

O(ev2 + e2v). The total complexity of our edge removal algorithm is O(ev2 + e2v).

2.6.3.5 Graph Theoretic Results

The graph algorithms described here were implemented in a C++ library which was

highly tuned for maximum performance. The algorithms were incorporated inside an

implication invariant discovery engine.

In this first set of results, the MEG library is run by itself using a small driver

application to generate a sequence of random edge additions and removals. This

sequence is sufficiently long to provide reliable statistics, and the number of vertices

in the graph is varied to expose the underlying sensitivity to this parameter. The

performance is compared against a normal graph package which just updates the

graph and does no reduction whatsoever.

Figure 2.16 shows the average number of edges present in the graph. It shows this

for both the version maintaining meg(G) and that maintaining G, and it shows this

over a range of vertex set sizes. From this, we can see that the MEG has dramatically

fewer edges, and the difference grows with the vertex set size. This was the original

motivation for our study of the transitive reduction and MEG.

Figure 2.16 also shows the runtime performance of the addition algorithm by show-

ing the normalized time for 1,000,000 edge additions3. Recall that the edge addition

algorithm has complexity O(ev + e2), and we can see this linear dependence on v in

the figure. For this algorithm, the difference between the two graph implementations

is not very large.

The edge removal is studied in the last graph in Figure 2.16 where the normalized

time for 1,000,000 edge removal operations is shown. Recall that we expect complexity

O(ev2 + e2v), and the graph shows that the performance is roughly quadratic in the

3All tests were run on a 1.6 GHz Pentium-M laptop.
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Figure 2.16: Empirical Analysis of the MEG Algorithms.
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number of vertices. The performance gap between the two graph packages is great,

and the cost of maintaining the MEG under edge removal is non-trivial. Finding a

more efficient edge removal algorithm could be the focus of further research.

As expected, the tests show great savings in storage but increased runtime. We

need to look at the performance of the implication discovery framework as a whole

to see benefit from the MEG library. In the following experiments we examine the

performance of the algorithms in this application with vertex and edge numbers as

they would occur naturally. This gives a much more informative picture of the true

performance.

2.6.3.6 Invariant Discovery Results

In our motivating invariant discovery application the two graph libraries, maintainers

of meg(G) and G respectively, were used as the implication graph manager. The code

is structured such that the user may select which graph library to use.

Using this framework, we ran the tool on 15 circuit designs: 10 small academic

designs and 5 obtained from industry. The tool was run using each graph library, and

the total runtime and memory was recorded.

In the following graphs, the x-axis gives the measured quantities for the meg(G)

package, and the y-axis gives the quantities for the G package. Each point is a single

design as measured under both implementations. If the point appears above the

diagonal, the meg(G) implementation was better than the G implementation, and

the performance gap corresponds to the distance above (or below) the diagonal.

Figure 2.17 shows the runtimes of the implication invariant discovery tool. Note

that the runtime of the tool with the meg(G) package is roughly constant over these

15 designs, and in almost all cases the tool is made faster by using meg(G). However,

this figure is not a true indication of the performance gap because in running the

experiments, it was necessary to terminate the flow of the tool early. Without this
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Figure 2.17: Invariant discovery with the MEG: runtime.

early termination, the tool with G failed to run in less than 10 minutes (on 13 designs)

while the tool with the meg(G) package took roughly the same amount of time as

shown. Thus the performance gap between the two implementations is very large and

grows as the cutoff time limit is increased.

It is interesting to understand why the tool runs faster when using meg(G). Al-

though using this reduction introduces polynomial-time overhead in the maintenance

routines, for each edge in the graph, the tool must prove the implication the edge

represents. This proof can be exponential in complexity, and the reduced edge set of

the MEG allows a trade-off between exponential and polynomial complexity. This en-

ables the dramatic performance improvements. In fact, without these improvements,

use of implication invariants is impractical, and the MEG is what enables it to be

run at all.

Figure 2.18 shows the peak memory allocated by the logic synthesis tool. This is

recorded for both graph packages over the 15 circuit designs. Again we see that the

memory used by the tool with the MEG package is roughly constant, and in nearly all

cases this beats the memory used with the normal package. The performance gap in
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Figure 2.18: Invariant discovery with the MEG: memory.

memory is not always large because we focus on small designs where the implication

graph typically does not dominate the memory consumption. With larger designs,

we have observed that without the MEG package we cannot fit the application into

our memory space, making the logic synthesis tool impractical.

Clearly the MEG and its associated maintenance algorithms are vital for efficient

storage and processing of candidate implication invariants.

2.7 Orthogonality of Invariant Families

So far methods to efficiently process invariants from 5 different invariant families have

been discussed: constants, equivalences, implications, k-cuts, and random clauses.

Each family has its strengths and weaknesses, both in terms of computational char-

acteristics as well as ability to approximate the reachable state space.

Often the invariant families are able to approximate the reachable state set in

orthogonal ways. The approximation offered by implications, for example, is funda-

mentally different than the approximation offered by k-cuts. By finding invariants
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from different families and conjoining the results, we can harness these orthogonal

strengths to produce a higher quality reachability approximation than is possible with

any single invariant family.

Furthermore, it is often useful to compute invariants in waves. Similar to the

windowing proof technique of Section 2.5.4, we again decompose the invariants proof.

Here we go a step further and decompose the invariant discovery as well. This has

several advantages:

1. Proving invariants in waves provides an effective way to manage computational

resources. In practice, a global timeout is always specified because there are

almost always more candidate invariants than there is time available to discover

and prove them. The computation can be terminated between waves, and the

results are sound because all candidate invariants have been proved at these

points.

2. Decomposing the invariant discovery into waves means that each wave can pro-

ceed with different parameters. For example, the invariant family can change

between waves, allowing the invariants from one wave to strengthen the approx-

imations found by all previous waves. (There is also the reverse strengthening

where the previously proved invariants are used as constraints in the proof of

the current wave.)

3. Having a number of previously completed waves means that at the start of each

wave a crude reachability approximation is available. Using the techniques of

Section 2.4.2, candidate invariants in the current wave can be prioritized such

that the ones that are most useful in refining the reachability approximation

are proved while those that are less useful are ignored. This is important for

quickly converging on a tight reachability approximation.
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1: interestingStates := randomWalk()
2: provedInvariants := ∅
3: while (computational resources not exceeded) do
4: invariantFamilies, parameters := readConfigFile()
5: // Algorithm 6
6: candidates := mineCandidateInvariants(interestingStates,
7: invariantFamilies,
8: parameters)
9: // Algorithm 7

10: candidates := prioritizeCandidates(candidates,
11: provedInvariants,
12: parameters)
13: // Algorithm 8
14: provedInvariants += proveInvariants(candidates, parameters)
15: end while
16: return provedInvariants

Algorithm 14: Total Invariant Discovery Algorithm, using Orthogonality.

The total invariant discovery algorithm, a summary of all methods presented so

far, is shown in Algorithm 14. Initially a set of interesting states is derived from a

random walk (Section 2.3.2), and the set of proved invariants is empty. Then proceed

to prove waves of invariants until the computational resources are exceeded. Each

wave proceeds as follows: the invariants are mined from the simulation information,

they are prioritized relative to the previously proved invariants, and they are then

proved.

An example illustrating the execution of Algorithm 14 was shown in Figure 2.7 in

Section 2.4.2. Here the computation proceeds in waves such that each wave selects a

different mix of invariant families. The progression of waves is tuned such that the

proof complexity increases over time, meaning that the easier-to-prove invariants are

tried first. This is important if little runtime is available.

Each wave uses candidate prioritization to select candidates that are most likely

to refine the reachability approximation from the previous waves. This means that in
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Wave 4, the number of candidate implication invariants is small. Usually the number

of implication invariants is large, motivating the MEG study in Section 2.6.3. Like

the MEG, candidate prioritization is another effective way of handling a large number

of candidate implication invariants.

Wave computation allows for the variation of other parameters besides simply

the invariant families. Note in Figure 2.7 that for all j, Waves j and j + 5 use the

same invariant families. This is because Waves 1-5 use j = 1 induction as the proof

technique while Waves 6-9 use j = 2 induction. This allows us to gradually increase

our proof effort as time permits, and this is important for complex designs or highly

runtime-constrained runs.

In practice the wave computation that utilizes both orthogonal strengthening as

well as gradually increasing proof effort provides an effective way to quickly form a

good reachability approximation. In an application where the reachability informa-

tion was used to perform sequential synthesis, often the execution of Algorithm 14

with a time limit of 60 seconds was sufficient to approximate reachability to the de-

gree necessary for the synthesis algorithm. If the time limit was increased and more

invariants found then the quality of the synthesis did not improve, indicating that

the reachability approximation quickly converges to a set of states and after a point

in time (about 60 seconds) changes only very little. This was experimentally verified

on hundreds of industrial designs with a wide range of sizes.

2.8 Alternative Methods For Approximating Reacha-

bility

Invariants provide a way to approximate the set of reachable states, but there are

other ways to approximate reachability without the use of invariants. For the sake of
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completeness, here we discuss two other reachability approximation methods: BDD

supersetting and interpolation.

2.8.1 BDD Supersetting

Reachability analysis using BDDs (Example 13) works well on small circuits, but as

the number of registers increases, the BDDs used in the computation become too

large to handle efficiently.

One approach to deal with these large BDDs is to approximate them. There

are numerous techniques [Somenzi, 2005] for introducing onset minterms into the

function represented by the BDD such that the number of BDD nodes is reduced.

Such methods are used to replace the BDD with a function that is a superset and has

a more compact representation.

In this work, we do not discuss BDD supersetting because we attempt to produce

synthesis and verification algorithms that are entirely free of BDDs. This avoids the

computational pitfalls that come with BDDs. While supersetting addresses these

pitfalls, it is not sufficient to prevent all computational difficulties. For this reason,

in this work we focus on techniques rooted in SAT solving.

2.8.2 Reachability by Interpolation

Interpolation-based model checking presented in Example 15 can be used to ap-

proximate reachability. Suppose a property has been verified to hold on all reach-

able states by interpolation. Then the interpolation routine has produced an over-

approximation to the reachable states such that the property holds on all states in

this over-approximation.

It is tempting to use interpolation as a general-purpose engine for approximating

reachability. However, by its nature the interpolation-based model checking algorithm
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needs a true property to verify in order to produce this reachability approximation.

It is not obvious how to manufacture meaningful properties that give good reachabil-

ity approximations, and for this reason such a reachability approximating algorithm

hasn’t been researched in the past.

Example 18. Reachability by Interpolation: Practical Experience

Suppose we want to use interpolation-based model checking to approximate the

set of reachable states in a sequential circuit. We manufacture a property and

verify it with interpolation. After the property has been verified, the interpolation

routine has produced an over-approximation to the set of reachable states such

that all the property is satisfied on all the over-approximate reachable states.

Further suppose a very simple technique is used to manufacture properties to be

checked. In any sequential circuit, the number of unreachable states is usually

much larger than the number of reachable states. Therefore, a randomly cho-

sen state has a high probability of being unreachable. Suppose we formulate a

property that simply says that the FSM is never in a predetermined, random

state. We pass this property to interpolation, and if the property is verified then

a reachability approximation is obtained.

Unfortunately, while this method works, the reachability approximations pro-

duced are not valuable. Interpolation is aimed at producing a reachability ap-

proximation that is sufficient to prove the property, not one that is a tight approx-

imation to the true set of reachable states. For this reason, often the reachability

approximations resulting from our simple manufactured properties are equiva-

lent to every state being reachable except for the single pre-selected random state.

Clearly, this approximation is very crude and not useful in any of the contexts

examined in Section 2.1.2.

If in the future a method is invented that can manufacture meaningful properties
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over arbitrary sequential logic networks, then interpolation-based reachability may

be an attractive option. The properties would need to be such that 1) the property

is true, 2) the property fails to hold in many unreachable states, 3) the failing states

are “close” to the reachable states, requiring the resultant interpolants to have suffi-

cient information to distinguish the reachable states from the almost-reachable states,

thereby giving a tight approximation to reachability.
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Applying Invariants to Sequential

Synthesis

3.1 Motivation

Invariants are useful for over-approximating the set of reachable states, but by itself

this accomplishment is not directly useful to the end user of an Electronic Design

Automation (EDA) tool. The value of invariants comes when they are leveraged

to improve an existing EDA process.

Here we consider logic synthesis. Invariants provide a set of states that are guar-

anteed to be unreachable (they under-approximate the unreachable state space), and

on these unreachable states a synthesis algorithm is free to change the design’s behav-

ior. These induced sequential don’t cares provide flexibility that can be exploited

to optimize the design.

While there exist ways to directly use invariants for synthesis purposes by merging

signals that invariants found to be equivalent (Sections 2.2.1 and 2.2.2), in this chapter

we will consider the more indirect use of invariants as providers of sequential don’t
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cares. By viewing invariants in this way they will be able to benefit many different

synthesis algorithms, even when the invariants themselves cannot directly justify the

merging of signals.

3.2 Direct And Indirect Sequential Synthesis

There exist many sequential synthesis algorithms that do not rely on invariants, and

here we seek to differentiate those types of algorithms from their invariant relatives.

We define a direct sequential synthesis method as any method that is able to

reason directly about the state space in order to perform design optimizations. Many

such algorithms have been reported in past research literature.

We define an indirect sequential synthesis method as a method that is able

to change the behavior of the design on certain states, or even change the number

of states, because the synthesis is leveraging sequential don’t cares. Normally these

sequential don’t cares come from invariants, and any combinational algorithm that

is able to use don’t cares can be made sequential by using invariants in the form of

sequential don’t cares. Such synthesis techniques haven’t been well studied because

of the absence of invariant generation techniques that are able to quickly develop

substantial sequential don’t cares.

Direct and indirect sequential synthesis methods have distinct advantages and

disadvantages. Table 3.1 compares these methods in more detail.

3.3 Case Study: SAT-Based Resubstitution

To further compare direct and indirect sequential synthesis, two case studies will be

presented: SAT-based resubstitution and ODCs. Both are combinational synthesis

methods that can be extended into either direct or indirect sequential synthesis al-
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Direct Sequential Synthesis Indirect Sequential Synthesis
Description: A direct sequential
synthesis method incorporates state
space analysis into the synthesis algo-
rithm.

Description: An indirect sequential
synthesis method does not intrinsically
understand the state space but instead
does sequential synthesis by leveraging
the sequential don’t cares from a set of
invariants.

Examples: Performing sequential
SAT-sweeping by embedding induc-
tive reasoning into the synthesis algo-
rithm [van Eijk, 2000].

Examples: 1) Prove a number of
invariants, and 2) do combinational
SAT-sweeping. Only look for coun-
terexamples that disprove equality of
node pairs on the set of states that sat-
isfy the invariants.

Synthesis Power: Able to reason
about complex state space properties
necessary to perform synthesis opti-
mizations. As a result, these methods
can dramatically simplify the design.

Synthesis Power: Invariants ex-
press general facts about the shape of
the state space but may not be exactly
what is required by the synthesis. As
a result, the quality of the synthesis is
slightly worse.

Runtime: State space analysis is ex-
pensive, and direct sequential synthe-
sis methods can be quite slow as a re-
sult.

Runtime: Because indirect sequen-
tial synthesis methods are inherently
combinational, they often run quickly.
However, the time for invariant com-
putation must be included and this
may be a significant contribution to
the total runtime.

Other Advantages: N/A Other Advantages: If many indi-
rect sequential synthesis methods are
invoked then the invariants need only
be computed once and then used in
all synthesis steps. The runtime cost
of invariant computation can be amor-
tized, and the total runtime for a se-
quence of indirect methods can be
much less than the total runtime for
a similar sequence of direct methods.

Table 3.1: Comparing direct and indirect sequential synthesis.
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gorithms. Examining these two algorithms and their sequential extensions will give

insight into issues related to using invariants in synthesis.

3.3.1 Introduction to SAT-Based Resubstitution

A dependent register is one which may be expressed as a function over other reg-

isters in the design. Once identified, the overall register count of the design may be

reduced by replacing the dependent registers by the corresponding equivalent func-

tions. Such a reduction in registers is beneficial in a logic synthesis context where

each register has a finite cost in terms of circuit area and power.

Additionally, elimination of dependent registers is useful in a verification context

because many verification algorithms are sensitive to the number of registers present

in the design. For example, BDD-based reachability analysis generally requires ex-

ponential resources with respect to register count, hence it may dramatically benefit

from the elimination of dependent registers [Jiang and Brayton, 2004]. The effec-

tiveness of induction is also generally sensitive to the implementation of the logic,

particularly in the presence of unreachable states [Wedler et al., 2004]. Dependent

register elimination inherently reduces the fraction of unreachable states of a design,

thereby enhancing inductiveness.

Dependency is traditionally identified using BDD-based algorithms (e.g., [Jiang

and Brayton, 2004]), which practically limits its application to smaller designs or

requires approximate compositional analysis, resulting in suboptimalities. Recently,

it has been demonstrated that combinational dependency of next-state functions may

be identified using purely SAT-based analysis [Lee et al., 2007], enabling the analysis

to scale to much larger designs. However, the previous research lacks several elements

that make this method effective in practice. Here we present several improvements

to the proposed algorithm and extend it to sequential synthesis using both direct and
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Figure 3.1: SAT-based dependency formulation

indirect methods.

