
Bidirectional Protocol Reverse Engineering: Message
Format Extraction and Field Semantics Inference

Juan Caballero
Pongsin Poosankam
Christian Kreibich
Dawn Song

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-57

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-57.html

May 5, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Bidirectional Protocol Reverse Engineering:
Message Format Extraction and Field Semantics Inference

Juan Caballero†∗, Pongsin Poosankam†∗, Christian Kreibich‡, Dawn Song∗
∗UC Berkeley †CMU ‡ICSI

Abstract

Automatic protocol reverse-engineering is important for
many security applications, including the analysis and de-
fense against botnets. Understanding such C&C protocols
is crucial for anticipating a botnet’s repertoire of nefari-
ous activity and to enable active botnet infiltration. Fre-
quently, messages sent and received by a bot have to be
rewritten in order to contain malicious activity and to pro-
vide the botmaster with an illusion of successful and un-
hampered operation. To enable such rewriting, we need
detailed information about the intent and structure of the
messages inboth directionsof the communication despite
the fact that we generally only have access to the imple-
mentation of one endpoint, namely the bot binary. Current
techniques cannot enable such rewriting. In this paper,
we propose techniques to extract the format of the pro-
tocol messagessentby an application that implements a
protocol specification, and to infer the field semantics for
messages bothsentandreceivedby the application. Our
techniques enable applications such as rewriting the C&C
messages for active botnet infiltration. We implement our
techniques into Dispatcher, a tool to extract the message
format and field semantics of both received and sent mes-
sages. We use Dispatcher to analyze MegaD, a prevalent
spam botnet employing a hitherto undocumented C&C
protocol, and show that the protocol information extracted
by Dispatcher can be used to rewrite the messages sent
upstream to the botmaster.

1 Introduction

Automatic protocol reverse-engineering techniques en-
able extracting the protocol specification of unknown or
undocumented application-level protocols [19, 22, 25, 26,
35, 36, 38, 48]. A detailed protocol specification can en-
hance many security applications such as fuzzing [22], ap-
plication fingerprinting [18], deep packet inspection [29],
or signature-based filtering [27].

One important application for automatic protocol re-
verse engineering is the analysis and infiltration of bot-
nets. Botnets, large networks of infected computers under
control of an attacker, are one of the dominant threats in
the Internet today. They enable a wide variety of abu-
sive or fraudulent activities, such as spamming, phishing,
click-fraud, and distributed denial-of-service (DDoS) at-
tacks [12,28,32]. At the heart of a botnet is its C&C pro-
tocol, which enables a bot to locate relevant rendezvous
points in the network and provides the botmaster with a
means to coordinate malicious activity in the bot popula-
tion. Automatic protocol reverse-engineering can be used
for understanding the C&C protocol used by a botnet, re-
vealing a wealth of information about the capabilities of
its bots and the overall intent of the botnet.

In addition to understanding its C&C protocol, an an-
alyst may also be interested in interacting actively with
the botnet. Previous work analyzed the economics of
the Storm botnet by rewriting the commands sent to the
bots [33]. Other times, an analyst may want to rewrite
messages sent upstream by the bots, such as when a site’s
containment policy requires the analyst to make bots lie
about their capabilities and achievements. For example,
the analyst may want to rewrite a capability report sent by
the bot to make the botmaster believe that the bot can send
email while all the outgoing SMTP connections by the bot
are blocked, or that the bot is connected to the Internet us-
ing a high-speed LAN when in reality it is funneling traffic
through a low-throughput connection.

To successfully rewrite a C&C message, an analyst first
needs to understand the goal of the message, its field
structure, and the location of fields carrying relevant in-
formation to rewrite. While older botnets build their C&C
protocol on top of IRC, many newer botnets use cus-
tomized or proprietary protocols [2,20,31].

Analyzing such C&C protocols is challenging. Man-
ual protocol reverse-engineeringof such protocols is time-
consuming and error-prone. Furthermore, previous auto-
matic protocol reverse engineering techniques have limi-

tations that prevent them from enabling rewriting of such
protocols. Techniques that use network traffic as in-
put [25, 26, 35, 36] are easily hampered by obfuscation
or encryption. Techniques that rely on observing how a
communication end point (client or server) processes a
received input [19, 22, 38, 48] present two major limita-
tions. First, given a program they can only extract infor-
mation about one side of the dialog, i.e., thereceivedmes-
sages [22,38]. To obtain a complete understanding of the
protocol they require access to both sides’ implementa-
tion of the dialog. Unfortunately, when studying a botnet
analysts often have access only to the bot side of the com-
munication. This is true for other applications such as
instant-messaging solutions where the clients are freely
available but the servers are not. Second, current binary-
based techniques do not address extracting the semantic
information from the protocol messages. Semantic infor-
mation is fundamental for understanding the intent of a
message, and therefore to identify what parts of a dialog
to rewrite. For text-based protocols an analyst can some-
times infer such information from the content of the mes-
sages, but with binary-based protocols such approach is
often not possible.

In this paper we present novel techniques to extract
the message format for messagessentby an application,
which enable extracting the protocol message format from
just one side of the communication. New techniques are
needed because current techniques to extract the message
format of receivedmessages rely on tainting the network
input and monitoring how the tainted data is used by the
program. Most data in sent messages does not come from
the tainted network input. Instead, we use the follow-
ing intuition: programs store fields in memory buffers
and construct the messages to be sent by combining those
buffers together. Thus, the structure of the buffer hold-
ing the sent message represents the inverse of the struc-
ture of the sent message. We also present novel tech-
niques to infer the field semantics in messagessentandre-
ceivedby an application. Our type-inference-based tech-
niques leverage the rich semantic information that is al-
ready available in the program by monitoring how data in
the received messages is used at places where the seman-
tics are known, and how the sent messages are built from
data with known semantics. In addition, we propose mod-
ifications to a recently proposed technique to identify the
buffers holding the unencryptedreceivedmessage [47], so
that it also identifies the buffers holding the unencrypted
sentmessage.

We implement our techniques into Dispatcher, a tool
to extract the message format and field semantics of both
received and sent messages. We use Dispatcher to ana-

lyze the C&C protocol used by MegaD, one of the most
prevalent spam botnets in use today [9]. To the best of our
knowledge, MegaD’s proprietary, encrypted, binary C&C
protocol has not been previously published and thus pre-
sented an ideal test case for our system. We show that the
C&C information extracted by Dispatcher can be used to
rewrite the MegaD C&C messages. In addition, we use
four open protocols: HTTP, FTP, ICQ, and DNS to com-
pare the message format automatically extracted by Dis-
patcher with the one extracted by Wireshark [14], a state-
of-the-art protocol parser that contains manually written
protocol grammars.

In summary our contributions are the following:

• We propose novel techniques to extract the format
of the protocol messagessentby an application that
implements a protocol specification. Previous work
could only extract the format of thereceivedmes-
sages. Our techniques enable extracting the complete
protocol format even when only one side of the com-
munication is available.

• We present techniques to infer the field semantics for
messagessentand receivedby an application. Our
type-inference-based techniques leverage the wealth
of semantic information available in the program.

• We design and develop Dispatcher, a tool that imple-
ments our techniques and automatically extracts the
message format and associated semantics from both
sides of a protocol. We use Dispatcher to analyze
MegaD, a prevalent spam botnet, which uses an en-
crypted binary C&C protocol previously not under-
stood.

• We show that the protocol information that Dis-
patcher extracts can be used to rewrite the responses
that a MegaD bot sends to the commands received
from the botmaster, therefore enabling active botnet
infiltration.

2 Overview & Problem Definition

In this section we define the problems addressed in the
paper and give an overview of our approach.

Scope. The goal of automatic protocol reverse-
engineering is to extract theprotocol format, which cap-
tures the structure of all messages that comprise the pro-
tocol [19, 25, 26, 35, 38, 48], and theprotocol state ma-
chine, which captures the sequences of messages that rep-
resent valid sessions of the protocol [22, 36]. Extracting

2

the protocol format usually comprises two steps. First,
given a set of input protocol messages extract themes-
sage formatof each message. Second, given the set of
message formats, identify optional, repetitive and alterna-
tive fields, and infer the protocol format, which encom-
passes the multiple message types that comprise the pro-
tocol. The protocol format can be represented as a regular
expression [48] or a BNF grammar [27].

This paper deals only with the first step of the proto-
col format extraction, extracting the message format for a
given message, which is a pre-requisite for extracting both
the protocol format and the protocol state-machine.

Message format.The message format is captured in the
message field tree, a hierarchical tree in which each node
represents a field in the message1. A child node represents
a subfield of its parent, and thus corresponds to a subrange
of the parent field in the message. The root node repre-
sents the complete message, the internal nodes represent
composedfields2 and the leaf nodes represent the small-
est semantic units in the message3. Each node contains
an attribute list, where each attribute captures properties
about the field such as the field range (the start and end
positions in the given message), or whether the field has
fixed-length or variable-length, as well as inter-field de-
pendencies such as a field representing the length of an-
other target field or being a checksum of multiple target
fields in the tree. Figure 1 shows the message field tree
for a C&C message used by MegaD to communicate back
to the C&C server information about the bot’s host. The
root node represents the message, which is 58 bytes long.
There are two composed fields: the payload, which is the
encrypted part of the message, and the host information,
which contains leaf fields representing data about the host
such as the CPU identifier and the IP address. The at-
tributes capture that theMSG lengthfield is the length of
the payload and theLengthfield is the length of theHost
info field.

