
Efficient Motor Control Learning

Gregory Donnell Lawrence

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-53

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-53.html

April 30, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Efficient Motor Control Learning

by

Gregory Donnell Lawrence

B.S. (University of California, Berkeley) 1998

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Stuart J. Russell, Chair
Professor Sosale S. Sastry
Professor Peter Bartlett
Professor Robert J. Full

Spring 2009

The dissertation of Gregory Donnell Lawrence is approved:

Chair Date

Date

Date

Date

University of California, Berkeley

Spring 2009

Efficient Motor Control Learning

Copyright 2009

by

Gregory Donnell Lawrence

1

Abstract

Efficient Motor Control Learning

by

Gregory Donnell Lawrence

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Stuart J. Russell, Chair

There are many challenges to learning optimal motor control. These challenges include

noisy environments and sensors, nonlinear dynamics, continuous variables, high-dimensional

problem domains, and redundancy. Reinforcement learning can be used, in principle, to find

optimal controllers; however, the traditional learning algorithms are often too slow because

obtaining training data is expensive. Although policy gradient methods have shown some

promising results, they are limited by the rate at which they can estimate the gradient of the

objective function with respect to a given policy’s parameters. These algorithms typically

estimate the gradient from a number of policy trials. In the noisy setting, however, many

policy trials may be necessary to achieve a desired level of performance. This dissertation

presents techniques that may be used to minimize the total number of trials required.

The main difficulty arises because each policy trial returns a noisy estimate of the

performance measure. As a result, we have noisy gradient estimates. One source of noise

2

is caused by the use of randomized policies (often used for exploration purposes). We use

response surface models to predict the effect that this noise has on the observed performance.

This allows us to reduce the variance of the gradient estimates, and we derive expressions

for the minimal-variance model for a variety of problem settings. Other sources of noise

come from the environment and from the agent’s actuators. Sensor data, which partially

measures the effect of this noise, can be used to explain away the noise-induced perturbations

in the expected performance. We show how to incorporate the sensor information into

the gradient estimation task, further reducing the variance of the gradient estimates. In

addition, we show that useful sensor encodings have the following properties: the sensor

data is uncorrelated with the agent’s choice of action and the sensor data is correlated with

the perturbations in performance. Finally, we demonstrate the effectiveness of our approach

by learning controllers for a simulated dart thrower and quadruped locomotion task.

Professor Stuart J. Russell
Dissertation Committee Chair

i

To my parents.

ii

Contents

List of Figures iv

1 Introduction 1
1.1 Problem description and motivation . 1
1.2 Short summary of previous work . 4
1.3 Our approach . 6
1.4 Thesis . 9
1.5 Main contributions . 9
1.6 Outline of dissertation . 10

2 Background: motor control and reinforcement learning 12
2.1 Motor control learning . 12

2.1.1 Problem description . 12
2.1.2 Challenges in finding optimal controllers 15
2.1.3 Advantages of taking an online learning approach 18

2.2 Reinforcement learning . 19
2.2.1 Markov decision processes . 19
2.2.2 Partially observable Markov decision processes 21
2.2.3 Problem description . 23
2.2.4 Policy search methods . 24

3 Experimental problems 36
3.1 Cannon problem . 36

3.1.1 Problem description . 36
3.1.2 Analysis . 38

3.2 Dart thrower . 41
3.3 Quadruped locomotion . 44

4 Improving gradient estimation using response surface models 47
4.1 Motivation . 47
4.2 Linear response surface models . 50

4.2.1 RSM gradients . 51

iii

4.2.2 Natural RSM gradients . 57
4.2.3 Time-variant RSM gradients . 64
4.2.4 Time-variant natural RSM gradients 69
4.2.5 Properties of eligibilities . 72

4.3 Probabilistic inference problem . 75
4.3.1 Bayesian network representations . 76

4.4 Results . 78
4.5 Discussion . 80

5 Improving gradient estimation by incorporating sensor data 85
5.1 Motivation . 86
5.2 Probabilistic inference problem . 87

5.2.1 Bayesian network representation . 88
5.2.2 Variance analysis . 89
5.2.3 The natural gradient estimator algorithm with sensor data 94

5.3 Sensors for motor control . 95
5.3.1 Approximating the dynamical system 96
5.3.2 Additional sensor data . 99
5.3.3 Low-dimensional sensor representations 100

5.4 RSM gradient estimation with sensory data 100
5.4.1 The time-variant RSM gradient est. algorithm with sensor data . . . 102

5.5 Results . 102
5.6 Discussion . 103

6 Conclusions 106
6.1 Summary of contributions . 106
6.2 Future work . 108

6.2.1 Sample Reuse . 108
6.2.2 Hierarchical control . 109
6.2.3 Quasi-newton methods . 109

Bibliography 111

iv

List of Figures

1.1 How a controller actuates a robot. 2
1.2 The expected performance of a one-dimensional toy problem (solid line). The

diamonds denote the actual performances of three policy trials, and the stars
denote a posteriori estimates of the corresponding expected performances. . 7

2.1 How an agent interacts with its environment. 13
2.2 Example of a Markov decision process (MDP). 20
2.3 Example of a partially observable Markov decision process (POMDP). . . . 22
2.4 (a) Scores from several policy trials drawn from a toy problem. (b) Corre-

sponding eligibility vectors. 27
2.5 (a) Eligibility vectors of several policy trials. (b) Eligibilities scaled by the

inverse of the Fisher Information matrix F−1. 33

3.1 Toy cannon problem. 37
3.2 (a) Contours of the value function for a noise-free version of the cannon

problem. In this setting there are an infinite number of policies that exactly
hit the target (indicated by the thick curve). (b) Contours of the value
function of the cannon problem with noise. There is a single optimal policy
indicated by the ‘X’. 39

3.3 A closer look at the contours centered around the optimal policy indicated
by the ‘X’. The noise-free optimal policies are indicated by the thick curve. 40

3.4 The dart problem. 41
3.5 The quadruped problem. 45

4.1 Two dimensional toy problem with four different scoring functions: (a) zero,
(b) constant, (c) linear, and (d) nonlinear. Emanating from each policy trial
is its contribution to the gradient estimate. 49

4.2 (a) 16 policy trials with the corresponding single-trial gradient estimates (em-
anating from each trial) computed using REINFORCE without a baseline.
(b) 16 policy trials with the corresponding single-trial gradient estimates
(emanating from each trial) computed using the optimal linear RSM. 53

v

4.3 (a) The learning curve performance of the baseline and RSM gradient esti-
mators for the cannon0 problem. (b) The learning curve performance of the
baseline and RSM gradient estimators for the cannon1 problem. 58

4.4 (a) Gradient of the value with respect to π0 superimposed on the contours
of the score. (b) Natural gradient which is guaranteed to be in the correct
half-space. 59

4.5 (a) The learning curve performance of the natural baseline and natural RSM
gradient estimators for the cannon0 problem. (b) The learning curve perfor-
mance of the natural baseline and natural RSM gradient estimators for the
cannon1 problem. 64

4.6 Four Bayesian networks that may be used for gradient estimation. They may
be used to (a) estimate the natural gradient, (b) find the optimal RSM, (c)
estimate the natural gradient while using a prior, and (d) find the optimal
RSM using a prior. 76

4.7 (a,b,c) The learning curve performances of the baseline and RSM gradient
estimators for dart0, dart1, and dart2 respectively. 81

4.8 (a,b,c) The performances of the natural baseline and natural RSM gradient
estimators for dart0, dart1, and dart2 respectively. 82

4.9 (a,b,c,d) The learning curve performances of the baseline and RSM gradi-
ent estimators for quadruped0, quadruped1, quadruped2, and quadruped3
respectively. 83

4.10 (a,b,c,d) The learning curve performances of the natural baseline and natural
RSM gradient estimators for quadruped0, quadruped1, quadruped2, and
quadruped3 respectively. 84

5.1 (a) Scores from several policy trials drawn from a toy problem. (b) Scores
from several policy trials with the sensors (π + s) superimposed. 87

5.2 (a) Bayesian network that contains latent variable η, which represents all of
the noise experienced by an agent during a single policy trial, and sensor
node s. (b) Network after we eliminate η and (c) after we add a prior. . . . 88

5.3 The learning curve performance of the baseline, natural baseline, natural
RSM, and natural with sensor data gradient estimators for the cannon1 prob-
lem. The figures are shown with increasing amounts of actuator noise. . . . 95

5.4 The difference between the predicted and actual velocities of 16 controllable
joints during a single quadruped trial. 98

5.5 (a) The scores of several policy trials plotted against their release times for
the dart thrower. (b) The upward force felt by each foot of the quadruped
during a single trial. 99

5.6 (a,b) The learning curve performances of the baseline, natural baseline, nat-
ural RSM, and natural sensor gradient estimators for dart1 and dart2 re-
spectively. 104

5.7 (a,b) The learning curve performances of the baseline, RSM, and time-variant
RSM with sensor data gradient estimators for dart1 and dart2 respectively. 104

vi

5.8 (a) The learning curve performances of the baseline, natural baseline, natural
RSM, and natural with sensor data gradient estimators for quadruped2. (b,c)
The learning curve performances of the baseline, RSM, and time-variant
RSM with sensor data gradient estimators for quadruped2 and quadruped3
respectively. 105

vii

Acknowledgments

Many people have helped me during my time in graduate school. I would first like to thank

my instructors. They taught me a variety of skills and most importantly, how to properly

think about research problems. My dissertation committee members allowed me to discuss

ideas, and they made several suggestions for improvements. My advisor, Stuart Russell,

was instrumental in providing guidance and supporting me throughout this process.

I would also like to thank the administrators in the EECS department. Sheila

Humphreys, in particular, gave me plenty of advice and encouragement. In addition, Beatriz

Lopez-Flores and the rest of the Center for Underrepresented Engineering Students office

(CUES) gave me a great deal of support.

My interactions with fellow graduate students have contributed to my research.

Russell’s Unusual Group of Students (RUGS) allowed me to share ideas with others and

provided me with useful feedback. These members have participated in this process: Norm

Aleks, Nimar Arora, Rodrigo de Salvo Braz, Kevin Canini, Shaunak Chatterjee, Bhaskara

Marthi, Brian Milch, Mark Paskin, Erik Sudderth, Satish Kumar Thittamaranahalli, Jason

Wolfe, and Andy Zimdars. I would especially like to acknowledge Eyal Amir, David Andre,

Noah Cowan, Jeffrey Forbes, Daishi Harada, Vassilis Papavassiliou, and Hanna Pasula.

Their friendship and support made my experience at Berkeley more enjoyable.

The Black Graduate Engineering and Science Students group (BGESS) provided

me with a strong social support system. I would like to thank Kofi Boakye, Tiffany Craw-

ford, Doug Densmore, Javit Drake, Mark McKelvin, Kimani Stancil, Nerayo Teclemariam,

Jennifer Wade, and Hakim Weatherspoon.

viii

My family has always been very supportive. Although my father, Dymus Lawrence,

is no longer with us, he instilled in me the values that have allowed me to be successful.

My mother, Dorothy Lawrence, has always been my biggest advocate, and she encouraged

me throughout this process. My two older brothers, Michael and Brian Lawrence, gave ad-

ditional support and supplied useful suggestions. Finally, I would like to thank my fiancée,

Emille Davie. I greatly appreciate her love and support.

1

Chapter 1

Introduction

This chapter provides a description of the problems addressed in this dissertation.

We present our approach to solving these problems, introduce the main contributions of the

dissertation, and give an outline of the topics discussed in the remaining chapters.

1.1 Problem description and motivation

Suppose that we are given the task of controlling a robot, and that our goal is

to get this robot to perform some desired motion. Possible motions include those that

humans typically perform (e.g., walking, running, throwing, swimming, climbing stairs).

For illustrative purposes, suppose that our specific goal is to supply the low-level control

commands that will cause the robot to throw a dart towards a given target. The robot is

made of several body parts that are connected to each other by different types of joints;

motors are attached to each of these joints so that the robot may be actuated by a controller.

Figure 1.1 shows how a computer controller typically interacts with the physical hardware

2

at
1.04
-0.43
-0.11

at
1.02
-1.63
-0.78

at
1.00
-2.54
-1.29

ot
2.07
1.21
0.24
-7.31
-10.76
-1.60

ot
1.86
0.65
0.07
-4.76
-18.81
-6.83

ot
1.83
0.50
0.01
-4.71
-19.57
-7.45

t=0.216 t=0.252 t=0.288

... ...

Figure 1.1: How a controller actuates a robot.

of the robot. At each time step, the controller supplies an action at that specifies the desired

positions of each controllable joint. In addition, the controller receives noisy observations ot

from the environment; these observations typically include measurements of the joint angles

and joint velocities. There are two general approaches to obtaining an effective sequence

of low-level control commands. If we have an accurate model of the dynamics, we may be

able to compute an optimal controller with respect to a suitably chosen objective function.

Unfortunately, even in cases where we can obtain an accurate model of the dynamics, the

task of finding an optimal controller is often difficult (Chapter 2 provides several reasons).

Motor control learning, the alternative approach, is the process that an agent uses to adapt

its controls, using sensory feedback from the environment, so that it effectively performs a

desired motion. The ability to learn is important because it allows a system to adapt to

3

a constantly changing world. Fast learning is preferable because it reduces the amount of

time spent acting inefficiently.

There are a number of companies and organizations working to expand the range

of tasks that robots can perform. At the time of writing, over 2 million iRobot Roomba

vacuuming robots have been sold and more than 150,000 Sony AIBO entertainment robots

have been sold. Honda’s humanoid robot Asimo is capable of performing some advanced

tasks (e.g., greeting people and following them), Boston Dynamics’ Big Dog can maneuver

over rough terrain without falling, and the NASA Jet Propulsion Laboratory’s rover explores

the surface of Mars. Schaal [2007] suggests that in the near future, robots may be able to

perform such complicated tasks as taking care of the sick and elderly, performing hazardous

waste clean-up, and educating children. Bill Gates [2006] believes that the robotics industry

may soon start to grow quickly, similar to the rapid growth of the personal computer

industry in the 1980s. We believe that learning will play a significant role in the design and

creation of these new robotic systems.

Since humans and other biological systems learn new motions throughout their

lifetime, examining these systems may provide insight when designing effective controllers

and efficient learning algorithms. For example, central pattern generators, which trigger

behaviors according to a cyclical pattern, have been used to design controllers for locomotion

[Billard and Ijspeert, 2000, Bruce et al., 2002, Fukuoka et al., 2003]. The six-legged RHex

robot, inspired by the cockroach, can maneuver over rough terrain using simple open-loop

control strategies [Buehler et al., 2000, Saranli et al., 2001]. One interesting question is,

what criteria do biological systems use to measure the performance of each task? Consider

4

the following qualitative description of a control strategy for dart throwing: throw dart

with maximal velocity straight toward the target. Although this strategy may work in a

noise-free computer simulation, the resulting motion looks unrealistic. This is because real

systems have other objectives (e.g., conserve energy and minimize probability of injury)

and act in noisy environments. Nelson [1983] observed that optimizing a controller with

respect to a minimal energy or minimal jerk criterion produces a smooth motion, a property

shared by biological systems. More recent work suggests that these systems act in ways that

are robust with respect to multiplicative noise, i.e., noise that is proportional to the desired

force [Harris and Wolpert, 1998, Todorov and Jordan, 2002]. By determining the objectives

that biological systems aim to achieve and designing computer simulations that accurately

model these systems, we can produce realistic motion. In fact, using a multiplicative noise

model, Todorov and Jordan [2002] were able to obtain controllers whose resulting motions

qualitatively matched biological systems. Our prior work with a simulated dart thrower

also shows, anecdotally, that learning robust controllers in noisy environments produces

realistic looking motions [Lawrence et al., 2003].

1.2 Short summary of previous work

This section briefly summarizes previous work (Chapter 2 provides more detail).

Motor control learning algorithms typically consider a parameterized family of control

strategies, and their goal is to find a strategy that maximizes a given objective. A per-

formance measure uses a single numeric value to capture the quality of a given motion; it is

important because it gives an agent a clearly defined goal to achieve, i.e., to maximize the

5

performance. In a noisy environment, an agent’s performance will vary each time it exe-

cutes a given control strategy and so learning algorithms focus on maximizing the expected

performance. Genetic algorithms maintain a set of control strategies and evolve them over

many generations to improve the performance. These algorithms have been used to learn

new controllers for quadruped locomotion [Hornby et al., 1999, Chernova and Veloso, 2004].

Another class of algorithms perform hill-climbing by repeatedly estimating policy gradients,

i.e., the gradient of the expected performance with respect to a set of policy parameters.

These algorithms differ in how they estimate the gradient. Stone and Kohl [2004] estimate

the gradient from a set of trials distributed around the current parameter setting. They

improve the learning rate by examining the correlations between each policy parameter and

the performance; the correlations are then used to construct an estimate of the gradient.

REINFORCE uses stochastic policies for exploration purposes and can form an

unbiased estimate of the gradient from a single policy trial [Williams, 1992]. Unfortunately

the resulting gradient estimates often suffer from a high amount of variance. One way to

reduce the variance is to examine multiple policy trials, for a single parameter setting, and

take the average of the resulting gradient estimates. This is undesirable because obtaining

policy trial data can be expensive. As an alternative, a number of techniques have been

developed to reduce the variance of the standard REINFORCE gradient estimates. By in-

corporating a baseline term, the variance of the resulting gradient estimates can be reduced

substantially [Weaver and Tao, 2001]. The GPOMDP algorithm uses a discounting factor

to reduce the variance of the gradient of the average reward with respect to the policy pa-

rameters [Baxter and Bartlett, 2001]. Actor-critic methods incorporate a value function to

6

improve learning [Sutton et al., 2000, Greensmith et al., 2001, Konda et al., 2003]. Using

the natural gradient [Amari, 1998] may also give substantial improvements [Kakade, 2002,

Peters and Schaal, 2006]. Normalized importance sampling can be used for sample reuse,

i.e., exploiting policy trial data from previous hill-climbing steps [Shelton, 2001]. In simula-

tion environments, PEGASUS increases the speed of learning by converting the stochastic

problem into a deterministic one [Ng and Jordan, 2000]. By removing the stochasticity, they

can then use standard optimization techniques to find a locally optimal control strategy.

1.3 Our approach

We extend the REINFORCE family of algorithms by continuing to lower the vari-

ance of the gradient estimates. This is important because policy trials, even in simulated

environments, are often expensive to obtain. For illustrative purposes, let us first consider

the setting in which gradient estimation is easy. In a d-dimensional deterministic setting we

can compute the exact gradient using finite differences with d+ 1 policy trials. In the noisy

setting, however, an agent may need to obtain many more policy trials. Although each

policy trial produces an unbiased estimate of the expected performance, the variance adds

noise to the gradient estimates. The amount of noise in the gradient estimates decreases as

we move towards the deterministic setting. Thus if we could reduce the noise in each policy

evaluation, we will reduce the noise in the gradient estimates.

One source of noise is introduced by the use of randomized policies; these policies

perturb the nominal control commands issued by the controller. Other sources of noise,

including both actuator and environmental noise, affect the actual torques (or forces) gen-

7

Observed

Inferred

Action

P
er
fo
rm
an
ce

Figure 1.2: The expected performance of a one-dimensional toy problem (solid line). The
diamonds denote the actual performances of three policy trials, and the stars denote a
posteriori estimates of the corresponding expected performances.

erated by these commands. Thus if we were to execute the same policy multiple times, each

trial will return a different value for the performance. Figure 1.2 illustrates the challenge

via a one-dimensional problem. From three policy trials, the agent would ideally like to de-

termine the expected performances. Because of the noisy environment, it can only observe

rough estimates (denoted by the diamonds). If we could explain away the noise-induced

perturbations of the performances, moving the rough estimates closer to the true mean

(this move is illustrated by the stars), then we move ourselves closer to the deterministic

setting. This dissertation presents algorithms that exploit this idea and as a result, produce

gradient estimates that are less noisy.

The first class of algorithms that we explore in this dissertation considers the effect

that exploration noise has on the performance; most gradient estimation algorithms do not

fully consider this effect. For example, in the dart thrower task the agent may choose to

explore, during a particular policy trial, by throwing the dart with more velocity than what

8

the current control parameters specify. Suppose, as a result, that the increased velocity

causes the dart to land closer to the target. We capture relationships like this by learning

a response surface model (RSM) which, in our case, predicts the value of the expected

performance as a function of a set of user-defined features evaluated during each trial. By

using the appropriate model, we can reduce the variance of the resulting gradient estimator.

The second class of algorithms exploits sensory information (e.g., measurements

of each joint angle); this information can be used to explain away the noise-induced per-

turbations in the performance. While most controllers respond to changes in the sensor

data, learning algorithms typically ignore this information when estimating the gradient.

For example, suppose that the dart thrower executes a policy and senses that it released

the dart too late. This causes the dart to land below the intended target and results in a

poor performance. Since this performance can be explained by the sensor data, perhaps

the agent should conclude that the policy parameters were not responsible for the miss (the

culprit was probably the release-time noise). This kind of reasoning allows us to effectively

reduce the noise in each performance estimate, thereby reducing the variance of the gradient

estimates. This reasoning does, however, require knowledge of the relationships between the

sensor data, policy parameters, and performances. A key step to performing these types of

inferences is to use a sensor encoding that allows us to perform these kinds of inferences. We

show that good sensor encodings have the following properties: the distribution of encoded

sensor values is uncorrelated with the exploration noise and the sensor values correlate with

the noise-induced perturbations of the performances. One useful sensor encoding uses the

difference between the observed motion of the system and the expected motion at each

9

time step. The idea of removing the contribution of one’s own motion from the sensory

data is also present in the biology literature [Wolpert et al., 2001]. Using these ideas, we

can reduce the number of policy trials needed before an agent can construct an accurate

estimate of the gradient and thus quickly achieve proficient behavior.