Identification of dependent registers is a special type of resubstitution. In logic

synthesis, resubstitution refers to a process that recasts a Boolean expression as

a function over other pre-existing Boolean expressions [Brayton et al., 1987]. For

example, suppose there are Boolean signals X, g1, g2, . . ., gn. Resubstitution may

be used to build a function F (·) such that X = F (g1, g2, . . . , gn), or to prove that no

such function exists. The functions g1, g2, . . ., gn are referred to as the basis and F (·)

as the dependency function. Upon finding F , the old implementation of X can be

removed and replaced with the new implementation of F . Often resubstitution yields

a reduction in the size of the AIG, and for this reason has been the focus of much

synthesis research.

Recently resubstitution has been posed as a SAT problem [Lee et al., 2007] which

improves on the scalability of previous approaches. Suppose that we wish to express X

as a function over signals g1, . . . , g3. This is possible if and only if for each valuation

to signals g1, . . . , g3 there is a single possible X valuation. We can test if such a

resubstitution exists using the circuit shown in Figure 3.1. Two separate copies of X,

g1, g2, and g3 are instantiated. Each pair of g’s is constrained to have the same value,

and the pair of X’s is constrained to have differing values. A resubstitution exists if
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and only if this test circuit is unsatisfiable. Many SAT solvers can be configured to

record a proof of unsatisfiability [Zhang and Malik, 2003], and interpolation on this

proof provides the dependency function.

Given Boolean formulas A(x, y) and B(y, z), if A(x, y) · B(y, z) = 0 then there

exists an interpolant [Craig, 1957] I such that I refers to only the common variables

y of A and B, and A =⇒ I =⇒ B. [Pudlák, 1997] provides an algorithm to extract

the interpolant I from the proof of unsatisfiability of A · B. This technique was first

introduced to the verification community in a SAT-based unbounded verification al-

gorithm [McMillan, 2003] where the interpolant represents an overapproximate image

computation.

In the resubstitution context, interpolation will be used to derive a dependency

function. We may partition the resubstitution test circuit in Figure 3.1 into two

halves A and B. A represents the set of g’s where X = 1, the on-set of X. Similarly,

B represents the off-set of X. Because A =⇒ I =⇒ B, I is a function that lies in

between the on and off-sets of X, and we can replace X with I. Furthermore, I only

refers to the common variables between A and B, namely the g’s, hence I provides

the dependency function.

While this SAT-based formulation of [Lee et al., 2007] enables substantially greater

scalability than BDD-based techniques, this formulation is limited in four key ways:

1. The prior research can only re-express combinational logic and cannot directly

eliminate registers. Minimizing the number of registers is important in both

synthesis and verification contexts.

2. The prior research does not address incompatibilities present in the set of found

dependencies. Often, dependencies must be discarded to avoid creating combi-

national cycles in the logic. We discuss an efficient way to compute a compatible

set of dependencies in Section 3.3.2.2.
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3. The prior research does not address the logic bloat that may result from inter-

polation. In general, logic generated by interpolation is highly redundant.

4. The prior research does not address ways to choose the basis set over which the

resubstitution is to be attempted. Careful selection of the basis set is important

for scalability.

5. The prior research cannot identify dependencies which hold in all reachable

states but not in arbitrary unreachable states. In our experience, the reduc-

tion potential of this combinational analysis is often a subset of that possi-

ble using min-register retiming with integrated resynthesis [Baumgartner and

Kuehlmann, 2001]. We use invariants as well as direct sequential synthesis to

overcome this limitation.

3.3.2 Improvements to SAT-Based Resubstitution

In this section, we discuss our enhanced resubstitution procedure (function

eliminateRegisters in Algorithm 15). Our resubstitution setup is illustrated in

Figure 3.2, which is similar to Figure 3.1 but modified in several ways. This section

will discuss how we target the formulation to find dependent registers as well as en-

hancements that make SAT-based resubstitution effective in practice. We iteratively

call this procedure for every next-state function in the design in order to find the set

of all dependent registers. This discussion is based on the publication [Case et al.,

2008c].

3.3.2.1 Register Elimination

If the resubstitution formulation illustrated in Figure 3.2 is unsatisfiable, then a de-

pendency function will be obtained that may be used as a replacement for next(S).
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1: function eliminateRegisters(design, invariants)
2: depends := ∅
3: for all (registers R in design) do
4: test := buildResubTest(next(R), other next-states)
5: if (satSolve(test) == unsat) then
6: proof := getResolutionProof()
7: curr := getDependencyFunc(R, proof )
8: notCurr := getDependencyFunc(¬R, proof )
9: depends += pickBest(curr, notCurr)

10: end if
11: end for
12: depends := makeCompatible(design, depends)
13: return simplifyDesign(design, depends)
14: end function

Algorithm 15: Improved SAT-based resubstitution.

Inputs / Current State

Next State

Functions

Invariants Next State

Functions

Invariants

Copy 1 Copy 2

A

B

Inputs / Current State

Resubstitution Test Function
• Invariants = 1

• For a particular state var S, next(S1)=1 ∧ next(S2)=0
• For every other state var T, next(T1) = next(T2)

Figure 3.2: Our enhanced resubstitution framework.
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Figure 3.3: Register elimination process

Trading the existing implementation of next(S) with the dependency function may

yield a savings in the number of ANDs in the AIG. We specifically want to reduce the

number of registers in a design because this is almost always beneficial to both syn-

thesis and verification applications, and we are willing to tolerate a modest increase

in ANDs to achieve this goal. Here we present a formulation by which a dependency

function can be used to directly eliminate a register in the design.

Consider Figure 3.3a where the logic needed to implement next(S) is highlighted.

If a dependency function exists, it will express next(S) as a function of the other

two next-state signals next(T1) and next(T2). The implementation of next(S) may be

replaced with this dependency function, as illustrated in Figure 3.3b. We can further

simplify the design by expressing this dependency function over the current states

instead of the next-states, thereby eliminating register S.

Define an orphan state to be any state σ1 for which there does not exist a state

σ2 such that σ1 is reachable from σ2 in one transition. Note that every reachable

state, with the possible exception of the design’s initial state(s), is not an orphan

state.
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Theorem 3.3.1. For registers S, T1, . . ., Tn, if there exists an F (·) such that

next(S) = F (next(T1), . . . , next(Tn)) then for every state that is not an orphan state

S = F (T1, . . . , Tn).

Proof. Let σ1 be a state of the design and a concrete valuation of the registers S, T1,

. . ., Tn. If σ1 is not an orphan state then there exists a state σ2 such that σ1 can be

reached in one transition from σ2. Let X(σj) denote the valuation of register X in

state σj and note that there exists inputs such that next(X(σ2)) = X(σ1). From the

hypothesis we have next(S(σ2)) = F (next(T1(σ2)), . . . , next(Tn(σ2))). Rewriting we

see that S(σ1) = F (T1(σ1), . . . , Tn(σ1)).

Theorem 3.3.1 allows for the dependency function computed over next-state func-

tions to be expressed over current states, provided the initial state(s) are accounted

for. The result of this process is illustrated in Figure 3.3c. The dependency func-

tion between Figure 3.3b and 3.3c is identical; only the logic driving its inputs has

changed. The register S has been completely eliminated at the cost of initial state

correction logic. To correct the initial state, we introduce a multiplexor which at

time 0 will drive the initial value of the register being eliminated, and thereafter will

drive the dependency function for the next-state function of the eliminated register.

To enable selection of these two values, a register may need to be introduced to the

design which initializes to 1 and thereafter drives 0. This register is reused across all

resubstitutions.

While Theorem 3.3.1 is not guaranteed to hold in the initial state, in some cases

the initial value may be preserved by that dependency function. That is, the value

produced by the dependency function at time 0 may be identical to the initial value

of the register being removed, and the initial state correction logic can be omitted.

On a benchmark suite for which 3,390 resubstitutions were performed, the initial

state had to be corrected 67% of the time (Table 3.2). Our designs had complex
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Design Resubs. Needed Correction
Set1 / IBM01 522 348
Set1 / IBM02 465 310
Set1 / IBM03 663 442
Set1 / IBM04 1200 800
Set1 / IBM05 51 34
Set1 / IBM06 276 184
Set1 / IBM07 213 142

3390 2260 (67%)

Table 3.2: Necessity of initial state correction.

initialization functions due to retiming [Mony et al., 2004] whose value the dependency

function could replicate with relatively low probability. This illustrates the power of

our technique to enhance register reduction capability particularly in the presence of

complex initial states1.

3.3.2.2 Compatible Dependencies

The eliminateRegisters function from Algorithm 15 will attempt to resubstitute

each next-state function present in the design. Through this process, a large num-

ber of dependency functions may be identified that can replace existing registers as

depicted in Figure 3.3. Unfortunately, the set of dependencies found in this manner

are generally not compatible, and if multiple dependency simplifications are per-

formed simultaneously then often a combinational cycle will be created in the AIG

resulting in an illegal design. A compatible set of dependencies is one in which all

dependencies can be applied simultaneously with no resultant combinational cycles.

Therefore, once the dependencies have been identified, one must identify a subset of

compatible dependencies contained therein, and this chosen subset may impact the

1This synthesis technique can dramatically simplify verification efforts because a reduction in the
number of registers corresponds to a reduction in the state space that must be searched. See Section
1.5.1.
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size of the resulting design.

1: function makeCompatible(design, dependencies)
2: scored := ∅, compatible := ∅
3: for all (Dep. D in dependencies) do
4: red = D.redundant AIG node
5: repl = D.replacement AIG node
6: gain = aigSize(design) - aigSize(design - red + repl)
7: scored [D] = scoreFunction(gain.regs, gain.ANDs)
8: end for
9: sortDescending(scores)

10: for all (Dep. D in scored) do
11: red = D.redundant AIG node
12: repl = D.replacement AIG node
13: if (!isCyclic(repl, red, compatible)) then
14: compatible += D
15: end if
16: end for
17: return compatible
18: end function

Algorithm 16: Selecting a set of compatible dependencies

Example 19. Resubstitution for one-hot encoded registers

To illustrate the notion of incompatible resubstitution, consider a design with

registers R1, . . . Rn which have a one-hot encoding where in every reachable ex-

actly one of these n registers will evaluate to 1. Given adequate invariants to

characterize this one-hot condition, the following dependencies may be identified:

R1 = R2 ∧R3 ∧R4 ∧ · · · , R2 = R1 ∧R3 ∧R4 ∧ · · ·

It is not possible to express R1 as a function of R2 and simultaneously express

R2 as a function of R1 without creating a combinational cycle.

Finding a compatible subset of dependencies is a computationally difficult task.

Finding an optimal subset might entail enumerating and testing every possible subset,

and this is feasible for only very small sets of dependencies. Instead, we utilize a

heuristic to quickly find a near-optimal subset of compatible dependencies.
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After the complete set of dependencies is found, we reduce this to a set of compat-

ible dependencies as illustrated in Algorithm 16. Each found dependency consists of

two signals: a redundant signal that will be eliminated and a replacement signal

that will be introduced in its place. We first sort the dependencies in the order of

their ability to simplify the circuit, computed as a function scoreFunction2. The list

of sorted dependencies is then iterated over, and a subset of compatible dependencies

is greedily found. For each dependency, we test if performing this optimization in the

presence of the other compatible dependencies will introduce a combinational cycle

using isCyclic. If so, the candidate merge is discarded. Otherwise the merge is

added to the compatible set.

While this search is greedy, prioritizing the dependencies by score enables the

algorithm to capture most of the optimization potential present in the original set of

dependencies. This is illustrated on a set of industrial designs in Table 3.3. For each

design, the found dependencies and compatible subset of these found dependencies

are examined. Usually only a small percentage (24%) of the total dependencies must

be discarded to form a compatible subset. If the total gain is summed over all possible

dependencies, we see that the sum gain from the compatible dependencies is similar.

This indicates that most of the AIG optimization potential present in the full set of

dependencies was captured by the compatible subset.

3.3.2.3 Reducing Dependency Function Interpolants

The dependency functions are obtained from the interpolant of a proof of unsatisfi-

ability. Using the method given in [Pudlák, 1997], the resultant logic will have size

that is linear in the size of the resolution proof. The proof of unsatisfiability for com-

2Through trial and error, we have found that the function 20 · gain.regs + gain.ANDs works
well. This captures the fact that we’re willing to tolerate a bloat of 20 AND gates for each register
that is removed.
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Total Deps. Compatible Deps.
Design Count Sum Score Count Sum Score
IBM01 376 -1714 325 -91
IBM02 194 -659 154 -725
IBM03 428 -18278 374 -16950
IBM04 678 643 579 909
IBM05 35 312 22 258
IBM06 102 573 58 308
IBM07 142 139 102 -97

Table 3.3: Compatible dependencies on a set of IBM benchmarks. The number of
functional dependencies between registers is shown along with the sum of the scores that
is used to approximate the synthesis value of these dependencies.

plex SAT problems may be large, and this may result in an interpolant and resulting

dependency function that are very large. Here we explore several ways to control the

size of the obtained dependency functions.

The most basic way to control the size of the dependency functions is with com-

binational synthesis. Logic that comes from interpolants is usually highly redundant

and amenable to combinational synthesis techniques [Cabodi et al., 2006]. While

combinational synthesis is effective in reducing the size of these interpolants, it is

too slow to be used on every interpolant prior to reducing to a compatible subset

in Section 3.3.2.2. Here we focus on ways to more directly optimize our dependency

functions before combinational synthesis is applied.

One simple way to control the size of the interpolants before synthesis is applied is

to use incremental SAT. Our implementation attempts to resubstitute each next-state

function in the sequential AIG, and through this process many similar SAT problems

are encountered. Using one incremental solver instance to solve all of these problems

is advantageous for two reasons:3

3Incremental SAT is generally preferred, but such solvers can store a large number of learned
clauses. If memory is a concern, the solver instance may need to be periodically refreshed.
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Figure 3.4: There is flexibility in how to partition the problem for interpolation.

1. One incremental solver typically learns fewer clauses than many non-incremental

solvers. The size of an interpolant is related to the number of learned clauses,

and using incremental SAT will result in a reduction in the total size of all

interpolants.

2. In incremental SAT the learned clauses from one problem are preserved and

may contribute toward the search for a satisfiable solution to a future problem.

If the same learned clause participates in two proofs of unsatisfiability then the

two interpolants will share common logic. This also reduces the total cost of

the logic needed to implement all interpolants.

In addition to using incremental SAT, we propose a more intelligent approach to

mitigate logic bloat. Consider the resubstitution framework shown in Figure 3.2 that

is able to eliminate a register S by resubstituting next(S). Copy 1 of the transition

relation represents the on-set of next(S), and Copy 2 represents the off-set. Using the

partitioning that separates Copy 1 from the rest of the circuit as shown, we get an

interpolant I such that next(S) =⇒ I =⇒ next(S), and the resulting dependency

function is able to replace S using the concepts of Section 3.3.2.1. However, the
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Table 3.4: Dependency function use on a set of IBM benchmarks

Depend. Avg. Score by Repl. Type
Design Count S S
IBM01 1128 0.70 -0.87
IBM02 582 0.78 0.04
IBM03 1284 -6.56 -20.20
IBM04 2034 1.71 2.11
IBM05 104 3.10 6.06
IBM06 306 2.42 4.44
IBM07 426 1.44 2.21

problem is symmetric and we could alternatively partition to separate Copy 2 from

the rest of the circuit. This alternative partitioning scheme is illustrated in Figure

3.4. In this case, next(S) =⇒ I =⇒ next(S), and the dependency function is be

able to replace S.

Thus, we have the flexibility to compute the interpolant in two different ways

to either replace S or S. These two replacements affect the size of the modified

AIG in different ways, and to quantify this each possible replacement is scored in a

manner identical to Section 3.3.2.2. By selecting the highest-scoring replacement, the

dependency function can be used to its best advantage.

This is examined on a suite of industrial benchmarks in Table 3.4. For each de-

sign, the number of found dependencies is given. Each dependency is scored as if it

were used to replace one of the two signals: S or S, and the average score for each

replacement type is given. A negative score indicates that the number of ANDs intro-

duced to build the dependency function was greater than the cost of the logic being

removed. Note that the signal we would prefer to replace is benchmark-dependent.

In general, it is also dependency-specific, and our implementation individually scores

each dependency in two ways in order to best utilize each dependency function.
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3.3.2.4 Automated Discovery of the Basis Set

The previous work in SAT-based resubstitution assumed a basis set to be given. In

attempting to resubstitute every register and express it in terms of the other registers,

it is possible to implement a naive basis set that can be used as this given basis set.

Every next state function other than the next state function for the register being

resubstituted can be grouped into a basis set, and the resubstitution can be performed

over this set.

While this approach works well for small circuits, it has difficulty scaling to designs

with thousands of registers. The size of the SAT problem is very sensitive to the

number of elements in the basis set, and so in a circuit with many registers the basis

set is large which leads to very poor run time.

It is helpful to observe that when a register can be resubstituted, the dependency

function typically only touches a few of the design’s other registers. This means that

the resubstitution can be performed using a very small basis set. Unfortunately, this

small basis set will be different for each register that is resubstituted, but the basis set

can be derived in an efficient manner such that rederivation for each resubstitution

attempt is practical.

Consider the basis set discovery routine in Algorithm 17. This algorithm starts

with an empty basis set and grows the basis set as needed until the resubstitution is

possible. In this way the algorithm uses a dynamic basis that grows monotonically.