Field semantics.One important property of a field is its
semantics, i.e, the type of data that the field contains. Typ-
ical field semantics are lengths, timestamps, checksums,
hostnames, and filenames. Inferring the field semantics
is fundamental to understand what a message does and
to identify interesting parts of a dialog to rewrite. The
field semantics are captured in the message field tree as
an attribute for each field and can be used to label the
fields. For example, in Figure 1 the semantics inference
states that the range [54:57] contains an IP address and

1Called protocol field tree in [38].
2Called complex fields in [48], and hierarchical fields in [38].
3Called finest-grained fields in [38].

Figure 1: Message field tree for the MegaD Host-
Information message.

range [6:13] contains some data previously received over
the network. We use this information to label the corre-
sponding fieldsBotID andIP addr.

Problem definition. In this paper we address two prob-
lems: 1) extracting the message field tree for the messages
sentby the application, and 2) inferring field semantics,
that is, annotating the nodes in the message field tree, for
both receivedandsentmessages, with a field semantics
attribute.

Approach. We define theoutput bufferto be the buffer
that contains the message about to be sent at the time
that the function that sends data over the network is in-
voked. As a special case, for encrypted protocols, the
output buffer is the buffer that contains the unencrypted
data at the time the encryption routine is invoked. To ex-
tract the message format forsentmessages we use the fol-
lowing intuition: programs store fields in memory buffers
and construct the messages to be sent by combining those
buffers together. Thus, the structure of the output buffer
represents the inverse of the structure of the sent message.
We proposebuffer deconstruction, a technique to build the
message field tree of a sent message by analyzing how the
output bufferis constructed from other memory buffers in
the program. We present our message format extraction
techniques for sent messages in Section 4 and our han-
dling of encrypted protocols in Section 5.

To infer the field semantics, we use type-inference-
based techniques that leverage the observation that many
functions and instructions used by programs contain
known semantic information that can be leveraged for
field semantics inference. When a field in the received
message propagates to the parameters of those functions
or instructions (i.e., semantic sinks), we can infer its se-
mantics. When the output of those functions or instruc-
tions (i.e., semantic sources) propagates to some field in
the output buffer, we can infer its semantics.

3

We have developed Dispatcher, a tool that enables ana-
lyzing both sides of the communication of an unknown
protocol, even when an analyst has access only to the
application on one side of the dialog. Dispatcher inte-
grates previously proposed techniques to extract the mes-
sage format of received messages [19, 38, 48], as well as
our novel techniques to extract the message format of sent
messages, and to infer field semantics in both received and
sent messages. We show that the information extracted by
Dispatcher enables rewriting MegaD’s C&C messages.

Obtaining an execution trace. The input to our mes-
sage format extraction and field semantics inference tech-
niques are execution traces taken by monitoring the pro-
gram while it is involved in some network dialog using
the unknown protocol. To monitor the program we use a
custom analysis environment, which implements dynamic
taint tracking [21, 23, 40, 45] and produces instruction-
level execution traces that contain all instructions exe-
cuted, the content of the operands and the associated taint
information. To analyze the protocol used by malware
samples (e.g., the C&C protocol of a botnet), we need to
run the malware sample in a specialized analysis network
with custom containment policies [3,46].

An execution trace contains the processing of multiple
messages sent and received by the program during the net-
work dialog. We split the execution trace for the dialog
into smaller execution traces for the individual messages
by monitoring the program’s use of networking functions
that read or write data from sockets. We split the exe-
cution trace into two traces every time that the program
makes a successful call to write data to a socket (e.g.,
send) and every time that the program makes a successful
call to read data from a socket (e.g.,recv), except if the
parameter defining the maximum number of bytes to read
is tainted. In this case, the read data is considered part of
the previous message and the trace is not split. This han-
dles the case when a program first reads the length of the
payload and then reads the variable-length payload using
the received length value.

Handling obfuscation. The MegaD binary we analyze
uses obfuscation techniques such as binary packing and
inlining unnecesary instructions, which are designed to
thwart static analysis. But, as far as we can tell, it does not
implement techniques designed to thwart dynamic anal-
ysis such as detecting virtualized or emulated environ-
ments. Thus, our techniques run fine on MegaD. How-
ever, we expect malware to adapt and have designed our
techniques to capture fundamental properties so that they
are as resilient as possible to obfuscation. Nevertheless,
the techniques proposed in this paper are not specific to

malware analysis and can be used to analyze any unknown
or undocumented protocols.

3 Field Semantics Inference

In this section we present our technique to identify the
field semantics of both received and sent messages4.

The intuition behind our type-inference-based tech-
niques is that many functions and instructions used by
programs contain rich semantic information. We can
leverage the existing semantic information to infer field
semantics by monitoring if the received network data is
used at a point where the semantics are known, or if the
data to be sent on the network has been derived from some
data with known semantics. Suchinferenceis very gen-
eral and can be used to identify a broad spectrum of field
semantics including timestamps, filenames, hostnames,
ports, IP addresses, and many other. The semantic in-
formation of those functions and instructions is publicly
available in the prototype, which describes the goal of
the function or instruction, as well as the semantics of
its inputs and outputs. Function prototypes can be found,
among others, at the Microsoft Developer Network [10]
or the standard C library [7]. For instructions, one can
refer to the system’s manufacturer’s manuals [1,6].

Techniques.Forreceivedmessages, Dispatcher uses taint
propagation to monitor if a sequence of bytes from the
received message is used in theparametersof some se-
lected function calls and instructions, for which the sys-
tem has been provided with the function’s prototype. The
sequence of bytes in the received message can then be as-
sociated with the semantics for the argument, as defined in
the prototype. For example, when a program calls thecon-
nectfunction Dispatcher uses the function’s prototype to
check if any of the parameters in the stack is tainted. The
function’s prototype tells us that the first parameter is the
socket descriptor, the second one is an address structure
that contains the IP address and port of the host to connect
to, and the third one is the length of the address structure.
If the memory locations that correspond to the IP address
to connect to in the address structure are tainted from 4
bytes in the input, then Dispatcher can infer that those 4
bytes in the input message (identified from the offset in
the taint information) form a field, which contains an IP
address to connect to. Similarly, if the memory locations

4Our semantics inference techniques were first published as atech-
nical report [17]. They are more general than simultaneous work that
identifies cookies and filenames from execution traces [48],and predate
other work that also identifies such fields [27].

4

Field Semantics Received Sent
Cookies yes yes
IP addresses yes yes
Error codes no yes
File data no yes
File information no yes
Filenames yes yes
Hash / Checksum yes yes
Hostnames yes yes
Host information no yes
Keyboard input no yes
Keywords yes yes
Length yes yes
Padding yes no
Ports yes yes
Registry data no yes
Sleep timers yes no
Stored data yes no
Timestamps no yes

Table 1: Field semantics identified by Dispatcher for both
received and sent messages.

that correspond to the port to connect to have been de-
rived from 2 bytes in the input message, it can identify the
position of the port field in the input message.

Forsentmessages, Dispatcher taints the output of some
selected functions and instructions using a unique source
identifier and offset pair. For each tainted sequence of
bytes in the output buffer, Dispatcher identifies from
which taint source the sequence of bytes was derived. The
semantics for the taint source (return values) are given by
the function’s or instruction’s prototype, and can be as-
sociated to the sequence of bytes. For example, if a pro-
gram uses therdtscx86 instruction, the instruction’s pro-
totype [6] describes the instruction semantics, in particu-
lar that it takes no input and returns a 64-bit output rep-
resenting the current value of the processors time-stamp
counter, which is placed in registers EDX:EAX. Thus,
at the time of execution when the program usesrdtsc,
Dispatcher taints the EDX and EAX registers with some
unique source identifier and offset. The source identifier
uniquely identifies the taint source to be fromrdtsc, and
the offsets identify each byte in therdtscstream (offsets 0
through 7 for the first call tordtsc).

A special case of the last technique is thecookieinfer-
ence. A cookie represents data from a received network
message that propagates to the output buffer (e.g., session
identifiers). Thus, a cookie is simultaneously identified in
the received and sent messages.

Implementation. To identify field semantics Dispatcher
uses an input set of function and instruction prototypes.
By default, Dispatcher includes over one hundred func-
tions and a few instructions for which we have already
added the prototypes by searching online repositories. To
identify new field semantics and their corresponding func-
tions, we examine the external functions called by the pro-
gram in the execution trace. Table 1 shows the field se-
mantics that Dispatcher can infer from received and sent
messages using the predefined functions. In the table,
stored data represents data that the program receives over
the network andwrites to the filesystem or the Windows
registry, as opposed to dataread from the filesystem or
the Windows registry. We refer the reader to Appendix B
for examples of functions and instructions used to identify
each of the field semantics in Table 1.

4 Extracting the message format of
sent messages

The message field tree captures the hierarchical field
structure of the message as well as the field properties en-
coded in attributes. To extract the message field tree of
a sent message we first reverse-engineer the structure of
the output message and output a message field tree with
no field attributes. Then, we propose specific techniques
to identify the field attributes such as how to identify the
field boundary (fixed-length, delimiter, length field) and
the keywords present in each field.