1.4 Thesis

Reasoning about the noise-induced perturbations in the performance allows an

agent to more quickly learn optimal motor control policies. By constructing response surface

models, we can explain away a portion of the noisy perturbations generated by the use

of randomized policies. Furthermore, the sensor data obtained during learning partially

explains the noise-induced perturbations, reducing the agent’s uncertainty over the true

value. The amount of experience required for learning can thus be reduced substantially by

designing learning algorithms that explicitly reason about the exploration noise and sensor

data obtained during each policy trial.

1.5 Main contributions

This dissertation presents efficient gradient estimation algorithms which are then

used to quickly learn effective controllers for a simulated dart thrower and quadruped loco-

motion task. We use response surface models to predict the performance of a given policy

trial as a function of the exploration noise. Given a set of linear basis functions, we derive

an expression for the coefficients that minimize the variance of the corresponding gradient

estimator. We also provide expressions for the variance in situations where the agent ex-

10

plores using Gaussian noise and the performance is locally linear in the exploration noise.

In addition, we provide natural gradient versions of the RSM gradient estimators.

We also incorporate sensor data into the gradient estimation task to further reduce

the variance. We derive expressions for the variance of a gradient estimator that uses sensor

data and show that a good sensor is uncorrelated with the exploration noise, but correlated

with the perturbations in the performance. Useful sensor encodings are presented for motor

control problems and we present a technique that can be used when the ideal conditions

do not hold. These techniques are used to improve the learning rates for a simulated dart

thrower and a quadruped locomotion problem.

1.6 Outline of dissertation

Chapter 2 describes background work in motor control and reinforcement learn-

ing. We discuss the following challenges that are faced when learning effective controllers:

noisy environments and sensors, nonlinear dynamics, continuous variables, high-dimensional

problem domains, and redundancy. The chapter reviews a number of reinforcement learn-

ing techniques that can be applied to motor control problems. One of these techniques,

policy search using gradient estimation via the REINFORCE algorithm, serves as the basic

algorithm that will be extended in later chapters.

Chapter 3 describes three problem domains that will be used to compare the

learning performances of the various gradient estimation algorithms discussed throughout

the dissertation. We present a toy cannon problem that is useful because it allows us to

visualize several key ideas in gradient estimation. (We can write an analytical expression

11

that closely approximates the true value function and its gradient.) This chapter also

presents the simulated dart throwing and quadruped locomotion problems; these problems

share many of the challenges described in Chapter 2.

Chapter 4 describes how we improve gradient estimation by learning a response

surface model. Given a parameterized family of models, we derive equations for the param-

eters that produce the minimal-variance gradient estimator. We also derive expressions for

the variance of the gradient estimator when an agent uses Gaussian exploration noise. We

show that the maximum likelihood estimation of a linear-Gaussian model is mathematically

equivalent to the natural gradient estimator. Using response surface models allows us to

quickly learn effective controllers for the dart thrower and quadruped problems.

Chapter 5 describes how improvements can be made by incorporating the sensory

data obtained during each policy trial. While agents may use sensors to determine what

actions to perform, policy search algorithms typically ignore this information when estimat-

ing the gradient. We reduce the variance by incorporating the sensor data, and we derive

expressions for the variance of the gradient estimators. We also show how to take raw sensor

data from motor control problems and produce useful encodings. Incorporating the sensor

data improves the learning performance of both the dart thrower and quadruped tasks.

Chapter 6 presents conclusions and discusses some ideas for future work.

12

Chapter 2

Background: motor control and

reinforcement learning

This chapter presents some background work in both motor control and reinforce-

ment learning. We explain that although an agent may face several difficulties when learning

effective policies, there will always be real-world problems where learning is necessary. This

chapter also reviews a number of reinforcement learning techniques that are often applied

to motor control problems. In Chapter 4 and Chapter 5 we extend some of these algorithms

to increase the learning performance.

2.1 Motor control learning

2.1.1 Problem description

Motor control learning is the process that an agent uses to adapt its controls, based

on sensory feedback from the environment, to better perform a desired motion. Figure 2.1

13

Actuators

Sensors

Environment

Agent

Policy

Figure 2.1: How an agent interacts with its environment.

shows the basic setup of how an agent interacts with its environment. Examples of motions

that an agent may perform include those that humans typically perform: reaching for a cup

of coffee, walking up a flight of stairs, throwing a dart towards the bull’s-eye, and taking a

morning swim. An agent performs these motions by controlling its actuators. In biological

systems muscles create motion by contracting in accordance to the signals received from the

central nervous system. In robotic systems, electrical motors produce motion by producing

forces and torques based on the commands received from a controller. Sensory feedback may

be used during movements to compensate for the noise experienced throughout a particular

motion. This task usually requires some form of state estimation, i.e., the process of using

sensors to update and maintain a prediction of an agent’s true state. Sensory data may also

be used to measure an agent’s current performance so that an agent can adapt its controls

to increase its future performance. An agent’s actuators and sensors make it possible to

perform and learn new motor control skills, a key component to an agent’s survival in a

complex world filled with novel situations.

14

Performance measures

A performance measure uses a single numeric value to capture the quality of a

given motion; it is important because it gives an agent a clearly defined goal to achieve, i.e.,

to maximize the performance. Performance measures are often defined with respect to a

particular task and they often need to incorporate several different objectives. For example,

the performance is often measured in part by how well an agent achieves its direct goal.

Did the agent successfully pick up the cup of coffee without spilling? Did the agent hit the

bull’s-eye in a game of darts? An example of a performance measure can be created by

penalizing squared errors or by simply assigning a high value to a successful motion (e.g.,

coffee cup in hand) and a low value to failures (e.g., falling down the stairs). Agents also

have to incorporate other needs such as preserving energy and minimizing the physical wear

and tear on the body.

Several hypotheses have been made to describe the performance measures used

by biological systems. Nelson [1983] compared the motions obtained by optimizing the

following objective functions: time cost with maximal force constraint, force cost, impulse

cost, energy cost, and jerk cost. All objective functions, except for time cost, use a fixed time

for when the agent should reach the goal state. The task was to control a one-dimensional

linear system (the state space includes position and velocity) so that it reaches the goal

state with zero velocity. The energy cost is written as
tf∫
t=0

u(t)2dt and the jerk cost is

written as
tf∫
t=0

ȧ(t)2dt, where u(t) is the force or torque at time t, a(t) is the acceleration at

time t, and |ȧ(t)| is the jerk. Minimizing the time cost and force cost performance measures

results in a bang-bang controller, i.e., apply a constant force in one direction followed by

15

the same constant force in the opposite direction. This results in an abrupt change in

acceleration causing a jerk in the motion; in fact it has an infinite jerk according to the

above definition. Using the energy cost and jerk cost metrics resulted in smooth motions.

Because the jerk performance measure does not directly incorporate the mass of the system,

the jerk produced by moving a heavy limb is penalized the same as an equivalent motion

of a lighter body part. Uno et al. [1989] suggest using the minimum-torque-change model

which aims to minimize
tf∫
t=0

τ̇(t)2dt where τ(t) is the torque at time t.

2.1.2 Challenges in finding optimal controllers

There are many challenges in finding effective controllers!

Noisy environments and sensors

As an agent interacts with its environment, noise from several sources affects

its behavior. Actuators are imperfect and so the actual force, torque, or level of muscle

contraction produced by an agent may differ from the commanded value. An agent’s sensors

also give noisy measurements of the values that are to be measured. Unfortunately, the

sensors may not be capable of directly measuring important quantities (e.g., joint sensors in

a quadruped robot only provide relative information and thus cannot measure the absolute

position and absolute rotation of the torso). The effect that the environment has on an

agent is often modeled as a noisy process because the set of complex interactions is hard

to quantify. An example of environmental noise is the effect that bumpy ground has on

locomotion. Noise makes learning difficult because it creates uncertainty over the outcome

of performing an action. Thus it typically increases the amount of experience an agent must

16

acquire in an environment before an effective controller can be learned.

Recent work demonstrates that a key component in biological systems is that they

learn to minimize the effect that noise has on the performance. Optimizing a controller with

respect to a multiplicative noise model (i.e., the variance of the noise is proportional to the

desired force) has been shown to match biological data. Harris and Wolpert [1998] used a

model of eye saccade motion to find the optimal force profile by minimizing the expected

squared error in the final eye position. They found that the resulting motion matched real

biological data. Using a linear system model with feedback control, Todorov and Jordan

[2002] were able to qualitatively match a number of motions performed by human subjects.

These motions include moving a pointer through various targets and folding a piece of paper

into a ball. They also introduce the minimal intervention principle which states that an

agent should adapt its controls to reduce the effects of noise along directions that affect task

performance. As a result, they argue that noise will tend to accumulate in the directions

that are irrelevant to the performance.

Nonlinearities

Most motor control problems have nonlinear dynamics. The equations of motion,

as given by the laws of physics, are written as a set of nonlinear differential equations.

Physical contacts may introduce a large nonlinear component into the system. A common

example is the force that the ground exerts on the feet during locomotion. Nonlinear

dynamics rule out many standard techniques that only apply to linear dynamical systems.

An example of a solution that works for linear problems is the linear quadratic regulator

where an agent’s goal is to minimize a quadratic cost function when the dynamics are

17

governed by a linear system. One possible approach for nonlinear systems is to linearize the

system around a nominal state or path. For example, the dynamics of the classical cart-pole

problem are often approximated as a linear system. While this may work well for certain

problems, it cannot be applied to domains where the system behavior deviates significantly

from the nominal state or trajectory. It may also be difficult to determine what the nominal

trajectory should be for more complicated tasks.

Continuous states and actions

Motor control problems have continuous state variables and they often have a

continuous action space. Many learning algorithms only work with problems that have a

discrete state space. Some approaches convert continuous problems by discretizing the state

and action spaces. A major drawback is that the size of the resulting state and action spaces

become prohibitively large for high dimensional problems. Other approaches use function

approximators to encode a value function. For example, the Cerebellar Model Articulation

Controllers (CMACs) representation discretizes features of a state space at multiple coarse-

ness levels and has been used successfully for a number of problems [Albus, 1975]. Neural

networks, radial basis functions, and several other function approximators have been used to

encode an agent’s value function [Tesauro, 1992, Sutton, 1996, Atkeson et al., 1997]. When

these methods are employed, convergence to an optimal policy may not be guaranteed.

High-dimensionality and redundancy

High-dimensional state and action spaces are common in motor control problems.

Human bodies are estimated to have over 100 degrees of freedom. The Sarcos humanoid

18

robot DB has 30 degrees of freedom and the Sony AIBO robot has 26 degrees of freedom.

Motor control learning problems will thus often be susceptible to the curse of dimensionality

which states that the complexity grows exponentially with the number of degrees of freedom.

The high number of degrees of freedom often makes these systems highly redundant, i.e.,

there are many ways to perform a particular task. Bernstein [1967] observed that biological

systems must be able to master these redundant degrees of freedom to produce good motion.

For example in a noise-free dart throwing task, there are an infinite number of ways to move

the arm so that when the dart is released it exactly hits the bull’s-eye. If the goal is to

learn motions that match biological systems, this redundancy must be properly reduced

by making the model more realistic. Properties of realistic simulations include accurate

noise models (i.e., multiplicative noise) and performance measurements that capture the

objectives of real systems (e.g., energy conservation and jerk minimization).

2.1.3 Advantages of taking an online learning approach

Online learning occurs when an agent continuously learns in the same environment

that it acts, by using the data received during each policy trial execution. It has the potential

to avoid many of the problems associated with an offline approach, where an agent learns

a complete control strategy before it acts. If we are given an accurate dynamical system

model for certain classes of control problems (e.g., the linear quadratic regulator problem),

it may sometimes be possible to find effective controllers by directly solving for the optimal

controller. In other situations, offline learning could take place inside a simulator to find a

good controller. In either case, if these controllers were then implemented on a real system,

inefficiencies would almost surely arise because the real system and the simulator are not

19

equivalent. Simulators are often inaccurate for several reasons. For example, the masses and

lengths of an agent’s body parts are often estimated for simulation purposes. In addition,

it may be hard to determine the exact relationship between motor commands and the

corresponding torques produced by the motors. Finally, there are unmodelled aspects: slack,

hysteresis, vibrations, bending, stiction, etc. There are similar difficulties in simulating an

accurate sensor model. Thus while offline learning may be useful as a bootstrap, further

gains will be possible when learning takes place online. Another advantage of online learning

is that environments change and agents may find themselves needing to perform novel tasks.

2.2 Reinforcement learning

Before we discuss reinforcement learning algorithms, we must first define the de-

cision processes that they solve.

2.2.1 Markov decision processes

A Markov decision process (MDP) can be used to represent a wide range of se-

quential decision problems [Bellman, 1957]. In this framework an agent is always assumed

to be in one of several states s ∈ S and it has perfect sensing (i.e., the agent always knows

what state it is in). At the beginning of the process the agent is placed into an initial state

according to the initial state distribution D. At each time step the agent decides which

action a ∈ A to perform. Each action causes a stochastic state transition whose distribution

depends on the current state and choice of action. These next-state probabilities are given

by the transition function T . In problems that have a discrete state space, this transition

20

+1

Figure 2.2: Example of a Markov decision process (MDP).

function may be written as a conditional probability distribution T (s, a, s′), where the agent

transitions from state s to state s′ after performing action a. For continuous state spaces,

the transition function may be written as conditional probability density function. A policy

π specifies what action the agent should take in each state and is represented by a mapping

between states and actions. We write π(s) to denote the action that π takes in state s. The

agent receives a reward R(s, a) as a function of the current state and action. This reward

signal measures the single-step desirability of performing an action from some state. Prob-

lems also include a discounting factor γ which discounts the importance of reward signals

obtained in the future. After defining the components, we can write an MDP as a tuple

(S, D,A, R, T, γ).

Figure 2.2 shows an example of a discrete state MDP where S contains the

grid coordinates of a robot. In each state the agent may choose one of four actions

A = {north, south, east,west}. The agent receives a +1 reward when it performs any

action in the north-east corner and a reward of zero otherwise. The stochastic transitions

21

take place so that with probability (1−pa), the robot successfully executes its desired action

provided that there is no wall blocking its path. With probability pa the agent accidentally

executes one of the other actions, where each undesired action occurs with probability pa/3.

To encourage progress towards the goal we let γ = 0.9.

The goal is to find an optimal policy π∗ which maximizes the agent’s expected sum

of discounted rewards. This expectation is captured by the value function Vπ(s), where we

use subscripts to denote the policy. To understand the value function, imagine that an

agent executes a policy starting from some initial state s0. At each time step it will perform

an action according to π(s) which will cause it to stochastically transition to a new state.

The agent receives rewards as a function of the states that it enters and the reward received

at time step t will be discounted by a factor of γt. Randomness in the state transitions

induces a distribution over the discounted sum of rewards obtained by executing π from s0.

The value function gives the average of this distribution and it can be expressed as follows:

Vπ(s) = Eπ
[∞∑

i=0

γirt+i
∣∣∣st = s

]
, (2.1)

where rt+i is a random variable representing the reward received at time step t+ i.

2.2.2 Partially observable Markov decision processes

Partially observable Markov decision processes (POMDPs) are capable of repre-

senting an even wider range of learning tasks [Smallwood and Sondik, 1973]. These decision

problems are complicated due to the fact that the states are only partially observable. In-

stead of an agent knowing what state it is in, it receives an observation o ∈ Ω whose

value is distributed conditioned on the current state. The distribution of these observa-

22

+1

Figure 2.3: Example of a partially observable Markov decision process (POMDP).

tions is give by the observation model O. In problems that have a discrete state space,

this distribution may be written as a conditional probability distribution O(s, o), where

the agent observes o from state s. For continuous state spaces, the observation model may

be written as a conditional probability density function. In either case, the agent may be

uncertain over its true state. It may elect to maintain a belief state bt which gives the pos-

terior probability of being in each state as a function of the entire history of observations.

Maintaining the current belief state is an example of filtering. We can write a POMDP as

follows: (S, D,A, R, T,Ω, O, γ).

Figure 2.3 shows an example of a discreet state POMDP where (S,A, R, T, γ)

are equivalent to the MDP shown in Figure 2.2. However in this environment the agent’s

sensors properly detect the grid coordinate with probability ps and otherwise the sensor

fails to return a reading. We may define the set of observations by augmenting the state

space with a symbol denoting failure (O = S ∪ {fail}). This observation model causes the

agent to be uncertain about which state it happens to be in.

23

The Markov property states that the distribution of future states is independent of

the past given that we know the current state; it is essential to algorithms that solve MDPs.

Although this property does not apply to the observations received in partially observable

environments, it does hold for the belief states. Thus we could, in principle, apply any

algorithm capable of solving an MDP with a continuous state space to a POMDP via a

conversion that treats the belief states as regular states in an MDP. In discrete state spaces

of significant size, reasoning about the belief states may be computationally difficult because

the belief states are continuous. A key observation is that while the value function is defined

over a continuous space, it can still be represented compactly for small problems. However,

algorithms for directly solving POMDPs for continuous state space problems are hopeless

with a few exceptions. For example, the regulation task has an analytical solution for linear

control problems with a quadratic cost function and Gaussian noise.

2.2.3 Problem description

Reinforcement learning is the process of learning an effective policy from an agent’s

experience; Kaelbling et al. [1996] provide a good survey. Typically an agent does not know

a priori the transition or reward functions for a particular problem. The goal is for an agent

to efficiently improve a given policy π based on experience. Each state transition can be

thought of as a random sample from the transition and reward functions. This information

is used to optimize the current policy.

We must distinguish between model-free and model-based methods. A model-free

method attempts to learn the optimal policy without learning the transition or reward

functions. The Q-learning algorithm is one such method [Watkins and Dayan, 1992]. It

24

maintains a Q-function, written as Qπ(s, a), which gives the expected sum of discounted

rewards given that an agent executes a from state s and then follows π. Q-learning uses

temporal differencing to update Qπ(s, a) and under the right conditions it will learn the

optimal policy. Model-based methods either have access to the transition function or learn

an approximation from experience. Since each state transition is a random sample from the

true transition function, the agent can estimate T and R from its experience. Given this

model, the agent can periodically solve the approximate MDP to extract the corresponding

optimal policy.

Value-based methods are very popular for solving reinforcement learning problems.

These algorithms continuously refine an estimate of a value function (or Q-function) based

on an agent’s experience. It will be valuable to explain why these methods are generally

hard to apply to partially observable domains. If an agent does not know the transition

function or even the dimensionality of the hidden state space, then it is unclear how to

properly maintain a belief state. Without a belief state, it will be very difficult to learn the

value function using the standard techniques. Policy search methods can avoid this problem

by working with a carefully chosen set of parameterized policies; these methods have shown

promising results in partially observable domains.

2.2.4 Policy search methods

Policy search methods search through a space of parameterized policies to find an

effective policy. In this framework, a policy can be represented by a d-dimensional vector

π ∈ Rd, whose entries determine the behavior of the system. We can define a value function

over policies where we write V (π) to denote the expected sum of future rewards obtained

25

by executing π from the initial state distribution D. An agent’s experience can be used to

estimate ∇πV (π)
∣∣∣
π=π0

, the gradient of the value with respect to π, evaluated at the current

policy π0. Improvements to the policy are then made by adjusting the parameters in the

uphill direction. Although these algorithms can get stuck in a local maximum, they have

been successfully applied to many motor control problems.

We must distinguish between episodic and non-episodic algorithms. Episodic algo-

rithms estimate the gradient from a number of policy trials where each policy trial consists

of executing a policy from some initial state. After the agent reaches a terminal state,

the process is repeated by executing a policy from a new initial state. In a non-episodic

algorithm, the agent acts continuously without its state being reset to some initial value.

In both settings, improvements to the policy are periodically made by adjusting the pa-

rameters in the direction of the gradient. For episodic algorithms it is useful to define the

score f as the discounted sum of rewards obtained during a single policy trial. Policy search

algorithms differ in how they estimate the gradient.

Gradient estimation using linear regression

One of the simplest gradient algorithms uses linear regression to estimate the

gradient at the current policy π0. Suppose we have n policy trials where the parameters of

each trial are chosen so that they collectively form a spanning set of the entire policy space.

Let π(i) contain the parameters for the ith trial and let f (i) be the ith score. We can locally

approximate V (π) by fitting a linear function: f (i) = π(i)Taπ+b. This linear approximation

is only valid when we choose policy trials that are close to π0. Linear regression can be

performed to learn aπ which may then be used as an estimate of the gradient.

26

REINFORCE

One of the earliest gradient estimation algorithms used for reinforcement learning

was REINFORCE [Williams, 1992]. This episodic algorithm can produce an unbiased esti-

mate of the gradient from a single policy trial. This algorithm uses randomized policies for

exploration purposes. Thus at each time step, an agent performs a random action according

to a distribution conditioned on the policy parameters. Each policy trial returns a history

h, a sequence of observation-action-reward values, and from this history we can measure

the score f(h) by taking the sum of the reward values. The value function may be defined

over policies V (π) = E[f(h)|π] where the histories h are generated from π.

