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Abstract One important application for automatic protocol re-
verse engineering is the analysis and infiltration of bot-

Automatic protocol reverse-engineering is important féets. Botnets, large networks of infected computers under
many security applications, including the analysis and de@ntrol of an attacker, are one of the dominant threats in
fense against botnets. Understanding such C&C protoc#lg Internet today. They enable a wide variety of abu-
is crucial for anticipating a botnet's repertoire of nefarfive or fraudulent activities, such as spamming, phishing,
ous activity and to enable active botnet infiltration. Frélick-fraud, and distributed denial-of-service (DDoS) at
quently, messages sent and received by a bot have tdas&s [12,28,32]. At the heart of a botnet is its C&C pro-
rewritten in order to contain malicious activity and to prdocol, which enables a bot to locate relevant rendezvous
vide the botmaster with an illusion of successful and uRoints in the network and provides the botmaster with a
hampered operation. To enable such rewriting, we ne8gans to coordinate malicious activity in the bot popula-
detailed information about the intent and structure of thi@n. Automatic protocol reverse-engineering can be used
messages ihoth directionof the communication despitefor understanding the C&C protocol used by a botnet, re-
the fact that we generally only have access to the impk&aling a wealth of information about the capabilities of
mentation of one endpoint, namely the bot binary. Curref bots and the overall intent of the botnet.

techniques cannot enable such rewriting. In this paper|n addition to understanding its C&C protocol, an an-
we propose techniques to extract the format of the prglyst may also be interested in interacting actively with
tocol messagesentby an application that implements ahe botnet. Previous work analyzed the economics of
protocol specification, and to infer the field semantics feie Storm botnet by rewriting the commands sent to the
messages botsentandreceivedby the application. Our pots [33]. Other times, an analyst may want to rewrite
techniques enable applications such as rewriting the C&Sessages sent upstream by the bots, such as when a site’s
messages for active botnet infiltration. We implement ogontainment policy requires the analyst to make bots lie
techniques into Dispatcher, a tool to extract the messagsut their capabilities and achievements. For example,
format and field semantics of both received and sent mése analyst may want to rewrite a capability report sent by
sages. We use Dispatcher to analyze MegaD, a prevat@athot to make the botmaster believe that the bot can send
spam botnet employing a hitherto undocumented C&nail while all the outgoing SMTP connections by the bot
protocol, and show that the protocol information extractegle blocked, or that the bot is connected to the Internet us-
by Dispatcher can be used to rewrite the messages sggt high-speed LAN when in reality it is funneling traffic
upstream to the botmaster. through a low-throughput connection.

To successfully rewrite a C&C message, an analyst first
. needs to understand the goal of the message, its field
1 Introduction structure, and the location of fields carrying relevant in-
formation to rewrite. While older botnets build their C&C
Automatic protocol reverse-engineering techniques gsrotocol on top of IRC, many newer botnets use cus-
able extracting the protocol specification of unknown esmized or proprietary protocols [2,20, 31].
undocumented application-level protocols [19, 22, 25, 26’Ana|yzing such C&C protocols is challenging. Man-

35,36,38,48]. A detailed protocol specification can efy, protocol reverse-engineering of such protocols istime

hqnce_z many secgrit.y applications such as f“ZZi”Q [22], %’nsuming and error-prone. Furthermore, previous auto-
plication fingerprinting [18], deep packet inspection [Pzglnatic protocol reverse engineering techniques have limi-
or signature-based filtering [27].



tations that prevent them from enabling rewriting of sudhze the C&C protocol used by MegaD, one of the most
protocols. Techniques that use network traffic as iprevalent spam botnets in use today [9]. To the best of our
put [25, 26, 35, 36] are easily hampered by obfuscatitnowledge, MegaD’s proprietary, encrypted, binary C&C
or encryption. Techniques that rely on observing howpsotocol has not been previously published and thus pre-
communication end point (client or server) processesented an ideal test case for our system. We show that the
received input [19, 22, 38, 48] present two major limita=&C information extracted by Dispatcher can be used to
tions. First, given a program they can only extract inforewrite the MegaD C&C messages. In addition, we use
mation about one side of the dialog, i.e., theeivednes- four open protocols: HTTP, FTP, ICQ, and DNS to com-
sages [22, 38]. To obtain a complete understanding of there the message format automatically extracted by Dis-
protocol they require access to both sides’ implementsatcher with the one extracted by Wireshark [14], a state-
tion of the dialog. Unfortunately, when studying a botneff-the-art protocol parser that contains manually written
analysts often have access only to the bot side of the cqametocol grammars.

munication. This is true for other applications such as summary our contributions are the following:
instant-messaging solutions where the clients are freely

available but the servers are not. Second, current binaryg \we propose novel techniques to extract the format
based techniques do not address extracting the semantic of the protocol messageentby an application that
information from the protocol messages. Semantic infor-  jmplements a protocol specification. Previous work
mation is fundamental for understanding the intent of a oy only extract the format of theeceivedmes-

message, and therefore to identify what parts of a dialog sages. Our techniques enable extracting the complete

t_o rew_rite. For te_xt-baseql protocols an analyst can some- protocol format even when only one side of the com-
times infer such information from the content of the mes-  \,unication is available.

sages, but with binary-based protocols such approach is

often not possible. e We present techniques to infer the field semantics for
messagesentandreceivedby an application. Our
type-inference-based techniques leverage the wealth
of semantic information available in the program.

In this paper we present novel techniques to extract
the message format for messagesitby an application,
which enable extracting the protocol message format from

just one side of the communication. New techniques arey \We design and develop Dispatcher, a tool that imple-
needed because current techniques to extract the messagements our techniques and automatically extracts the
format ofreceivedmessages rely on tainting the network message format and associated semantics from both
input and monitoring how the tainted data is used by the gjdes of a protocol. We use Dispatcher to analyze
program. Most data in sent messages does not come from pegaD, a prevalent spam botnet, which uses an en-

the tainted network input. InStead, we use the follow- Crypted binary C&C protoco' previous'y not under-
ing intuition: programs store fields in memory buffers  stood.

and construct the messages to be sent by combining those

buffers together. Thus, the structure of the buffer hold-® We show that the protocol information that Dis-
ing the sent message represents the inverse of the struc- Patcher extracts can be used to rewrite the responses
ture of the sent message. We also present novel tech- that a MegaD bot sends to the commands received
niques to infer the field semantics in messmﬁandr@- from the botmaster, therefore enabling active botnet
ceivedby an application. Our type-inference-based tech- infiltration.

nigues leverage the rich semantic information that is al-

ready available in the program by monitoring how data in . ..

the received messages is used at places where the seldan-Overview & Problem Definition

tics are known, and how the sent messages are built from

data with known semantics. In addition, we propose mola this section we define the problems addressed in the
ifications to a recently proposed technique to identify theaper and give an overview of our approach.

buffers holding the unencrypteeceivednessage [47], sO

that it also identifies the buffers holding the unencrypt _ L :
engineering is to extract therotocol format which cap-

sentmessage. :
tures the structure of all messages that comprise the pro-

We implement our techniques in'Fo Dispatchc_ar, a togco| [19, 25, 26, 35, 38, 48], and thEotocol state ma-
to ex_tract the message format and field sgmantlcs of bepﬁne which captures the sequences of messages that rep-
received and sent messages. We use Dispatcher t0 @8&snt valid sessions of the protocol [22, 36]. Extracting

e%:ope. The goal of automatic protocol reverse-



the protocol format usually comprises two steps. First,
given a set of input protocol messages extractrties-
sage formabf each message. Second, given the set of
message formats, identify optional, repetitive and altern
tive fields, and infer the protocol format, which encom-
passes the multiple message types that comprise the @
tocol. The protocol format can be represented as a regui. Qe Nl
expression [48] or a BNF grammar [27].

This paper deals only with the first step of the proto- rel e
col format extraction, extracting the message format for a ]
given message, which is a pre-requisite for extracting bdtigure 1: Message field tree for the MegaD Host-
the protocol format and the protocol state-machine. ~ Information message.