A field is a sequence of consecutive bytes in a message
with some meaning. A memory buffer is a sequence of
consecutive bytes in memory that stores data with some
meaning. To reverse-engineer the structure of the output
message we cannot use current techniques to extract the
message format ofreceivedmessages because they rely on
tainting the network input and monitoring how the tainted
data is used by the program. Most data in sent messages
does not come from the tainted network input. Instead,
we use the following intuition: programs store fields in
memory buffers and construct the messages to be sent by
combining those buffers together. Thus, the structure of
the output buffer represents the inverse of the message
field tree of the sent message. We proposebuffer decon-
struction, a technique to build the message field tree of a
sent message by analyzing how theoutput bufferis con-
structed from other memory buffers in the program. Fig-
ure 2 shows the deconstruction of the output buffer hold-
ing the message in Figure 1. Note the similarity between
Figure 1 and the upside-down version of Figure 2.

5

Figure 2: Buffer deconstruction for the MegaD message
in Figure 1. Each box is a memory buffer starting at ad-
dressBx with the byte length in brackets. Note the simi-
larity with the upside-down version of Figure 1.

Extracting the message format of sent messages is a
three-step process. In thepreparationstep, Dispatcher
makes a forward pass over the execution trace to extract
information about the loops that were executed, the live-
ness of buffers in the stack, and the callstack information
at each point in the execution trace. It also builds an index
of the execution trace to enable random access to any in-
struction. We present the preparation in Section 4.1. The
core of the message format extraction is thebuffer decon-
structionstep, which is a recursive process in which one
memory buffer is deconstructed at a time by extracting the
sequence of memory buffers that comprise it. The process
is started with the output buffer and recurses until there
are no more buffers to deconstruct. Since the structure
of the output buffer is the inverse of the message field tree
for the sent message, then every memory buffer that forms
the output buffer, and recursively the memory buffers that
form them, corresponds to a field in the message field
tree. For example, deconstructing the output buffer in Fig-
ure 2 returns a sequence of two buffers, a 2-byte buffer
starting at offset zero in the output buffer (B1) and a 56-
byte buffer starting at offset 2 in the output buffer (B2).
Correspondingly a field with range [0:1] and another one
with range [2:57] are added to the no-attributes message
field tree. Thus, the buffer deconstruction builds the no-
attributes message field tree as it recurses into the output
buffer structure. We present the buffer deconstruction in
Section 4.2. Finally, thefield attribute inferenceidentifies
length fields, delimiters, keywords, arrays and variable-
length fields and adds the information into attributes for
the corresponding fields in the message field tree. We
present the field attribute inference in Section 4.3.

4.1 Preparation

During thepreparation, Dispatcher makes a forward pass
over the execution trace collecting information needed by

the buffer deconstruction as well as the attribute inference.

Loop analysis. During the forward pass, Dispatcher ex-
tracts information about each loop present in the execution
trace. To identify the loops in the execution trace, Dis-
patcher supports two different detection methods: static
and dynamic. The static method extracts the addresses of
the loop head and exit conditions statically from the bi-
nary before the forward pass starts, and uses that informa-
tion during the forward pass to identify the points where
any of those loops appears in the trace. The dynamic
method does not require any static processing and ex-
tracts the loops directly during the forward pass by moni-
toring instructions that appear multiple times in the same
function. Both methods are complimentary. While using
static information is more precise at identifying the loop
exit conditions, it also requires analyzing all the modules
(executable plus dynamically link libraries) used by the
application, may miss loops that contain indirection, and
cannot be applied if the unpacked binary is not available,
such as in the case of MegaD. On the other hand, the dy-
namic method is less accurate at identifying the loop exit
conditions, but requires no setup and can be used in all
our samples including MegaD.

Callstack Analysis.During the forward pass, Dispatcher
replicates the function stack of the program by monitoring
the function calls and returns. The output of the callstack
analysis is a function that given an instruction number re-
turns the innermost function that contained that instruc-
tion at that point of the execution.

Buffer Liveness Analysis. During the execution trace
capture, Dispatcher monitors the heap allocation and free
functions used by the program. For each heap allocation
it provides the instruction number in the trace, the buffer
start and the size of the buffer. For each heap free, it spec-
ifies the instruction number in the trace, and the start ad-
dress of the buffer being freed. During the forward pass,
Dispatcher monitors the stack pointer at the function en-
try and return points, extracting information about which
memory locations in the stack are freed when the function
returns. This information is used by Dispatcher to deter-
mine whether two different writes to the same memory ad-
dress, correspond to the same memory buffer, since mem-
ory locations in the stack (and occasionally in the heap)
may be reused for different buffers.

4.2 Buffer Deconstruction

Buffer deconstruction is a recursive process. In each it-
eration it deconstructs a given memory buffer into the se-

6

Figure 3: Dependency chain forB2 in Figure 2. The start address ofB2 is A.

quence of other memory buffers that comprise it. The pro-
cess starts with the output buffer and recurses until there
are no more buffers to deconstruct. It has two parts. First,
for each location (i.e., byte) in the given buffer we build
a dependency chain. Then, using the dependency chains
and the information collected in the preparation step, we
extract the structure of the given buffer. The input to each
buffer deconstruction iteration is a buffer defined by its
start address in memory and its length, and the instruc-
tion number in the trace where the buffer was last written.
The start address and length of the output buffer are ob-
tained from the parameters of the function that sends the
data over the network (or the encryption function). The
instruction number to start the analysis is the instruction
number for the first instruction in the send (or encrypt)
function. In the remainder of this section we introduce
what locations and dependency chains are and present
how they are used to deconstruct the output buffer.

Program locations. We define aprogram locationto be
a one-byte-long storage unit in the program’s state. We
consider four types of locations:memory locations, reg-
ister locations, immediate locations, andconstant loca-
tions, and focus on the address of those locations, rather
than on its content. Each memory byte is a memory loca-
tion indexed by its address. Each byte in a register is a reg-
ister location, for example, there are 4 locations in EAX:
EAX(0) or AL, EAX(1) or AH, EAX(2), and EAX(3).
An immediate location corresponds to a byte from an im-
mediate in the code section of some module, indexed by
the offset of the byte with respect to the beginning of the
module. Constant locations represent the output of some
instructions that have constant output. For example, one
common instruction is to xor one register against itself
(e.g.,xor %eax, %eax). The output of such instructions is

always a zero value in that register. Dispatcher recognizes
a number of such instructions and makes each byte of its
output a constant location.

Dependency chains.A dependency chain for a program
location is the sequence ofwrite operationsthat produced
the value of the location at a certain point in the pro-
gram. A write operation comprises the instruction number
at which the write occurred, the location that was written,
the source location, and the offset of the written location
with respect to the beginning of the output buffer. Fig-
ure 3 shows the dependency chains for theB2 buffer (the
one that holds the encrypted payload) in Figure 2. In the
figure, each box represents a write operation, and each se-
quence of vertical boxes represents the dependency chain
for one location in the buffer.

The dependency chain is computed in a backwards pass
starting at the given instruction number. We stop building
the dependency chain at the first write operation for which
the source location is: 1) an immediate location, 2) a con-
stant location, 3) a memory location, or 4) an unknown
location.

If the source location is part of an immediate or part
of the output from some constant output instruction, then
there are no more dependencies and the chain is com-
plete. This is the case for the first four bytes ofB2 in
Figure 3. The reason to stop at a source memory loca-
tion is that we want to understand how a memory buffer
has been constructed from other memory buffers. After
extracting the structure of the given buffer, Dispatcher re-
curses on the buffers that form it. For example, in Figure 3
the dependency chains for locationsA+4 throughA+11
contains only one write operation because the source of
the write operation is another memory location. When
building the dependency chains, Dispatcher only handles

7

a small subset of x86 instructions which simply move
data around, without modifying it. This subset includes
move instructions (mov,movs), move with zero-extend in-
structions (movz), push and pop instructions, string stores
(stos), plus instructions that are used to convert data from
network to host order and vice versa such as exchange
instructions (xchg), swap instructions (bswap), or right
shifts that shift entire bytes (e.g.,shr$0x8,%eax). When a
write operation is performed by any other instruction, the
source is considered unknown and the dependency chain
stops. Often, it is enough to stop the dependency chain
at such instructions, because the program is at that point
performing some operation on the field (e.g., arithmetic
operation) as opposed to just moving the content around.
Since programs operate on leaf fields, not on composed
fields, then at that point of the chain we have already re-
cursed up to the corresponding leaf field in the message
field tree. For example, in Figure 3 the dependency chains
for the last two bytes stop at the sameadd instruction.
Thus, both source locations are unknown. Note that those
locations correspond to the length field in Figure 1. The
fact that the program is increasing the length value indi-
cates that the dependency chain has already reached a leaf
field.

Extracting the buffer structure. For a buffer location,
we call the source location of the last element in its depen-
dency chain, thesourceof the buffer location. We say that
two source locations belong to the same source buffer if
they are contiguous memory locations (in either ascending
or descending order) and the liveness information states
that none of those locations has been freed between their
corresponding write operations. If the source locations
are not in memory (e.g., register, immediate, constant or
unknown location), they belong to the same buffer if they
were written by the same instruction (i.e, same instruction
number).

For example, in Figure 3 the source locations for mem-
ory locationsA+4 andA+5 are contiguous (Mem(B)and
Mem(B+1)). The source locations for memory locations
A andA+1 are also contiguous (IMM(C) andIMM(C+1))
because they are written by the same instruction (x − 5).