The core of the algorithm is a call to the function resubstitute() with the current

basis set. This function sets up the SAT problem to test if a resubstitution is possible

with the current basis set. If this SAT problem is satisfiable then resubstitution is not

possible with the current basis set. A satisfying counterexample is returned that can

be used to either grow the basis set or conclude that resubstitution is impossible. If

the SAT problem is unsatisfiable then the resubstitution is possible with the current
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1: function resubWithDynamicBasis(design, X )
2: basisSet := ∅
3: while (1) do
4: if (resubstitute(X, basisSet) = SAT then
5: if (∃ new basis element B that can block the counterexample) then
6: basisSet += B
7: else
8: return “resub failed”
9: end if

10: else
11: // SAT problem was unsatisfiable. Resubstitution is possible.
12: Interpolate and simplify the circuit.
13: return “resub succeeded”
14: end if
15: end while
16: end function

Algorithm 17: Resubstitution with a dynamic basis set.

basis set, and we proceed to interpolate and simplify the circuit.

Example 20. Expanding a basis set.

The method by which the basis set is expanded in Algorithm 17 is critically

important. Here we will explain this method by example.

Consider the resubstitution test function shown in Figure 3.5. We attempt to

resubstitute to eliminate register S, and in this iteration the basis set is empty.

Two copies of the transition relation are instantiated, and we constrain the SAT

problem such that the pairwise copies of next(S) differ. Additionally, if there

were basis elements we would constrain their pairwise copies to be equivalent.

Suppose our satisfiability solver finds a counterexample. This means that with

the current basis set it is possible for the onset of S to intersect the offset of

S, and a counterexample is returned that demonstrates this overlap. The coun-

terexample is a set of assignments to the circuit inputs, and this assignment is

possibly incomplete. Let X denote an input that has no assigned value. Ternary
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Figure 3.5: Automated expansion of the basis set.

simulation (sometimes called 3-valued simulation) can be used to propagate

this input assignment throughout the circuit to get an assigned logic value at

every circuit node.

Suppose under the simulated assignments, a pair of next state functions takes

opposing values, as happens in the leftmost next state function in Figure 3.5.

If the corresponding register is added to the basis set then the constraint that

the next state functions assume equal logic values will be sufficient to block this

counterexample. Therefore this register is selected as the next register to add to

the basis set.

In this way, registers can be added to the basis set until all counterexamples

are blocked and the problem is unsatisfiable, denoting a valid resubstitution. If

a counterexample is found such that no additional registers are able to block it

then the resubstitution is ultimately not possible without expanding the basis set

beyond just the next state functions.

The dynamic basis allows a large and complex SAT problem to be decomposed
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into a series of smaller and simpler SAT problems. When combined with incremental

SAT solving, dramatic speedups in the run time of the total routine can be obtained.

3.3.3 Extension to Indirect Sequential Synthesis

The SAT-based resubstitution method presented in [Lee et al., 2007] is a purely com-

binational technique in that it cannot change the state space. The improvements

presented above, specifically Section 3.3.2.1, make the method into a sequential syn-

thesis algorithm because they change the number of registers in the design. However,

the power to change the state space can be enhanced even more by using indirect se-

quential synthesis. Here we will consider the use of invariants as a source of sequential

don’t cares to enhance resubstitution.

Suppose that prior to resubstitution a number of invariants have been discov-

ered and proved in the sequential logic network. These invariants provide an over-

approximation to the set of reachable states, and hence an under-approximation to

the unreachable states. This under-approximation gives a set of sequential don’t cares

on which the design’s behavior can be changed without affecting the correctness of

the design.

Suppose a functional dependency exists between the registers in a design and

one register can be expressed as a function of the others. It is possible that the

resubstitution test function shown in Figure 3.2 is satisfiable but that each satisfying

counterexample requires the two circuit copies to be driven by unreachable states.

The satisfiability demonstrates that the resubstitution is impossible, but because

all counterexamples are unreachable the resubstitution can be performed without

impacting the behavior of the design while in normal operation. We need a way to

ignore these unreachable counterexamples, and the sequential don’t cares provide this

ability.
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Preprocessed Design Algorithm 15 Algorithm 15 + Invariants
Design Inp. ANDs Regs ANDs Regs Time Invars. ANDs Regs Time
Set1 / IBM01 36 2083 393 1997 223 15.33 190 1995 224 91.53
Set1 / IBM02 26 906 223 931 144 9.63 389 911 146 82.05
Set1 / IBM03 44 5977 625 9602 429 69.90 166 9520 439 197.52
Set1 / IBM04 34 3536 704 3600 415 52.87 58 3588 414 128.94
Set1 / IBM05 189 19989 743 13828 733 77.24 514 14611 728 370.94
Set1 / IBM06 40 4373 698 4330 669 32.44 17 4321 669 104.35
Set1 / IBM07 44 1124 241 1082 189 10.79 288 1030 190 92.89
Summary2 1.04 0.75 1.03 0.75
Set2 / IBM08 8 502 101 499 101 6.22 12 499 101 73.17
Set2 / IBM09 16 3258 683 3238 678 48.81 10 3232 677 175.71
Set2 / IBM10 89 4463 823 4471 814 55.29 29 3164 690 141.08
Set2 / IBM11 26 2402 530 2433 523 37.10 522 2386 521 214.00
Set2 / IBM12 114 770 199 768 197 7.69 431 754 195 88.15
Set2 / IBM13 189 5111 193 4878 167 11.84 160 4882 166 100.60
Summary2 0.99 0.97 0.94 0.94
Set3 / IBM14 38 2773 470 2773 470 10.76 123 2735 461 100.83
Set3 / IBM15 125 15796 668 11972 655 113.74 399 13113 655 256.80
Set3 / IBM16 68 2757 680 2743 675 36.55 16 2740 675 98.53
Set3 / IBM17 127 15867 654 11882 640 99.87 464 13017 640 521.74
Set3 / IBM18 125 15675 668 11977 658 127.87 306 13165 658 336.07
Set3 / IBM19 84 5958 776 6219 762 93.52 146 5560 689 154.88
Summary2 0.88 0.99 0.90 0.97

1 All experiments were run on a 1.83 GHz laptop running Linux 2.6.
2 Ratios are relative to the preprocessed AIG size.

Table 3.5: Resubstitution performance on three sets of IBM benchmarks1, with and
without invariants

A set of invariants can be leveraged by considering the invariant logic shown in

Figure 3.2. Each circuit copy has an independent logic cone that asserts that all in-

variants hold in that transition relation. The resubstitution test function is then mod-

ified to enforce that all invariants in the two copies hold. This will block unreachable

counterexamples. It is important to note that invariants give an under-approximation

to the unreachable states and hence cannot block all unreachable counterexamples.

However, the counterexamples they are able to block are helpful in enhancing the

power of sequential synthesis.

Table 3.5 shows the performance of our enhanced SAT-based resubstitution on
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three sets of IBM benchmarks. Each design was heavily preprocessed using combi-

national and sequential synthesis techniques. These preprocessing steps are able to

simplify the logic dramatically, and in our experience the original published method

of [Lee et al., 2007] is rarely able to improve on these designs further.

Because of the numerous enhancements discussed in Section 3.3.2, resubstitution

is able to reduce the size of the preprocessed designs. Note that the first set of

benchmarks is quite amenable to resubstitution while the second two sets have several

designs that cannot be optimized with the weak sequential synthesis provided by our

enhanced resubstitution algorithm.

Next, we reverted to the preprocessed designs and tried resubstitution again.

This time invariants were found and leveraged in the resubstitution effort. There

are many designs for which invariants were vital in allowing resubstitution to reduce

the number of registers in the design. This shows that reducing the occurrence of

spurious counterexamples with sequential don’t cares is important.

3.3.4 Extension to Direct Sequential Synthesis

Section 3.3.3 above showed that resubstitution can benefit from sequential don’t cares

because this information enables resubstitutions to be considered that may be invalid

on unreachable states. It is interesting to consider the type of state space informa-

tion that is helpful to resubstitution. Here we explore direct sequential synthesis

techniques applied to resubstitution by modifying the resubstitution algorithm to in-

corporate direct reasoning about the state space. This direct synthesis technique is

formed by incorporating induction (Section 14) within the inner loop of the resubsti-

tution routine.

For a basis set g1, . . . , gn and a target signal X, it is possible to express X in terms

of the basis signals if and only if for any two logical assignments to all nodes in the
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Figure 3.6: Inductive step of resubstitution by induction.

design (where the assignments to signal α are denoted α and α′ respectively):

(
(g1 = g′1) ∧ · · · ∧ (gn = g′n)

)
=⇒ (X = X ′) (3.1)

Figure 3.1 checks Equation 3.1 by considering two independent circuit copies that

can each take independent logical values. The formula is checked with additional

logic that bridges the two circuit copies. This is sufficient to check that Equation 3.1

holds combinationally in every possible state, but more sophistication is needed to

check that Equation 3.1 holds on the reachable states. We will achieve this by using

induction to check that Equation 3.1 holds.

Figure 3.6 shows the inductive step check for the inductive check of Equation 3.1.

Consider two basis elements A and B and let X be the resubstitution target. We

unroll the circuit of Figure 3.1 in order to represent two adjacent time steps. The

lower time step is driven by a symbolic state, and we constrain that Equation 3.1

holds in this time frame. The upper time step takes as input the next state produced

by the lower time step, and we check to see if it is possible to violate Equation 3.1 in
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Figure 3.7: Simultaneous base case and inductive step of resubstitution by induction.

this time step. If it is not possible to violate Equation 3.1 then we have successfully

checked the inductive step of the k = 1 inductive proof.

Unfortunately, doing a full inductive check is more complicated than just checking

the inductive step. The base case must also be checked. Typically, the base case

and inductive step are checked using two separate SAT problems. However, because

resubstitution involves using the interpolant to derive the dependency function we

would like a single proof of unsatisfiablity from which we can extract the interpolant.

Therefore it is necessary to combine the base case and inductive step into one single

SAT problem.

Figure 3.7 shows the combined base case and inductive step for our example basis

{A,B} and our target signal X. We introduce two nondeterministic variables, one

for each time frame. If the nondeterministic variable evaluates to 1 then we drive
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the time frame with the initial state instead of the state that would have been driven

in Figure 3.6. This means that depending on the valuations of the nondeterministic

variables this SAT problem checks the following three things:

1. If all nondeterministic variables are 0 then the circuit reduces to the inductive

step check.

2. If the nondeterministic variable feeding the upper frame is 1 then the circuit is

checking Equation 3.1 on all initial states.

3. If the variable for the upper frame is 0 and the variable for the lower frame is 1

then the circuit is checking Equation 3.1 on all states reachable in 1 step from

an initial state.

Two minor observations here are that 1) this checks more than is required for the

base case, and 2) there is symmetry in the nondeterministic variable assignments.

The base case for a k = 1 proof requires that we check that Equation 3.1 holds in all

initial states, but we actually check more than this. This may hurt runtime but does

not affect the results since anything that holds on all reachable states will hold on

the states that we check as well. The second observation is regarding the symmetry

in the problem formulation. Note that if both nondeterministic variables are equal

to 1 then what is checked is equivalent to the case that the upper variable is 1 and

the lower is 0. We break this symmetry by adding the constraint that the sum of the

nondeterministic variables is ≤ 1.

The SAT problem depicted in Figure 3.7 allows us to check Equation 3.1 induc-

tively. When combined with a dynamic basis (Section 3.3.2.4) it is possible to detect

the registers that can be expressed in terms of other registers. Each register that

can be reexpressed can be removed from the design and gives a net reduction in the

number of design registers. Table 3.6 examines the number of registers that can be
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Implementation Resubstitutions Found Runtime
Section 3.3.2 (no invariants) 158 64 sec
With k = 1 induction 169 50 sec
With k = 2 induction 195 242 sec
With k = 3 induction 238 360 sec

Table 3.6: Direct sequential synthesis on Set1 / IBM06

A’ B’ X’

A’ B’ X’

A B X

var

A B X

var

init

init
var var

(A = A’) ∧ (B = B’)

1

init

init
var var

0

∑ ≤ 1

var

var

∑ ≤ 1

Figure 3.8: Simplified version of Figure 3.7 that is suitable for interpolation.

removed as a function of the k used in the k-step induction. It is interesting to note

that on the examined benchmark, the number of resubstitutions found appears to

be quadratic in k. Clearly, the runtime also increases as k increases and the SAT

problem becomes more complicated, but these results indicate that the proof effort

can dramatically affect the synthesis results.

Table 3.6 shows the registers for which a basis was found such that Equation 3.1

holds in all reachable states. These registers are redundant and can be expressed in

terms of their basis sets. Unfortunately, to actually remove the redundant registers
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interpolation is needed, and similar to Section 3.3.1, the problem must be partitioned

into two parts before it can be interpolated. Each signal that is shared between the

partitions will appear in the interpolant.

There is no clear way to partition the problem in Figure 3.7. In each possible

partitioning there exists many signals that are shared between the two parts, and

there is no partitioning such that the resulting interpolant can be interpreted as the

dependency function. In order to get a clean partitioning, we simplify the problem

as shown in Figure 3.8. The constraint on the lower frame of the inductive check

was dropped, and the nondeterministic variables were replicated. This simplification

weakens induction and means that many valid resubstitutions that previously could

be proved will now be falsified by spurious counterexamples. Note that the resubsti-

tutions found in this manner are still sequential in that the resubstitutions may not

be valid on unreachable states. The simplification allows the problem to be cleanly

partitioned as in Section 3.3.1 where one partition represents the onset of X and the

other the offset of X. This means that the resulting interpolant can be interpreted

as the dependency function, and resubstitution can proceed as before.

Table 3.7 examines the performance of three versions of the resubstitution algo-

rithm:

1. The enhanced combinational resubstitution from Section 3.3.2.

2. A direct sequential synthesis resubstitution using k = 1 induction.

3. Another direct sequential synthesis resubstitution using k = 2 induction.

Each of these three algorithms was examined in the following way:

1. A preprocessed design was optimized using the selected resubstitution algo-

rithm. The number of registers removed was recorded.

2. Invariants were discovered and used as a source of sequential don’t cares.
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Section 3.3.2 k=1 induction k=2 induction

Design
∆ Regs

(no invar.)
∆ Regs
(invar.) Sec.

∆ Regs
(no invar.)

∆ Regs
(invar.) Sec.

∆ Regs
(no invar.)

∆ Regs
(invar.) Sec.

0 138 8 193.85 123 18 188.79 131 16 248.5
1 82 3 183.98 150 3 300.5 150 21 418.24
2 184 2 342.6 193 2 383.85 189 56 855.37
3 263 22 240.71 247 30 217.41 261 27 235.63
4 10 9 359.98 11 7 266.74 20 9 787.53
5 28 0 289.51 34 2 352.38 108 22 670.76
6 48 3 184.38 49 3 162.06 49 4 178.62
7 0 0 168.16 0 0 140.83 0 0 152.59
8 5 218.04 5 1 273.03 265 21 227.28
9 6 6 229.49 6 9 189.54 12 10 368.93

10 8 2 301.17 7 3 306.9 8 3 833.01
11 2 1 179.68 3 2 148.92 10 2 189.9
12 2 0 288.9 2 0 215.29 2 0 620.15
13 0 6 218.39 0 6 342.07 0 6 479.38
14 33 1 193.47 32 2 157.71 32 3 191.31
15 15 0 396.18 14 1 356.03 18 2 1024.35
16 1 2 257.73 2 1 201.7 14 1 1219.71
17 11 0 334.35 11 1 323.04 17 1 966.37
18 16 1 376.1 16 1 294.92 19 2 686.36
19 15 5 404.21 17 6 233.93 22 14 437.34

313 25 3 210.66 26 2 173.25 29 2 277.26

Table 3.7: Direct sequential synthesis with resubstitution. The relative change in design
size increased by both 1) the inductive formulation, and 2) the use of invariants.

3. The design was optimized again, but this time the sequential don’t cares were

used. This allows us to quantify the benefits of indirect sequential synthesis in

terms of the number of registers removed.

Looking only at the direct sequential synthesis results in Table 3.7, it is clear that

using an inductive proof technique is much more effective in reducing the number of

registers than is the combinational proof technique. In our implementation, k = 1 is

currently the default proof technique, and the user can specify a larger k if he or she

is willing to spend the runtime for a better synthesis result.

Note in these experiments, sequential don’t cares are used in conjunction with an

inductive proof. The result is a hybrid of direct and indirect sequential synthesis,
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and the resultant proof leverages more information about the state space than either

direct or indirect synthesis techniques alone.

3.3.5 Comparing Direct and Indirect Synthesis

Table 3.7 gives us an insight into the merits of direct and indirect sequential synthesis

as applied to resubstitution. Indirect sequential synthesis is performed by using in-

variants as a source of sequential don’t cares, and direct sequential synthesis is done

by performing an inductive proof inside of the resubstitution algorithm itself.

Direct and indirect techniques benefit resubstitution in orthogonal ways. Direct

sequential synthesis can often remove more registers than indirect sequential synthesis,

indicating that the state space properties exploited by the inductive proof can be

stronger than those discovered by invariants. Conversely, adding invariants to an

inductive proof can increase the number of registers removed. This indicates that

at times the invariants discover important state relationships not captured by the

inductive formulation. In this way the direct and indirect techniques are orthogonal.

Each can strengthen the synthesis in unique ways, and the best results are obtained

by combining both direct and indirect sequential synthesis techniques.