Assuming that h is written in vector form, the gradient of the value with respect

to π can be written as an integral expression:

∇πV (π) = ∇π
∫
f(h)P (h|π)dh. (2.2)

We can multiply the contents of the integral by the expression P (h|π0)
P (h|π0) . By moving the

gradient operator inside the integral and approximating the integral by a sum (using the

histories from n policy trials) we may derive the gradient estimator as follows:

∇πV (π) = ∇π
∫

P (h|π)
P (h|π0)

f(h)P (h|π0)dh

=
∫ ∇πP (h|π)

P (h|π0)
f(h)P (h|π0)dh

≈ 1
N

N∑

i=1

∇πP (h(i)|π)
P (h(i)|π0)

f(h(i)),

where h(i) is the ith history. In policy search algorithms we are typically interested in

27

f

ψ2

ψ1

−5
0

5−1

−0.5

0

0.5

1

−4000

−3000

−2000

−1000

0

1000

(a)

f

ψ2

ψ1

−5
0

5−1

−0.5

0

0.5

1

−4000

−3000

−2000

−1000

0

1000

(b)

Figure 2.4: (a) Scores from several policy trials drawn from a toy problem. (b) Correspond-
ing eligibility vectors.

evaluating the gradient at π0.

∇πV (π)
∣∣∣
π=π0

≈ 1
N

N∑

i=1

∇πP (h(i)|π)
∣∣
π=π0

P (h(i)|π0)
f(h(i))

=
1
N

N∑

i=1

ψ(h(i)|π0)f(h(i)),

(2.3)

where the eligibility vectors ψ(h(i)|π0) are defined as follows:

ψ(h(i)|π0) =
∇πP (h(i)|π)

∣∣
π=π0

P (h(i)|π0)
= ∇π logP (h(i)|π)

∣∣∣
π=π0

. (2.4)

Intuitively, this vector points in the direction that an agent should move in policy

space to make executing a given history more likely. This is demonstrated in Figure 2.4(a)

which plots the scores of sixteen samples drawn from a two-dimensional toy problem as a

function of ψ (Figure 2.4(b) plots the eligibility vectors). An estimate of the gradient is

produced by weighting each eligibility vector by its corresponding score. This weighting

increases the likelihood that an agent repeats the histories of the high scoring policy trials

when it follows the gradient.

28

In Equation 2.4 we saw that ψ can be written as the gradient of a log-likelihood

expression. Because of the log term, the eligibility for a policy trial can be decomposed as

the sum of single-step eligibility vectors. In the fully observable case, the probability of a

given history can be written as the following product:

P (h|π) = P (s0)
tf∏

t=0

P (at|st, π)P (st+1|st, at)P (rt|st, at). (2.5)

The only terms in the above expression that depend on the policy are the P (at|st, π) terms.

Thus we can write the gradient of the log-likelihood as follows:

∇π logP (h|π)
∣∣∣
π=π0

=
tf∑

t=0

∇π logP (at|st, π)
∣∣∣
π=π0

=
tf∑

t=0

ψ(t)(at|st, π0), (2.6)

where the single-step eligibility is written as follows: ψ(t)(at|st, π0) := ∇π logP (at|st, π)
∣∣∣
π=π0

.

In the case of reactive policies, where the action depends only on the current

observation, partially observable problems decompose in a similar way. The probability of

a given history is written as the following product:

P (h|π) = P (o0)
tf∏

t=0

P (at|ot, π)P (ot+1|o0, . . . , ot, a0, . . . , at, r0, . . . , rt)

tf∏

t=0

P (rt|o0, . . . , ot, a0, . . . , at, r0, . . . , rt−1).

(2.7)

Because the Markov property no longer holds, both the observations and reward signals

depend on the previous observations, actions, and reward signals. However, the only terms

that depends on the policy are the P (at|ot, π) terms. Thus we can write the gradient of the

log-likelihood as follows:

∇π logP (h|π)
∣∣∣
π=π0

=
tf∑

t=0

∇π logP (at|ot, π)
∣∣∣
π=π0

=
tf∑

t=0

ψ(t)(at|ot, π0), (2.8)

29

where the single-step eligibility is written as follows: ψ(t)(at|ot, π0) := ∇π logP (at|ot, π)
∣∣∣
π=π0

.

This shows that even though an agent may not have access to the entire history for a given

policy trial, it can usually access the components that are necessary for gradient estimation.

REINFORCE with a baseline

It was noted in the original description of REINFORCE that improvements could

be made by subtracting a baseline term from the score. This does not introduce bias into

the algorithm because the gradient of a function does not change if we add any constant

to its value. The variance, however, can change substantially. A common heuristic used

for selecting a baseline term was to use the expected sum of rewards. The baseline that

minimizes the variance is actually formed using a weighted average [Weaver and Tao, 2001].

b∗ =
E[ψ(h|π0)Tψ(h|π0)f(h)|π0]

E[ψ(h|π0)Tψ(h|π0)|π0]
. (2.9)

Thus an improved REINFORCE estimator is written as follows:

∇πV (π)
∣∣∣
π=π0

≈ 1
N

N∑

i=1

ψ(hi|π0)(f(hi)− b∗). (2.10)

In the episodic setting, we can estimate the optimal baseline from the n policy trials and

then plug this back into the estimator. This process does introduce bias into the procedure.

Imagine that we estimate the gradient from a single policy trial. In this case the optimal

baseline will be set to the score received from the single trial causing the estimator to return

0 for the gradient, which is clearly biased (unless the true gradient happens to be 0 at π0).

However for a sufficient number of samples, the bias is minimal and using a baseline term

improves the quality of the gradient estimates.

30

GPOMDP

REINFORCE has been known to suffer from high variance which means that it

may require many policy trials to be confident in the estimate of the gradient. This tends

to be true in problems where the agent acts for a large number of steps in each policy trial.

The GPOMDP algorithm approximates the gradient of the average reward with respect to

the policy parameters [Baxter and Bartlett, 2001]. To reduce the variance of the estimator

it uses a discounting factor.

From a single policy trial, we can estimate the gradient as

∇πV (π)
∣∣∣
π=π0

≈
tf∑

t=0

ψ(t)(at|ot, π0)
tf∑

u=t

ru. (2.11)

This equation is formed by using the sum of reward signals as the score. We do not include

terms that multiply an eligibility vector to a reward signal obtained at a previous time step.

This is because reward signals do not depend on future actions. GPOMDP introduces a

discounting factor to reduce the variance of the estimator while introducing some bias. The

gradient estimator can be written as follows:

∇πV (π)
∣∣∣
π=π0

≈
tf∑

t=0

ψ(t)(at|ot, π0)
tf∑

u=t

γu−tru. (2.12)

The bias does not appear to affect the performance in practice assuming that one

chooses a suitable discounting term. The amount of bias depends on the discounting term

and the mixing time of the induced Markov chain. One advantage of this approach is that

it can be used in both an episodic and non-episodic setting. In the non-episodic setting,

an agent maintains an estimate of the gradient and the accuracy increases the longer it

interacts with the environment. Periodically, it may choose to adjust its controls in the

31

direction of the gradient.

Actor-critic techniques

Actor-critic algorithms have been shown to reduce the variance of gradient esti-

mation [Sutton et al., 2000, Greensmith et al., 2001, Konda et al., 2003]. These algorithms

have a critic learn Q(s, a), which predicts the expected sum of discounted rewards obtained

after performing an action from a particular state; some variations have their critic learn

V (s) or an advantage function. The Q-function is then used by the actor in estimating

the gradient. The actual sum of discounted rewards obtained during each policy trial is

replaced by Q(s, a). This gives the following gradient estimator:

∇πV (π)
∣∣∣
π=π0

≈
tf∑

t=0

ψ(t)(at|st, π0)Q(st, at). (2.13)

When we previously used the actual sum of rewards, there was variance in this quantity

because of the stochastic nature of the problem. By replacing this sum with Q(s, a) we

remove one source of noise which helps to reduce the variance of the gradient estimator.

If we use a linear function approximator for Q(s, a), where the bases include the

components of the eligibility vector, then the resulting estimator is unbiased. The simplest

choice of features is to use the components of the eligibility vector. This gives the following

function approximator Q(s, a) = ψ(t)(at|st, π0)Tw, where w is a parameter to be learned

by the critic. It is not difficult to show that E[ψ(t)(at|st, π0)Tw|π0] = 0 which means that

the Q-function must predict that the expected sum of rewards from any state is zero. This

provides a poor representation of the true Q-function. An improvement is made by adding

a baseline term φ(st) that is parameterized by the current state. With the addition of this

32

term we can construct a Q-function by using ψ(t)(at|st, π0)Tw to approximate the advantage

function, which is defined as Q(s, a)− V (s), and by adding a parameterized baseline φ(st)

that approximates the value function. This gives the following gradient estimator

∇πV (π)
∣∣∣
π=π0

≈
tf∑

t=0

ψ(t)(at|st, π0)(ψ(t)(at|st, π0)Tw + φ(st)), (2.14)

where w and the parameters of φ(st) can be learned using temporal difference methods.

Natural gradient algorithms

Gradient estimators can suffer from high variance in cases where some of the

parameters are nearly deterministic. Suppose we have a single-step problem where a

randomized policy chooses an action from a Gaussian distribution centered around the

policy parameters π ∈ R2. In this case, the eligibility of a policy trial is written as

ψ(a|π0) = Σ−1(a − π0). Suppose that the covariance Σ of the action selection is writ-

ten as Σ =
[
σ1

2 0
0 σ2

2

]
and that the noise in a1 is much less than that of a2 (i.e., σ1 � σ2).

The variance of the first component of the gradient estimator will tend to be very high.

Intuitively, the variation in the score is mostly due to variations in the second component

since that is where most of the noise enters the system. However, the gradient estimator

has no way to infer this. This means that small fluctuations in control that are mostly

deterministic will dominate the gradient estimation. This is counterintuitive because in

most problems, these small variations give very little information about the gradient.

The natural gradient estimators compensate for this by pre-multiplying the gradi-

ent estimator by the inverse of the Fisher Information matrix: F = E
[
ψ(h|π0)ψ(h|π0)T |π0

]

[Amari, 1998, Kakade, 2002, Peters and Schaal, 2006]. The following estimator is biased

33

f

ψ2

ψ1

−5
0

5
−5

0

5

−4000

−3000

−2000

−1000

0

1000

(a)

f

ψ2

ψ1

−5
0

5
−5

0

5

−4000

−3000

−2000

−1000

0

1000

(b)

Figure 2.5: (a) Eligibility vectors of several policy trials. (b) Eligibilities scaled by the
inverse of the Fisher Information matrix F−1.

but the bias is guaranteed to result in an estimate that is less than π/2 radians in expecta-

tion away from the true gradient:

∇πV (π)
∣∣∣
π=π0

≈ F−1 1
N

N∑

i=1

ψ(h(i)|π0)f(h(i)). (2.15)

This expression improves the standard REINFORCE estimator but similar extensions can

be made to the GPOMDP, baseline, and actor-critic algorithms. Figure 2.5 shows this effect

for a toy two-dimensional problem. Although the agent has a larger exploration variance

in a2, the eligibilities vary the most along the first dimension. By scaling ψ by the inverse

of the Fisher Information matrix, we compensate for this effect.

PEGASUS

The PEGASUS algorithm provides a substantial reduction in the variance of the

gradient estimator [Ng and Jordan, 2000]. To gain some intuition, suppose that we evaluate

two nearby policies and our task is to estimate the difference in value. The stochastic

34

nature of the problem makes this task difficult. Imagine a situation in which noise causes

a fortuitous score in one trial, and an unlucky score for the other trial. In this situation

the estimate of their difference will be much larger than the expected value. However if

the noise is correlated in the two trials, then the task of estimating the difference becomes

more accurate. This is because in cases where the noise causes a fortuitous score in one

trial, correlated noise will tend to cause a fortuitous score in the other. Likewise when noise

causes the agent to receive a lower than expected score in one trial, correlated noise will

tend to cause the other trial to underperform.

PEGASUS exploits this idea by reusing the same noise when evaluating policies.

In situations where one has control over the randomness (e.g., simulator environments),

one can reuse the same noise variates for difference policy trials. This can be done by

reseting the random number generator seeds, although some care must be taken to ensure a

proper reuse of the noise. For example, PEGASUS can be used for gradient estimation by

evaluating n policies with k different sources of noise (total of nk trials). From these value

estimates, we can estimate the gradient using standard techniques.

Sample reuse using importance sampling

Many gradient estimators throw away the policy trial data after the agent takes a

hill-climbing step. However this data may still be used to improve the gradient estimator

at the current step. In the case of randomized policies, there is often a non-zero probability

that a policy would generate the history observed in a policy trial from a prior hill-climbing

step. By storing past histories, an agent can reduce the variance of the gradient estimator.

Importance sampling is a technique that is used to estimate a statistic (e.g., the

35

mean of a random variable) with respect to a distribution that differs from the sampling

distribution. This idea can be applied to reinforcement learning by estimating the mean

score with respect to the policy parameters. Suppose that an agent has executed a single

policy n times for j different policies. This is typical in the hill-climbing setting where an

agent has evaluated a policy at j different hill-climbing steps. The importance sampling

equation for the value of a policy is written as

V (π) ≈ 1
m

m∑

j=1

1
n

n∑

i=1

P (h(ij)|π)
P (h(ij)|π(j))

f(h(ij)), (2.16)

where h(ij) is the history of the ith policy trial in the jth hill-climbing step. This approxi-

mation could be used for policy search by taking steps in the direction that maximizes the

approximate value.

Improvements can be made by considering the normalized importance sampler

[Shelton, 2001]. The distribution of the weight terms
(

P (h(ij)|π)

P (h(ij)|π(j))

)
in the above estimator

can have a large variance. By replacing the normalization terms with the sum of the weights,

we can reduce the variance of the estimator. The normalized importance sampler is given

by the following equation:

V (π) ≈ 1
m∑
j=1

n∑
i=1

P (h(ij)|π)

P (h(ij)|π(j))

m∑

j=1

n∑

i=1

P (h(ij)|π)
P (h(ij)|π(j))

f(h(ij)). (2.17)

36

Chapter 3

Experimental problems

3.1 Cannon problem

3.1.1 Problem description

The toy cannon problem (Figure 3.1) can be used to help provide insight into the

policy search algorithms that will be presented in this dissertation. It is also useful because

we can write an analytical expression that closely approximates the true value function and

its gradient. The agent’s goal is to fire a cannonball so that it hits a target. The state space

contains a single state s0 and for each policy trial, the agent selects an action a = (aθ, av)T

which consists of a desired cannon angle, 0 ≤ aθ ≤ π/2, and desired initial velocity, av > 0.

We assume that a is perturbed by zero-mean Gaussian noise with covariance matrix Σu

to give the actual control u = (uθ, uv)T . The agent also has access to a noisy sensor that

measures the perturbation (u−a) and we let o = (oθ, ov)T denote its value; there is additive,

zero-mean Gaussian noise in o with covariance matrix Σo. From the actual control u, the

37

d

uθ

uv

d0

Figure 3.1: Toy cannon problem.

equations of projectile motion are used to determine the distance d from the target to where

the cannonball lands. The reward is defined to be r = −d2 and because this is a single-

step problem, the score f(uθ, uv) equals r. The history h for this problem contains the

action a, the observation o, and reward r. Maximizing V (π) = E[f(uθ,uv)|π] is equivalent

to minimizing the expected squared distance error. For exploration purposes, the agent uses

a randomized policy π = (πθ, πv)T which consists of a nominal cannon angle, 0 ≤ πθ ≤ π/2,

and nominal initial velocity, πv > 0. The agent selects actions by drawing samples from a

Gaussian distribution centered around π with covariance matrix Σe.

Chapter 4 and Chapter 5 compare the performance of various gradient estimation

algorithms using two versions of the cannon problem. In cannon0 the only stochastic

component is due to the use of a randomized policy with exploration noise, Σe =
[

1 0
0 4

]
.

In cannon1 there is some noise in the controller, Σe =
[1

10
0

0 4
10

]
, and additional noise in

the actuators, Σu =
[

1 0
0 4

]
. There is also noise in the sensor that measures the difference

between the actual and intended controls, Σo =
[1

10
0

0 4
10

]
.

38

3.1.2 Analysis

In this subsection we assume that the agent executes a deterministic policy without

exploration, i.e., the action a always equals π. Therefore in a completely noise-free setting,

the actual control u equals π. In this setting there are an infinite number of policies that

exactly hit the target. An equation for the score in the noise-free setting can be derived

using the equations of projectile motion:

f(πθ, πv) = −
(πv2 sin 2πθ

g0
− d0

)2
, (3.1)

where d0 is the distance between the cannon and the target and g0 is the acceleration due

to gravity. Using the above equation we can write an expression for the optimal πv∗ as a

function of πθ.

πv
∗(πθ) =

√
d0g0

sin 2πθ
. (3.2)

Figure 3.2(a) shows contours of the score function with the curve of noise-free optimal

solutions superimposed.

In the noisy setting, the value function is written as follows:

−V (πθ, πv) = E
[((πv +wv)2 sin 2(πθ +wθ)

g0
− d0

)2]

= E
[(πv +wv)4 sin2 2(πθ +wθ)

g0
2

− 2d0(πv +wv)2 sin 2(πθ +wθ)
g0

+ d0
2
]
,

where wθ and wv are zero-mean Gaussian random variables with covariance Σu. Obtaining

a closed-form expression for the above expectation is difficult but we can approximate the

solution, for diagonal Σu =
[
σv2 0
0 σθ

2

]
, by using a truncated Taylor series expansion. The

39

−
V

(π
v
,π

θ
)

πθ πv
20

30

40

50

0.2
0.4

0.6
0.8

1
1.2

×104

0

0.5

1

1.5

2

2.5

3

(a)

−
V

(π
v
,π

θ
)

πθ πv
20

30

40

50

0.2
0.4

0.6
0.8

1
1.2

×104

0

0.5

1

1.5

2

2.5

3

(b)

Figure 3.2: (a) Contours of the value function for a noise-free version of the cannon problem.
In this setting there are an infinite number of policies that exactly hit the target (indicated
by the thick curve). (b) Contours of the value function of the cannon problem with noise.
There is a single optimal policy indicated by the ‘X’.

approximate value function is written as follows:

−V (πθ, πv) ≈
(πv4 + 6πv2σv

2 + 3σv4)(sin2 2πθ + 4σθ2 cos 4πθ)
g0

2
−

2d(πv2 + σv
2)(sin 2πθ − 2σθ2 sin 2πθ)

g0
+ d0

2.

By setting the partial derivatives of V (πθ, πv) to zero (with respect to πv and πθ), we can

show that the approximate solution is

πv
∗ =

√
d0g0(1− 2σθ2)

(1− 4σθ2)
− 3σv2, πθ

∗ = π/4. (3.3)

Figure 3.2(b) shows the value function with the optimal policy (denoted by the ‘X’). We

have found a solution to the Bernstein problem, i.e., the agent has learned how to properly

control its redundant degrees of freedom. The noisy setting eliminates the infinite manifold

of possible optimal policies and yields a single optimal policy. Notice that the optimal

solution is approximately located where the contours lines in the noise-free setting are

40

−
V

(π
v
,π

θ
)

πθ πv
30

31

32

33

34

0.6

0.7

0.8

0.9

900

1000

1100

1200

1300

1400

1500

Figure 3.3: A closer look at the contours centered around the optimal policy indicated by
the ‘X’. The noise-free optimal policies are indicated by the thick curve.

furthest apart. This location is where the policy is least sensitive to perturbations in the

control.

In Figure 3.3 we see that the optimal policy does not lie on the noise-free optimal

curve. There are two possible reasons for this, which are best explained by considering the

noise in each parameter separately. Suppose that there is zero noise in πv and πθ = π/4,

then the agent should fire the cannon at a slightly higher velocity than that required in a

noise-free setting. This is because errors in the angle, whether positive or negative, will cause

the cannonball to land short of the target. If, on the other hand, there is zero noise in the

angle, but noise in the velocity, then the agent should fire the cannonball at a slightly lower

velocity than that required in the noise-free setting. This is because the squared error of an

overshoot is greater than an undershoot of the same magnitude. The relative strengths of

these two effects determine how the agent should adjust its velocity in a noisy environment.

41

Figure 3.4: The dart problem.

3.2 Dart thrower

The dart problem involves actuating a simulated arm so that it throws a dart with

minimal mean squared error (measured from where the dart hits the wall to the center

of the dart board). Figure 3.4 shows sixteen frames from a single policy trial. The arm

is modeled as a three-link rigid body with dimensions based on biological measurements

[Garner and Pandy, 1999]. The links correspond to the upper arm, forearm, and hand and

are connected using a single degree of freedom rotational joint. The upper arm is connected

to the shoulder at a fixed location. This gives us a 7-dimensional continuous state space

(s ∈ R7) which consists of the physical state (x, ẋ) and simulator time t. The physical state

42

consists of 3 joint angles that describe the position of the arm and 3 corresponding angular

velocities. We use SD/Fast to simulate the dynamics of the system [Hollars et al., 1990].