To extract the structure for the given buffer (B2) Dis-
patcher iterates on the buffer locations from the buffer
start (Mem(A)) to the end (Mem(A+55)). For each buffer
location, Dispatcher checks whether the source of the cur-
rent buffer location belongs to the same source buffer as
the source of the previous buffer location. If they do not,
then it has found a boundary in the structure of the buffer.
The structure of the given buffer is output as a sequence
of ranges that form it, where each range states whether it

Attribute Value
Field Range Start offset and length in message
Field Boundary Fixed, Length, Delimiter
Field Semantics A value from Table 1
Field Keywords List of keywords in field

Table 2: Field attributes used in the message field tree.

corresponds to a source memory buffer. Dispatcher finds
6 ranges inB2. The last two ranges correspond to the
Host Info field and the padding in Figure 1. The other
four are shown in Figure 3. They are marked with arrows
at the top of the figure. Since only the third range origi-
nates from another memory buffer, that is the only buffer
that Dispatcher will recurse on to reconstruct.

Once the buffer structure has been extracted, Dis-
patcher uses the correspondence between buffers and
fields in the analyzed message, adding one field to the
message field tree per range in the buffer structure using
the offsets relative to the output buffer. In Figure 3 it adds
four new fields that correspond to theVersion, Type, Bot
ID, andLengthin Figure 1.

4.3 Field Attributes Inference

The message field tree built during the buffer deconstruc-
tion step represents the hierarchical structure of the output
message but it does not contain information about inter-
field relationships such as if a field represents the length
of another target field. Such additional information is cap-
tured by the field attributes in the message field tree.

Table 2 presents the field attributes that we identify in
this paper. The field range captures the position of the
field in the message. The field boundary captures how
an application determines where the field ends. Fields
can be fixed-length (Fixed), variable-length using a length
field (Length). or variable-length using a delimiter (De-
limiter)5. The field semantics are the values in Table 1.
The field keywords attribute contains a list of all the pro-
tocol constants that appear in the field and their position.

The field attributes in Table 2 are similar to the ones
that previous work extracts for received messages [19,48].
But, previous techniques that work on received messages
do not work on sent messages because they rely on mon-
itoring how the data received over the network is pro-
cessed, when for sent messages we can only observe how
the sent messages are built. Our techniques are new,
but share common intuitions with previous techniques be-
cause they both try to capture the fundamental properties

5Also called separator in [19].

8

of the different protocol elements. In fact, some attribute
values are more difficult to extract for sent messages than
for received messages. For example, many fields that
a protocol specification would define as variable-length
may encode some fixed-length data in a specific imple-
mentation. For example theServerheader is variable-
length based on the HTTP specification. However a given
HTTP server implementation may have hardcoded the
Serverstring in the binary. Thus, for the implementation
the field is fixed-length and it becomes difficult to infer
otherwise. Leveraging the availability of multiple imple-
mentations of the same protocol could help in such cases.
We plan to study this in future work.

Keywords. Keywords are constants that appear in net-
work messages. To identify constants in the output buffer,
Dispatcher taints the memory region that contains the
module (and DLL’s shipped with the main binary) with
a specific taint origin, effectively tainting both immedi-
ates in the code section as well as data stored in the data
section. Locations in the output buffer tainted from this
origin are considered keywords.

Length fields. Dispatcher uses three different techniques
to identify length fields. The intuition behind the tech-
niques is that length fields can be computed by either in-
crementing a counter as the program iterates on the field,
or by subtracting pointers to the beginning and end of
the buffer. The intuition behind the first two techniques
is that those arithmetic operations translate into an un-
known source at the end of the dependency chains for the
buffer locations corresponding to the length field. When
a dependency chain ends in an unknown source, Dis-
patcher checks whether the instruction that performs the
write is inside a known function the computes the length
of a string (e.g.,strlen), or it is a subtraction where the
operands are pointers to the beginning and end of the
buffer. The third technique tries to identify counter incre-
ments that do not correspond to well-known string length
functions. For each buffer it uses the loop information to
identify if most writes to the buffer6 belong to the same
loop. If they do, then it uses the techniques in [44] to
extract the loop induction variables. For each induction
variable it computes the dependency chain and checks
whether it intersects the dependency chains from any out-
put buffer locations that precede the locations written in
the loop (since a length field always has to precede its tar-
get field). Any intersecting location is part of the length
field for the field processed in the loop.

6Many memory move functions are optimized to move 4 bytes at
a time in one loop and use separate instructions or loops to move the
remaining bytes.

Delimiters. Delimiters are constants used by protocols
to mark the boundary of variable-length fields. Thus, it
is difficult to differentiate a delimiter from any another
constant in the output message. To identify delimiters,
Dispatcher looks for constants that appear multiple times
in the same message or appear at the end of multiple mes-
sages in the same session (three appearances are required).
Constants can be identified by checking the offsets of the
taint information for keyword identification. If the delim-
iters come from the data section, they can also be iden-
tified by checking whether the source address of all in-
stances of the constant comes from the same buffer.

Variable-length fields. Dispatcher marks fields that pre-
cede a delimiter, and target fields for previously identified
length fields as variable-length fields. It also marks as
variable-length fields, fields that have been derived from
semantic sources that are known to have variable length
such as file data. All other fields are marked as fixed-
length.

Arrays. The intuition behind identifying arrays of records
is that they are written in loops, one record at a time.
Thus, Dispatcher uses the loop information extracted dur-
ing preparation to identify loops that write multiple con-
secutive fields. Then, it adds to the message field tree one
Array field with the range being the combined range of all
the consecutive fields written in the loop, and oneRecord
field per range of bytes written in each iteration of the
loop.

5 Handling encrypted messages

Our protocol reverse engineering techniques, as well as
previous ones, work on unencrypted data. Thus, when
reverse-engineering encrypted protocols we need to ad-
dress two problems: for received messages, we need to
identify the buffers holding the unencrypted data at the
point that the decryption has finished (since buffers may
only hold the decrypted data for a brief period of time).
For sent messages, we need to identify the buffers hold-
ing the unencrypted data at the point that the encryption
is about to begin. Once the buffers holding the unen-
crypted data have been identified, protocol reverse engi-
neering techniques can be applied on them, rather than on
the messages received or about to be sent on the wire.

Recent work has looked at the problem of reverse-
engineering the format of received encrypted mes-
sages [39, 47]. Since the application needs to decrypt the
data before using it, those approaches monitor the appli-
cation’s processing of the encrypted message and attempt

9

to locate the buffers that contain the decrypted data at the
point that the decryption has finished. Those approaches
do not address the problem of finding the buffers holding
the unencrypted data before it is encrypted, which is also
required in our case.

In this work we first tried to extend the technique pre-
sented in ReFormat [47] to identify the buffers holding
the unencrypted data before the encryption. However,
we found that the technique in ReFormat could not iden-
tify the buffers holding the decrypted data. The problem
is that ReFormat tries to identify a single boundary be-
tween the decryption and the normal protocol processing.
In MegaD multiple such boundaries exist. As shown in
Figure 1 MegaD messages comprise two bytes with the
message length, followed by the encrypted payload. After
checking the message length, a MegaD bot will decrypt 8
bytes from the encrypted payload and process them, then
move to the next 8 bytes and process them, and so on. In
addition, some messages in MegaD also use compression
and the decryption and decompression operations are in-
terleaved. Thus, there is no single program point where
all data in a message is available unencrypted and uncom-
pressed. We believe that a general technique has to iden-
tify every instanceof encryption, hashing, compression,
and obfuscation, which we generally termencoding func-
tions.

Identifying the encoding functions.To address this lim-
itation and to enable locating the buffers holding the un-
encrypted data before encryption, we have simplified the
technique in ReFormat by removing the cumulative met-
ric, the use of tainted data, and the concept of leaf func-
tions. The technique uses the intuition in [47] that encod-
ing functions contain an inordinate number of arithmetic
and bitwise operations. It works as follows. Dispatcher
makes a forward pass over the input execution trace repli-
cating the callstack of the application by monitoring the
call and return instructions. For each function it computes
the ratio between the number of arithmetic and bitwise op-
erations over the total number of instructions in the func-
tion. The ratio includes only the instructions that belong
to the function. It does not include the instructions in the
functions called from inside that function. The ratio is
computed for each appearance of the function in the trace.

Any function that executes a minimum number of in-
structions and has a ratio larger than a pre-defined thresh-
old is flagged by Dispatcher as an instance of a encoding
function. In our experiments, the threshold is set to 0.55
and the minimum number of instructions is 20. In our
MegaD execution traces, this simple technique identifies
all instances of 3 unique functions: the decryption routine,

the encryption routine, and a routine that deobfuscates the
encryption and decryption keys that are hidden in the bi-
nary before calling the encryption or decryption routines.
In addition, in the traces that process messages with com-
pressed data, Dispatcher flags a fourth function that cor-
responds to theinflate function in thezlib library, which
is statically linked into the MegaD binary. Our evaluation
results in Section 6.3 show the false positive rate of the
technique to be 0.002%.

Identifying the buffers. To identify the buffers hold-
ing the unencrypted data before encryption we compute
the read setfor the encryption routine, the set of loca-
tions read inside the encryption routine before being writ-
ten. The read set for the encryption routine includes the
buffers holding the unencrypted data, in addition to the
encryption key and some hardcoded tables used by the
routine. We can differentiate the buffers holding the unen-
crypted data because their content varies between multi-
ple instances of the same function. To identify the buffers
holding the unencrypted data after decryption we compute
thewrite setfor the decryption routine, the set of locations
written inside the decryption routine and read later in the
trace.