Although the techniques are orthogonal, the direct sequential synthesis (inductive

proof) seems to be more beneficial. If the combinational method of Section 3.3.2

is strengthened using either direct or indirect methods then the direct sequential

synthesis will yield more register reductions than the indirect techniques. This is

because induction seems to be more effective in uncovering the state relationships

that are important for proving that a resubstitution is valid (Equation 3.1). This

indicates that if both direct and indirect techniques cannot be performed in the

allotted runtime then the direct techniques are preferred because they will better

benefit resubstitution.
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merge(A,B)

B A
(Replace A with B)

Figure 3.9: Merging signals A and B by rewiring and removing dangling nodes.

Although the direct sequential synthesis seems stronger, indirect methods have one

distinct advantage: the results can be recycled. The invariants that are discovered

(and the resultant sequential don’t cares) can be used in many synthesis algorithms in

addition to resubstitution. In this way, the runtime needed to derive these invariants

can be amortized, and the invariants can effectively be very cheap to compute. In

contrast, the runtime needed for an inductive proof is comparable for that needed

to prove invariants, but the inductive proof runtime cannot be amortized. Thus a

sequence of direct sequential synthesis algorithms is far slower than a single invariant

discovery pass followed by a sequence of indirect sequential synthesis algorithms.

3.4 Case Study: Sequential ODCs

3.4.1 Merge-Based Algorithms

Consider merging signals as a basic synthesis operation. This operation, illustrated

in Figure 3.9, involves rewiring such that the fanouts of a signal are driven by a

different signal. This leads to circuit simplification as 1) one of the signals can be

removed from the circuit and 2) the merge may cause downstream logic to appear

redundant. This merge operation can be applied in multiple contexts to form the

basis of many synthesis algorithms.

Synthesis algorithms based on merging signals have been extensively studied in
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Figure 3.10: Taxonomy of merge-based optimizations. Arrows show that an algorithm
generalizes another.

the past, as examined in Figure 3.10. Significant circuit optimizations can be realized

using merge-based algorithms, but there is more potential for optimization with this

simple yet powerful operation. All previous approaches are either limited in scope or

do not take advantage of the sequential nature of the design.

SAT and BDD sweeping are two early algorithms based on merging sig-

nals [Kuehlmann and Krohm, 1997; Brand, 1993; Kunz, 1993; Kunz et al., 1997;

Goldberg et al., 2001; Lu et al., 2003]. These algorithms attempt to prove that

pairs of signals are combinationally equivalent and then merge the pairs successfully

proved. These algorithms are used extensively in modern synthesis and verification

frameworks [Baumgartner, 2006; Synthesis and Group, 2008] because they scale well

and provide significant reductions in the number of AIG nodes.

Generalizing on the previous algorithms, [van Eijk, 2000] finds sequentially equiv-

alent signals by proving that pairs of signals are equivalent in every reachable state, a

superset of the merges found by SAT and BDD sweeping. The success of this method

depends on the design style, but in general the method is effective in reducing the
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AIG node count.

Techniques based on redundancies represent another class of merge-based algo-

rithms. These techniques prove that a signal, not necessarily constant, can be safely

merged with a constant without producing a difference at the COs, improving the

AIG node count by enabling constant propagation. Combinational redundancy meth-

ods are used also in industrial flows to enhance stuck-at-testability [Devadas et al.,

1994].

Recently there has been a renewed interest in combinational observability

merges [Zhu et al., 2006; Plaza et al., 2007]. This class of algorithms finds ordered

pairs of signals that may not be strictly equivalent yet will not produce a difference

at the COs after merging. This takes advantage of logic reconvergence that masks

out the signal differences as the values propagate toward the outputs. The merges

found by this method are a superset of those found by SAT/BDD sweeping but are

in general a different superset than sequentially equivalent signals. These merges are

also a superset of those found by combinational redundancy methods.

3.4.2 Introduction to ODC-based Simplifications

A signal s is observable with respect to an output o if toggling s can cause o to

toggle. Clearly, for each signal s there should be an input vector and output o such

that s is observable with respect to o because otherwise s would be redundant

and can be removed from the circuit without affecting the outputs. While fully

redundant signals are rare, partially redundant signals abound. Often for a signal

s there exist circuit conditions under which the value of s cannot affect any circuit

outputs. These conditions are known as Observability Don’t Cares (ODCs), and

s can be modified freely under the ODCs without affecting the circuit outputs. For

correct operation, only the circuit outputs need to be preserved, and a logic synthesis
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algorithm is free to modify internal (non-output) signals. By modifying s on the

ODCs, significant optimizations can be made in terms are area, delay, and power.

Classical ODC algorithms attempt to derive the ODC conditions at each node [Has-

soun and Sasao, 2002]. They then resynthesize that node, and proceed to calculate

ODCs and resynthesize the next node in the circuit. Optimizations have been made

to derive compatible ODCs (CODCs) [Savoj and Brayton, 1990] such that each

node’s CODC set can be precomputed before any optimization is done. The resultant

optimization is then guaranteed to not change the precomputed CODC sets.

Despite the impressive body of previous work, ODCs are not currently used for

the following reasons:

• It is difficult to derive the ODCs in a scalable way for large circuits. These

are traditionally derived with BDDs which do not scale to large and complex

circuits.

• It is difficult to store the ODC conditions. Traditionally these are stored using

BDDs that may not be memory efficient.

• It is difficult to resynthesize a portion of the logic network once the ODCs are

known. Traditional don’t care synthesis uses BDDs and therefore has difficulty

scaling to large circuits.

Recently there have been two papers that present methods to perform more scal-

able ODC simplifications using a SAT-based approach [Zhu et al., 2006; Plaza et

al., 2007]. These approaches are more limited than the historical work because they

only allow node merges as the underlying synthesis operation, but they are far more

scalable because they do not require the set of ODCs to be explicitly derived.

Algorithm 18 outlines the main idea of ODC-based merging for combinational

logic networks4. Two signals A and B are selected, and the algorithm is called to

4The specific details of Algorithm 18 differ between papers.
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1: function mergeODC(A, B, design)
2: out := ouputs of design
3: cutB := cut between B and out
4: for all (c in cutB) do
5: if (replacing B with A changes c) then
6: return “merge impossible”
7: end if
8: end for
9: replace B with A

10: return “merge succeeded”
11: end function

Algorithm 18: ODC-based merging.

A B

C D E

A B

C D E

Pairwise Equal?

Figure 3.11: Detecting if a merge is observable in a circuit.

merge the signals if the merge does not change the circuit outputs. Note that this a

directed merge in that we replace B with A but it may not be legal to replace A

with B. In the algorithm, a set of nodes cutB is derived such that all paths from B

to an output go through a node in cutB
5. Then analysis is performed to see if any of

the nodes in cutB are affected by the replacing of B with A. If none of these nodes

are affected then the directed merge is performed and the circuit is simplified.

The check that replacing B with A does not affect any nodes in cutB can be

5This is a cut on the output side of a node. Input cuts were considered in Section 2.2.4
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Figure 3.12: Simplification of a simple combinational logic network with ODCs.

performed using a single SAT call, as illustrated in Figure 3.11. Suppose the cut

consists of the nodes C,D,E. These nodes separate A and B from all the circuit

outputs6. To check that C,D,E are unaffected, we speculatively perform the merge

operation and then compare the modified circuit against the original circuit. If the

SAT solver cannot produce an input valuation that drives a pairwise difference on

any of the cut signals then the merge is not observable at the cuts and therefore not

observable at the outputs.

Previous approaches have been tailored to combinational optimization by failing

to consider any reachable state information. Here we explore both direct and indirect

sequential synthesis extensions to this basic algorithm.

Example 21. Combinational Simplification With ODCs

Consider the simple circuit shown in Figure 3.12A. This circuit can be dramat-

ically simplified using ODC techniques as described in Algorithm 18.

Suppose we suspect that B can be replaced by A. We let cutB be just the single

6In some literature, this is referred to as a dominator set.
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output z and test that this merge does not affect z. This can be reasoned like

so: A = 1 =⇒ Z = 1 and the value of B was not significant in deriving the

value of Z. If A = 0 then A = B and so replacing B with A does not affect the

circuit.

While this reasoning was deductive and informal, such a check can be auto-

mated by speculatively simplifying the circuit and then checking that z′ from the

modified circuit is equivalent to z from the original circuit. This check can be

performed using a single Boolean satisfiability call, similar to Figure 3.11.

Because replacing B with A does not change the circuit output, we are free to per-

form this replacement operation while preserving combinational equivalence with

the original circuit. The resulting simplified design is shown in Figure 3.12B.

Simple circuit simplifications then give the simpler circuit of Figure 3.12C.

3.4.3 Extension to Indirect Sequential Synthesis

3.4.3.1 Utilizing the Invariants

ODC-based merging can be made into an indirect sequential synthesis method by

considering invariants. Invariants provide an over-approximation to the set of reach-

able states, and this over-approximation can be used to constrain the states searched

while trying to satisfy SAT problem such as Figure 3.11.

To constrain a SAT problem, we augment the problem with the invariants that

were proved. Consider Figure 3.13. The left circuit copy represents the original

design, and the right copy represents a design that has been optimized with a merge.

For a given output cut, we check that all cut nodes are pairwise equal. If a set of

invariants has been proved, we can strengthen this by requiring all invariants to hold

in both the left and right copies.

If the SAT problem of Figure 3.13 has a counterexample then the ODC-based
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Figure 3.13: Extension of Figure 3.11 to indirect sequential synthesis.

merge is not valid (with respect to the given cut). [Zhu et al., 2006; Plaza et al.,

2007] propose ways to either 1) derive a new cut that the merge can be tested against,

or 2) conclude that the merge is not valid for any cut. By using the invariants to

constrain the SAT problem, the number of satisfying assignments decreases because

each satisfying assignment must satisfy all invariants. This decreases the likelihood

of the problem being satisfiable, and therefore increases the chance that the merge is

valid.

The changes to the SAT problem can also be viewed from a state space perspec-

tive. Suppose the unconstrained SAT problem of Figure 3.11 is satisfiable and the

constrained version of Figure 3.13 is not. This means that the invariants have blocked

the satisfying assignments. The invariant logic evaluates to 0 only on unreachable

states, and this means that the counterexample found in Figure 3.11 was an unreach-

able state. By utilizing the invariants we allow merges to proceed if they only change

the behavior of the cut on the subset of the unreachable states expressed by the
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Table 3.8: Performance On A Set of IBM Synthesis Benchmarks
Combinational Indirect Sequential

Original Observability Observability
Design Latch Ands Latch Ands Proved Invariants Latch Ands
ibm4 255 1845 255 1520 60 255 1515
ibm5 93 925 93 759 5269 93 753
ibm6 151 811 142 661 2884 142 657
ibm7 428 3173 428 2710 60 428 2710
ibm8 207 3031 207 3028 1889 205 3001
ibm9 354 3896 353 3569 7695 353 3567

99.01% 97.90% 98.85% 97.47%

invariants. Therefore the strengthened ODC-based merge algorithm is a sequential

synthesis algorithm.

3.4.3.2 Experimental Results: Synthesis Benchmarks

The effect of leveraging invariants in ODC-based merging was first evaluated on 6

synthesis benchmarks taken from an IBM microprocessor design. The results are

shown in Table 3.8.

The designs were first processed with combinational ODCs, similar to [Zhu et al.,

2006; Plaza et al., 2007]. This optimization reduced the number of registers by 1%

and reduced the number ANDs in the AIG by 2%. The register reductions were due

to a COI reduction being run on the simplified logic cones. In some cases, registers

would fall out of the COI and subsequently be removed from the design. Therefore,

despite this synthesis algorithm being a purely combinational method, it can cause

registers to be removed.

In a second pass, the original designs were processed with indirect sequential

synthesis. An invariant discovery routine, implemented using the ideas of Chapter

2, was run for 10 minutes, and the resulting invariants were leveraged in the ODC

analysis. With this additional information about the reachable state space, the ODC

routine was able to eliminate 1.15% of the registers and 2.5% of the AND gates.
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Clearly, invariants are able to help ODC analysis, but the improvements due to

invariants are very modest.

3.4.3.3 Experimental Results: Verification Benchmarks

To further examine the effect of invariants on ODC analysis, we turned to verifica-

tion benchmarks. The IBM formal verification tool SixthSense is used to perform

unbounded property checking on IBM microprocessor designs, and many synthesis

algorithms are used inside SixthSense to reduce the size of the model being verified.

ODC simplifications, based on [Zhu et al., 2006; Plaza et al., 2007], is implemented

inside SixthSense.

83 designs, each with a single safety property, were identified such that this prop-

erty is impossible to prove using any of the algorithms implemented in SixthSense. Of

these 83 properties, the reductions offered by the existing ODC simplifications allow

4 of the properties to be solved using interpolation.

We now ask the questions: do invariants help ODC simplifications in this context,

and do these simplifications increase the number of properties that can be solved with

interpolation?

Table 3.9 examines indirect sequential synthesis on these benchmarks. An in-

variant discovery routine was given 10 minutes to find invariants, and the proved

invariants were leveraged in the ODC simplifications. The addition of these invari-

ants did not noticeably slow the ODC algorithm, but it did improve the results.

Relative to ODC simplification that did not use invariants, the invariants enabled a

further reduction of 1.5% in the number of ANDs and 0.7% in the number of registers.

Although the design size reductions seem modest, they successfully enable ver-

ification to be completed on the design. Recall that the combinational ODC sim-

plifications allow 4 of the 83 difficult properties to be verified using interpolation.

Strengthening the ODC method with invariants allows an additional 5 of the 83
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Table 3.9: Performance On A Set of 83 IBM Verification Benchmarks
Combinational Indirect Sequential

Original Observability Observability
Design Ands Registers Ands Registers Ands Registers
odcSynth 3 1452 184 1443 184 1408 184
odcSynth 4 2553 271 2542 271 2486 271
odcSynth 5 1452 184 1443 184 1408 184
odcSynth 6 2553 271 2542 271 2486 271
odcSynth 11 2421 146 2183 146 2337 146
odcSynth 17 429 94 429 94 427 94
. . . . . . . . . . . . . . . . . . . . .
odcSynth 84 7547 735 3948 735 3922 734
odcSynth 85 7555 737 4026 737 4049 737
odcSynth 87 2403 533 2376 532 2228 532
odcSynth 88 2411 534 2377 533 2228 532

100.00% 100.00% 94.09% 99.61% 92.69% 98.94%

properties to be verified. This improves the verification tool and allows it to solve a

property that was previously impossible.

3.4.4 Extension to Direct Sequential Synthesis

Here we consider an adaption of Algorithm 18 to direct sequential synthesis [Case

et al., 2008a]. We wish to find merges that preserve all circuit output values in all

reachable states. Unlike the combinational ODC case, merges that may cause outputs

to differ on unreachable states are also considered. This increases the optimization

potential of the ODC method.

This work is limited in the sense that it will always preserve the values of the next

state functions on the reachable states. Viewed from a state transition graph (STG)

perspective, our method would preserve the reachable part of the STG exactly, unlike

some sequential synthesis methods (eg. retiming [Leiserson and Saxe, 1991]). In this

work we limit ourselves for computational reasons and cannot claim to utilize full

sequential observability, just a limited form of it. This restriction may hurt our results

but introduces several nice synthesis properties. Namely, the scan chain is preserved
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Figure 3.14: Propagating the controlling path backward through an AIG.

and post-silicon debugging is not complicated by a change in latch functions.

The combinational outputs (COs) is a set of signals comprised of the outputs

and next state functions. This is sequential synthesis that will always preserve the

values of the COs in all reachable states. The check that no COs are modified by the

merge in any reachable states is performed directly using inductive reasoning.

3.4.4.1 Finding Merge Candidates

In the first step of our algorithm we would like to quickly find a set of candidate

merges that is a superset of the CO-preserving merges. That is, we would like to find

ordered pairs of signals (A,B) such that it is likely that for all reachable states S that

one of the following is true:

• A = B in state S.

• Merging A and B will not produce a difference at a CO in S.

In the language of [Zhu et al., 2006; Plaza et al., 2007] this is: for all reachable states,

either A = B or B is not observable. The merge operation is free to replace A with

B because B being unobservable implies that the difference will not be visible at a

CO.

To quickly find a set of candidate merges we use a slightly weaker notion than

observability: whether or not a signal lies on a CO’s controlling path. If an AIG has

been simulated for a single concrete input then the controlling path can be propagated

backwards through the AIG as shown in Figure 3.14. Note that in the 0·0 = 0 case we
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choose to conservatively conclude that neither of the inputs are observable, making

the marked controlling paths smaller but guaranteeing that all marked signals have

the ability to influence the value at a CO. Toggling any marked controlling path signal

will cause at least one CO to toggle. The controlling signals are therefore observable

at the COs.

1: // Given “design” and a number of reachable input “states”
2: sim = simulateDesign(design, states);
3: controlling = extractControllingPaths(design, sim);
4: for all pairs of signals (A, B) do
5: if (sim.A == sim.B) || ! controlling.B then
6: (A, B) is a candidate merge;
7: end for

Algorithm 19: Extracting candidate merges from simulation.

Our method to find merge candidates is shown in the pseudocode of Algorithm

19. We simulate the circuit with a number of known-reachable input vectors and

extract the controlling paths for each simulation vector. Then we use the simulation

and controlling path information to check for each ordered pair of signals (A,B) if

A = B or B is not controlling. For simplicity, an O(n2) algorithm is presented here,

but an improvement is discussed in Section 3.4.5.

Example 22. Extracting Direct ODC Candidates

An example of this method for extracting candidate merges is illustrated in Fig-

ure 3.15. It can be proved that if the initial state is BC = 00 then it is possible

to merge such that AB is replaced with A⊕ C:

• BC = 10 is unreachable.