Payload
[2:57]

Padding
[52:57]

Message format. The message format is captured in the

message field trea hierarchical tree in which each node ) ) )
represents a field in the messge child node represents'@n9€ [6:13] contains some data previously received over

a subfield of its parent, and thus corresponds to a subraffifenetwork. We use this information to label the corre-
of the parent field in the message. The root node repr@2nding fieldsotiD andIP addr.

sents the complete message, the internal nodes reprepggtiiem definition. In this paper we address two prob-
composedields” and the leaf nodes represent the smalbms: 1) extracting the message field tree for the messages
est semantic units in the messdg&ach node containssentby the application, and 2) inferring field semantics,
an attribute list, where each attribute captures prop®rtiat is, annotating the nodes in the message field tree, for

about the field such as the field range (the start and @jigh receivedand sentmessages, with a field semantics
positions in the given message), or whether the field hagibute.

fixed-length or variable-length, as well as inter-field de- )

pendencies such as a field representing the length of 4RProach. We define theoutput bufferto be the buffer
other target field or being a checksum of multiple targtat contains the message about to be sent at the time
fields in the tree. Figure 1 shows the message field tfg@t the function that sends data over the network is in-
for a C&C message used by MegaD to communicate bat¥ed. As a special case, for encrypted protocols, the
to the C&C server information about the bot's host. THHtput buffer is the buffer that contains the unencrypted
root node represents the message, which is 58 bytes |d#§t_a at the time the encryption routine is invoked. To ex-
There are two composed fields: the payload, which is t&ct the message format feentmessages we use the fol-
encrypted part of the message, and the host informatil§iyving intuition: programs store fields in memory puffers
which contains leaf fields representing data about the h88¢ construct the messages to be sent by combining those
such as the CPU identifier and the IP address. The @iffers together. Thus, the structure of the output buffer
tributes capture that tHdSG lengthfield is the length of represents the inverse of the structure of the sent message.

the payload and theengthfield is the length of thédost We proposéuffer deconstructiora technique to build the
info field. message field tree of a sent message by analyzing how the

_ _ _ ~ output buffeiis constructed from other memory buffers in
Field semantics.One important property of a field is itsthe program. We present our message format extraction

SemantiCS, i.e, the type of data that the field contains. Txachniques for sent messages in Section 4 and our han-
ical field semantics are lengths, timestamps, checksuiigg of encrypted protocols in Section 5.
hostnames, and filenames. Inferring the field semanticsl_ . ' . .
. infer the field semantics, we use type-inference-
is fundamental to understand what a message does BmaO . .

) e . ; ; ased techniques that leverage the observation that many
to identify interesting parts of a dialog to rewrite. Th

) ) . ' unctions and instructions used by programs contain
field semantics are captured in the message field tree as oo ;

. i nown semantic information that can be leveraged for
an attribute for each field and can be used to label t}

. L L 161d semantics inference. When a field in the received
fields. For example, in Figure 1 the semantics inferencé .
; . meqssage propagates to the parameters of those functions
states that the range [54:57] contains an IP address an . > L ) )
or instructions (i.e., semantic sinks), we can infer its se-
LCalled protocol field tree in [38]. mantps. When thg output of those functions or ms_trucT
2Called complex fields in [48], and hierarchical fields in[38]  tions (i.e., semantic sources) propagates to some field in

3Called finest-grained fields in [38]. the output buffer, we can infer its semantics.




We have developed Dispatcher, a tool that enables amalware analysis and can be used to analyze any unknown
lyzing both sides of the communication of an unknowasr undocumented protocols.
protocol, even when an analyst has access only to the
application on one side of the dialog. Dispatcher inte-
grates previously proposed techniques to extract the mgs- ;
sage format of received messages [19, 38, 48], as well%ss Field Semantics Inference
our novel techniques to extract the message format of sent
messages, and to infer field semantics in both received dndhis section we present our technique to identify the
sent messages. We show that the information extractedigjfl semantics of both received and sent messgages
Dispatcher enables rewriting MegaD’s C&C messages. The intuition behind our type-inference-based tech-
nigues is that many functions and instructions used by

Obtaining an execution trace. The input to our mes- T - .
. . o ograms contain rich semantic information. We can
sage format extraction and field semantics inference te¢h- . L . . .
everage the existing semantic information to infer field

niques are execution traces taken by monitoring the pro- . Lo T . )
q y 9 psemanucs by monitoring if the received network data is

gram while it is involved in some network dialog USin%sed at a point where the semantics are known, or if the
the unknown protocol. To monitor the program we use 4 !

: X . ata to be sent on the network has been derived from some
custom analysis environment, which implements dynamjc . . . )
. . . . _data with known semantics. Sudafferenceis very gen-
taint tracking [21, 23, 40, 45] and produces instruction- : ) '
- . . : eral and can be used to identify a broad spectrum of field
level execution traces that contain all instructions exe- T . . :
. semantics including timestamps, filenames, hostnames,
cuted, the content of the operands and the associated tain L
orts, IP addresses, and many other. The semantic in-

information. To analyze the protocol used by malwate . : . . : :
Y P y rmation of those functions and instructions is publicly

samples (e.g., the C&C protocol of a botnet), we needf%ailable in the prototype, which describes the goal of

run the malware sample in a specialized analysis netw% . . : :
. . o e function or instruction, as well as the semantics of
with custom containment policies [3, 46]. o .
. i ) _its inputs and outputs. Function prototypes can be found,
An execution trace contains the processing of multipignong others, at the Microsoft Developer Network [10]
messages sent and received by the program during the Bethe standard C library [7]. For instructions, one can

into smaller execution traces for the individual messages

by monitoring the program’s use of networking function'gechnlqugs.Forrece!ved_nessages, Dispatcher uses taint
that read or write data from sockets. We split the exBropagation to monitor if a sequence of bytes from the
cution trace into two traces every time that the prograifceived message is used in tharametersof some se-
makes a successful call to write data to a socket (e_lg_qted function calls and instructions, for which the sys-
send and every time that the program makes a succesdfiln has been provided with the function’s prototype. The
call to read data from a socket (e.gecV), except if the Sequence of bytes in the received message can then be as-
parameter defining the maximum number of bytes to red@ciated with the semantics for the argument, as defined in
is tainted. In this case, the read data is considered partf¥t Prototype. For example, when a program callstre

the previous message and the trace is not split. This hAgctfunction Dispatcher uses the function’s prototype to
dles the case when a program first reads the length of @eck if any of the parameters in the stack is tainted. The

payload and then reads the variable-length payload usfHgction’s prototype tells us that the first parameter is the
the received length value. socket descriptor, the second one is an address structure

that contains the IP address and port of the host to connect
Handling obfuscation. The MegaD binary we analyzeyg and the third one is the length of the address structure.
uses obfuscation techniques such as binary packing fle memory locations that correspond to the IP address
inlining unnecesary instructions, which are designed §9 connect to in the address structure are tainted from 4
thwart static analysis. But, as far as we can tell, it does es in the input, then Dispatcher can infer that those 4
implement techniques designed to thwart dynamic an'taﬂ&es in the input message (identified from the offset in
ysis such as detecting virtualized or emulated envirofe taint information) form a field, which contains an IP

ments. Thus, our techniques run fine on MegaD. Howgdress to connect to. Similarly, if the memory locations
ever, we expect malware to adapt and have designed our

techniques to capture fundamental properties so that theyour semantics inference techniques were first publishedtesha
are as resilient as possible to obfuscation. Neverthelegsy report [17]. They are more general than simultaneooskthat

the techniques proposed in this paper are not s ecifid tifies cookies and filenames from execution traces g8, predate
q prop pap P other work that also identifies such fields [27].




Field Semantics | Received | Sent Implementation. To identify field semantics Dispatcher
Cookies yes yes uses an input set of function and instruction prototypes.
IP addresses yes yes By default, Dispatcher includes over one hundred func-
Error codes no yes tions and a few instructions for which we have already
Filedata no yes added the prototypes by searching online repositories. To
E::zrzgﬁgat'on ;;s z: identify new field semantics and their corresponding func-
tions, we examine the external functions called by the pro-
Hash / Checksum yes yes . . .
Hosinames yes yes gram in the ex_ecutlon trace. _Table 1 show§ the field se-
Host information o ves mantics that Dlspatcher can_lnfer from_recelved and sent
Keyboard input no yes messages using the predefined functions. In thg table,
Keywords ves ves stored data represents data that the program receives over
Length ves ves the network andvritesto the filesystem or the Windows
Padding yes no registry, as opposed to datead from the filesystem or
Ports yes yes the Windows registry. We refer the reader to Appendix B
Registry data no yes for examples of functions and instructions used to identify
Sleep timers yes no each of the field semantics in Table 1.
Stored data yes no
Timestamps no yes

Table 1: Field semantics identified by Dispatcher for boh ~ EXtracting the message format of
received and sent messages. sent messages