6 Evaluation

In this section we evaluate our techniques on the MegaD
C&C protocol, as well as a number of open protocols.

6.1 Evaluation on MegaD

MegaD uses a proprietary, encrypted, binary protocol pre-
viously not understood. Our MegaD evaluation has two
parts. First, we describe the information obtained by Dis-
patcher on the C&C protocol used by MegaD. Then, we
show how the information extracted by Dispatcher can be
used to rewrite a dialog between the bot and the C&C
server.

MegaD C&C Protocol. The MegaD C&C protocol uses
TCP as the transport protocol. It uses port 443 (assigned
for HTTPS) but the messages are encrypted with a pro-
prietary algorithm rather than using the SSL algorithms.
Our network traces show our MegaD bot communicating
with three entities: theC&C serverthat the bot period-
ically probes for new commands; theSMTP test server,
an SMTP server whose hostname is provided by the C&C
server and to which the bot connects to test for spam send-
ing capabilities; and thespam server, whose IP address
and listening port are sent by the C&C server to the bot

10

so that the bot can download all spam-related information
such as the spam template or the email addresses to spam.
The communication with the C&C server and the spam
server uses the encrypted C&C protocol, while the com-
munication with the SMTP test server uses unencrypted
SMTP. The communication model is pull-based. The bot
periodically probes the botmaster by sending a request
message. The botmaster replies with two messages: one
with authentication information, and the other one with
a command. The bot performs the requested action and
sends a response to the botmaster with its results.

Message format.Our MegaD C&C traces contain 14 dif-
ferent messages (7 on each direction of the dialog). Using
Dispatcher, we have extracted the message field tree for
messages on both directions, as well as the associated field
semantics. All 14 messages follow the structure shown in
Figure 1 with a 2-byte message length followed by an en-
crypted payload. The payload, once decrypted, contains a
2-byte field that we term version as it is always a keyword
of value 0x100, followed by a 2-byte message type field.
The structure of the remaining payload depends on the
message type. To summarize the protocol format we have
used the output of Dispatcher to write a BinPac gram-
mar [41] that comprises all 14 messages. Field seman-
tics are added as comments to the grammar. Appendix A
presents an abridged version of the grammar.

To the best of our knowledge, we are the first to doc-
ument MegaD’s C&C protocol in detail. Thus, we lack
ground truth to evaluate our grammar. To verify the gram-
mar’s accuracy, we use another execution trace that con-
tains a different instance of one of the analyzed dialogs.
We dump the content of all unencrypted messages and
try to parse the messages using our grammar. For this,
we were provided by other researchers with a stand-alone
version of the BinPac parser included in Bro [42]. Using
our grammar, the parser successfully parses all MegaD
C&C messages in the new dialog. In addition, the parser
throws an error when given messages that do not follow
the MegaD grammar.

Attribute detection. The 14 MegaD messages contain
no delimiters or arrays. They contain two variable-length
fields that use length fields to mark their boundaries: the
compressed spam-related information (i.e., template and
addresses) received from the spam server, and the host
information field in Figure 1. Both the length fields and
variable-length fields are correctly detected by Dispatcher.
The only attributes that Dispatcher misses are the message
length fields on sent messages because they are computed
using complex pointer arithmetic that Dispatcher cannot
reason about.

Field semantics. Dispatcher identifies 11 different field
semantics over the 14 messages: IP addresses, ports, host-
names, length, sleep timers, error codes, keywords, cook-
ies, stored data, padding and host information. There are
only two fields in the MegaD grammar for which Dis-
patcher does not identify their semantics. Both of them
happen in received messages: one of them is the message
type, which we identify by looking for fields that are com-
pared against multiple constants in the execution and for
which the message format varies depending on its value.
The other one corresponds to an integer whose value is
checked by the program but apparently not used further.
Note that we identify some fields in sent messages as key-
words because they come from immediates and constants
in the data section. We cannot identify exactly what they
represent because we do not see how they are used by the
C&C server.

Rewriting a MegaD dialog. To show how our grammar
enables live rewriting, we run a live bot inside our analysis
environment, which is located in a network that filters all
outgoing SMTP connections for containment purposes.
In a first dialog, the C&C server sends the command to
the bot ordering to test for spam capability using a given
Spam test server. The analysis network blocks the SMTP
connection causing the bot to send an error message back
to the C&C server, to communicate that it cannot send
spam. No more spam-related messages are received by
the bot. Then, we start a new dialog where at the time the
bot calls the encrypt function to encrypt the error message,
we stop the execution, rewrite the encryption buffer with
the message that indicates success, and let the execution
continue7. After the rewriting the bot keeps receiving the
spam-related messages, including the spam template and
the addresses to spam, despite the fact that it cannot send
any spam messages. Note that simply replaying the mes-
sage that indicates success from a previous dialog into the
new dialog does not work because the success message
includes a cookie value that the C&C selects and that can
change between dialogs.

6.2 Evaluation on Open Protocols

In this section we evaluate our techniques on four open
protocols: HTTP , DNS, FTP, and ICQ. For this, we com-
pare the output of Dispatcher with the output by Wire-
shark 1.0.5 [14] when processing 12 messages belonging
to those four protocols. For each protocol we select a
representative application that implements the protocol:

7The size of both messages is the same once padding is accounted
for, thus we can reuse the buffer allocated by the bot.

11

Wireshark Dispatcher Errors
Protocol Message Type |LW | |CW | |LD| |CD| |E(LW)| |E(LD)| |E(CW)| |E(CD)|

HTTP GET reply 11 1 22 0 11 1 0 1
POST reply 11 1 22 0 11 1 0 1

DNS A reply 27 4 28 0 1 0 0 4
FTP Welcome0 2 1 3 1 1 0 0 0

Welcome1 2 1 3 1 1 0 0 0
Welcome2 2 1 3 1 1 0 0 0
USER reply 2 1 3 1 1 1 0 0
PASS reply 2 1 2 0 1 1 0 1
SYST reply 2 1 2 0 1 1 0 1

ICQ New connection 5 0 5 0 0 0 0 0
AIM Sign-on 11 3 15 3 5 0 0 0
AIM Logon 46 15 46 15 0 0 0 0

Total 123 30 154 22 34 5 0 8

Table 3: Comparison of the message field tree for sent messages extracted by Dispatcher and Wireshark

Apache-2.2.1 for HTTP, Bind-9.6.0 for DNS, Filezilla-
0.9.31 for FTP, and Pidgin-2.5.5 for ICQ. Note that re-
gardless of the application being a client (Pidgin) or a
server (Bind, Apache, Filezilla), for this part of the evalu-
ation we focus on sent messages.

Message format. Wireshark is a network protocol
analyzer, which contains manually-generated grammars
(called dissectors) for many network protocols. Although
Wireshark is a mature and widely-used tool, its dissec-
tors have been manually generated and therefore are not
completely error-free. To compare the accuracy of the
message format automatically extracted by Dispatcher
with the manually generated ones included in Wireshark,
we analyze the message field tree output by both tools
and manually compare them to the protocol specification.
Thus, we can classify the differences between both tools
to be either Dispatcher or Wireshark errors (or both).

We name the set of leaf fields and composed fields in
the message field tree output by Wireshark asLW and
CW respectively. Then,LD andCD are the correspond-
ing sets for Dispatcher. Table 3 shows the evaluation re-
sults. For each protocol and message it first shows the
number of leaf fields and composed fields in the message
field tree output by both tools|LW |, |CW |, |LD|, and
|CD|. Then, it presents the manual classification of its
errors, where|E(LW)| and |E(LD)| represent the num-
ber of errors on leaf fields in the message field tree out-
put by Wireshark and Dispatcher respectively. Similarly,
|E(CW)| and|E(CD)| represent the number of errors on
composed fields.

The results show that Dispatcher outperforms Wire-
shark when identifying leaf fields. This surprising result is
due to the inconsistencies between the different dissectors

in Wireshark when identifying delimiters. Some dissec-
tors do not add the delimiter fields to the message field
tree, others concatenate them to the variable-length field
for which they mark the boundary, while others treat them
as separate fields. After checking the protocol specifica-
tions, we believe that delimiters should be treated as their
own fields in all dissectors. The results also show that
Wireshark outperforms Dispatcher when identifying com-
posed fields. This is due to the program not using loops
to write the arrays because the number of elements in the
array is known or is small enough that the compiler has
unrolled the loops.

Overall, Dispatcher outperformed Wireshark for the
given messages. Note that, we do not claim that Dis-
patcher is generally more accurate than Wireshark since
we are only evaluating a limited number of protocols and
messages. But, the results show that the accuracy of
the message format automatically extracted by Dispatcher
can rival the accuracy of the manually generated one used
by Wireshark.