• A⊕ C + AB = A⊕ C for every reachable states

• It is safe to replace AB with A⊕ C at Z’s OR gate.

This merge cannot be an equivalence because the signals have differing support.

It is not a combinationally observable merge because we need to know that BC =

10 is not reachable. This merge can only be found using sequential observability.
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Figure 3.15: Discovering sequential observable merge candidates. (While we use
AIGs, rich gate types are shown for compactness.)

We can algorithmically discover this candidate merge by simulating the initial

state BC = 00 along with a randomly selected value for the input A. Then

highlight the controlling paths that lead up to each CO. According to the simu-

lation information AB 6= A⊕ C, but AB is not on the controlling path to any

CO. Therefore the ordered pair of signals (AB,A⊕ C) becomes a candidate for

merging. Altering the value of the AB signal will not produce a difference at

any CO.7

3.4.4.2 Proving Candidates

In order for our synthesis algorithm to be sound, we must prove that for all

reachable states, modifying the circuit with the candidate merges will not produce a

difference at a CO. This will be formulated as a set of properties that are then proved

by induction on the state space.

The correctness and compatibility of a set of candidate merges can be checked

by building a miter circuit similar to Figure 3.16. Two copies of the circuit are

compared: the original circuit and a copy that has been simplified with the candidate

7The sequentially observable merge (Z, A⊕ C) is equivalent.
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1: // Given “candidates” merges on “design”
2: while (1) do
3: mod = mergeCandidates(design, candidates);
4: miter = compareOutputs(design, mod);
5: if (checkInduction(miter)) then
6: break ;
7: else
8: pruneCandidates(design, candidates, getCex());
9: end if

10: end while

Algorithm 20: Proving merges valid.

  

= ??

= ??

Figure 3.16: Proving that a set of merges does not change any CO.
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merges. These two circuit copies are driven by the same inputs and state, and logic

is synthesized to check that the COs are the same.

1: // Given “counterexample”, “candidates”, and “design”
2:
3: // fast but incomplete method (checks correctness)
4: Simulate counterexample and extract controlling paths;
5: for all (A, B) ∈ candidates do
6: if (sim.A 6= sim.B) && controlling.B) then
7: discard (A, B);
8: end for
9: if (∃ discarded candidate) then return ; // Skip slow step.

10:
11: // slow but complete method (checks compatibility)
12: stack = (candidates);
13: goodCands = nil ;
14: while (!stack.empty) do
15: currCands = stack.pop();
16: mod = design with merged goodCands and currCands ;
17: Simulate design and mod with counterexample;
18: if (∃ output o s.t. sim.design.o 6= sim.mod.o) then
19: if (currCands.size() == 1) then
20: discard currCands ; // Drop single culprit.
21: else
22: cand1, cand2 = divideInHalf(currCands);
23: stack.push(cand1, cand2 ); // Divide and conquer.
24: end if
25: else
26: goodCands += currCands ;
27: end if
28: end while

Algorithm 21: Discarding bad merge candidates.

Note that constraining the merges such that the next state is not altered greatly

simplifies the miter circuit. Without this constraint each circuit in Figure 3.16 would

have an independent state, doubling the number of latches in the miter. Here we

choose to simplify our miter and subsequent proof, possibly at the expense of the
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optimization results. This constraint also implies that the design’s reachable STG

will not be altered.

The miter circuit can be viewed as a single sequential machine with a set of

properties to be checked, one for each CO equivalence. We prove these properties

using 1-step induction [Bjesse and Claessen, 2000]. This is an incomplete unbounded

verification technique that can prove some of the properties true for all reachable

states.

Algorithm 20 illustrates how induction is used to find a subset of CO-preserving

candidate merges. Counterexample states are produced where the two circuits in the

miter are not equivalent. By removing the merges that caused the miscompare and

trying induction again, a greatest fixed point algorithm is developed that will produce

a set of merges that when applied will yield an simplified equivalent circuit.

One significant challenge is to determine which candidate merges are faulty given

the fact that the simplified circuit produces a differing output. This task is performed

by the pruneCandidates() function, outlined in Algorithm 21. Two methods are

utilized to find the merges responsible for the output mismatch.

The first (lines 3-9) is a fast method that only checks that each merge is individ-

ually correct, similar to Section 3.4.4.1. This method is fast but incomplete because

merges can interact with each other, and a set of merges being individually correct

is no guarantee they are compatible as a group. This method is used as a fast filter

before calling the second, more expensive, method.

The next method (lines 11-28) will check the compatibility. It does this by per-

forming a binary search over subsets of the candidates until it finds individual can-

didate merges that cause a local reduced model to have a differing circuit output. It

is able to check compatibility but is slow because for each subset it must simulate

a reduced circuit model. The fast method is used whenever possible, and the more

expensive method is only used when the first method fails to find a guilty candidate.
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Table 3.10: Candidate Merge Statistics

Redund. Choices / Avg. Level For
Design Merges Nodes Nodes Redund. Red. Rep.
ibm4 3215 1498 616 5.1 7% 21%
ibm5 2469 715 409 4.9 11% 27%
ibm6 2167 673 381 4.7 12% 17%
ibm7 4323 2668 705 3.7 12% 37%
ibm9 8688 3478 1593 4.1 11% 29%

0.45 4.5 10% 26%

These two methods together will greedily isolate the first compatible set of merges

that preserves the COs under the given counterexample. There are often multiple

compatible subsets which can be exploited by applying our proposed synthesis algo-

rithm multiple times.

3.4.4.3 Using the Candidates

We often need to simplify a circuit using a set of candidate merges. This is done both

in checking the merges as in Figure 3.16 and also in constructing the final simplified

circuit.

Producing a simplified circuit from a set of candidate merges is not simple. Table

3.10 gives statistics on the set of candidate merges as examined periodically through-

out a run of our tool. Each candidate merge is an ordered pair of signals (redundant,

replacement) where redundant will be replaced with replacement. On average, the

candidate merges suggest replacements for approximately 45% of the design nodes,

and for each redundant node there are an average of 4.5 candidate replacements. Se-

lection of the replacement to use has a large impact on ability of our algorithm to

minimize the AIG size, and heuristics that select the replacement to use are impor-

tant.

In selecting a replacement for a redundant node, it is very important to not
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introduce a combinational cycle. Table 3.10 shows that on average for a circuit with

N levels, the redundant node is at level 10% · N , and the replacement is node is at

level 26% · N . Since a node will often be replaced with one of a higher level, we

can expect combinational cycles to abound. This also means that the upper 74% of

the circuit usually has few candidate merges, a potential basis for future heuristics

research.

Experimentally we found that the best performance could be obtained not by

replacing the entire signal redundant with replacement but by selectively replacing

each of the fanouts of redundant. This introduces the flexibility to replace each

fanout with a different signal, thereby improving the optimization potential. It also

provides an easy way to handle combinational cycles; if doing replacing redundant

with replacement would introduce a cycle and redundant is a multi-fanout net then

the replacement can still occur on the subset of the fanouts not involved in the cycle.

This generalization greatly improved the quality of our synthesized designs.

The heuristic used in this work is shown in Algorithm 22. Each candidate merge

is passed to this routine to incrementally simplify the network. The general strategy

used is to 1) avoid cycles, 2) enable constant propagation, 3) remove fanouts from

low-fanout nodes in the hope that they can be removed after simplification, 4) greedily

enable the maximum amount of structural hashing benefits, 5) as a tie breaker, remove

fanouts from nodes that have a low ID.

3.4.5 Enhancing Scalability: Avoiding O(n2) Candidate Merge

Checks

In the method to find candidate merges given in Section 3.4.4.1, each pair of signals

in the design is examined. The resulting O(n2) complexity is a major problem on

designs with a large number of signals n.
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1: // Given a merge with signals (redundant, replacement)
2: for all fanouts out of redundant do
3: if (replacement ∈ trans fanout cone(out)) then
4: Drive out with redundant // Avoid a cyclic circuit
5: else if (redundant or replacement is constant) then
6: Drive out with (constant) // Propagate constants
7: else if (redundant or replacement has ≤ 2 fanouts) then
8: Drive out with (higher fanout) // Remove low-fanouts
9: else if (struct hash gain(replacement → out) 6=

struct hash gain(redundant → out)) then
10: Drive out with (better gain) // Maximize hash gain
11: else if (num fanouts(replacement) 6=

num fanouts(redundant)) then
12: Drive out with (higher fanout) // Remove low-fanouts
13: else
14: Drive out with (higher node ID) // Remove low-IDs
15: end if
16: end for

Algorithm 22: Using a merge to simplify the logic network.

Table 3.11: Candidates In The IBM Benchmarks

Sig. Pairs Tested
Design (Using BK-Trees)
ibm4 19.29%
ibm5 42.03%
ibm6 27.40%
ibm7 24.25%
ibm9 28.50%
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Papers discussing combinational observability merges [Zhu et al., 2006; Plaza et

al., 2007] have proposed heuristics to reduce the average complexity of this step, but

these heuristics are inadequate because they fail to handle a large number of simu-

lation vectors. In this section, we discuss a method to reduce this O(n2) complexity

while handling large amounts of simulation data resulting from our semi-formal anal-

ysis.

Burkhard-Keller (BK) Trees are an algorithm and datastructure used to quickly

find points in a space that are “close” to a given reference point [Burkhard and Keller,

1973]. More formally, given a set of points, a metric d(·, ·), a point A, and a constant

φ, BK-Trees can be used to find points B such that d(A,B) ≤ φ. BK-Trees exploit

the triangle inequality to bound the search for feasible B’s and only need to touch a

small part of the search space to answer the query.

BK-Trees can be utilized to speed up the search for candidate merges. Given

design signals A and B with simulation vectors sim.A and sim.B, define the pseudo-

metric d(A,B) as d(A,B) = ||sim.A⊕sim.B|| where || · || denotes the number of ones

in a vector. This is not a true metric because it is not positive definite (referred to

as a pseudometric [Steen and Seebach, 1970]), but BK-Trees do not rely on positive

definiteness and this pseudometric can be safely used. With formalism, we fix node

B and utilize controlling.B, a mask expressing for which simulation vectors B is con-

trolling, to find the A’s such that d(A,B) ≤ ||!controlling.B||. The set of satisfying

A’s is a superset of the set of A’s satisfying ||(sim.A ⊕ sim.B) · controlling.B|| = 0

and therefore a superset of the A’s that can be safely merged with B.

In this way, BK-Trees are used to narrow the search for B’s that can be merged

with a given node A. The effectiveness of this approach is shown in Table 3.11 where

the percent of the search space that was examined is shown in the column “Signal

Pairs Tested.” While this doesn’t reduce the search space exponentially, it is effective

in improving the runtime in practice. Furthermore, BK-Trees are easy to implement
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Table 3.12: Performance Across Benchmark Suites
Sequential Combinational

Benchmark Suite Preproc. Observability Observability
Suite Designs Latches Ands Latches Ands Latches Ands Latches Ands
IBM 5 248 2384 0.98 0.82 0.99 0.96 1.00 1.00
ISCAS89 28 109.39 751.64 0.95 0.72 1.00 0.90 1.00 1.00
PicoJava 64 627.83 2943.55 0.87 0.69 0.92 0.95 0.92 1.00

and a query over a BK-Tree takes almost constant time.

3.4.5.1 Enhancing Scalability: Selection of Proof Technique

In Section 3.4.4.2, the candidate merges are checked with a miter circuit and a series

of sequential properties that can be proved using any unbounded technique. In this

work we have chosen to use induction because it scales well, but it is well known

that induction is an incomplete technique that is not able to prove all true properties

[Prasad et al., 2005]. In a verification domain this behavior is not desirable because of

the requirement that all properties be proved. In a synthesis domain, this incomplete

behavior is an acceptable trade-off for the scalability of induction. Merges disproved

by induction are dropped, and because of the incompleteness some correct merges

might be dropped along with the incorrect ones, reducing synthesis results.

We experimented with stronger induction formulations, namely K-step induction

with unique state constraints [Bjesse and Claessen, 2000]. Increasing K rarely im-

proved our optimized AIG node count, and increasing K beyond 1 significantly hurt

the runtime of our method. Because of the near-independence of the results from the

complexity of the induction formulation, in our implementation we always use simple

or K = 1 induction.
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Combinational Synthesis +
Simple Sequential Analysis

Original Design

Sequentially
Equivalent Signals

Sequential
Redundancies (3x)

Combinational Observability
Merges (6x)

Sequential Observability
Merges (6x)

Preprocessing
Steps

Figure 3.17: Algorithmic flow used in our experiments.

Table 3.13: Performance On A Set of IBM Benchmarks
Sequential Combinational

Original Preprocessing Observability Observability
Design Latch Ands Time Latch Ands Time Latch Ands Time Latch Ands
ibm4 255 1845 49.36 253 1539 136.2 252 1453 23.64 253 1539
ibm5 93 925 7.72 93 738 42.51 93 679 5.4 93 738
ibm6 151 811 8.24 142 657 30.35 140 651 7.49 142 657
ibm7 428 3173 57.34 426 2684 302.15 422 2628 169.13 426 2684
ibm9 354 3896 21.9 353 3482 167.49 352 3447 103.35 353 3470

1.00 1.00 0.98 0.82 0.99 0.96 1.00 1.00
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3.4.5.2 Experimental Results

Sequential observability and all other algorithms in Figure 3.10 were implemented

in C++ inside of a synthesis and verification environment. The environment uses

ABC [Synthesis and Group, 2008] for combinational synthesis and MiniSat [Een and

Sorensson, 2008] for SAT solving.

Combinational observability merges as presented in [Zhu et al., 2006; Plaza et al.,

2007] is the best merge-based synthesis algorithm in the literature to date. We will

compare our work to combinational observability on 3 benchmark suites: a set of

processor blocks from IBM Corporation, the ISCAS ’89 benchmarks, and a selection

of blocks from the Sun PicoJava processor [Microsystems, 2008].

To fairly compare combinational and sequential observability, each design was first

heavily synthesized as shown in Figure 3.17. Combinational synthesis, including SAT

sweeping and rewriting [Mishchenko et al., 2006] along with simple techniques to find

structurally equivalent latches and sequentially constant latches [Bjesse and Kukula,

2005] was first applied. This was followed by processing of sequential equivalences

and sequential redundancies. The sequential redundancy algorithm was run 3 times in

order to build a high quality set of simulation vectors as discussed in Section 2.3. The

designs at this point are labeled as “Preprocessed” in Tables 3.13 and 3.12. Finally, on

two separate runs the preprocessed design was optimized using either combinational

observable merges or sequentially observable merges. The observability algorithms

were run 6 times to allow iterative circuit gain to saturate so that the maximum

cumulative gain could be measured.

Results on the two sets of industrial benchmarks and the one set of academic

benchmarks are shown in Table 3.12. For the columns labeled “Preprocessing” the

numbers of AIG nodes and latches are given relative to the original design. In the

sequential observability and combinational observability columns, the AIG nodes and
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latches are given relative to the preprocessed design. Sequential observability is able to

reduce the node counts of the preprocessed designs by about 6% and the latch counts

by about 3%. The node count reduction is dramatically more for sequential observ-

ability than it is for combinational observability, and this indicates that reachable

states are a very important degree of freedom to consider in an observability-based

algorithm. It is also interesting that while this technique does not directly target

latch reductions, occasionally all fanouts are removed from a latch, causing the latch

to be removed.

Detailed runtimes for the IBM designs are shown in Table 3.13. Sequential ob-

servability is slower than combinational observability, but this slowdown is expected

because we must check the property inductively across two time frames instead of

combinationally in just one time frame. The slowdown is not severe, and the sequen-

tial case is still scalable and not likely to substantially increase the total runtime of

industrial tools.

In our experiments, the combinational observability method did very little on

average. We are starting from a heavily synthesized design point, and combinational

observability is not able to improve upon this design point further. This indicates

that the types of optimizations done by combinational observability are contained in

all of the preprocessing that has been done (and the preprocessing was much cheaper).

This is not true of sequential observability. Our method was able to improve upon

the preprocessed designs, sometimes significantly.

3.4.6 Comparing Direct and Indirect Synthesis

The above text described two extensions to ODC-based merging. In the first ex-

tension, invariants were found. This represents an over-approximation to the set of

reachable states, and this over-approximation was leveraged to strengthen ODC-based
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merging. This forms an indirect sequential synthesis algorithm. In the second exten-

sion, the proof technique used in ODC-based merging was modified to use induction

rather than simple combinational analysis. This forms a direct sequential synthesis

algorithm.

Tables 3.8 and 3.13 describe the performance of these algorithms on the same set

of IBM synthesis benchmarks. Although the two sequential synthesis algorithms were

implemented at different times and in different tools, we can compare them based on

their performance on this common benchmark set.

Table 3.8 shows that the indirect sequential synthesis version of ODC-based merg-

ing is slightly better than its combinational counterpart. Specifically, it was able to

reduce registers by an additional 0.2% and ANDs by 0.4%.

This can be compared to Table 3.13 which compares direct sequential synthesis

against combinational synthesis. Direct sequential synthesis is able to reduce registers

by an additional 1% and ANDs by 4%.

We can conclude that in this case direct sequential synthesis is significantly stronger

than indirect sequential synthesis. Although it was not directly examined here, we

suspect that the direct and indirect sequential synthesis methods might have orthog-

onal strengths. Similar to the findings in Section 3.3.5, we suspect that a hybrid of

these two approaches might be stronger than either of the two synthesis algorithms

examined here. We leave that experiment for our future work.