The arm is actuated by applying torques at each joint. These torques are gener-

ated by a proportional-derivative controller (PD-controller) that attempts to move the arm

through a desired trajectory, specified by a cubic spline for each joint angle. The starting

posture of the arm is fixed in advanced and the path is determined by interpolating between

three other knot positions. At the start of each policy trial, the agent chooses an action

a ∈ R9 that contains the knot positions for each joint. In the noise-free setting the torques

at each time step are given by the following equation:

τt = K1(Φta− xt)−K2ẋt, (3.4)

where K1 is the proportional gain matrix, K2 is the derivative gain matrix, and Φt is a

matrix that contains a set of basis functions constructed using cubic splines.

Φt =



φ1(t) φ2(t) φ3(t) 0 0 0 0 0 0

0 0 0 φ1(t) φ2(t) φ3(t) 0 0 0

0 0 0 0 0 0 φ1(t) φ2(t) φ3(t)


 ,

where φi(t) is the ith basis function of a cubic-spline.

Noise enters the system by perturbing the torques given by the PD-controller by

additive and multiplicative noise; the torques are written as follows:

τt =
(
I + diag(ζt)

)(
K1(Φta− xt)−K2ẋt

)
+ ξt, (3.5)

where (ζt, ξt) are sources of noise and diag is a function that takes a column vector as

input and returns a diagonal matrix with the input’s entries placed on the diagonal. The

dynamics are simulated for approximately 0.2 seconds and then the dart is released; there

is Gaussian noise added to the release time with σ = 0.01.

43

The additive and multiplicative sources of noise are drawn from a stationary

Ornstein-Uhlenbeck process [Uhlenbeck and Ornstein, 1930]. This process is similar to a

Brownian motion except that it is biased towards some mean value. Samples from these

processes at discrete time intervals can be obtained using the following equations:

ξt = µ+ e−λ∆t(ξt−1 − µ) + σ
(1− e−2λ∆t

2λ

)1/2
wξ(t)

ζt = µ+ e−λ∆t(ζt−1 − µ) + σ
(1− e−2λ∆t

2λ

)1/2
wζ(t),

(3.6)

where µ is the mean, λ is the mean reversion rate, σ is the standard deviation parameter,

(wξ(t), wζ(t)) are zero-mean multivariate Gaussians with covariance matrix I, and ∆t is the

simulator’s time step. The agent observes noisy measurements of the joint angles at each

of these time steps. The observations are drawn from a Gaussian centered around the true

state with covariance matrix Σo. From these measurements, the angular velocities may be

approximated using standard techniques.

The simulation ends when the agent releases the dart. At this time, the equations

of projectile motion are used to to determine the distance d from the bull’s-eye to where

the dart lands. The reward is defined to be r = −d2 and the history h for this problem

contains the actions at, the observations ot, and reward r. Maximizing V (π) = E[f(h)|π]

is equivalent to minimizing the expected squared distance error. For exploration purposes,

the agent draws a single action a from a Gaussian distribution with mean π and covariance

matrix Σe at the beginning of each policy trial.

We consider three versions of the dart throwing problem. In dart0 the agent

executes a single action (i.e., chooses coefficients for the cubic spline bases) for the entire

policy trial. The only stochastic component is the use of a randomized policy. In dart1

there is noise in the actuators and the agent has access to a noisy sensor. The release time,

44

however, is deterministic. The third version, dart2, has additional noise in the release time.

This version of the problem contains all of the difficulties discussed in Section 2.1.2. There

is noise in the actuators, sensors, and release time. The dynamics are nonlinear and the

seven dimensional state space is continuous. Policy search is a good general strategy, but

the speed of learning is limited by the ability of the agent to quickly estimate the gradient.

Our general approach is to treat this problem as an episodic policy search learning task

where the search is done via hill-climbing. From n policy trials we estimate the gradient,

take a step in that direction, and repeat the process. The effectiveness of this approach

critically depends on our ability to quickly produce accurate estimates of the gradient.

3.3 Quadruped locomotion

The quadruped problem involves actuating a simulated quadruped robot so that

it achieves its maximum speed; Figure 3.5 shows sixteen frames from a single policy trial.

Each leg of the quadruped has four degrees of freedom (three at the shoulder joint and one

at the elbow joint). The absolute position and orientation of the torso add an additional 6

degrees of freedom to the system. This gives us a 45-dimensional continuous state (s ∈ R45)

which consists of the following values: the physical state (x, ẋ) and the simulator time t.

The physical state contains both the joint angles that describe the positions of the legs

and the absolute position and orientation of the torso. We use SD/Fast to simulate the

dynamics of the system.

The quadruped is actuated by applying torques at each joint. These torques are

generated by a PD-controller that attempts to move each leg through a desired trajectory,

45

Figure 3.5: The quadruped problem.

specified by a truncated Fourier series for each joint angle. Each controllable degree of

freedom has three corresponding parameters and the right side of the body is constrained

to move the same as the left except offset by 180 degrees. At the start of each policy trial,

the agent chooses an action a ∈ R24 that contains the coefficients of the Fourier series. The

torques and noise are described in Equation 3.5 and Equation 3.6, where Φt is a matrix that

contains a set of basis functions constructed using a truncated Fourier series. The dynamics

are simulated for 3 seconds for each trial.

The reward rt at each time step is defined to be the forward distance travelled

during the preceding interval. The history h for this problem contains the actions at, the

46

observations ot, and rewards rt. Maximizing V (π) = E[f(h)|π] is equivalent to maximizing

the expected speed of the robot. The policy determines the coefficients of the truncated

Fourier series for each joint which gives us a compact policy representation (24 policy

parameters). For exploration purposes, the agent draws a single action a from a Gaussian

distribution with mean π and covariance matrix Σe at the beginning of each policy trial.

We consider four versions of the quadruped problem. In quadruped0 the agent

executes a single action (i.e., chooses coefficients for the truncated Fourier series) for the

entire policy trial, and in quadruped1 the agent selects a new action after every 0.3 seconds.

The only stochastic component in both of these problems is the use of a randomized policy.

We also consider quadruped2 which is similar to quadruped0 except that the quadruped

experiences actuator noise and is limited by noisy sensors (quadruped3 is the noisy version of

quadruped1). These problems present the same challenges that the dart throwing problems

present, except some of the challenges are more difficult. In this problem the dynamics are

highly nonlinear because the interactions with the ground cause impulse forces on the feet.

The 45-dimensional continuous state is also very large. We adopt the same general approach

by treating each problem as an episodic policy search learning task where the search is done

via hill-climbing. In Chapter 4 and Chapter 5 we present techniques that may be used

to reduce the number of policy trials needed before an accurate gradient estimate can

be produced. Estimating the gradient with fewer policy trials is very important for this

problem because it is expensive to obtain each policy trial (even in simulation). At the time

of writing, each policy trial takes approximately 4 seconds on a modern computer.

47

Chapter 4

Improving gradient estimation

using response surface models

This chapter introduces gradient estimation algorithms that reduce the number of

policy trials needed for policy search algorithms. We describe how to extend the idea of the

baseline by using a response surface model to reduce the variance of the gradient estimator.

4.1 Motivation

The rate at which an agent learns is limited primarily by the number of policy

trials it takes before it can produce an accurate estimate of the gradient. In a deterministic

smooth setting, a perfect estimate of the gradient evaluated at the current policy π0 may be

obtained by first evaluating a set of policies tightly centered around π0. The gradient can

then be computed using linear regression, provided that the evaluated policy parameters

span the entire policy space. In noisy environments, an agent observes perturbations of V (π)

48

for each trial. Since each score is an approximation to the true value an agent may need

many more trials, when compared to the deterministic case, to construct a good gradient

estimate. If we could partially explain the cause of these perturbations, then we should be

able to construct better gradient estimators. This chapter exploits this idea and presents

several improved gradient estimators.

The REINFORCE estimators (Section 2.2.4) can be very sensitive to both the

noise coming from the environment and the randomness embedded in the controller for

exploration purposes. This randomness may have a large impact on the quality of the

gradient estimates even in cases where there is no environmental noise. In general, we do

not have control over the environment but we do have access to the artificially injected

random noise used for exploration purposes. This knowledge may be exploited to build

better gradient estimators by learning how an agent’s choice of exploration influences the

score. If this relationship can be learned from a few policy trials, then we can use it to

reduce the variance of the gradient estimator.

Figure 4.1 shows a two-dimensional toy problem with four different deterministic

scoring functions. Each subfigure shows the deterministic scoring function with four pol-

icy trials superimposed, each plotted with respect to the eligibilities. These figures help

illustrate why the baseline estimators improve upon the basic REINFORCE algorithm and

how the idea can be extended. In this single-time-step problem, the policy parameter π0

determines the nominal control and the agent explores by adding Gaussian noise to π0 to

determine the action a. The eligibility ψ for this toy problem may be written as Σ−1(a−π0),

where Σ is the variance of the exploration distribution.

49

f

ψ2

ψ1

−5
0

5−1

−0.5

0

0.5

1

−4000

−3000

−2000

−1000

0

1000

(a)

f

ψ2

ψ1

−5
0

5−1

−0.5

0

0.5

1

−4000

−3000

−2000

−1000

0

1000

(b)

f

ψ2

ψ1

−5
0

5−1

−0.5

0

0.5

1

−4000

−3000

−2000

−1000

0

1000

(c)

f

ψ2

ψ1

−5
0

5−1

−0.5

0

0.5

1

−4000

−3000

−2000

−1000

0

1000

(d)

Figure 4.1: Two dimensional toy problem with four different scoring functions: (a) zero, (b)
constant, (c) linear, and (d) nonlinear. Emanating from each policy trial is its contribution
to the gradient estimate.

In each scenario, the agent executes four policy trials and by chance, its happens

to explore more in one direction. Figure 4.1(a) shows a constant score function f(a) = 0.

The REINFORCE gradient estimate (Equation 2.3) is given by the following equation:

1
4

4∑
i=1

ψ(i)f (i) = 0, where superscripts denote the ith policy trial. This gives the correct

estimate in the first scenario but fails in Figure 4.1(b), where we use a non-zero constant

50

score function f(a) = β. Although these two scenarios differ in only a constant offset term,

the estimate is skewed to one side in the second case simply because the agent happened

to explore more in that direction. This asymmetric exploration pulls the estimate to one

side. This example illustrates the value of including a baseline term. By subtracting β from

the observed scores, the agent places itself into the first scenario and correctly estimates

the true gradient. The baseline estimate of the gradient is given by the following equation:

1
4

4∑
i=1

ψ(i)(f (i) − β) = 0. Figure 4.1(c) uses a linear scoring function and again, the gradient

estimate is not perfect despite this being a deterministic problem. Later we will see that

if we compute the natural gradient using an empirical estimate of the Fisher information

matrix, then we could get an error-free estimate of the natural gradient for this particular

example. Figure 4.1(d) uses a nonlinear scoring function and this causes an agent to be

unable to accurately estimate the gradient from a few policy trials using REINFORCE, the

baseline extension, or the natural gradient version.

4.2 Linear response surface models

A response surface model (RSM) predicts a response, i.e., the value of some un-

known function, as a function of some input variables [Myers and Montgomery, 1995]. We

can construct a response surface model f̂(h) that predicts the scores of histories drawn from

a set of policy trials. The general idea is that by choosing a model that closely matches

f(h), we will be able to improve the quality of the gradient estimator. This improve-

ment comes from decomposing the estimation of the gradient into two subtasks: computing

∇π E
[
f̂(h)|π

]∣∣∣
π=π0

and estimating∇π E
[
f(h)−f̂(h)|π

]∣∣∣
π=π0

. The key insight is that we can

51

often find an exact solution to the first task. Furthermore the variance of the second task is

often smaller than the variance encountered when directly estimating ∇π E
[
f(h)|π

]∣∣∣
π=π0

.

We may write an expression for the gradient using these two components:

∇π E
[
f(h)|π

]∣∣∣
π=π0

= ∇π E
[
f̂(h)|π

]∣∣∣
π=π0

+∇π E
[
f(h)− f̂(h)|π

]∣∣∣
π=π0

.

When used in this way, f̂(h) is referred to as an additive control variate. This idea has also

been used to find optimal value functions in the actor-critic setting [Greensmith et al., 2004].

Let us consider a linear RSM that predicts the score as a function of a feature

vector computed from h.

f̂(h) := φ(h)Tρ, (4.1)

where the feature vector φ(h) ∈ Rm is a function of the designer’s choice and ρ is a vector of

parameters to be fit. We begin the discussion by solely measuring the performance of each

policy trial via f(h), ignoring the timing of the individual reward signals received. Later we

will consider algorithms that work with a series of returns for each policy trial and compute

corresponding feature vectors for each of these returns.

4.2.1 RSM gradients

Suppose that an agent executes n policy trials with parameter π0 and wants to

estimate the gradient at π0. Let Ψ = [ψ(1), . . . , ψ(n)]T be a matrix of eligibility vectors

where ψ(i) = ψ(h(i)|π0), let Φ = [φ(1), . . . , φ(n)]T be a matrix of feature vectors where

φ(i) = φ(h(i)), let f = [f (1), . . . , f (n)]T be a column vector of scores, and define G as follows:

G := E
[
ψ(h|π0)φ(h)T |π0

]
=

1
n

E
[
ΨTΦ|π0

]
. (4.2)

52

The features φ(h) must be designed so that G can be computed.

The baseline gradient estimator can be expressed using the above terms as follows:

g(Ψ, f) =
1
n

ΨT (f − 1nβ),

where 1n is a column vector of ones. We can extend the idea of the baseline by replacing

the baseline term with the response surface model prediction. Let us define the following

gradient estimator:

gρ(Ψ,Φ, f,G, ρ) = Gρ+
1
n

ΨT (f − Φρ). (4.3)

This estimator is constructed by replacing the baseline term with a term that depends on

features computed from each history. By choosing a response surface model that closely

matches f for each policy trial, the estimator may experience less variance when compared to

the baseline case. The term Gρ is needed to ensure that the estimator remains unbiased. We

can verify that this is an unbiased estimator by examining its expected value and observing

that it is equivalent to the REINFORCE estimator which is unbiased [Williams, 1992].

E
[
gρ(Ψ,Φ, f , G, ρ)|π0

]
=

1
n

E
[
ΨTΦ|π0

]
ρ+

1
n

E
[
ΨT f |π0

]
− 1
n

E
[
ΨTΦ|π0

]
ρ

=
1
n

E
[
ΨT f |π0

]
.

By choosing an appropriate ρ, we can reduce the variance of the gradient estimator

as was done in the baseline case. Note that if we set the feature vector equal to some constant

φ(h) = k 6= 0, then we recover the baseline estimator as a special case.

Figure 4.2(a) shows 16 policy trials where we superimpose the corresponding single-

trial gradient estimates (emanating from each trial) computed using REINFORCE without

a baseline. Since this algorithm is equivalent to using an RSM that predicts zero for every

53

f

ψ2

ψ1

−5
0

5−1

−0.5

0

0.5

1

−4000

−3000

−2000

−1000

0

1000

(a)

f

ψ2

ψ1

−5
0

5−1

−0.5

0

0.5

1

−4000

−3000

−2000

−1000

0

1000

(b)

Figure 4.2: (a) 16 policy trials with the corresponding single-trial gradient estimates (em-
anating from each trial) computed using REINFORCE without a baseline. (b) 16 policy
trials with the corresponding single-trial gradient estimates (emanating from each trial)
computed using the optimal linear RSM.

h, for comparison purposes we also plot the zero-RSM and the residuals (i.e., the difference

between the RSM predicted score and the observed score). Figure 4.2(b) shows these same

policy trials with the optimal linear RSM and residuals. Notice that the residuals are much

smaller and that the variance of the single-trial gradient estimates is much smaller than in

the standard case. These gradient estimates all point in the general direction of the gradient

whereas in Figure 4.2(a), some point in the opposite direction of the true gradient.

Optimal RSM

Equation 4.3 takes an average over many single-trial gradient estimates. Since

each of the n policy trials is conditionally independent of the others (conditioned on π0),

the optimal response surface model may be approximated by minimizing the trace of the

covariance matrix of these single trial estimates. This optimal model can be estimated by

54

taking the derivative of the trace with respect to ρ. By setting this value to zero and solving

for ρ we get an estimate of the optimal response surface model ρ∗ around the current policy.

The variance of the estimator is approximated by using the sample variance:

var
[
gρ(Ψ,Φ, f , G, ρ)|π0

]
≈ 1
n2

n∑

i=1

ψ(i)
(
f (i) − φ(i)Tρ

)2
ψ(i)T + k,

where k is a term whose derivative does not depend on ρ. We take the derivative of the

trace and solve for the optimal parameter ρ∗.

tr(var
[
gρ(Ψ,Φ, f , G, ρ)|π0

]
) ≈ tr

(1
n2

n∑

i=1

ψ(i)Tψ(i)(f (i) − φ(i)Tρ)2
)

+ tr(k)

d tr(var
[
gρ(Ψ,Φ, f , G, ρ)|π0

]
) ≈ − 2

n2

n∑

i=1

ψ(i)Tψ(i)
(
f (i) − φ(i)Tρ

)
φ(i)Tdρ

0 ≈
n∑

i=1

f (i)ψ(i)Tψ(i)φ(i)T − ρT
n∑

i=1

φ(i)ψ(i)Tψ(i)φ(i)T

ρ∗ ≈
(n∑

i=1

φ(i)ψ(i)Tψ(i)φ(i)T
)−1

n∑

i=1

φ(i)ψ(i)Tψ(i)f (i)

This is equivalent to performing a weighted linear regression where data from the ith policy

trial is weighted by ψ(i)Tψ(i). When we use gρ(Ψ,Φ, f,G, ρ∗) to estimate the gradient, we

get the lowest variance estimator in the family of estimators defined by the space of ρ. In

practice, we do not know the optimal response surface model and so we must estimate it

from the policy trials themselves. This process introduces bias into the gradient estimator

task. We may rewrite the approximation of ρ∗ as follows:

ρ∗ ≈
(
ΦTddiag(ΨΨT)Φ

)−1
ΦTddiag(ΨΨT)f, (4.4)

where ddiag is a function that returns its input with the non-diagonal entries set to zero.

55

Variance

By considering locally linear scoring functions, we may rewrite the variance of

the plain REINFORCE estimator so that it is easier to analyze. This will allow us to

compare the quality of the gradient estimator to others, including the baseline and RSM

variants. Here we assume that the true score function is a linear function of the eligibilities,

f = Ψaψ + 1nb + w where w is independent additive noise (possibly non-Gaussian) with

variance σ2. We also assume that the eligibility terms are drawn from a matrix normal

distribution Ψ ∼ N (0, I,Σ) (see Kollo and Rosen [2005] for properties of the matrix normal

distribution). This will be the case when an agent’s randomized policy explores using a

Gaussian distribution. Using these assumptions we can derive an expression for the mean.

g(Ψ, f) =
1
n

ΨT (Ψaψ + 1nb+ w)

E
[
g(Ψ, f)|π0

]
=

1
n

E
[
ΨTΨaψ|π0

]
+

1
n

E
[
ΨT 1nb|π0

]
+

1
n

E
[
ΨTw|π0

]

= Σaψ.

We can also derive an expression for the variance:

var
[
g(Ψ, f)|π0

]
=

1
n2 E

[
ΨT (Ψaψ + 1nb+ w)(Ψaψ + 1nb+ w)TΨ|π0

]
− ΣaψaTψΣT

=
1
n2

tr(In2) tr(aψaTψΣ)Σ +
1
n2

tr(In)2ΣaψaTψΣ+

1
n2

tr(In2)ΣaψaTψΣ +
b2

n2
tr(1n1Tn)Σ +

1
n2

tr(σ2In)Σ− ΣaψaTψΣT

=
1
n

(
tr(aψaTψΣ)Σ + ΣaψaTψΣ + (b2 + σ2)Σ

)
.

(4.5)

Let us take a qualitative look at the expression for the variance. It is proportional

to the inverse of the number of samples. In the first two terms of the expression, the variance

increases as the magnitude of aψ increases and as Σ increases. The last term depends on

56

the variance of the eligibility terms Σ and is scaled by a factor of (b2 + σ2). Here we see

the advantage of using the baseline estimator. The constant offset of the scoring function

b does not change the gradient but affects the variance of the estimator. By subtracting a

baseline, we can make this component disappear.

We can also derive an expression for the variance of the RSM gradient estimator.

Suppose that f = Ψaψ + 1nb+ w and Φρ = Ψα+ 1nβ.

var
[
gρ(Ψ,Φ, f , G, ρ)|π0

]
=

1
n2 E

[
ΨT (Ψaψ + 1nb+ w −Ψα− 1nβ)

(Ψaψ + 1nb+ w −Ψα− 1nβ)TΨ|π0

]
− ΣaψaTψΣT

=
1
n

tr((aψ − α)(aψ − α)TΣ)Σ +
1
n

Σ(aψ − α)(aψ − α)TΣ+

((b− β)2 + σ2)
n

Σ.

By inspection we see that if we set α = aψ then the first two terms of the above

expression equal zero and if we set β = b then the third term is at its minimal possible value.

Because the baseline estimators lack the linear term α, the family of baseline estimators can

be formed by setting α = 0 and considering changes in β. Notice that the difference between

the RSM and baseline variants becomes more pronounced as the magnitude of aψ increases.

For the linear scoring function (and Gaussian exploration) the best RSM estimator has a

variance of σ2

n Σ.

The RSM gradient estimator algorithm

Algorithm 4.1 shows an improved gradient estimation algorithm that uses an RSM.