Errors on leaf fields. Here we detail the errors on
leaf fields that we have assigned to Dispatcher. The er-
ror in the HTTP GET reply message is in theStatus-
Line. The HTTP/1.1 specification [30] states that its for-
mat is: Status-Line = HTTP-Version SP Status-Code SP
Reason-Phrase CRLF, but both Dispatcher and Wireshark
consider the Status-Code, the delimiter, and the Reason-
Phrase to belong to the same field. The FTP specifica-
tion [43] states that a reply message comprises a com-
pletion code followed by a text string. The error in the
FTP USER reply message is due to the fact that the server
echoes back the username to the client and Dispatcher
identifies the username being echoed back as an additional

12

cookie field. The other FTP replies have the same type of
error: the response code is merged with the text string be-
cause the program keeps the whole message (except the
delimiter) in a single buffer in the data section. As men-
tioned earlier the errors on composed fields are due to the
program being analyzed not using loops to write the ar-
rays. This can happen because the number of elements in
the array is a priori known or is small enough that the com-
piler has unrolled the loops. For example in the DNS reply
the four errors correspond to theQueries, Answers, Au-
thoritative, andAdditionalsections in the message, which
Bind processes separately and therefore cannot be identi-
fied by Dispatcher.

These errors highlight the fact that the message field
tree extracted by Dispatcher is limited to the quality of
the protocol implementation in the binary, and may dif-
fer from the protocol specification even when analyzing
mature implementations.

Attribute detection. The 12 messages contain 14 length
fields, 43 delimiters, 57 variable-length fields, and 3 ar-
rays. Dispatcher misses 8 length fields because their value
is hard-coded in the program. Thus, their target variable-
length fields are considered fixed-length. Out of the 43
delimiters Dispatcher only misses one, which corresponds
to a null byte marking the end of a cookie string that was
considered part of the string. Dispatcher correctly identi-
fies all other variable-length fields. Out of 3 arrays, Dis-
patcher misses one formed byQueries, Answers, Author-
itative, andAdditionalsections in the DNS reply, which
Bind processes separately and therefore cannot be identi-
fied by Dispatcher.

Field semantics. Dispatcher correctly identifies all se-
mantic information in the sent messages, except the 3
pointers in the DNS reply, used by the DNS compression
method, which are computed using pointer arithmetic that
Dispatcher cannot reason about.

6.3 Detecting Encoding Functions

To evaluate the detection of encoding functions presented
in Section 5 we perform the following experiment. We ob-
tain 20 execution traces from multiple programs that han-
dle network data. Five of these traces process encrypted
and compressed functions, four of them are from MegaD
sessions and the other one is from Apache while han-
dling an HTTPS session. MegaD using its own encryp-
tion algorithm and thezlib library for compression and
Apache uses SSL with AES and SHA-18. The remaining

8TLS-DHE-RSA with AES-CBC-256-SHA-1

15 execution traces are from a variety of programs includ-
ing browsers (Internet Explorer 7, Safari 3.1, and Google
Chrome 1.0), network servers (Bind,Atphttpd) and ser-
vices embedded in Windows (RPC, MSSQL).

Dispatcher flags any function instances in the exe-
cution traces with at least 20 instructions and a ratio
of arithmetic and bitwise instructions greater than 0.55
as encoding functions. The results are shown in Ta-
ble 4. The 20 execution traces contain over 3.5 mil-
lion functions calls from 22,379 unique functions. Dis-
patcher flags 0.14% of the function instances as encod-
ing functions. We manually classify the unique func-
tions flagged by Dispatcher as true positives or false pos-
itives, using the function names and associated debug-
ging information. We conservatively classify all instances
of functions flagged by Dispatcher, for which we don’t
have any information as false positives. Dispatcher cor-
rectly identifies all encoding functions in the MegaD and
Apache-SSL traces. There are a total 87 false posi-
tives from 9 unique functions. Out of those 9 unique
functions we have been able to identify two:memchr
andcomctl32.dll::TrueSaturateBits. All in-
stances of the other 7 are conservatively classified as false
positives. Based on these results, our technique correctly
identifies all known encoding functions and has a false
positive rate of 0.002%.

7 Related Work

Protocol reverse-engineering projects have existed for a
long time to enable interoperability of open solutions with
proprietary protocols. Those projects relied on manual
techniques, which are slow and costly [4,5,8,11,13]. Au-
tomatic protocol reverse engineering techniques can be
used, among other applications, to reduce the cost and
time associated with these projects.

Automatic protocol reverse-engineering. Automatic
protocol reverse engineering techniques can be divided
into those that extract the field structure of a single mes-
sage [19, 25, 38], those that analyze multiple messages to
extract the protocol format [15, 27, 48], and those that in-
fer the protocol state-machine [22, 36]. They can also be
classified into techniques that use as input network traf-
fic [15,25,36] and techniques that take as input execution
traces that capture how a program processes a received
input [19,22,27,38,48].

Techniques that takes as input network data [15,25,36]
face the issue of limited semantic information in network
traces, and cannot address encrypted or obfuscated pro-

13

Number of traces Number of functions True Positives False Positives False Positive Rate
20 3,569,773 (22,379) 4,874 (21) 87 (9) 0.002%

Table 4: Evaluation of the detection of encoding functions.Values in parentheses represent the numbers of unique
instances. False positives are computed based on manual verification.

tocols. Techniques to extract the message field tree are
a prerequisite for techniques that extract the protocol for-
mat [27,48] and the protocol state-machine [22] from exe-
cution traces. Current approaches that extract the message
field tree of a given message have focused on extracting
the format of messagesreceivedby an application. To ob-
tain a complete understanding of the protocol they require
access to both sides of the dialog. Our techniques allow
to extract the message field tree forsentmessages, thus
enabling the study of both sides of a communication from
a single binary.

Lim et al [37] use inter-procedural static analysis to
extract the format from files and application data output
by a program. Their approach requires the user to input
the prototype of the functions that write data to the out-
put buffer. This information is often not available, e.g.,
when the functions used to write data are not exported by
the program. They require sophisticated analysis to deal
with indirection and cannot handle packed binaries such
as MegaD. Their work does not address semantics infer-
ence. Our approach differs in that we do not require any
a priori knowledge about the program, and we use a dy-
namic binary analysis approach that can effectively deal
with indirection and packed binaries.

State-machine inference.Protocol reverse-engineering
also includes inferring the protocol’s state-machine.
ScriptGen [36] infers the protocol state-machine from net-
work data. Due to the lack of semantics in network data it
is difficult for ScriptGen to determine whether two net-
work messages are two instances of the same message
type. Prospex [22] addresses this issue by leveraging in-
formation extracted during program execution such as the
message field tree and the functions called by the program
upon message reception.

Replaying network sessions. Previous work has ad-
dressed the problem of replaying previously captured net-
work sessions [26, 35, 36]. Such systems perform limited
protocol reverse-engineeringon network traces only to the
extent necessary for replay. Their focus is to identify the
dynamic fields, i.e., fields that change value between ses-
sions, such as cookies, length fields or IP addresses.

Identifying application sessions. There has been ad-
ditional work that can be used in the protocol reverse-
engineering problem. Kannan et al [34] studied how to

extract the application-level structure in application data.
Their work can be used to find multiple connections be-
longing to the same protocol session.

Encoding the protocol information. Previous work
has proposed languages to describe protocol specifica-
tions [16, 24, 41]. Such languages are useful to store the
results from protocol reverse engineering techniques, en-
abling the construction of generic protocol parsers.

8 Conclusion

Automatic protocol reverse-engineering is important for
many security applications, including the analysis and
infiltration of botnets. Prior techniques cannot enable
rewriting of C&C messages needed for infiltration be-
cause they cannot analyze encrypted protocols used by
newer botnets, they do not extract information about the
semantics of the protocol, or they require access to both
peers in a protocol dialog for a complete view of the pro-
tocol. In this paper we have addressed those limitations.

We have proposed techniques to extract the message
format ofsentmessages. Our techniques leverage the in-
tuition that the structure of the output buffer represents
the inverse of the structure of the sent message. Thus, we
introducebuffer deconstruction, a technique that extracts
the structure of a message being sent by reconstructing
how the output buffer has been built from other memory
buffers in the program. In addition, we have proposed
techniques for inferring field semantics, a prerequisite for
rewriting C&C messages for botnet infiltration. Our type-
inference-based techniques leverage the rich semantic in-
formation that is already available in the program by mon-
itoring how data in the received messages is used at places
where the semantics are known, and how the sent mes-
sages are built from data with known semantics.

We have implemented our techniques as well as pre-
vious approaches into Dispatcher, a tool that enables the
analysis of protocol dialogs even when only one of the
peers involved in the dialog is available. We have used
Dispatcher to analyze the previously undocumented C&C
protocol of MegaD, a prevalent spam botnet. We have
shown that the information output by Dispatcher enables
botnet infiltration by rewriting the C&C messages.

14

9 Acknowledgements

We are grateful to Robin Sommer for providing us with a
stand-alone version of BinPac, and to Stephen McCamant
for his valuable comments.

This material is based upon work partially supported
by the National Science Foundation under Grants No.
0311808, No. 0448452, No. 0627511, and CCF-0424422,
and by the Air Force Office of Scientific Research under
MURI Grant No. 22178970-4170. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not neces-
sarily reflect the views of the Air Force Office of Scientific
Research, or the National Science Foundation.

References

[1] AMD64 architecture tech docs. http:
//www.amd.com/us-en/Processors/
DevelopWithAMD/0,,30 2252 875 7044,
00.html.

[2] An analysis of Conficker’s logic and rendezvous
points.http://mtc.sri.com/Conficker/.

[3] DETERlab testbed. http://www.isi.edu/
deter/.

[4] How Samba was written.http://samba.org/
ftp/tridge/misc/french cafe.txt.