The message field tree captures the hierarchical field

structure of the message as well as the field properties en-
that correspond to the port to connect to have been dgged in attributes. To extract the message field tree of

rived from 2 bytes in the input message, it can identify thesent message we first reverse-engineer the structure of
position of the port field in the input message. the output message and output a message field tree with
Forsentmessages, Dispatcher taints the output of some field attributes. Then, we propose specific techniques
selected functions and instructions using a unique souteadentify the field attributes such as how to identify the
identifier and offset pair. For each tainted sequencefald boundary (fixed-length, delimiter, length field) and
bytes in the output buffer, Dispatcher identifies frorthe keywords presentin each field.
which taint source the sequence of bytes was derived. The, fie|d is a sequence of consecutive bytes in a message
semantics for the taint source (return values) are given ¥, some meaning. A memory buffer is a sequence of
the function’s or instruction’s prototype, and can be aggnsecutive bytes in memory that stores data with some
sociated to the sequence of bytes. For example, if a PfQaaning. To reverse-engineer the structure of the output
gram uses thedtscx86 instruction, the instruction’s pro-message we cannot use current techniques to extract the
totype [E_‘)] descnbe; the instruction semantics, in paftichhessage format séceivednessages because they rely on
lar that it takes no input and returns a 64-bit output reyinting the network input and monitoring how the tainted
resenting the current value of the processors time-stagiy, is used by the program. Most data in sent messages
counter, which is placed in registers EDX:EAX. Thugjpes not come from the tainted network input. Instead,
at the time of execution when the program usesc e yse the following intuition: programs store fields in
Dispatcher taints the EDX and EAX registers with som@emory buffers and construct the messages to be sent by
unique source identifier and offset. The source identifigsmpining those buffers together. Thus, the structure of
uniquely identifies the taint source to be frotisc and he output buffer represents the inverse of the message
the offsets |dent|fy_ each byte in thétscstream (offsets O fig|d tree of the sent message. We propbstier decon-
through 7 for the first call tedtsg). struction a technique to build the message field tree of a
A special case of the last technique is tuokieinfer- sent message by analyzing how theput bufferis con-
ence. A cookie represents data from a received netwstkucted from other memory buffers in the program. Fig-
message that propagates to the output buffer (e.g., sessi@n2 shows the deconstruction of the output buffer hold-
identifiers). Thus, a cookie is simultaneously identified ing the message in Figure 1. Note the similarity between
the received and sent messages. Figure 1 and the upside-down version of Figure 2.



the buffer deconstruction as well as the attribute infeeenc

Loop analysis. During the forward pass, Dispatcher ex-
tracts information about each loop presentin the execution
! ; trace. To identify the loops in the execution trace, Dis-
B, (56) ' | patcher supports two different detection methods: static
! Payload < and dynamic. The static method extracts the addresses of
| Output Butfer (58) | the loop head and exit conditions statically from the bi-
nary before the forward pass starts, and uses that informa-

Figure 2: Buffer deconstruction for the MegaD messaggn during the forward pass to identify the points where

in Figure 1. Each box is a memory buffer starting at ag"y ©f those loops appears in the trace. The dynamic
dressB, with the byte length in brackets. Note the simir-nethOd does not require any static processing and ex-
larity with the upside-down version of Figure 1. tracts t_he Ioops directly during the fprwa_rd pass by moni-
toring instructions that appear multiple times in the same
Extracting the message format of sent messages i&/action. Both methods are complimentary. While using
three-step process. In theeparationstep, Dispatcher Static qur.matlo_n is more precise at |Qent|fy|ng the loop
makes a forward pass over the execution trace to extr@éff conditions, it also requires analyzing all the modules
information about the loops that were executed, the lii&xecutable plus dynamically link libraries) used by the
ness of buffers in the stack, and the callstack informatigRPlication, may miss loops that contain indirection, and
at each point in the execution trace. It also builds an inde&Not be applied if the unpacked binary is not available,
of the execution trace to enable random access to anySH¢h as in the case of MegaD. On the other hand, the dy-
struction. We present the preparation in Section 4.1. TR@MIC method is less accurate at identifying the loop exit
core of the message format extraction is iadfer decon- conditions, bpt requires no setup and can be used in all
structionstep, which is a recursive process in which o8 Samples including MegaD.

memory buffer is deconstructed at a time by extracting t@gstack Analysis. During the forward pass, Dispatcher

sequence of memory buffers that comprise it. The procggg|icates the function stack of the program by monitoring
is started with the output buffer and recurses until thejfige function calls and returns. The output of the callstack
are no more buffers to deconstruct. Since the structiyfiga|ysis is a function that given an instruction number re-

of the output buffer is the inverse of the message field trggns the innermost function that contained that instruc-
for the sent message, then every memory buffer that forjps at that point of the execution.

the output buffer, and recursively the memory buffers that

form them, corresponds to a field in the message fiddgffer Liveness Analysis. During the execution trace
tree. For example, deconstructing the output buffer in Figapture, Dispatcher monitors the heap allocation and free
ure 2 returns a sequence of two buffers, a 2-byte buffeipctions used by the program. For each heap allocation
starting at offset zero in the output buffeB{) and a 56- it provides the instruction number in the trace, the buffer
byte buffer starting at offset 2 in the output buffés,). startand the size of the buffer. For each heap free, it spec-
Correspondingly a field with range [0:1] and another orifées the instruction number in the trace, and the start ad-
with range [2:57] are added to the no-attributes mess#ljgss of the buffer being freed. During the forward pass,
field tree. Thus, the buffer deconstruction builds the nBispatcher monitors the stack pointer at the function en-
attributes message field tree as it recurses into the oufiii@dnd return points, extracting information about which
buffer structure. We present the buffer deconstructionfifemory locations in the stack are freed when the function
Section 4.2. Finally, théield attribute inferencédentifies returns. This information is used by Dispatcher to deter-
length fields, delimiters, keywords, arrays and variabléline whether two different writes to the same memory ad-
length fields and adds the information into attributes féfess, correspond to the same memory buffer, since mem-
the corresponding fields in the message field tree. W& locations in the stack (and occasionally in the heap)
present the field attribute inference in Section 4.3. may be reused for different buffers.

B, (8) HBG(Z)HF "~ B.@36) H B,6) |
. BotiD k"».j_‘:«»(‘Lengl‘h1\“-“ Host info i} Padding

4.1 Preparation 4.2 Buffer Deconstruction

During thepreparation Dispatcher makes a forward pasBuffer deconstruction is a recursive process. In each it-
over the execution trace collecting information needed byation it deconstructs a given memory buffer into the se-



< Version > Type >

Insn #: x-5 Insn #: x-5 Insn #: x+ 2 Insn #: x+ 2

Insn: mov Insn: mov Insn: mov Insn: mov

Offset: 2 Offset: 3 Offset: 4 Offset: 5

SLoc: IMM(C) SLoc: IMM(C+1) | | SLoc: IMM(D) SLoc: IMM(D+1)

DLoc: EAX(1) DLoc: EAX(0) DLoc: EAX(1) DLoc: EAX(0) Length

v v v v

Insn #: x-4 Insn #: x-4 Insn#:x +3 Insn #: x+ 3 Insn #: x - 100 Insn #: x - 100

Insn: bswap Insn: bswap Insn: bswap Insn: bswap Insn: add Insn: add

Offset: 2 Offset: 3 Offset: 4 Offset: 5 Offset: 14 Offset: 15

Sloc: EAX(1) SlLoc: EAX(0) SLoc: EAX(1) SlLoc: EAX(0) Bot ID SlLoc: Unknown SLoc: Unknown

DLoc: EAX(0) DLoc: EAX(1) DLoc: EDX(0) DLoc: EDX(1) - p» | DLoc: EBX(0) DLoc: EBX(1)

Insn #: x Insn #: x Insn#:x+7 Insn#:x +7 Insn #: x+ 13 Insn #: x + 14 Insn #: x + 20 Insn #: x + 25 Insn #: x + 25

Insn: mov Insn: mov Insn: mov Insn: mov Insn: rep movsb Insn: rep movsb Insn: rep movsb Insn: mov Insn: mov

Offset: 2 Offset: 3 Offset: 4 Offset: 5 Offset: 6 Offset: 7 ... |Offset: 13 Offset: 14 Offset: 15

SLoc: EAX(0) SLoc: EAX(1) SlLoc: EDX(0) SLoc: EDX(1) 'SLoc: Mem(B) SLoc: Mem(B+1) SLoc: Mem(B+7) | |SLoc: EBX(0) SLoc: EBX(1)

DLoc: Mem(A) DLoc: Mem(A+1)| |DLoc: Mem(A+2)| |DLoc: Mem(A+3)| |DLoc: Mem(A+4)| |DLoc: Mem(A+5) DLoc: Mem(A+11)| [DLoc: Mem(A+12)| |DLoc: Mem(A+13)
‘ Mem(A) i Mem(A+1) Mem(A+2) i Mem(A+3) Mem(A+4) Mem(A+5) | «ax | Mem(A+11) | Mem(A+12) | Mem(A+13)