3.5 Conclusions

In this chapter we introduced the notions of direct and indirect sequential synthesis.

Direct sequential synthesis incorporates state space exploration within the core of the

synthesis algorithm. In contrast, indirect sequential synthesis algorithms are combi-

national algorithms that have been strengthened only preserving the design behavior

160



Chapter 3. Applying Invariants to Sequential Synthesis

on a pre-determined over-approximation to the reachable states. In this work, the

over-approximation is developed through the automated discovery of invariants.

To explore the relationship between direct and indirect sequential synthesis, two

cutting-edge synthesis algorithms were explored in detail: resubstitution and ODC-

based merging. Direct and indirect sequential synthesis versions of each algorithm

were presented, and experimental results were examined at length.

In general, the results show direct sequential synthesis methods to be stronger

than indirect methods. It seems that while invariants are able to capture state-

space properties that synthesis can leverage, the properties captured are weaker than

what can be developed by using a stronger proof technique within the synthesis

algorithm itself. This led to the reductions offered by direct sequential synthesis being

better than the reductions offered by the corresponding indirect sequential synthesis

algorithm.

Despite the poorer results, indirect methods do have other benefits. The reacha-

bility approximation that is developed through the discovery of invariants need only

be derived once. This approximation can then be used for a sequence of indirect se-

quential synthesis methods, and by amortizing the runtime in this way the sequence

of indirect sequential synthesis methods will run much more quickly than a sequence

of direct methods.

Additionally, we found direct and indirect sequential synthesis methods to offer

largely orthogonal results. In the case of resubstitution, the two methods were com-

bined, and experimental results show that this hybrid is stronger than either of the

two synthesis methods alone.
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Applying Invariants to Verification

4.1 Motivation

Unbounded verification of safety properties is a very challenging problem. Explicit

exploration of every reachable state is impractical for most industrial designs, and this

forces researchers to turn to indirect state exploration techniques such as induction

(Section 14) and interpolation (Section 15).

Both induction and interpolation reason about the reachable state space in ap-

proximate ways. Unreachable states could be mistaken for reachable states, and this

is the source of spurious counterexamples in these algorithms. While the algorithms

work well for some types of properties, application of these algorithms may result in

many spurious counterexamples and thus an incomplete verification.

Invariants present a possible solution to this spurious counterexamples problem.

The conjunction of all proved invariants is an approximation to the set of reachable

states, and while this too is an over-approximation that may include unreachable

states, it may exclude the states that would be spurious counterexamples in induction

or interpolation.
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Figure 4.1: Interpolation with (left) and without (right) a state-space over-approximation.

In the extreme case, all states violating the property may lie outside of the in-

variants’ set of approximately reachable states. The invariants alone are sufficient

to prove that these bad states are unreachable and therefore the property is verified.

However, this happens only very rarely, and more powerful solutions are needed for

the general case.

Induction and interpolation can be strengthened by constraining them to only ex-

plore states that lie inside the reachability approximation provided by the invariants.

This provides a general purpose method that explores a tighter set of states than

either induction, interpolation, or invariants would explore on their own, and this is

successful in verifying some difficult properties. In this chapter we explore methods

by which this can be done and provide some experimental results.

4.2 Strengthening Interpolation

4.2.1 Introduction

The interpolation method is an abstraction of explicit state traversal. Instead of

explicitly computing the image of a set of states under the transition relation, it finds
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an over-approximation to this set. This over-approximation allows it to proceed more

quickly through the reachable state set.

Proving invariants is a competing method for finding the set of reachable states.

In this method, the state graph is not traversed. Instead, an invariant over the set of

states is proved inductively. The proof is done so that every reachable state satisfies

the invariant, and therefore the image of the invariant is an over-approximation to

the set of reachable states.

Consider a hybrid of both reachability techniques – a reachability approximation

framework that is more powerful than either of its two constituents [Case and Lwin,

2006]. This concept is illustrated in Figure 4.1. The search starts in the set of initial

states, and the set of explored states is allowed to grow. The search may erroneously

leave the reachable state space (gray) and hit an unreachable bad state (red). If the

search is confined to an over-approximation of the reachable state space then this will

not happen.

4.2.2 Interpolation Basics

Suppose we have a design we wish to verify, and we do a bounded model check (BMC)

on that design. If no bugs are found then the underlying SAT problem appears

unsatisfiable. In this case, we can extract a Boolean expression called the interpolant

from the proof of unsatisfiability. The interpolant is an over-approximation of the

states reachable in 1 step from the initial state used in the BMC.

Algorithm 23 outlines the interpolation algorithm. The interpolant is used to

over-approximate the image of a set of states, and this over-approximated image is

used in a manner similar to what is done in explicit state traversal (Section 13). If

a fixed point is reached, then every reachable state has been explored and we know

that the design is verified.

164



Chapter 4. Applying Invariants to Verification

1: for (bmcDepth = 2; true; bmcDepth += 10) do
2: startStates := initialStates
3: while (true) do
4: // if the model looks broken
5: if (! bmc(startStates)) then
6: // if the counterexample is real
7: if (startStates == initialStates) then
8: return “counterexample”
9: else

10: // counterexample may be spurious
11: break
12: end if
13: else
14: startStates += getInterpolant()
15: if (fixedPoint(startStates)) then
16: return “verified”
17: end if
18: end if
19: end while
20: end for

Algorithm 23: Basic sketch of the interpolation unbounded verification routine.
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If a bad state is reached, the counterexample is only considered valid if the

bounded model checker started at the true set of initial states. If it started from

an interpolation result then this interpolant could contain an unreachable state. The

fact that a bad state is reachable in bmcDepth transitions from an unreachable state

is not interesting, and to avoid this the bounded model checking depth is increased

and the proof begins anew in an attempt to find a concrete counterexample.

Interpolation is a unbounded model checking algorithm that is both complete

and sound. It is the most robust verification method known to date [Amla et al.,

2005]. However, it is not without its flaws. The main defect is that if an interpolant

includes an unreachable state then the algorithm will begin exploring traces starting

at this unreachable state. These traces add to the overall runtime unnecessarily, and

reducing these erroneous and extraneous traces would directly improve the efficiency

of interpolation.

4.2.3 Strengthening Interpolation With Invariants

1: // Design preprocessing
2: invariants := ∅
3: for (i = 0; i ¡ N; i++) do
4: invariants += findInvariants()
5: indirectSequentialSynthesis(invariants)
6: end for
7:
8: // Model checking
9: interpolate(invariants)

Algorithm 24: Basic sketch of the interpolation unbounded verification routine.

Consider Algorithm 24 which combines the strengths of both the interpolation

and invariant methods. In this procedure, the design is preprocessed with indirect

sequential synthesis before it is model checked with interpolate.
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Each preprocessing step helps later procedures in the following ways:

Indirect Sequential resynthesis is preformed in each step. This step helps to

reduce the size of the design and therefore make interpolation more scalable.

More invariants are found. Each iteration computes more invariants, and the

conjunction of these invariants gives a reachability approximation that gets

tighter with every pre-processing iteration.

Orthogonal invariants are found. Each call to findInvariants() processes a slightly

different design due to the synthesis efforts, and therefore the different sets of

invariants are found in each iteration.

After the preprocessing, every bad state that violates the safety property might

lie outside the reachability over-approximation. In this case, the design is verified and

we terminate. If a single bad state satisfies our over-approximation invariant then

we call a modified version of interpolation that does not explore states violating the

invariant. The interpolation should be dramatically sped-up because it is presented

both with a smaller problem and also a useful reachability over-approximation.

4.2.4 Experimental Results: Property Checking

The implication procedure, the interpolation procedure, and all intermediate tools

necessary to form a hybrid solver were implemented in C++ in the ABC Logic Syn-

thesis and Verification framework [Synthesis and Group, 2008]. Two sets of bench-

marks were then run through the system: a set of sequential equivalence checking

problems over the ISCAS89 benchmarks, and a set of safety property benchmarks

from [Chalmers, 2007]. Safety benchmark contains examples from Cadence SMV,

CMU SMV, SMV case studies, NuSMV, VIS, Texas97, ISCAS89 and IRST model

checking group. A 3 GHz Pentium 4 machine was used to generate all the results.
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Figure 4.2: Runtimes for a selection of safety property benchmarks. Shown are 74 passing
properties, 15 failing properties, and 14 undecidable properties on designs ranging from
10 to 506 latches. Model checking was run with a timeout of 300 seconds.
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We preprocessed the design 5 times. Each preprocessing step takes 5 seconds

and computes an invariant which over-approximates the set of reachable states. This

over-approximation gets tighter as more preprocessing steps are run and the ap-

parent set of reachable states shrinks. In practice we find that we can shrink the

over-approximation to an arbitrarily small size by running an appropriate number of

preprocessing steps.

After the invariant is derived, we run interpolation with this invariant. In this

configuration we have a hybrid solver that benefits from the strength of both invariants

(implications) and interpolation.

In the first experiment, we took 103 verification benchmarks from various checkers

[Chalmers, 2007]. These benchmarks each have one safety property to be checked.

We ran interpolation and the hybrid model checker on these designs, and the results

are shown in Figure 4.2.

This empirical evidence shows that our hybrid technique dramatically speeds up

interpolation.

4.2.5 Experimental Results: Sequential Equivalence Checking

To further explore the properties of our hybrid solver, we created a set of synthetic

verification benchmarks from the ISCAS89 test suite. We retimed each design and

then built a product machine and miter to verify that the outputs of the original

machine match those of its retimed counterpart. If the retiming is done correctly, the

output of the miter will be 0 in every reachable state. The synthetic benchmarks were

chosen because they represent hard verification problems with many latches, and as

such they stress the interpolation method.

Table 4.1 shows the results of the sequential equivalence checker (SEC) bench-

marks. We first ran interpolation on these designs and got the mix of passing, failing,
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Table 4.1: The ISCAS89 SEC benchmarks. Successive iterations of invariant discovery
derive ever-tighter reachability approximations, and this approximation benefits interpola-
tion.

Circuit Statistics Reachable States (%) After Preproc. Step Verif. Runtime (sec)3 Verif.

Design AND Latch #1 #2 #3 #4 #5 Done2 Interp. Hybrid Result
s27 17 6 12.50 12.50 - 12.50 12.50 yes 0.97 0.43 pass
s208 99 16 0.39 100.00 0.39 - 0.39 yes 1200.00 0.49 pass
s298 187 45 1.66 1.66 0.10 0.10 0.05 no 456.60 257.09 pass
s344 235 56 3.44 0.18 0.01 0.02 0.00 no 1200.00 1200.00 -
s349 235 56 3.71 1.25 0.22 0.01 0.01 no 1200.00 1200.00 -
s382 223 54 3.07 0.34 2.17 0.04 0.04 no 1200.00 1200.00 -
s400 232 56 9.06 0.42 0.10 0.01 0.00 no 1200.00 1200.00 -
s444 233 53 2.48 0.73 0.73 0.29 0.23 no 1200.00 1200.00 -
s641 301 39 7.98 0.92 0.00 0.00 0.00 yes 57.69 0.66 pass
s713 303 39 31.25 8.59 1.66 0.59 - no 40.86 9.26 fail
s420 229 39 39.06 39.06 13.06 20.62 9.84 no 1200.00 1200.00 -
s386 268 28 0.01 0.00 0.01 - 0.00 yes 30.80 0.76 pass
s526n 267 59 42.40 2.94 0.93 0.05 0.01 no 1200.00 1200.00 -
s526 268 67 1.05 1.05 1.05 0.01 0.00 no 1200.00 1200.00 -
s510 434 31 5.13 2.79 0.57 1.27 0.34 no 110.56 91.30 pass
s820 570 19 61.68 36.74 20.13 23.47 23.47 no 140.73 184.03 pass
s838 442 72 56.25 56.25 31.64 28.13 14.94 no 1200.00 1200.00 -
s832 577 22 73.33 42.77 26.88 8.86 5.01 no 179.89 157.05 pass
s953 466 39 84.38 35.01 19.54 7.40 2.84 yes 0.80 0.82 pass
s1423 896 163 100.00 53.58 100.00 20.59 - no 1200.00 1200.00 fail
s1196 685 37 40.63 40.63 40.63 20.31 13.49 no 3.38 2.70 pass
s1238 784 37 43.75 23.44 12.89 23.44 3.55 no 5.08 3.27 pass
s1488 1217 54 47.03 8.76 1.10 1.10 0.24 no 360.64 262.92 pass
s1494 1236 23 54.27 19.09 14.87 11.91 10.25 no 114.10 161.11 pass
s5378 1963 421 1.93 11.06 1.93 1.93 2.64 no 21.51 1.40 pass
s9234 2675 497 82.03 41.02 - 100.00 - no 7.97 0.25 fail
s13207.1 4321 1606 25.36 25.36 25.36 - 100.00 no 22.00 20.31 fail
s13207 3660 1831 2.81 2.81 2.81 2.81 2.81 no 2.97 2.80 pass
s15850 5331 1612 21.88 21.88 21.88 21.88 21.88 no 3.60 3.40 pass
s38417 16684 4041 - 100.00 100.00 100.00 100.00 no 88.01 0.24 fail
s38584.1 18705 4672 100.00 99.95 99.90 28.80 99.90 no 109.79 103.69 fail
s38584 20276 4747 100.00 100.00 100.00 100.00 100.00 no 16.89 31.35 fail

1 Circuit statistics represent the product machine. Nodes reported are the number of and nodes in an and-inverter graph.
2 Verification using only the invariant.
3 1200 second timeout.
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Figure 4.3: Scatter plot of the runtimes for the sequential equivalence problems of Table
4.1. Model checking was run with a timeout of 1200 seconds.

171



Chapter 4. Applying Invariants to Verification

and undecidable properties shown in the table. Note that the retiming method we

use does have bugs. Next we applied our hybrid model checker.

If the interpolation proves the property, and if the proof of unsatisfiability of

the bounded model checking problem does not depend on the initial state, then

we know that from any state, no bad states are reachable. This means that the

invariant reduced the search space so much that model checking was trivial. In fact,

the invariant is telling us that every bad state is unreachable. This phenomena is

documented in the “Verification Complete” column located after the preprocessor

columns in the table.

We see from the table that the use of the invariants significantly speeds up the

interpolation. The runtimes from Table 4.1 are represented in the scatter plot shown

in Figure 4.3. It is important to note here that the hybrid solver runtimes do not

include the 25 second overhead introduced by preprocessing. This is a constant-

time overhead that will be insignificant when this method is applied to industrial

benchmarks. This preprocessing time was omitted from the table because we choose

to focus on the runtime improvements within the interpolation procedure.

4.2.6 Experimental Results: Property Checking in an Industrial

Environment

The final experiment in strengthening interpolation with invariants comes from in-

dustrial experience. The IBM formal verification tool SixthSense is used to prove

safety properties on IBM microprocessor designs. While this tool successfully com-

pletes proofs on many designer-specified properties, the difficulty of some properties

exceeds the capacity of the tool.

The invariant discovery techniques described in Chapter 2 were implemented in-

side SixthSense, and these invariants can be leveraged to strengthen interpolation.
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To gauge the effectiveness of this setup, 91 challenging IBM designs were selected

from across various microprocessor projects. Each design has a single property to

be checked, and some quick analysis was done to ensure that the properties are not

easily provable or falsified.

Steps were taken to further refine the 91 properties by discarding those properties

that are solvable by existing techniques implemented in SixthSense. Bounded model

checking (BMC) was applied to the designs, and this algorithm was given a 1 hour

time limit. BMC was able to find counterexample traces for 8 of the 91 designs.

Next, induction and interpolation were each applied to the remaining designs. The

two algorithms were run one after the other, and each was given a 1 hour time limit1.

Induction and interpolation were able to prove that 5 of the remaining properties

are unsatisfiable. The remaining 91 − 8 − 5 = 78 designs are unsolvable using the

techniques currently implemented in SixthSense.

In an attempt to solve these remaining properties, invariant-strengthening inter-

polation was applied. An invariant discovery routine was run for 10 minutes, and the

invariants that were found were then used to strengthen interpolation. The strength-

ened interpolation was again given a 1 hour time limit, and it was able to solve 4

(5.1%) of the outstanding properties.

This ability to solve previously-unsolvable properties demonstrates the value of

invariant-strengthened interpolation. This technique extends the capacity of the

SixthSense and increases its usefulness in the IBM microprocessor designs.

173



Chapter 4. Applying Invariants to Verification

¬ppp
S XS

Figure 4.4: The shaded states are unreachable but will make an inductive proof of p
impossible.

4.3 Strengthening Induction

4.3.1 Motivation

Induction (Section 14) is a method of proving that a property holds for all reachable

states. It is easy to formulate and often executes quickly. It is an incomplete method

but can be strengthened by the introduction of inductive invariants.

The technique is incomplete since there are properties that hold in every reachable

state which simple induction will fail to prove. For example, Figure 4.4 shows a state

transition graph on which a proof of p will fail. The shaded states are unreachable,

but because of these unreachable states ∃S and XS such that S |= p and XS 6|= p.

The inductive step fails.

Induction can be strengthened with knowledge about the reachable state set. If a

reachability approximation is available that refutes the reachability of S or XS then

induction will not hit this spurious counterexample, and the probability of proving

the property with induction increases.

Here we consider invariants as a source of the reachability approximation necessary

to strengthen induction. It is assumed that invariants have been discovered before

induction is run, and with some minor modifications induction can be made to take

1The induction implemented in SixthSense will increase the induction k until either the property
is found to be unsatisfiable or the time limit is reached.
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advantage of these invariants.