It requires the following inputs: Ψ, the eligibility vectors; f , the scores; {Σi}i∈{1,...,n},

covariance matrices where Σi = var
[
ψ(h(i)|π0)|π0

]
; features, a user-defined function that

57

Algorithm 4.1: RSM Gradient Estimator
Input: Ψ, the eligibility vectors; f , the scores; {Σi}i∈{1,...,n}, covariance

matrices where Σi = var
[
ψ(h(i)|π0)|π0

]
; features, a user-defined

function that computes Φ and G; Λρ, a regularization parameter.
Output: ∇, an estimate of the gradient
n← number of rows in Ψ
W ← 1

nddiag(ΨΨT) // ddiag clears non-diagonal entries
[Φ, G]← features(Ψ, {Σi}i∈{1,...,n})
ρ←

(
ΦTWΦ + Λρ

)−1 ΦTWf
∇ ← Gρ+ 1

nΨ(f − Φρ)
return ∇

computes Φ and G; and Λρ, a regularization parameter.

We applied this algorithm, with a linear response model (φ(i) = [1, ψ(i)T]), to

the cannon0 and cannon1 problems described in Section 3.1. The results are shown in

Figure 4.3. Each hill-climbing run lasts 30 steps (Figure 4.3(a) shows only 20 steps) and

at each step we drew 5 policy trials from the current policy; the results were averaged

over 1000 hill-climbing runs. Notice that the RSM gradient estimator outperforms the

baseline gradient estimator. The cannon1 learning performance improvement is relatively

poor because of the presence of actuator noise. In Chapter 5 we explore ways to improve

the performance in this setting by reasoning about the sensor data.

4.2.2 Natural RSM gradients

The natural gradient estimators pre-multiply the regular gradient estimators by

the inverse of the Fisher information matrix: F = E
[
ψ(h|π0)ψ(h|π0)T |π0

]
. The following

estimator is biased but the bias is guaranteed to result in an estimate that is less than π/2

radians (in expectation) away from the true gradient:

g̃(Ψ, f) := F−1g(Ψ, f). (4.6)

58

RSM
Baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

−3000

−2500

−2000

−1500

−1000

−500

0

(a)

RSM
Baseline

V
(π

)

hill-climbing step
5 10 15 20 25 30

−3000

−2500

−2000

−1500

−1000

−500

0

(b)

Figure 4.3: (a) The learning curve performance of the baseline and RSM gradient estimators
for the cannon0 problem. (b) The learning curve performance of the baseline and RSM
gradient estimators for the cannon1 problem.

Figure 4.4(a) shows the gradient of the value with respect to π0 superimposed on

the contours of f , which are plotted in eligibility space. Figure 4.4(b) shows the natural

gradient which points towards the maximum of the surface. Let us define a natural gradient

estimator that incorporates the response surface model idea:

g̃ρ(Ψ,Φ, f, G̃, ρ) = G̃ρ+ F−1ΨT (f − Φρ)

G̃ :=
F−1

n
E
[
ΨTΦ|π0

]
.

(4.7)

The natural gradient of the response surface is G̃ρ, which must be added to the

estimator so that it remains unbiased. We can verify that this is an unbiased estimator by

taking its expected value and observing that it is equivalent to the natural REINFORCE

59

f

ψ2

ψ1

−5
0

5
−5

0

5

−4000

−3000

−2000

−1000

0

1000

(a)

f

ψ2

ψ1

−5
0

5
−5

0

5

−4000

−3000

−2000

−1000

0

1000

(b)

Figure 4.4: (a) Gradient of the value with respect to π0 superimposed on the contours of
the score. (b) Natural gradient which is guaranteed to be in the correct half-space.

estimator which is known to be unbiased.

E
[
g̃ρ(Ψ,Φ, f , G̃, ρ)|π0

]
=
F−1

n
E
[
ΨTΦ|π0

]
ρ+
F−1

n
E
[
ΨT f |π0

]
−

F−1

n
E
[
ΨTΦ|π0

]
ρ

=
F−1

n
E
[
ΨT f |π0

]
.

By choosing an appropriate ρ, we can reduce the variance of the natural gradient

estimator. Note that if we set the feature vector equal to some constant φ(h) = k 6= 0, then

we recover the natural baseline as a special case.

Optimal RSM

Equation 4.7 takes an average over many single-trial gradient estimates and pre-

multiplies the result by an estimate of F−1. Since each of the n policy trials is conditionally

independent of the others (conditioned on π0), the optimal response surface model may

be approximated by minimizing the trace of the covariance matrix of these single trial

60

estimates. We can estimate the optimal model by taking the derivative of the trace with

respect to ρ, setting its value to zero, and solving for ρ. The variance of the estimator can

be approximated by using the sample variance:

var
[
g̃ρ(Ψ,Φ, f , G̃, ρ)|π0

]
≈ 1
n2
F−1

(n∑

i=1

ψ(i)
(
f (i) − φ(i)Tρ

)2
ψ(i)T

)
F−1 + k,

where k is a term whose derivative does not depend on ρ. We take the derivative of the

trace and solve for the optimal parameter ρ∗.

tr(var
[
g̃ρ(Ψ,Φ, f , G̃, ρ)|π0

]
) ≈ tr

(1
n2

n∑

i=1

ψ(i)TF−2ψ(i)(f (i) − φ(i)Tρ)2
)

+ tr(k)

d tr(var
[
g̃ρ(Ψ,Φ, f , G̃, ρ)|π0

]
) ≈ − 2

n2

n∑

i=1

ψ(i)TF−2ψ(i)
(
f (i) − φ(i)Tρ

)
φ(i)Tdρ

0 ≈
n∑

i=1

f (i)ψ(i)TF−2ψ(i)φ(i)T − ρT
n∑

i=1

φ(i)ψ(i)TF−2ψ(i)φ(i)T

ρ∗ ≈
(n∑

i=1

φ(i)ψ(i)TF−2ψ(i)φ(i)T
)−1

n∑

i=1

φ(i)ψ(i)TF−2ψ(i)f (i)

Thus, when we use g̃ρ(Ψ,Φ, f, G̃, ρ∗) to estimate the natural gradient, we get the lowest

variance estimator in the family of estimators defined by the space of ρ. In practice, we do

not know the optimal response surface model and so we must estimate it from the policy

trials themselves. As before this process introduces bias into the gradient estimator task.

We may rewrite the approximation of ρ∗ as follows:

ρ∗ ≈
(
ΦTddiag(ΨF−2ΨT)Φ

)−1
ΦTddiag(ΨF−2ΨT)f, (4.8)

if we have an analytical solution for F−2 or use the empirical estimate:

ρ∗ ≈
(
ΦTddiag(Ψ(ΨTΨ)−2ΨT)Φ

)−1
ΦTddiag(Ψ(ΨTΨ)−2ΨT)f, (4.9)

61

Variance

By considering locally linear scoring functions we may rewrite the variance of the

natural REINFORCE estimator (Equation 2.15) so that it is easier to analyze. Although

we often have an analytical solution to the Fisher information matrix, we follow Peters

and Schaal [2006] and use the empirical estimate from the policy trial data. The natural

REINFORCE gradient estimator can be expressed as follows:

g̃(Ψ, f) = (ΨTΨ)−1Ψf.

Let us assume that the scoring function is linear in the eligibilities, i.e., f = Ψaψ + 1nb+w

with Gaussian noise w ∼ N (0, σ2I), and that the eligibility terms are drawn from a matrix

normal distribution Ψ ∼ N (0, I,Σ). Using these assumptions we can derive an expression

for the mean.

g̃(Ψ, f) = (ΨTΨ)−1ΨT (Ψaψ + 1nb+ w)

E
[
g̃(Ψ, f)|π0

]
= E

[
(ΨTΨ)−1ΨTΨaψ|π0

]
+ E

[
(ΨTΨ)−1ΨT 1nb|π0

]
+ E

[
(ΨTΨ)−1ΨTw|π0

]

= aψ.

We can also derive an expression for the variance:

var
[
g̃(Ψ, f)|π0

]
=

1
n2 E

[
(ΨTΨ)−1ΨT (Ψaψ + 1nb+ w)(Ψaψ + 1nb+ w)TΨ(ΨTΨ)−1|π0

]
−

aψa
T
ψ

= aψa
T
ψ + b2 E

[
(ΨTΨ)−1ΨT 1n1TnΨ(ΨTΨ)−1|π0

]
+

E
[
(ΨTΨ)−1ΨTwwTΨ(ΨTΨ)−1|π0

]
− aψaTψ

=
(b2 + σ2)(Σ−1)
n− d− 1

62

We can also derive an expression for the variance of the response surface model. Suppose

that f = Ψaψ + 1nb+ w and Φρ = Ψα+ 1nβ.

var
[
g̃ρ(Ψ,Φ, f , G̃, ρ)|π0

]
=

1
n2 E

[
(ΨTΨ)−1ΨT (Ψaψ + 1nb+ w −Ψα− 1nβ)

(Ψaψ + 1nb+ w −Ψα− 1nβ)TΨ(ΨTΨ)−1|π0

]
− aψaTψ

= (b− β)2 E
[
(ΨTΨ)−1|π0

]
+ σ2 E

[
(ΨTΨ)−1|π0

]

=
((b− β)2 + σ2)Σ−1

n− d− 1

In this situation we see that the linear component of the response surface model

does not play a role in reducing the variance. Thus to get a benefit in the natural gradient

setting, one must include second order or higher terms in the response surface model. As

before, if we set β = b then the variance is at its minimal possible value. For the linear

scoring function (and Gaussian exploration) the best natural linear RSM estimator has a

variance of σ2Σ−1

n−d−1 .

It would not be fair to directly compare the variances between the natural and

standard RSM gradient estimators because they estimate different quantities. However,

given an analytical solution to the Fisher information matrix we can convert the standard

RSM gradient estimator to the natural version. Assuming a locally linear scoring function,

Gaussian distribution of eligibilities, and optimal RSM parameter ρ∗ we may write the

variance of the converted estimator as follows:

var
[
F−1gρ(Ψ,Φ, f , G, ρ∗)|π0

]
= Σ−1

(
σ2

n
Σ
)

Σ−1 =
σ2

n
Σ−1.

Thus given the optimal response surface model, the variance of the natural RSM gradient

estimator (σ
2Σ−1

n−d−1) is larger than the standard RSM gradient when we transform it to the

63

Algorithm 4.2: Natural RSM Gradient Estimator
Input: Ψ, the eligibility vectors; f , the scores; {Σi}i∈{1,...,n}, covariance

matrices where Σi = var
[
ψ(h(i)|π0)|π0

]
; features, a user-defined

function that computes Φ and G; Λρ, a regularization parameter.
Output: ∇, an estimate of the gradient
n← number of rows in Ψ
F ← mean({Σi}i∈{1,...,n})
W ← 1

nddiag(ΨF−2ΨT) // ddiag clears non-diagonal entries
[Φ, G]← features(Ψ, {Σi}i∈{1,...,n})
ρ←

(
ΦTWΦ + Λρ

)−1 ΦTWf
∇ = F−1Gρ+ (ΨTΨ)−1Ψ(f − Φρ)
return ∇

natural setting (σ
2

n Σ−1). This difference is more pronounced as the dimensionality of the

policy increases. However, this assumes that an agent knows the true optimal RSM pa-

rameter. Since the linear component is unnecessary for the natural case, one only needs

to learn the baseline (or 2nd order or higher terms). Thus in practice the natural gradient

with constant baseline may outperform the linear RSM gradient estimator.

The natural RSM gradient estimator algorithm

Algorithm 4.2 shows an improved natural gradient estimation algorithm that uses

an RSM. It requires the following inputs: Ψ, the eligibility vectors; f , the scores;{Σi}i∈{1,...,n},

covariance matrices where Σi = var
[
ψ(h(i)|π0)|π0

]
; features, a user-defined function that

computes Φ and G; and Λρ, a regularization parameter.

We applied this algorithm, with a linear response model (φ(i) = [1, ψ(i)T]), to

the cannon0 and cannon1 problems described in Section 3.1. The results are shown in

Figure 4.5. Each hill-climbing run lasts 30 steps (Figure 4.5(a) shows only 20 steps) and

at each step we drew 5 policy trials from the current policy; the results were averaged

64

Natural RSM
Natural baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

−3000

−2500

−2000

−1500

−1000

−500

0

(a)

Natural RSM
Natural baseline

V
(π

)

hill-climbing step
5 10 15 20 25 30

−3000

−2500

−2000

−1500

−1000

−500

0

(b)

Figure 4.5: (a) The learning curve performance of the natural baseline and natural RSM
gradient estimators for the cannon0 problem. (b) The learning curve performance of the
natural baseline and natural RSM gradient estimators for the cannon1 problem.

over 1000 hill-climbing runs. The natural RSM gradient estimator outperforms the natural

baseline gradient estimator. Both of these algorithms perform slightly worse than their

standard counterparts. We should note, however, that the effectiveness of the natural

gradient algorithms depends on the Fisher information matrix, a quantity that is problem

specific. We may see improvements on problems that use different exploration distributions.

4.2.3 Time-variant RSM gradients

The RSM gradient estimator constructs a score for each policy trial by summing

the individual rewards received. This approach views each policy trial as though it came

from a single-time-step problem by computing an eligibility vector over the entire history.

Further improvements may be possible by reasoning about the relationship between the

individual rewards received and the agent’s choice of actions. There is a causal relation-

ship between actions and rewards (i.e., an agent’s future choice of actions does not affect

65

previously received rewards). In many problems, actions often do not affect the distribu-

tion of rewards received far into the future. This is exploited in the GPOMDP algorithm

(Equation 2.12) by introducing a discounting factor.

In Equation 2.11 we saw that the gradient could be expressed as follows:

∇πV (π)
∣∣∣
π=π0

≈
tf∑

t=0

ψ(at|ot, π0)
tf∑

u=t

ru.

We may improve this estimator by subtracting out a prediction of the return (i.e.,
tf∑
u=t

ru) for

each time step as a function of the history. By choosing a model that closely matches each

of these returns, we will be able to improve the quality of the gradient estimator. Let us

consider a linear response surface model that predicts the return as a function of a feature

vector computed from the history h and time t.

f̂(h, t) := φ(h, t)Tρ, (4.10)

where the feature vector φ(h, t) ∈ Rm is a function of the designer’s choice and ρ is a vector

of parameters to be fit.

Suppose that an agent executes n policy trials with parameter π0 and wants to

estimate the gradient at π0. Let Ψt = [ψ(1)
t , · · · , ψ(n)

t]T be a matrix of eligibility vectors

where ψ(i)
t = ψ(a(i)

t |o
(i)
t , π0), let Φt = [φ(1)

t , · · · , φ(n)
t]T be a matrix of feature vectors where

φ
(i)
t = φ(h(i), t), let ft =

tf∑
u=t

[r(1)
u , · · · , r(n)

u]T be a column vector of returns, and define G as

follows:

G =
tf∑

t=1

E
[
ψt(at|ot, π0)φ(h, t)T |π0

]
=

1
n

tf∑

t=1

E
[
ΨT
t Φt|π0

]
. (4.11)

The features φ(h, t) must be designed so that G can be computed. We store these terms in

the following sets: ψ = {Ψt}t∈{1,...,tf}, φ = {Φt}t∈{1,...,tf}, and f = {ft}t∈{1,...,tf}. The base-

66

line gradient estimator can be expressed by subtracting out a baseline from Equation 2.11.

g(ψ, f) =
1
n

tf∑

t=1

ΨT
t (ft − 1nβ). (4.12)

We proceed by replacing the baseline with the response surface model prediction

from the scores of the gradient estimator. This gives the following gradient estimator:

gρ(ψ,φ, f, G, ρ) := Gρ+
1
n

tf∑

t=1

ΨT
t (ft − Φtρ), (4.13)

To compensate for this change we need to add the term Gρ so that the estimator remains

unbiased. To show that this estimator is unbiased we take its expectation and observe that

it is equivalent to the expected value of Equation 4.12 when β = 0.

E
[
gρ(ψ,φ, f , G, ρ)|π0

]
=

1
n

tf∑

t=1

E
[
ΨT
t Φt|π0

]
ρ+

1
n

tf∑

t=1

E
[
ΨT
t ft|π0

]
− 1
n

tf∑

t=1

E
[
ΨT
t Φt|π0

]
ρ

=
1
n

tf∑

t=1

E
[
ΨT
t ft|π0

]
.

Optimal RSM

Equation 4.13 takes an average over many single trial gradient estimates. Since

each of the n policy trials is conditionally independent of the others (conditioned on π0),

the optimal response surface model may be approximated by minimizing the trace of the

covariance matrix of these single trial estimates. This optimal model can be estimated by

taking the derivative of the trace with respect to ρ. By setting this value to zero and solving

for ρ we get an estimate of the optimal response surface model ρ∗ around the current policy.

The variance of the estimator is approximated by using the sample variance:

var
[
gρ(ψ,φ, f , G, ρ)|π0

]
≈ 1
n2

n∑

i=1

(tf∑

t=1

ψ
(i)
t

(
f

(i)
t − φ

(i)
t

T
ρ
))(tf∑

t=1

(
f

(i)
t − φ

(i)
t

T
ρ
)
ψ

(i)
t

T)
+ k,

67

where k is a term whose derivative does not depend on ρ. We take the derivative of the

trace and solve for the optimal parameter ρ∗.

tr(var
[
gρ(ψ,φ, f , G, ρ)|π0

]
) ≈ tr

(1
n2

n∑

i=1

tf∑

t=1

tf∑

u=1

ψ
(i)
t

(
f

(i)
t − φ

(i)
t

T
ρ
)

(
f (i)
u − φ(i)

u

T
ρ
)
ψ(i)
u

T
)

+ tr(k)

d tr(var
[
gρ(ψ,φ, f , G, ρ)|π0

]
) ≈ − 2

n2

n∑

i=1

tf∑

t=1

tf∑

u=1

ψ
(i)
t

T
ψ(i)
u

(
f

(i)
t − φ

(i)
t

T
ρ
)
φ(i)
u

T
dρ

0 ≈
n∑

i=1

tf∑

t=1

tf∑

u=1

(
f

(i)
t ψ

(i)
t

T
ψ(i)
u φ(i)

u

T − ρTφ(i)
t ψ

(i)
t

T
ψ(i)
u φ(i)

u

T
)

ρ∗ ≈
(n∑

i=1

tf∑

t=1

φ
(i)
t ψ

(i)
t

T
tf∑

u=1

ψ(i)
u φ(i)

u

T
)−1

n∑

i=1

tf∑

t=1

φ
(i)
t ψ

(i)
t

T
tf∑

u=1

ψ(i)
u f (i)

u .

We may get better results if we assume that the individual terms used to compute

the summation in Equation 4.13 are uncorrelated. The eligibility vectors from different

time steps are uncorrelated but the returns and feature vectors may be highly correlated.

Nevertheless, by ignoring this correlation we get many more data points which may be used

for approximating ρ∗. We can approximate the variance as follows:

var
[
gρ(ψ,φ, f , G, ρ)|π0

]
≈ 1
n2

n∑

i=1

tf∑

t=1

ψ
(i)
t

(
f

(i)
t − φ

(i)
t

T
ρ
)2
ψ

(i)
t

T
+ k,

where k is a term whose derivative does not depend on ρ. We take the derivative of the

68

Algorithm 4.3: Time-variant RSM gradient estimator
Input: {Ψt}t∈{1,...,tf}, the eligibility vectors; {ft}t∈{1,...,tf}, the scores;

{Σi,t}i∈{1,...,n},t∈{1,...,tf}, covariance matrices where

Σi,t = var
[
ψ(a(i)

t |o
(i)
t , π0)|π0

]
; features, a user-defined function that

computes {Φt}t∈{1,...,tf} and G; Λρ, a regularization parameter.
Output: ∇, an estimate of the gradient
n← number of rows in Ψ1

for t = 1 to tf do
Wt ← 1

nddiag(ΨtΨT
t) // ddiag clears non-diagonal entries

end
[{Φ}t∈{1,...,tf}, G]← features({Ψt}t∈{1,...,tf}, {Σi,t}i∈{1,...,n},t∈{1,...,tf})

ρ =
(tf∑
t=1

ΦT
t WtΦt + Λρ

)−1 tf∑
t=1

ΦT
t Wtft

∇ = Gρ+ 1
n

tf∑
t=1

Ψt(ft − Φtρ)

return ∇

trace and solve for the optimal parameter ρ∗.

tr(var
[
gρ(ψ,φ, f , G, ρ)|π0

]
) ≈ tr

(1
n2

n∑

i=1

tf∑

t=1

ψ
(i)
t

T
ψ

(i)
t (f (i)

t − φ
(i)
t

T
ρ)2
)

+ tr(k)

d tr(var
[
gρ(ψ,φ, f , G, ρ)|π0

]
) ≈ − 2

n2

n∑

i=1

tf∑

t=1

ψ
(i)
t

T
ψ

(i)
t

(
f

(i)
t − φ

(i)
t

T
ρ
)
φ

(i)
t

T
dρ

0 ≈
n∑

i=1

tf∑

t=1

f
(i)
t ψ

(i)
t

T
ψ

(i)
t φ

(i)
t

T
− ρT

n∑

i=1

tf∑

t=1

φ
(i)
t ψ

(i)
t

T
ψ

(i)
t φ

(i)
t

T

ρ∗ ≈
(n∑

i=1

tf∑

t=1

φ
(i)
t ψ

(i)
t

T
ψ

(i)
t φ

(i)
t

T)−1
n∑

i=1

tf∑

t=1

φ
(i)
t ψ

(i)
t

T
ψ

(i)
t f

(i)
t

This is equivalent to performing a weighted linear regression where data from the ith policy

trial (at time t) is weighted by ψ(i)
t

T
ψ

(i)
t . We may rewrite the approximation of ρ∗ as follows:

ρ∗ ≈
(tf∑

t=1

ΦT
t ddiag(ΨtΨT

t)Φt

)−1
tf∑

t=1

ΦT
t ddiag(ΨtΨT

t)ft. (4.14)

The time-variant RSM gradient estimator algorithm

Algorithm 4.3 shows an improved gradient estimation algorithm that uses an RSM.