B, (56)

Figure 3: Dependency chain fé, in Figure 2. The start address Bf is A.

guence of other memory buffers that comprise it. The pralways a zero value in that register. Dispatcher recognizes
cess starts with the output buffer and recurses until ther@umber of such instructions and makes each byte of its
are no more buffers to deconstruct. It has two parts. Firgtitput a constant location.

for each location (i.e., byte) in the given buffer we buiI%e endency chainsA dependency chain for a program
a dependency chainThen, using the dependency chair\s P y P y prog

and the information collected in the preparation step, V\%canon is the sequence it operatl_onshgt p_roduced

extract the structure of the given buffer. The input to eact, e value c.)f the Iocgtlon at a certam. point n the pro-
buffer deconstruction iteration is a buffer defined by igam. Awrite opera‘uon COMPrISEs th? Instruction number
start address in memory and its length, and the instr ‘which the write occurred, the location that was written,

he source location, and the offset of the written location

tion number in the trace where the buffer was last written. L .
ith respect to the beginning of the output buffer. Fig-

The start address and length of the output buffer are (\)qé- 3 shows the dependency chains for acbuffer (the

tained from the parameters of the function that sends fg};ge that holds the encrypted payload) in Figure 2. In the

data over the network (or the encryption function). The re. each box represents a write oneration. and each se-
instruction number to start the analysis is the instructi iqure, X rep write operation,

number for the first instruction in the send (or encryp uence of vertical boxes represents the dependency chain

- - . - . r one location in the buffer.
function. In the remainder of this section we introduce o .
what locations and dependency chains are and preserfthe dependency chain is computed in a backwards pass

how they are used to deconstruct the output buffer.  starting at the given instruction number. We stop building
the dependency chain at the first write operation for which

Program locations. We define gorogram locationto be  {he source location is: 1) an immediate location, 2) a con-

a one-byte-long storage unit in the program’s state. \Wgnt |ocation, 3) a memory location, or 4) an unknown
consider four types of locationsnemory locationsreg- |gcation.

ister locations immediate locationsand constant loca-

tions and focus on the address of those locations, rath
than on its content. Each memory byte is a memory Iocé
tionindexed by its address. Each byte in aregisterisar o . .
ister location, for example, there are 4 locations in EA Jete. This is the case for the first four bytesj in

EAX(0) or AL, EAX(1) or AH, EAX(2), and EAX(3). _igure 3. The reason to stop at a source memory loca-

An immediate location corresponds to a byte from an ir'{'éfn E that we \;van;c tg ;mderstthand how a mberpfory bxf;ier
mediate in the code section of some module, indexed een construcied from ofher memory buliers. After

the offset of the byte with respect to the beginning of t tracting tﬁestr#cwrﬁ offthe Q'V?:n buffer, Dllsp_)at[(::h er res
module. Constant locations represent the output of so ses on the bufters that formit. Forexample, in Figure

instructions that have constant output. For example, o de_pendency chalr_wsfor Iocafuo&sr4throughA+ 1
Pntalns only one write operation because the source of

common instruction is to xor one register against itsetcl1 i tion i h locati Wh
(e.g.,xor %eax, %eax The output of such instructions isb € wnile operation IS another memary focation. en
uilding the dependency chains, Dispatcher only handles

}f the source location is part of an immediate or part
the output from some constant output instruction, then
ere are no more dependencies and the chain is com-



a small subset of x86 instructions which simply move Attribute Value
data around, without modifying it. This subset includes Field Range Start offset and length in message
move instructionsrfiov,movs move with zero-extend in- | Field Boundary | Fixed, Length, Delimiter
structions fnovz, push and pop instructions, string stores Field Semanticg A value from Table 1
(stog, plus instructions that are used to convert data fromField Keywords | List of keywords in field
network to host order and vice versa such as exchange

instructions %chg, swap instructionskisway), or right able 2: Field attributes used in the message field tree.
shifts that shift entire bytes (e.ghr $0x8,%eak When a

write operation is performed by any other instruction, tl®rresponds to a source memory buffer. Dispatcher finds
source is considered unknown and the dependency cHaifainges inB,. The last two ranges correspond to the
stops. Often, it is enough to stop the dependency chélast Info field and the padding in Figure 1. The other
at such instructions, because the program is at that pdimir are shown in Figure 3. They are marked with arrows
performing some operation on the field (e.g., arithmetit the top of the figure. Since only the third range origi-
operation) as opposed to just moving the content aroundies from another memory buffer, that is the only buffer
Since programs operate on leaf fields, not on compogbdt Dispatcher will recurse on to reconstruct.

fields, then at that point of the chain we have already re-gnce the buffer structure has been extracted, Dis-
cursed up to the corresponding leaf field in the messag@cher uses the correspondence between buffers and
field tree. For example, in Figure 3 the dependency chafiids in the analyzed message, adding one field to the
for the last two bytes stop at the saraéd instruction. message field tree per range in the buffer structure using
Thus, both source locations are unknown. Note that thqRg offsets relative to the output buffer. In Figure 3 it adds

locations correspond to the length field in Figure 1. Thgyr new fields that correspond to tMersion Type Bot
fact that the program is increasing the length value indp  andLengthin Figure 1.

cates that the dependency chain has already reached a leaf
field.

: . 4.3 Field Attributes Inference
Extracting the buffer structure. For a buffer location,

we call the source location of the last element in its depefne message field tree built during the buffer deconstruc-
dency chain, theourceof the buffer location. We say thattjon step represents the hierarchical structure of theuutp
two source locations belong to the same source buffeqissage but it does not contain information about inter-
they are contiguous memory locations (in either ascendifigld relationships such as if a field represents the length
or descending order) and the liveness information staginother target field. Such additional information is cap-
that none of those locations has been freed between thgigq by the field attributes in the message field tree.

corresponding write operations. If the source IOC"’monsTabIe 2 presents the field attributes that we identify in
are not in memory (e.g., register, immediate, constantth

unknown location), they belong to the same buffer if the%' ls q Fi)gptﬁz ;nggzlg r?rr;]geeﬁce?gtggisnég? ps;g;aregfhtgv?/
were written by the same instruction (i.e, same instructi%?] application deterr'nines where the fieIZI ends. Fields
number). can be fixed-len [ - i .
gthHixed), variable-length using a length
For example, in Figure 3 the source locations for merg|( (Length. or variable-length using a delimiteDé-

ory locationsA+4 andA+5 are contiguousNlem(B)and  jimiter)5. The field semantics are the values in Table 1.
Mem(B+1). The source locations for memory location$nhe field keywords attribute contains a list of all the pro-
AandA+1are also contiguou$iM(C) andIMM(C+1)) - tocol constants that appear in the field and their position.

because they are written by the same instruction (). The field attributes in Table 2 are similar to the ones

To extract the structure for the given buffeBy) Dis-  that previous work extracts for received messages [19,48].
patcher iterates on the buffer locations from the buffgit previous techniques that work on received messages
start Mem(A) to the end Mem(A+55). For each buffer g not work on sent messages because they rely on mon-
location, Dispatcher checks whether the source of the Ciéring how the data received over the network is pro-
rent buffer location belongs to the same source buffer @sssed, when for sent messages we can only observe how
the source of the previous buffer location. If they do naghe sent messages are built. Our techniques are new,
then it has found a boundary in the structure of the buffgjt share common intuitions with previous techniques be-

The structure of the given buffer is output as a sequenggse they both try to capture the fundamental properties
of ranges that form it, where each range states whether it
5Also called separator in [19].




of the different protocol elements. In fact, some attribufelimiters. Delimiters are constants used by protocols
values are more difficult to extract for sent messages thtarmark the boundary of variable-length fields. Thus, it
for received messages. For example, many fields tiadifficult to differentiate a delimiter from any another

a protocol specification would define as variable-lengtionstant in the output message. To identify delimiters,
may encode some fixed-length data in a specific impBispatcher looks for constants that appear multiple times
mentation. For example th8erverheader is variable- in the same message or appear at the end of multiple mes-
length based on the HTTP specification. However a giveages in the same session (three appearances are required).
HTTP server implementation may have hardcoded tB®nstants can be identified by checking the offsets of the
Serverstring in the binary. Thus, for the implementatiotaint information for keyword identification. If the delim-
the field is fixed-length and it becomes difficult to infeiters come from the data section, they can also be iden-
otherwise. Leveraging the availability of multiple impletified by checking whether the source address of all in-
mentations of the same protocol could help in such casstances of the constant comes from the same buffer.