[5] icqlib: The ICQ library. http://kicq.
sourceforge.net/icqlib.shtml.

[6] Intel64 and IA-32 architectures software devel-
oper’s manuals. http://www.intel.com/
products/processor/manuals/.

[7] The ISO/IEC 9899:1999 C programming language
standard. http://www.open-std.org/
jtc1/sc22/wg14/www/docs/n1124.pdf.

[8] Libyahoo2: A C library for Yahoo! Messenger.
http://libyahoo2.sourceforge.net.

[9] Marshal8e6 security threats: Email and web
threats. http://www.marshal.com/
newsimages/trace/Marshal8e6 TRACE
Report Jan2009.pdf.

[10] Microsoft developer network. http://msdn.
microsoft.com.

[11] MSN messenger protocol. http://www.
hypothetic.org/docs/msn/index.php.

[12] Spotlight on bots: The world’s most un-wanted
bots. http://nortontoday.symantec.
com/features/spotlight on bots.php.

[13] The unofficial AIM/OSCAR protocol specification.
http://www.oilcan.org/oscar/.

[14] Wireshark.http://www.wireshark.org/.

[15] M. A. Beddoe. Network protocol anal-
ysis using bioinformatics algorithms.
http://www.baselineresearch.net/PI/.

[16] N. Borisov, D. J. Brumley, H. J. Wang, and C. Guo.
Generic application-level protocol analyzer and its
language. InNetwork and Distributed System Secu-
rity Symposium, San Diego, CA, February 2007.

[17] J. Caballero and D. Song. Rosetta: Extracting pro-
tocol semantics using binary analysis with applica-
tions to protocol replay and nat rewriting. Technical
Report CMU-CyLab-07-014, Cylab, Carnegie Mel-
lon University, October 2007.

[18] J. Caballero, S. Venkataraman, P. Poosankam, M. G.
Kang, D. Song, and A. Blum. Fig: Automatic fin-
gerprint generation. InNetwork and Distributed Sys-
tem Security Symposium, San Diego, CA, February
2007.

[19] J. Caballero, H. Yin, Z. Liang, and D. Song. Poly-
glot: Automatic extraction of protocol message for-
mat using dynamic binary analysis. InACM Con-
ference on Computer and Communications Security,
Alexandria, VA, October 2007.

[20] K. Chiang and L. Lloyd. A case study of the Ru-
stock rootkit and spam bot. InWorkshop on Hot
Topics in Understanding Botnets, Cambridge, MA,
April 2007.

[21] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via
whole system simulation. InUSENIX Security Sym-
posium, San Diego, CA, August 2004.

[22] P. M. Comparetti, G. Wondracek, C. Kruegel, and
E. Kirda. Prospex: Protocol specification extraction.
In IEEE Symposium on Security and Privacy, Oak-
land, CA, May 2009.

15

[23] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P. Barham. Vigilante: End-
to-end containment of internet worms. InSympo-
sium on Operating Systems Principles, Brighton,
United Kingdom, October 2005.

[24] D. Crocker and P. Overell. Augmented BNF for syn-
tax specifications: ABNF. RFC 4234 (Draft Stan-
dard), October 2005.http://www.ietf.org/
rfc/rfc4234.txt.

[25] W. Cui, J. Kannan, and H. J. Wang. Discoverer:
Automatic protocol description generation from net-
work traces. InUSENIX Security Symposium,
Boston, MA, August 2007.

[26] W. Cui, V. Paxson, N. C. Weaver, and R. H. Katz.
Protocol-independent adaptive replay of application
dialog. In USENIX Security Symposium, Boston,
MA, August 2007.

[27] W. Cui, M. Peinado, K. Chen, H. J. Wang, and
L. Irun-Briz. Tupni: Automatic reverse engineering
of input formats. InACM Conference on Computer
and Communications Security, Alexandria, VA, Oc-
tober 2008.

[28] N. Daswani, M. Stoppelman, and the Google Click
Quality & Security Teams. The anatomy of click-
bot.a. InWorkshop on Hot Topics in Understanding
Botnets, Cambridge, MA, April 2007.

[29] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and
R. Sommer. Dynamic application-layer protocol
analysis for network intrusion detection. InUSENIX
Security Symposium, Vancouver, Canada, July 2006.

[30] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext transfer protocol –
HTTP/1.1. RFC 2068 (Proposed Standard), January
1997. Obsoleted by RFC 2616.

[31] J. B. Grizzard, V. Sharma, C. Nunnery, and B. B.
Kang. Peer-to-peer botnets: Overview and case
study. InWorkshop on Hot Topics in Understand-
ing Botnets, Cambridge, MA, April 2007.

[32] J. P. John, A. Moshchuk, S. D. Gribble, and A. Kr-
ishnamurthy. Studying spamming botnets using Bot-
lab. InSymposium on Networked System Design and
Implementation, Boston, MA, April 2009.

[33] C. Kanich, C. Kreibich, K. Levchenko, B. Enright,
G. M. Voelker, V. Paxson, and S. Savage. Spam-
alytics: An empirical analysis of spam marketing

conversion. InACM Conference on Computer and
Communications Security, Alexandria, VA, October
2008.

[34] J. Kannan, J. Jung, V. Paxson, and C. E. Kok-
sal. Semi-automated discovery of application ses-
sion structure. InInternet Measurement Conference,
Rio de Janeiro, Brazil, October 2006.

[35] C. Leita, M. Dacier, and F. Massicotte. Automatic
handling of protocol dependencies and reaction to
0-day attacks with ScriptGen based honeypots. In
International Symposium on Recent Advances in In-
trusion Detection, Hamburg, Germany, September
2006.

[36] C. Leita, K. Mermoud, and M. Dacier. ScriptGen:
An automated script generation tool for honeyd. In
Annual Computer Security Applications Conference,
Tucson, AZ, December 2005.

[37] J. Lim, T. Reps, and B. Liblit. Extracting output
formats from executables. InWorking Conference
on Reverse Engineering, Benevento, Italy, October
2006.

[38] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Auto-
matic protocol format reverse engineering through
context-aware monitored execution. InNetwork and
Distributed System Security Symposium, San Diego,
CA, February 2008.

[39] N. Lutz. Towards revealing attacker’s intent by au-
tomatically decrypting network traffic. Master’s the-
sis, ETH, Zürich, Switzerland, July 2008.

[40] J. Newsome and D. Song. Dynamic taint analysis
for automatic detection, analysis, and signature gen-
eration of exploits on commodity software. InNet-
work and Distributed System Security Symposium,
San Diego, CA, February 2005.

[41] R. Pang, V. Paxson, R. Sommer, and L. Peterson.
binpac: A yacc for writing application protocol
parsers. InInternet Measurement Conference, Rio
de Janeiro, Brazil, October 2006.

[42] V. Paxson. Bro: A system for detecting network
intruders in real-time.Computer Networks, 31(23–
24), 1999.

[43] J. Postel and J. Reynolds. File transfer protocol.
RFC 959 (Standard), October 1985. Updated by
RFCs 2228, 2640, 2773, 3659.

16

[44] P. Saxena, P. Poosankam, S. McCamant, and
D. Song. Loop-extended symbolic execution on bi-
nary programs. InInternational Symposium on Soft-
ware Testing and Analysis, Chicago, IL, July 2009.

[45] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure program execution via dynamic information
flow tracking. InInternational Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, Boston, MA, October 2004.

[46] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. C. Snoeren, G. M. Voelker, and S. Savage. Scala-
bility, fidelity, and containment in the Potemkin vir-
tual honeyfarm. InSymposium on Operating Sys-
tems Principles, Brighton, United Kingdom, Octo-
ber 2005.

[47] Z. Wang, X. Jiang, W. Cui, and X. Wang. ReFormat:
Automatic reverse engineering of encrypted mes-
sages. Technical Report NCSU-TR-2008-26, Norh
Carolina State University, December 2008.

[48] G. Wondracek, P. M. Comparetti, C. Kruegel, and
E. Kirda. Automatic network protocol analysis. In
Network and Distributed System Security Sympo-
sium, San Diego, CA, February 2008.