This algorithm is suitable for problems with multiple time-steps and it requires the following

69

inputs: {Ψt}t∈{1,...,tf}, the eligibility vectors; {ft}t∈{1,...,tf}, the returns for each time step;

{Σi,t}i∈{1,...,n},t∈{1,...,tf}, covariance matrices where Σi,t = var
[
ψ(a(i)

t |o
(i)
t , π0)|π0

]
; features,

a user-defined function that computes {Φ}t∈{1,...,tf} and G; and Λρ, a regularization param-

eter.

4.2.4 Time-variant natural RSM gradients

The natural gradient estimators pre-multiply the regular gradient estimators by

the inverse of the Fisher information matrix. The following estimator is biased but the bias

is guaranteed to result in an estimate that is less than π/2 radians (in expectation) away

from the true gradient:

g̃ρ(ψ,φ, f, G̃, ρ) = G̃ρ+
F−1

n

tf∑

t=1

ΨT
t (ft − Φtρ)

G̃ :=
F−1

n

tf∑

t=1

E
[
ΨT
t Φt|π0

]
.

(4.15)

The natural gradient of the response surface is G̃ρ, which must be added to the

estimator so that it remains unbiased. We can verify that this is an unbiased estimator by

taking its expected value and observing that it is equivalent to the natural REINFORCE

estimator which is known to be unbiased.

E
[
g̃ρ(ψ,φ, f , G̃, ρ)|π0

]
=
F−1

n

tf∑

t=1

E
[
ΨT
t Φt|π0

]
ρ+
F−1

n

tf∑

t=1

E
[
ΨT
t ft|π0

]
−

F−1

n

tf∑

t=1

E
[
ΨT
t Φt|π0

]
ρ

=
F−1

n

tf∑

t=1

E
[
ΨT
t ft|π0

]
.

70

Optimal RSM

Equation 4.15 takes an average over many single trial gradient estimates and pre-

multiplies the result by an estimate of F−1. The variance of the estimator is approximated

by using the sample variance:

var
[
g̃ρ(ψ,φ, f , G̃, ρ)|π0

]
≈ 1
n2
F−1

n∑

i=1

(tf∑

t=1

ψ
(i)
t

(
f

(i)
t − φ

(i)
t

T
ρ
))

(tf∑

t=1

(
f

(i)
t − φ

(i)
t

T
ρ
)
ψ

(i)
t

T)
F−1 + k,

where k is a term whose derivative does not depend on ρ. We take the derivative of the

trace and solve for the optimal parameter ρ∗.

tr(var
[
g̃ρ(ψ,φ, f , G̃, ρ)|π0

]
) ≈ tr

(1
n2

n∑

i=1

tf∑

t=1

tf∑

u=1

F−1ψ
(i)
t

(
f

(i)
t − φ

(i)
t

T
ρ
)

(
f (i)
u − φ(i)

u

T
ρ
)
ψ(i)
u

TF−1
)

+ tr(k)

d tr(var
[
g̃ρ(ψ,φ, f , G̃, ρ)|π0

]
) ≈ − 2

n2

n∑

i=1

tf∑

t=1

tf∑

u=1

ψ
(i)
t

T
F−2ψ(i)

u

(
f

(i)
t − φ

(i)
t

T
ρ
)
φ(i)
u

T
dρ

0 ≈
n∑

i=1

tf∑

t=1

tf∑

u=1

(
f

(i)
t ψ

(i)
t

T
F−2ψ(i)

u φ(i)
u

T − ρTφ(i)
t ψ

(i)
t

T
F−2ψ(i)

u φ(i)
u

T
)

ρ∗ ≈
(n∑

i=1

tf∑

t=1

φ
(i)
t ψ

(i)
t

T
F−2

tf∑

u=1

ψ(i)
u φ(i)

u

T
)−1

n∑

i=1

tf∑

t=1

φ
(i)
t ψ

(i)
t

T
F−2

tf∑

u=1

ψ(i)
u f (i)

u .

As discussed in Section 4.2.3, we may get better results if we assume that the

individual terms used in the summation term of Equation 4.15 are uncorrelated. We can

approximate the variance as follows:

var
[
g̃ρ(ψ,φ, f , G̃, ρ)|π0

]
≈ 1
n2
F−1

n∑

i=1

tf∑

t=1

ψ
(i)
t

(
f

(i)
t − φ

(i)
t

T
ρ
)2
ψ

(i)
t

T
F−1 + k,

where k is a term whose derivative does not depend on ρ. We take the derivative of the

71

trace and solve for the optimal parameter ρ∗.

tr(var
[
g̃ρ(ψ,φ, f , G̃, ρ)|π0

]
) ≈ tr

(1
n2

n∑

i=1

tf∑

t=1

ψ
(i)
t

T
F−2ψ

(i)
t (f (i)

t − φ
(i)
t

T
ρ)2
)

+ tr(k)

d tr(var
[
g̃ρ(ψ,φ, f , G̃, ρ)|π0

]
) ≈ − 2

n2

n∑

i=1

tf∑

t=1

ψ
(i)
t

T
F−2ψ

(i)
t

(
f

(i)
t − φ

(i)
t

T
ρ
)
φ

(i)
t

T
dρ

0 ≈
n∑

i=1

tf∑

t=1

f
(i)
t ψ

(i)
t

T
F−2ψ

(i)
t φ

(i)
t

T
− ρT

n∑

i=1

tf∑

t=1

φ
(i)
t ψ

(i)
t

T
F−2ψ

(i)
t φ

(i)
t

T

ρ∗ ≈
(n∑

i=1

tf∑

t=1

φ
(i)
t ψ

(i)
t

T
F−2ψ

(i)
t φ

(i)
t

T)−1
n∑

i=1

tf∑

t=1

φ
(i)
t ψ

(i)
t

T
F−2ψ

(i)
t f

(i)
t

This is equivalent to performing a weighted linear regression where data from the ith policy

trial (at time t) is weighted by ψ
(i)
t

T
F−2ψ

(i)
t . We may rewrite the approximation of ρ∗ as

follows:

ρ∗ ≈
(tf∑

t=1

ΦT
t ddiag(ΨtF−2ΨT

t)Φt

)−1
tf∑

t=1

ΦT
t ddiag(ΨtF−2ΨT

t)ft, (4.16)

if we have an analytical solution for F−2 or use the empirical estimate:

ρ∗ ≈
(tf∑

t=1

ΦT
t ddiag(Ψt(

tf∑

t=1

ΨT
t Ψt)−2ΨT

t)Φt

)−1
tf∑

t=1

ΦT
t ddiag(Ψt(

tf∑

t=1

ΨT
t Ψt)−2ΨT

t)ft. (4.17)

The time-variant natural gradient estimator algorithm

Algorithm 4.4 shows an improved natural gradient estimation algorithm that uses

an RSM to reduce the variance. This algorithm is suitable for problems with multi-

ple time-steps and it requires the following inputs: {Ψt}t∈{1,...,tf}, the eligibility vectors;

{ft}t∈{1,...,tf}, the returns for each time step; {Σi,t}i∈{1,...,n},t∈{1,...,tf}, covariance matrices

where Σi,t = var
[
ψ(a(i)

t |o
(i)
t , π0)|π0

]
; and features, a user-defined function that computes

{Φt}t∈{1,...,tf} and G; and Λρ, a regularization parameter.

72

Algorithm 4.4: Time-variant natural gradient estimator
Input: {Ψt}t∈{1,...,tf}, the eligibility vectors; {ft}t∈{1,...,tf}, the scores;

{Σi,t}i∈{1,...,n},t∈{1,...,tf}, covariance matrices where

Σi,t = var
[
ψ(a(i)

t |o
(i)
t , π0)|π0

]
; features, a user-defined function that

computes {Φt}t∈{1,...,tf} and G; Λρ, a regularization parameter.
Output: ∇, an estimate of the gradient
n← number of rows in Ψ1

F ← 0,Fe ← 0
for t = 1 to tf do

for i = 1 to n do
F ← F + Σi,t/n

end
Fe ← Fe + Ψt

TΨt/n
end
for t = 1 to tf do

Wt ← 1
nddiag(ΨtF−2ΨT

t) // ddiag clears non-diagonal entries
end
[{Φ}t∈{1,...,tf}, G]← features({Ψt}t∈{1,...,tf}, {Σi,t}i∈{1,...,n},t∈{1,...,tf})

ρ =
(tf∑
t=1

ΦT
t WtΦt + Λρ

)−1 tf∑
t=1

ΦT
t Wtft

∇ = F−1Gρ+ 1
nFe−1

tf∑
t=1

Ψt(ft − Φtρ)

return ∇

4.2.5 Properties of eligibilities

Before we present some examples of features that may be used to construct an

RSM, we must discuss two important properties relating to the distribution of ψ. These

properties allow us to derive analytical solutions for G, a requirement shared by the RSM

gradient estimators. The first well-known property is that E
[
ψ(at|ot, π0)|π0

]
= 0 and we

73

show this by first integrating over the random variable at for a given observation ot.

E
[
ψ(at|ot, π0)|ot, π0

]
=
∫ ∇πP (at|ot, π)

∣∣
π=π0

P (at|ot, π0)
P (at|ot, π0)dat

= ∇π
∫
P (at|ot, π)dat

∣∣∣
π=π0

= ∇π1
∣∣∣
π=π0

= 0.

E
[
ψ(at|ot, π0)|π0

]
= 0 follows from the law of total expectation:

E
[
ψ(at|ot, π0)|π0

]
= E

[
E
[
ψ(at|ot, π0)|ot, π0

]
|π0

]
= 0. (4.18)

Thus every time an agent chooses an action, the expectation of its corresponding eligibility

equals zero; this property is true regardless of an agent’s current state, past history, or

policy parameterization.

The second property, which naturally follows, is that eligibilities from different

time steps are uncorrelated. This is shown by the following equation:

E
[
ψ(at|ot, π0)ψ(at+k|ot+k, π0)T |π0

]
= E

[
ψ(at|ot, π0) E

[
ψ(at+k|ot+k, π0)T |ot+k, π0

]
|π0

]

= E
[
ψ(at|ot, π0)0T |π0

]
= 0.

In fact, ψt+k is uncorrelated with any information an agent obtains before executing the

action (e.g., states, observations, and rewards). Note that it is possible that the eligibilities

are statistically dependent on each other. For example, an agent’s prior actions may cause it

to enter some state where π chooses actions according to a different exploration distribution.

This change causes the distribution of the corresponding eligibilities to change. Therefore

one could infer something about past eligibilities based on the value of the current eligibility.

74

Useful response surface model functions

These properties allow us to construct RSMs where there is an analytical solution

for G, a requirement shared by the RSM gradient estimators. An advantage function RSM

may be constructed by using the following feature vector: φt(h) = [φs(st)T , ψtT]T , where

φs computes features over the current state. There are two components: φs(st) is a feature

vector that is similar to an approximate value function (or parameterized baseline) and ψt

is used to predict the advantage of performing a particular action. We may write G by

observing that ψt is uncorrelated with the agent’s state at time t.

G =
tf∑

t=1

E
[
ψt[φs(st)

T ,ψTt]|π0

]
=

tf∑

t=1

[
0,E

[
ψtψt

T |π0

]]
.

Actor-critic techniques often use similar functions for their critics. These algorithms learn

an approximation to the value and advantage functions and then substitute their predictions

in place of the actual returns. Our algorithms subtract the predicted value from the actual

returns and add Gρ to compensate for this change. We also attempt to find a model that

explicitly minimizes the variance of the gradient estimator. Greensmith et al. also learn

value functions that explicitly minimize the error in gradient estimation [2001]. In the

fully observable setting, the actor-critic approach may yield better results. Our approach,

however, does not require full observability.

We can also use the following feature vector: φt(h) = [φo(ot)T , ψTt]T , where φo

computes features over the current observation. Because ψt is uncorrelated with the agent’s

observation at time t, the analytical expression for G is written as follows:

G =
tf∑

t=1

E
[
ψt[φo(ot)T ,ψTt]|π0

]
=

tf∑

t=1

[
0,E

[
ψtψt

T |π0

]]
.

75

We showed that eligibilities from different time steps are uncorrelated and so we

may consider the following RSM: φt(h) = [φo(ot)T ,
tf∑
u=t

ψu
T]T . An analytical expression for

G may be written because eligibilities from different time steps are uncorrelated:

G =
tf∑

t=1

E
[
ψt[φo(ot)T ,

tf∑

u=t

ψu
T]|π0

]

G =
tf∑

t=1

E
[
ψt[φo(ot)T ,ψt

T +
tf∑

u=t+1

ψu
T]|π0

]

=
tf∑

t=1

[
0,E

[
ψtψt

T |π0

]]
.

4.3 Probabilistic inference problem

In this section we show that the natural gradient estimator (when using an empir-

ical estimate of the Fisher information matrix) is mathematically equivalent to performing

maximum likelihood estimation of a parameter of a linear Gaussian model. One advantage

of this view is that it allows us to extend these algorithms by improving the statistical

model. For example we can further reduce the variance, with the addition of some bias, by

using an appropriate prior. Despite the bias, we can show that the estimated gradient is

guaranteed to be less than π/2 radians away from the true gradient.

The solution to the optimal response surface model can also be cast as a maximum

likelihood estimation problem. This situation corresponds to learning the parameter of a

linear Gaussian model where the sample points are weighted. Thus we have a weighted

least squares regression problem.

76

Ψ

f

(a)

f

Φ

W

(b)

f

Λeg

g̃

Ψ

(c)

W

f

Λρ

ρ

Φ

(d)

Figure 4.6: Four Bayesian networks that may be used for gradient estimation. They may
be used to (a) estimate the natural gradient, (b) find the optimal RSM, (c) estimate the
natural gradient while using a prior, and (d) find the optimal RSM using a prior.

4.3.1 Bayesian network representations

Figure 4.6(a) shows a two node graphical model that illustrates this transforma-

tion (in Chapter 5 we will expand this model by adding nodes that encode sensor data).

The relationship is governed by a linear Gaussian model (f = Ψg̃+w) where the eligibility

terms Ψ and corresponding scores f are obtained from the agent and w is zero-mean ad-

ditive Gaussian noise. The maximum likelihood solution g̃∗ to the following equations are

equivalent to the natural gradient estimator.

P (f |Ψ, π0) = (2πσ2)−n/2 exp
{
− 1

2σ2
(f −Ψg̃)T (f −Ψg̃)

}

`(f |Ψ, π0) = − n

2
log(2πσ2)− 1

2σ2
(f −Ψg̃)T (f −Ψg̃)

g̃∗ = g̃(Ψ, f) = (ΨTΨ)−1ΨT f

Figure 4.6(b) shows a two node graphical model that can be used to learn the

optimal response surface model parameters. In this case the parent nodes contain the

77

features for each policy trial and each trial is weighted by the following weight matrix W :

W := ddiag(ΨF−2ΨT).

The optimal parameters are given by the following weighted least squares equation.

P (f |Φ, π0) = (2πσ2)− tr(W)/2 exp
{
− 1

2σ2
(f − Φρ)TW (f − Φρ)

}

`(f |Φ, π0) = − tr(W)
2

log(2πσ2)− 1
2σ2

(f − Φρ)TW (f − Φρ)

ρ∗ = (ΦTWΦ)−1ΦTWf.

Prior distributions can help reduce the uncertainty over the posterior which will

reduce the variance of the gradient estimates. We will use a Gaussian distribution for the

mean of the gradient, which we assume equals zero, with isotropic information matrix Λeg.
An estimate of the gradient is obtained by taking the maximum a posteriori estimate of g̃.

P (g̃) ∝ exp
{
− 1

2σ2
g̃TΛeg g̃}

P (f |Ψ, π0) = (2πσ2)−n/2 exp
{
− 1

2σ2
(f −Ψg̃)T (f −Ψg̃)

}

`(f |Ψ, π0) = k − n

2
log(2πσ2)− 1

2σ2
(f −Ψg̃)T (f −Ψg̃)− 1

2σ2
g̃TΛeg g̃

g̃∗ = (ΨTΨ + Λeg)−1ΨT f,

where k is a constant term. Leave one out cross-validation can be used to determine the

appropriate prior. Because the matrix is positive definite, the expectation of the estimator

is guaranteed to be less than π/2 radians away from the true gradient.

78

By placing a prior on the response surface model we get the following estimator:

P (ρ) ∝ exp
{
− 1

2σ2
ρTΛρρ

}

P (f |Φ, π0) = (2πσ2)− tr(W)/2 exp
{
− 1

2σ2
(f − Φρ)TW (f − Φρ)

}

`(f |Φ, π0) = k − tr(W)
2

log(2πσ2)− 1
2σ2

(f − Φρ)TW (f − Φρ)− 1
2σ2

ρTΛρρ

ρ∗ = (ΦTWΦ + Λρ)−1ΦTWf.

4.4 Results

We applied Algorithm 4.1 and Algorithm 4.2 to dart0, dart1, and dart2; these

problems are described in Section 3.2. The results are shown in Figure 4.7 and Figure 4.8.

Each hill-climbing run lasts 30 steps (some plots only show a portion of this) and at each

step we drew 12 policy trials from the current policy; the results were averaged over

500 hill-climbing runs. For these problems we used the following linear response model:

φ(i) = [1, ψ(i)T]. We should expect the improvements in learning to be most prominent in

the setting where perturbations in f are caused primarily by the randomness used for explo-

ration purposes. This is due to the fact that our response surface models only use features

that are functions of the eligibilities. The only stochastic component in dart0, is due to the

use of a randomized policy. Therefore in this setting we see the biggest gains when using

the RSM gradient estimator when compared to the baseline case (Figure 4.7(a)). In dart1,

where there is actuator noise, we see a slight improvement. When we add noise to the re-

lease time, as is the case in dart2, the RSM gradient estimator performs substantially worse

than the baseline gradient estimator. A similar trend exists for the natural versions of the

gradient estimators except that the natural RSM gradient estimator slightly outperforms

79

the natural baseline gradient estimator for dart2. However, both of these perform worse

than their standard counterparts. In Chapter 5 we will be able to improve the performance

by incorporating the sensor data.

We applied Algorithm 4.1 and Algorithm 4.2 to quadruped0 and quadruped2;

and we applied Algorithm 4.3 and Algorithm 4.4 to quadruped1 and quadruped3. The

results are shown in Figure 4.9 and Figure 4.10. Each hill-climbing run lasts 20 steps and

the results were averaged over 100 hill-climbing runs. In quadruped0 and quadruped2 we

drew 30 policy trials at each step and in quadruped1 and quadruped3 we drew 20 policy

trials. The RSM gradient estimators improve the learning performance in quadruped0 and

quadruped1; there are slight improvements for quadruped2 and quadruped3. Since the only

stochastic component present in quadruped0 and quadruped1 is the use of a randomized

policy, we should expect greater improvements in this setting. A similar trend exists for

the natural versions of the gradient estimators. For quadruped0 and quadruped2, we used

the following linear response model: φ(i) = [1, ψ(i)T]. In quadruped1 and quadruped3, the

agent selects a new action after every 0.3 seconds. We used the following response surface

model: φ(i)
t = [et,

tf∑
u=t

ψ
(i)
u

T
], where ei is a column-vector of zeros with the ith entry set to 1.

For comparison purposes, the baseline gradient estimator uses a baseline parameterized by

time, i.e., we use a different baseline value for each time step. This is equivalent to using

φ
(i)
t = et as the response surface model.

80

4.5 Discussion

This chapter presented techniques to improve gradient estimation. These tech-

niques use linear response surface models to predict the expected scores of policy trials.

Given a parameterized family of functions, we showed how to estimate the optimal RSM

parameter, reducing the variance of gradient estimation. We developed several algorithms

(including natural versions) that exploit these models and showed that they produce gains

in the learning performance for the cannon, dart throwing, and quadruped problems pre-

sented in Chapter 3. Finally, we showed how the maximum likelihood estimation of a

linear-Gaussian model is mathematically equivalent to the natural gradient estimator. In

the next chapter, we will extend these techniques by incorporating an agent’s sensor data.

81

RSM
Baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(a)

RSM
Baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(b)

RSM
Baseline

V
(π

)

hill-climbing step
5 10 15 20 25 30

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(c)

Figure 4.7: (a,b,c) The learning curve performances of the baseline and RSM gradient
estimators for dart0, dart1, and dart2 respectively.

82

Natural RSM
Natural baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(a)

Natural RSM
Natural baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(b)

Natural RSM
Natural baseline

V
(π

)

hill-climbing step
5 10 15 20 25 30

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(c)

Figure 4.8: (a,b,c) The performances of the natural baseline and natural RSM gradient
estimators for dart0, dart1, and dart2 respectively.

83

RSM
Baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(a)

RSM
Baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(b)

RSM
Baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(c)

RSM
Baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(d)

Figure 4.9: (a,b,c,d) The learning curve performances of the baseline and RSM gradient
estimators for quadruped0, quadruped1, quadruped2, and quadruped3 respectively.