We plan to study this in future work. Variable-length fields. Dispatcher marks fields that pre-

Keywords. Keywords are constants that appear in natede a delimiter, and target fields for previously identified

work messages. To identify constants in the output buffeangth fields as variable-length fields. It also marks as
Dispatcher taints the memory region that contains tkariable-length fields, fields that have been derived from
module (and DLL's shipped with the main binary) wittsemantic sources that are known to have variable length
a specific taint origin, effectively tainting both immedisuch as file data. All other fields are marked as fixed-

ates in the code section as well as data stored in the datayth.

section. Locations in the output buffer tainted from thi&r

origin are considered keywords, rays. The intuition behind identifying arrays of records

is that they are written in loops, one record at a time.
Length fields. Dispatcher uses three different techniqudshus, Dispatcher uses the loop information extracted dur-
to identify length fields. The intuition behind the teching preparation to identify loops that write multiple con-
nigues is that length fields can be computed by either Becutive fields. Then, it adds to the message field tree one
crementing a counter as the program iterates on the figddray field with the range being the combined range of all
or by subtracting pointers to the beginning and end tife consecutive fields written in the loop, and é&texord

the buffer. The intuition behind the first two techniquefield per range of bytes written in each iteration of the
is that those arithmetic operations translate into an uoep.

known source at the end of the dependency chains for the

buffer locations corresponding to the length field. When

a dependency chain ends in an unknown source, D- Hand"ng encrypted messages
patcher checks whether the instruction that performs the

write is inside a known function the computes the Ien98 . . .
. o . ur protocol reverse engineering techniques, as well as
of a string (e.g.strlen), or it is a subtraction where the

operands are pointers to the beginning and end of fHgvious ones, work on unencrypted data. Thus, when

buffer. The third technique tries to identify counter mcrereverse—englneerlng encrypted protocols we need to ad-

ments that do not correspond to well-known string len ﬂgess two problems: for received messages, we need to
P 9 gdentify the buffers holding the unencrypted data at the

funct!on_s. For eaqh buffer it uses the loop information {r?oint that the decryption has finished (since buffers may
identify if most writes to the bufférbelong to the same . . .

) X . only hold the decrypted data for a brief period of time).

loop. If they do, then it uses the techniques in [44] : )

! . . : . For sent messages, we need to identify the buffers hold-

extract the loop induction variables. For each induction . :

. . : ing the unencrypted data at the point that the encryption

variable it computes the dependency chain and chec : )

. . is,about to begin. Once the buffers holding the unen-

whether it intersects the dependency chains from any out- : - .

. : : crypted data have been identified, protocol reverse engi-

put buffer locations that precede the locations written n’ " . : .

. . .. .neering techniques can be applied on them, rather than on

the loop (since a length field always has to precede its tar-

. ) ; o e messages received or about to be sent on the wire.
get field). Any intersecting location is part of the lengt
field for the field processed in the loop. Recent work has looked at the problem of reverse-

engineering the format of received encrypted mes-
SMany memory move functions are optimized to move 4 bytes ggges [39’ 47]'. Sm.ce the apphcatlon needs FO decrypt th.e

a time in one loop and use separate instructions or loops te rthe at_a before using it, those approaches monitor the appli-
remaining bytes. cation’s processing of the encrypted message and attempt




to locate the buffers that contain the decrypted data at the encryption routine, and a routine that deobfuscates the
point that the decryption has finished. Those approacleesryption and decryption keys that are hidden in the bi-
do not address the problem of finding the buffers holdimgiry before calling the encryption or decryption routines.
the unencrypted data before it is encrypted, which is alspaddition, in the traces that process messages with com-
required in our case. pressed data, Dispatcher flags a fourth function that cor-

In this work we first tried to extend the technique pré€SPonds to theflate function in thezlib library, which
sented in ReFormat [47] to identify the buffers holdint§ Statically linked into the MegaD binary. Our evaluation
the unencrypted data before the encryption. Howevéﬁ?u't_s in Section 6.3 show the false positive rate of the
we found that the technique in ReFormat could not idefgchnique to be 0.002%.

tify the buffers holding the decrypted data. The problefgentifying the buffers. To identify the buffers hold-

is that ReFormat tries to identify a single boundary bﬁTg the unencrypted data before encryption we compute
tween the decryption and the normal protocol processifige read setfor the encryption routine, the set of loca-
In MegaD multiple such boundaries exist. As shown ifyns read inside the encryption routine before being writ-
Figure 1 MegaD messages comprise two bytes with th&, The read set for the encryption routine includes the
message length, followed by the encrypted payload. Afigitfers holding the unencrypted data, in addition to the
checking the message length, a MegaD bot will decrypgfcryption key and some hardcoded tables used by the
bytes from the encrypted payload and process them, thgfitine. We can differentiate the buffers holding the unen-
move to the next 8 bytes and process them, and so on¢iipted data because their content varies between multi-
addition, some messages in MegaD also use compresgj@iinstances of the same function. To identify the buffers
and the decryption and decompression operations areyBiding the unencrypted data after decryption we compute
terleaved. Thus, there is no single program point whefgwyrite setfor the decryption routine, the set of locations

all data in a message is available unencrypted and uncqtten inside the decryption routine and read later in the
pressed. We believe that a general technique has to idggee.

tify every instanceof encryption, hashing, compression,
and obfuscation, which we generally teemcoding func-

tions 6 Evaluation

Identifying the encoding functions. To address this lim-

itation and to enable locating the buffers holding the uim this section we evaluate our techniques on the MegaD
encrypted data before encryption, we have simplified thi&C protocol, as well as a number of open protocols.
technique in ReFormat by removing the cumulative met-

ric, the use of tainted data, and the concept of leaf fung- .

tions. The technique uses the intuition in [47] that encgg-'l Evaluation on MegaD

ing functions contain an inordinate number of arithmeti\g]e aD uses a probrietary. encrvpted. binary protocol pre-
and bitwise operations. It works as follows. Dispatcher 9 brop Y, ypted, yp P

) . vlously not understood. Our MegaD evaluation has two
makes a forward pass over the input execution trace repli-

cating the callstack of the application by monitoring th%arts. First, we describe the information obtained by Dis-

. . L 8atcher on the C&C protocol used by MegaD. Then, we
call and return instructions. For each function it comput R . . .
Show how the information extracted by Dispatcher can be

the r_atlo between the number of ar_|thmet|(_: and_ bitwise ORsed to rewrite a dialog between the bot and the C&C
erations over the total number of instructions in the func-

tion. The ratio includes only the instructions that beIonSgerver'
to the function. It does not include the instructions in thdegaD C&C Protocol. The MegaD C&C protocol uses
functions called from inside that function. The ratio iICP as the transport protocol. It uses port 443 (assigned

computed for each appearance of the function in the trafs. HTTPS) but the messages are encrypted with a pro-

Any function that executes a minimum number of irRrietary algorithm rather than using the SSL algorithms.
structions and has a ratio larger than a pre-defined threSir network traces show our MegaD bot communicating
old is flagged by Dispatcher as an instance of a encod}N&h three entities: th&€&C serverthat the bot period-
function. In our experiments, the threshold is set to 0.##3lly probes for new commands; tt&MTP test server
and the minimum number of instructions is 20. In o@" SMTP server whose hostname is provided by the C&C
MegaD execution traces, this simple technique identifig@rver and to which the bot connects to test for spam send-

allinstances of 3 unique functions: the decryption roytin®9 capabilities; and thepam serverwhose IP address
and listening port are sent by the C&C server to the bot
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so that the bot can download all spam-related informatiéreld semantics. Dispatcher identifies 11 different field
such as the spam template or the email addresses to sgmantics over the 14 messages: IP addresses, ports, host-
The communication with the C&C server and the spamames, length, sleep timers, error codes, keywords, cook-
server uses the encrypted C&C protocol, while the cotes, stored data, padding and host information. There are
munication with the SMTP test server uses unencryptedly two fields in the MegaD grammar for which Dis-
SMTP. The communication model is pull-based. The bpatcher does not identify their semantics. Both of them
periodically probes the botmaster by sending a requbsappen in received messages: one of them is the message
message. The botmaster replies with two messages: type, which we identify by looking for fields that are com-
with authentication information, and the other one withared against multiple constants in the execution and for
a command. The bot performs the requested action amtich the message format varies depending on its value.
sends a response to the botmaster with its results. The other one corresponds to an integer whose value is

. .. checked by the program but apparently not used further.
Message format.Our MegaD C.&C j[races cont.am 14 dlf'Note that we identify some fields in sent messages as key-
ferent messages (7 on each direction of the dialog). Us