A MegaD BinPac grammar

type MegaD_Message(is_inbound: bool) = record {
msg_len : uint16;
encrypted_payload(is_inbound):
bytestring &length = 8 * msg_len;

} &byteorder = bigendian;

type encrypted_payload(is_inbound: bool) = record {
version : uint16; # Constant (0x0100 or 0x0001)
mtype : uint16;
data : MegaD_data(is_inbound, mtype);

};

Message types seen in our traces
type MegaD_data(is_inbound: bool, msg_type: uint16) =

case msg_type of {
0x00 -> m00 : msg_0;
0x01 -> m01 : msg_1;
0x0e -> m0e : empty_msg;
0x15 -> m15 : empty_msg;
0x16 -> m16 : msg_0x16;
0x18 -> m18 : empty_msg;
0x1c -> m1c : msg_0x1c(is_inbound);
0x1d -> m1d : msg_0x1d;
0x21 -> m21 : msg_0x21;
0x22 -> m22 : msg_0x22;
0x23 -> m23 : msg_0x23;
0x24 -> m24 : msg_0x24;
0x25 -> m25 : msg_0x25;
default -> unknown : bytestring &restofdata;

};

Direction: outbound (CC)
MegaD supports two submessages for type zero

type msg_0 = record {
fld_00 : uint8; # <unknown>
fld_01 : MegaD_msg0(fld_00);

};

type MegaD_msg0(msg0_type: uint8) =
case msg0_type of {

0x00 -> m00 : msg_0_init;
0x01 -> m01 : msg_0_idle;
default -> unknown : bytestring &restofdata;

};

type msg_0_init = record {
fld_00 : bytestring &length=16; # Constant(0)
fld_01 : uint32; # Constant (0xd)
fld_02 : uint32; # Constant (0x26)
fld_03 : uint32; # IP address
pad : bytestring &restofdata;

};

type msg_0_idle = record {
fld_00 : bytestring &length=8; # Bot ID
fld_01 : uint32; # Constant(0)
pad : bytestring &restofdata;

};

Direction: inbound (CC)
type msg_1 = record {
fld_00 : bytestring &length=16; # Stored data
fld_01 : uint32; # Sleep Timer(sec)
fld_02 : bytestring &length=8; # Bot ID

};

Direction: inbound (CC)
type empty_msg = record {
pad : bytestring &restofdata;

};

type host_info = record {
fld_00 : uint32; # Cpu identifier
fld_01 : uint32; # Tick difference
fld_02 : uint32; # Tick counter
fld_03 : uint16; # OS major version
fld_04 : uint16; # OS minor version
fld_05 : uint16; # OS build number
fld_06 : uint16; # Service pack major
fld_07 : uint16; # Service pack minor
fld_08 : uint32; # Physical memory(KB)
fld_09 : uint32; # Available memory(KB)
fld_10 : uint16; # Internet conn. type
fld_11 : uint32; # IP address

};

Direction: outbound (CC)
type msg_0x16 = record {
fld_00 : bytestring &length=8; # Bot ID
fld_01 : uint16; # Length(host_info)
fld_02 : host_info; # Host information
pad : bytestring &restofdata; # Padding

};

Direction: both directions (Spam Server)
type msg_0x1c(is_inbound) =
case is_inbound of {

true -> m1c_in : msg_0x1c_inbound;
false -> m1c_out : msg_0x1c_outbound;

};

type msg_0x1c_inbound = record {
fld_00 : uint32; # <unknown>
fld_01 : uint32; # Size for memset
fld_02 : uint32; # Size of fld_03
fld_03 : bytestring &length = fld_02 # Compressed
pad : bytestring &restofdata;

};

type msg_0x1c_outbound = record {

17

fld_00 : bytestring &length = 16; # Cookie
fld_01 : uint32; # Constant(0)

};

Direction: outbound (Spam Server)
type msg_0x1d = record {

fld_00 : bytestring &length = 16; # Cookie
fld_01 : uint32; # Constant(0)

};

Direction: inbound (CC)
type msg_0x21 = record {

fld_00 : uint32; # <unknown>
fld_01 : uint16; # Port
fld_02 : uint8[] &until($element == 0); # Hostname
pad : bytestring &restofdata; # Padding

};

Direction: outbound (CC)
type msg_0x22 = record {

fld_00 : bytestring &length=8; # Bot ID
pad : bytestring &restofdata; # Padding

};

Direction: outbound (CC)
type msg_0x23 = record {

fld_00 : uint32; # Error code
fld_01 : bytestring &length=8; # Bot ID

};

Direction: inbound (CC)
type msg_0x24 = record {

fld_00 : uint32; # IP address
fld_01 : uint16; # Port
pad : bytestring &restofdata; # Padding

};

Direction: outbound (CC)
type msg_0x25 = record {

fld_00 : bytestring &length=8; # Bot ID
pad : bytestring &restofdata; # Padding

};

B Field Semantics

This appendix we provide some examples of functions
used to identify the field semantics described in Table 1.

Cookies.Cookies represent data from a received network
message that propagates to a sent message (e.g., session
identifiers). Thus, a cookie is simultaneously identified in
the received and sent messages. Note that, once a cookie
has been identified we can check if it appears in later mes-
sages (both received and sent) in the dialog.

IP addresses. Dispatcher identifies IP addresses in re-
ceived messages by monitoring if the parameters of some
functions used to establish network connections (e.g.,
connect) or perform DNS reverse lookups (e.g.,getname-
info) have been derived from the received messages. Dis-
patcher identifies IP addresses in sent messages by taint-
ing the output of functions that return local information
(e.g.,gethostbyname), remote information (e.g.,getpeer-
name), or functions that check the name of connected
sockets (e.g.,getsockname).

Error codes. Some programs report back unexpected er-
rors using error codes. Dispatcher identifies error codes
in sent messages by tainting the output of functions that
report error conditions (e.g.,RtlGetLastWin32Error).

File data. File data is data read from local files. Dis-
patcher can identify file data in sent messages by taint-
ing the output of functions that read from file (e.g.,read)
or functions that map files directly into memory (e.g.,
MapViewOfFile). A special case of file data is user-
specifiedconfiguration datasuch as the number of times
to retry a connection. Dispatcher can mark file data as
configuration data when provided with the list of files that
contain the configuration information for the program.

File information. File information is file metadata such
as the size of a file or the last modification date. Dis-
patcher identifies file information in sent messages by
tainting the output of functions that query for file prop-
erties (e.g.,NtQueryInformationFile).

Filenames.Filenames are a special case of file informa-
tion. Dispatcher can identify filenames in received mes-
sages by analyzing if the parameters of functions used
to open files (e.g.,open) or used to get file properties
(e.g., NtQueryInformationFile) have been derived from
data previously received over the network. It can iden-
tify filenames in sent messages by tainting the output of
functions that list the files in a directory (e.g.,NtQueryDi-
rectoryFile).

Hash / Checksum. We call both hash and checksum
fields verification fieldsbecause they are often used to
check if the data has been modified during transmission.
Dispatcher identifies verification functions using the tech-
nique to identify encoding functions presented in Sec-
tion 5. If the output of a encoding function is compared
against a range of bytes received over the network, then
that range is marked as a verification field in the received
message. If the output of a encoding function appears on
a sent message, then it is either a verification field or an
encrypted/obfuscated field. Dispatcher can use the scope
(the range of bytes in the sent message) to distinguish
between a verification field and an encrypted/obfuscated
field, since verification fields are usually shorter.

Hostnames.Hostnames can identify remote hosts as well
as the local host. Dispatcher can identify hostnames in
received messages by checking if the parameters of func-
tions that start network connections (e.g.,connect) are de-
rived from received messages and in sent messages by
tainting the output of functions that return local host in-
formation (e.g.,gethostname).

18

Host information. We call any hardware or software
properties of the host,host information. For example,
when MegaD builds the message in Figure 1, it queries
the operating system for information about the proces-
sor type, the operating system version, the memory sta-
tus of the host or the type of connection to the Internet,
all of which are examples of host information fields. Dis-
patcher identifies host information fields in sent messages
by tainting the output of a variety of functions such as
GetVersionExA, or GlobalMemoryStatus.

Keyboard input. Protocol messages often include data
provided by the user via the keyboard, such as the file-
name in a FTP download, the domain name in a DNS
query or the user name and password in an ICQ login
session. Dispatcher identifies keyboard input in sent mes-
sages by tainting any data input by the user using the key-
board.

Keywords. Dispatcher identifies keyworkds in received
messages using the techniques proposed in Polyglot [19]
and in sent messages by tainting the memory region that
contains a given module, as explained in Section 4.3.

Length. Dispatcher identifies length fields in received
messages using previously proposed techniques [19, 48]
and in sent messages using the techniques described in
Section 4.3. Message length fields are a special type of
length fields, that represent the length of a message on
the wire. Dispatcher can identify message length fields
in received messages by monitoring if some bytes in the
received message are compared against the output of the
function calls to read data from the socket (e.g,read,
recv).

Padding. Dispatcher identifies padding in received mes-
sages by looking for tainted bytes that are not used by the
program (only moved around) and that are present at the
end of variable-length fields or at the end of the message.
Dispatcher considers a padding field to be at most 5 bytes
(64-bit alignment).

Ports. Ports are usually used altogether with IP addresses
or hostnames to define an end point for a connection. Dis-
patcher identifies ports in received messages by analyzing
how the parameters of functions used by the program to
start new connections (e.g.,connect) and bind new listen-
ing ports (e.g.,bind) have been derived from a previously
received message. Dispatcher identifies ports in sent mes-
sages by tainting the output of functions that check the
name of connected sockets (e.g.,getsockname).

Registry data. Registry data is any data stored in the
Windows registry. Dispatcher identifies registry data in

sent messages by tainting the output of functions that read
data from the Windows registry (e.g.,NtQueryValueKey).

Sleep timers.Sleep timers are timers used to indicate to a
host that it should delay execution for a certain amount of
time. Dispatcher identifies sleep timers in received mes-
sages by monitoring if the parameters to functions that
delay execution (e.g.,sleep) have been derived from data
received over the network.

Stored data.Stored data is data received over the network
that the program saves into permanent storage, so that it
is kept even if a reboot happens. It includes data written
to disk and the Windows registry. Dispatcher can identify
stored data by monitoring if data received over the net-
work is used as parameters for functions that write data to
file (e.g.,write) or the Windows registry (e.g.,NtSetVal-
ueKey).

Timestamps. Timestamps are fields that contain time
data. Dispatcher identifies timestamps in sent messages
by tainting the output of functions that request the local or
system time (e.g.,GetLocalTime, GetSystemTime).

19