84

Natural RSM
Natural baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(a)

Natural RSM
Natural baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(b)

Natural RSM
Natural baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(c)

Natural RSM
Natural baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(d)

Figure 4.10: (a,b,c,d) The learning curve performances of the natural baseline and natu-
ral RSM gradient estimators for quadruped0, quadruped1, quadruped2, and quadruped3
respectively.

85

Chapter 5

Improving gradient estimation by

incorporating sensor data

This chapter discusses how we can reduce the variance of a gradient estimator by

incorporating sensor data. Motor control problems typically deal with a large amount of

raw sensor data for each policy trial (e.g., the sensed positions of each controllable joint at

each time step and the pressure felt by each foot during locomotion). This data is often

useful because it helps to explain away noise-induced perturbations in the scores of each

policy trial. The sensory data must possess certain properties if our approach is to be of any

value, and we use these properties to design sensor encodings that are suitable for motor

control problems. Finally, we briefly discuss how to combine these ideas with the response

surface model technique presented in Chapter 4.

86

5.1 Motivation

In the previous chapter we improved the performance of gradient estimation by

learning a response surface model. This technique requires an analytical solution to the

gradient, with respect to π, of the response surface itself (i.e., the agent must be able to

evaluate G := E
[
ψ(h|π0)φ(h)T |π0

]
). As a result, an agent may only use certain feature

vectors if it wishes to have an unbiased estimate of the gradient. Since an agent chooses

the randomness used for exploration purposes, features that are functions of the eligibility

terms may often be used. In cases where the agent knows the sensor model and transition

function, the agent may be able to compute G for features that contain sensor data. The

dart thrower’s release time is an example of a sensor for which we can compute G, because

the distribution of the release-time noise is independent of the agent’s actions. In general we

do not know these relationships, but we may still get better performance if we, nevertheless,

incorporate sensor data into the gradient estimation task. In this chapter we present algo-

rithms that reduce the variance of gradient estimation by incorporating an agent’s sensor

data, even in cases where the agent does not know the sensor model or transition function.

Figure 5.1(b) helps illustrate the importance of using sensor data. It displays

sixteen policy trials from the cannon problem with their corresponding sensors (π + s)

superimposed. The contours represent the value of performing an action. Each trial was

drawn from a nominal policy π0 that selects desired actions by adding zero-mean Gaussian

noise to π0. Actuator noise perturbs the desired actions to give the actual controls which

are hidden to the agent. Sensors accurately measure these perturbations allowing the agent

to infer something about the actual controls. Suppose that we know, for this particular

87

f

a2

a1
25

30
35

30

32

34

36

38

40

−4000

−3000

−2000

−1000

0

1000

(a)

f

a2

a1
25

30
35

30

32

34

36

38

40

−4000

−3000

−2000

−1000

0

1000

(b)

Figure 5.1: (a) Scores from several policy trials drawn from a toy problem. (b) Scores from
several policy trials with the sensors (π + s) superimposed.

problem, that the sensor data provides an unbiased measurement of the difference between

the actual control u and the desired action a. We may therefore want to subtract the sensors

from the desired actions to determine the actual controls. In the next section we explain

how this knowledge can be used to partially explain away the noise.

5.2 Probabilistic inference problem

In this section we show, under certain assumptions, how to get an unbiased esti-

mator with reduced variance by exploiting an agent’s sensor data. This requires an agent

to learn the relationship between its sensors and the noise-induced perturbations in f . Our

approach will be to consider a Bayesian network that captures the relationships between

Ψ, f , and the sensor data. By using an appropriate encoding of the sensor data, we will be

able to use maximum likelihood estimation to find a good estimate of the natural gradient.

88

f

η Ψ

s

(a)

f

Ψs

(b)

f

Λeg

g̃

Ψs

(c)

Figure 5.2: (a) Bayesian network that contains latent variable η, which represents all of the
noise experienced by an agent during a single policy trial, and sensor node s. (b) Network
after we eliminate η and (c) after we add a prior.

5.2.1 Bayesian network representation

In Figure 5.2(a) we proceed by adding a latent variable η and sensor node s to

the Bayesian network that was shown in Figure 4.6(a). The idea is that the latent variable

represents all of the noise experienced by an agent during each policy trial. For example, it

may represent the actuator noise, bumpiness of the ground, or the release-time noise of a

throwing agent. Although we never know its true value, we do know that it often influences

both the score and the observed sensor data. To help illustrate this let us consider a scenario

in the cannon problem. An agent fires several shots and most of them land near the target.

However during one of these shots, the cannon operator used too much gun powder, causing

the shot to sail way past its target. Fortunately, the observation ov, a noisy measurement of

the perturbation between the intended velocity av and the actual velocity, detects the error.

In this case, the unobserved human error influenced both the score (a large squared error)

and the sensor data. The agent can therefore explain the cause of the miss and ignore

89

this outlier shot. Otherwise, it might conclude that it should quickly adjust it’s policy

parameters to avoid repeating this situation. Notice, though, that this decision requires

knowledge of the relationship between the sensor data and the score.

If we eliminate the latent variable then we get a graph absent of any conditional

independicies; let us consider the graph shown in Figure 5.2(b). Without any knowledge of

the relationship between the distribution of Ψ and the sensor information, the additional

sensor information will not help when estimating the gradient. While it may improve our

ability to predict f , we will also need to learn the relationship between Ψ and S in order

to predict the gradient. Our approach will be to assume that Ψ is independent of the

sensor information. In situations where this does not hold we get a biased estimator, but

we attempt to minimize the bias by penalizing directions in sensor space that are highly

correlated with Ψ. The goal is to find an encoding for which Ψ and S are nearly independent

and for which knowledge of S helps predict f .

5.2.2 Variance analysis

We proceed by comparing the variance of a gradient estimator that incorporates

sensor data to an estimator that ignores it. By considering locally linear scoring functions,

we may write expressions for the two variances. First we will assume that S is uncorrelated

with Ψ (in Section 5.2.2 we give expressions for the bias and variance of a gradient estima-

tor in the correlated setting). A biased estimator that incorporates sensor data may still

outperform one that ignores it as long as the bias remains small.

Let S = [s(1), . . . , s(n)]T be a matrix whose rows contain the sensor values for a

single hill-climbing step. The following analysis assumes that the sensors are distributed

90

from a zero-mean Gaussian with covariance matrix Σs. Let w = [w1, . . . , wn] be a column

vector of zero-mean noise with variance σ2. The score function can then be written as

f = Ψaψ + Sas + 1nb+ w.

Ignore sensor data

From the point of view of a gradient estimator that ignores the sensor data, addi-

tional noise will appear to be added to the scores that can not be explained by perturbations

in the sensor data. Let v represent this noise where each element is given by the equation

v = Sas +w. The variance of each entry in v is given by the expression asTΣsas + σ2. The

score function can be rewritten as f = Ψaψ + 1nb+v. In Section 4.3.1 we learned the linear

relationship between Ψ and f by performing maximum likelihood estimation.

g̃(Ψ, f) = (ΨTΨ)−1ΨT f.

The variance may be found by substituting the variance for v into Equation 4.5:

var
[
g̃(Ψ, f)|π0

]
=

(Σ−1)(b2 + as
TΣsas + σ2)

n− d− 1
(5.1)

Include sensor data

A linear model that predicts the score as a function of both Ψ and S will have

the noise on the output partially explained by the sensor data. Figure 5.2(b) contains a

linear Gaussian relationship where f depends on both S and Ψ. If S is independent of Ψ,

an unbiased estimate of the natural gradient can be found by maximizing the likelihood of

91

the parameters:

P (f |Ψ, S, π0) ∝ (2πσ2)−n/2 exp
{
− 1

2σ2
(f −Ψg̃ − Sh̃)T (f −Ψg̃ − Sh̃)

}

`(f |Ψ, S, π0) = − n

2
log(2πσ2)− 1

2σ2
(f −Ψg̃ − Sh̃)T (f −Ψg̃ − Sh̃)

[
g̃∗

h̃∗

]
=

[
ΨTΨ ΨTS

STΨ STS

]−1 [
ΨT f

ST f

]
,

(5.2)

where h̃∗ predicts as.

The variance of the above estimator is written as

var
[[eg(Ψ,f ,S)eh(Ψ,f ,S)

]∣∣∣π0

]
=

[
ΨTΨ ΨTS

STΨ STS

]−1

(b2 + σ2).

We take the inverse of the Schur complement with respect to STS to find the

variance of g̃(Ψ, f, S):

var
[
g̃(Ψ, f , S)|π0

]
= (ΨTΨ−ΨTS(STS)−1STΨ)−1(b2 + σ2).

This quantity is for a fixed Ψ and fixed S. The variance of g̃(Ψ, f, S) averaged over different

exploration policies and sensor values, assuming that the sensors are independent of both

the policy parameters and output noise w, is given by the following equation:

var
[[eg(Ψ,f ,S)eh(Ψ,f ,S)

]
|π0

]
=

[
Σ 0

0 Σs

]−1
b2 + σ2

(N − d− ds − 1)

var
[
g̃(Ψ, f ,S)|π0

]
=

(Σ−1)(b2 + σ2)
n− d− ds − 1

, (5.3)

where ds is the dimensionality of the sensor data.

The expressions for the variance of the two gradient estimators (Equation 5.1 and

Equation 5.3) differ from each other in two factors. The variance of the estimator that

ignores the sensor data has a factor of (b2 + as
TΣsas + σ2) which is reduced to (b2 + σ2) in

92

the estimator that incorporates the sensor data. We see that we get a bigger reduction in

variance whenever the sensor information provides more information about the score. The

second difference between the two estimators favors the estimator that ignores the sensor

data because the denominator in equation 5.1 has a term that is larger than the correspond-

ing term in equation 5.3. The difference in the denominators is the dimensionality of the

sensor data ds, which suggests that we should choose sensor encodings of low dimensionality.

Whether g̃(Ψ, f, S) is more efficient than g̃(Ψ, f) depends on the relative strength of these

two factors.

Correlated sensors

If the sensors are correlated with Ψ then the gradient estimator that incorporates

sensor data will be biased. In this situation we can represent the distribution over sensors as

a linear Gaussian distribution S = ΨAψ,s+1nbψ,sT +Ws, where Ws is a matrix of zero-mean

noise where each row-vector has variance Σws . The scores can be written as follows:

f = Ψaψ + ΨAψ,sas + 1nbψ,sTas +Wsas + 1nb+ w. (5.4)

The natural gradient is written as ∇πV (π)
∣∣∣
π=π0

= aψ + Aψ,sas. Thus we can see that

g̃(Ψ, f, S) is biased by Aψ,sas whenever S is correlated with Ψ. The variance of the estimator

also changes in the case of correlated sensors:

var
[
g̃(Ψ, f ,S)

]
=

(Σ− Σψs(Aψ,sTΣAψ,s + Σs)−1Σψs
T)−1(b2 + σ2)

(N − d− ds − 1)
,

where Σψs = ΣAψ,s is the covariance of the policy parameters and sensor values. Thus we

see that it is best to choose sensor encodings where the sensor values are uncorrelated with

the policy parameters.

93

While incorporating sensor data can improve the learning performance, the level

of improvement depends on how we choose to encode the sensor data. In practice, it may

be difficult to transform the raw sensor data so that S is uncorrelated with Ψ; however, we

can use regularization techniques to limit the amount of bias. In Equation 5.2, h̃ serves as

an unbiased estimate of as. If we knew the linear relationship between Ψ and S (i.e., Aπ,s)

then we could introduce an `2-norm penalty of the bias as follows: h̃TAπ,sTAπ,sh̃. As an

approximation to this expression, we use the empirical covariance between Ψ and S. This

gives the following penalty term: h̃TSTΨΨTSh̃. Further improvements can be made by

adding priors to g̃ (with information matrix Λeg) and h̃ (with information matrix λI). We

proceed by adding these terms to the log-likelihood expression presented in Equation 5.2:

P (g̃) ∝ exp
{
− 1

2σ2
g̃TΛeg g̃}

P (h̃) ∝ exp
{
− 1

2σ2
h̃T (λI + λSS

TΨΨTS)h̃
}

`(f |Ψ, S, π0) = − n

2
log(2πσ2)− 1

2σ2
(f −Ψg̃ − Sh̃)T (f −Ψg̃ − Sh̃)−

− 1
2σ2

g̃TΛeg g̃ − 1
2σ2

h̃T (λI + λSS
TΨΨTS)h̃

[
g̃∗

h̃∗

]
=

[
ΨTΨ + Λeg ΨTS

STΨ STS + (λI + λSS
TΨΨTS)

]−1 [
ΨT f

ST f

]
.

(5.5)

Offset term

The offset term b present in equations 5.1 and 5.3 may be eliminated by augmenting

the sensor data S with 1n. This complicates the variance analysis because the inverted

matrix in equation 5.3 becomes non-central, but we found that it works well in practice.

94

Algorithm 5.1: Natural gradient estimator with sensor data
Input: Ψ, the eligibility vectors; S, the sensor data; f , the scores;

{Σi}i∈{1,...,n}, covariance matrices where Σi = var
[
ψ(h(i)|π0)|π0

]
;

{Λ, λ, λS}, regularization parameters.
Output: ∇, an estimate of the gradient
n← number of rows in Ψ, d← number of columns in Ψ
ds ← number of columns in S
Λ← blockdiag(Λ, 0, λIds + λSS

TΨΨTS)
X ← [Ψ, 1n, S]
∇ ←

(
XTX + Λ

)−1
XT f

∇ ← the first d elements of ∇
return ∇

5.2.3 The natural gradient estimator algorithm with sensor data

Algorithm 5.1 shows an improved gradient estimation algorithm that incorporates

the sensor data. It requires the following inputs: Ψ, the eligibility vectors; S, the sensor

data, f , the scores; {Σi}i∈{1,...,n}, covariance matrices where Σi = var
[
ψ(h(i)|π0)|π0

]
; and

{Λ, λ, λS}, regularization parameters.

We applied this algorithm to the cannon1 problems described in Section 3.1 and

compare the results to the natural gradient estimators presented in Chapter 4. Figure 5.3

shows different learning curves for the cannon problem as we increase the level of actuator

noise. We used the following amounts of actuator noise: Figure 5.3(a), 0.1Σu; Figure 5.3(a),

0.5Σu; Figure 5.3(a), Σu; and Figure 5.3(a), 2Σu. Each hill-climbing run lasts 30 steps and

at each step we drew 5 policy trials from the current policy; the results were averaged over

1000 hill-climbing runs. Notice that the performance gains from using sensor data become

more pronounced as the noise level increases.

95

Natural with sensory data
Natural RSM
Natural baseline
Baseline

V
(π

)

hill-climbing step
5 10 15 20 25 30

−3000

−2500

−2000

−1500

−1000

−500

0

(a)

Natural with sensory data
Natural RSM
Natural baseline
Baseline

V
(π

)

hill-climbing step
5 10 15 20 25 30

−3000

−2500

−2000

−1500

−1000

−500

0

(b)

Natural with sensory data
Natural RSM
Natural baseline
Baseline

V
(π

)

hill-climbing step
5 10 15 20 25 30

−3000

−2500

−2000

−1500

−1000

−500

0

(c)

Natural with sensory data
Natural RSM
Natural baseline
Baseline

V
(π

)

hill-climbing step
5 10 15 20 25 30

−3000

−2500

−2000

−1500

−1000

−500

0

(d)

Figure 5.3: The learning curve performance of the baseline, natural baseline, natural RSM,
and natural with sensor data gradient estimators for the cannon1 problem. The figures are
shown with increasing amounts of actuator noise.

5.3 Sensors for motor control

The raw sensor data for the dart and quadruped problems include noisy measure-

ments of the joint angles at each time step. In the quadruped task, the agent can sense the

positions of each leg relative to the body, but it does not have access to the absolute position

and rotation of the torso. Our task is to take the sensed trajectories and transform them

96

into something that can improve the learning rate. This transformation should produce an

encoding that is independent of Ψ (i.e., an agent’s actions) and so one possible approach is

to find the difference between the observed motion and expected motion at each time step.

The idea of removing the contribution of one’s own motion from the sensory data

is also present in the biology literature [Wolpert et al., 2001].

5.3.1 Approximating the dynamical system

We approximate the difference between the expected velocities and observed veloc-

ities by learning an approximation to the dynamical system in a pre-processing phase. Using

the joint-space representation of each system, the dynamics are governed by the following

second-order nonlinear differential equation:

M(x)ẍ = u(t) + g(x) + c(x, ẋ) + w(x, ẋ, t),

where x is the physical state of the system, M(x) is the joint-space inertia matrix, u(t)

contains the forces and torques applied to the system, g(x) contains the gravity terms,

c(x, ẋ) contains the centrifugal and Coriolis terms, and w(t) is the noise plus any external

forces. Examples of w(t) include the actuator noise and the forces caused by the ground

pushing up on the feet of the quadruped. A discrete time approximation to this equation

can be written as follows:

M(x)a = u(t) + g(x) + c(x, v) + w(x, v, t).

where v is the velocity and a is the acceleration of the system. Solving the above equation

for a yields the following equation:

a = M(x)−1u(t) +M(x)−1g(x) +M(x)−1c(x, v) +M(x)−1w(x, v, t). (5.6)

97

Let x̃ contain the sensed joint angles and let ṽ contain the sensed joint velocities.

We approximate the expected acceleration at each time step by predicting the following

quantities as a function of x̃ and ṽ:

M(x)−1 ≈ M̂(x̃, θM) :=




φ(x̃, θM11) . . . φ(x̃, θM1d
)

...
. . .

...

φ(x̃, θMd1
) . . . φ(x̃, θMdd

)


 ,

M(x)−1g(x) ≈ ĝ(x̃, θg) :=




φ(x̃, θg1)
...

φ(x̃, θgd)


 ,

M(x)−1c(x, v) ≈ ĉ(x̃, ṽ, θc) :=




φ([x̃T , ṽT]T , θc1)
...

φ([x̃T , ṽT]T , θcd)


 ,

(5.7)

where φ(x, θ) is a function that returns a scalar value based on x and parameter θ. In our

case, each θ determines the coefficients of features computed using both linear and quadratic

terms of x and we use linear regression to learn each θ.

We learn θ in a pre-processing state by examining random states (xi, vi) in the

dynamical simulator and examining the corresponding mass matrix M(xi), gravity terms

g(xi), and centrifugal and Coriolis terms c(xi, vi). The samples are drawn from a distribution

of states that are likely to be encountered during policy execution. Because the sensed joint

angles may contain a subset of x, our model will crudely approximation the real system

in certain states. In the quadruped problem, for example, we learn these linear models

without regard to the absolute rotation of the system. This is clearly an approximation

for the terms that involve gravity because the direction of the gravitational force, from a

frame of reference attached to the torso, depends on the quadruped’s rotation relative to

the ground frame.

98

ṽ t
−

(ṽ
t−

1
+

â
∆

t)

time
0 20 40 60 80 100 120 140 160 180

−20

−15

−10

−5

0

5

Figure 5.4: The difference between the predicted and actual velocities of 16 controllable
joints during a single quadruped trial.

Given θ we can use equation 5.6 to predict the acceleration at each time step. The

difference in velocity for the sensed joint angles is computed as the actual velocity at each

time step ṽt minus the velocity predicted using the following expression:

ṽt ≈ ṽt−1 +
(
M̂(x̃, θg)ut + ĝ(x̃, θg) + ĉ(x̃, ṽ, θg)

)
∆t, (5.8)

where ut is given by an agent’s control and ∆t is the time between sensor measurements.

The acceleration terms are approximated using Equation 5.7. We can use the difference

between ṽ and its predicted value as sensor data. Figure 5.4 plots this difference during a

single quadruped policy trial. The spikes in the data are caused by the resistance felt by each

foot as it touches the ground, as it remains planted, or as it slides across the ground. The

variations in each foot step help explain the resulting perturbations in f for each policy trial.

In Section 5.3.3, we describe how we transform this data into a low-dimensional encoding.

99

f

release time
0.17 0.18 0.19 0.2 0.21 0.22 0.23
−8

−7

−6

−5

−4

−3

−2

−1

0

(a)

fo
rc

e
on

ea
ch

fo
ot

time
0 20 40 60 80 100 120 140 160 180

×10−3

0

0.5

1

1.5

2

2.5

3

(b)

Figure 5.5: (a) The scores of several policy trials plotted against their release times for the
dart thrower. (b) The upward force felt by each foot of the quadruped during a single trial.

5.3.2 Additional sensor data

In the dart throwing problem, noise in the release time may cause the agent to

throw the dart with different initial velocities for a fixed policy. This causes the dart to

hit the wall at different distances from the target, altering the scores for each policy trial.

Therefore the release time noise correlates with perturbations in f . This is demonstrated in

Figure 5.5(a) which plots samples of f against the actual release time for a fixed policy. We

also know that the noise is independent of Ψ because π does not control the release time.

Thus using the actual release times as sensor data will not introduce bias into the gradient

estimation task. Figure 5.5(b) shows the upward force felt by each foot of the quadruped

during a single policy trial. In each trial, actuator noise causes the feet to hit the ground at

different speeds and at different times. This information may be useful in explaining away

perturbations in f .