4.3.2 Strengthening the Base Case

The base case of the inductive proof explores states reachable in a bounded number of

steps from the design’s initial state(s). By definition, all of these states are reachable

and no reachability approximation can strengthen this computation. For this reason

invariants cannot bound the set of states searched by the SAT solver during this

computation.

4.3.3 Strengthening the Inductive Step

Invariants have a much stronger role in the inductive step of the inductive proof.

The inductive step has the ability to explore unreachable states, so by using the

proved invariants we reduce the state space that is explored in the inductive step.

The modified inductive step is shown in Algorithm 25. Similar to the base case,

checkProperty(node, cycle, sym) defines the instance of node in a circuit initialized

with a symbolic state and unrolled to depth cycle. This is used to construct the

invariantsHold which is 1 if and only if all invariants hold in all time steps considered

in the inductive step.

The signal invariantsHold is then conjoined with each satisfiability problem. This

restricts the solver to only find counterexamples where invariantsHold. That is, each

time step of the counterexample must contain a state in the approximately reachable

states that are given by the set of proved invariants. This helps to dramatically reduce

the number of spurious counterexamples.
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1: function checkInductiveStep(design, candidates, inductionK )
2: // check that all invariants hold in all cycles
3: invariantsHold := 1
4: for (cycle = 0 to inductionK ) do
5: for all (i in proved invariants) do
6: invariantsHold := invariantsHold · checkProperty(i, cycle, sym)
7: end for
8: end for
9:

10: // Iteratively weaken the inductive hypothesis until a fixed point is reached
11: while (1) do
12: inductiveHypothesis := 1
13: for (cycle = 0 to inductionK - 1) do
14: for all (c in candidates) do
15: inductiveHypothesis := inductiveHypothesis · checkProperty(c, cycle,

sym)
16: end for
17: end for
18:
19: // Check that the candidates hold under this inductive hypothesis
20: candidatesHold := 1
21: for all (c in candidates) do
22: if (satisfiable(checkProperty(c, inductionK, sym)· inductiveHypothesis ·

invariantsHold) then
23: candidates := candidates / {c}
24: candidatesHold := 0
25: end if
26: end for
27: if (candidatesHold) then
28: break
29: end if
30: end while
31:
32: return candidates
33: end function

Algorithm 25: Invariant-strengthened inductive step.
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4.3.4 Experimental Results: Property Checking in an Industrial

Environment

The ability of invariants to strengthen induction was evaluated using a setup identical

to Section 4.2.6. 91 challenging IBM designs, each with a single property to be proved,

were identified from a variety of microprocessor projects. These 91 properties were

reduced to 78 by discarding properties that are solvable using existing techniques

implemented in the IBM formal verification tool SixthSense. Each existing technique

was given 1 hour, and the properties that remain unsolved after this rigorous setup

represent properties that are currently impossible to prove using SixthSense.

The 78 remaining properties were then given to our implementation of invariant-

strengthened induction. An invariant discovery routine, implemented using ideas

from Chapter 2, was run for 10 minutes, and the resultant invariants were used

to strengthen induction. This induction was given a 1 hour time limit and will

continuously increase the induction k until either the property is solved or the time

limit is reached.

Invariant-strengthened induction was able to solve 1 of the remaining 78 prop-

erties, or 1.3%. This represents an increase of the capacity of the SixthSense tool,

and while the ability to solve any previously unsatisfiable problems is a noteworthy

achievement, this number is a bit lower than expected. In comparison to Section

4.2.6, it seems that invariants are able to strengthen interpolation better than they

are able to strengthen induction.

We anticipated more success with invariant-strengthened induction, and we sup-

pose that perhaps we were not finding the right invariants necessary to help induction.

Future research will include a wider variety of invariant families (Section 2.2) to find

invariants more suited to helping induction.
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4.4 Targeted Invariants

4.4.1 Motivation

Invariants are able to benefit verification by limiting the state space that must be

explored. Verification on this reduced search space can be exponentially faster than

the general case, and this enables verification to complete on some difficult safety

problems that normally would not be possible to verify.

Unfortunately, while the discovery of invariants (Section 2.1.3) can be done in

a resource bounded way, often discovering sufficient invariants that adequately help

verification can take a very long time. Therefore the total code being executed,

invariant discovery followed by verification, can be just as slow as the original un-

aided verification in the general case2.

One possible solution to this problem is to generate only the invariants that are

helpful to verification and to skip the others that a typical invariant discovery algo-

rithm may find which may not be helpful to the verification at hand. This approach

requires knowledge of the problem being verified, but this can be provided if the verifi-

cation algorithm and invariant discovery algorithm are integrated. Such an approach

can then find targeted invariants that provide key facts about the state space that

are immediately helpful to the verification effort.

To harness this idea, we have built a tool that is able to show that a single,

user-specified state is unreachable [Case et al., 2007]. It does this by finding and

proving inductive invariants. If for some reason it is unable to complete the proof of

the invariants, it will find and prove other, secondary invariants that enable the first

proof to proceed. This method gives a hierarchy of proofs that when complete will

yield a set of inductive invariants {P} with the following properties:

2Note that the invariants discovered can be re-used for multiple properties in the same design.
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•
∧
p∈{P} p implies that the user-specified state is unreachable.

•
∧
p∈{P} p can be proved with simple induction

Such a tool can be easily integrated with a verification framework to provide targeted

invariants.

This chapter provides the theory behind this invariant generation method and

explores how targeted invariants can help interpolation.

4.4.2 Using Targeted Invariants in Verification

Induction and interpolation are two verification algorithms that can benefit from

invariants (Sections 4.3 and 4.2). Here we examine these algorithms in more detail

to identify the nature of the invariants that are most beneficial.

4.4.2.1 Simple Induction

It is well known that induction is an incomplete method in that there exist properties

p that hold in all reachable states but are not provable with induction (Section 4.3.1).

1: // Let p be the property to be proved.
2: if (∃ initial state i, i 6|= p) then
3: return “falsified”
4: end if
5: if (∃ possibly reachable S,XS s.t. S |= p, XS 6|= p) then
6: if (can prove S or XS unreachable) then
7: record new invariants, goto 3 // See Section 4.4.3.3
8: end if
9: return “inconclusive”

10: end if
11: return “verified”

Algorithm 26: Modified simple induction.

To prove p in Figure 4.4, we may try k-step induction as described in [Bjesse

and Claessen, 2000], but in [Case et al., 2006b] we found this to be a very expensive
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Figure 4.5: Interpolation has erroneously reached a bad state.

solution. Instead, suppose we are able to find an inductive invariant that shows that

either S or XS in Figure 4.4 is unreachable. If known-unreachable states are disal-

lowed from entering the inductive step (with an extra constraint on the SAT solver),

then simple induction will be able to prove p. This is demonstrated in Algorithm 26

where the standard simple induction algorithm is improved by the addition of lines 4

and 5. What is needed is a tool that will generate specific inductive invariants that

can demonstrate the unreachability of S or XS. Such a tool is described below.

4.4.2.2 Interpolation

Interpolation (Section 15 is a method that has been found useful for unbounded

verification of safety properties. It works by using an over-approximation to the

image operation. By applying this image operator iteratively starting from the initial

state, either a fixed point is reached or a bad state is encountered. If a fixed point is

reached, it is an over-approximation to the set of reachable states such that no bad

states are contained in this approximation. The design is verified.

If an approximate image contains a bad state, interpolation may have found a

counterexample. However there is in general no way to know if this is a real coun-

terexample. Take for example Figure 4.5. Two image operations are applied to the

initial state I, and a bad state B is found in the second image. The shaded region
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represents the over-approximation inherent in the image operation, and the white

shows the true image of the reachable states. We do not know which states of the

image lie in the over-approximation, nor do we know if the over-approximated states

are reachable. In Figure 4.5 we have the error trace I→S→B, but if either S or B

lie in the over-approximation and is unreachable then the counterexample is spurious.

1: // Let p be the property to be proved.
2: set parameters for over-approximate image operator
3: {S} := I
4: while (1) do
5: {S}′ := {S}∪ approxImage({S})
6: if {S}′ == {S} then return “verified”
7: if ∃ a bad state “near” {S} then
8: if {S} == I then return “falsified”
9: if can prove s unreachable then // See Section 4.4.3

10: record new invariants, goto 7 // See Section 4.4.3.3
11: tighten over-approximation parameters, goto 3
12: end if
13: {S} := {S}′
14: end while

Algorithm 27: Modified interpolation.

Unless specific conditions are met (line 8 of Algorithm 27), the interpolation al-

gorithm has no way of knowing if a counterexample is spurious or true. Therefore, it

discards all work up to that point and begins anew with a tighter approximation to the

image operator. This restart is costly, and it is a major hot-spot in the performance

of the algorithm.

In this work, we have augmented interpolation to call our targeted invariant tool

as shown in Algorithm 27. On lines 9 and 10, it will find specific inductive invariants

that imply that a state along the error trace is unreachable. If invariants are found,

the error trace must be spurious, and interpolation is free to proceed without the

costly restart on line 11.
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4.4.3 The Proof Graph

4.4.3.1 Basic Definitions

Here we describe the basics of our tool to automatically find and prove useful inductive

invariants. A graph structure called the proof graph is the core of our method.

The proof graph is a bipartite directed graph with the following node types:

• States in the sequential design. In practice this is a cube of states, but to

simplify this discussion, consider only a single state. This constraint can be

relaxed as discussed in [Case et al., 2007].

• Sets of candidate invariants. These candidates are yet to be proved, but if we

can prove them then they are invariants.

The root of the graph is a single state node. This corresponds to the user-specified

state that should be proved unreachable. This root node comes from an outside source

– in this work it is a state along the error trace in interpolation. The leaves, i.e. the

nodes without outgoing edges, are candidate sets.

The meaning of the graph lies in its connectivity, specifically in the meanings

of edges from states to candidates and from candidates to states. Being a bipartite

graph, there are no other edge types.

Let a directed edge from a state S to a set of candidate invariants {C} mean that:

∀ c ∈ {C}, S 6|= c

That is, all candidates {C} fail to hold in S.

The candidates {C} may or may not hold in all reachable states, but if any such

c ∈ {C} can be proved then S is unreachable. We refer to {C} as a set of covering

candidate invariants for S.
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Theorem 4.4.1 (Proving a State Unreachable). Let a candidate c fail in a state S

(S 6|= c). If c is proved to hold in every reachable state then S is unreachable.

Therefore the structure S→{C} provides a method to show S unreachable.

Let a directed edge from a set of candidates {C} to a state S mean that:

∀ c ∈ {C}, ∃ a successor stateXS

such that (c |= S) ∧ (c 6|= XS)

That is, all candidates hold in S but fail in a successor state of S.

In the structure {C}→S, S is the reason that the inductive proof of {C} was not

successful. In fact, S is the counterexample to the inductive hypothesis of the proof.

Proving S to be unreachable is a necessary but not sufficient condition for proving

a c ∈ {C}. Clearly, the proof of c ∈ {C} cannot succeed if S may be reachable.

Conversely, if S is known to be unreachable, we have no evidence that a proof of

c ∈ {C} will fail. However, another counterexample S ′ may exist.

Example 23. An Example Proof Graph

Figure 4.6 shows an example of a proof graph and how it might evolve over time

as our algorithm is run. A sample execution is given here.

1. Suppose interpolation reaches a bad state and S0 is a state on the error

trace. We would like to show that S0 is unreachable. (See Section 4.4.2.2.)

2. Our tool is called to prove that S0 is unreachable. We set S0 to be the root

of our graph, and through simulation we generate the covering candidate

invariants {C0}. In this simulation, we select candidates that appear to

hold in every reachable state but fail in S0. This gives us Graph (1) in

Figure 4.6.
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Figure 4.6: Sample evolution of a proof graph over time.

3. We attempt to prove the candidates {C0} by simple induction. Suppose

that this proof fails, and there are three counterexamples S1, S2, and S3 in

the inductive hypothesis. Each counterexample is responsible for disproving

a subset of {C0}, and the proof technique as implemented in [Case et al.,

2006b] will result in these subsets being pair-wise disjoint. We therefore

split {C0} into {C01}, {C02}, and {C03} such that:

• {C01} ∩ {C02} = ∅, {C01} ∩ {C03} = ∅,

{C02} ∩ {C03} = ∅

• {C01} ∪ {C02} ∪ {C03} = {C0}

• ∀ j ∈ {1, 2, 3}, Sj causes the inductive proof of {C0j} to fail.

Recording this information in the proof graph gives us Graph (2) in the

figure. The existence of these counterexamples does not imply that the

candidates {C} are not true but instead that we need more invariants to

prove them. (See Sections 4.4.2.1 and 4.4.3.4.)

4. Next, cover S1, S2, and S3 with candidates, giving us {C1}, {C2}, and
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{C3} respectively. These candidates provide a way to show that the new

states are unreachable. (This is similar to Step 2.)

5. By simulating each new state, we can check if it might be responsible for a

future failure to prove any of the candidate sets. Suppose we find that S1 is

a counterexample in the inductive proof of every c2 ∈ {C2}. This induces

the edge {C2}→S1, and the result is Graph (3) in the figure.

6. We attempt to prove the candidates {C3}. Suppose we find at least one

property to be true for all reachable states. Now S3 is known to be unreach-

able, and it can be removed from the proof graph. This gives Graph 4. (See

Section 4.4.3.3.)

7. Attempt the proof of {C03} again. This proof was first attempted in Step

3, but now the reason that the original proof failed, S3, is gone and we

may re-attempt the proof. Suppose that this time we find that at least one

candidate invariant holds for all reachable states. This implies that S0, the

root node, is unreachable. At this point, we have achieved our objective and

we may return the new invariants to the calling routine, interpolation in

this case. (See Section 4.4.3.5.)

4.4.3.2 Selecting Which Candidate Invariants to Prove

The proof graph in general contains several candidate set nodes, and the tool must

pick one single node to attempt as the next proof. Selecting that node is fairly simple

once some basic properties of the proof graph are explored.

Theorem 4.4.2 (Proofs on Leaves Only). Given the sets of candidates {C0} and

{C1}, a state S, and the graph structure {C0} → S → {C1}. If no c1 ∈ {C1} are

proved to hold in every reachable state then ∀ c0 ∈ {C0}, it is not possible to prove c0

by simple induction.
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Proof. If ∃ c1 ∈ {C1} that has been proved, then that would be a guarantee that S

is unreachable. However, because no such proved invariants exist, the reachability

of S is unknown. To be conservative, we must allow S to be a counterexample in

the inductive step of the proof of the candidates {C0}. Therefore, the proof will fail

∀ c0 ∈ {C0}.

The above theorem defines an order in which the proofs must be attempted.

Specifically, if a candidate node has an outgoing edge to a state then any proof

attempt is in vain. In a chain of the graph, only the leaves (nodes without outgoing

edges) may be considered as for a proof attempt. The situation is a bit more complex

for a cycle however.

Theorem 4.4.3 (Cycles in The Graph). Suppose there are candidate invariant sets

{C0}, . . . , {Cn}, unique states S0, . . . , Sn, and the cyclic graph structure {C0}→S0→

· · ·→{Cn}→Sn→{C0}.

If ∃ j ∈ {0, . . . , n} such that∀ cj ∈ {Cj}, cj cannot be proved by simple induction

then ∀ k ∈ {0, . . . , n},∀ ck ∈ {Ck}, ck cannot be proved by simple induction

Proof. The failure to prove {Cj} results in not being able to prove {C(j−1 mod n)} by

Theorem 4.4.2. This establishes a base case of the inductive proof of this theorem.

Now let k ∈ {0, . . . , n} and suppose {C(k+1 mod n)} cannot be proved. By Theorem

4.4.2, {Ck} cannot be proved. Theorem 4.4.3 is now proved by induction.

Theorem 4.4.3 says that in a cycle with n candidate set nodes, we must attempt

to prove the union of all the candidate sets at the same time. This simple induction

will either successfully prove ≥ n properties or 0 properties because if any candidates

hold for all reachable states then at least one candidate invariant in each set must be

true.
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Figure 4.7: A cycle has developed in the proof graph.

Cycles must be treated differently from leaves in that the union of the cycle nodes

must be proved simultaneously. However, this can be generalized as illustrated in the

following example:

Example 24. Cycles in the Proof Graph

1. Suppose the current proof graph is that shown in Graph (1) of Figure 4.7.

2. Suppose we find that S0 can act as the counterexample in the inductive

hypothesis for all c1 ∈ {C1}. This induces a cycle in the graph as shown

in Graph (2).

3. Now create a new leaf node {C2} = {C0}∪{C1} and insert it into the proof

graph. This records the following information:

• Both {C0} and {C1} must be proved at the same time.

• A successful proof will imply that both S0 and S1 are unreachable.

The updated proof graph is shown in Graph (3).

If cycles are abstracted as illustrated in Figure 4.7 then a proof of the union of the

candidate sets in the cycle is equivalent to a proof of the new leaf node. After this
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generalization is made, only the leaves in the proof graph are eligible for an inductive

proof.

Suppose a proof graph has multiple leaves, and one leaf must be selected for

the simple induction prover. The unique leaf to be given to the induction engine is

selected as follows:

• Let d(·) denote the distance from the root node to a candidate invariant set

node. That is, d({C}) is the number of edges in the shortest directed path

from the root node to {C}. Given this metric, the candidate set {C} which

minimizes d({C}) should be selected because it requires fewer inductive proofs

to achieve the overall goal, to prove that the root node is unreachable.