Dispatcher, we have extracted the message field treek&grds because they come from immediates and constants
P ' 9 in the data section. We cannot identify exactly what they

messages on both directions, as well as the associated g q’esent because we do not see how they are used by the
semantics. All 14 messages follow the structure shown¢r£C server

Figure 1 with a 2-byte message length followed by an en-

crypted payload. The payload, once decrypted, containRewriting a MegaD dialog. To show how our grammar
2-byte field that we term version as it is always a keyworhables live rewriting, we run a live bot inside our analysis
of value 0x100, followed by a 2-byte message type fieldnvironment, which is located in a network that filters all
The structure of the remaining payload depends on thgtgoing SMTP connections for containment purposes.
message type. To summarize the protocol format we hadwmea first dialog, the C&C server sends the command to
used the output of Dispatcher to write a BinPac grartive bot ordering to test for spam capability using a given
mar [41] that comprises all 14 messages. Field sem&pam test server. The analysis network blocks the SMTP
tics are added as comments to the grammar. Appendix@nnection causing the bot to send an error message back
presents an abridged version of the grammar. to the C&C server, to communicate that it cannot send

To the best of our knowledge, we are the first to doePa@m- No more spam-related messages are received by
ument MegaD’s C&C protocol in detail. Thus, we lackhe bot. Then, we start a new dialog where at the time the
ground truth to evaluate our grammar. To verify the grarR©t calls the encrypt function to encrypt the error message,
mar’s accuracy, we use another execution trace that c¢- Stop the execution, rewrite the encryption buffer with
tains a different instance of one of the analyzed dialod8¢ Message that indicates success, and let the execution
We dump the content of all unencrypted messages Laptinué. After the rewriting the.bot keeps receiving the
try to parse the messages using our grammar. For tiRam-related messages, mclgdmg the spam.template and
we were provided by other researchers with a stand-aldfié 2ddresses to spam, despite the fact that it cannot send
version of the BinPac parser included in Bro [42]. Usingy SPam messages. Note that simply replaying the mes-
our grammar, the parser successfully parses all Megs@9€ that indicates success from a previous dialog into the
C&C messages in the new dialog. In addition, the pardi§W dialog does not work because the success message
throws an error when given messages that do not folld¢ludes a cookie value that the C&C selects and that can
the MegaD grammar. change between dialogs.

Attribute detection. The 14 MegaD messages contain

no delimiters or arrays. They contain two variable-leng§.2 Evaluation on Open Protocols

fields that use length fields to mark their boundaries: the

compressed spam-related information (i.e., template dndhis section we evaluate our techniques on four open
addresses) received from the spam server, and the poetocols: HTTP , DNS, FTP, and ICQ. For this, we com-
information field in Figure 1. Both the length fields an@are the output of Dispatcher with the output by Wire-
variable-length fields are correctly detected by Dispatchshark 1.0.5 [14] when processing 12 messages belonging
The only attributes that Dispatcher misses are the messtgéhose four protocols. For each protocol we select a
length fields on sent messages because they are comprgpresentative application that implements the protocol:

using complex pointer arithmetic that Dispatcher cannot
reason about "The size of both messages is the same once padding is aatounte
’ for, thus we can reuse the buffer allocated by the bot.
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Wireshark Dispatcher Errors

Protocol | Message Type | |Lw| | |Cw| | |Lp| | |Cb| | |E(Lw)| | |E(Lp)| | |E(Cw)| | |E(Cb)|

HTTP GET reply 11 1 22 0 11 1 0 1
POST reply 11 1 22 0 11 1 0 1

DNS A reply 27 4 28 0 1 0 0 4

FTP WelcomeO 2 1 3 1 1 0 0 0
Welcomel 2 1 3 1 1 0 0 0
Welcome?2 2 1 3 1 1 0 0 0
USER reply 2 1 3 1 1 1 0 0
PASS reply 2 1 2 0 1 1 0 1
SYST reply 2 1 2 0 1 1 0 1

ICQ New connection| 5 0 5 0 0 0 0 0
AIM Sign-on 11 3 15 3 5 0 0 0
AIM Logon 46 15 46 15 0 0 0 0

| Total | 123 | 30 | 154 | 22 | 34 | 5 | 0 | 8 |

Table 3: Comparison of the message field tree for sent messagracted by Dispatcher and Wireshark

Apache-2.2.1 for HTTP, Bind-9.6.0 for DNS, Filezillain Wireshark when identifying delimiters. Some dissec-
0.9.31 for FTP, and Pidgin-2.5.5 for ICQ. Note that rd¢ers do not add the delimiter fields to the message field
gardless of the application being a client (Pidgin) orteee, others concatenate them to the variable-length field
server (Bind, Apache, Filezilla), for this part of the evaluor which they mark the boundary, while others treat them
ation we focus on sent messages. as separate fields. After checking the protocol specifica-
tions, we believe that delimiters should be treated as their

;Anessigf \Ivor:ilz]r?té:or:/t\girr?ihri;knL:ZIla- r;t(\;v;l; dpr?;?;:rc:]loyvn fields in all dissectors. The results also show that
yzer, y-9 9 reshark outperforms Dispatcher when identifying com-

(called dissectors) for many network protocols. Althou b

C

sed fields. This is due to the program not using loops

Wireshark is a mature and widely-used tool, its dissec- . .
t0 write the arrays because the number of elements in the
tors have been manually generated and therefore are not

array is known or is small enough that the compiler has
completely error-free. To compare the accuracy of th y 9 P

. X Ufrolled the loops.
message format automatically extracted by Dispatcher P

with the manually generated ones included in Wireshark Overall, Dispatcher outperformed Wireshark for the
we analyze the message field tree output by both togl¥en messages. Note that, we do not claim that Dis-
and manually compare them to the protocol specificatidtitcher is generally more accurate than Wireshark since
Thus, we can classify the differences between both to¥{§ are only evaluating a limited number of protocols and

to be either Dispatcher or Wireshark errors (or both). Messages. But, the results show that the accuracy of

We name the set of leaf fields and composed fieldst|hne message format automatically extracted by Dispatcher

the message field tree output by Wiresharklas and (t:;r:/\rlli\rlséagerfccuracy of the manually generated one used
Cw respectively. ThenL.p, andCp are the correspond- '

ing sets for Dispatcher. Table 3 shows the evaluation Errors on leaf fields. Here we detail the errors on
sults. For each protocol and message it first shows thef fields that we have assigned to Dispatcher. The er-
number of leaf fields and composed fields in the message in the HTTP GET reply message is in ti&tatus-
field tree output by both toolsLyw |, |Cw|, |Lp|, and Line. The HTTP/1.1 specification [30] states that its for-
|Cp|. Then, it presents the manual classification of iteat is: Status-Line = HTTP-Version SP Status-Code SP
errors, wheré E(Ly )| and |E(Lp)| represent the num-Reason-Phrase CRL But both Dispatcher and Wireshark
ber of errors on leaf fields in the message field tree ogbnsider the Status-Code, the delimiter, and the Reason-
put by Wireshark and Dispatcher respectively. Similarliphrase to belong to the same field. The FTP specifica-
|E(Cw)| and|E(Cp)| represent the number of errors otion [43] states that a reply message comprises a com-
composed fields. pletion code followed by a text string. The error in the

The results show that Dispatcher outperforms WirEJ P USER reply message is due to the fact that the server

shark when identifying leaf fields. This surprising ressit £ch0oes back the username to the client and Dispatcher
due to the inconsistencies between the different dissectgentifies the username being echoed back as an additional
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cookie field. The other FTP replies have the same typeldf execution traces are from a variety of programs includ-
error: the response code is merged with the text string lieg browsers (Internet Explorer 7, Safari 3.1, and Google
cause the program keeps the whole message (exceptGheome 1.0), network servers (Bind,Atphttpd) and ser-
delimiter) in a single buffer in the data section. As mewices embedded in Windows (RPC, MSSQL).

tioned earlier the errors on composed fields are due to th%)ispatcher flags any function instances in the exe-
program being analyzed not using loops to write the &fgtion traces with at least 20 instructions and a ratio
rays. This can happen because the number of elementssinithmetic and bitwise instructions greater than 0.55

the array is a priori known or is small enough that the corgg encoding functions. The results are shown in Ta-
piler has unrolled the loops. For example in the DNS reply,