100

5.3.3 Low-dimensional sensor representations

Since the variance of the gradient estimation algorithms increases with the di-

mensionality of the sensor data, it is critical that the difference in velocities between the

expected and actual motions be projected onto a low-dimensional subspace. For each sensed

joint, we can represent the difference curve (ṽt − (ṽt−1 + â∆t)) for a particular joint as a

vector. In the quadruped problem, we may also represent the force curves for each foot

as a vector. We reduce the dimensionality by taking the dot-product between these values

and a set of radial basis functions. We use Gaussian RBFs whose centers are evenly spaced

throughout the duration of a single policy trial.

5.4 RSM gradient estimation with sensory data

We can use the same approach presented in Section 5.2.2 to incorporate sensor data

into the RSM gradient estimators presented in Chapter 4. This is accomplished by limiting

the bias, introduced whenever the sensory data S is correlated with Ψt, via regularization

techniques. The first step is to augment the matrix of features Φt with the sensor data

(i.e., Φt ← [Φt, S]). Equation 4.11 shows the expression for G. Using the augmented

feature vector requires an analytical expression for E
[
ΨT
t S|π0

]
. If the eligibilities were

uncorrelated with the sensors, then the expectation’s value is zero. Using this assumption,

we augment G with a matrix of zeros (i.e., G ← [G,0d×ds]). To limit the bias, we add a

regularization parameter Λρ to Equation 4.14, which estimates the optimal linear response

101

Algorithm 5.2: Time-variant RSM gradient estimator with sensor data
Input: {Ψt}t∈{1,...,tf}, the eligibility vectors; S, the sensor data;

{ft}t∈{1,...,tf}, the scores; {Σi,t}i∈{1,...,n},t∈{1,...,tf}, covariance

matrices where Σi,t = var
[
ψ(a(i)

t |o
(i)
t , π0)|π0

]
; features, a

user-defined function that computes {Φt}t∈{1,...,tf} and G;
{Λρ, λ, λS}, regularization parameters.

Output: ∇, an estimate of the gradient
n← number of rows in Ψ1, d← number of columns in Ψ1

ds ← number of columns in S
for t = 1 to tf do

Wt ← 1
nddiag(ΨtΨT

t) // ddiag clears non-diagonal entries
end
[{Φ}t∈{1,...,tf}, G]← features({Ψt}t∈{1,...,tf}, {Σi,t}i∈{1,...,n},t∈{1,...,tf})
for t = 1 to tf do

Φt ← [Φt, S]
end
G← [G,0d×ds]

Λρ ← blockdiag(Λρ, λIds + λS

tf∑
t=1

STΨtΨT
t S)

ρ =
(tf∑
t=1

ΦT
t WtΦt + Λρ

)−1 tf∑
t=1

ΦT
t Wtft

∇ = Gρ+ 1
n

tf∑
t=1

Ψt(ft − Φtρ)

return ∇

surface parameter ρ∗.

ρ∗ ≈
(tf∑

t=1

ΦT
t ddiag(ΨtΨT

t)Φt + Λρ
)−1

tf∑

t=1

ΦT
t ddiag(ΨtΨT

t)ft.

We introduce an `2-norm penalty by adding
tf∑
t=1

STΨtΨT
t S to the appropriate position of

Λρ. Further improvements can be made by adding additional regularization terms:

Λρ :=




Λ 0

0 λIds + λS

tf∑
t=1

STΨtΨT
t S


 .

102

5.4.1 The time-variant RSM gradient est. algorithm with sensor data

Algorithm 5.2 shows an improved gradient estimation algorithm that incorporates

the sensor data. It requires the following inputs: {Ψt}t∈{1,...,tf}, the eligibility vectors;

S, the sensor data; {ft}t∈{1,...,tf}, the scores; {Σi,t}i∈{1,...,n},t∈{1,...,tf}, covariance matri-

ces where Σi,t = var
[
ψ(a(i)

t |o
(i)
t , π0)|π0

]
; features, a user-defined function that computes

{Φt}t∈{1,...,tf} and G; and {Λρ, λ, λS}, regularization parameters.

5.5 Results

We applied Algorithm 5.1 and Algorithm 5.2 to dart1, and dart2; these problems

are described in Section 3.2. The results are shown in Figure 5.6 and Figure 5.7. Each

hill-climbing run lasts 30 steps (some plots only show a portion of this) and at each step

we drew 12 policy trials from the current policy; the results were averaged over 500 hill-

climbing runs. We used the following linear response surface model for Algorithm 5.2:

φ(i) = [1, ψ(i)T]. The sensor data for dart1 was encoded using the difference between

the observed motion and expected motion at each time step (Section 5.3), and the sensor

data for dart2 was the release time. In both settings, we see an improvement in learning

performance in the algorithms that incorporate sensor data. This is especially true in the

noisy-release-time setting as the sensor data is able to explain away a significant portion of

the noise-induced perturbations in the score.

We also applied Algorithm 5.1 and Algorithm 5.2 to quadruped2 and quadruped3;

these problems are described in Section 3.3. The results are shown in Figure 5.8. Each hill-

climbing run lasts 20 steps and the results were averaged over 100 hill-climbing runs. In

103

quadruped2 we drew 30 policy trials at each step and in quadruped3 we drew 20 policy trials.

We used the following linear response surface model for Algorithm 5.2: φ(i)
t = [et,

tf∑
u=t

ψ
(i)
u

T
],

where ei is a column-vector of zeros with the ith entry set to 1. The sensor data for both

problems was encoded using the upward forces felt by each of the quadruped’s feet during

a particular policy trial (Section 5.3) In each figure, we see an improvement in learning

performance from the algorithms that incorporate sensor data.

5.6 Discussion

This chapter showed how to improve the learning performance by incorporating

sensor data into the learning task. The sensor data is used to explain away the noise-induced

perturbations in the score for each policy trial. We derived expressions for the variance of an

estimator that incorporates sensor data and compared it to one that ignores it. The decrease

in variance depends on two competing factors: the amount of noise that can be explained

away via the sensor data and the dimensionality of the sensor data. We also presented useful

sensor encodings for motor control problems; using these encodings improves the learning

rate for the dart throwing and quadruped locomotion problems presented in Chapter 3. In

the next chapter, we discuss some ideas for future improvements.

104

Natural with sensory data
Natural RSM
Natural baseline
Baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(a)

Natural with sensory data
Natural RSM
Natural baseline
Baseline

V
(π

)

hill-climbing step
5 10 15 20 25 30

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(b)

Figure 5.6: (a,b) The learning curve performances of the baseline, natural baseline, natural
RSM, and natural sensor gradient estimators for dart1 and dart2 respectively.

RSM with sensory data
RSM
Baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(a)

RSM with sensory data
RSM
Baseline

V
(π

)

hill-climbing step
5 10 15 20 25 30

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(b)

Figure 5.7: (a,b) The learning curve performances of the baseline, RSM, and time-variant
RSM with sensor data gradient estimators for dart1 and dart2 respectively.

105

Natural with sensory data
Natural RSM
Natural baseline
Baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(a)

RSM with sensory data
RSM
Baseline

V
(π

)
hill-climbing step

2 4 6 8 10 12 14 16 18 20
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(b)

RSM with sensory data
RSM
Baseline

V
(π

)

hill-climbing step
2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(c)

Figure 5.8: (a) The learning curve performances of the baseline, natural baseline, natural
RSM, and natural with sensor data gradient estimators for quadruped2. (b,c) The learning
curve performances of the baseline, RSM, and time-variant RSM with sensor data gradient
estimators for quadruped2 and quadruped3 respectively.

106

Chapter 6

Conclusions

6.1 Summary of contributions

This dissertation presented several algorithms that improve the learning perfor-

mance of policy search routines. The improvements were realized by reducing the variance

of the gradient estimator, a procedure that is often difficult in noisy domains. These al-

gorithms explain away the noise-induced perturbations in the score by examining their

cause. The randomness used for exploration purposes and the environmental noise, which

is measured by sensors, help an agent reason about these perturbations. This information

helps explain away the perturbations, allowing us to construct better gradient estimator

algorithms that we then applied to the cannon, dart throwing, and quadruped problems

described in Chapter 3. Improvements were realized in each case.

Randomized policies are often used for exploration purposes; however, the stochas-

tic choice of actions produces a noisy sample of the performance, even in deterministic do-

mains. Fortunately, the agent has access to the artificially injected noise and it may use

107

this knowledge to explain away a portion of the noise-induced perturbations. Note that

many other approaches effectively treat the system as a “black box.” We, on the other

hand, exploit this information by learning linear response surface models that predict the

performance as a function of the exploration noise, as captured by the eligibility vector.

Given a parameterized family of RSMs, we derived equations for the parameter that yields

the minimal-variance gradient estimator. Natural gradient estimators were also produced

using the same principles. We also derived expressions for the variance of these gradient

estimators in the setting where an agent uses Gaussian exploration noise. Finally, we pre-

sented time-variant RSM gradient estimator algorithms that are well-suited for problems

with multiple time-steps.

In addition to the noise-induced perturbations caused by randomized policies,

actuator and environmental noise also produce perturbations in the observed performances.

We found that the sensor data obtained during each policy trial can often be used to explain

away this noise. Although an agent’s policy may choose actions based on sensory feedback,

most policy search algorithms typically ignore this data for gradient estimation purposes.

We presented algorithms that incorporate the sensor data and derived expressions for the

variance of the estimator. By comparing the amount of variance to an estimator that

ignores sensor data, we found that the decrease in variance depends on two competing

factors: the amount of noise that can be explained away by observing the sensor data and

the dimensionality of the sensor data. We were also able to incorporate sensor data into

the RSM family of algorithms. Finally, we gave some useful sensor encodings that are

appropriate for motor control problems; these encodings estimate the difference between

108

the actual and expected motions at each time step.

6.2 Future work

This section discusses some ideas for future work.

6.2.1 Sample Reuse

Many policy search algorithms, including our implementation, effectively throw

away policy trial data after each hill-climbing step. In situations where the scoring function

changes slowly (relative to the step size), the old data may be used to reduce the variance

at the current step. Importance sampling techniques have been used to reuse policy trial

data from previous hill-climbing steps [Shelton, 2001]. The algorithms presented in this

dissertation could be extended in a similar way. Another way to reuse sample data is to

weight samples from prior hill-climbing steps according to a properly defined metric. This

weighting scheme could also be used when estimating the optimal linear response surface

model parameter. Furthermore, when incorporating sensor data, we are free to choose

different weighting schemes for the coefficients corresponding to the eligibilities and for

those corresponding to the sensors. This is valuable in problems where changes in the sensor

data’s influence evolve at a slower rate when compared to changes in the gradient. Another

approach is to use Bayesian techniques, i.e., assume that the parameters from different

hill-climbing steps are drawn from a distribution where the hyper-parameters are learned

from experience (e.g., by using hierarchical Bayes methods). This approach allows an agent

to represent problem-specific constraints via the hyper-parameters. For example, an agent

109

can learn over time that certain sensor variables are uncorrelated with the perturbations in

performance.

6.2.2 Hierarchical control

The algorithms presented in this dissertation are used to find good low-level con-

trollers for a single task (e.g., quadruped locomotion). Hierarchical control methods de-

compose a controller into several sub-controllers; these controllers are placed at different

levels of a control hierarchy [Parr and Russell, 1998, Sutton et al., 1999, Dietterich, 2000].

Decomposition improves the learning performance by adding structure to the policy, by

allowing an agent to reuse sub-controllers in different contexts, and by allowing an agent

to decompose the value function. These methods allow an agent to learn many different

tasks, which in turn allows it to effectively interact with a complex world. For example, a

quadruped robot can use a hierarchical controller to perform a diverse range of tasks. Low

level motions might including walking straight, running, turning, and walking on an incline;

higher level tasks might include navigation and search. Kolter et al. [2008] use a hierarchi-

cal controller for quadruped locomotion over rough terrain. Gradient based methods are

probably not well suited for higher-level tasks, such as navigation, in part because of the

presence of local maxima. One possible approach is to use policy search algorithms at the

lowest level of a hierarchy and use value-based methods at the higher levels.

6.2.3 Quasi-newton methods

In deterministic settings, Newton, quasi-Newton, and conjugate gradient algo-

rithms often outperform first-order techniques. Newton and quasi-Newton methods com-

110

pute or maintain an approximation of the Hessian of the objective function; the curvature

information is used to step in the direction of the minimum (or maximum). Determining

the curvature of the surface is difficult in noisy domains. By applying a few modifications

to the standard quasi-Newton methods, Schraudolph et al. [2007] were able to make sub-

stantial improvements in the stochastic gradient setting. The authors exploited certain

characteristics that, unfortunately, do not apply to the policy search setting. In their set-

ting, stochasticity arises solely because they consider only a subset of the training data

at each optimization step. Constructing policy search algorithms that exploit the curva-

ture of the surface may provide similar improvements to the learning rate. The natural

gradient methods compensate for the curvature induced by the parameterization of the

log-likelihood function. However, these algorithms ignore the curvature in the performance

measure itself.

111

Bibliography

[Albus, 1975] J. S. Albus. A new approach to manipulator control: The cerebellar model ar-

ticulation controller (CMAC). Journal of Dynamic Systems, Measurement, and Control,

97:220–227, 1975.

[Amari, 1998] Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Com-

putation, 10:251–276, 1998.

[Atkeson et al., 1997] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learn-

ing. Artificial intelligence review, 11:11–73, 1997.

[Baxter and Bartlett, 2001] J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient

estimation. Journal of Artificial Intelligence Research, 15:319–350, 2001.

[Bellman, 1957] Richard Ernest Bellman. A Markov decision process. Mathematics and

Mechanics, 6:679–684, 1957.

[Bernstein, 1967] Nikolai A. Bernstein. The Co-ordination and Regulation of Movements.

Pergamon Press, 1967.

[Billard and Ijspeert, 2000] Aude Billard and Auke Jan Ijspeert. Biologically inspired neu-

112

ral controllers for motor control in a quadruped robot. In Proceedings of the International

Joint Conference on Neural Systems, 2000.

[Bruce et al., 2002] James Bruce, Scott Lenser, and Manuela Veloso. Fast parametric tran-

sitions for smooth quadrupedal motion. In RoboCup-2001: The Fifth RoboCup Competi-

tions and Conferences, 2002.

[Buehler et al., 2000] M. Buehler, U. Saranli, D. Papadopoulos, and D. E. Koditschek. Dy-

namic locomotion with four and six-legged robots. In International Symposium on Adap-

tive Motion of Animals and Machines, 2000.

[Chernova and Veloso, 2004] Sonia Chernova and Manuela Veloso. An evolutionary ap-

proach to gait learning for four-legged robots. In International Conference on Intelligent

Robots and Systems, 2004.

[Dietterich, 2000] Thomas G. Dietterich. Hierarchical reinforcement learning with the

MAXQ value function decomposition. Journal of Artificial Intelligence Research, 13:227–

303, 2000.

[Fukuoka et al., 2003] Yasuhiro Fukuoka, Hiroshi Kimura, and Avis H. Cohen. Adaptive

dynamic walking of a quadruped robot on irregular terrain based on biological concepts.

International Journal of Robotics Research, Vol. 22, 2003.

[Garner and Pandy, 1999] B. Garner and M. Pandy. A kinematic model of the upper limb

based on the visible human project (VHP) image dataset. Computer Methods in Biome-

chanics and Biomedical Engineering, 2:107–124, 1999.

113

[Gates, 2006] Bill Gates. A robot in every home. Scientific American Magazine, December

2006.

[Greensmith et al., 2001] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Vari-

ance reduction techniques for gradient estimates in reinforcement learning. In Advances

in Neural Information Processing Systems, pages 1507–1514, 2001.

[Greensmith et al., 2004] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Vari-

ance reduction techniques for gradient estimates in reinforcement learning. Journal of

Machine Learning Research, 5:1471–1530, 2004.

[Harris and Wolpert, 1998] Christopher Harris and Daniel Wolpert. Signal-dependent noise

determines motor planning. Nature, 394:780–784, 1998.

[Hollars et al., 1990] Michael G. Hollars, Dan E. Rosenthal, and Michael A. Sherman.

SD/FAST User’s Manual. Symbolic Dynamics, Inc., Mountain View, CA, 1990.

[Hornby et al., 1999] G.S. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and O. Hana-

gata. Autonomous evolution of gaits with the Sony quadruped robot. In Proceedings of

1999 Genetic and Evolutionary Computation Conference, 1999.

[Kaelbling et al., 1996] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore.

Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4:237–285,

1996.

[Kakade, 2002] Sham Kakade. A natural policy gradient. In Advances in Neural Information

Processing Systems, 2002.

114

[Kohl and Stone, 2004] N. Kohl and P. Stone. Machine learning for fast quadrupedal loco-

motion. In Proceedings of the Nineteenth National Conference on Artificial Intelligence,

2004.

[Kollo and von Rosen, 2005] Tonu Kollo and D. von Rosen. Advanced Multivariate Statis-

tics with Matrices. Springer, 2005.

[Kolter et al., 2008] J. Zico Kolter, Pieter Abbeel, and Andrew Y. Ng. Hierarchical ap-

prenticeship learning with application to quadruped locomotion. In Advances in Neural

Information Processing Systems, 2008.

[Konda et al., 2003] Vijay R. Konda, John, and N. Tsitsiklis. Actor-critic algorithms. Con-

trol and Optimization, 42(4):1143–1166, 2003.

[Lawrence et al., 2003] Gregory Lawrence, Noah Cowan, and Stuart Russell. Efficient gra-

dient estimation for motor control learning. In Proceedings of the Nineteenth International

Conference on Uncertainty in Artificial Intelligence, 2003.

[Myers and Montgomery, 1995] R.H. Myers and D.C. Montgomery. Response surface

methodology: Process and product optimization using designed experiments. John Wi-

ley & Sons Inc., 1995.

[Nelson, 1983] W. Nelson. Physical principles for economies of skilled movements. Biological

Cybernetics, 46, 1983.

[Ng and Jordan, 2000] Andrew Y. Ng and Michael Jordan. PEGASUS: A policy search

method for large MDPs and POMDPs. In Proceedings of the Sixteenth Conference on

Uncertainty in Artificial Intelligence, pages 406–415, 2000.

115

[Parr and Russell, 1998] Ronald Parr and Stuart Russell. Reinforcement learning with hi-

erarchies of machines. In Advances in Neural Information Processing Systems, pages

1043–1049. MIT Press, 1998.

[Peters and Schaal, 2006] Jan Peters and Stefan Schaal. Policy gradient methods for

robotics. In Proceedings of the IEEE International Conference on Intelligent Robotics

Systems, 2006.

[Saranli et al., 2001] U. Saranli, M. Buehler, and D.E. Koditschek. RHex: A simple and

highly mobile hexapod robot. International Journal of Robotics Research, Vol. 20, 2001.

[Schaal, 2007] Stefan Schaal. The new robotics - towards human-centered machines. HFSP

Journal Frontiers of Interdisciplinary Research in the Life Sciences, 1(2):115–126, 2007.

[Schraudolph et al., 2007] Nicol N. Schraudolph, Jin Yu, and Simon Günter. A stochastic

quasi-Newton method for online convex optimization. In Proceedings of the International

Conference on Artificial Intelligence and Statistics, volume 2 of Workshop and Conference

Proceedings, pages 436–443, San Juan, Puerto Rico, 2007.

[Shelton, 2001] Christian R. Shelton. Policy improvement for POMDPs using normalized

importance sampling. In Proceedings of the Seventeenth International Conference on

Uncertainty in Artificial Intelligence, pages 496–503, 2001.

[Smallwood and Sondik, 1973] Richard D. Smallwood and Edward J. Sondik. The opti-

mal control of partially observable Markov processes over a finite horizon. Operations

Research, 21:1071–1088, 1973.

116

[Sutton et al., 1999] Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs

and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Jour-

nal of Artificial Intelligence Research, 112:181–211, 1999.

[Sutton et al., 2000] Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Man-

sour. Policy gradient methods for reinforcement learning with function approximation.

In In Advances in Neural Information Processing Systems 12, pages 1057–1063, 2000.

[Sutton, 1996] Rich Sutton. Generalization in reinforcement learning: Successful examples

using sparse coarse coding. In Advances in Neural Information Processing Systems, 1996.

[Tesauro, 1992] Gerald Tesauro. Practical issues in temporal difference learning. Machine

Learning, pages 257–277, 1992.

[Todorov and Jordan, 2002] E. Todorov and M. Jordan. Optimal feedback control as a

theory of motor coordination. Nature Neuroscience, 5, 2002.

[Uhlenbeck and Ornstein, 1930] G. E. Uhlenbeck and L. S. Ornstein. On the theory of

brownian motion. Physical Review, 36:823–841, 1930.

[Uno et al., 1989] Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal

trajectory in human multijoint arm movement. Biological Cybernetics, 61, 1989.

[Watkins and Dayan, 1992] C. J. Watkins and Peter Dayan. Q-learning. Machine Learning,

8(3-4):279–292, 1992.

[Weaver and Tao, 2001] Lex Weaver and Nigel Tao. The optimal reward baseline for

117

gradient-based reinforcement learning. In Proceedings of the Seventeenth Conference on

Uncertainty in Artificial Intelligence, pages 538–545, 2001.

[Williams, 1992] Ronald J. Williams. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine Learning, 8:229–256, 1992.

[Wolpert et al., 2001] D. Wolpert, Z. Ghahramani, and J. Flanagan. Perspectives and prob-

lems in motor learning. Trends in Cognitive Science, 5, 2001.