• Ties should be broken by selecting the {C} with the greatest cardinality. In

the absence of other information about the design, this property set has the

greatest chance of having at least one property successfully proved.

4.4.3.3 Upon a Successful Proof

Suppose a candidate invariant set {C} in the proof graph has been selected, given to

the simple induction prover, and a candidate c ∈ {C} has been proved (and is there-

fore an invariant). This proof is independent from any assumptions, and the proved

invariant is guaranteed to hold for all reachable states. The property is therefore

used to simplify all future problems, both simple induction and interpolation. En-

forcement of the invariant can be accomplished by the addition of constraint clauses in

each respective SAT instance (Sections 4.2 and 4.3). This extra clause is maintained

throughout the remainder of the execution, effectively utilizing the new invariant in

all future problems.

This successful proof also allows the proof graph to be pruned. Theorem 4.4.1

implies that all state node parents of {C} are now known to be unreachable. These
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can be removed from the proof graph, along with any dangling nodes that result.

This can create new candidate set leaves in the graph, enabling the proofs of some

candidate sets to be re-attempted. This happened in Step 6 of the example shown in

Example 23.

4.4.3.4 Upon an Unsuccessful Proof

Suppose in attempting to prove {C}, the simple induction engine fails to prove any

of the candidates. From Section 4.4.2.1 we know that we can help simple induction

by proving that the counterexample state that satisfies the inductive hypothesis is

unreachable.

In failing to prove a set of candidates, simple induction will produce a set of

counterexamples {S0, S1, . . . , Sn}. In this case, for each c ∈ {C}, ∃Sj such that Sj is

the reason the inductive proof of c failed.

To accurately record the relationship between the properties {C} and the states

{S0, S1, . . . , Sn}, {C} must be split into n subsets, one for each of {S0, S1, . . . , Sn}.

We modify the proof graph by splitting {C}, adding {S0, S1, . . . , Sn} along with edges

to demonstrate the failed proofs, and lastly we find covering candidate invariants {Cj}

for each new Sj. This is illustrated in Steps 3 and 4 of the example in Example 23.

One may view each new structure Sj→{Cj} as a subgraph rooted at Sj, the state

that the induction engine wants to have shown unreachable. In this way, proving

unreachable states for use in the simple induction solver is a sub-problem in the task

of proving unreachable states for interpolation.

4.4.3.5 Termination Conditions

The above process describes a proof graph that grows as counterexamples are discov-

ered in inductive proofs and shrinks as candidate invariants are successfully proved.
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The proof graph oscillates in size until one of two termination conditions are satisfied:

• If we run out of proof candidates, the overall proof is impossible. This can

happen if at some point there are no more leaves in the proof tree. In practice,

this means that either the root state was in fact reachable or our candidate

invariants did not provide sufficient information to show this. Absence of leaves

is not a guarantee that the root state is reachable.

• If a covering candidate invariant of the root node is proved to hold for all

reachable states then the proof graph algorithm will remove the root from the

graph. If the root has been deleted, we can conclude that the root has been

proved unreachable and we may stop.

1: // Let S0 be the state to prove unreachable
2: root := S0

3: cover root with properties
4: while (1) do
5: if (root == ∅) then return “root unreachable”
6: if (no leaves) then return “root may be reachable”
7: {P} := selectBestLeaf()

8: (proved, {S}) := simpleInductionProve({P})
9: if proved then

10: delete parents of {P}
11: else
12: for all counterexamples s ∈ {S} do
13: make new proof graph node for s
14: cover s with a new set of properties {P}
15: Simulate S, try to break proofs of all property sets
16: update proof graph
17: end for
18: end if
19: end while

Algorithm 28: The proof graph algorithm.
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Table 4.2: Performance On A Sampling of Hard Academic Problems
Design Properties Standard Interpolation Interpolation + Proof Graph

Design ANDs Latches Property MB Sec. Refines MB Sec. Refines Candidates Invariants
cmu dme1 B 236 61 ? 2484 7200 5 2487 7200 5 390 0
cmu dme2 B 296 63 ? 2507 7200 7 2674 7200 7 604 0
eijk S1423 S 902 159 True 2481 7200 1 139 77.93 0 10078 2400
eijk S208 S 109 22 True 2451 7200 4 38 60.62 0 1668 454
eijk S208c S 111 23 True 2469 7200 7 30 59.04 0 1864 660
eijk S382 S 230 57 True 2480 7200 5 228 102.17 0 23144 4176
eijk S420 S 243 50 True 2500 7200 7 148 191.27 0 11000 2250
eijk S444 S 240 57 True 2491 7200 5 224 507.37 0 38530 28972
eijk S838 S 480 106 True 2570 7200 2 1199 370.63 0 152734 27308
eijk bs1512 S 866 158 ? 2471 7200 0 2475 7200 0 46108 60
eijk bs3271 S 1841 305 ? 1822 7200 1 2514 7200 1 6544 772
irst dme4 B 593 124 ? 2515 7200 4 2558 7200 4 1894 0
irst dme5 B 790 165 ? 2562 7200 5 528 7200 4 16590 0
irst dme6 B 1181 245 ? 2564 7200 5 440 7200 0 126850 0
nusmv brp B 375 52 ? 2467 7200 1 805 7200 1 9140 1128
nusmv queue B 1310 84 True 2459 7200 1 95 151.78 0 3690 480
nusmv reactor 6 C903 76 True 2478 7200 7 52 140.66 0 6228 482
vis bakery E 284 25 ? 2454 7200 3 2582 7203.06 5 4018 626

4.4.4 Experimental Results

For this work, we implemented two C++ plugins for the ABC Logic Synthesis and

Verification System [Synthesis and Group, 2008]. The first plugin implements the

interpolation algorithm as described in [McMillan, 2003], and the second plugin im-

plements the invariant discovery method proposed in this paper. The plugins are

interfaced as described in Algorithm 27 to provide inductive invariants for aiding

interpolation.

We experimented with a suite of 154 academic designs that had been annotated

with safety properties [Chalmers, 2007]. The designs ranged in size from 10 to 689

latches. After the designs were combinationally synthesized into And-Inverter Graphs,

they had between 43 and 3716 And nodes. Each design in this benchmark suite

contains a single safety property, which include 95 true properties, 34 false properties,

and 25 properties of unknown nature.

The technique described in this paper can greatly speed-up model checking, but

also it imposes some overhead to find and prove inductive invariants. The algorithm

is best suited to run as an option in a verification package that can be invoked after

more conventional methods have been exhausted. To emulate this type of flow, we

attempted to verify all 154 benchmarks with standard interpolation. 132 finished in
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less than 10 minutes, and 18 failed to verify in 2 hours. It is on these 18 that we then

applied our method.

Table 4.2 shows these 18 benchmarks on which interpolation times-out after 2

hours. As discussed in Section 4.4.2.2, the most expensive part of the interpolation

algorithm is the model refinement. The number of refinements done in the standard

interpolation algorithm is shown in the table, and in some cases this number is quite

high.

If specific inductive invariants can be found, then refinement can be avoided. In

the last part of the table, we show the statistics for an implementation of interpolation

that utilizes the proof graph. Whenever interpolation reaches a bad state, it will find

and prove appropriate inductive invariants. In half of the designs, proving a small

number of candidate invariants was sufficient to allow all model refinement steps to

be skipped. Runtime was dramatically improved in those cases, and the inductive

invariants proved to be the difference between a time-out and a successful verification

run.

Interestingly, no false properties are present in Table 4.2. The technique presented

here favors true properties because for these, any trace into a bad state must contain

unreachable states and so there is an opportunity to find invariants to cover those

states. With a falsifiable property, the error trace will only contain reachable states

and the proof graph method will waste resources attempting to show that these states

are unreachable. Consequently, if there are indeed false properties in this subset of

the benchmark suite, these probably appear as time-out cases.

Further experimentation was done using 43 industrial designs. Each contains

multiple properties which are to be proved one-by-one. These designs were chosen

because they are the hardest available, each having runtimes in excess of 8 minutes

when processed with standard interpolation.

Figure 4.8 shows a scatter plot comparison of standard interpolation versus inter-
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Figure 4.8: Performance On A Sampling of Hard Industrial Problems

polation aided with the proof graph. Each verification run was given a time-out of 30

minutes, and the proof graph successfully prevented 5 of the designs from exceeding

the time limit. Even on designs that did not time-out with standard interpolation,

using the proof graph significantly helped the runtime.

4.4.5 Conclusions

The use of targeted invariants with the proof graph is appealing because it enables

the large space of candidate invariants to be reduced to only those candidates that

immediately help the verification effort. This improves the runtime of the invariant

discovery pass, making the combined runtime of invariant discovery and verification

significantly faster than unaided verification in isolation. Additionally, because there

are fewer candidate invariants and thus fewer proved invariants, memory structures

needed to handle a large number of invariants (Section 2.6) can be simplified.

The work so far in targeted invariants is a good start, and in future work we would
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like to apply the concept to many other domains besides just interpolation.

4.5 Verification of Sequential Synthesis

Invariants can be used to approximate the set of reachable states, and often this

reachability approximation is very intricate. There exist states that invariants are

able to show unreachable that other reachability approximations have difficulty in

excluding from the set of reachable states. For this reason, if the set of reachable states

is being approximated by some technique other than invariants then invariants should

be used to complement this technique because invariants can tighten the reachability

approximation in new ways.

The intricacy of an invariant-derived reachability approximation is problematic

if one is trying to verify the results of sequential synthesis. Suppose invariants have

been derived and used for indirect sequential synthesis. The synthesis algorithm(s)

may use the intricate reachability information to perform design optimizations, and

when performing a sequential equivalence check between the pre- and post-synthesis

designs similar reachability information is probably needed to verify that the designs

do not differ on a reachable state. Because there are states that are excluded from

the invariant-derived reachability approximation, if these states were leveraged for

sequential synthesis then verifying the sequential equivalence will be difficult since it

will be difficult to verify that these states are unreachable.

The solution is to use invariants to strengthen the verification. The intricate

reachability relationships that were leveraged in synthesis can be independently re-

discovered in verification and used to complete the SEC proof. In this way, while

the use of invariants for indirect sequential synthesis can make verification difficult,

applying invariants to verification can reduce the difficulty of SEC to its original level.

Therefore, the use of invariants for verification can be thought of as dual for using
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invariants in synthesis.

4.6 Conclusion

Invariants have been shown to be very useful in verification. In this chapter, the

unbounded verification methods induction and interpolation were explored. Each can

take advantage of invariants to prune the state space that is searched. We discussed

two major advantages of this approach:

• Verification algorithms can be sped up considerably if invariants are considered.

The reason is that the search space is reduced, and more importantly, the

number of spurious counterexamples is reduced.

• Verification on some difficult properties fails to converge within reasonable time

limits unless invariants are utilized. In this way, invariants are enabling these

difficult properties to be verified and extending the scalability of formal verifi-

cation.

Although invariants can help verification algorithms, the discovery of invariants

can be quite expensive. For this reason, we also proposed a method (Section 4.4)

to find a small number of invariants that are immediately helpful to the verification

problem. This allows the invariant discovery routine to focus on the most valuable

invariants and ignore invariants that consume runtime and are not ultimately useful.
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Conclusion

5.1 Summary of Ideas Discussed

This thesis focused on invariants, small properties that can be automatically formu-

lated and proved. The methods by which invariants can be derived and efficiently

proved to hold on all reachable states was discussed in Chapter 2. Invariants have

two major applications: they provide a set of sequential don’t cares that can be used

for synthesis, and they provide an approximation to the set of reachable states that

can be exploited for verification.

Chapter 3 discussed the synthesis applications of invariants. If an invariant ex-

presses that a node is constant in all reachable states or that two nodes are equal in

all reachable states then the design can be directly simplified. Otherwise, the invari-

ants can be used as a source of sequential don’t cares in indirect sequential synthesis.

This type of synthesis gives more reductions than its combinational synthesis cousin.

Additionally, invariants can be used to strengthen an existing sequential synthesis,

giving rise to a synthesis algorithms have more power to reduce the size of the design

than any other algorithm in its family.
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Chapter 4 discussed the verification applications of invariants. Invariants can be

used to form a reachability approximation, and verification algorithms can be aug-

mented to only explore states that lie inside this reachability approximation. In the

case of induction and interpolation, this means that fewer spurious counterexamples

are explored, and this enables the algorithms to either terminate faster or, in the

case of extremely challenging verification problems, complete the verification effort

before exhausting computational resources, thus expanding the scalability of formal

verification.

5.2 Weaknesses of Invariants and Their Solutions

Clearly invariants have many benefits. However, there are several deficiencies that

this thesis has attempted to address.

Problem: The number of candidate invariants can be quite large, and their corre-

sponding proof can be quite slow.

Solution: Chapter 2 presented numerous techniques such as narrowing the candidate

invariants to those that are most interesting and then selecting a fast-running

proof technique. Much effort was spent in developing simulation methods to

efficiently reason about a large number of candidate invariants.

Problem: Invariants can be expensive to compute, and an invariant discovery +

indirect sequential synthesis setup can be too slow.

Solution: Chapter 3 described the benefits of indirect sequential synthesis (and

invariant-enhanced direct sequential synthesis) and demonstrated that although

the runtime is increased, these methods offer significant reductions in the size

of the design post-synthesis. Additionally, a single invariant discovery pass can
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be used for multiple indirect sequential synthesis algorithms, and therefore the

cost of the invariant discovery can be amortized.

Problem: While invariants can be used to reason that certain states are unreachable,

the set of states shown to be unreachable may not be the right set that enables

verification to complete quickly.

Solution: Chapter 4 discusses techniques to not only strengthen verification using

invariants but also how to limit the invariants that are found to only those

that can immediately help the current verification problem. This successfully

overcomes the problem of generating valid invariants that do not successfully

help verification.

5.3 An Ideal Invariant-Strengthened Verification Recipe

By considering the strengths and weaknesses of invariants, a robust invariant-strengthened

verification scheme can be developed. Transformational Based Verification (TBV)

[Kuehlmann and Baumgartner, 2001] is currently the best known way to verify com-

plex safety properties in industrial gate-level designs. TBV is successful because it

combines synthesis and verification in a way that simplifies the design as much as pos-

sible before attempting to verify the property. This allows verification to interact with

a smaller design and thus increases the probability that the verification will come to a

conclusion before computational resources are exhausted. By adding invariants into

TBV, using ideas presented in this thesis, an even more robust verification framework

can be developed.

Consider the invariant-strengthened TBV framework shown in Algorithm 29.

First, the design is synthesized as much as possible. Next, heavy-weight verification
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1: function verifySafetyProperty(design, property)
2: if (property = constant 1) then
3: return “verified”
4: else if (property = constant 0) then
5: return “falsified”
6: end if
7:
8: // Synthesize the design, leveraging invariants
9: invariants := ∅

10: while (synthesis reduces design size) do
11: invariants += findInvariants(design, invariants)
12: design := synthesis(design, invariants)
13: if (property = constant 1) then
14: return “verified”
15: else if (property = constant 0) then
16: return “falsified”
17: end if
18: end while
19:
20: // Attempt traditional verification, leveraging invariants
21: while (1) do
22: { spuriousCounterexamples, result } := verify(design, property, invariants)
23: if (result = “timeout”) then
24: for all (cex in spuriousCounterexamples) do
25: invariants += findTargettedInvariants(design, cex, invariants)
26: end for
27: else
28: return result
29: end if
30: end while
31: end function

Algorithm 29: Invariant-centric verification flow.
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algorithms are called to prove the property. Invariants are integrated throughout this

flow.

In synthesis: Invariants are discovered and used for both indirect sequential syn-

thesis and invariant-enhanced direct sequential synthesis. Additionally, this

invariant + synthesis sequence can be repeated until there are no further re-

ductions in the design size. Each call to the invariant discovery routine 1) sees

a different version of the design (due to the synthesis that has occurred) and

so will generate different invariants, 2) will be able to prove more invariants

because the internal proof of the candidate invariants can be strengthened with

all the previously found invariants, and 3) can be made fast by only considering

candidate invariants that will refine the reachability approximation supplied by

the previously proved invariants. In practice, this invariant + synthesis loop

can dramatically reduce the size of the design being verified.

In verification: The invariants found for synthesis are re-purposed and leveraged a

second time for verification. This allows verification to run more quickly than

it otherwise would, and it increases the probability that verification will reach

a conclusive result before the time limit expires. If the invariants are not strong

enough and the method does timeout then a list of spurious counterexamples

that were seen in the course of verification can be obtained. Invariants can be

found that target these spurious counterexamples, and in this way the reacha-

bility approximation can be refined in a way that is beneficial to verification.

Verification is then called again, and this loop should result in reachability being

approximated to the degree necessary to verify the property quickly.

Clearly, Algorithm 29 is similar to traditional TBV, but invariants have been inte-

grated throughout. While this idea is untested at this time, I suspect that invariants

will make TBV significantly stronger and allow it to complete verification both on
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harder properties and in larger designs. This will increase the industrial usage of

formal verification.

5.4 Future Work

Many ideas pertaining to invariants, synthesis, and verification were explored in this

thesis, but this should be viewed as the beginning of research into invariants and not

the end. I have several ideas for future work involving invariants.

• I wish to implement the invariant-strengthened TBV algorithm described in

Algorithm 29.

• I plan to investigate other invariant families in order to see if there exists a family

that 1) approximates reachability well, and 2) is easy to prove the candidate

invariants.

• I plan to apply invariants to strengthen even more synthesis and verification

algorithms.
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