_ e 4. The 20 execution traces contain over 3.5 mil-
the four errors correspond to tifgueries Answers Au-  jion functions calls from 22,379 unique functions. Dis-

thoritative, andAdditionalsections in the message, Whic"rbatcher flags 0.14% of the function instances as encod-
Bind processes separately and therefore cannot be idqﬂg— functions. We manually classify the unique func-
fied by Dispatcher. tions flagged by Dispatcher as true positives or false pos-
These errors highlight the fact that the message fidglides, using the function names and associated debug-
tree extracted by Dispatcher is limited to the quality afing information. We conservatively classify all instaace
the protocol implementation in the binary, and may dibf functions flagged by Dispatcher, for which we don’t
fer from the protocol specification even when analyzidtave any information as false positives. Dispatcher cor-
mature implementations. rectly identifies all encoding functions in the MegaD and

. . . pache-SSL traces. There are a total 87 false posi-
Attribute detection. The 12 messages contain 14 leng ri1ves from 9 unique functions. Out of those 9 unique

fields, 43 delimiters, 57 variable-length fields, and 3 3 inctions we have been able to identify twaenchr
rays. Dispatcher misses 8 length fields because their var,tI y

5 c-coded n e rogram. Thus, e taget vl <00, 20T USSeL eSS A
length fields are considered fixed-length. Out of the } y

delimiters Dispatcher only misses one, which corresporP sitives. Based on these results, our technique correctly
. . . [d2ntifies all known encoding functions and has a false

to a null byte marking the end of a cookie string that Wa@)%sitive rate of 0.002%

considered part of the string. Dispatcher correctly identi ' '

fies all other variable-length fields. Out of 3 arrays, Dis-

patcher misses one formed RQueries Answers Author-

itative, andAdditional sections in the DNS reply, which / Related Work

Bind processes separately and therefore cannot be identi-
fied by Dispatcher. Protocol reverse-engineering projects have existed for a
Field semantics. Dispatcher correctly identifies all seloNd time to enable interoperability of open solutions with

mantic information in the sent messages, except thé?®@Prietary protocols. Those projects relied on manual
pointers in the DNSS reply, used by the DNS compressifffhniaues, which are slow and costly [4,5,8,11,13]. Au-

method, which are computed using pointer arithmetic tHQMatic protocol reverse engineering techniques can be
Dispatcher cannot reason about. used, among other applications, to reduce the cost and

time associated with these projects.

Automatic protocol reverse-engineering. Automatic
protocol reverse engineering techniques can be divided

T luate the detecii f dina functi into those that extract the field structure of a single mes-
0 evaluate the detection ol encoding functions Prese”&‘”acge [19, 25, 38], those that analyze multiple messages to

m_Sectlon 5 we perform the f°”°W"_’9 experiment. We Obe'xtract the protocol format [15, 27, 48], and those that in-
tain 20 execution traces from multiple programs that haf%'r the protocol state-machine [22, 36]. They can also be

dle network data. Five of these traces process encryp&?éjssified into techniques that use as input network traf-

and compressed functions, four of them are from .MegeHe [15, 25, 36] and techniques that take as input execution

3f5ces that capture how a program processes a received
dling an HTTPS session. MegaD using its own encrth-put [19,22 2‘; u38 48}N prog P V

tion algorithm and thelib library for compression and

Apache uses SSL with AES and SHA-TThe remaining  Techniques that takes as input network data [15, 25, 36]
face the issue of limited semantic information in network

8TLS-DHE-RSA with AES-CBC-256-SHA-1 traces, and cannot address encrypted or obfuscated pro-

6.3 Detecting Encoding Functions
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Number of traces | Number of functions | True Positives | False Positives| False Positive Rate
20 3,569,773 (22,379) | 4,874 (21) 87 (9) 0.002%

Table 4: Evaluation of the detection of encoding functio¥alues in parentheses represent the numbers of unique
instances. False positives are computed based on manifedatem.

tocols. Techniques to extract the message field tree axéract the application-level structure in applicatioada
a prerequisite for techniques that extract the protocel fdrheir work can be used to find multiple connections be-
mat [27,48] and the protocol state-machine [22] from exlnging to the same protocol session.

cution traces. Current approaches that extract the mess@ﬁgoding the protocol information. Previous work

field tree of a given message have focused on extracthn(_gS ronosed lanauades to describe protocol specifica
the format of messagesceivedby an application. To ob- . prop guag P P

tain a complete understanding of the protocol they reunr(@:ns [16, 24, 41]. Such Ianguage; are useful tq store the
access to both sides of the dialog. Our techniques aII{)eS.UItS from protocql reverse engineering techniques, en-
to extract the message field tree kBntmessages thusa%’hng the construction of generic protocol parsers.
enabling the study of both sides of a communication from

a single binary.

Lim et al [37] use inter-procedural static analysis 8 Conclusion
extract the format from files and application data output

by a program. Their approach requires the user to inpktomatic protocol reverse-engineering is important for
the prototype of the functions that write data to the ouhany security applications, including the analysis and
put buffer. This information is often not available, e.ginfiltration of botnets. Prior techniques cannot enable
when the functions used to write data are not exported @Writing of C&C messages needed for infiltration be-
the program. They require sophisticated analysis to deglise they cannot analyze encrypted protocols used by
with indirection and cannot handle packed binaries sugBwer botnets, they do not extract information about the
as MegaD. Their work does not address semantics infgémantics of the protocol, or they require access to both
ence. Our approach differs in that we do not require apg¥ers in a protocol dialog for a complete view of the pro-

a priori knowledge about the program, and we use a Qycol. In this paper we have addressed those limitations.

namic b_mary analysis approgch _that can effectively deal\Ne have proposed techniques to extract the message
with indirection and packed binaries.

format of sentmessages. Our techniques leverage the in-
State-machine inference. Protocol reverse-engineeringuition that the structure of the output buffer represents
also includes inferring the protocol’'s state-machinthe inverse of the structure of the sent message. Thus, we
ScriptGen [36] infers the protocol state-machine from nettroducebuffer deconstructiora technique that extracts
work data. Due to the lack of semantics in network datatite structure of a message being sent by reconstructing
is difficult for ScriptGen to determine whether two nethow the output buffer has been built from other memory
work messages are two instances of the same mesdagéers in the program. In addition, we have proposed
type. Prospex [22] addresses this issue by leveragingteehniques for inferring field semantics, a prerequisite fo
formation extracted during program execution such as ttesvriting C&C messages for botnet infiltration. Our type-
message field tree and the functions called by the progranierence-based techniques leverage the rich semantic in-
upon message reception. formation that is already available in the program by mon-
itoring how data in the received messages is used at places

(Ij?eplay:jnt% netwt())lrk sefssm?s._Prewoqs WIO rk h?s "’(‘jd'where the semantics are known, and how the sent mes-
ressed the problem of replaying previously captured ng yges are built from data with known semantics.

work sessions [26, 35, 36]. Such systems perform limite _ _
protocol reverse-engineering on network traces only to the/& have implemented our techniques as well as pre-
extent necessary for replay. Their focus is to identify ttYé0US approaches into Dispatcher, a tool that enables the
dynamic fields, i.e., fields that change value between s@galysis of protocol dialogs even when only one of the

sions, such as cookies, length fields or IP addresses. P€ers involved in the dialog is available. We have used
Dispatcher to analyze the previously undocumented C&C

Identifying application sessions. There has been ad-protocol of MegaD, a prevalent spam botnet. We have
ditional work that can be used in the protocol reversghown that the information output by Dispatcher enables
engineering problem. Kannan et al [34] studied how tnet infiltration by rewriting the C&C messages.
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type host_info = record {

fl1d_00 : uint32; # Cpu identifier
fld_01 : uint32; # Tick difference
1 fld 02 : uint32; # Tick counter
A MegaD BInPaC grammar fl1d_03 : uintl6; # OS major version
fld_04 : uintl6; # OS minor version
type MegaD Message(is_i nbound: bool) = record { flld_05 : uint16; # OS build nunber
nsg_len : uint16; fld_06 : ui nt 16; # Serv! ce pack maj or
encr_ypt ed_payl oad(is_i nbound): fld_07 : ui nt16; # Serv! ce pack m nor
bytestring & ength = 8 » nsg_l en; fld_08 : uint32; # Phyjsl cal menory(KB)
} &byteorder = bigendian; fld_09 : uint32; # Avai | abl e menory(KB)
fld_10 : uint16; # Internet conn. type
type encrypted_payl oad(is_i nbound: bool) = record { fld_11 : uint32; # IP address
version : uintl6; # Constant (0x0100 or 0x0001) Iy
ntype : uintl6; X i
data : MegaD data(is_i nbound, ntype); # Direction: outbound (CC)
}; type nsg_0x16 = record {
fld_00 : bytestring & ength=8; # Bot ID
# Message types seen in our traces flid_O1 : uint16; # Length(host_info)
type MegaD data(is_i nbound: bool, nsg_type: uint16) = flid_02 : host_info; # Host information
case nsg_type of { pad : bytestring & estofdata; # Padding
0x00 -> mo0 : msg_O; b
0x01 -> nD1 : nsg_1; i i . i
0xOe -> mbe : enpty_nmsg; # Direction: bpt h' directions (Spam Server)
0x15 -> ml5 : enpty_nsg; type rrsg_lelc(l s_i nbound) =
0x16 -> ml6 : nsg_O0xX16; case is_i nbound_ of { )
0x18 -> mi8 : errpt_y nsg; true -> mlc_in : nmsg_O0x1lc_i nbound;
oxlc -> mic ° m:‘.g_O?lc(i s_i nbound) ; false -> mlc_out : nmsg_0x1lc_out bound;
0x1d -> mid : nsg_0x1d; b
0x21 -> nm21 : msg_0x21; X
0x22 -> M2 : nBg_0X22; type nmsg_Ox1lc_i nbound = record {
0x23 -> nP3 : [YSg_OX23; fld_00 : uint32; # <unknown>
0x24 -> nR4 [YSg_OX24; fld_01 : uint32; # Size for menset
0x25 -> n@5 - rrsg_0x25; fld_02 : uint32; ) # Size of fld_03
default -> unknown : bytestring & estof data; fld_03 : bytestring &ength = fld_02 # Conpressed
}; pad : bytestring & estofdata;

# Direction: outbound (CC) B
# MegaD supports two submessages for type zero type msg_Oxlc_outbound = record {
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f1d_00 : bytestring & ength = 16; # Cookie Error codes. Some programs report back unexpected er-
};f' d_01 - uint32; # Constant(0) rors using error codes. Dispatcher identifies error codes
in sent messages by tainting the output of functions that

# Direction: outbound (Spam Server) report error conditions (e.gRtIGetLastWin32Errox.

type nmsg_0x1d = record {
fld_00 : bytestring & ength = 16; # Cookie

fld 01 : uint32; # Constant(0) File data. File data is data read from local files. Dis-
b patcher can identify file data in sent messages by taint-
# Direction: inbound (CQ) ing the output of functions that read from file (e.gad)
type msg _Ox21 = record { or functions that map files directly into memory (e.g.,
fld_00 : uint32; # <unknown> . . . . .
f1d_01 : uint16. # Port MapViewOfFil§. A special case of file data is user-
fld 02 : uint8[] &until($elenent == 0); # Hostnane specifiedconfiguration datasuch as the number of times
pad : bytestring & estofdata; # Padding . . .
¥ to retry a connection. Dispatcher can mark file data as
, , configuration data when provided with the list of files that
# Direction: outbound (CC) L . . . .
type nsg_0x22 = record { contain the configuration information for the program.
fld_00 : bytestring & ength=8; # Bot |ID o ) o . o
pad : bytestring &restofdata; # Paddi ng File information. File information is file metadata such
’ as the size of a file or the last modification date. Dis-
# Direction: outbound (CC) patcher identifies file information in sent messages by
e Y B or code tainting the output of functions that query for file prop-
(f1d_01: bytestring & ength=8; # Bot ID erties (e.g.NtQueryInformationFilg

h

# Direction: inbound (GO Filenames. Filenames are a special case of file informa-

type msg_0x24 = record { tion. Dispatcher can identify filenames in received mes-
NG00 um fg # b address sages by analyzing if the parameters of functions used
pad : bytestring & estofdata; # Padding to open files (e.g.ppen or used to get file properties

; (e.g., NtQueryInformationFil¢ have been derived from

# Direction: outbound (CC) data previously received over the network. It can iden-

‘yffdgg—?xggt :S{ffggd&l{engt heg: # Bot 1D tify filenames in sent messages by tainting the output of

pad : bytestring & estofdata; # Padding functions that list the files in a directory (e.bltQueryDi-
? rectoryFile).

Hash / Checksum. We call both hash and checksum
i i fields verification fieldsbecause they are often used to
B Field Semantics check if the data has been modified during transmission.

Dispatcher identifies verification functions using the tech

This appendix we provide some examples of functiowfque to identify encodin : :
) . . : : . g functions presented in Sec-
used to identify the field semantics described in Table Xion 5. If the output of a encoding function is compared

Cookies.Cookies represent data from a received netwogainst a range of bytes received over the network, then
message that propagates to a sent message (e_g_' SeMﬁange is marked as a verification field in the received
identifiers). Thus, a cookie is simultaneously identified iessage. If the output of a encoding function appears on
the received and sent messages. Note that, once a codigent message, then it is either a verification field or an
has been identified we can check if it appears in later m&gcrypted/obfuscated field. Dispatcher can use the scope

sages (both received and sent) in the dialog. (the range of bytes in the sent message) to distinguish
) ) - _ between a verification field and an encrypted/obfuscated
IP addresses. Dispatcher identifies IP addresses in rgjg|q, since verification fields are usually shorter.

ceived messages by monitoring if the parameters of some

functions used to establish network connections (e.plostnames.Hostnames can identify remote hosts as well
connec) or perform DNS reverse lookups (e.getname- as the local host. Dispatcher can identify hostnames in
info) have been derived from the received messages. DRceived messages by checking if the parameters of func-
patcher identifies IP addresses in sent messages by tdigns that start network connections (eapnnecy are de-

ing the output of functions that return local informatiofived from received messages and in sent messages by
(e.g.,gethostbynameremote information (e.ggetpeer- tainting the output of functions that return local host in-
nameg, or functions that check the name of connectd@rmation (e.g.gethostname

sockets (e.ggetsockname
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Host information. We call any hardware or softwaresent messages by tainting the output of functions that read
properties of the hosthost information For example, data from the Windows registry (e.gNtQueryValueKey

when MegaD builds the message in Figure 1, it queri . . . -
9 g 9 q g?eep timers.Sleep timers are timers used to indicate to a

the operating system for information about the proces- . ) .
b g syster : b %ost that it should delay execution for a certain amount of
sor type, the operating system version, the memory sta

tus of the host or the type of connection to the Interné'fne' D|spatch_er |.den_t|f|es sleep timers in rece|yed mes-
all of which are examples of host information fields. Diss_éges by mqmtormg if the parameters t_o functions that
patcher identifies host information fields in sent messagfeegay execution (e.gsleep) have been derived from data
by tainting the output of a variety of functions such asecelved over the network.
GetVersionExAor GlobalMemoryStatus Stored data. Stored data is data received over the network
Keyboard input. Protocol messages often include daltgalt the program saves into permanent storage, so t.hat it
provided by the user via the keyboard, such as the fi 3—k?pt evenif a r_eboot happens. It. includes datg written
disk and the Windows registry. Dispatcher can identify

name in a FTP download, the domain name in a D o .
: stored data by monitoring if data received over the net-
guery or the user name and password in an ICQ login

session. Dispatcher identifies keyboard input in sent m ork is used as parameters for functions that write data to

sages by tainting any data input by the user using the kg%K(:)}g.,write) or the Windows registry (e.ghitSetval-

board.
imestamps. Timestamps are fields that contain time
@i{a. Dispatcher identifies timestamps in sent messages
Y ainting the output of functions that request the local or
system time (e.gGetLocalTimeGetSystemTime

Keywords. Dispatcher identifies keyworkds in receive
messages using the techniques proposed in Polyglot [
and in sent messages by tainting the memory region t
contains a given module, as explained in Section 4.3.

Length. Dispatcher identifies length fields in received
messages using previously proposed techniques [19, 48]
and in sent messages using the techniques described in
Section 4.3. Message length fields are a special type of
length fields, that represent the length of a message on
the wire. Dispatcher can identify message length fields
in received messages by monitoring if some bytes in the
received message are compared against the output of the
function calls to read data from the socket (ergad,

recy).

Padding. Dispatcher identifies padding in received mes-
sages by looking for tainted bytes that are not used by the
program (only moved around) and that are present at the
end of variable-length fields or at the end of the message.
Dispatcher considers a padding field to be at most 5 bytes
(64-bit alignment).

Ports. Ports are usually used altogether with IP addresses
or hostnames to define an end point for a connection. Dis-
patcher identifies ports in received messages by analyzing
how the parameters of functions used by the program to
start new connections (e.ggnnec} and bind new listen-

ing ports (e.g.bind) have been derived from a previously
received message. Dispatcher identifies ports in sent mes-
sages by tainting the output of functions that check the
name of connected sockets (egptsocknanje

Registry data. Registry data is any data stored in the
Windows registry. Dispatcher identifies registry data in
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